While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

1

Identification for a Nonlinear Periodic Wave Equation

This work is concerned with an approximation process for the identification of nonlinearities in the nonlinear periodic wave equation. It is based on the least-squares approach and on a splitting method. A numerical algorithm of gradient type and the numerical implementation are given.

Morosanu, C. [Department of Mathematics, University 'Al.I.Cuza', 6600 Iasi (Romania); Trenchea, C. [Institute of Mathematics of Romanian Academy, 6600 Iasi (Romania)

2001-07-01T23:59:59.000Z

2

Property:Wave Period Range(s) | Open Energy Information

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to:USGSMeanReservoirTemp Jump to: navigation,Volumes) Jump to:

3

Steady periodic gravity waves with surface tension

In this paper we consider two-dimensional, stratified, steady water waves propagating over an impermeable flat bed and with a free surface. The motion is assumed to be driven by capillarity (that is, surface tension) on the surface and a gravitational force acting on the body of the fluid. We prove the existence of global continua of classical solutions that are periodic and traveling. This is accomplished by first constructing a 1-parameter family of laminar flow solutions, $\\mathcal{T}$, then applying bifurcation theory methods to obtain local curves of small amplitude solutions branching from $\\mathcal{T}$ at an eigenvalue of the linearized problem. Each solution curve is then continued globally by means of a degree theoretic theorem in the spirit of Rabinowitz. Finally, we complement the degree theoretic picture by proving an alternate global bifurcation theorem via the analytic continuation method of Dancer.

Samuel Walsh

2009-11-06T23:59:59.000Z

4

TIME-PERIODIC SOUND WAVE PROPAGATION COMPRESSIBLE EULER EQUATIONS

A PARADIGM FOR TIME-PERIODIC SOUND WAVE PROPAGATION IN THE COMPRESSIBLE EULER EQUATIONS BLAKE consistent with time-periodic sound wave propagation in the 3 Ã? 3 nonlinear compressible Euler equations description of shock-free waves that propagate through an oscillating entropy field without breaking or dis

5

Periodic Discrete Energy for Long-Range Potentials

We consider periodic energy problems in Euclidean space with a special emphasis on long-range potentials that cannot be defined through the usual infinite sum. One of our main results builds on more recent developments of Ewald summation to define the periodic energy corresponding to a large class of long-range potentials. Two particularly interesting examples are the logarithmic potential and the Riesz potential when the Riesz parameter is smaller than the dimension of the space. For these examples, we use analytic continuation methods to provide concise formulas for the periodic kernel in terms of the Epstein Hurwitz Zeta function. We apply our energy definition to deduce several properties of the minimal energy including the asymptotic order of growth and the distribution of points in energy minimizing configurations as the number of points becomes large. We conclude with some detailed calculations in the case of one dimension, which shows the utility of this approach.

D. P. Hardin; E. B. Saff; Brian Simanek

2014-12-11T23:59:59.000Z

6

Excitation and control of multi-phase periodic waves in

the phase of the excited wave by the driver ("phase-locking") control the wave by varying parametersExcitation and control of multi-phase periodic waves in sine-Gordon equation Arkadiy Shagalovµcr U ()eff U ()eff Threshold condition for phase-locking: µ > µcr = 0.41 > cr = 3.28 3/2 0m 3

Fominov, Yakov

7

Efficient Numerical Simulation for Long Range Wave Propagation 1

Efficient Numerical Simulation for Long Range Wave Propagation 1 Kai Huang 2 George Papanicolaou 3 for simulating wave propagation over long dis- tances with both weak and strong scatterers. In domains with weak heterogeneities the wave field is decomposed into forward propagating and back scattered modes using two coupled

Solna, Knut

8

Diffusive propagation of wave packets in a fluctuating periodic potential

We consider the evolution of a tight binding wave packet propagating in a fluctuating periodic potential. If the fluctuations stem from a stationary Markov process satisfying certain technical criteria, we show that the square amplitude of the wave packet after diffusive rescaling converges to a superposition of solutions of a heat equation.

Eman Hamza; Yang Kang; Jeffrey Schenker

2010-10-05T23:59:59.000Z

9

Ultrasonic wave propagation in random and periodic particulate composites

ULTRASONIC WAVE PROPAGATION IN RANDOM AND PERIODIC PARTICULATE COMPOSITES A Thesis by BENJAMIN KYLE HENDERSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfilltnent of the requirements for the degree... of MASTER OF SCIENCE May 1996 Major Subject: Aerospace Engineering ULTRASONIC WAVE PROPAGATION IN RANDOM AND PERIODIC PARTICULATE COMPOSITES A Thesis by BENJAMIN KYLE HENDERSON Submitted to Texas ASM University in partial fulfillment...

Henderson, Benjamin Kyle

1996-01-01T23:59:59.000Z

10

Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data

This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50,1?190]??Hz and with frequency derivative range of ?[-20,1.1]×10[superscript -10]??Hz?s[superscript -1] for the ...

Barsotti, Lisa

11

Wave propagation in periodic networks of thin fibers

We will discuss a one-dimensional approximation for the problem of wave propagation in networks of thin fibers. The main objective here is to describe the boundary (gluing) conditions at branching points of the limiting one-dimensional graph. The results will be applied to Mach-Zehnder interferometers on chips and to periodic chains of the interferometers. The latter allows us to find parameters which guarantee the transparency and slowing down of wave packets.

S. Molchanov; B. Vainberg

2009-08-02T23:59:59.000Z

12

Gravitational Waves from Periodic Three-Body Systems

Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.

Dmitrašinovi?, V; Hudomal, Ana

2015-01-01T23:59:59.000Z

13

All-sky search for periodic gravitational waves in the full S5 LIGO data

We report on an all-sky search for periodic gravitational waves in the frequency band 50–800 Hz and with the frequency time derivative in the range of 0 through -6×10[superscript -9]??Hz/s. Such a signal could be produced ...

Barsotti, Lisa

14

A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical of Mechanical Engineering) ABSTRACT Within a wave energy converter's operational bandwidth, device operation

Victoria, University of

15

Wave propagation and instabilities in monolithic and periodically structured elastomeric materials; revised manuscript received 3 October 2008; published 14 November 2008 Wave propagation in elastomeric states can influence wave propagation and hence interpretation of data. In the case of periodically

16

Observations of the high frequency range of the wave spectrum

This paper takes a new look at the high frequency range of the wave spectrum. The analysis is based on data sets from two recent field campaigns offshore Portugal and Crete carried out in the MAST II WAVEMOD project, data from the WADIC experiment in the North Sea, and deep sea data from Haltenbanken and Voeringplataaet offshore Norway. In addition, the authors also show spectra obtained by spectral inversion of ERS-1 SAR imagery. The influence and calibration of wave measuring instrumentation and the use of wavenumber spectra when comparing spectra from shallow water is emphasized.

Prevosto, M. [IFREMER, Plouzane (France); Krogstad, H.E. [SINTEF Industrial Mathematics, Trondheim (Norway); Barstow, S. [OCEANOR, Trondheim (Norway); Guedes Soares, C. [Technical Univ. of Lisbon, Lisboa (Portugal)

1995-12-31T23:59:59.000Z

17

The theory of fully nonlinear stationary electrostatic ion cyclotron waves is further developed. The existence of two fundamental constants of motion; namely, momentum flux density parallel to the background magnetic field and energy density, facilitates the reduction of the wave structure equation to a first order differential equation. For subsonic waves propagating sufficiently obliquely to the magnetic field, soliton solutions can be constructed. Importantly, analytic expressions for the amplitude of the soliton show that it increases with decreasing wave Mach number and with increasing obliquity to the magnetic field. In the subsonic, quasi-parallel case, periodic waves exist whose compressive and rarefactive amplitudes are asymmetric about the 'initial' point. A critical 'driver' field exists that gives rise to a soliton-like structure which corresponds to infinite wavelength. If the wave speed is supersonic, periodic waves may also be constructed. The aforementioned asymmetry in the waveform arises from the flow being driven towards the local sonic point in the compressive phase and away from it in the rarefactive phase. As the initial driver field approaches the critical value, the end point of the compressive phase becomes sonic and the waveform develops a wedge shape. This feature and the amplitudes of the compressive and rarefactive portions of the periodic waves are illustrated through new analytic expressions that follow from the equilibrium points of a wave structure equation which includes a driver field. These expressions are illustrated with figures that illuminate the nature of the solitons. The presently described wedge-shaped waveforms also occur in water waves, for similar 'transonic' reasons, when a Coriolis force is included.

McKenzie, J. F. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Steve Biko Campus, Durban 4001 (South Africa); School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag: X54001, Durban 4001 (South Africa); Doyle, T. B. [Materials Research Division, iThemba LABS, P.O.Box 722, Somerset West, 7129, South Africa and School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag: X54001, Durban 4001 (South Africa); Rajah, S. S. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Steve Biko Campus, Durban 4001 (South Africa)

2012-11-15T23:59:59.000Z

18

Entrainment and termination of reentrant wave propagation in a periodically stimulated ring periodic stimulation of a class of cardiac arrhythmias caused by reentrant wave propagation in the human wave of circulation. In analogy with earlier results found from the periodic stimulation

Glass, Leon

19

All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data

We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50–1100 Hz and with the frequency’s time derivative in the range -5×10[superscript -9]–0??Hz?s[superscript -1]. ...

Zucker, Michael E.

20

Solutions to Test 1 Review Problems 1. Here are two sound waves. Identify which is periodic. Sound wave = You hear a sound that fades in, then gets quiet, then gets louder, and inally fades out. The width of the sound wave corresponds to intensity. (b) Suppose a 1000 Hz tone and a 1008 Hz tone

Hall, Rachel W.

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

21

The periodic standing-wave approximation: post-Minkowski computation

The periodic standing wave method studies circular orbits of compact objects coupled to helically symmetric standing wave gravitational fields. From this solution an approximation is extracted for the strong field, slowly inspiralling motion of black holes and binary stars. Previous work on this model has dealt with nonlinear scalar models, and with linearized general relativity. Here we present the results of the method for the post-Minkowski (PM) approximation to general relativity, the first step beyond linearized gravity. We compute the PM approximation in two ways: first, via the standard approach of computing linearized gravitational fields and constructing from them quadratic driving sources for second-order fields, and second, by solving the second-order equations as an ``exact'' nonlinear system. The results of these computations have two distinct applications: (i) The computational infrastructure for the ``exact'' PM solution will be directly applicable to full general relativity. (ii) The results will allow us to begin supplying initial data to collaborators running general relativistic evolution codes.

Christopher Beetle; Benjamin Bromley; Napoleón Hernández; Richard H. Price

2007-08-08T23:59:59.000Z

22

Fully Nonlinear Properties of Periodic Waves Shoaling over Slopes1

; detailed wave kinematics at the BP is also needed for surfzone models which are increasingly used after. In most wave transformation models used so far, shoaling of deep water waves is calculated based and intermediate water, may not be sufficiently accurate close to the BP where wave height reaches a significant

Grilli, StÃ©phan T.

23

ON THE EXISTENCE OF STEADY PERIODIC CAPILLARY-GRAVITY STRATIFIED WATER WAVES

points for steady water waves. The condition which ensures the lack of stagnation points for 1991ON THE EXISTENCE OF STEADY PERIODIC CAPILLARY-GRAVITY STRATIFIED WATER WAVES DAVID HENRY AND BOGDANVASILE MATIOC Abstract. We prove the existence of small steady periodic capillary-gravity water waves

24

Approximations to wave propagation through doubly-periodic arrays of scatterers

Approximations to wave propagation through doubly-periodic arrays of scatterers P. Mc Abstract The propagation of waves through a doubly-periodic array of identical rigid scatterers of matched asymptotic expansions is used to obtain the dispersion relation corresponding to wave propagation

25

Einstein@Home search for periodic gravitational waves in LIGO S4 data

A search for periodic gravitational waves, from sources such as isolated rapidly spinning neutron stars, was carried out using 510 h of data from the fourth LIGO science run (S4). The search was for quasimonochromatic waves ...

Zucker, Michael E.

26

Waves and the equilibrium range at Ocean Weather Station P J. Thomson,1

Waves and the equilibrium range at Ocean Weather Station P J. Thomson,1 E. A. D'Asaro,1 M. F September 2013; accepted 29 September 2013; published 8 November 2013. [1] Wave and wind measurements at Ocean Weather Station P (OWS-P, 50 N 145 W) are used to evaluate the equilibrium range of surface wave

27

Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data

This paper presents results of an all-sky searches for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative ranges of [-2 x 10^-9, 1.1 x 10^-10] Hz/s for the fifth LIGO science run (S5). The novelty of the search lies in the use of a non-coherent technique based on the Hough-transform to combine the information from coherent searches on timescales of about one day. Because these searches are very computationally intensive, they have been deployed on the Einstein@Home distributed computing project infrastructure. The search presented here is about a factor 3 more sensitive than the previous Einstein@Home search in early S5 LIGO data. The post-processing has left us with eight surviving candidates. We show that deeper follow-up studies rule each of them out. Hence, since no statistically significant gravitational wave signals have been detected, we report upper limits on the intrinsic gravitational wave amplitude h0. For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h0 greater than 7.6 x 10^-25 with a 90% confidence level.

J. Aasi; J. Abadie; B. P. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; T. Adams; P. Addesso; R. Adhikari; C. Affeldt; M. Agathos; K. Agatsuma; P. Ajith; B. Allen; A. Allocca; E. Amador Ceron; D. Amariutei; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; S. Ast; S. M. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. Baker; G. Ballardin; S. Ballmer; Y. Bao; J. C. B. Barayoga; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; D. Beck; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; C. Bell; I. Belopolski; M. Benacquista; J. M. Berliner; A. Bertolini; J. Betzwieser; N. Beveridge; P. T. Beyersdorf; T. Bhadbade; I. A. Bilenko; G. Billingsley; J. Birch; R. Biswas; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; M. Blom; O. Bock; T. P. Bodiya; C. Bogan; C. Bond; R. Bondarescu; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; T. Bulik; H. J. Bulten; A. Buonanno; J. Burguet--Castell; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; G. Cagnoli; E. Calloni; J. B. Camp; P. Campsie; K. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; S. Caudill; M. Cavaglià; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; T. Chalermsongsak; P. Charlton; E. Chassande-Mottin; W. Chen; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; S. S. Y. Chua; C. T. Y. Chung; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. A. Clark; J. H. Clayton; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; A. Colla; M. Colombini; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. Coughlin; J. -P. Coulon; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; A. Cumming; L. Cunningham; E. Cuoco; R. M. Cutler; K. Dahl; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; D. DeBra; G. Debreczeni; J. Degallaix; W. Del Pozzo; T. Dent; V. Dergachev; R. DeRosa; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; M. Di Paolo Emilio; A. Di Virgilio; M. Díaz; A. Dietz; A. Dietz; F. Donovan; K. L. Dooley; S. Doravari; S. Dorsher; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edgar; M. Edwards; A. Effler; P. Ehrens; G. Endröczi; R. Engel; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; B. F. Farr; M. Favata; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; S. Foley; E. Forsi; N. Fotopoulos; J. -D. Fournier; J. Franc; S. Franco; S. Frasca; F. Frasconi; M. Frede; M. A. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; D. Friedrich; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. J. Fulda; M. Fyffe; J. Gair; M. Galimberti; L. Gammaitoni; J. Garcia; F. Garufi; M. E. Gáspár; G. Gelencser; G. Gemme; E. Genin; A. Gennai; L. Á. Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil-Casanova; C. Gill; J. Gleason; E. Goetz; G. González; M. L. Gorodetsky; S. Goßler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Griffo; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; R. Gupta; E. K. Gustafson; R. Gustafson; J. M. Hallam; D. Hammer; G. Hammond; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. -F. Hayau; J. Heefner; A. Heidmann; H. Heitmann; P. Hello; M. A. Hendry; I. S. Heng; A. W. Heptonstall; V. Herrera; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; M. Holtrop; T. Hong; S. Hooper; J. Hough; E. J. Howell; B. Hughey; S. Husa; S. H. Huttner; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; K. Izumi; M. Jacobson; E. James; Y. J. Jang; P. Jaranowski; E. Jesse; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; M. Kasprzack; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kaufman; K. Kawabe; S. Kawamura; F. Kawazoe; D. Keitel; D. Kelley; W. Kells; D. G. Keppel; Z. Keresztes; A. Khalaidovski; F. Y. Khalili; E. A. Khazanov; B. K. Kim; C. Kim; H. Kim; K. Kim; N. Kim; Y. M. Kim; P. J. King; D. L. Kinzel; J. S. Kissel; S. Klimenko; J. Kline; K. Kokeyama; V. Kondrashov; S. Koranda; W. Z. Korth; I. Kowalska

2012-08-04T23:59:59.000Z

28

Mid-frequency sound propagation through internal waves at short range with

Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic internal waves often are modeled as a background random process introducing small changes in the sound, during, and after the passage of a nonlinear internal wave on 18 August, 2006. Using oceanographic data

29

Linear and nonlinear resonance of water waves near periodic structures

In the first part of this thesis, we present a nonlinear theory for the excitation of trapped wave around a circular cylinder mounted at the center of a channel. It is well-known that near an infinite linear array of ...

Li, Yile, 1973-

2006-01-01T23:59:59.000Z

30

Wave propagation in periodic lattices with defects of smaller dimension

The procedure of evaluating of the spectrum for discrete periodic operators perturbed by operators of smaller dimensions is obtained. This result allows to obtain propagative, guided, localised spectra for different kind of physical operators on graphs with defects.

A. A. Kutsenko

2013-05-20T23:59:59.000Z

31

Homogenized dynamic constitutive relation for Bloch-wave propagation in periodic composites composites has been made only very recently. Here we discuss the explicit form of the effective dynamic properties of composites with tailored microstructure necessitates a systematic homogenization procedure

Nemat-Nasser, Sia

32

Einstein@Home search for periodic gravitational waves in early S5 LIGO data

This paper reports on an all-sky search for periodic gravitational waves from sources such as deformed isolated rapidly spinning neutron stars. The analysis uses 840 hours of data from 66 days of the fifth LIGO science run ...

Barsotti, Lisa

33

All-sky search for periodic gravitational waves in LIGO S4 data

We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and with the frequency's time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO science run (S4) have been used in this search. Three different semi-coherent methods of transforming and summing strain power from Short Fourier Transforms (SFTs) of the calibrated data have been used. The first, known as "StackSlide", averages normalized power from each SFT. A "weighted Hough" scheme is also developed and used, and which also allows for a multi-interferometer search. The third method, known as "PowerFlux", is a variant of the StackSlide method in which the power is weighted before summing. In both the weighted Hough and PowerFlux methods, the weights are chosen according to the noise and detector antenna-pattern to maximize the signal-to-noise ratio. The respective advantages and disadvantages of these methods are discussed. Observing no evidence of periodic gravitationa...

Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M A; Bayer, K; Belczynski, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Casey, M M; Castaldi, G; Cepeda, C; Chalkey, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Chin, D; Chin, E; Chow, J; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Colacino, C N; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coward, D; Coyne, D; Creighton, J D E; Creighton, T D; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; De Bra, D; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S; Daz, M; Dickson, J; Di Credico, A; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L M; González, G; Gossler, S; Grant, A; Gras, S; Gray, a C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Günther, M; Gustafson, R; Hage, B; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Howell, E; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Jackrel, D; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lee, B; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, a N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McNabb, J W C; McWilliams, S; Meier, T; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mudge, D; Müller, G; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Nash, T; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ramsunder, M; Rawlins, K; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Samidi, M; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Tarallo, M; Taylor, R; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D; Ungarelli, C; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P; Villar, A; Vorvick, C

2007-01-01T23:59:59.000Z

34

Propagation of travelling waves in sub-excitable systems driven by noise and periodic forcing

It has been reported that traveling waves propagate periodically and stably in sub-excitable systems driven by noise [Phys. Rev. Lett. \\textbf{88}, 138301 (2002)]. As a further investigation, here we observe different types of traveling waves under different noises and periodic forces, using a simplified Oregonator model. Depending on different noises and periodic forces, we have observed different types of wave propagation (or their disappearance). Moreover, the reversal phenomena are observed in this system based on the numerical experiments in the one-dimensional space. As an explanation, we regard it as the effect of periodic forces. Thus, we give qualitative explanations to how reversal phenomena stably appear, which seem to arise from the mixing function of the periodic force and the noise. And the output period and three velocities (the normal, the positive and the negative) of the travelling waves are defined and their relationship with the periodic forces, along with the types of waves, are also studied in sub-excitable system under a fixed noise intensity.

Fen-Ni Si; Quan-Xing Liu; Jin-Zhong Zhang; Lu-Qun Zhou

2007-11-23T23:59:59.000Z

35

Report on an all-sky LIGO search for periodic gravitational waves in the S4 data

We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and having a negative frequency time derivative with magnitude between zero and $10^{-8}$ Hz/s. Data from the fourth LIGO science run have been used in this search. Three different semi-coherent methods of summing strain power were applied. Observing no evidence for periodic gravitational radiation, we report upper limits on strain amplitude and interpret these limits to constrain radiation from rotating neutron stars.

Alicia M. Sintes; for the LIGO Scientific Collaboration

2007-10-25T23:59:59.000Z

36

Quantum reflection and interference of matter waves from periodically doped surfaces

We show that periodically doped, flat surfaces can act as reflective diffraction gratings for atomic and molecular matter waves. The diffraction element is realized by exploiting that charged dopants locally suppress quantum reflection from the Casimir-Polder potential. We present a general quantum scattering theory for reflection off periodically charged surfaces and discuss the requirements for the observation of multiple diffraction peaks.

Benjamin A. Stickler; Uzi Even; Klaus Hornberger

2015-01-15T23:59:59.000Z

37

Propagation of matter wave solitons in periodic and random nonlinear potentials

We study the motion of bright matter wave solitons in nonlinear potentials, produced by periodic or random spatial variations of the atomic scattering length. We obtain analytical results for the soliton motion, the radiation of matter wave, and the radiative soliton decay in such configurations of the Bose-Einstein condensate. The stable regimes of propagation are analyzed. The results are in remarkable agreement with the numerical simulations of the Gross-Pitaevskii equation with periodic or random spatial variations of the mean field interactions.

Fatkhulla Kh. Abdullaev; Josselin Garnier

2005-11-10T23:59:59.000Z

38

Hamiltonian description of self-consistent wave-particle dynamics in a periodic Frederic Andre,1,

of the electron, self-acceleration and acausality, also appear incompatible with the existence of a wellHamiltonian description of self-consistent wave-particle dynamics in a periodic structure Fr conserves energy and excludes self-acceleration. A complete Hamiltonian formulation results from adding

Paris-Sud XI, UniversitÃ© de

39

Optical disk resonators with micro-wave free spectral range for optoelectronic oscillator

Optical disk resonators with micro-wave free spectral range for optoelectronic oscillator Herv to the resonator relaxation time = Q/ [2]. The optoelectronic delayed feed- back loop can thus oscillate at all. frequency selective resonator (e.g with a high Q factor). The detailed architecture is an optoelectronic

Paris-Sud XI, UniversitÃ© de

40

The No-Boundary Wave Function and the Duration of the Inflationary Period

For the simplest minisuperspace model based on a homogeneous, isotropic metric and a minimally coupled scalar field we derive analytic expressions for the caustic which separates Euklidean and Minkowskian region and its breakdown value $\\p_*$. This value represents the prediction of the no-boundary wave function for the scalar field at the beginning of inflation. We use our results to search for inflationary models which can render the no-boundary wave function consistent with the requirement of a sufficiently long inflationary period.

A. Lukas

1994-09-07T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

41

Observations of the high-frequency range of the wave spectrum

This paper takes a new look at the high-frequency range of the wave spectrum. The analysis is based on data sets from two recent field campaigns offshore Portugal and Crete carried out in the MAST II WAVEMOD project, data from the WADIC experiment in the North Sea, and deep-sea data from Haltenbanken and Voeringplataaet offshore Norway. In addition, the authors also show spectra obtained by spectral inversion of ERS-1 SAR imagery. The influence and calibration of wave-measuring instrumentation and the use of wavenumber spectra when comparing spectra from shallow water is emphasized.

Prevosto, M. [IFREMER, Plouzane (France); Krogstad, H.E. [SINTEF Industrial Mathematics, Trondheim (Norway); Barstow, S.F. [OCEANOR, Trondheim (Norway); Guedes Soares, C. [Instituto Superior Tecnico, Lisboa (Portugal)

1996-05-01T23:59:59.000Z

42

The periodic standing-wave approximation: computations in full general relativity

The periodic standing wave method studies circular orbits of compact objects coupled to helically symmetric standing wave gravitational fields. From this solution an approximation is extracted for the strong field, slowly inspiralling motion of binary black holes and binary neutron stars. Previous work on this project has developed a method using a few multipoles of specially adapted coordinates well suited both to the radiation and the source regions. This method had previously been applied to linear and nonlinear scalar field models, to linearized gravity, and to a post-Minkowski approximation. Here we present the culmination of this approach: the application of the method in full general relativity. The fundamental equations had previously been developed and the challenge presented by this step is primarily a computational one which was approached with an innovative technique. The numerical results of these computations are compared with the corresponding results from linearized and post-Minkowksi computations.

Napoleon Hernandez; Richard H. Price

2008-12-23T23:59:59.000Z

43

Long-range triggered earthquakes that continue after the wave train passes

continue after the wave train passes, Geophys. Res. Lett. ,that continue after the wave train passes Emily E. Brodsky 1triggered early in the wave train. First, the sequences obey

Brodsky, Emily E.

2006-01-01T23:59:59.000Z

44

We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances {approx}> R{sub Sun }/2 along the solar surface, with initial velocities up to 1400 km s{sup -1} decelerating to {approx}650 km s{sup -1}. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by {approx}50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

Liu Wei; Nitta, Nariaki V.; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Ofman, Leon, E-mail: weiliu@lmsal.com [Department of Physics, Catholic University of America, Washingtom, DC 20064 (United States)

2012-07-01T23:59:59.000Z

45

Search for periodic gravitational radiation with the ALLEGRO gravitational wave detector

We describe the search for a continuous signal of gravitational radiation from a rotating neutron star in the data taken by the ALLEGRO gravitational wave detector in early 1994. Since ALLEGRO is sensitive at frequencies near 1 kHz, only neutron stars with spin periods near 2 ms are potential sources. There are no known sources of this typ e for ALLEGRO, so we directed the search towards both the galactic center and the globular clus ter 47 Tucanae. The analysis puts a constraint of roughly $8 \\times 10^{-24}$ at frequencies near 1 kHz on the gravitational strain emitted from pulsar spin-down in either 47 Tucanae or the galactic center.

E. Mauceli; M. P. McHugh; W. O. Hamilton; W. W. Johnson; A. Morse

2000-07-11T23:59:59.000Z

46

Search for periodic gravitational radiation with the ALLEGRO gravitational wave detector

We describe the search for a continuous signal of gravitational radiation from a rotating neutron star in the data taken by the ALLEGRO gravitational wave detector in early 1994. Since ALLEGRO is sensitive at frequencies near 1 kHz, only neutron stars with spin periods near 2 ms are potential sources. There are no known sources of this typ e for ALLEGRO, so we directed the search towards both the galactic center and the globular clus ter 47 Tucanae. The analysis puts a constraint of roughly $8 \\times 10^{-24}$ at frequencies near 1 kHz on the gravitational strain emitted from pulsar spin-down in either 47 Tucanae or the galactic center.

Mauceli, E; Hamilton, W O; Johnson, W W; Morse, A

2002-01-01T23:59:59.000Z

47

The parallelization, design and scalability of the \\sky code to search for periodic gravitational waves from rotating neutron stars is discussed. The code is based on an efficient implementation of the F-statistic using the Fast Fourier Transform algorithm. To perform an analysis of data from the advanced LIGO and Virgo gravitational wave detectors' network, which will start operating in 2015, hundreds of millions of CPU hours will be required - the code utilizing the potential of massively parallel supercomputers is therefore mandatory. We have parallelized the code using the Message Passing Interface standard, implemented a mechanism for combining the searches at different sky-positions and frequency bands into one extremely scalable program. The parallel I/O interface is used to escape bottlenecks, when writing the generated data into file system. This allowed to develop a highly scalable computation code, which would enable the data analysis at large scales on acceptable time scales. Benchmarking of the code on a Cray XE6 system was performed to show efficiency of our parallelization concept and to demonstrate scaling up to 50 thousand cores in parallel.

Gevorg Poghosyan; Sanchit Matta; Achim Streit; Micha? Bejger; Andrzej Królak

2014-10-14T23:59:59.000Z

48

GENERATION OF QUASI-PERIODIC WAVES AND FLOWS IN THE SOLAR ATMOSPHERE BY OSCILLATORY RECONNECTION

We investigate the long-term evolution of an initially buoyant magnetic flux tube emerging into a gravitationally stratified coronal hole environment and report on the resulting oscillations and outflows. We perform 2.5-dimensional nonlinear numerical simulations, generalizing the models of McLaughlin et al. and Murray et al. We find that the physical mechanism of oscillatory reconnection naturally generates quasi-periodic vertical outflows, with a transverse/swaying aspect. The vertical outflows consist of both a periodic aspect and evidence of a positively directed flow. The speed of the vertical outflow (20-60 km s{sup -1}) is comparable to those reported in the observational literature. We also perform a parametric study varying the magnetic strength of the buoyant flux tube and find a range of associated periodicities: 1.75-3.5 minutes. Thus, the mechanism of oscillatory reconnection may provide a physical explanation to some of the high-speed, quasi-periodic, transverse outflows/jets recently reported by a multitude of authors and instruments.

McLaughlin, J. A.; Verth, G. [School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST (United Kingdom); Fedun, V.; Erdelyi, R., E-mail: james.a.mclaughlin@northumbria.ac.uk, E-mail: gary.verth@northumbria.ac.uk, E-mail: v.fedun@sheffield.ac.uk, E-mail: robertus@sheffield.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield, S3 7RH (United Kingdom)

2012-04-10T23:59:59.000Z

49

Dust acoustic solitary waves and periodic waves in an unmagnetized dusty plasma with kappa distributed electrons and ions are investigated through non-perturbative approach. Basic equations are reduced to a system of ordinary differential equations involving electrostatic potential. After that by applying the bifurcation theory of planar dynamical systems to this system, we have studied the existence of solitary wave solutions and periodic wave solutions. New analytical solutions for the above waves are derived depending on the parametric space. Regarding the solitary and periodic wave solutions, the combined effects of temperature ratio (?) of ions and electrons, spectral index (?) and density ratio (p) are studied on characteristics of dust acoustic (DA) solitary waves and periodic waves. The spectral index (?), density ratio (p) of ions and electrons and temperature ratio (?) significantly influence the characteristics of dust acoustic solitary and periodic structures.

Saha, Asit, E-mail: asit-saha123@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India) [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India); Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India); Chatterjee, Prasanta, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India)] [Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India)

2014-02-15T23:59:59.000Z

50

On the propagation of sound waves in a stellar wind traversed by periodic strong shocks

It has been claimed that in stellar winds traversed by strong shocks the mechanism for driving the wind by sound wave pressure cannot operate because sound waves cannot propagate past the shocks. It is shown here that sound waves can propagate through shocks in one direction and that this is a sufficient condition for the sound wave pressure mechanism to work. A strong shock amplifies a sound wave passing through it and can drag the sound wave away from the star. It is immaterial for the sound wave pressure gradient that the sound wave vector points towards the star. Since the strong shocks drag the sound waves away, the star itself is the source for the sound waves propagating towards it.

F. P. Pijpers

1994-09-19T23:59:59.000Z

51

Short-Period Waves That Heat the Corona Detected at the 1999 Eclipse

As a part of a study of the cause of solar coronal heating, we searched for high-frequency (~1 Hz) intensity oscillations in coronal loops in the [Fe XIV] coronal green line. We summarize results from observations made at the 11 August 1999 total solar eclipse from Ramnicu-Valcea, Romania, through clear skies. We discuss the image reduction and analysis through two simultaneous series of coronal CCD images digitized at 10 Hz for a total time of about 140 s. One series of images was taken through a 3.6 A filter isolating the 5303 A [Fe XIV] coronal green line and the other through a 100 A filter in the nearby K-corona continuum. Previous observations, described in Pasachoff et al. (2000), showed no evidence for oscillations in the [Fe XIV] green line at a level great than 2% of coronal intensity. We describe several improvements made over the 1998 eclipse that led to increased image clarity and sensitivity. The corona was brighter in 1999 with the solar maximum, further improving the data. We use Fourier analysis to search in the [Fe XIV] channel for intensity oscillations in loops at the base of the corona. Such oscillations in the 1-Hz range are predicted as a result of density fluctuations from the resonant absorption of MHD waves. The dissipation of a significant amount of mechanical energy from the photosphere into the corona through this mechanism could provide sufficient energy to hear the corona. A Monte-Carlo model of the data suggests the presence of enhanced power, particularly in the 0.75-1.0 Hz range, and we conclude that MHD waves remain a viable method for coronal heating.

Jay M. Pasachoff; Bryce A. Babcock; Kevin D. Russell; Daniel B. Seaton

2002-02-12T23:59:59.000Z

52

We carry out two searches for periodic gravitational waves using the most sensitive few hours of data from the second LIGO science run. The first search is targeted at isolated, previously unknown neutron stars and covers the entire sky in the frequency band 160-728.8 Hz. The second search targets the accreting neutron star in the low-mass X-ray binary Scorpius X-1, covers the frequency bands 464-484 Hz and 604-624 Hz, and two binary orbit parameters. Both searches look for coincidences between the Livingston and Hanford 4-km interferometers. For isolated neutron stars our 95% confidence upper limits on the gravitational wave strain amplitude range from 6.6E-23 to 1E-21 across the frequency band; For Scorpius X-1 they range from 1.7E-22 to 1.3E-21 across the two 20-Hz frequency bands. The upper limits presented in this paper are the first broad-band wide parameter space upper limits on periodic gravitational waves using coherent search techniques. The methods developed here lay the foundations for upcoming hi...

Abbott, B; Adhikari, R; Ageev, A; Agresti, J; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; Daw, E; De Bra, D; Delker, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; Goggin, L; González, G; Gossler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, G; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Luna, M; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mandic, V; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Müller, G; Mukherjee, S; Murray, P; Myers, E; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswaran, A J; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robinson, C; Robison, L; Roddy, S; Rodríguez, A; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Salzman, I; Sanchodela, L; Jordana; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sellers, D; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Spjeld, O; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sung, M; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, 2K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ward, R; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S

2006-01-01T23:59:59.000Z

53

of the electron, self-acceleration and acausality, are also incompatible with the existence of a wellHamiltonian description of self-consistent wave-particle dynamics in a periodic structure Fr. The dynamics conserves energy, and excludes self-acceleration. A complete hamiltonian formulation

Paris-Sud XI, UniversitÃ© de

54

ULYSSES DETECTS LONG-SOUGHT WAVE MOTIONS OF THE SUN Periodic oscillations originating from deep within the Sun's interior have been detected for the first time in interplanetary space by the Ulysses mission to the poles of the Sun. The discovery was reported in this week's issue of Nature magazine

Christian, Eric

55

Since the discovery of quasi-periodic propagating oscillations with periods of order 3-10 minutes in coronal loops with TRACE and SOHO/EIT (and later with STEREO/EUVI and Hinode/EIS), they have been almost universally interpreted as evidence for propagating slow-mode magnetoacoustic waves in the low plasma {beta} coronal environment. Here we show that this interpretation is not unique, and that for coronal loops associated with plage regions (as opposed to sunspots), the presence of magnetoacoustic waves may not be the only cause for the observed quasi-periodicities. We focus instead on the ubiquitous, faint upflows at 50-150 km s{sup -1} that were recently discovered as blueward asymmetries of spectral line profiles in footpoint regions of coronal loops, and as faint disturbances propagating along coronal loops in EUV/X-ray imaging time series. These faint upflows are most likely driven from below and have been associated with chromospheric jets that are (partially) rapidly heated to coronal temperatures at low heights. These two scenarios (waves versus flows) are difficult to differentiate using only imaging data, but careful analysis of spectral line profiles indicates that faint upflows are likely responsible for some of the observed quasi-periodic oscillatory signals in the corona. We show that recent EIS measurements of intensity and velocity oscillations of coronal lines (which had previously been interpreted as direct evidence for propagating waves) are actually accompanied by significant oscillations in the line width that are driven by a quasi-periodically varying component of emission in the blue wing of the line. This faint additional component of blue-shifted emission quasi-periodically modulates the peak intensity and line centroid of a single Gaussian fit to the spectral profile with the same small amplitudes (respectively a few percent of background intensity and a few km s{sup -1}) that were previously used to infer the presence of slow-mode magnetoacoustic waves. Our results indicate that it is possible that a significant fraction of the quasi-periodicities observed with coronal imagers and spectrographs that have previously been interpreted as propagating magnetoacoustic waves are instead caused by these upflows. The different physical cause for coronal oscillations would significantly impact the prospects of successful coronal seismology using propagating disturbances in coronal loops.

De Pontieu, Bart [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. ADBS, Bldg. 252, Palo Alto, CA 94304 (United States); McIntosh, Scott W., E-mail: bdp@lmsal.co, E-mail: mscott@ucar.ed [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

2010-10-20T23:59:59.000Z

56

Partial-wave analysis of elastic {sup 4}He{sup 4}He scattering in the energy range 40-50 MeV

A partial-wave analysis of elastic {sup 4}He{sup 4}He scattering is performed in the energy range 40-50 MeV.

Dubovichenko, S. B. [Fesenkov Astrophysical Institute (Kazakhstan)], E-mail: sergey@dubovichenko.net

2008-01-15T23:59:59.000Z

57

Comment on "Mode Conversion of Waves In The Ion-Cyclotron Frequency Range in Magnetospheric Plasmas"

Recently, Kazakov and Fulop [1] studied mode conversion (MC) at the ion-ion hybrid (IIH) resonance in planetary magnetospheric plasmas by simplifying the dispersion relation of the fast wave (FW) modes to describe a cutoff-resonance (CR) pair near the IIH resonance, which can be reduced to a Budden problem. They suggested that when the IIH resonance frequency (?S) approaches the crossover frequency (?cr), and the parallel wavenumber (k?) is close to the critical wavenumber k? ?(?S = ?cr), MC can be efficient for arbitrary heavy ion density ratios. In this Comment, we argue that (a) the FW dispersion relation cannot be simplified to the CR pair especially near ?cr because in many parameter regimes there is a cutoff-resonance-cutoff (CRC) triplet that completely changes the wave absorption; and (b) the maximum MC efficiency does not always occur near k? ?#25; k???.

Kim, Eun

2014-02-28T23:59:59.000Z

58

The effect of disorder on the wave propagation in one-dimensional periodic optical systems

The influence of disorder on the transmission through periodic waveguides is studied. Using a canonical form of the transfer matrix we investigate dependence of the Lyapunov exponent $\\gamma$ on the frequency $\

Yuri A. Godin; Stanislav Molchanov; Boris Vainberg

2011-10-18T23:59:59.000Z

59

Study of transmission line attenuation in broad band millimeter wave frequency range

Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

Pandya, Hitesh Kumar B. [ITER-India, IPR, Gandhinagar, Gujarat (India)] [ITER-India, IPR, Gandhinagar, Gujarat (India); Austin, M. E. [Institute for Fusion Studies, the University of Texas at Austin, Austin, Texas (United States)] [Institute for Fusion Studies, the University of Texas at Austin, Austin, Texas (United States); Ellis, R. F. [Laboratory for Plasma and Fusion Energy Studies, University of Maryland, College Park, Maryland 20742 (United States)] [Laboratory for Plasma and Fusion Energy Studies, University of Maryland, College Park, Maryland 20742 (United States)

2013-10-15T23:59:59.000Z

60

Long-range dispersion and spatial diffusion of fault waves in the Burridge-Knopoff earthquake model

The Burridge-Knopoff model of earthquakes has recently gained increased interest for the consistency of the predicted energy released by sismic faults, with the Gutenberg-Richter scaling law. The present work suggests an improvement of this model to account for long-range dispersions and large spatial diffusion of sismic faults. An enhancement of the threshold speed of shock waves driven by translated fault fronts is pointed out and shown to result from the interactions between components of the system situated far aways them and others. Due to the enhanced threshold speed, size of the sismic fault gets increased but a control effect can still be gained from tunable dispersion extent irrespective of the total length of the system. To the viewpoint of the Burridge-Knopoff block-lattice model, this last consideration introduces the possibility of sizable but finite interactions among infinitely aligned massive blocks. Implications on the fault wave propagation are examined by numerical simulations of the improved nonlinear partial differential equation.

Alain M. Dikandé

2004-02-13T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

61

Within the framework of a quasi-optical approach, we develop 2D and 3D self-consistent theory of relativistic surface-wave oscillators. Presenting the radiation field as a sum of two counter-propagating wavebeams coupled on a shallow corrugated surface, we describe formation of an evanescent slow wave. Dispersion characteristics of the evanescent wave following from this method are in good compliance with those found from the direct cst simulations. Considering excitation of the slow wave by a sheet electron beam, we simulate linear and nonlinear stages of interaction, which allows us to determine oscillation threshold conditions, electron efficiency, and output coupling. The transition from the model of surface-wave oscillator operating in the ?-mode regime to the canonical model of relativistic backward wave oscillator is considered. We also described a modified scheme of planar relativistic surface-wave oscillators exploiting two-dimensional periodic gratings. Additional transverse propagating waves emerging on these gratings synchronize the emission from a wide sheet rectilinear electron beam allowing realization of a Cherenkov millimeter-wave oscillators with subgigawatt output power level.

Ginzburg, N. S.; Zaslavsky, V. Yu. [Nizhny Novgorod State University, 23 Gagarin Ave., Nizhny Novgorod 603950 (Russian Federation) [Nizhny Novgorod State University, 23 Gagarin Ave., Nizhny Novgorod 603950 (Russian Federation); Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Malkin, A. M.; Sergeev, A. S. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation)] [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation)

2013-11-15T23:59:59.000Z

62

We report the observation of electromagnetic radiation at high harmonics of the electron cyclotron frequency that was considered to be converted from electrostatic waves called electron Bernstein waves (EBWs) during magnetic reconnection in laboratory overdense plasmas. The excitation of EBWs was attributed to the thermalization of electrons accelerated by the reconnection electric field around the X-point. The radiative process discussed here is an acceptable explanation for observed radio waves pulsation associated with major flares.

Kuwahata, A., E-mail: kuwahata@ts.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Igami, H. [National Institute for Fusion Science, Toki 509-5292 (Japan); Kawamori, E. [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Kogi, Y. [Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Inomoto, M.; Ono, Y. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561 (Japan)

2014-10-15T23:59:59.000Z

63

Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...

LaCure, Mari Mae

2010-04-29T23:59:59.000Z

64

Fast wave electron heating experiments are carried out on Aditya tokamak [R = 0.75 m, a = 0.25m,Bt = 0.75T,ne{approx}1-3E13/cc,Te{approx}250eV] with the help of indigenously developed 200 kW, 20-40 MHz RF heating system. Significant direct electron heating is observed by fast waves in hydrogen plasma with prompt rise in electron temperature with application of RF power and it increases linearly with RF power. A corresponding increase in plasma beta and hence increase in stored diamagnetic energy is also observed in presence of RF. We observe an improvement of energy confinement time from 2-4msec during ohmic heating phase to 3-6msec in RF heating phase. This improvement is within the ohmic confinement regime for the present experiments. The impurity radiation and electron density do not escalate significantly with RF power. The direct electron heating by fast wave in Aditya is also predicted by ion cyclotron resonance heating code TORIC.

Mishra, K.; Kulkarni, S.; Rathi, D.; Varia, A.; Jadav, H.; Parmar, K.; Kadia, B.; Joshi, R.; Srinivas, Y.; Singh, R.; Kumar, S.; Dani, S.; Gayatri, A.; Yogi, R.; Singh, M.; Joisa, Y.; Rao, C.; Kumar, S.; Jha, R.; Manchanda, R. [Institute for Plasma Research, Bhat, Gandhinagar (India)

2011-12-23T23:59:59.000Z

65

Seismic isolation of two dimensional periodic foundations

Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5?Hz to 50?Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

Yan, Y.; Mo, Y. L., E-mail: yilungmo@central.uh.edu [University of Houston, Houston, Texas 77004 (United States); Laskar, A. [Indian Institute of Technology Bombay, Powai, Mumbai (India); Cheng, Z.; Shi, Z. [Beijing Jiaotong University, Beijing (China); Menq, F. [University of Texas, Austin, Texas 78712 (United States); Tang, Y. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2014-07-28T23:59:59.000Z

66

The solution of differential problems, and in particular of quantum wave equations, can in general be performed both in the direct and in the reciprocal space. However, to achieve the same accuracy, direct-space finite-difference approaches usually involve handling larger algebraic problems with respect to the approaches based on the Fourier transform in reciprocal space. This is the result of the errors that direct-space discretization formulas introduce into the treatment of derivatives. Here, we propose an approach, relying on a set of sinc-based functions, that allows us to achieve an exact representation of the derivatives in the direct space and that is equivalent to the solution in the reciprocal space. We apply this method to the numerical solution of the Dirac equation in an armchair graphene nanoribbon with a potential varying only in the transverse direction.

Marconcini, Paolo; Logoteta, Demetrio; Macucci, Massimo [Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Via Caruso 16, I-56122 Pisa (Italy)] [Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Via Caruso 16, I-56122 Pisa (Italy)

2013-11-07T23:59:59.000Z

67

Down hole periodic seismic generator

A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

68

Advanced downhole periodic seismic generator

An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

1991-07-16T23:59:59.000Z

69

We consider nonaxisymmetric magnetohydrodynamic (MHD) modes in a zero-beta cylindrical compressible thin magnetic flux tube modeled as a twisted core surrounded by a magnetically twisted annulus, with both embedded in a straight ambient external field. The dispersion relation is derived and solved analytically and numerically to obtain the frequencies of the nonaxisymmetric MHD waves. The main result is that the twisted magnetic annulus does affect the period ratio P{sub 1}/P{sub 2} of the kink modes. For the kink modes, the magnetic twist in the annulus region can achieve deviations from P{sub 1}/P{sub 2} = 2 of the same order of magnitude as in the observations. Furthermore, the effect of the internal twist on the fluting modes is investigated.

Karami, K. [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Bahari, K., E-mail: KKarami@uok.ac.ir, E-mail: K.Bahari@razi.ac.ir [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

2012-10-01T23:59:59.000Z

70

In this paper, we describe an analysis of Apollo era lunar seismic data that places an upper limit on an isotropic stochastic gravitational-wave background integrated over a year in the frequency range 0.1\\,Hz -- 1\\,Hz. We find that because the Moon's ambient noise background is much quieter than that of the Earth, significant improvements over an Earth based analysis were made. We find an upper limit of $\\Omega_{\\rm GW}<1.2\\times 10^{5}$, which is three orders of magnitude smaller than a similar analysis of a global network of broadband seismometers on Earth and the best limits in this band to date. We also discuss the benefits of a potential Earth-Moon correlation search and compute the time-dependent overlap reduction function required for such an analysis. For this search, we find an upper limit an order of magnitude larger than the Moon-Moon search.

Michael Coughlin; Jan Harms

2014-10-11T23:59:59.000Z

71

Kink waves in solar spicules: observation and modelling

Height series of Doppler observation at the solar limb (covering 3800 - 8700 km distance above the photosphere) in $H_{\\alpha}$ spectral line obtained by big coronagraph of Abastumani Astrophysical Observatory \\citep{khu} show the periodic spatial distribution of Doppler velocities in spicules. We suggest that the periodic spatial distribution is caused by propagating kink waves in spicule. The wave length is found to be $\\sim$ 3500 km. Numerical modelling of kink wave propagation from the photosphere to observed heights gives the wave length of kink waves at the photosphere to be $\\sim$ 1000 km, which indicates to the granular origin of the waves. The period of waves is estimated to be in the range of 35-70 s.

V. Kukhianidze; T. V. Zaqarashvili; E. Khutsishvili

2005-10-14T23:59:59.000Z

72

Quasi-periodic propagating fast mode magnetosonic waves in the solar corona were difficult to observe in the past due to relatively low instrument cadences. We report here evidence of such waves directly imaged in EUV by the new Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. In the 2010 August 1 C3.2 flare/coronal mass ejection event, we find arc-shaped wave trains of 1%-5% intensity variations (lifetime {approx}200 s) that emanate near the flare kernel and propagate outward up to {approx}400 Mm along a funnel of coronal loops. Sinusoidal fits to a typical wave train indicate a phase velocity of 2200 {+-} 130 km s{sup -1}. Similar waves propagating in opposite directions are observed in closed loops between two flare ribbons. In the k-{omega} diagram of the Fourier wave power, we find a bright ridge that represents the dispersion relation and can be well fitted with a straight line passing through the origin. This k-{omega} ridge shows a broad frequency distribution with power peaks at 5.5, 14.5, and 25.1 mHz. The strongest signal at 5.5 mHz (period 181 s) temporally coincides with quasi-periodic pulsations of the flare, suggesting a common origin. The instantaneous wave energy flux of (0.1-2.6) x 10{sup 7} erg cm{sup -2} s{sup -1} estimated at the coronal base is comparable to the steady-state heating requirement of active region loops.

Liu Wei; Title, Alan M.; Schrijver, Carolus J.; Aschwanden, Markus J.; De Pontieu, Bart; Tarbell, Theodore D. [Lockheed Martin Solar and Astrophysics Laboratory, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Zhao Junwei [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Ofman, Leon [Catholic University of America and NASA Goddard Space Flight Center, Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

2011-07-20T23:59:59.000Z

73

The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

Roberts, Jesse D.; Chang, Grace; Jones, Craig

2014-09-01T23:59:59.000Z

74

Wave runup on cylinders subject to deep water random waves

was measured close to the test cylinders are analyzed. These data on wave runup in deepwater random waves were generated at similar water depths with significant wave heights and spectral peak periods. Statistical parameters, zero crossing analysis...

Indrebo, Ann Kristin

2012-06-07T23:59:59.000Z

75

An idealised experimental model of ocean surface wave transmission by an ice floe

An experimental model of transmission of ocean waves by an ice floe is presented. Thin plastic plates with different material properties and thicknesses are used to model the floe. Regular incident waves with different periods and steepnesses are used, ranging from gently-sloping to storm-like conditions. A wave gauge is used to measure the water surface elevation in the lee of the floe. The depth of wave overwash on the floe is measured by a gauge in the centre of the floe's upper surface. Results show transmitted waves are regular for gently-sloping incident waves but irregular for storm-like incident waves. The proportion of the incident wave transmitted is shown to decrease as incident wave steepness increases, and to be at its minimum for an incident wavelength equal to the floe length. Further, a trend is noted for transmission to decrease as the mean wave height in the overwash region increases.

Bennetts, Luke; Meylan, Michael; Cavaliere, Claudio; Babanin, Alexander; Toffoli, Alessandro

2015-01-01T23:59:59.000Z

76

The combination of inclusive and exclusive electron scattering data from JLab in kinematic regimes that were not reachable before, together with the analysis and interpretation of older data from hadronic reactions at BNL is finally revealing the details of short-range nucleon-nucleon correlations in nuclei. The most significant result is the demonstration of the dominance of correlated np pairs over pp and nn pairs. I will review these results, discuss them in terms of short-range tensor-force dominance and also discuss the connection to the EMC effect.

Eli Piasetzky

2012-09-01T23:59:59.000Z

77

Gravitational wave generation in power-law inflationary models

We investigate the generation of gravitational waves in power-law inflationary models. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients. We show that, by looking at the interval of frequencies between 10^(-5) and 10^5 Hz and also at the GHz range, important information can be obtained, both about the inflationary period itself and about the thermalization regime between the end of inflation and the beginning of the radiation-dominated era. We thus deem the development of gravitational wave detectors, covering the MHz/GHz range of frequencies, to be an important task for the future.

Paulo M. Sá; Alfredo B. Henriques

2008-06-06T23:59:59.000Z

78

Down-hole periodic seismic generator

A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, H.C.; Hills, R.G.; Striker, R.P.

1982-10-28T23:59:59.000Z

79

PROPAGATING WAVES ALONG SPICULES

Alfvenic waves are thought to play an important role in coronal heating and acceleration of solar wind. Here we investigate the statistical properties of Alfvenic waves along spicules (jets that protrude into the corona) in a polar coronal hole using high-cadence observations of the Solar Optical Telescope on board Hinode. We developed a technique for the automated detection of spicules and high-frequency waves. We detected 89 spicules and found (1) a mix of upward propagating, downward propagating, as well as standing waves (occurrence rates of 59%, 21%, and 20%, respectively); (2) the phase speed gradually increases with height; (3) upward waves dominant at lower altitudes, standing waves at higher altitudes; (4) standing waves dominant in the early and late phases of each spicule, while upward waves were dominant in the middle phase; (5) in some spicules, we find waves propagating upward (from the bottom) and downward (from the top) to form a standing wave in the middle of the spicule; and (6) the medians of the amplitude, period, and velocity amplitude were 55 km, 45 s, and 7.4 km s{sup -1}, respectively. We speculate that upward propagating waves are produced near the solar surface (below the spicule) and downward propagating waves are caused by reflection of (initially) upward propagating waves off the transition region at the spicule top. The mix of upward and downward propagating waves implies that exploiting these waves to perform seismology of the spicular environment requires careful analysis and may be problematic.

Okamoto, Takenori J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); De Pontieu, Bart, E-mail: joten.okamoto@nao.ac.jp [Lockheed Martin Solar and Astrophysics Laboratory, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2011-08-01T23:59:59.000Z

80

Long-range sound-mediated dark-soliton interactions in trapped atomic condensates

A long-range soliton interaction is discussed whereby two or more dark solitons interact in an inhomogeneous atomic condensate, modifying their respective dynamics via the exchange of sound waves without ever coming into direct contact. An idealized double-well geometry is shown to yield perfect energy transfer and complete periodic identity reversal of the two solitons. Two experimentally relevant geometries are analyzed which should enable the observation of this long-range interaction.

Allen, A. J.; Jackson, D. P.; Barenghi, C. F.; Proukakis, N. P. [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

2011-01-15T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

81

;14/03/2014 6 H L H L L Phase & Group Velocity #12;14/03/2014 7 Doppler Effect #12;14/03/2014 8 Shock Waves #12;14/03/2014 14 Supernova Remnant Cassiopeia A Supernova blast waves #12;14/03/2014 15 Tycho's Remnant (SN 1572AD A SNR flythrough Theory of Supernova Blast Waves Supernovae: Type Ia Subsonic deflagration wave turning

Weijgaert, Rien van de

82

Secular Sediment Waves, Channel Bed Waves, and Legacy Sediment

Secular Sediment Waves, Channel Bed Waves, and Legacy Sediment L. Allan James* Geography Department, University South Carolina Abstract The concept of sediment waves is reviewed and clarifications are proposed for nomenclature con- cerning vertical channel responses to large fluvial sediment fluxes over a period of a decade

James, L. Allan

83

PROPAGATION OF ALFVENIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES

How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a two-fluid model (of plasma and neutrals) and used it to perform one-dimensional simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra, and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of 1 s or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 s or longer pass through the chromosphere with relatively little damping, however, for periods of 1 s or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid- and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.

Russell, A. J. B.; Fletcher, L. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom)

2013-03-10T23:59:59.000Z

84

A one-dimensional Fibonacci phononic crystal and a distributed Bragg reflector were constructed from porous silicon. The structures had the same number of layers and similar acoustic impedance mismatch, and were electrochemically etched in highly boron doped silicon wafers. The thickness of the individual layers in the stacks was approximately 2??m. Both types of hypersonic band gap structure were studied by direct measurement of the transmittance of longitudinal acoustic waves in the 0.1–2.6?GHz range. Acoustic band gaps deeper than 50?dB were detected in both structures. The experimental results were compared with model calculations employing the transfer matrix method. The acoustic properties of periodic and quasi-periodic structures in which half-wave retarding bi-layers do not consist of two quarter-wave retarding layers are discussed. The strong correlation between width and depth of gaps in the transmission spectra is demonstrated. The dominant mechanisms of acoustic losses in porous multilayer structures are discussed. The elastic constants remain proportional over our range of porosity, and hence, the Grüneisen parameter is constant. This simplifies the expression for the porosity dependence of the Akhiezer damping.

Aliev, Gazi N., E-mail: g.aliev@bath.ac.uk; Goller, Bernhard [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

2014-09-07T23:59:59.000Z

85

MODELING SUPER-FAST MAGNETOSONIC WAVES OBSERVED BY SDO IN ACTIVE REGION FUNNELS

Recently, quasi-periodic, rapidly propagating waves have been observed in extreme ultraviolet by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) instrument in about 10 flare/coronal mass ejection (CME) events thus far. A typical example is the 2010 August 1 C3.2 flare/CME event that exhibited arc-shaped wave trains propagating in an active region (AR) magnetic funnel with {approx}5% intensity variations at speeds in the range of 1000-2000 km s{sup -1}. The fast temporal cadence and high sensitivity of AIA enabled the detection of these waves. We identify them as fast magnetosonic waves driven quasi-periodically at the base of the flaring region and develop a three-dimensional MHD model of the event. For the initial state we utilize the dipole magnetic field to model the AR and include gravitationally stratified density at coronal temperature. At the coronal base of the AR, we excite the fast magnetosonic wave by periodic velocity pulsations in the photospheric plane confined to a funnel of magnetic field lines. The excited fast magnetosonic waves have similar amplitude, wavelength, and propagation speeds as the observed wave trains. Based on the simulation results, we discuss the possible excitation mechanism of the waves, their dynamical properties, and the use of the observations for coronal MHD seismology.

Ofman, L. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Liu, W.; Title, A.; Aschwanden, M. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States)

2011-10-20T23:59:59.000Z

86

Broadband asymmetric acoustic transmission by a plate with quasi-periodic surface ridges

In this paper, an acoustic system with broadband asymmetric transmission is designed and fabricated, which consists of a water-immersed aluminum plate engraved with quasi-periodically-patterned ridges on single surface. It demonstrates that when the acoustic waves are launched into the system from the structured side, they can couple into the Lamb modes in the plate efficiently and attain a high transmission; on the contrary, when the waves are incident from the opposite flat side, the coupling is weak, and the transmission is low. Superior to systems with periodic patterning, this quasi-periodically-patterned system has a broad working frequency range due to the collective contributions from the multiple diffractions specific to the structure.

Li, Chunhui; Ke, Manzhu, E-mail: mzke@whu.edu.cn; Ye, Yangtao; Xu, Shengjun; Qiu, Chunyin; Liu, Zhengyou [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

2014-07-14T23:59:59.000Z

87

Compact range for variable-zone measurements

A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

Burnside, Walter D. (Columbus, OH); Rudduck, Roger C. (Columbus, OH); Yu, Jiunn S. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

88

Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy Information

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOffice Jump to:

89

Cycloidal Wave Energy Converter

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

90

Measuring the rotation period distribution of field M-dwarfs with Kepler

We have analysed 10 months of public data from the Kepler space mission to measure rotation periods of main-sequence stars with masses between 0.3 and 0.55 M_sun. To derive the rotational period we introduce the autocorrelation function and show that it is robust against phase and amplitude modulation and residual instrumental systematics. Of the 2483 stars examined, we detected rotation periods in 1570 (63.2%), representing an increase of a factor ~ 30 in the number of rotation period determination for field M-dwarfs. The periods range from 0.37-69.7 days, with amplitudes ranging from 1.0-140.8 mmags. The rotation period distribution is clearly bimodal, with peaks at ~ 19 and ~ 33 days, hinting at two distinct waves of star formation, a hypothesis that is supported by the fact that slower rotators tend to have larger proper motions. The two peaks of the rotation period distribution form two distinct sequences in period-temperature space, with the period decreasing with increasing temperature, reminiscent of ...

McQuillan, Amy; Mazeh, Tsevi

2013-01-01T23:59:59.000Z

91

2011 Waves - 1 STANDING WAVES ON A STRING The objectives of the experiment are: Â· To show that standing waves can be set up on a string. Â· To determine the velocity of a standing wave. Â· To understand the differences between transverse and longitudinal waves. APPARATUS: Buzzer board with string, meter stick

Glashausser, Charles

92

Periodic structures were generated on Si and SiC surfaces by irradiation with femtosecond laser pulses. Self-organized structures with spatial periodicity of approximately 600?nm appear on silicon and silicon carbide in the laser fluence range just above the ablation threshold and upon irradiation with a large number of pulses. As in the case of metals, the dependence of the spatial periodicity on laser fluence can be explained by the parametric decay of laser light into surface plasma waves. The results show that the proposed model might be universally applicable to any solid state material.

Gemini, Laura [Advanced Research Center for beam Science, Institute for Chemical Research, Kyoto University, 611-0011 Kyoto (Japan); Department of Physics, Graduate School of Science, Kyoto University, 606-85802 Kyoto (Japan); FNSPE, Czech Technical University in Prague, 11519 Prague (Czech Republic); HiLASE Project, Institute of Physics, ASCR, 18221 Prague (Czech Republic); Hashida, Masaki; Shimizu, Masahiro; Miyasaka, Yasuhiro; Inoue, Shunsuke; Tokita, Shigeki; Sakabe, Shuji [Advanced Research Center for beam Science, Institute for Chemical Research, Kyoto University, 611-0011 Kyoto (Japan); Department of Physics, Graduate School of Science, Kyoto University, 606-85802 Kyoto (Japan); Limpouch, Jiri [FNSPE, Czech Technical University in Prague, 11519 Prague (Czech Republic); Mocek, Tomas [HiLASE Project, Institute of Physics, ASCR, 18221 Prague (Czech Republic)

2013-11-21T23:59:59.000Z

93

Optical resonators based on Bloch surface waves

A few recent works suggest the possibility of controlling light propagation at the interface of periodic multilayers supporting Bloch surface waves (BSWs), but optical resonators based on BSWs are yet to demonstrate. Here we discuss the feasibility of exploiting guided BSWs in a ring resonator configuration. In particular, we investigate the main issues related to the design of these structures, and we discuss about their limitations in terms of quality factors and dimensions. We believe these results might be useful for the development of a complete BSW-based platform for application ranging from optical sensing to the study of the light-matter interaction in micro and nano structures.

Menotti, Matteo

2015-01-01T23:59:59.000Z

94

The Effects of Wave Energy Converters on a Monochromatic Wave Climate

available from the National Oceanic and Atmospheric Administration (NOAA). Wave energy converters were converters as well as the availability of energy in the ocean. This study will examine the effects of a wave and mean wave period of wave energy fields. There is tremendous energy potential in the ocean. Solar energy

Fox-Kemper, Baylor

95

Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities

A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.

Harrison, Neil (Santa Fe, NM); Singleton, John (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

2008-08-05T23:59:59.000Z

96

First all-sky search for continuous gravitational waves from unknown sources in binary systems

We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.

The LIGO Scientific Collaboration; the Virgo Collaboration; J. Aasi; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; A. Alemic; B. Allen; A. Allocca; D. Amariutei; M. Andersen; R. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; M. Barbet; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; J. Bauchrowitz; Th. S. Bauer; B. Behnke; M. Bejger; M. G. Beker; C. Belczynski; A. S. Bell; C. Bell; G. Bergmann; D. Bersanetti; A. Bertolini; J. Betzwieser; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; S. Bloemen; M. Blom; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; Sukanta Bose; L. Bosi; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brückner; S. Buchman; T. Bulik; H. J. Bulten; A. Buonanno; R. Burman; D. Buskulic; C. Buy; L. Cadonati; G. Cagnoli; J. Calderón Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavaglià; F. Cavalier; R. Cavalieri; C. Celerier; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. Collette; M. Colombini; L. Cominsky; M. Constancio Jr.; A. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corpuz; A. Corsi; C. A. Costa; M. W. Coughlin; S. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; T. D. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; G. Debreczeni; J. Degallaix; S. Deléglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. Díaz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; A. Donath; F. Donovan; K. L. Dooley; S. Doravari; S. Dossa; R. Douglas; T. P. Downes; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; S. Dwyer; T. Eberle; T. Edo; M. Edwards; A. Effler; H. Eggenstein; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endr?czi; R. Essick; T. Etzel; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; H. Fehrmann; M. M. Fejer; D. Feldbaum; F. Feroz; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; S. Gaonkar; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. González; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goßler; R. Gouaty; C. Gräf; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; P. Groot; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. Gushwa; E. K. Gustafson; R. Gustafson; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; S. Hooper; P. Hopkins; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; E. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; P. Jaranowski; Y. Ji; F. Jiménez-Forteza; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; J. Karlen; M. Kasprzack; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; F. Kawazoe; F. Kéfélian; G. M. Keiser; D. Keitel; D. B. Kelley; W. Kells; A. Khalaidovski

2014-09-17T23:59:59.000Z

97

Extreme-ultraviolet (EUV) waves have been found for about 15 years. However, significant controversy remains over their physical natures and origins. In this paper, we report an EUV wave that was accompanied by an X1.9 flare and a partial halo coronal mass ejection (CME). Using high temporal and spatial resolution observations taken by the Solar Dynamics Observatory and the Solar-TErrestrial RElations Observatory, we are able to investigate the detailed kinematics of the EUV wave. We find several arguments that support the fast-mode wave scenario. (1) The speed of the EUV wave (570 km s{sup -1}) is higher than the sound speed of the quiet-Sun corona. (2) Significant deceleration of the EUV wave (-130 m s{sup -2}) is found during its propagation. (3) The EUV wave resulted in the oscillations of a loop and a filament along its propagation path, and a reflected wave from the polar coronal hole is also detected. (4) Refraction or reflection effect is observed when the EUV wave was passing through two coronal bright points. (5) The dimming region behind the wavefront stopped to expand when the wavefront started to become diffuse. (6) The profiles of the wavefront exhibited a dispersive nature, and the magnetosonic Mach number of the EUV wave derived from the highest intensity jump is about 1.4. In addition, triangulation indicates that the EUV wave propagated within a height range of about 60-100 Mm above the photosphere. We propose that the EUV wave observed should be a nonlinear fast-mode magnetosonic wave that propagated freely in the corona after it was driven by the CME expanding flanks during the initial period.

Shen Yuandeng; Liu Yu, E-mail: ydshen@ynao.ac.cn [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

2012-07-20T23:59:59.000Z

98

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storm Water Analytical Period Storm Water Analytical Period The Individual Permit authorizes the discharge of storm water associated with historical industrial activities at LANL...

99

Two-wave interaction in ideal magnetohydrodynamics

The weakly nonlinear interaction of sound and linearly polarised Alfv{\\'e}n waves propagating in the same direction along an applied magnetic field is studied. It is found that a sound wave is coupled to the Alfv{\\'e}n wave with double period and wavelength when the sound and Alfv{\\'e}n speeds are equal. The Alfv{\\'e}n wave drives the sound wave through the ponderomotive force, while the sound wave returns energy back to the Alfv{\\'e}n wave through the parametric (swing) influence. As a result, the two waves alternately exchange their energy during propagation. The process of energy exchange is faster for waves with stronger amplitudes. The phenomenon can be of importance in astrophysical plasmas, including the solar atmosphere and solar wind.

T. V. Zaqarashvili; B. Roberts

2006-02-24T23:59:59.000Z

100

Primordial Gravitational Waves Enhancement

We reconsider the enhancement of primordial gravitational waves that arises from a quantum gravitational model of inflation. A distinctive feature of this model is that the end of inflation witnesses a brief phase during which the Hubble parameter oscillates in sign, changing the usual Hubble friction to anti-friction. An earlier analysis of this model was based on numerically evolving the graviton mode functions after guessing their initial conditions near the end of inflation. The current study is based on an equation which directly evolves the normalized square of the magnitude. We are also able to make a very reliable estimate for the initial condition using a rapidly converging expansion for the sub-horizon regime. Results are obtained for the energy density per logarithmic wave number as a fraction of the critical density. These results exhibit how the enhanced signal depends upon the number of oscillatory periods; they also show the resonant effects associated with particular wave numbers.

Maria G. Romania; N. C. Tsamis; R. P. Woodard

2011-08-08T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

101

Bloch-like wave dynamics in disordered potentials based on supersymmetry

Bloch's theorem for the description of waves in crystals was a major milestone, establishing the principle of bandgaps for electrical, optical, and vibrational waves. Although it was once believed that bandgaps could form only under conditions of periodicity and long-range correlations as the prerequisites for Bloch's theorem, this restriction was disproven by the groundbreaking discoveries of amorphous media and quasicrystals. While network and liquid models have been suggested for the interpretation of Bloch-like waves in disordered media, these approaches 'searching' for random networks with bandgaps have failed in the deterministic creation of bandgaps. Here, we reveal a deterministic pathway to bandgap engineering in disordered media, by applying the notion of supersymmetry to the fundamental wave equation. Inspired by the problem for isospectrality, we follow a methodology in stark contrast to previous methods: we 'transform' ordered potentials into disordered potentials while 'preserving' bandgaps. Our...

Yu, Sunkyu; Hong, Jiho; Park, Namkyoo

2015-01-01T23:59:59.000Z

102

We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

Lipton, Robert, E-mail: lipton@math.lsu.edu; Polizzi, Anthony, E-mail: polizzi@math.lsu.edu [Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803-4918 (United States)

2014-10-14T23:59:59.000Z

103

Flows and Waves in Braided Solar Coronal Magnetic Structures

We study the high frequency dynamics in the braided magnetic structure of an active region (AR 11520) moss as observed by High-Resolution Coronal Imager (Hi-C). We detect quasi periodic flows and waves in these structures. We search for high frequency dynamics while looking at power maps of the observed region. We find that shorter periodicites (30 - 60 s) are associated with small spatial scales which can be resolved by Hi-C only. We detect quasi periodic flows with wide range of velocities from 13 - 185 km/s associated with braided regions. This can be interpreted as plasma outflows from reconnection sites. We also find presence of short period and large amplitude transverse oscillations associated with braided magnetic region. Such oscillations could be triggered by reconnection or such oscillation may trigger reconnection.

Pant, V; Banerjee, Dipankar

2015-01-01T23:59:59.000Z

104

As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.

Paul S. Wesson

2012-12-11T23:59:59.000Z

105

Kinematic dynamo induced by helical waves

We investigate numerically the kinematic dynamo induced by the superposition of two helical waves in a periodic box as a simplified model to understand the dynamo action in astronomical bodies. The effects of magnetic Reynolds number, wavenumber and wave frequency on the dynamo action are studied. It is found that this helical-wave dynamo is a slow dynamo. There exists an optimal wavenumber for the dynamo growth rate. A lower wave frequency facilitates the dynamo action and the oscillations of magnetic energy emerge at some particular wave frequencies.

Wei, Xing

2014-01-01T23:59:59.000Z

106

From travelling waves to mild chaos: a supercritical bifurcation cascade in pipe flow

We study numerically a succession of transitions in pipe Poiseuille flow that leads from simple travelling waves to waves with chaotic time-dependence. The waves at the origin of the bifurcation cascade possess a shift-reflect symmetry and are both axially and azimuthally periodic with wave numbers {\\kappa} = 1.63 and n = 2, respectively. As the Reynolds number is increased, successive transitions result in a wide range of time dependent solutions that includes spiralling, modulated-travelling, modulated-spiralling, doubly-modulated-spiralling and mildly chaotic waves. We show that the latter spring from heteroclinic tangles of the stable and unstable invariant manifolds of two shift-reflect-symmetric modulated-travelling waves. The chaotic set thus produced is confined to a limited range of Reynolds numbers, bounded by the occurrence of manifold tangencies. The states studied here belong to a subspace of discrete symmetry which makes many of the bifurcation and path-following investigations presented technically feasible. However, we expect that most of the phenomenology carries over to the full state-space, thus suggesting a mechanism for the formation and break-up of invariant states that can sustain turbulent dynamics.

Fernando Mellibovsky; Bruno Eckhardt

2011-10-06T23:59:59.000Z

107

Supersymmetric inversion of effective-range expansions

A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schr\\"odinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the $^1S_0$ and $^1D_2$ channels on the $[0-350]$ MeV laboratory energy interval.

Bikashkali Midya; Jérémie Evrard; Sylvain Abramowicz; O. L. Ramírez Suárez; Jean-Marc Sparenberg

2015-01-16T23:59:59.000Z

108

Supersymmetric inversion of effective-range expansions

A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schr\\"odinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the $^1S_0$ and $^1D_2$ channels on the $[0-350]$ MeV laboratory energy interval.

Midya, Bikashkali; Abramowicz, Sylvain; Suárez, O L Ramírez; Sparenberg, Jean-Marc

2015-01-01T23:59:59.000Z

109

Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH)

Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH) Alexandra DeVisser, NAVFAC-EXWC Brian June 10, 2013 #12;Wave Energy Test Site (WETS) Objective: Provide location for year-long in WETS? Year-round data collection in a wide range of wave conditions is possible. #12;4 Daily Wave Power

110

Nonlinear three-wave interaction in marine sediments

Nonlinear interaction of three acoustic waves in a sandy sediment is studied in the frequency range where there is a considerable wave velocity dispersion. The possibility of an experimental observation of the generation of a sound wave by two pump waves propagating at an angle to each other is estimated.

N. I. Pushkina

2015-03-18T23:59:59.000Z

111

Stochastic Gravitational Wave Background from Exoplanets

Recent exoplanet surveys have predicted a very large population of planetary systems in our galaxy, more than one planet per star on the average, perhaps totalling about two hundred billion. These surveys, based on electro-magnetic observations, are limited to a very small neighbourhood of the solar system and the estimations rely on the observations of only a few thousand planets. On the other hand, orbital motions of planets around stars are expected to emit gravitational waves (GW), which could provide information about the planets not accessible to electro-magnetic astronomy. The cumulative effect of the planets, with periods ranging from few hours to several years, is expected to create a stochastic GW background (SGWB). We compute the characteristic GW strain of this background based on the observed distribution of planet parameters. We also show that the integrated extragalactic background is comparable or less than the galactic background at different frequencies. Our estimate shows that the net backg...

Ain, Anirban; Mitra, Sanjit

2015-01-01T23:59:59.000Z

112

Simulation and design optimization for linear wave phenomena on metamaterials

Periodicity can change materials properties in a very unintuitive way. Many wave propagation phenomena, such as waveguides, light bending structures or frequency filters can be modeled through finite periodic structures ...

Saà-Seoane, Joel

2011-01-01T23:59:59.000Z

113

Wave represents displacement Wave represents pressure Source -Sound Waves

Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency

Colorado at Boulder, University of

114

Sea ice floes dissipate the energy of steep ocean waves

Wave attenuation by ice floes is an important parameter for modelling the Arctic Oceans. At present, attenuation coefficients are extracted from linear models as a function of the incident wave period and floe thickness. Recent explorations in the Antarctic Mixed Ice Zone (MIZ) revealed a further dependence on wave amplitude, suggesting that nonlinear contributions are non-negligible. An experimental model for wave attenuation by a single ice floe in a wave flume is here presented. Observations are compared with linear predictions based on wave scattering. Results indicate that linear models perform well under the effect of gently sloping waves. For more energetic wave fields, however, transmitted wave height is normally over predicted. Deviations from linearity appear to be related to an enhancement of wave dissipation induced by unaccounted wave-ice interaction processes, including the floe over wash.

Toffoli, Alessandro; Meylan, Michael H; Cavaliere, Claudio; Alberello, Alberto; Elsnab, John; Monty, Jason P

2015-01-01T23:59:59.000Z

115

Rogue waves for a long wave-short wave resonance model with multiple short waves

1 Rogue waves for a long wave-short wave resonance model with multiple short waves Hiu Ning Chan (1 waves; Long-short resonance PACS Classification: 02.30.Jr; 05.45.Yv; 47.35.Fg #12;2 ABSTRACT A resonance between long and short waves will occur if the phase velocity of the long wave matches the group velocity

116

Steady periodic waves bifurcating for fixed-depth rotational flows

-current interactions [29, 37] or flows generated by wind-shear [30] (see [6] for a comprehensive discussion than the mass-flux. It is important to note that fixing the mass-flux p0 does not fix the depth d

117

2003). Vortices in Brain Waves 62. M. E. Raichle, ScienceVORTICES IN BRAIN WAVES WALTER J. FREEMAN Department ofthat is recorded in brain waves (electroencephalogram, EEG).

Freeman, Walter J III; Vitiello, Giuseppe

2010-01-01T23:59:59.000Z

118

Broader source: Energy.gov (indexed) [DOE]

firing lanes. If possible, do not construct columns within the range. Design columns or beams to withstand local wind and seismic loads, and provide protective steel plate on the...

119

Propagation of elastic waves through a lattice of cylindrical cavities

Propagation of elastic waves through a lattice of cylindrical cavities By S. Guo & P. Mc asymptotic homogenization to obtain low-frequency approximations to elastic wave propagation through periodic follows that of McIver (2007) who investigates acoustic-wave propagation through a lattice of rigid

120

Unimodal wave trains and solitons in convex FPU chains

We consider atomic chains with nearest neighbour interactions and study periodic and homoclinic travelling waves which are called wave trains and solitons, respectively. Our main result is a new existence proof which relies on the constrained maximisation of the potential energy and exploits the invariance properties of an improvement operator. The approach is restricted to convex interaction potentials but refines the standard results as it provides the existence of travelling waves with unimodal and even profile functions. Moreover, we discuss the numerical approximation and complete localization of wave trains, and show that wave trains converge to solitons when the periodicity length tends to infinity.

Michael Herrmann

2009-01-23T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

121

Nonlinear theory of ionic sound waves in a hot quantum-degenerate electron-positron-ion plasma

A collisionless nonmagnetized e-p-i plasma consisting of quantum-degenerate gases of ions, electrons, and positrons at nonzero temperatures is considered. The dispersion equation for isothermal ionic sound waves is derived and analyzed, and an exact expression is obtained for the linear velocity of ionic sound. Analysis of the dispersion equation has made it possible to determine the ranges of parameters in which nonlinear solutions in the form of solitons should be sought. A nonlinear theory of isothermal ionic sound waves is developed and used for obtaining and analyzing the exact solution to the system of initial equations. Analysis has been carried out by the method of the Bernoulli pseudopotential. The ranges of phase velocities of periodic ionic sound waves and soliton velocities are determined. It is shown that in the plasma under investigation, these ranges do not overlap and that the soliton velocity cannot be lower than the linear velocity of ionic sound. The profiles of physical quantities in a periodic wave and in a soliton are constructed, as well as the dependences of the velocity of sound and the critical velocity on the ionic concentration in the plasma. It is shown that these velocities increase with the ion concentration.

Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Sazonkin, M. A., E-mail: figma@mail.r [Sarov State Physicotechnical Institute (Russian Federation)

2010-11-15T23:59:59.000Z

122

5-minute Solar Oscillations and Ion Cyclotron Waves in the Solar Wind

In the present paper we study impact of the photospheric 5-minute oscillations on the ion cyclotron waves in the solar wind. We proceed from the assumption that the ion cyclotron waves in solar wind are experiencing modulation with a characteristic period of 5 minutes under the influence of Alfven waves driven by photospheric motions. The theory presented in our paper predicts a deep frequency modulation of the ion cyclotron waves. The frequency modulation is expected mainly from variations in orientation of the IMF lines. In turn, the variations in orientation are caused by the Alfven waves, propagating from the Sun. To test the theoretical predictions we have analyzed records of the ultra-low-frequency (ULF) geoelectromagnetic waves in order to find the permanent quasi-monochromatic oscillations of natural origin in the Pc1-2 frequency band (0.1-5 Hz), the carrier frequency of which varies with time in a wide range. As a result we found the so-called "serpentine emission" (SE), which was observed in Antarct...

Guglielmi, Anatol; Dovbnya, Boris

2015-01-01T23:59:59.000Z

123

The Origin of Ripples in Cool Cores of Galaxy Clusters: Heating by MHD Waves?

We consider MHD waves as a heating source of cool cores of galaxy clusters. In particular, we focus on transverse waves (Alfven waves), because they can propagate a longer distance than longitudinal waves (sound waves). Using MHD simulations, we found that the transverse waves can stably heat a cool core if the wave period is large enough (>~ 10^8 yr). Moreover, the longitudinal waves that are created as a by-product of the nonlinear evolution of the transverse waves could be observed as the 'ripples' found in cool cores.

Yutaka Fujita; Takeru K. Suzuki; Takahiro Kudoh; Takaaki Yokoyama

2007-03-02T23:59:59.000Z

124

Possible new wave phenomena in the brain

We propose to search for new wave phenomena in the brain by using interference effects in analogy to the well-known double slit (Young) experiment. This method is able to extend the range of oscillation frequencies to much higher values than currently accessible. It is argued that such experiments may test the hypothesis of the wave nature of information coding.

Jerzy Szwed

2009-08-10T23:59:59.000Z

125

Coda wave interferometry 1 Coda wave interferometry

Coda wave interferometry 1 Coda wave interferometry An interferometer is an instrument that is sensitive to the interference of two or more waves (optical or acoustic). For example, an optical interferometer uses two interfering light beams to measure small length changes. Coda wave interferometry

Snieder, Roel

126

A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

McEwan, Thomas E. (Livermore, CA)

1998-01-01T23:59:59.000Z

127

A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

McEwan, T.E.

1998-06-16T23:59:59.000Z

128

Journal of Mining Science, Vol. 45, No. 5, 2009 MODELING THE ELASTIC WAVE PROPAGATION

427 Journal of Mining Science, Vol. 45, No. 5, 2009 MODELING THE ELASTIC WAVE PROPAGATION UDC 622.7 + 622 The wave propagation analysis revealed that the low-frequency pendulum wave propagating in a 2D block medium with periodic structure due to the action of local impulse has a two-wave

Alexandrov, Victor

129

SPECTROSCOPIC OBSERVATIONS OF A CORONAL MORETON WAVE

We observed a coronal wave (EIT wave) on 2011 February 16, using EUV imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) and EUV spectral data from the Hinode/EUV Imaging Spectrometer (EIS). The wave accompanied an M1.6 flare that produced a surge and a coronal mass ejection (CME). EIS data of the wave show a prominent redshifted signature indicating line-of-sight velocities of {approx}20 km s{sup -1} or greater. Following the main redshifted wave front, there is a low-velocity period (and perhaps slightly blueshifted), followed by a second redshift somewhat weaker than the first; this progression may be due to oscillations of the EUV atmosphere set in motion by the initial wave front, although alternative explanations may be possible. Along the direction of the EIS slit the wave front's velocity was {approx}500 km s{sup -1}, consistent with its apparent propagation velocity projected against the solar disk as measured in the AIA images, and the second redshifted feature had propagation velocities between {approx}200 and 500 km s{sup -1}. These findings are consistent with the observed wave being generated by the outgoing CME, as in the scenario for the classic Moreton wave. This type of detailed spectral study of coronal waves has hitherto been a challenge, but is now possible due to the availability of concurrent AIA and EIS data.

Harra, Louise K. [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Sterling, Alphonse C. [Space Science Office, VP62, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Goemoery, Peter [Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranska Lomnica (Slovakia); Veronig, Astrid, E-mail: lkh@mssl.ucl.ac.uk, E-mail: alphonse.sterling@nasa.gov, E-mail: gomory@astro.s, E-mail: astrid.veronig@uni-graz.at [Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria)

2011-08-10T23:59:59.000Z

130

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

Manglos, S.H.

1988-03-10T23:59:59.000Z

131

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323Program2Raftopoulos(MeVcmÂ²/mg) LET vs. Range

132

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,Local Correlations andLocalThroughout theLong Range

133

Long Range Operations Schedule

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,Local Correlations andLocalThroughout theLong Range7

134

Long Range Operations Schedule

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,Local Correlations andLocalThroughout theLong Range78

135

Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents

The two-dimensional free-boundary problem of steady periodic waves with vorticity is considered for water of finite depth. We investigate how flows with small-amplitude Stokes waves on the free surface bifurcate from a horizontal parallel shear flow in which counter-currents may be present. Two bifurcation mechanisms are described: for waves with fixed Bernoulli's constant and fixed wavelength. In both cases the corresponding dispersion equations serve for defining wavelengths from which Stokes waves bifurcate. Sufficient conditions guaranteeing the existence of roots of these equations are obtained. Two particular vorticity distributions are considered in order to illustrate general results.

Vladimir Kozlov; Nikolay Kuznetsov

2014-06-05T23:59:59.000Z

136

Trapping and Frequency Variability in Electron Acoustic Waves

Trapping and Frequency Variability in Electron Acoustic Waves C.F. Driscoll, F. Anderegg, D 92093 USA Abstract. Electron Acoustic Waves (EAWs) with a phase velocity less than twice the plasma Langmuir waves, and at large excitations resonance is observed over a broad range. Laser Induced

California at San Diego, University of

137

Radio frequency (rf) waves in the ion cyclotron range of frequencies (ICRF) are widely used for heating fusion plasmas. In a multi-ion-species plasma, the launched fast waves convert to ion cyclotron waves and ion Bernstein ...

Tsujii, Naoto

2012-01-01T23:59:59.000Z

138

waves are expected to be generated mostly along shorelines by nonlinear interactions of the shorter wind-generated the wind-generated wind sea and swells, with periods shorter than 30 s, into sub-harmonics. For waves

Boyer, Edmond

139

1 Impedance Â· Plane waves Â Lumped systems S x y z Impedance Â· Plane waves Â Lumped systems Â· open tube #12;2 Impedance Â· Plane waves Â Lumped systems Â· closed tube Impedance Â· Cylindrical waves z x y r #12;3 Impedance Â· Cylindrical waves Â Circumferential part n=0 n=1 n=2 n=3 Impedance Â· Cylindrical

Berlin,Technische UniversitÃ¤t

140

Peculiarities of wave fields in nonlocal media

The article summarizes the studies of wave fields in structured non-equilibrium media describing by means of nonlocal hydrodynamic models. Due to the symmetry properties of models, we derived the invariant wave solutions satisfying autonomous dynamical systems. Using the methods of numerical and qualitative analysis, we have shown that these systems possess periodic, multiperiodic, quasiperiodic, chaotic, and soliton-like solutions. Bifurcation phenomena caused by the varying of nonlinearity and nonlocality degree are investigated as well.

V. A. Danylenko; S. I. Skurativskyi

2015-03-02T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

141

Electromagnetic Siegert states for periodic dielectric structures

The formalism of Siegert states to describe the resonant scattering in quantum theory is extended to the resonant scattering of electromagnetic waves on periodic dielectric arrays. The excitation of electromagnetic Siegert states by an incident wave packet and their decay is studied. The formalism is applied to develop a theory of coupled electromagnetic resonances arising in the electromagnetic scattering problem for two such arrays separated by a distance 2h (or, generally, when the physical properties of the scattering array depend on a real coupling parameter h). Analytic properties of Siegert states as functions of the coupling parameter h are established by the Regular Perturbation Theorem which is an extension the Kato-Rellich theorem to the present case. By means of this theorem, it is proved that if the scattering structure admits a bound state in the radiation continuum at a certain value of the coupling parameter h, then there always exist regions within the structure in which the near field can be amplified as much as desired by adjusting the value of h. This establishes a rather general mechanism to control and amplify optical nonlinear effects in periodically structured planar structures possessing a nonlinear dielectric susceptibility.

Friends R. Ndangali; Sergei V. Shabanov

2011-08-09T23:59:59.000Z

142

Smooth sandwich gravitational waves

Gravitational waves which are smooth and contain two asymptotically flat regions are constructed from the homogeneous pp-waves vacuum solution. Motion of free test particles is calculated explicitly and the limit to an impulsive wave is also considered.

J. Podolsky

1998-07-16T23:59:59.000Z

143

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

Manglos, Stephen H. (East Syracuse, NY)

1989-06-06T23:59:59.000Z

144

Surface-wave calibration studies for improved monitoring of a CTBT

Seismic calibration of the International Monitoring System (IMS) and other key monitoring stations is critical for effective verification of a Comprehensive Test Ban Treaty (CTBT). Detection, location, and identification all depend upon calibration of source and path effects to ensure maximum efficiency of the IMS to monitor at small magnitudes. This project gathers information about the effects of source and propagation on surface waves for key monitoring areas in central Asia with initial focus on western China. Source calibration focuses on surface-wave determinations of focal depth and seismic moment, M{sub o}, for key earthquakes, which serve as calibration sources in location studies and for developing regional magnitude scales. The authors present a calibration procedure for Lg attenuation, which exploits an empirical relationship between M{sub o} and 1-Hz Lg amplitude for stable and tectonic continental regions. The procedure uses this relationship and estimates of M{sub o} to predict Lg amplitudes at a reference distance of 10 km from each calibrated source. Path-specific estimates of Q{sub o} in the power-law formula of Q (Q = Q{sub o}f{sup {zeta}}) are made using measurements of 1-Hz Lg amplitudes observed at the station and amplitudes predicted for the reference distance. Nuttli`s formula for m{sub b}(Lg) is thus calibrated for the source region of interest, and for paths to key monitoring stations. Path calibration focuses on measurement of surface-wave group velocity dispersion curves in the period range of 5 to 50 s. Concentrating on the Lop Nor source region initially, they employ broadband data recorded at CDSN stations, regional event (M > 4.0), and source-receiver path lengths from 200 to 2000 km. Their approach emphasizes path-specific calibration of key stations and source regions and will result in a family of regionally appropriate phase-match filters, designed to extract fundamental mode surface-wave arrivals for each region of interest. They characterize and quantify regional variability in surface wave dispersion measurements by creating slowness residual maps for a given period and set of paths, and by performing variogram analysis by wave type (Love and Rayleigh Waves), wave period, and station. Results from the slowness residual maps yield point measurements which form the raw input for kriged correction surfaces appropriate to specific source regions. The variogram analysis yields correlation lengths used for smoothing in the kriging process.

Patton, H.J.; Jones, L.E.

1998-12-31T23:59:59.000Z

145

INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)

2012-10-20T23:59:59.000Z

146

Wave-Packet Revivals for Quantum Systems with Nondegenerate Energies

The revival structure of wave packets is examined for quantum systems having energies that depend on two nondegenerate quantum numbers. For such systems, the evolution of the wave packet is controlled by two classical periods and three revival times. These wave packets exhibit quantum beats in the initial motion as well as new types of long-term revivals. The issue of whether fractional revivals can form is addressed. We present an analytical proof showing that at certain times equal to rational fractions of the revival times the wave packet can reform as a sum of subsidiary waves and that both conventional and new types of fractional revivals can occur.

Robert Bluhm; Alan Kostelecky; Bogdan Tudose

1996-09-26T23:59:59.000Z

147

Gravitational waves from gravitational collapse

Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

148

Time-periodic solutions of the Benjamin-Ono equation

We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one of the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.

Ambrose , D.M.; Wilkening, Jon

2008-04-01T23:59:59.000Z

149

Publications 1. "Calculation of Beam Loading in Linear Traveling Wave Electron Accelerators). 26 "Stochastic and Adiabatic Behavior of Particles Accelerated by Periodic Forces," (M. A. Lieberman

Kammen, Daniel M.

150

Graphene as a high impedance surface for ultra-wideband electromagnetic waves

The metals are regularly used as reflectors of electromagnetic fields emitted by antennas ranging from microwaves up to THz. To enhance the reflection and thus the gain of the antenna, metallic high impedance surfaces (HIS) are used. HIS is a planar array of continuous metallic periodic cell surfaces able to suppress surface waves, which cause multipath interference and backward radiation in a narrow bandwidth near the cell resonance. Also, the image currents are reduced, and therefore the antenna can be placed near the HIS. We demonstrate that graphene is acting as a HIS surface in a very large bandwidth, from microwave to THz, suppressing the radiation leakages better than a metal.

Aldrigo, Martino; Costanzo, Alessandra [Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” – DEI, University of Bologna, Viale del Risorgimento, 2, 40132 Bologna (Italy); Dragoman, Mircea [National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest (Romania); Dragoman, Daniela [Department of Physics, University of Bucharest, P.O. Box MG-11, 077125 Bucharest (Romania)

2013-11-14T23:59:59.000Z

151

Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint

Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

2014-02-01T23:59:59.000Z

152

PROPAGATION OF SEISMIC WAVES THROUGH A SPATIO-TEMPORALLY FLUCTUATING MEDIUM: HOMOGENIZATION

Measurements of seismic wave travel times at the photosphere of the Sun have enabled inferences of its interior structure and dynamics. In interpreting these measurements, the simplifying assumption that waves propagate through a temporally stationary medium is almost universally invoked. However, the Sun is in a constant state of evolution, on a broad range of spatio-temporal scales. At the zero-wavelength limit, i.e., when the wavelength is much shorter than the scale over which the medium varies, the WKBJ (ray) approximation may be applied. Here, we address the other asymptotic end of the spectrum, the infinite-wavelength limit, using the technique of homogenization. We apply homogenization to scenarios where waves are propagating through rapidly varying media (spatially and temporally), and derive effective models for the media. One consequence is that a scalar sound speed becomes a tensorial wave speed in the effective model and anisotropies can be induced depending on the nature of the perturbation. The second term in this asymptotic two-scale expansion, the so-called corrector, contains contributions due to higher-order scattering, leading to the decoherence of the wave field. This decoherence may be causally linked to the observed wave attenuation in the Sun. Although the examples we consider here consist of periodic arrays of perturbations to the background, homogenization may be extended to ergodic and stationary random media. This method may have broad implications for the manner in which we interpret seismic measurements in the Sun and for modeling the effects of granulation on the scattering of waves and distortion of normal-mode eigenfunctions.

Hanasoge, Shravan M. [Department of Geosciences, Princeton University, Princeton, NJ 08544 (United States); Gizon, Laurent [Max-Planck-Institut fuer Sonnensystemforschung, D-37191 Katlenburg-Lindau (Germany); Bal, Guillaume [Department of Applied and Physical Mathematics, Columbia University, New York, NY 10027 (United States)

2013-08-20T23:59:59.000Z

153

,2) provide a kinematic description of water waves, which to this point means that the conditionsWater Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves

154

Infragravity waves over topography: generation, dissipation, and reflection

Ocean surface infragravity waves (periods from 20 to 200 s) observed along the southern California coast are shown to be sensitive to the bottom topography of the shelf region, where propagation is linear, and of the ...

Thomson, James M. (James McArthur)

2006-01-01T23:59:59.000Z

155

The interaction of a gravitational wave with a system made of an RLC circuit forming one end of a mechanical harmonic oscillator is investigated. We show that, in some configurations, the coherent interaction of the wave with both the mechanical oscillator and the RLC circuit gives rise to a mechanical quality factor increase of the electromagnetic signal. When this system is used as an amplifier of gravitational periodic signals in the frequency range 50-1000 Hz, at ultracryogenic temperatures and for sufficiently long integration times (up to 4 months), a sensitivity of 10^(-24)-10^(-27) on the amplitude of the metric could be achieved when thermal noise, shot noise and amplifier back--action are considered.

Enrico Montanari; Pierluigi Fortini

1998-08-26T23:59:59.000Z

156

Ultrasonic guided waves in eccentric annular pipes

This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.

Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu [Centre for NDE, Indian Institute of Technology - Madras Chennai 600036, T. N. (India)

2014-02-18T23:59:59.000Z

157

SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

Ofman, L.; Wang, T. J. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Davila, J. M. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

2012-08-01T23:59:59.000Z

158

ACCELERATING WAVES IN POLAR CORONAL HOLES AS SEEN BY EIS AND SUMER

We present EIS/Hinode and SUMER/SOHO observations of propagating disturbances detected in coronal lines in inter-plume and plume regions of a polar coronal hole. The observation was carried out on 2007 November 13 as part of the JOP196/HOP045 program. The SUMER spectroscopic observation gives information about fluctuations in radiance and on both resolved (Doppler shift) and unresolved (Doppler width) line-of-sight velocities, whereas EIS 40'' wide slot images detect fluctuations only in radiance but maximize the probability of overlapping field of view between the two instruments. From distance-time radiance maps, we detect the presence of propagating waves in a polar inter-plume region with a period of 15-20 minutes and a propagation speed increasing from 130 {+-} 14 km s{sup -1} just above the limb to 330 {+-} 140 km s{sup -1} around 160'' above the limb. These waves can be traced to originate from a bright region of the on-disk part of the coronal hole where the propagation speed is in the range of 25 {+-} 1.3 to 38 {+-} 4.5 km s{sup -1}, with the same periodicity. These on-disk bright regions can be visualized as the base of the coronal funnels. The adjacent plume region also shows the presence of propagating disturbances with the same range of periodicity but with propagation speeds in the range of 135 {+-} 18 to 165 {+-} 43 km s{sup -1} only. A comparison between the distance-time radiance map of the two regions indicates that the waves within the plumes are not observable (may be getting dissipated) far off-limb, whereas this is not the case in the inter-plume region. A correlation analysis was also performed to find out the time delay between the oscillations at several heights in the off-limb region, finding results consistent with those from the analysis of the distance-time maps. To our knowledge, this result provides first spectroscopic evidence of the acceleration of propagating disturbances in the polar region close to the Sun (within 1.2 R/R{sub sun}), which provides clues to the understanding of the origin of these waves. We suggest that the waves are likely either Alfvenic or fast magnetoacoustic in the inter-plume region and slow magnetoacoustic in the plume region. This may lead to the conclusion that inter-plumes are a preferred channel for the acceleration of the fast solar wind.

Gupta, G. R.; Banerjee, D. [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Teriaca, L.; Solanki, S. [Max-Planck-Institut fuer Sonnensystemforschung (MPS), 37191 Katlenburg-Lindau (Germany); Imada, S., E-mail: girjesh@iiap.res.i [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa (Japan)

2010-07-20T23:59:59.000Z

159

the wave model A traveling wave is an organized disturbance

1 waves the wave model A traveling wave is an organized disturbance propagating at a well-defined wave speed v. · In transverse waves the particles of the medium move perpendicular to the direction of wave propagation. · In longitudinal waves the particles of the medium move parallel to the direction

Winokur, Michael

160

Microfabricated bulk wave acoustic bandgap device

A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming leg, Carol

2010-06-08T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

161

Microfabricated bulk wave acoustic bandgap device

A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

Olsson, Roy H. (Albuquerque, NM); El-Kady, Ihab F. (Albuquerque, NM); McCormick, Frederick (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Albuquerque, NM)

2010-11-23T23:59:59.000Z

162

Fluorescence in nonlocal dissipative periodic structures

We present an approach for the description of fluorescence from optically active material embedded in layered periodic structures. Based on an exact electromagnetic Green's tensor analysis, we determine the radiative properties of emitters such as the local photonic density of states, Lamb shifts, line widths etc. for a finite or infinite sequence of thin alternating plasmonic and dielectric layers. In the effective medium limit, these systems may exhibit hyperbolic dispersion relations so that the large wave-vector characteristics of all constituents and processes become relevant. These include the finite thickness of the layers, the nonlocal properties of the constituent metals, and local-field corrections associated with an emitter's dielectric environment. In particular, we show that the corresponding effects are non-additive and lead to considerable modifications of an emitter's luminescence properties.

Francesco Intravaia; Kurt Busch

2015-02-24T23:59:59.000Z

163

Diffusion-induced periodic transition between oscillatory modes in amplitude-modulated patterns

We study amplitude-modulated waves, e.g., wave packets in one dimension, overtarget spirals and superspirals in two dimensions, under mixed-mode oscillatory conditions in a three-variable reaction-diffusion model. New transition zones, not seen in the homogeneous system, are found, in which periodic transitions occur between local 1{sup N?1} and 1{sup N} oscillations. Amplitude-modulated complex patterns result from periodic transition between (N???1)-armed and N-armed waves. Spatial recurrence rates provide a useful guide to the stability of these modulated patterns.

Tang, Xiaodong; He, Yuxiu; Wang, Shaorong; Gao, Qingyu, E-mail: gaoqy@cumt.edu.cn [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China)] [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China); Epstein, Irving R., E-mail: epstein@brandeis.edu [Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110 (United States); Wang, Qun [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China)] [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China)

2014-06-15T23:59:59.000Z

164

Nonlinear acoustic wave generation in a three-phase seabed

Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.

Kukarkin, A B; Zhileikin, Ya M

2015-01-01T23:59:59.000Z

165

Nonlinear acoustic wave generation in a three-phase seabed

Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.

A. B. Kukarkin; N. I. Pushkina; Ya. M. Zhileikin

2015-03-03T23:59:59.000Z

166

E-Print Network 3.0 - acoustic wave velocity Sample Search Results

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

43.30.Ft, 43... short range was deemed desirable for isolating the effects of shallow water internal waves on acoustic... internal waves are not un- usual and it was ......

167

We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights: •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA.

Hasan, Mohammad, E-mail: mohammadhasan786@gmail.com [ISRO Satellite Centre (ISAC), Bangalore-560017 (India); Ghatak, Ananya, E-mail: gananya04@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India)

2014-05-15T23:59:59.000Z

168

Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, the photon wave function exists as long as it can be precisely defined and made useful.

Iwo Bialynicki-Birula

2005-08-26T23:59:59.000Z

169

We show the existence of a new regime of operation for travelling wave tubes (TWTs) composed of slow-wave periodic structures that support two or more electromagnetic modes, with at least two synchronized with an electron beam. The interaction between the slow-wave structure and an electron beam is quantified using a multi transmission line approach (MTL) and transfer matrix analysis leading to the identification of modes with complex Bloch wavenumber. In particular, we report a new operation condition for TWTs based on an electron beam synchronous to two modes exhibiting a degeneracy condition near a band edge in a MTL slow-wave periodic structure. We show a phenomenological change in the band structure of periodic TWT where we observe at least two growing modal cooperating solutions as opposed to a uniform MTL interacting with an electron beam where there is strictly only one growing mode solution.

Othman, Mohamed; Capolino, Filippo

2014-01-01T23:59:59.000Z

170

Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)

1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution

171

High order asymptotics for the electromagnetic scattering from thin periodic layers : the 3D

High order asymptotics for the electromagnetic scattering from thin periodic layers : the 3D of electromagnetic waves by a thin periodic layer made of an array of regularly-spaced obstacles. The size, they satisfy electrostatic problems posed in an infinite 3D strip that require a careful analysis. Error

Boyer, Edmond

172

Equal energy phase space trajectories in resonant wave interactions O. Yaakobia

Equal energy phase space trajectories in resonant wave interactions O. Yaakobia and L. Friedlandb interacting wave systems with nonlinear frequency/ wave vector shifts is discussed. The corresponding these parameters vary in time or space. It is shown that the oscillation periods of two equal energy trajectories

Friedland, Lazar

173

Surface current effects on the fetch-limited growth of wave energy Brian K. Haus1

Surface current effects on the fetch-limited growth of wave energy Brian K. Haus1 Received 5 the fetch-limited growth of wind wave energy over a region with significant lateral shear of the current. Both the near-surface currents and wave energy and period were mapped over the highly sheared inshore

Miami, University of

174

Traveling waves in the Baer and Rinzel model of spine studded dendritic tissue

-trains is explained within a kinematic framework that is based on the times of wave pulses. The dispersion curve of stability that may be applied to solutions of the traveling wave equations. The kinematic theory correctly waves, dendritic spines, connections to periodics, kinematic formalism 2 #12;1 Introduction As dendrites

175

On the Symmetry Theory for Stokes Waves of Finite and In nite Depth

function which satis#12;ed the correct kinematic and dynamic boundary conditions for water waves of steady water waves on ows with #12;nite depth. The inde- pendent variable was a periodic functionOn the Symmetry Theory for Stokes Waves of Finite and In#12;nite Depth J.F. Toland 1 Background

Bath, University of

176

astroph/9610086 Quasar Proper Motions and LowFrequency Gravitational Waves

astroÂph/9610086 11 Oct 1996 Quasar Proper Motions and LowÂFrequency Gravitational Waves Carl R observational upper limits on the massÂenergy of the cosmological gravitationalÂwave background, from limits on proper motions of quasars. Gravitational waves with periods longer than the time span of observations

Fygenson, Deborah Kuchnir

177

LETTERS Tracking Waves and Spiral Drift in Reaction-Diffusion Systems with Finite Bandwidth We report experimental results on chemical waves in 1,4-cyclohexanedione Belousov-Zhabotinsky systems are unstable, pacemakers can generate short-wavelength patterns in which fast waves periodically annihilate

Steinbock, Oliver

178

Supplementary Information for Generation and reversal of surface flows by propagating waves

Supplementary Information for Generation and reversal of surface flows by propagating waves-4) and Supplementary Figures 1-8. Generation and reversal of surface flows by propagating waves localized time-periodic perturbations of water surface generate waves propagating away from the plungers

Loss, Daniel

179

Water-wave propagation through an infinite array of cylindrical structures

Water-wave propagation through an infinite array of cylindrical structures P. McIver Department is made into water-wave propagation through a doubly-periodic array of vertical cylinders extending for which wave propagation without change of amplitude is possible (`passing bands'), and for which

180

Bragg scattering and wave-power extraction by an array of small buoys

for power extraction from ocean waves will likely involve a periodic array of absorbing units. We report an asymptotic theory of scattering and radiation by a linear array of heaving buoys in a channel and attached the asymptotic theory. Keywords: Periodic buoy array, Multiple scattering and radiation, Bragg resonance, Wave

Boyer, Edmond

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

181

Impurity bands and quasi-Bloch waves for a one-dimensional model of modulated crystal

from the theory of quasi-periodic functions while the second relies on periodicity properties, impurity band, quasi-Bloch wave, quantum chaos, spectral algorithm, deformed crystal, Charge-Density Wave coupled oscillators; consult the book [1] and the recent paper [14] to which we are about to borrow

Paris-Sud XI, UniversitÃ© de

182

We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...

Mercier, Matthieu J.

183

On a periodicity measure and superoscillations

The phenomenon of superoscillation, where band limited signals can oscillate over some time period with a frequency higher than the band limit, is not only very interesting but it also seems to offer many practical applications. The first reason is that the superoscillation frequency can be exploited to perform tasks beyond the limits imposed by the lower bandwidth of the signal. The second reason is that it is generic and applies to any wave form, be it optical, electrical, sonic, or quantum mechanical. For practical applications, it is important to overcome two problems. The first problem is that an overwhelming proportion of the energy goes into the non superoscillating part of the signal. The second problem is the control of the shape of the superoscillating part of the signal. The first problem has been recently addressed by optimization of the super oscillation yield, the ratio of the energy in the superoscillations to the total energy of the signal. The second problem may arise when the superoscillation, is to mimic a high frequency purely perodic signal. This may be required, for example, when a superoscillating force is to drive a harmonic oscillator at a high resonance frequency. In this paper the degree of periodicity of a signal is defined and applied to some yield optimized superoscillating signals.

Nehemia Schwartz; Moshe Schwartz

2014-02-13T23:59:59.000Z

184

Performance Assessment of the Wave Dragon Wave Energy Converter

Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

Hansen, RenÃ© Rydhof

185

Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino

Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy with their announcement that: "We find that a new type of sound wave, namely, the dust-acoustic waves, can appear" [1 and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some

Merlino, Robert L.

186

Modulated amplitude waves with nonzero phases in Bose-Einstein condensates

In this paper we give a frame for application of the averaging method to Bose-Einstein condensates (BECs) and obtain an abstract result upon the dynamics of BECs. Using aver- aging method, we determine the location where the modulated amplitude waves (periodic or quasi-periodic) exist and we also study the stability and instability of modulated amplitude waves (periodic or quasi-periodic). Compared with the previous work, modulated amplitude waves studied in this paper have nontrivial phases and this makes the problem become more diffcult, since it involves some singularities.

Qihuai Liu; Dingbian Qian

2011-08-02T23:59:59.000Z

187

Extended range chemical sensing apparatus

An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

Hughes, R.C.; Schubert, W.K.

1994-01-18T23:59:59.000Z

188

A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

Dr. Adam London

2008-06-20T23:59:59.000Z

189

Simulation Study of Internal and Surface waves of Vertically Vibrated Granular Materials

Molecular dynamical (MD) simulations are performed to simulate two dimensional vibrofluidized granular materials in this work. Statistics on simulation results indicate that there exist shocks propagating upward in each vibrating cycle. Under certain driving parameters surface waves similar to Faraday instability in normal fluid coexist with internal waves. Relationship between the two kinds of waves is explored. Moreover simulation results indicate that periodically structured bottom can change the dispersion relationship and amplitude of surface waves.

Kai Huang; Guoqing Miao; Peng Zhang; Yifei Zhu; Rongjue Wei

2005-11-29T23:59:59.000Z

190

Wave localization as a manifestation of ray chaos in underwater acoustics

Wave chaos is demonstrated by studying a wave propagation in a periodically corrugated wave-guide. In the limit of a short wave approximation (SWA) the underlying description is related to the chaotic ray dynamics. In this case the control parameter of the problem is characterized by the corrugation amplitude and the SWA parameter. The considered model is fairly suitable and tractable for the analytical analysis of a wave localization length. The number of eigenmodes characterized the width of the localized wave packet is estimated analytically.

A. Iomin; Yu. Bliokh

2007-06-03T23:59:59.000Z

191

Ion-acoustic cnoidal waves in a quantum plasma

Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

Mahmood, S. [Physics Institute, Federal University of Rio Grande do Sul, RS, Porto Alegre 915051-970 (Brazil); Theoretical Physics Division (TPD), PINSTECH P.O. Nilore, Islamabad 44000 (Pakistan); Haas, F. [Physics Institute, Federal University of Rio Grande do Sul, RS, Porto Alegre 915051-970 (Brazil)

2014-10-15T23:59:59.000Z

192

Method for enhancing the resolving power of ion mobility separations over a limited mobility range

A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.

Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D

2014-09-23T23:59:59.000Z

193

We calculate and compare the response of light wave interferometers and matter wave interferometers to gravitational waves. We find that metric matter wave interferometers will not challenge kilometric light wave interferometers such as Virgo or LIGO, but could be a good candidate for the detection of very low frequency gravitational waves.

Pacôme Delva; Marie-Christine Angonin; Philippe Tourrenc

2006-09-20T23:59:59.000Z

194

E-Print Network 3.0 - ac rectangular wave Sample Search Results

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbulence... in a flume of a horizontal size 12 6 m. For a wide range of amplitudes the wave energy spectrum was found Source: Nazarenko, Sergey - Mathematics Institute,...

195

Electron Bernstein wave current drive modeling in toroidal plasma confinement

The steady-state confinement of tokamak plasmas in a fusion reactor requires non-inductively driven toroidal currents. Radio frequency waves in the electron cyclotron (EC) range of frequencies can drive localized currents ...

Decker, Joan, 1977-

2005-01-01T23:59:59.000Z

196

Search for gravitational waves from intermediate mass binary black holes

We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100–450??M? and with the component mass ratios between 1?1 ...

Barsotti, Lisa

197

IPA Extensions Range: 025002AF

IPA Extensions Range: 0250Â02AF This file contains an excerpt from the character code tables 0268IPA Extensions0250 025B LATIN SMALL LETTER OPEN E = LATIN SMALL LETTER EPSILON Â· lower-mid front

Erjavec, TomaÂ?

198

An Autonomous Adaptive Scheduling Agent for Period Searching

We describe the design and implementation of an autonomous adaptive software agent that addresses the practical problem of observing undersampled, periodic, time-varying phenomena using a network of HTN-compliant robotic telescopes. The algorithm governing the behaviour of the agent uses an optimal geometric sampling technique to cover the period range of interest, but additionally implements proactive behaviour that maximises the optimality of the dataset in the face of an uncertain and changing operating environment.

Eric S. Saunders; Tim Naylor; Alasdair Allan

2008-01-24T23:59:59.000Z

199

Nonlinear spherical Alfven waves

We present an one-dimensional numerical study of Alfven waves propagating along a radial magnetic field. Neglecting losses, any spherical Alfven wave, no matter how small its initial amplitude is, becomes nonlinear at sufficiently large radii. From previous simulations of Alfven waves in plane parallel atmospheres we did expect the waves to steepen and produce current sheets in the nonlinear regime, which was confirmed by our new calculations. On the other hand we did find that even the least nonlinear waves were damped out almost completely before 10 solar radii. A damping of that kind is required by models of Alfven wave-driven winds from old low-mass stars as these winds are mainly accelerated within a few stellar radii.

Ulf Torkelsson; G. Christopher Boynton

1997-09-23T23:59:59.000Z

200

Observations of long period earthquakes accompanying hydraulic fracturing

Waveforms of most seismic events accompanying hydraulic fracturing have been reported to contain clear P and S waves and have fault plane solutions consistent with shear displacement across a fault. This observation is surprising since classical hydraulic fracturing theory predicts the creation of a tensile opening of a cavity in response to fluid pressure. Very small long period events, similar to long period earthquakes observed at volcanoes, were found to occur during four hydraulic fracturing experiments carried out at Fenton Hill, New Mexico. Since the long period earthquakes occur in the same region as the shear type events, it is concluded that the unusual character of the long period earthquake waveforms is due to a source effect and not a path effect. The occurrence of long period earthquakes during hydraulic fracturing could indicate tensile fracturing. Many waveforms of these events are identical, which implies that these events represent repeated activation of a given source. A proposed source for these long period events is the sudden opening of a channel that connects two cracks filled with fluid at different pressures. The sizes of the two cracks differ, which causes two or more peaks to appear in the spectra, each peak being associated with one physical dimension of each crack. From the frequencies at which spectral peaks occur, crack lengths are estimated to be between 3 and 20m.

Bame, D.; Fehler, M.

1986-02-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

201

Analytical formulation of 3D dynamic homogenization for periodic elastic systems

Homogenization of the equations of motion for a three dimensional periodic elastic system is considered. Expressions are obtained for the fully dynamic effective material parameters governing the spatially averaged fields by using the plane wave expansion (PWE) method. The effective equations are of Willis form (Willis 1997) with coupling between momentum and stress and tensorial inertia. The formulation demonstrates that the Willis equations of elastodynamics are closed under homogenization. The effective material parameters are obtained for arbitrary frequency and wavenumber combinations, including but not restricted to Bloch wave branches for wave propagation in the periodic medium. Numerical examples for a 1D system illustrate the frequency dependence of the parameters on Bloch wave branches and provide a comparison with an alternative dynamic effective medium theory (Shuvalov 2011) which also reduces to Willis form but with different effective moduli.

A. N. Norris; A. L. Shuvalov; A. A. Kutsenko

2012-01-13T23:59:59.000Z

202

Hysteresis of ionization waves

A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

Dinklage, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Bruhn, B.; Testrich, H. [Institut fuer Physik, E.-M.-Arndt Universitaet Greifswald, Felix-Hausdorff-Str. 6, 17487 Greifswald (Germany); Wilke, C. [Leibniz-Institut fuer Plasmaforschung und Technologie, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

2008-06-15T23:59:59.000Z

203

Structure-borne sound Flexural wave (bending wave)

1 Structure-borne sound · Flexural wave (bending wave) »One dimensional (beam) +(/x)dx +(/x)dx = (/x) (/x)dx=(2/x2)dx Mz +(Mz/x)dx Mz vy Fy Fy +(Fy/x)dx Structure-borne sound · Bending wave flexural wave #12;2 Structure-borne sound · Two obliquely propagating waves + - + + - + - Structure

Berlin,Technische Universität

204

Wave Propagation Theory 2.1 The Wave Equation

2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived #12;66 2. Wave Propagation Theory quantities of the quiescent (time independent) medium are identified perturbations is much smaller than the speed of sound. 2.1.1 The Nonlinear Wave Equation Retaining higher

205

Wave momentum flux parameter: a descriptor for nearshore waves

Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution

US Army Corps of Engineers

206

Shallow Water Waves and Solitary Waves Willy Hereman

Shallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer of the Subject II. IntroductionÂHistorical Perspective III. Completely Integrable Shallow Water Wave Equations IV. Shallow Water Wave Equations of Geophysical Fluid Dynamics V. Computation of Solitary Wave Solutions VI

Hereman, Willy A.M.

207

Temperature inversion in long-range interacting systems

Temperature inversions occur in nature, e.g., in the solar corona and in interstellar molecular clouds: somewhat counterintuitively, denser parts of the system are colder than dilute ones. We propose a simple and appealing mechanism to spontaneously generate temperature inversions in systems with long-range interactions, by preparing them in inhomogeneous thermal equilibrium states and then applying an impulsive perturbation. In similar situations, short-range systems would typically relax to another thermal equilibrium, with uniform temperature profile. By contrast, in long-range systems, the interplay between wave-particle interaction and spatial inhomogeneity drives the system to nonequilibrium stationary states that generically exhibit temperature inversion. Our work underlines the crucial role the range of interparticle interaction plays in determining the nature of steady states attained when macroscopic systems are brought out of thermal equilibrium.

Teles, Tarcisio N; Casetti, Lapo

2015-01-01T23:59:59.000Z

208

We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (2007). This mechanism, which involves a tunable source comprised of oscillating plates, has so far been used for a few fundamental studies of internal waves, but its full potential has yet to be realized. Our studies reveal that this approach is capable of producing a wide variety of two-dimensional wave fields, including plane waves, wave beams and discrete vertical modes in finite-depth stratifications. The effects of discretization by a finite number of plates, forcing amplitude and angle of propagation are investigated, and it is found that the method is remarkably efficient at generating a complete wave field despite forcing only one velocity component in a controllable manner. We furthermore find that the nature of the radiated wave field is well predicted using Fourier transforms of the spatial structure of the wave generator.

Mercier, Matthieu J; Mathur, Manikandan; Gostiaux, Louis; Peacock, Thomas; Dauxois, Thierry

2015-01-01T23:59:59.000Z

209

Directed Relativistic Blast Wave

A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.

Andrei Gruzinov

2007-04-23T23:59:59.000Z

210

Inferring Magnetospheric Heavy Ion Density using EMIC Waves

We present a method to infer heavy ion concentration ratios from EMIC wave observations that result from ionion hybrid (IIH) resonance. A key feature of the ion-ion hybrid resonance is the concentration of wave energy in a field-aligned resonant mode that exhibits linear polarization. This mode converted wave is localized at the location where the frequency of a compressional wave driver matches the IIH resonance condition, which depends sensitively on the heavy ion concentration. This dependence makes it possible to estimate the heavy ion concentration ratio. In this letter, we evaluate the absorption coefficients at the IIH resonance at Earth's geosynchronous orbit for variable concentrations of He+ and field-aligned wave numbers using a dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentrations, it only occurs for a limited range of field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Using the wave absorption and observed EMIC waves from GOES-12 satellite, we demonstrate how this technique can be used to estimate that the He+ concentration is around 4% near L = 6.6.

Kim, Eun-Hwa; Johnson, Jay R.; Kim, Hyomin; Lee, Dong-Hun

2014-05-01T23:59:59.000Z

211

Propagation of High Frequency Waves in the Quiet Solar Atmosphere

High-frequency waves (5 mHz to 20mHz) have previously been suggested as a source of energy accounting partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences are taken using the German Vacuum Tower Telescope (VTT), Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis is performed to determine whether the waves propagate. We observe the propagation of waves in the frequency range 10mHz to 13mHz. We also observe propagation of low-frequency waves in the ranges where they are thought to be evanescent in regions where magnetic structures are present.

Aleksandra Andi?

2008-10-13T23:59:59.000Z

212

Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfven waves rather than flows. In a few cases, there seems to be a {pi}/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfvenic oscillations. In this scenario, the intensity oscillations associated with Alfvenic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.

Tian Hui; McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Wang, Tongjiang; Ofman, Leon [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); De Pontieu, Bart [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St., Org. ADBS, Bldg. 252, Palo Alto, CA 94304 (United States); Innes, Davina E.; Peter, Hardi, E-mail: htian@ucar.edu [Max Planck Institute for Solar System Research, 37191 Katlenburg-Lindau (Germany)

2012-11-10T23:59:59.000Z

213

Density waves in the Calogero model - revisited

The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.

Bardek, V. [Rudjer Boskovic Institute, Bijenicka c.54, HR-10002 Zagreb (Croatia)], E-mail: bardek@irb.hr; Feinberg, J. [Department of Physics, University of Haifa at Oranim, Tivon 36006 (Israel); Department of Physics, Technion-Israel Inst. of Technology, Haifa 32000 (Israel); KITP, University of California, Santa Barbara, CA 93106-4030 (United States)], E-mail: joshua@physics.technion.ac.il; Meljanac, S. [Rudjer Boskovic Institute, Bijenicka c.54, HR-10002 Zagreb (Croatia)], E-mail: meljanac@irb.hr

2010-03-15T23:59:59.000Z

214

Wave-Corpuscle Mechanics for Electric Charges

superposition in nonlinear wave dynamics. Rev. Math. Phys.6. Babin, A. , Figotin, A. : Wave-corpuscle mechanics forV. , Fortunato, D. : Solitary waves in the nonlinear wave

Babin, Anatoli; Figotin, Alexander

2010-01-01T23:59:59.000Z

215

PACIFIC SOUTHWEST Forest and Range

of forest stands is valuable for studies of the physical environment. Energy balance research centers on howPACIFIC SOUTHWEST Forest and Range Experiment Station FOREST SERVICE U.S. DEPARTMENT in relation to climatic and stand variables USDA FOREST SERVICE RESEARCH PAPER PSW- 71 /1971 #12;CONTENTS

Standiford, Richard B.

216

PACIFIC SOUTHWEST Forest and Range

C. Hathaway, both of the Black Hills National Forest, Custer, South Dakota, provided the necessaryPACIFIC SOUTHWEST Forest and Range FOREST SERVICE U. S.DEPARTMENT OF AGRICULTURE P.O. BOX 245, BERKELEY, CALIFORNIA 94701 Experiment Station USDA FOREST SERVICE RESEARCH PAPER PSW- 96 /1973 #12;CONTENTS

Standiford, Richard B.

217

Pacific Southwest Forest and Range

. MCKETTA is an economist with the College of Forestry, Wildlife, and Range Sciences, University of Idaho has been developed for determining the cost of Fire Management Inputs (FMls)-the direct frreline costs, economic costs, fire economics, suppression costs, Fire Economics Evaluation System (FEES

Standiford, Richard B.

218

Estimation of Heavy Ion Densities From Linearly Polarized EMIC Waves At Earth

Linearly polarized EMIC waves are expected to concentrate at the location where their wave frequency satisfies the ion-ion hybrid (IIH) resonance condition as the result of a mode conversion process. In this letter, we evaluate absorption coefficients at the IIH resonance in the Earth geosynchronous orbit for variable concentrations of helium and azimuthal and field-aligned wave numbers in dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentration, it only occurs for a limited range of azimuthal and field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Our results suggest that, at L = 6.6, linearly polarized EMIC waves can be generated via mode conversion from the compressional waves near the crossover frequency. Consequently, the heavy ion concentration ratio can be estimated from observations of externally generated EMIC waves that have polarization.

Kim, Eun-Hwa; Johnson, Jay R.; Lee, Dong-Hun

2014-02-24T23:59:59.000Z

219

Self-consistent full wave simulations of lower hybrid waves

Self-consistent full wave simulations of lower hybrid waves John C. Wright P. T. Bonoli - MIT E .J for Simulation of Wave-Plasma Interactions L.A. Berry, D.B. Batchelor, E.F. Jaeger, E. D`Azevedo D. Green C. Milanesio #12;3 Outline Â· Introduction to Lower Hybrid waves Â· Modeling LH waves Â Ray tracing Â Full Wave

Wright, John C.

220

Harmonic generation of gravitational wave induced Alfven waves

Here we consider the nonlinear evolution of Alfven waves that have been excited by gravitational waves from merging binary pulsars. We derive a wave equation for strongly nonlinear and dispersive Alfven waves. Due to the weak dispersion of the Alfven waves, significant wave steepening can occur, which in turn implies strong harmonic generation. We find that the harmonic generation is saturated due to dispersive effects, and use this to estimate the resulting spectrum. Finally we discuss the possibility of observing the above process.

Mats Forsberg; Gert Brodin

2007-11-26T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

221

The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity $v$, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed $c$ between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength ${\\mit\\Lambda}_d$$=(\\frac{v}{c}){\\mit\\Lambda}$ and phase velocity $c^2/v+v$ which resembles directly L. de Broglie's hypothetic phase wave. This phase wave in terms of transporting the particle mass at the speed $v$ and angular frequency ${\\mit\\Omega}_d=2\\pi v /{\\mit\\Lambda}_d$, with ${\\mit\\Lambda}_d$ and ${\\mit\\Omega}_d$ obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase) wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schr\\"odinger equation of an identical system.

J X Zheng-Johansson; P-I Johansson

2006-08-27T23:59:59.000Z

222

Some criteria for the symmetry of stratified water waves

This paper considers two-dimensional stably stratified steady periodic gravity water waves with surface profiles monotonic between crests and troughs. We provide sufficient conditions under which such waves are necessarily symmetric. This is done by first exploiting some elliptic structure in the governing equations to show that, in certain size regimes, a maximum principle holds. This then forms the basis for a method of moving planes argument.

Samuel Walsh

2009-03-05T23:59:59.000Z

223

Nonlinear physics of shear Alfvén waves

Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.

Zonca, Fulvio [Associazione EURATOM-ENEA sulla Fusione, C.P. 65-00044 Frascati, Italy and Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007 (China); Chen, Liu [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007, P.R.C. and Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

2014-02-12T23:59:59.000Z

224

Target waves in the complex Ginzburg-Landau equation Matthew Hendrey, Keeyeol Nam, Parvez Guzdar Ginzburg-Landau equa- tion. We observe that this can produce two types of target wave patterns: stationary propagating periodic traveling wave. In the breathing case, however, the region in the vicinity of the target

Rubloff, Gary W.

225

A Wave-Pipelined Router Architecture Using Ternary Associative Memory Jose G. Delgado University Abstract In this paper a wave-pipelining scheme is used to increase the per- formance of a router not occur. The results of the study show that wave-pipelining helps to reduce the clock period. 1

Nyathi, Jabulani

226

Nonreciprocal wave scattering on nonlinear string-coupled oscillators

We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: the same wave is transmitted differently in two directions. Periodic regimes of scattering are analysed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a "chaotic diode", where transmission is periodic in one direction and chaotic in the opposite one, is reported.

Stefano Lepri; Arkady Pikovsky

2014-10-29T23:59:59.000Z

227

Tunable damper for an acoustic wave guide

A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

Rogers, S.C.

1982-10-21T23:59:59.000Z

228

Secondary dust density waves excited by nonlinear dust acoustic waves

Secondary dust density waves were observed in conjunction with high amplitude (n{sub d}/n{sub d0}>2) dust acoustic waves (DAW) that were spontaneously excited in a dc glow discharge dusty plasma in the moderately coupled, {Gamma}{approx}1, state. The high amplitude dust acoustic waves produced large dust particle oscillations, displacements, and trapping. Secondary dust density waves were excited in the wave troughs of the high amplitude DAWs. The waveforms, amplitudes, wavelengths, and wave speeds of the primary DAWs and the secondary waves were measured. A dust-dust streaming instability is discussed as a possible mechanism for the production of the secondary waves.

Heinrich, J. R.; Kim, S.-H.; Meyer, J. K.; Merlino, R. L. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, M. [Department of Electrical and Computer Engineering, University of California, San Diego, California 92093 (United States)

2012-08-15T23:59:59.000Z

229

Wave turbulence revisited: Where does the energy flow?

Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.

L. V. Abdurakhimov; I. A. Remizov; A. A. Levchenko; G. V. Kolmakov; Y. V. Lvov

2014-04-03T23:59:59.000Z

230

Center for Wave Phenomena Wave Phenomena

into a life of scientific discovery." Kurang Mehta, Ph.D. Class of 2007 Shell Exploration and Production Phil research and education program in seismic exploration, monitoring and wave propagation. The main focus and efficiency of seismic processing algorithms, especially for application to regions of structural complexity

231

Rainbow trapping of guided waves

Rainbow trapping of guided waves Javier Polanco and Rosa M.the propagation of a wave packet that is a superpositionof three s-polarized guided waves with different frequencies

Polanco, Javier; Fitzgerald, Rosa M; Leskova, Tamara A; Maradudin, Alexei A

2011-01-01T23:59:59.000Z

232

Arnold Schwarzenegger CALIFORNIA OCEAN WAVE

Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California this report as follows: Previsic, Mirko. 2006. California Ocean Wave Energy Assessment. California Energy Systems Integration Â· Transportation California Ocean Wave Energy Assessment is the final report

233

Nonlinear Shear Wave in a Non Newtonian Visco-elastic Medium

An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic(GH) model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau -Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam (FPU) problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries (mKdV) equation. This model has application from laboratory to astrophysical plasmas as well as biological systems.

Janaki, D Banerjee M S; Chaudhuri, M

2013-01-01T23:59:59.000Z

234

Quasar Proper Motions and Low-Frequency Gravitational Waves

We report observational upper limits on the mass-energy of the cosmological gravitational-wave background, from limits on proper motions of quasars. Gravitational waves with periods longer than the time span of observations produce a simple pattern of apparent proper motions over the sky, composed primarily of second-order transverse vector spherical harmonics. A fit of such harmonics to measured motions yields a 95%-confidence limit on the mass-energy of gravitational waves with frequencies <2e-9 Hz, of <0.11/h*h times the closure density of the universe.

Carl R. Gwinn; T. Marshall Eubanks; Ted Pyne; Mark Birkinshaw; Demetrios N. Matsakis

1996-10-12T23:59:59.000Z

235

A coordinate transformation is found which diagonalizes the axisymmetric pp-waves. Its effect upon concrete solutions, including impulsive and shock waves, is discussed.

B. V. Ivanov

1997-05-21T23:59:59.000Z

236

Wave-wave interactions in solar type III radio bursts

The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

Thejappa, G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); MacDowall, R. J. [NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

2014-02-11T23:59:59.000Z

237

Geometry and scaling of tangled vortex lines in three-dimensional random wave fields

The short- and long-scale behaviour of tangled wave vortices (nodal lines) in random three-dimensional wave fields is studied via computer experiment. The zero lines are tracked in numerical simulations of periodic superpositions of three-dimensional complex plane waves. The probability distribution of local geometric quantities such as curvature and torsion are compared to previous analytical and new Monte Carlo results from the isotropic Gaussian random wave model. We further examine the scaling and self-similarity of tangled wave vortex lines individually and in the bulk, drawing comparisons with other physical systems of tangled filaments.

Alexander J. Taylor; Mark R. Dennis

2015-01-20T23:59:59.000Z

238

Active micromixer using surface acoustic wave streaming

An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

Branch; Darren W. (Albuquerque, NM), Meyer; Grant D. (Ithaca, NY), Craighead; Harold G. (Ithaca, NY)

2011-05-17T23:59:59.000Z

239

Critical point anomalies include expansion shock waves

From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

2014-02-15T23:59:59.000Z

240

Tunnel and Subsurface Void Detection and Range to Target Measurement

Engineers and technicians at the Idaho National Laboratory invented, designed, built and tested a device capable of detecting and measuring the distance to, an underground void, or tunnel. Preliminary tests demonstrated positive detection of, and range to, a void thru as much as 30 meters of top-soil earth. Device uses acoustic driving point impedance principles pioneered by the Laboratory for well-bore physical properties logging. Data receipts recorded by the device indicates constructive-destructive interference patterns characteristic of acoustic wave reflection from a downward step-change in impedance mismatch. Prototype tests demonstrated that interference patterns in receipt waves could depict the patterns indicative of specific distances. A tool with this capability can quickly (in seconds) indicate the presence and depth/distance of a void or tunnel. Using such a device, border security and military personnel can identify threats of intrusion or weapons caches in most all soil conditions including moist and rocky.

Phillip B. West

2009-06-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

241

Spatial Periodic Forcing Can Displace Patterns It Is Intended to Control

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Spatial periodic forcing of pattern-forming systems is an important, but lightly studied, method of controlling patterns. It can be used to control the amplitude and wave number of one-dimensional periodic patterns, to stabilize unstable patterns, and to induce them below instability onset. We show that, although in one spatial dimension the forcing acts to reinforce the patterns, in two dimensions it acts to destabilize or displace them by inducing two-dimensional rectangular and oblique patterns.

Mau, Yair; Hagberg, Aric; Meron, Ehud

2012-07-01T23:59:59.000Z

242

Biologic response to complex blast waves

Small, bare charges were detonated inside an M59 armored personnel carrier (APC) in an attempt to simulate the complex blast waves generated by the jets from shaped-charge warheads penetrating into armored vehicles. Anesthetized sheep were placed inside the APC at 92- and 122-cm ranges from 57- or 113-g pentolite charges. Pressure-time was measured by pressure transducers either mounted on the animals or free standing at comparable ranges on the opposite side of the vehicle. In general, the waveforms were characterized by an initial shock wave of less than 1-msec duration followed by repeated reflections of decreasing magnitude. No deaths nor lung hemorrhages were observed, but all the animals sustained severe ear injury. Animals subjected to peak overpressures of 1.2 to 2.3 bar from the 113-g explosions also received slight non-auditory blast injuries to the upper respiratory and gastrointestinal tracts; those exposed to peak overpressures of just under 1 bar from the 57-g charges did not. The non-auditory blast injuries inside the APC were more severe than those sustained by sheep at comparable distances from 113-g charges in the open. The results suggested that the biological consequences of a complex wave of the type encountered in this study can be equated approximately to a Friedlander wave with a peak overpressure equal to that of the complex wave and with a total impulse equal to the impulse over the first 2 to 3 msec of the complex wave. 9 refs., 7 figs., 1 tab.

Richmond, D.R.; Yelverton, J.T.; Fletcher, E.R.; Phillips, Y.Y.

1985-01-01T23:59:59.000Z

243

Extended-range tiltable micromirror

A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.

Allen, James J. (Albuquerque, NM); Wiens, Gloria J. (Newberry, FL); Bronson, Jessica R. (Gainesville, FL)

2009-05-05T23:59:59.000Z

244

Range Fuels | Open Energy Information

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to:Co JumpRETScreen Logo: Range Fuels Name:

245

Full wave simulations of lower hybrid wave propagation in tokamaks

Full wave simulations of lower hybrid wave propagation in tokamaks J. C. Wright , P. T. Bonoli , C hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance. Consequently these waves are well-suited to driving current in the plasma periphery where the electron

Wright, John C.

246

SEISMIC WAVES ESTIMATION AND WAVE FIELD DECOMPOSITION WITH FACTOR GRAPHS

SEISMIC WAVES ESTIMATION AND WAVE FIELD DECOMPOSITION WITH FACTOR GRAPHS Stefano MaranÃ² Christoph, Dept. Information Technology & Electr. Eng., 8092 ZÃ¼rich ABSTRACT Physical wave fields are often from sensors of different kinds. In this paper we propose a technique for the analysis of vector wave

Loeliger, Hans-Andrea

247

Taming water waves Case study: Surface Water Waves

Taming water waves Case study: Surface Water Waves Few things in nature are as dramatic, and potentially dangerous, as ocean waves. The impact they have on our daily lives extends from shipping to the role they play in driving the global climate. From a theoretical viewpoint water waves pose rich

248

Selfconsistent full wave simulations of lower hybrid waves

Selfconsistent full wave simulations of lower hybrid waves John C. Wright P. T. Bonoli MIT E .J. Porkolab Sherwood/Spring APS Denver May 2009 #12; 2 Participants in the Center for Simulation of Wave hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance

Wright, John C.

249

On Generating Gravity Waves with Matter and Electromagnetic Waves

If a homogeneous plane light-like shell collides head-on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.

C. Barrabes; P. A. Hogan

2008-04-05T23:59:59.000Z

250

Live Fire Range Environmental Assessment

The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

None

1993-08-01T23:59:59.000Z

251

This thesis concerns the application of seismic interferometry to surface waves. Seismic interferometry is the process by which the wavefield between two recording locations is estimated, resulting in new recordings at ...

Halliday, David Fraser

2009-01-01T23:59:59.000Z

252

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

Hietala, V.M.; Vawter, G.A.

1993-12-14T23:59:59.000Z

253

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

Hietala, V.M.; Vawter, G.A.

1992-12-31T23:59:59.000Z

254

Undoped and strongly photoexcited semiconductor superlattices with field-dependent recombination behave as excitable or oscillatory media with spatially discrete nonlinear convection and diffusion. Infinitely long, dc-current-biased superlattices behaving as excitable media exhibit wave fronts with increasing or decreasing profiles, whose velocities can be calculated by means of asymptotic methods. These superlattices can also support pulses of the electric field. Pulses moving downstream with the flux of electrons can be constructed from their component wave fronts, whereas pulses advancing upstream do so slowly and experience saltatory motion: they change slowly in long intervals of time separated by fast transitions during which the pulses jump to the previous superlattice period. Photoexcited superlattices can also behave as oscillatory media and exhibit wave trains.

J. I. Arana; L. L. Bonilla; H. T. Grahn

2011-09-30T23:59:59.000Z

255

Force-controlled absorption in a fully-nonlinear numerical wave tank

An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.

Spinneken, Johannes, E-mail: j.spinneken@imperial.ac.uk; Christou, Marios; Swan, Chris

2014-09-01T23:59:59.000Z

256

Modeling a nonperturbative spinor vacuum interacting with a strong gravitational wave

We consider the propagation of strong gravitational waves interacting with a nonperturbative vacuum of spinor fields. To described the latter, we suggest an approximate model. The corresponding Einstein equation has the form of the Schr\\"odinger equation. Its gravitational-wave solution is analogous to the solution of the Schr\\"odinger equation for an electron moving in a periodic potential. The general solution for the periodic gravitational waves is found. The analog of the Kronig-Penney model for gravitational waves is considered. It is shown that the suggested gravitational-wave model permits the existence of weak electric charge and current densities concomitant with the gravitational wave. Based on this observation, a possible experimental verification of the model is suggested.

Vladimir Dzhunushaliev; Vladimir Folomeev

2015-03-15T23:59:59.000Z

257

Modeling a nonperturbative spinor vacuum interacting with a strong gravitational wave

We consider the propagation of strong gravitational waves interacting with a nonperturbative vacuum of spinor fields. To described the latter, we suggest an approximate model. The corresponding Einstein equation has the form of the Schr\\"odinger equation. Its gravitational-wave solution is analogous to the solution of the Schr\\"odinger equation for an electron moving in a periodic potential. The general solution for the periodic gravitational waves is found. The analog of the Kronig-Penney model for gravitational waves is considered. It is shown that the suggested gravitational-wave model permits the existence of weak electric charge and current densities concomitant with the gravitational wave. Based on this observation, a possible experimental verification of the model is suggested.

Dzhunushaliev, Vladimir

2015-01-01T23:59:59.000Z

258

Period-luminosity and period-luminosity-colour relations for Mira variables at maximum light

In this paper we confirm the existence of period-luminosity (PL) and period-luminosity-colour (PLC) relations at maximum light for O and C Mira variables in the LMC. We demonstrate that in the J and H bands the maximum light PL relations have a significantly smaller dispersion than their counterparts at mean light, while the K band and bolometric PL relations have a dispersion comparable to that at mean light. In the J, H and K bands the fitted PL relations for the O Miras are found to have smaller dispersion than those for the C Miras, at both mean and maximum light, while the converse is true for the relations based on bolometric magnitudes. The inclusion of a non-zero log period term is found to be highly significant in all cases except that of the C Miras in the J band, for which the data are found to be consistent with having constant absolute magnitude. This suggests the possibility of employing C Miras as standard candles. We suggest both a theoretical justification for the existence of Mira PL relations at maximum light and a possible explanation of why these relations should have a smaller dispersion than at mean light. The existence of such maximum light relations offers the possibility of extending the range and improving the accuracy of the Mira distance scale to Galactic globular clusters and to other galaxies.

S. M. Kanbur; M. A. Hendry; D. Clarke

1997-04-14T23:59:59.000Z

259

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project...

Broader source: Energy.gov (indexed) [DOE]

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave...

260

Mathematical Caricature of Large Waves

The Kadomtsev-Petviiashvili equation is considered as a mathematical caricature of large and rogue waves.

Mikhail Kovalyov

2014-03-21T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

261

Clustering of floaters by waves

We study experimentally how waves affect distribution of particles that float on a water surface. We show that clustering of small particles in a standing wave is a nonlinear effect with the clustering time decreasing as the square of the wave amplitude. In a set of random waves, we show that small floaters concentrate on a multi-fractal set.

P. Denissenko; G. Falkovich; S. Lukaschuk

2005-11-22T23:59:59.000Z

262

December 2010 | 23 GUIDED WAVES

December 2010 | 23 GUIDED WAVES Tuning Wave Dispersion in Resonant Networks Eyal Feigenbaum with meta-atoms. Resonant guided wave networks (RGWNs) are a new class of artificial photonic material,5 distinct from photonic crystals and metamateri- als, in which localized waves resonate in closed paths

Atwater, Harry

263

Autoresonant Excitation of Diocotron Waves

of the wave, the pump and the wave will phase lock at very low wave amplitude. When the pump reachesAutoresonant Excitation of Diocotron Waves J. Fajans E. Gilson U.C. Berkeley L. Friedland Hebrew of phase with the oscillator, and the os- cillator's amplitude will decrease, eventually reaching zero

Wurtele, Jonathan

264

The use of chirped pulse millimeter-wave spectroscopy in chemical dynamics and kinetics

.Chirped-pulse millimeter wave (CPmmW) spectroscopy is a revolutionary technique that has taken advantage of advances in electronics to give high signal to noise broadband rotational spectra in a very short period of time ...

Shaver, Rachel Glyn

2013-01-01T23:59:59.000Z

265

Selection Rules for the Nonlinear Interactions of Internal Gravity Waves and Inertia-Gravity Waves

Internal Gravity Waves . . . . . . . . . . . . . . 3.2.1 Twodimensional inertia-gravity wave physics . . . . . . . . .Three dimensional inertia-gravity wave physics . . . . . .

Jiang, Chung-Hsiang

2010-01-01T23:59:59.000Z

266

ITER's Ion Cyclotron Range of Frequencies (ICRF) system [Lamalle et al., Fusion Eng. Des. 88, 517–520 (2013)] comprises two antenna launchers designed by CYCLE (a consortium of European associations listed in the author affiliations above) on behalf of ITER Organisation (IO), each inserted as a Port Plug (PP) into one of ITER's Vacuum Vessel (VV) ports. Each launcher is an array of 4 toroidal by 6 poloidal RF current straps specified to couple up to 20?MW in total to the plasma in the frequency range of 40 to 55 MHz but limited to a maximum system voltage of 45?kV and limits on RF electric fields depending on their location and direction with respect to, respectively, the torus vacuum and the toroidal magnetic field. A crucial aspect of coupling ICRF power to plasmas is the knowledge of the plasma density profiles in the Scrape-Off Layer (SOL) and the location of the RF current straps with respect to the SOL. The launcher layout and details were optimized and its performance estimated for a worst case SOL provided by the IO. The paper summarizes the estimated performance obtained within the operational parameter space specified by IO. Aspects of the RF grounding of the whole antenna PP to the VV port and the effect of the voids between the PP and the Blanket Shielding Modules (BSM) surrounding the antenna front are discussed. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.

Durodié, F., E-mail: frederic.durodie@rma.ac.be; Dumortier, P.; Vrancken, M.; Messiaen, A.; Huygen, S.; Louche, F.; Van Schoor, M.; Vervier, M. [LPP-ERM/KMS, Association EURATOM-Belgian State, Brussels (Belgium); Bamber, R.; Hancock, D.; Lockley, D.; Nightingale, M. P. S.; Shannon, M.; Tigwell, P.; Wilson, D. [EURATOM/CCFE Assoc., Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Maggiora, R.; Milanesio, D. [Associazione EURATOM-ENEA, Politechnico di Torino (Italy); Winkler, K. [IPP-MPI, EURATOM-Assoziation, Garching (Germany)

2014-06-15T23:59:59.000Z

267

Gravitational waves from rapidly rotating neutron stars

Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of $B\\approx 10^{12}$ G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the accretion torque in these systems, and show that in most cases the disc/magnetosphere interaction can account for the observed spin periods.

Brynmor Haskell; Nils Andersson; Caroline D`Angelo; Nathalie Degenaar; Kostas Glampedakis; Wynn C. G. Ho; Paul D. Lasky; Andrew Melatos; Manuel Oppenoorth; Alessandro Patruno; Maxim Priymak

2014-07-31T23:59:59.000Z

268

Solitary and shock waves in magnetized electron-positron plasma

An Ohm's law for electron-positron (EP) plasma is obtained. In the framework of EP magnetohydrodynamics, we investigate nonrelativistic nonlinear waves' solutions in a magnetized EP plasma. In the collisionless limit, quasistationary propagating solitary wave structures for the magnetic field and the plasma density are obtained. It is found that the wave amplitude increases with the Mach number and the Alfvén speed. However, the dependence on the plasma temperature is just the opposite. Moreover, for a cold EP plasma, the existence range of the solitary waves depends only on the Alfvén speed. For a hot EP plasma, the existence range depends on the Alfvén speed as well as the plasma temperature. In the presence of collision, the electromagnetic fields and the plasma density can appear as oscillatory shock structures because of the dissipation caused by the collisions. As the collision frequency increases, the oscillatory shock structure becomes more and more monotonic.

Lu, Ding; Li, Zi-Liang; Abdukerim, Nuriman; Xie, Bai-Song, E-mail: bsxie@bnu.edu.cn [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)] [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)

2014-02-15T23:59:59.000Z

269

Investigation of dominant spin wave modes by domain walls collision

Spin wave emission due to field-driven domain wall (DW) collision has been investigated numerically and analytically in permalloy nanowires. The spin wave modes generated are diagonally symmetric with respect to the collision point. The non-propagating mode has the highest amplitude along the middle of the width. The frequency of this mode is strongly correlated to the nanowire geometrical dimensions and is independent of the strength of applied field within the range of 0.1?mT to 1?mT. For nanowire with film thickness below 5?nm, a second spin wave harmonic mode is observed. The decay coefficient of the spin wave power suggests that the DWs in a memory device should be at least 300?nm apart for them to be free of interference from the spin waves.

Ramu, M.; Purnama, I.; Goolaup, S.; Chandra Sekhar, M.; Lew, W. S., E-mail: wensiang@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

2014-06-28T23:59:59.000Z

270

Noise sustained waves in subexcitable media: From chemical waves to brain waves

Noise sustained waves in subexcitable media: From chemical waves to brain waves P. Junga: a subexcitable photosensitive BelousovÂZhabotinsky reaction, hippocampal slices of rat brains, and astrocyte of such a behavior for calcium wave net- works in interconnected brain cells. I. INTRODUCTION Since the early days

Showalter, Kenneth

271

Effective-Range Dependence of Resonantly Interacting Fermions

We extract the leading effective range corrections to the equation of state of the unitary Fermi gas from ab initio fixed-node quantum Monte Carlo (FNQMC) calculations in a periodic box using a density functional theory (DFT), and show them to be universal by considering several two-body interactions. Furthermore, we find that the DFT is consistent with the best available unbiased QMC calculations, analytic results, and experimental measurements of the equation of state. We also discuss the asymptotic effective-range corrections for trapped systems and present the first QMC results with the correct asymptotic scaling.

Michael McNeil Forbes; Stefano Gandolfi; Alexandros Gezerlis

2012-11-15T23:59:59.000Z

272

Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma

Two-dimensional hybrid simulations are performed to investigate the parametric decay of a monochromatic Alfven wave in low beta plasma. Both the linearly and left-hand polarized pump Alfven waves are considered in the paper. For the linearly polarized pump Alfven wave, either a parallel or obliquely propagating wave can lead to the decay along the perpendicular direction. Initially, the parametric decay takes place along the propagating direction of the pump wave, and then the decay occurs in the perpendicular direction. With the increase of the amplitude and the propagating angle of the pump wave (the angle between the propagating direction of the pump wave and the ambient magnetic field), the spectral range of the excited waves becomes broad in the perpendicular direction. But the effects of the plasma beta on the spectral range of the excited waves in perpendicular direction are negligible. However, for the left-hand polarized pump Alfven wave, when the pump wave propagates along the ambient magnetic field, the parametric decay occurs nearly along the ambient magnetic field, and there is no obvious decay in the perpendicular direction. Significant decay in the perpendicular direction can only be found when the pump wave propagates obliquely.

Gao, Xinliang; Lu, Quanming; Shan, Lican; Wang, Shui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China)] [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China); Li, Xing [Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom)] [Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom)

2013-07-15T23:59:59.000Z

273

All-dielectric three-dimensional broadband Eaton lens with large refractive index range

We proposed a method to realize three-dimensional (3D) gradient index (GRIN) devices requiring large refractive index (RI) range with broadband performance. By combining non-resonant GRIN woodpile photonic crystals structure in the metamaterial regime with a compound liquid medium, a wide RI range (1–6.32) was fulfilled flexibly. As a proof-of-principle for the low-loss and non-dispersive method, a 3D Eaton lens was designed and fabricated based on 3D printing process. Full-wave simulation and experiment validated its omnidirectional wave bending effects in a broad bandwidth covering Ku band (12?GHz–18?GHz)

Yin, Ming; Yong Tian, Xiao, E-mail: leoxyt@mail.xjtu.edu.cn; Ling Wu, Ling; Chen Li, Di [State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

2014-03-03T23:59:59.000Z

274

EVIDENCE FOR THE PHOTOSPHERIC EXCITATION OF INCOMPRESSIBLE CHROMOSPHERIC WAVES

Observing the excitation mechanisms of incompressible transverse waves is vital for determining how energy propagates through the lower solar atmosphere. We aim to show the connection between convectively driven photospheric flows and incompressible chromospheric waves. The observations presented here show the propagation of incompressible motion through the quiet lower solar atmosphere, from the photosphere to the chromosphere. We determine photospheric flow vectors to search for signatures of vortex motion and compare results to photospheric flows present in convective simulations. Further, we search for the chromospheric response to vortex motions. Evidence is presented that suggests incompressible waves can be excited by the vortex motions of a strong magnetic flux concentration in the photosphere. A chromospheric counterpart to the photospheric vortex motion is also observed, presenting itself as a quasi-periodic torsional motion. Fine-scale, fibril structures that emanate from the chromospheric counterpart support transverse waves that are driven by the observed torsional motion. A new technique for obtaining details of transverse waves from time-distance diagrams is presented and the properties of transverse waves (e.g., amplitudes and periods) excited by the chromospheric torsional motion are measured.

Morton, R. J.; Verth, G.; Fedun, V.; Erdelyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Shelyag, S., E-mail: richard.morton@northumbria.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Main Physics Building, Queen's University Belfast, Belfast, County Antrim BT7 1NN (United Kingdom)

2013-05-01T23:59:59.000Z

275

The Superconducting Super Collider`s Medium Energy Booster Abort (MEBA) kicker modulator will supply a current pulse to the abort magnets which deflect the proton beam from the MEB ring into a designated beam stop. The abort kicker will be used extensively during testing of the Low Energy Booster (LEB) and the MEB rings. When the Collider is in full operation, the MEBA kicker modulator will abort the MEB beam in the event of a malfunction during the filling process. The modulator must generate a 14-{mu}s wide pulse with a rise time of less than 1 {mu}s, including the delay and jitter times. It must also be able to deliver a current pulse to the magnet proportional to the beam energy at any time during ramp-up of the accelerator. Tracking the beam energy, which increases from 12 GeV at injection to 200 GeV at extraction, requires the modulator to operate over a wide range of voltages (4 kV to 80 kV). A vacuum spark gap and a thyratron have been chosen for test and evaluation as candidate switches for the abort modulator. Modulator design, switching time delay, jitter and pre-fire data are presented.

Rust, K.R.; Wilson, J.M.

1992-06-01T23:59:59.000Z

276

We have found, using 1D periodic Vlasov-Poisson simulations, new nonlinear, nonstationary, stable, long lived, coherent structures in phase space, called kinetic electrostatic electron nonlinear (KEEN) waves. Ponderomotively driven for a short period of time, at a particular frequency and wavenumber, well inside the band gap that was thought to exist between electron plasma and electron acoustic wave frequencies, KEEN waves are seen to self-consistently form, and persist for thousands of plasma periods. KEEN waves are comprised of 4 or more significant phase-locked harmonic modes which persist only when driven sufficiently strongly. They also merge when two or more at different frequencies are driven sequentially. However, the final stable KEEN state that emerges is highly sensitive to their relative order of excitation. KEEN waves also interact quite strongly with electron plasma waves (EPW) especially when their harmonics are close to being resonant with the EPW frequency at the same k. The common assumptio...

Afeyan, Bedros; Savchenko, V; Johnston, T; Ghizzo, A; Bertrand, P

2012-01-01T23:59:59.000Z

277

Configurations for short period rf undulators

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Several configurations for rf undulators energized at millimeter wavelengths and designed to produce coherent nanometer radiation from sub-GeV electron beams are analyzed and compared with one another. These configurations include a traveling-wave resonant ring, a standing wave resonator, and a resonator operating close to cutoff.

Kuzikov, S. V.; Jiang, Y.; Marshall, T. C.; Sotnikov, G. V.; Hirshfield, J. L.

2013-07-01T23:59:59.000Z

278

Ocean 420 Physical Processes in the Ocean Project 6: Waves

that the storm generates 30 min period motion through interactions in the mixed layer. What angle from. The upper layer density is 1028 kg/m3, and the density is 1029 kg/m3 in the lower layer. a) A wind event generates an upwelling internal wave at 30N with a positive deviation in interface height of size 30m. What

Thompson, LuAnne

279

The EMC Effect and Short-Range Correlations

We overview the progress made in studies of EMC and short range correlation (SRC) effects with the special emphasis given to the recent observation of the correlation between the slope of the EMC ratio at Bjorken x1 that measures the strength of the SRCs in nuclei. This correlation may indicate the larger modification of nucleons with higher momentum thus making the nucleon virtuality as the most relevant parameter of medium modifications. To check this conjecture we study the implication of several properties of high momentum component of the nuclear wave function on the characteristics of EMC effect. We observe two main reasons for the EMC-SRC correlation: first, the decrease of the contribution from the nuclear mean field due to the increase, with A, the fraction of the high momentum component of nuclear wave function. Second, the increase of the medium modification of nucleons in SRC. Our main prediction however is the increase of the proton contribution to the EMC effect for large A asymmetric nuclei. This prediction is based on the recent observation of the strong dominance of pn SRCs in the high momentum component of nuclear wave function. Our preliminary calculation based on this prediction of the excess of energetic and modified protons in large A nuclei describes reasonably well the main features of the observed EMC-SRC correlation.

Misak M Sargsian

2012-09-12T23:59:59.000Z

280

Negative-mass Instability in Nonlinear Plasma Waves

The negative-mass instability (NMI), previously found in ion traps, appears as a distinct regime of the sideband instability in nonlinear plasma waves with trapped particles. As the bounce frequency of these particles decreases with the bounce action, bunching can occur if the action distribution is inverted in trapping islands. In contrast to existing theories that also infer instabilities from the anharmonicity of bounce oscillations, spatial periodicity of the islands turns out to be unimportant, and the particle distribution can be unstable even if it is at at the resonance. An analytical model is proposed which describes both single traps and periodic nonlinear waves and concisely generalizes the conventional description of the sideband instability in plasma waves. The theoretical results are supported by particle-in-cell simulations carried out for a regime accentuating the NMI effect.

I.Y. Dodin, P.F. Schmit, J. Rocks and N.J. Fisch

2013-01-30T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

281

Two-dimensional elastic wave propagation in a duraluminum sheet

MENTAL PROCEDURE Experimental Design Data Acquisition Data Correction III. DATA PROCESSING 12 12 12 15 16 Wiener Filter Theory Construction of Desired. Wavelet 23 25 Wiener Filter Results 27 Bandpass Filter IV. TRAVELTIME ANALYSIS Wave... perpendicular to strike 2, Duraluminum model used in experiments 1 and 2 Relations between the Rayleigh-, P-, and S-wave velocities in an infinite medium for Poisson's ratio, o-, ranging from 0. 0 to 0. 5 Square root of energy ratios for reflected P- and S-waves...

Cefola, David Paul

1982-01-01T23:59:59.000Z

282

An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

Marsh, S.P.

1987-03-12T23:59:59.000Z

283

An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

Marsh, S.P.

1988-03-08T23:59:59.000Z

284

Effect of long-range transport on local PM10 concentrations in the UK

This study describes the effects of long-range transport of secondary airborne particles on local PM10 levels in Edinburgh (UK) during the period 1 January to 31 March 1996. Air mass back trajectories for each day were ...

Beverland, Iain J; Tunes, Trygve; Heal, Mathew R; Sozanska, Malgorzata; Elton, Robert A; Agius, Raymond M

2000-01-01T23:59:59.000Z

285

Short-range correlations and neutrinoless double beta decay

In this work we report on the effects of short-range correlations upon the matrix elements of neutrinoless double beta decay. We focus on the calculation of the matrix elements of the neutrino-mass mode of neutrinoless double beta decays of 48Ca and 76Ge. The nuclear-structure components of the calculation, that is the participant nuclear wave functions, have been calculated in the shell-model scheme for 48Ca and in the proton-neutron quasiparticle random-phase approximation (pnQRPA) scheme for 76Ge. We compare the traditional approach of using the Jastrow correlation function with the more complete scheme of the unitary correlation operator method (UCOM). Our results indicate that the Jastrow method vastly exaggerates the effects of short-range correlations on the neutrinoless double beta decay nuclear matrix elements.

M. Kortelainen; O. Civitarese; J. Suhonen; J. Toivanen

2007-01-18T23:59:59.000Z

286

The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

Graham, T. B.

2010-04-01T23:59:59.000Z

287

A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

Yerganian, Simon Scott (Lee's Summit, MO)

2003-02-11T23:59:59.000Z

288

A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

Yerganian, Simon Scott (Lee's Summit, MO)

2001-07-17T23:59:59.000Z

289

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

290

Mode propagation and absorption loss in metal-clad periodic optical waveguides

In terms of the mode eigenvalue equations are field distributions, calculations are performed for Au/InGaAsP/InP, air/Au/InGaAsP/InP, and Au/DiO{sub 2}InGaAsP/InP periodic optical waveguides. On the basis of the computed results, the coupling property in the periodic structure is analyzed, the mode split and the mode band formation of both TE and TM guided modes are described, and the effects of the thickness of the metal cladding and the oxide buffer layer on mode propagation and absorption loss are discussed for TE and TM guided modes as well as for the TM surface-plasma mode. Furthermore, the conversion from the surface-plasma wave to the guided wave for the TM mode is explained for Au/SiO{sub 2}/InGaAsP/InP periodic structures. 27 refs., 8 figs.

Chunsheng Ma [Jilin Univ., Changchun (China)

1996-02-01T23:59:59.000Z

291

Adaptive multiconfigurational wave functions

A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)

2014-03-28T23:59:59.000Z

292

Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence

The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.

Wu, C. S.; Lee, K. H. [Institute of Space Science, National Central University, Zhongli, Taiwan (China); Wang, C. B. [CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei (China); Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China)

2012-08-15T23:59:59.000Z

293

Internal wave energy radiated from a turbulent mixed layer

We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

2014-09-15T23:59:59.000Z

294

A nonlinear, collisional, two-fluid model of uniform plasma convection across a field-aligned current (FAC) sheet, describing the stationary Alfven (StA) wave, is presented. In a previous work, Knudsen showed that, for cold, collisionless plasma [D. J. Knudsen, J. Geophys. Res. 101, 10761 (1996)], the stationary inertial Alfven (StIA) wave can accelerate electrons parallel to a background magnetic field and cause large, time-independent plasma-density variations having spatial periodicity in the direction of the convective flow over a broad range of spatial scales and energies. Knudsen suggested that these fundamental properties of the StIA wave may play a role in the formation of discrete auroral arcs. Here, Knudsen's model has been generalized for warm, collisional plasma. From this generalization, it is shown that nonzero ion-neutral and electron-ion collisional resistivity significantly alters the perpendicular ac and dc structure of magnetic-field-aligned electron drift, and can either dissipate or enhance the field-aligned electron energy depending on the initial value of field-aligned electron drift velocity. It is also shown that nonzero values of plasma pressure increase the dominant Fourier component of perpendicular wavenumber.

Finnegan, S. M.; Koepke, M. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Knudsen, D. J. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta (Canada)

2008-05-15T23:59:59.000Z

295

Real-time Water Waves with Wave Particles

This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in our environment...

Yuksel, Cem

2010-10-12T23:59:59.000Z

296

mm-Wave Phase Shifters and Switches

4.1.1 Slow wave transmissioncombiners . . . . . . . . . . . 5.3 mm-Wave implementationfailed to predict current mm-wave design trend [1] . . . . .

Adabi Firouzjaei, Ehsan

2010-01-01T23:59:59.000Z

297

Structural health monitoring by ultrasonic guided waves

E. (2005) “Modeling guided wave propagation with applicationMultiple Guided Ultrasonic Wave Features,” ASME Journal ofto-spar joints using guided waves and macro fiber composite

Bartoli, Ivan

2007-01-01T23:59:59.000Z

298

Heat Waves, Global Warming, and Mitigation

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HCHANGE AND HEAT WAVES .. CLIMATE III. IV. HEAT

Carlson, Ann E.

2008-01-01T23:59:59.000Z

299

Heat Waves, Global Warming, and Mitigation

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

Carlson, Ann E.

2008-01-01T23:59:59.000Z

300

Propagation of seismic waves through liquefied soils

the mechanisms of wave propagation and ARTICLE IN PRESS M.Numerical analysis Wave propagation Earthquake Liquefactionenergy during any wave propagation. This paper summarizes

Taiebat, Mahdi; Jeremic, Boris; Dafalias, Yannis; Kaynia, Amir; Cheng, Zhao

2010-01-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

301

The physical mechanism of the synergy current driven by lower hybrid wave (LHW) and electron cyclotron wave (ECW) in tokamaks is investigated using theoretical analysis and simulation methods in the present paper. Research shows that the synergy relationship between the two waves in velocity space strongly depends on the frequency ? and parallel refractive index N{sub //} of ECW. For a given spectrum of LHW, the parameter range of ECW, in which the synergy current exists, can be predicted by theoretical analysis, and these results are consistent with the simulation results. It is shown that the synergy effect is mainly caused by the electrons accelerated by both ECW and LHW, and the acceleration of these electrons requires that there is overlap of the resonance regions of the two waves in velocity space.

Huang, J.; Chen, S. Y., E-mail: sychen531@163.com; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China) [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China)

2014-01-15T23:59:59.000Z

302

Wave refraction and wave energy on Cayo Arenas

WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...

Walsh, Donald Eugene

1962-01-01T23:59:59.000Z

303

The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

Rossen I. Ivanov

2007-07-12T23:59:59.000Z

304

Zonal flow and field generation by finite beta drift waves and kinetic drift-Alfven waves

Zonal flow and field generation by finite beta drift waves and kinetic drift-AlfveÂ´n waves P. N magnetic fields by finite beta drift waves and kinetic drift-AlfveÂ´n waves is presented. The analysis by electrostatic drift waves to finite beta drift waves and kinetic drift-AlfveÂ´n waves. The drift wave driven

Rubloff, Gary W.

305

Transformative Wave Technologies Kent, Washington

Transformative Wave Technologies Kent, Washington www.transformativewave.com #12;#12;North America are shifted to off peak times #12;#12;Transformative Wave Technologies www.transformativewave.com #12

California at Davis, University of

306

We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system.

Mohammad Hasan; Ananya Ghatak; Bhabani Prasad Mandal

2014-03-03T23:59:59.000Z

307

Heating of ions by high frequency electromagnetic waves in magnetized plasmas

The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be properly quantified in terms of the wave parameters and can be conveniently used to find ideal conditions needed to heat ions by high frequency electromagnetic waves.

Zestanakis, P. A.; Kominis, Y.; Hizanidis, K. [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Zographou GR-15773 (Greece)] [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Zographou GR-15773 (Greece); Ram, A. K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2013-07-15T23:59:59.000Z

308

Spherical waves r Legendre polynomials

1 Impedance Â· Spherical waves r er e e Impedance Â· Legendre polynomials P0(x) = 1 P1(x) = x P2(x Â· Spherical waves Â Spherical Hankel functions hn (2)(kr)=jn(kr)-iyn(kr) Impedance Â· Spherical waves Order: 0 1 4 Circumferential And azimuthal: 0,0 1,1 3,2 #12;3 Impedance Â· Spherical waves Â Arbitrary

Berlin,Technische UniversitÃ¤t

309

Discrete-element model for the interaction between ocean waves and sea ice

We present a discrete element method (DEM) model to simulate the mechanical behavior of sea ice in response to ocean waves. The wave/ice interaction can potentially lead to the fracture and fragmentation of sea ice depending on the wave amplitude and period. The fracture behavior of sea ice is explicitly modeled by a DEM method, where sea ice is modeled by densely packed spherical particles with finite size. These particles are bonded together at their contact points through mechanical bonds that can sustain both tensile & compressive forces and moments. Fracturing can be naturally represented by the sequential breaking of mechanical bonds. For a given amplitude and period of incident ocean wave, the model provides information for the spatial distribution and time evolution of stress and micro-fractures and the fragment size distribution. We demonstrate that the fraction of broken bonds,, increases with increasing wave amplitude. In contrast, the ice fragment size decreases with increasing amplitude.

Xu, Zhijie; Tartakovsky, Alexandre M.; Pan, Wenxiao

2012-01-05T23:59:59.000Z

310

Radar range measurements in the atmosphere.

The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

Doerry, Armin Walter

2013-02-01T23:59:59.000Z

311

Range Condition: Key to Sustained Ranch Productivity

species composition is the criteria used to make this determination. Range condition is evaluated for each range site on a ranch. Range sites are areas with the potential for producing similar amounts and kinds of vegetation (for example, shallow hillside... site, deep upland site, draw site, etc.). Sites are determined by climatic, soil, topographic and vegetation features. A complete listing and description of all range sites on a ranch can be obtained from the Soil Conservation Service (SCS). Range...

McGinty, Allan; White, Larry D.

2000-04-25T23:59:59.000Z

312

Electromagnetically induced torque on a large ring in the microwave range

Electromagnetically induced torque on a large ring in the microwave range Olivier EMILE1) Abstract We report on the exchange of Orbital Angular Momentum between an electromagnetic wave and a 30 cm in the detection of angular momentum in electromagnetics, in acoustics and also in the magnetization

Boyer, Edmond

313

2, 70177025, 2014 Freaque wave

NHESSD 2, 70177025, 2014 Freaque wave occurrences in 2013 P. C. Liu Title Page Abstract to the corresponding final paper in NHESS if available. Brief Communication: Freaque wave occurrences in 2013 P. C. Liu7025, 2014 Freaque wave occurrences in 2013 P. C. Liu Title Page Abstract Introduction Conclusions References

314

2014 Tube - 1 STANDING WAVES IN AN AIR COLUMN The objective of the experiment is: Â· To study the harmonic structure of standing waves in an air column. APPARATUS: Computer, FFTScope software, PC speaker, meterstick, sound tube apparatus, thermometer, microphone INTRODUCTION traveling wave of sinusoidal shape

Glashausser, Charles

315

GENERATING ELECTRICITY USING OCEAN WAVES

GENERATING ELECTRICITY USING OCEAN WAVES A RENEWABLE SOURCE OF ENERGY REPORT FOR THE HONG KONG ELECTRIC COMPANY LIMITED Dr L F Yeung Mr Paul Hodgson Dr Robin Bradbeer July 2007 #12;Ocean Waves and construction of equipment that could measure and log wave conditions and tide levels at Hoi Ha Wan. Prototypes

Bradbeer, Robin Sarah

316

Extreme wave impinging and overtopping

This investigates the velocity fields of a plunging breaking wave impinging on a structure through measurements in a two-dimensional wave tank. As the wave breaks and overtops the structure, so-called green water is generated. The flow becomes multi...

Ryu, Yong Uk

2009-06-02T23:59:59.000Z

317

Gas Explosion Characterization, Wave Propagation

s & Dt^boooo^j RisÃ¸-R-525 Gas Explosion Characterization, Wave Propagation (Small-Scale Experiments EXPLOSION CHARACTERIZATION, WAVE PROPAGATION (Small-Scale Experiments) G.C. Larsen Abstract. A number characteristics 14 3.5. Characteristics of the primary pressure wave 21 3.6. Pressure propagation over a hard

318

The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection. The wave activity is strongest in the lower stratosphere below 22 km and, during the suppressed monsoon period, is modulated with a 3-4-day period. The concentration of the wave activity in the lower stratosphere is consistent with the properties of the environment in which these waves propagate, whereas its 3-4-day modulation is explained by the variation of the convection activity in the TWP-ICE domain. At low rainfall intensity the wave activity increases as rainfall intensity increases. At high values of rainfall intensity, however, the wave activity associated with deep convective clouds is independent of the rainfall intensity. The convection and gravity waves observed during TWP-ICE are simulated with the Weather Research and Forecasting (WRF) Model. These simulations are compared with radiosonde observations described above and are used to determine some of the properties of convectively generated gravity waves. The gravity waves appear to be well simulated by the model. The model is used to explore the relationships between the convection, the gravity waves and cirrus.

Reeder, Michael J. [Monash University; Lane, Todd P. [University of Melbourne; Hankinson, Mai Chi Nguyen [Monash University

2013-09-27T23:59:59.000Z

319

THE SPECTROSCOPIC SIGNATURE OF QUASI-PERIODIC UPFLOWS IN ACTIVE REGION TIMESERIES

Quasi-periodic propagating disturbances are frequently observed in coronal intensity image sequences. These disturbances have historically been interpreted as being the signature of slow-mode magnetoacoustic waves propagating into the corona. The detailed analysis of Hinode EUV Imaging Spectrometer (EIS) timeseries observations of an active region (known to contain propagating disturbances) shows strongly correlated, quasi-periodic, oscillations in intensity, Doppler shift, and line width. No frequency doubling is visible in the latter. The enhancements in the moments of the line profile are generally accompanied by a faint, quasi-periodically occurring, excess emission at {approx}100 km s{sup -1} in the blue wing of coronal emission lines. The correspondence of quasi-periodic excess wing emission and the moments of the line profile indicates that repetitive high-velocity upflows are responsible for the oscillatory behavior observed. Furthermore, we show that the same quasi-periodic upflows can be directly identified in a simultaneous image sequence obtained by the Hinode X-Ray Telescope. These results are consistent with the recent assertion of De Pontieu and McIntosh that the wave interpretation of the data is not unique. Indeed, given that several instances are seen to propagate along the direction of the EIS slit that clearly shows in-phase, quasi-periodic variations of intensity, velocity, width (without frequency doubling), and blue wing enhanced emission, this data set would appear to provide a compelling example that upflows are more likely to be the main cause of the quasi-periodicities observed here, as such correspondences are hard to reconcile in the wave paradigm.

Tian Hui; McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 8037 (United States); De Pontieu, Bart, E-mail: htian@ucar.edu, E-mail: mscott@ucar.edu, E-mail: bdp@lmsal.com [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. ADBS, Bldg. 252, Palo Alto, CA 94304 (United States)

2011-02-01T23:59:59.000Z

320

S-wave scattering lengths and effective ranges for collisions of ground state Be atoms

Jamieson,M.J. Cheung,A.S.C. Ouerdane,H. Jeung,G.H. Geum,N. Journal of Physics B, Volume 40 pp 3497-3504

Jamieson, M.J.

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

321

Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since radar involves the transmission, propagation and scattering of EM waves by various is the electrostatic force between two point charges. #12;Electromagnetic WavesElectromagnetic Waves Electric fields

Rutledge, Steven

322

Introduction Modeling of large ocean waves Propagation speed Coherent wavetrains Near-shore wave waves #12;Introduction Modeling of large ocean waves Propagation speed Coherent wavetrains NearMaster University Tsunamis and ocean waves #12;Introduction Modeling of large ocean waves Propagation speed Coherent

Craig, Walter

323

Electron Bernstein waves in spherical torus plasmas

Propagation and absorption of the electron Bernstein waves (EBWs) in spherical tokamaks (STs) have been intensively discussed in recent years because the EBWs coupled with an externally launched electromagnetic beam seem to be the only opportunity for microwave plasma heating and current drive in the electron cyclotron (EC) frequency range in the STs. The whole problem of the electron Bernstein heating and current drive (EBWHCD) in spherical plasmas is naturally divided into three major parts: coupling of incident electromagnetic waves (EMWs) to the EBWs near the upper hybrid resonance (UHR) surface, propagation and absorption of the EBWs in the plasma interior and generation of noninductive current driven by the EBWs. The present paper is a brief survey of the most important theoretical and numerical results on the issue of EBWs.

Saveliev, A. N. [A.F.Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation)

2006-11-30T23:59:59.000Z

324

Scattering of radio frequency waves by blobs in tokamak plasmas

The density fluctuations and blobs present in the edge region of magnetic fusion devices can scatter radio frequency (RF) waves through refraction, reflection, diffraction, and coupling to other plasma waves. This, in turn, affects the spectrum of the RF waves and the electromagnetic power that reaches the core of the plasma. The usual geometric optics analysis of RF scattering by density blobs accounts for only refractive effects. It is valid when the amplitude of the fluctuations is small, of the order of 10%, compared to the background density. In experiments, density fluctuations with much larger amplitudes are routinely observed, so that a more general treatment of the scattering process is needed. In this paper, a full-wave model for the scattering of RF waves by a blob is developed. The full-wave approach extends the range of validity well beyond that of geometric optics; however, it is theoretically and computationally much more challenging. The theoretical procedure, although similar to that followed for the Mie solution of Maxwell's equations, is generalized to plasmas in a magnetic field. Besides diffraction and reflection, the model includes coupling to a different plasma wave than the one imposed by the external antenna structure. In the model, it is assumed that the RF waves interact with a spherical blob. The plasma inside and around the blob is cold, homogeneous, and imbedded in a uniform magnetic field. After formulating the complete analytical theory, the effect of the blob on short wavelength electron cyclotron waves and longer wavelength lower hybrid waves is studied numerically.

Ram, Abhay K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hizanidis, Kyriakos; Kominis, Yannis [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Athens, GR-15773 (Greece)] [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Athens, GR-15773 (Greece)

2013-05-15T23:59:59.000Z

325

Observation of femtosecond laser-induced nanostructure-covered large scale waves on metals

Following femtosecond (fs) laser pulse irradiation, we produce a type of periodic surface structure with a period tens of times greater than the laser wavelength and densely covered by an iterating pattern that consists of stripes of nanostructures and microscale cellular structures. The morphology of this large scale wave pattern crucially depends on laser fluence and the number of laser pulses, but not on the laser wavelength. Our study suggests that this large scale wave is initiated by fs laser induced surface unevenness followed by periodically distributed nonuniform surface heating from fs pulse irradiation.

Hwang, Taek Yong; Guo Chunlei [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

2011-04-15T23:59:59.000Z

326

Kinematic Density Waves in Accretion Disks

When thin accretion disks around black holes are perturbed, the main restoring force is gravity. If gas pressure, magnetic stresses, and radiation pressure are neglected, the disk remains thin as long as orbits do not intersect. Intersections would result in pressure forces which limit the growth of perturbations. We find that a discrete set of perturbations is possible for which orbits remain non-intersecting for arbitrarily long times. These modes define a discrete set of frequencies. We classify all long-lived perturbations for arbitrary potentials and show how their mode frequencies are related to pattern speeds computed from the azimuthal and epicyclic frequencies. We show that modes are concentrated near radii where the pattern speed has vanishing radial derivative. We explore these modes around Kerr black holes as a possible explanation for the high-frequency quasi-periodic oscillations of black hole binaries such as GRO J1655-40. The long-lived modes are shown to coincide with diskoseismic waves in the limit of small sound speed. While the waves have long lifetime, they have the wrong frequencies to explain the pairs of high-frequency quasi-periodic oscillations observed in black hole binaries.

Svetlin Tassev; Edmund Bertschinger

2008-10-14T23:59:59.000Z

327

Coupling Impedance of a Periodic Array of Diaphragms (Erratum)

A method is presented for calculating the high-frequency longitudinal and transverse coupling impedances in a periodic array of diaphragms in a circular perfectly conducting pipe. The method is based on Weinstein's theory of diffraction of a plane electromagnetic wave on a stack of halfplanes. Using Weinstein's solution, it is shown that the problem of finding the beam field in the pipe reduces to an effective boundary condition at the radius of the diaphragms that couples the longitudinal electric field with the azimuthal magnetic one. Solving Maxwell's equations with this boundary condition leads to simple formulae for Z{sub long} and Z{sub tr}. A good agreement with a numerical solution of the problem found by other authors is demonstrated.

Stupakov, G.V.; /SLAC

2012-05-24T23:59:59.000Z

328

Nonlinear Hysteretic Torsional Waves

We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities, and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other type of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short term memory as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

J. Cabaret; P. Béquin; G. Theocharis; V. Andreev; V. E. Gusev; V. Tournat

2015-01-09T23:59:59.000Z

329

Nonlinear Hysteretic Torsional Waves

We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities, and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other type of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short term memory as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control de...

Cabaret, J; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V

2015-01-01T23:59:59.000Z

330

Some bacterial and viral DNA sequences have been found to induce low frequency electromagnetic waves in high aqueous dilutions. This phenomenon appears to be triggered by the ambient electromagnetic background of very low frequency. We discuss this phenomenon in the framework of quantum field theory. A scheme able to account for the observations is proposed. The reported phenomenon could allow to develop highly sensitive detection systems for chronic bacterial and viral infections.

L. Montagnier; J. Aissa; E. Del Giudice; C. Lavallee; A. Tedeschi; G. Vitiello

2010-12-23T23:59:59.000Z

331

Fractional Electromagnetic Waves

In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.

J. F. Gómez; J. J. Rosales; J. J. Bernal; V. I. Tkach; M. Guía

2011-08-31T23:59:59.000Z

332

Gravitational wave astronomy and cosmology

The first direct observation of gravitational waves' action upon matter has recently been reported by the BICEP2 experiment. Advanced ground-based gravitational-wave detectors are being installed. They will soon be commissioned, and then begin searches for high-frequency gravitational waves at a sensitivity level that is widely expected to reach events involving compact objects like stellar mass black holes and neutron stars. Pulsar timing arrays continue to improve the bounds on gravitational waves at nanohertz frequencies, and may detect a signal on roughly the same timescale as ground-based detectors. The science case for space-based interferometers targeting millihertz sources is very strong. The decade of gravitational-wave discovery is poised to begin. In this writeup of a talk given at the 2013 TAUP conference, we will briefly review the physics of gravitational waves and gravitational-wave detectors, and then discuss the promise of these measurements for making cosmological measurements in the near future.

Scott A. Hughes

2014-05-02T23:59:59.000Z

333

Effects of quintessence on holographic p-wave superconductors

We construct a holographic p-wave superconductor model in the background of quintessence AdS black hole with an SU(2) Yang-Mills gauge field and then probe the effects of quintessence on the holographic p-wave superconductor. We investigate the relation between the critical temperature and the state parameter of quintessence, and present the numerical results for electric conductivity. It is shown that the condensation of the vector field becomes harder as the absolute value of the state parameter increases. Unlike the scalar condensate in the s-wave model, the condensation of the vector field in p-wave model can occur in the total value range of the state parameter $w_q$ of quintessence. These results could help us know more about holographic superconductor and dark energy.

Songbai Chen; Qiyuan Pan; Jiliang Jing

2012-06-24T23:59:59.000Z

334

In this paper, we describe micro-fabrication, RF measurements, and particle-in-cell (PIC) simulation modeling analysis of the 0.22 THz double-vane half period staggered traveling wave tube amplifier (TWTA) circuit. The TWTA slow wave structure comprised of two sections separated by two sever ports loaded by loss material, with integrated broadband input/output couplers. The micro-metallic structures were fabricated using nano-CNC milling and diffusion bonded in a three layer process. The 3D optical microscopy and SEM analysis showed that the fabrication error was within 2-3 {mu}m and surface roughness was measured within 30-50 nm. The RF measurements were conducted with an Agilent PNA-X network analyzer employing WR5.1 T/R modules with a frequency range of 178-228 GHz. The in-band insertion loss (S{sub 21}) for both the short section and long section (separated by a sever) was measured as {approx}-5 dB while the return loss was generally around {approx}-15 dB or better. The measurements matched well with the S-matrix simulation analysis that predicted a 3 dB bandwidth of {approx}45 GHz with an operating frequency at 220 GHz. However, the measured S{sub 21} was {approx}3 dB less than the design values, and is attributed to surface roughness and alignment issues. The confirmation measurements were conducted over the full frequency band up to 270 GHz employing a backward wave oscillator (BWO) scalar network analyzer setup employing a BWO in the frequency range 190 GHz-270 GHz. PIC simulations were conducted for the realistic TWT output power performance analysis with incorporation of corner radius of 127 {mu}m, which is inevitably induced by nano-machining. Furthermore, the S{sub 21} value in both sections of the TWT structure was reduced to correspond to the measurements by using a degraded conductivity of 10% International Annealed Copper Standard. At 220 GHz, for an elliptic sheet electron beam of 20 kV and 0.25 A, the average output power of the tube was predicted to be reduced from 90 W (for ideal conductivity/design S-parameters) to 70 W (for the measured S-parameters/inferred conductivity) for an average input power of 50 mW. The gain of the tube remains reasonable: {approx}31.4 dB with an electronic efficiency of {approx}1.4%. The same analysis was also conducted for several frequencies between 190 GHz-260 GHz. This detailed realistic PIC analysis demonstrated that this nano-machined TWT circuit has slightly reduced S-parameters and output power from design, but within an acceptable range and still have promising output power, gain, and band width as required. Thus, we expect to meet the specifications of 1000 W-GHz for the darpa program goals.

Baig, Anisullah; Gamzina, Diana; Barchfeld, Robert; Domier, Calvin; Barnett, Larry R.; Luhmann, Neville C. Jr. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States)

2012-09-15T23:59:59.000Z

335

SINE WAVE CANCELATION THROUGH A PERIODIC TRANSFER FUNCTION Pierre Granjon, Christine Servire

an active control system to de- crease electrical sychronous machine vibrations. To reach this goal a quadratic cost function is next elaborated. Its good performances are then compared with a classical in simulation. The finality of this work is to decrease the vibrations of an elec- trical synchronous machine

Paris-Sud XI, UniversitÃ© de

336

Ecology Letien, (2001) 4 : 30-37 Periodic travelling waves in cyclic predator-prey

statistical methods, together with extensive spatiotempor- al data sets (reviewed by Bjornstad ct al. 1999

Sherratt, Jonathan A.

337

On Cartesian trees and range minimum queries

We present new results on Cartesian trees with applications in range minimum queries and bottleneck edge queries. We introduce a cache-oblivious Cartesian tree for solving the range minimum query problem, a Cartesian tree ...

Demaine, Erik D.

338

Viking Range: Order (2014-CE-23014)

Broader source: Energy.gov [DOE]

DOE ordered Viking Range, LLC to pay a $8,000 civil penalty after finding Viking Range had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

339

American Range: Order (2014-CE-23006)

Broader source: Energy.gov [DOE]

DOE ordered American Range Corporation to pay a $8,000 civil penalty after finding American Range had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

340

Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.

D. Kuridze; T. V. Zaqarashvili

2007-03-19T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

341

Resonantly damped surface and body MHD waves in a solar coronal slab with oblique propagation

The theory of magnetohydrodynamic (MHD) waves in solar coronal slabs in a zero-$\\beta$ configuration and for parallel propagation of waves does not allow the existence of surface waves. When oblique propagation of perturbations is considered both surface and body waves are able to propagate. When the perpendicular wave number is larger than a certain value, the body kink mode becomes a surface wave. In addition, a sausage surface mode is found below the internal cut-off frequency. When non-uniformity in the equilibrium is included, surface and body modes are damped due to resonant absorption. In this paper, first, a normal-mode analysis is performed and the period, the damping rate, and the spatial structure of eigenfunctions are obtained. Then, the time-dependent problem is solved, and the conditions under which one or the other type of mode is excited are investigated.

I. Arregui; J. Terradas; R. Oliver; J. L. Ballester

2007-08-28T23:59:59.000Z

342

Millimeter wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites

Millimeter wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites Young 2009 A hexagonal ferrite-based millimeter wave notch filter was demonstrated. The filter consists of microwave Faraday rotation in ferrites by Hogan in 1952, a diverse range of microwave magnetic de- vices

343

WAVE INTERACTION EFFECTS FOR NONCOMPLIANT TLP P. Teigen J.M. Niedzwecki

tests in an offshore basin. The main focus is put on evaluÂ ating higher order wave effects and related for a range of frequencies at designated locaÂ tions within the confines of the TLP. The relevance of non wave records. INTRODUCTION To maintain positive air gap under extreme storm condiÂ tions is generally

Sweetman, Bert

344

Semiclassical wave functions and energy spectra in polygon billiards

A consistent scheme of semiclassical quantization in polygon billiards by wave function formalism is presented. It is argued that it is in the spirit of the semiclassical wave function formalism to make necessary rationalization of respective quantities accompanied the procedure of the semiclassical quantization in polygon billiards. Unfolding rational polygon billiards (RPB) into corresponding Riemann surfaces (RS) periodic structures of the latter are demonstrated with 2g independent periods on the respective multitori with g as their genuses. However it is the two dimensional real space of the real linear combinations of these periods which is used for quantizing RPB. A class of doubly rational polygon billiards (DRPB) is distinguished for which these real linear relations are rational and their semiclassical quantization by wave function formalism is presented. It is shown that semiclassical quantization of both the classical momenta and the energy spectra are determined completely by periodic structure of the corresponding RS. Each RS is then reduced to elementary polygon patterns (EPP) as its basic periodic elements. Each such EPP can be glued to a torus of genus g. Semiclassical wave functions (SWF) are then constructed on EPP. The SWF for DRPB appear to be exact. They satisfy the Dirichlet, the Neumannn or the mixed boundary conditions. Not every mixing is allowed however and a respective incompleteness of SWF is discussed. Dens families of DRPB are used for approximate semiclassical quantization of RPB. General rational polygons are quantized by approximating them by DRPB. An extension of the formalism to irrational polygons is described as well. The semiclassical approximations constructed in the paper are controlled by general criteria of the eigenvalue theory. A relation between the superscar solutions and SWF constructed in the paper is also discussed.

Stefan Giller

2014-12-01T23:59:59.000Z

345

Range Fuels Commercial-Scale Biorefinery

Broader source: Energy.gov [DOE]

The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

346

Investigation of guided waves propagation in pipe buried in sand

The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

Leinov, Eli; Cawley, Peter; Lowe, Michael J.S. [NDE Group, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

2014-02-18T23:59:59.000Z

347

Estimation of scalar moments from explosion-generated surface waves

Rayleigh waves from underground nuclear explosions are used to estimate scaler moments for 40 Nevada Test Site (NTS) explosions and 18 explosions at the Soviet East Kazakh test site. The Rayleigh wave spectrum is written as a product of functions that depend on the elastic structure of the travel path, the elastic structure of the source region and the Q structure of the path. Results are used to examine the worldwide variability of each factor and the resulting variability of surface wave amplitudes. The path elastic structure and Q structure are found by inversion of Rayleigh wave phase and group velocities and spectral amplitudes. The Green's function derived from this structure is used to estimate the moments of explosions observed along the same path. This procedure produces more consistent amplitude estimates than conventional magnitude measurements. Network scatter in log moment is typically 0.1. In contrast with time-domain amplitudes, the elastic structure of the travel path causes little variability in spectral amplitudes. When the mantle Q is constrained to a value of approximately 100 at depths greater than 120 km, the inversion for Q and moment produces moments that remain constant with distance. Based on the best models available, surface waves from NTS explosions should be larger than surface waves from East Kazakh explosions with the same moment. Estimated scaler moments for the largest East Kazakh explosions since 1976 are smaller than the estimated moments for the largest NTS explosions for the same time period.

Stevens, J.L.

1985-04-01T23:59:59.000Z

348

The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field can suppress packet splitting for some atoms whose specific velocities are in a narrow range. These atoms remain localized in a small space for a long time. We demonstrate and explain this effect numerically and analytically. We also demonstrate that the modulated field can not only trap but also cool the atoms. We perform a numerical experiment with a large atomic ensemble having wide initial velocity and energy distributions. During the experiment, most of atoms leave the wave while the trapped atoms have a narrow energy distribution.

Argonov, V. Yu., E-mail: argonov@poi.dvo.ru [Russian Academy of Sciences, Pacific Oceanological Institute (Russian Federation)

2014-11-15T23:59:59.000Z

349

The EMC Effect and Short-Range Correlations

We overview the progress made in studies of EMC and short range correlation (SRC) effects with the special emphasis given to the recent observation of the correlation between the slope of the EMC ratio at Bjorken x1 that measures the strength of the SRCs in nuclei. This correlation may indicate the larger modification of nucleons with higher momentum thus making the nucleon virtuality as the most relevant parameter of medium modifications. To check this conjecture we study the implication of several properties of high momentum component of the nuclear wave function on the characteristics of EMC effect. We observe two main reasons for the EMC-SRC correlation: first, the decrease of the contribution from the nuclear mean field due to the increase, with A, the fraction of the high momentum component of nuclear wave function. Second, the increase of the medium modification of nucleons in SRC. Our main prediction however is the increase of the proton contribution to the EMC effect for large A asymmetric nuclei. Th...

Sargsian, Misak M

2012-01-01T23:59:59.000Z

350

Gravity surface wave turbulence in a laboratory flume

We present experimental results for water wave turbulence excited by piston-like programmed wavemakers in a water flume with horisontal dimensions 6x12x1.5 meters. Our main finding is that for a wide range of excitation amplitudes the energy spectrum has a power-law scaling, $E_\\omega \\sim \\omega^{-\

Petr Denissenko; Sergei Lukaschuk; Sergey Nazarenko

2006-11-08T23:59:59.000Z

351

Modeling of long range frequency sweeping for energetic particle modes

Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries.

Nyqvist, R. M. [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Breizman, B. N. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

2013-04-15T23:59:59.000Z

352

Laser-Ranging Long Baseline Differential Atom Interferometers for Space

High sensitivity differential atom interferometers are promising for precision measurements in science frontiers in space, including gravity field mapping for Earth science studies and gravitational wave detection. We propose a new configuration of twin atom interferometers connected by a laser ranging interferometer (LRI-AI) to provide precise information of the displacements between the two AI reference mirrors and a means to phase-lock the two independent interferometer lasers over long distances, thereby further enhancing the feasibility of long baseline differential atom interferometers. We show that a properly implemented LRI-AI can achieve equivalent functionality to the conventional differential atom interferometer measurement system. LRI-AI isolates the laser requirements for atom interferometers and for optical phase readout between distant locations, thus enabling optimized allocation of available laser power within a limited physical size and resource budget. A unique aspect of LRI-AI also enables...

Chiow, Sheng-wey; Yu, Nan

2015-01-01T23:59:59.000Z

353

Quantization and 2{pi} periodicity of the axion action in topological insulators

The Lagrangian describing the bulk electromagnetic response of a three-dimensional strong topological insulator contains a topological ''axion'' term of the form {theta}E{center_dot}B. It is often stated (without proof) that the corresponding action is quantized on periodic space time and therefore invariant under {theta}{yields}{theta}+2{pi}. Here we provide a simple, physically motivated proof of the axion action quantization on the periodic space time, assuming only that the vector potential is consistent with single valuedness of the electron wave functions in the underlying insulator.

Vazifeh, M. M.; Franz, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada)

2010-12-15T23:59:59.000Z

354

Orbital period derivative of a binary system using an exact orbital energy equation

It is proposed that the equations of motion in periodic relativity which yielded major predictions of general relativity without utilizing Riemannian geometry and geodesic trajectories are exact in nature and can be applied to pulsars and inspiraling compact binaries for analyzing orbital period derivative and two polarization gravitational wave forms. Exactness of these equations eliminates the need for higher order xPN corrections to the orbital energy part of the balance equation. This is mainly due to the introduction of dynamic WEP which states that the gravitational mass is equal to the relativistic mass.

Vikram H. Zaveri

2014-11-07T23:59:59.000Z

355

Measurements of elastic modulus using laser-induced surface waves

In general, the mechanical testing methods that are utilized for alloys and polymers, e.g., dogbone, rheovibron, etc., are not applicable to thin film structures. We wish to report noncontacting measurements of the surface acoustic wave (SAW) velocity and the elastic modulus applicable to thin films of moderate thickness. An accompanying paper extends this technique to smaller film dimensions. A 15 ns pulsed YAG laser was used as the energy source to thermoelastically excite surface waves. The propagation of the waves was then observed by a second, independent He-Ne laser at a distance from the excitation spot. using the knife edge/beam deflection technique. A cylindrical lens was used to reduce the energy loading of the YAG laser on the sample to avoid damaging the surface of the specimen. The Rayleigh wave velocity is calculated from measurements of the arrival time of the surface wave as a function of distance from the ND:YAG laser spot. The shear modulus, G, can be determined from the measured speed of the surface waves, V, the specimen density, p, and Poisson`s ratio, v, according to the following relationship: V = R(v){sm_bullet}(G/p){sup {1/2}} where R(v), expressed as (0.862 + 1.14v)/(l + v), is the ratio of the Rayleigh wave velocity to the shear wave velocity and ranges from 0.86 to 0.95 Table below lists the measured surface wave velocities and the calculated shear modulus for our experimental results and the published values. Excellent agreement is observed. The depth of the SAW is approximately equal to the SAW wavelength which is approximately the laser spot size. Typically 30 {mu}m spot sizes can be readily achieved. In conclusion, SAW velocities and the modulus of elasticity of various materials have been measured. We have demonstrated that this non-contacting method can be used to characterize moderately thin films.

Chang, D.J.; Amimoto, S.T.; Gross, R.W.F. [Aerospace Corporation, Los Angeles, CA (United States); Glenn, T. [Massachusetts Institute of Technology, Cambridge, MA (United States)

1995-12-31T23:59:59.000Z

356

Metallurgy Department Progress Report for the Period

Dlcfc^ooWS imsm "-"' Metallurgy Department Progress Report for the Period 1 January to 31 December 1962 (Uw National Laboratory, DK-4000 Roskilde, Denmark July 1963 #12;Risø-R-486 METALLURGY DEPARTMENT PROGRESS REPORT FOR THE PERIOD 1 JANUARY TO 31 DECEMBER 1982 Abstract. The activities of the Metallurgy

357

Broadband solar absorption enhancement via periodic

Province, 230009, P. R. China. Solution processed colloidal quantum dot (CQD) solar cells have greatBroadband solar absorption enhancement via periodic nanostructuring of electrodes Michael M. Adachi demonstrate a bottom- illuminated periodic nanostructured CQD solar cell that enhances broadband absorption

358

We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

Lipscombe, O. J. [University of Tennessee, Knoxville (UTK); Chen, G. F. [The Institute of Physics, Chinese Academy of Sciences; Fang, Chen [Purdue University; Perring, T. G. [ISIS Facility, Rutherford Appleton Laboratory; Abernathy, Douglas L [ORNL; Christianson, Andrew D [ORNL; Egami, Takeshi [ORNL; Wang, Nanlin [The Institute of Physics, Chinese Academy of Sciences; Hu, Jiangping [Purdue University and Chinese Academy of Sciences; Dai, Pengcheng [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

359

Upper tropospheric and lower stratospheric wind data spanning 31 years from 1964 to 1994 were analyzed at rawinsonde stations in the central/western Pacific. Traditional spectral and cross-spectral analysis led to the conclusion that there is a significant signal with periods between 3 and 4.5 days, which the authors link with the dominant antisymmetric waves predicted by theory to have these periods, mixed Rossby-gravity waves, and equatorial Rossby waves. Then the authors applied the seasonally varying spectral analysis method developed by Madden to study the average seasonal variation of these waves. The seasonally varying analysis suggested that there are significant twice-yearly maxima in equatorial wave activity throughout the upper troposphere and lower stratosphere, with peaks occurring in late winter-spring and in late summer-fall. The twice-yearly signal was most prominent at the 70-hPa and 100-hPa levels. Similar and consistent results were also shown by an autoregressive cyclic spectral analysis. The cyclic spectral analysis suggested that the frequency characteristics of the v-wind wave power are different during the two maxima at some stations. In addition, the seasonally varying squared coherence between the u and v winds and the associated phase implied that there is horizontal momentum flux associated with these waves and that the sign of the flux is different during the two maxima. The differences in wave characteristics during the maxima periods may be related to different wave modes, seasonal variation of the basic zonal state, or possibly to different equatorial wave forcing mechanisms (i.e., convective versus lateral excitations). 52 refs., 12 figs.

Wikle, C.K.; Tsing-Chang Chen [Iowa State Univ., Ames, IA (United States)] [Iowa State Univ., Ames, IA (United States); Madden, R.A. [National Center for Atmospheric Research, Boulder, CO (United States)] [National Center for Atmospheric Research, Boulder, CO (United States)

1997-07-15T23:59:59.000Z

360

We present numerical simulations of penetrative convection and gravity wave excitation in the Sun. Gravity waves are self-consistently generated by a convective zone overlying a radiative interior. We produce power spectra for gravity waves in the radiative region as well as estimates for the energy flux of gravity waves below the convection zone. We calculate a peak energy flux in waves below the convection zone to be three orders of magnitude smaller than previous estimates for m=1. The simulations show that the linear dispersion relation is a good approximation only deep below the convective-radiative boundary. Both low frequency propagating gravity waves as well as higher frequency standing modes are generated; although we find that convection does not continually drive the standing g-mode frequencies.

Tamara M. Rogers; Gary A. Glatzmaier

2005-08-25T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

361

Tonopah Test Range capabilities: technical manual

This manual describes Tonopah Test Range (TTR), defines its testing capabilities, and outlines the steps necessary to schedule tests on the Range. Operated by Sandia National Laboratories, TTR is a major test facility for DOE-funded weapon programs. The Range presents an integrated system for ballistic test vehicle tracking and data acquisition. Multiple radars, optical trackers, telemetry stations, a central computer complex, and combined landline/RF communications systems assure full Range coverage for any type of test. Range operations are conducted by a department within Sandia's Field Engineering Directorate. While the overall Range functions as a complete system, it is operationally divided into the Test Measurements, Instrumentation Development, and Range Operations divisions. The primary function of TTR is to support DOE weapons test activities. Management, however, encourages other Government agencies and their contractors to schedule tests on the Range which can make effective use of its capabilities. Information concerning Range use by organizations outside of DOE is presented. Range instrumentation and support facilities are described in detail. This equipment represents the current state-of-the-art and reflects a continuing commitment by TTR management to field the most effective tracking and data acquisition system available.

Manhart, R.L.

1982-11-01T23:59:59.000Z

362

LIGO and the Search for Gravitational Waves

Gravitational waves, predicted to exist by Einstein's General Theory of Relativity but as yet undetected, are expected to be emitted during violent astrophysical events such as supernovae, black hole interactions and the coalescence of compact binary systems. Their detection and study should lead to a new branch of astronomy. However the experimental challenge is formidable: ground-based detection relies on sensing displacements of order 10{sup -18} m over a frequency range of tens of hertz to a few kHz. There is currently a large international effort to commission and operate long baseline interferometric detectors including those that comprise LIGO - the Laser Interferometer Gravitational-Wave Observatory - in the USA. In this talk I will give an introduction to the topic of gravitational wave detection and in particular review the status of the LIGO project which is currently taking data at its design sensitivity. I will also look to the future to consider planned improvements in sensitivity for such detectors, focusing on Advanced LIGO, the proposed upgrade to the LIGO project.

Robertson, Norna A.

2006-10-16T23:59:59.000Z

363

The present paper is the last of a series studying the first-order Fermi acceleration processes at relativistic shock waves with the method of Monte Carlo simulations applied to shocks propagating in realistically modeled turbulent magnetic fields. The model of the background magnetic field structure of Niemiec & Ostrowski (2004, 2006) has been augmented here by a large-amplitude short-wave downstream component, imitating that generated by plasma instabilities at the shock front. Following Niemiec & Ostrowski (2006), we have considered ultrarelativistic shocks with the mean magnetic field oriented both oblique and parallel to the shock normal. For both cases simulations have been performed for different choices of magnetic field perturbations, represented by various wave power spectra within a wide wavevector range. The results show that the introduction of the short-wave component downstream of the shock is not sufficient to produce power-law particle spectra with the "universal" spectral index 4.2. On the contrary, concave spectra with cutoffs are preferentially formed, the curvature and cutoff energy being dependent on the properties of turbulence. Our results suggest that the electromagnetic emission observed from astrophysical sites with relativistic jets, e.g. AGN and GRBs, is likely generated by particles accelerated in processes other than the widely invoked first-order Fermi mechanism.

Jacek Niemiec; Michal Ostrowski; Martin Pohl

2006-03-14T23:59:59.000Z

364

The potential for air quality impacts from heavy mechanized vehicles operating on and between the unpaved main supply routes at Fort Bliss and White Sands Missile Range was investigated. This report details efforts by the staff of Pacific Northwest National Laboratory for the Fort Bliss Directorate of Environment in this investigation. Dust emission and dispersion from typical move-out activities occurring on the installations were simulated using the atmospheric modeling system DUSTRAN. Major assumptions associated with designing the modeling scenarios are summarized and results of simulations conducted under these assumptions are presented for four representative meteorological periods.

Chapman, Elaine G.; Barnard, James C.; Rutz, Frederick C.; Pekour, Mikhail S.; Rishel, Jeremy P.; Shaw, William J.

2009-05-04T23:59:59.000Z

365

A dimension-breaking phenomenon for water waves with weak surface tension

It is well known that the water-wave problem with weak surface tension has small-amplitude line solitary-wave solutions which to leading order are described by the nonlinear Schr\\"odinger equation. The present paper contains an existence theory for three-dimensional periodically modulated solitary-wave solutions which have a solitary-wave profile in the direction of propagation and are periodic in the transverse direction; they emanate from the line solitary waves in a dimension-breaking bifurcation. In addition, it is shown that the line solitary waves are linearly unstable to long-wavelength transverse perturbations. The key to these results is a formulation of the water wave problem as an evolutionary system in which the transverse horizontal variable plays the role of time, a careful study of the purely imaginary spectrum of the operator obtained by linearising the evolutionary system at a line solitary wave, and an application of an infinite-dimensional version of the classical Lyapunov centre theorem.

Mark D. Groves; Shu-Ming Sun; Erik Wahlén

2014-11-10T23:59:59.000Z

366

Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma

A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.

Martines, E.; Zuin, M.; Cavazzana, R.; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N. [Consorzio RFX, Padova (Italy); Adámek, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic)

2014-10-15T23:59:59.000Z

367

Acoustic wave propagation through a supercooled liquid: A normal mode analysis

The mechanism of acoustic wave propagation in supercooled liquids is not yet fully understood since the vibrational dynamics of supercooled liquids are strongly affected by their amorphous inherent structures. In this paper, the acoustic wave propagation in a supercooled model liquid is studied by using normal mode analysis. Due to the highly disordered inherent structure, a single acoustic wave is decomposed into many normal modes in broad frequency range. This causes the rapid decay of the acoustic wave and results in anomalous wavenumber dependency of the dispersion relation and the rate of attenuation.

Yuki Matsuoka; Hideyuki Mizuno; Ryoichi Yamamoto

2012-10-17T23:59:59.000Z

368

We present a model for nonlinear decay of the weak wave in three-dimensional incompressible magnetohydrodynamic (MHD) turbulence. We show that the decay rate is different for parallel and perpendicular waves. We provide a general formula for arbitrarily directed waves and discuss particular limiting cases known in the literature. We test our predictions with direct numerical simulations of wave decay in three-dimensional MHD turbulence, and discuss the influence of turbulent damping on the development of linear instabilities in the interstellar medium and on other important astrophysical processes.

Andrey Beresnyak; Alex Lazarian

2008-05-06T23:59:59.000Z

369

A Reconsideration of Matter Waves

Matter waves were discovered in the early 20th century from their wavelength, predicted by DeBroglie, Planck's constant divided by the particle's momentum, that is, lmw = h/mv. But, the failure to obtain a reasonable theory for the matter wave frequency resulted somewhat in loss of further interest. It was expected that the frequency of the matter wave should correspond to the particle kinetic energy, that is, fmw = 1/2mv^2/h but the resulting velocity of the matter of the particle, v = fmw x lmw, is that the matter wave moves at one half the speed of the particle, obviously absurd as the particle and its wave must move together. If relativistic mass is used (as it should in any case) the problem remains, the same mass appearing in numerator and denominator and canceling. It is no help to hypothesize that the total energy, not just the kinetic energy, yields the matter wave. That attributes a matter wave to a particle at rest. It also gives the resulting velocity as c^2/v, the wave racing ahead of its particle. A reinterpretation of Einstein's derivation of relativistic kinetic energy (which produced his famous E = mc^2) leads to a valid matter wave frequency and a new understanding of particle kinetics and of the atom's stable orbits.

Roger Ellman

2005-05-16T23:59:59.000Z

370

Range of joint motion in college males

. These include the fact that there is little agreement as to the definition and limits of normal f1exibility. It was also found that the range of joint motion is highly specific and that measurement of one body joint cannot be used to predict the range... many of the problems outlined by Holland. There have been several techniques developed for measuring range of' joint motion. Adrian (1968), The American Academy of Orthopedic Surgeons (1968), Ayoub (1972), Clarke (1975), Dempster (1955), Garrett...

Houy, David Richard

1982-01-01T23:59:59.000Z

371

Kinematic Flood Waves" by Sergio E. Serrano Journal of Hydrologic Engineering, July/August 2006, Vol. 11, No presents an interesting method to forecast nonlinear kinematic flood waves (Serrano, 2006). As a first to the Kinematic Wave Equation (KWE). The range of time lags for which this analytical solution is applicable being

Paris-Sud XI, UniversitÃ© de

372

Range Design Criteria- June 4, 2012

Broader source: Energy.gov [DOE]

This document contains the currently-approved firearms "Range Design Criteria" referred to on DOE O 473.3, Protection Program Operations

373

Topological horseshoes in travelling waves of discretized nonlinear wave equations

Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.

Chen, Yi-Chiuan, E-mail: YCChen@math.sinica.edu.tw [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China)] [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shyan-Shiou, E-mail: sschen@ntnu.edu.tw [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China)] [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Yuan, Juan-Ming, E-mail: jmyuan@pu.edu.tw [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)] [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)

2014-04-15T23:59:59.000Z

374

Discrete wave turbulence of rotational capillary water waves

We study the discrete wave turbulent regime of capillary water waves with constant non-zero vorticity. The explicit Hamiltonian formulation and the corresponding coupling coefficient are obtained. We also present the construction and investigation of resonance clustering. Some physical implications of the obtained results are discussed.

Adrian Constantin; Elena Kartashova; Erik Wahlén

2010-05-12T23:59:59.000Z

375

Magnetically confined fusion plasmas feature a large variety of waves. In the Ion Cyclotron Range of Frequencies (ICRF), radiofrequency waves are routinely used for plasma heating and non-inductive current-drive, whereas unstable modes in the Alfven range of frequencies are observed in ongoing experiments and are expected to play a crucial role in future devices. In experiments where Alfven and ICRF waves co-exist, a strong interplay between them is observed via the intermediary of the wave accelerated fast ions. A Hamiltonian description of the resonating particles is particularly well adapted to describe accurately their interaction with ICRF and Alfven waves. It provides a convenient framework for self-consistent calculations of the wave propagation and the kinetics of resonating plasma species. In the wave-field calculation, this formulation allows to account for non-local effects caused by wide fast particle orbits (e.g. wave accelerated fast ions and alpha particles). We present here the progress made in the development of the full-wave code EVE, based on a Hamiltonian description of the particle dynamics in terms of action-angle variables. The formalism of EVE, the numerical aspects, as well as some simulation results obtained with the code are discussed.

Dumont, R. J.; Eriksson, L.-G. [Association Euratom-CEA, CEA/DSM/DRFC, Centre de Cadarache, 13108 Saint-Paul-lez-Durance (France)

2006-11-30T23:59:59.000Z

376

We study the effect of one-side metallization of a uniform ferromagnetic thin film on its spin-wave dispersion relation in the Damon–Eshbach geometry. Due to the finite conductivity of the metallic cover layer on the ferromagnetic film, the spin-wave dispersion relation may be nonreciprocal only in a limited wave-vector range. We provide an approximate analytical solution for the spin-wave frequency, discuss its validity, and compare it with numerical results. The dispersion is analyzed systematically by varying the parameters of the ferromagnetic film, the metal cover layer and the value of the external magnetic field. The conclusions drawn from this analysis allow us to define a structure based on a 30?nm thick CoFeB film with an experimentally accessible nonreciprocal dispersion relation in a relatively wide wave-vector range.

Mruczkiewicz, M.; Krawczyk, M. [Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Pozna? 61-614 (Poland)

2014-03-21T23:59:59.000Z

377

Laboratory Studies of Nonlinear and Breaking Surface Waves

A. Breaking-wave generation . . . . . . . . . . . . . . . .of the wave tank. . . . . . . . . . . . . . . . . . . .On steep gravity waves meeting a vertical wall: a triple

Drazen, David

2006-01-01T23:59:59.000Z

378

ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

2013-05-10T23:59:59.000Z

379

Variable-Period Undulators For Synchrotron Radiation

A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high-energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

Shenoy, Gopal (Naperville, IL); Lewellen, John (Plainfield, IL); Shu, Deming (Darien, IL); Vinokurov, Nikolai (Novosibirsk, RU)

2005-02-22T23:59:59.000Z

380

Variable-Period Undulators for Synchrotron Radiation

A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

2005-02-22T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

381

DEVELOPMENT OF RASASASTRA IN MEDIEVAL PERIOD*

ABSTRACT: The paper deals with the historical development of Rasasastra in Medieval period. Knowledge of Rasa has been in existence from the time immemorial. Exploration of natural resources for the benefit of human beings is the object of this therapy. It is a medical science recognized during vedic periods for the betterment of even Devas. Medieval period can be treated as a golden age for the development of this science. Looking at its aim and objects, methodology and therapeutics, it was recognized as a medical science with an independent philosophical background in 14 th century, by Madhavacharya in his Sarva Darsana Samgraha.

Harishankar Sharma

1984-01-01T23:59:59.000Z

382

SPECTROSCOPIC EVIDENCE FOR A 5.4 MINUTE ORBITAL PERIOD IN HM CANCRI

HM Cancri is a candidate ultracompact binary white dwarf with an apparent orbital period of only 5.4 minutes, as suggested by X-ray and optical light-curve modulations on that period, and by the absence of longer-period variability. In this Letter, we present Keck-I spectroscopy which shows clear modulation of the helium emission lines in both radial velocity and amplitude on the 5.4 minute period and no other. The data strongly suggest that the binary is emitting He I 4471 from the irradiated face of the cooler, less massive star, and He II 4686 from a ring around the more massive star. From their relative radial velocities, we measure a mass ratio q = 0.50 {+-} 0.13. We conclude that the observed 5.4 minute period almost certainly represents the orbital period of an interacting binary white dwarf. We thus confirm that HM Cnc is the shortest period binary star known: a unique test for stellar evolution theory, and one of the strongest known sources of gravitational waves for LISA.

Roelofs, Gijs H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rau, Arne [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Marsh, Tom R.; Steeghs, Danny [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Groot, Paul J.; Nelemans, Gijs [Department of Astrophysics, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen (Netherlands)], E-mail: groelofs@cfa.harvard.edu, E-mail: arau@mpe.mpg.de

2010-03-10T23:59:59.000Z

383

Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800?nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600?nm) and High Spatial Frequency LIPSS, showing a periodicity around 300?nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100?nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced.

Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 and Tecnun, University of Navarra, Manuel Lardizábal 15, 20018 San Sebastián (Spain); Rodriguez, A. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

2014-05-07T23:59:59.000Z

384

Wave Evolution On the Evolution of Curvelets

Curvelets Wave Evolution On the Evolution of Curvelets by the Wave Equation Hart F. Smith of Curvelets by the Wave Equation #12;Curvelets Wave Evolution Curvelets and the Second Dyadic Decomposition Curvelets A curvelet frame {} is a wave packet frame on L2(R2) based on second dyadic decomposition. f

Smith, Hart F.

385

Wave Mechanics and the Fifth Dimension

Replacing 4D Minkowski space by 5D canonical space leads to a clearer derivation of the main features of wave mechanics, including the wave function and the velocity of de Broglie waves. Recent tests of wave-particle duality could be adapted to investigate whether de Broglie waves are basically 4D or 5D in nature.

Paul S. Wesson; James M. Overduin

2013-01-28T23:59:59.000Z

386

Dynamic control of spin wave spectra using spin-polarized currents

We describe a method of controlling the spin wave spectra dynamically in a uniform nanostripe waveguide through spin-polarized currents. A stable periodic magnetization structure is observed when the current flows vertically through the center of nanostripe waveguide. After being excited, the spin wave is transmitted at the sides of the waveguide. Numerical simulations of spin-wave transmission and dispersion curves reveal a single, pronounced band gap. Moreover, the periodic magnetization structure can be turned on and off by the spin-polarized current. The switching process from full rejection to full transmission takes place within less than 3?ns. Thus, this type magnonic waveguide can be utilized for low-dissipation spin wave based filters.

Wang, Qi; Zhang, Huaiwu, E-mail: hwzhang@uestc.edu.cn; Tang, Xiaoli; Bai, Feiming; Zhong, Zhiyong, E-mail: zzy@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Fangohr, Hans [Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

2014-09-15T23:59:59.000Z

387

computed by Wheeler Stretching and Linear Extrapolation modifications to Linear Random Wave Theory and the Hybrid Wave Model. Extreme wave acceleration fields arc compared with Hybrid Wave Model acceleration fields only. Comparisons between measurements...

Longridge, Jonathon Kent

1993-01-01T23:59:59.000Z

388

Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (?{sub o} = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to ?{sub o}. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic range of about 1.4 × 10{sup 7} was created as a demonstration.

Nakanishi, Masakazu, E-mail: m.nakanishi@aist.go.jp [Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, AIST Central-3, 1-1, Umezono, Tsukuba, Ibaraki 305-8563 (Japan)

2014-10-15T23:59:59.000Z

389

periods often appear in industry due to a machine breakdown (stochastic) or preventive maintenance of machine unavailability. However, in some cases (e.g. preventive maintenance), the maintenance of a machineSingle-machine scheduling with periodic and exible periodic maintenance to minimize maximum

Paris-Sud XI, UniversitÃ© de

390

Photometric Calibration of High Dynamic Range Cameras

calibration of cameras with a dynamic range of more than six orders of magnitude such as complex camera re with a total dynamic range of 8 orders of luminance magnitude. Three acquisitions: without filter, using to the measurements of 6 gray patches of GretagMacbeth ColorChecker chart under 6 different illumination conditions. 0

Durand, FrÃ©do

391

The Joint Essential Numerical Range of operators

The Joint Essential Numerical Range of operators: Convexity and Related Results Chi-Kwong Li Classification 47A12, 47A13, 47A55. Keywords Joint essential numerical range, self-adjoint operator, Hilbert the joint behavior of several operators A1, . . . , Am. One may see [1, 5, 12, 14, 15, 16, 19, 23, 28, 31

Li, Chi-Kwong

392

THREE-DIMENSIONAL SIMULATIONS OF MAGNETOHYDRODYNAMIC WAVES IN MAGNETIZED SOLAR ATMOSPHERE

We present results of three-dimensional numerical simulations of magnetohydrodynamic (MHD) wave propagation in a solar magnetic flux tube. Our study aims at understanding the properties of a range of MHD wave modes generated by different photospheric motions. We consider two scenarios observed in the lower solar photosphere, namely, granular buffeting and vortex-like motion, among the simplest mechanism for the generation of waves within a strong, localized magnetic flux concentration. We show that granular buffeting is likely to generate stronger slow and fast magnetoacoustic waves as compared to swirly motions. Correspondingly, the energy flux transported differs as a result of the driving motions. We also demonstrate that the waves generated by granular buffeting are likely to manifest in stronger emission in the chromospheric network. We argue that different mechanisms of wave generation are active during the evolution of a magnetic element in the intergranular lane, resulting in temporally varying emission at chromospheric heights.

Vigeesh, G. [Department of Astronomy, New Mexico State University, Las Cruces, NM (United States); Fedun, V.; Erdelyi, R. [SP2RC, Department of Applied Mathematics, University of Sheffield (United Kingdom); Hasan, S. S. [Indian Institute of Astrophysics, Bangalore (India)

2012-08-10T23:59:59.000Z

393

Analytical homogenization method for periodic composite materials

We present an easy-to-implement technique for determining the effective properties of composite materials with periodic microstructures, as well as the field distributions in them. Our method is based on the transformation ...

Chen, Ying

394

Impact of Motor Failures on Payback Periods

This paper uses MotorMaster and Vaughen's Complete Price Guide to determine payback periods for different motor failure scenarios. Some scenarios considered are rewinds, reconditions, and replacement of bearings. Prices for these repairs...

Cheek, K. F.; Pillay, P.; Dudley, K. J.

395

PARS II Process Document – DOE Period Close

Broader source: Energy.gov [DOE]

This document details the process adopted by the Office of Acquisition and Project Management to prepare APM DepSec Monthly Status Report, finalize DOE close period package, and perform reporting...

396

Impact of Phase Transitions on P Wave Velocities

In regions where a high pressure phase is in equilibrium with a low pressure phase, the bulk modulus defined by the P-V relationship is greatly reduced. Here we evaluate the effect of such transitions on the P wave velocity. A model, where cation diffusion is the rate limiting factor, is used to project laboratory data to the conditions of a seismic wave propagating in the two-phase region. We demonstrate that for the minimum expected effect there is a significant reduction of the seismic velocity, as large as 10% over a narrow depth range.

D Weidner; L Li

2011-12-31T23:59:59.000Z

397

Creating Wave-Focusing Materials

Basic ideas for creating wave-focusing materials by injecting small particles in a given material are described. The number of small particles to be injected around any point is calculated. Inverse scattering problem with fixed wavenumber and fixed incident direction of the plane acoustic wave is formulated and solved.

A. G. Ramm

2008-05-16T23:59:59.000Z

398

Colliding axisymmetric pp-waves

An exact solution is found describing the collision of axisymmetric pp-waves with M=0. They are impulsive in character and their coordinate singularities become point curvature singularities at the boundaries of the interaction region. The solution is conformally flat. Concrete examples are given, involving an ultrarelativistic black hole against a burst of pure radiation or two colliding beam- like waves.

B. V. Ivanov

1997-10-21T23:59:59.000Z

399

Momentum Imparted by Gravitational Waves

We calculate momentum imparted by colliding gravitational waves in a closed Friedmann Robertson-Walker background and also by gravitational waves with toroidal wavefronts using an operational procedure. The results obtained for toroidal wavefronts are well behaved and reduce to the spherical wavefronts for a special choice.

M. Sharif

2003-04-04T23:59:59.000Z

400

Spin wave localization in one-dimensional magnonic microcavity comprising yttrium iron garnet

We demonstrate the localization of magnetostatic surface waves, i.e., spin waves, in a one-dimensional magnonic microcavity substantialized with periodical conductivity modulation. The narrow localized state is observed inside band gaps and is responsible for a sharp transmission peak. The experimental results strongly agree with the theoretical prediction made with the shape magnetic anisotropy of the propagating medium composed of yttrium iron garnet taken into account.

Kanazawa, Naoki; Goto, Taichi, E-mail: goto@ee.tut.ac.jp; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibari-Ga-Oka, Tempaku, Toyohashi, Aichi 441-8580 (Japan)

2014-08-28T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

401

An analytical approach based on the parametric representation of the wave propagation in nonuniform media was considered. In addition to the previously developed theory of parametric antiresonance describing the field attenuation in stop bands, in the present paper the behaviour of the Bloch wave in a transmission band was investigated. A wide class of exact solutions was found and the correspondence to the quasi-periodic Floquet solutions was shown.

A. Popov; V. Kovalchuk

2011-12-06T23:59:59.000Z

402

Sound waves in the intracluster medium of the Centaurus cluster

We report the discovery of ripple-like X-ray surface brightness oscillations in the core of the Centaurus cluster of galaxies, found with 200 ks of Chandra observations. The features are between 3 to 5 per cent variations in surface brightness with a wavelength of around 9 kpc. If, as has been conjectured for the Perseus cluster, these are sound waves generated by the repetitive inflation of central radio bubbles, they represent around 5x10^42 erg/s of spherical sound-wave power at a radius of 30 kpc. The period of the waves would be 10^7 yr. If their power is dissipated in the core of the cluster, it would balance much of the radiative cooling by X-ray emission, which is around 1.3x10^43 erg/s within the inner 30 kpc. The power of the sound waves would be a factor of four smaller that the heating power of the central radio bubbles, which means that energy is converted into sound waves efficiently.

J. S Sanders; A. C. Fabian

2008-08-18T23:59:59.000Z

403

The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)

2009-10-13T23:59:59.000Z

404

The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

Korneev, Valeri A [LaFayette, CA

2009-05-05T23:59:59.000Z

405

Application of wave generator theory to the development of a Wave Energy Converter

Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri approve the attached thesis Application of wave generator theory to the development of a Wave Energy Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri Principal

Wood, Stephen L.

406

Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical wave tank

Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical wave tank S. Ryu and the resulting kinematics. In the present paper, the variation of wave amplitude and wave length and minimize wave reflections from the down- stream wall. Nonlinear wave kinematics as a result of nonlinear

Lynett, Patrick

407

We consider for the first time three-wave interactions of bulk quasi-static defect-deformation (DD) waves (generation of the second DD harmonic and summation of the wave vectors), similar to three-wave interactions in nonlinear optics and acoustics, leading to cascaded broadening of the spectrum of spatial DD harmonics. Based on the theory developed, we interpret the recently observed effect of laser-induced generation of the bulk periodic structure of silver nanoparticles with a discrete spatial spectrum, extending from micro- to nanometres. (nonlinear optical phenomena)

Emel'yanov, Vladimir I [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation)

2011-02-28T23:59:59.000Z

408

Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory (SDO) observations, we present four homologous extreme ultraviolet (EUV) waves within 3 hr on 2010 November 11. All EUV waves emanated from the same emerging flux region (EFR), propagated in the same direction, and were accompanied by surges, weak flares, and faint coronal mass ejections (CMEs). The waves had the basically same appearance in all EUV wavebands of the Atmospheric Imaging Assembly on SDO. The waves propagated at constant velocities in the range of 280-500 km s{sup -1}, with little angular dependence, which indicated that the homologous waves could be likely interpreted as fast-mode waves. The waves are supposed to likely involve more than one driving mechanism, and it was most probable that the waves were driven by the surges, due to their close timing and location relations. We also propose that the homologous waves were intimately associated with the continuous emergence and cancellation of magnetic flux in the EFR, which could supply sufficient energy and trigger the onsets of the waves.

Zheng Ruisheng; Jiang Yunchun; Yang Jiayan; Bi Yi; Hong Junchao; Yang, B.; Yang Dan, E-mail: zhrsh@ynao.ac.cn [National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

2012-03-01T23:59:59.000Z

409

Electron acceleration by Z-mode and whistler-mode waves

We carried out a series of particle simulations to study electron acceleration by Z-mode and whistler-mode waves generated by an electron ring distribution. The electron ring distribution leads to excitations of X-mode waves mainly in the perpendicular direction, Z-mode waves in the perpendicular and parallel directions, and whistler-mode waves mainly in the parallel direction. The parallel Z- and whistler-mode waves can lead to an effective acceleration of ring electrons. The electron acceleration is mainly determined by the wave amplitude and phase velocity, which in turn is affected by the ratio of electron plasma to cyclotron frequencies. For the initial kinetic energy ranging from 100 to 500 keV, the peak energy of the accelerated electrons is found to reach 2–8 times the initial kinetic energy. We further study the acceleration process by test-particle calculations in which electrons interact with one, two, or four waves. The electron trajectories in the one-wave case are simple diffusion curves. In the multi-wave cases, electrons are accelerated simultaneously by counter-propagating waves and can have a higher final energy.

Lee, K. H. [Institute of Space Science, National Central University, Zhongli, Taiwan (China)] [Institute of Space Science, National Central University, Zhongli, Taiwan (China); Omura, Y. [Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto (Japan)] [Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto (Japan); Lee, L. C. [Institute of Space Science, National Central University, Zhongli, Taiwan (China) [Institute of Space Science, National Central University, Zhongli, Taiwan (China); Institute of Earth Science, Academia Sinica, Nankang, Taiwan (China)

2013-11-15T23:59:59.000Z

410

KRONOSEISMOLOGY: USING DENSITY WAVES IN SATURN'S C RING TO PROBE THE PLANET'S INTERIOR

Saturn's C ring contains multiple spiral patterns that appear to be density waves driven by periodic gravitational perturbations. In other parts of Saturn's rings, such waves are generated by Lindblad resonances with Saturn's various moons, but most of the wave-like C-ring features are not situated near any strong resonance with any known moon. Using stellar occultation data obtained by the Visual and Infrared Mapping Spectrometer on board the Cassini spacecraft, we investigate the origin of six unidentified C-ring waves located between 80,900 and 87,200 km from Saturn's center. By measuring differences in the waves' phases among the different occultations, we are able to determine both the number of arms in each spiral pattern and the speeds at which these patterns rotate around the planet. We find that all six of these waves have between two and four arms and pattern speeds between 1660 Degree-Sign day{sup -1} and 1861 Degree-Sign day{sup -1}. These speeds are too large to be attributed to any satellite resonance. Instead, they are comparable to the predicted pattern speeds of waves generated by low-order normal-mode oscillations within the planet. The precise pattern speeds associated with these waves should therefore provide strong constraints on Saturn's internal structure. Furthermore, we identify multiple waves with the same number of arms and very similar pattern speeds, indicating that multiple m = 3 and m = 2 sectoral (l = m) modes may exist within the planet.

Hedman, M. M.; Nicholson, P. D., E-mail: mmhedman@astro.cornell.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14850 (United States)

2013-07-01T23:59:59.000Z

411

Electrostatic-plasma-wave energy flux

would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of

Amendt, P.; Rostoker, N.

1984-01-01T23:59:59.000Z

412

Scholte waves generated by seafloor topography

Seafloor topography can excite strong interface waves called Scholte waves that are often dispersive and characterized by slow propagation but large amplitude. This type of wave can be used to invert for near seafloor shear ...

Zheng, Yingcai

2012-01-01T23:59:59.000Z

413

2011 Interference -1 INTERFERENCE OF SOUND WAVES

2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: Â· To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. Â· To observe interference phenomena with ultrasonic sound waves. APPARATUS: Oscilloscope, function generator, ultrasonic

Glashausser, Charles

414

California Small Hydropower and Ocean Wave Energy

California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy................................................................. 21 #12;ii List of Tables Table 1 California Small Hydropower And Ocean Wave Energy Resources Table 2

415

Ultralong-Range Rydberg Molecules in a Divalent-Atomic System

We report the creation of ultralong-range Sr$_2$ molecules comprising one ground-state $5s^2$ $^1S_0$ atom and one atom in a $5sns$ $^3S_1$ Rydberg state for $n$ ranging from 29 to 36. Molecules are created in a trapped ultracold atomic gas using two-photon excitation near resonant with the $5s5p$ $^3P_1$ intermediate state, and their formation is detected through ground-state atom loss from the trap. The observed molecular binding energies are fit with the aid of first-order perturbation theory that utilizes a Fermi pseudopotential with effective $s$-wave and $p$-wave scattering lengths to describe the interaction between an excited Rydberg electron and a ground-state Sr atom.

DeSalvo, B J; Dunning, F B; Killian, T C; Sadeghpour, H R; Yoshida, S; Burgdörfer, J

2015-01-01T23:59:59.000Z

416

Neutron scattering and extra short range interactions

The available data on neutron scattering were analyzed to constrain a hypothetical new short-range interaction. We show that these constraints are several orders of magnitude better than those usually cited in the range between 1 pm and 5 nm. This distance range occupies an intermediate space between collider searches for strongly coupled heavy bosons and searches for new weak macroscopic forces. We emphasise the reliability of the neutron constraints in so far as they provide several independent strategies. We have identified the most promising way to improve them.

V. V. Nesvizhevsky; G. Pignol; K. V. Protasov

2007-11-14T23:59:59.000Z

417

Techniques for optically compressing light intensity ranges

A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

Rushford, M.C.

1989-03-28T23:59:59.000Z

418

Walking Wave as a Model of Particle

The concept of walking wave is introduced from classical relativistic positions. One- and three-dimensional walking waves considered with their wave equations and dispersion equations. It is shown that wave characteristics (de Broglie's and Compton's wavelengths) and corpuscular characteristics (energy-momentum vector and the rest mass) of particle may be expressed through parameters of walking wave. By that the new view on a number concepts of physic related with wave-particle duality is suggested.

A. V. Goryunov

2012-05-02T23:59:59.000Z

419

Are "EIT Waves" Fast-Mode MHD Waves?

We examine the nature of large-scale, coronal, propagating wave fronts (``EIT waves'') and find they are incongruous with solutions using fast-mode MHD plane-wave theory. Specifically, we consider the following properties: non-dispersive single pulse manifestions, observed velocities below the local Alfven speed, and different pulses which travel at any number of constant velocities, rather than at the ``predicted'' fast-mode speed. We discuss the possibility of a soliton-like explanation for these phenomena, and show how it is consistent with the above-mentioned aspects.

M. J. Wills-Davey; C. E. DeForest; J. O. Stenflo

2007-04-23T23:59:59.000Z

420

Standing waves in the Gulf of Finland and their relationship to the basin-wide Baltic seiches

Standing waves in the Gulf of Finland and their relationship to the basin-wide Baltic seiches Bror identify three different local oscillatory modes: one in the Gulf of Finland with the two distinct periods in the Gulf of Riga with the period 17 h. The most pronounced mode is that in the Gulf of Finland. No clear

Nycander, Jonas

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

421

Long Range Campus Development Plan Existing Conditions

design solutions and in serving members of the larger community. The Long Range Campus Development Plan environments and year-round recreation opportunities. During the summer season, daylight lasts into the evening

Maxwell, Bruce D.

422

Long range transport of acid rain precursors

A model of the long range transport of primary and secondary pollutants derived by Fay and Rosenzweig (1) is applied to the problem of the transport of acid rain precursors. The model describes the long term average (annual ...

Fay, James A.

1983-01-01T23:59:59.000Z

423

Systematic ranging and late warning asteroid impacts

We describe systematic ranging, an orbit determination technique especially suitable to assess the near-term Earth impact hazard posed by newly discovered asteroids. For these late warning cases, the time interval covered by the observations is generally short, perhaps a few hours or even less, which leads to severe degeneracies in the orbit estimation process. The systematic ranging approach gets around these degeneracies by performing a raster scan in the poorly-constrained space of topocentric range and range rate, while the plane of sky position and motion are directly tied to the recorded observations. This scan allows us to identify regions corresponding to collision solutions, as well as potential impact times and locations. From the probability distribution of the observation errors, we obtain a probability distribution in the orbital space and then estimate the probability of an Earth impact. We show how this technique is effective for a number of examples, including 2008 TC3 and 2014 AA, the only tw...

Farnocchia, D; Micheli, M

2015-01-01T23:59:59.000Z

424

Long range interactions in nanoscale science

Our understanding of the “long range” electrodynamic, electrostatic, and polar interactions that dominate the organization of small objects at separations beyond an interatomic bond length is reviewed. From this basic-forces ...

Rajter, Richard F.

425

Alfven waves in the solar wind in association with solar energetic particles: Sunspot umbral origin

We report on a search for Alfven waves in the solar wind during solar particle events using ISEE 3 data. During the period 1979 June 6--6, we find signatures of outgoint Alfven waves which could have been released from the Sun simultaneously with the initial release of energetic particles. The waves have durations of 200--900 s. An isolated Alfven wave is also seen when the first particles (with E< or approx. =57 MeV) are detected by ISEE 3; the width of this wave is approx.950 s. A series of five small-amplitude ''spikes'' in the magnetic field are also seen, preceding the arrival of the first particles by a few hours. The spikes are separated by intervals of 854 +- 20 s. We suggest that these periodicities may be determined by the propagation characteristics of Alfven waves in the solar atmosphere. The features which we have detected apper to be consistent with Alfven waves released from the umbra of a sunspot during a flare.

Mullan, D.J.; Owens, A.J.

1984-05-01T23:59:59.000Z

426

In order to study the origin of the architectures of low mass planetary systems, we perform numerical surveys of the evolution of pairs of coplanar planets in the mass range $(1-4)\\ \\rmn{M}_{\\oplus}.$ These evolve for up to $2\\times10^7 \\rmn{yr}$ under a range of orbital migration torques and circularization rates assumed to arise through interaction with a protoplanetary disc. Near the inner disc boundary, significant variations of viscosity, interaction with density waves or with the stellar magnetic field could occur and halt migration, but allow ircularization to continue. This was modelled by modifying the migration and circularization rates. Runs terminated without an extended period of circularization in the absence of migration torques gave rise to either a collision, or a system close to a resonance. These were mostly first order with a few $\\%$ terminating in second order resonances. Both planetary eccentricities were small $< 0.1$ and all resonant angles liberated. This type of survey produced o...

Xiang-Gruess, M

2015-01-01T23:59:59.000Z

427

High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8?GHz), allowing low-cost programmable high-frequency resonators.

Ivry, Yachin, E-mail: ivry@mit.edu, E-mail: cd229@eng.cam.ac.uk; Wang, Nan; Durkan, Colm, E-mail: ivry@mit.edu, E-mail: cd229@eng.cam.ac.uk [Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF (United Kingdom)

2014-03-31T23:59:59.000Z

428

maps of May 4, 5 and 6~ 1948; off the New Jersey coast 5C 2O, Wind field along line R, derived from consecutive surface synoptic weather maps of May I? 5 and 6, 1948~ off the New Jersey coast 51 21. Calculated period and height of waves at Long... consecutive surface synoptic ~esther maps of September 22-?5, 1953 (Oceanic area south of Japan) 56 Refraction diagram for Hachl&o Island, Japan. . . . . 57 27 Calculated period and height of waves at Fachijo Island, Japan, 24-27 September 1953. 58...

Srivastava, Parmatma Saran

1956-01-01T23:59:59.000Z

429

Programmable near-infrared ranging system

A high angular resolution ranging system particularly suitable for indoor plications involving mobile robot navigation and collision avoidance uses a programmable array of light emitters that can be sequentially incremented by a microprocessor. A plurality of adjustable level threshold detectors are used in an optical receiver for detecting the threshold level of the light echoes produced when light emitted from one or more of the emitters is reflected by a target or object in the scan path of the ranging system.

Everett, Jr., Hobart R. (San Diego, CA)

1989-01-01T23:59:59.000Z

430

This final report describes the work performed under U.S. Department of Energy Cooperative Agreement DE-FC02-08ER54954 for the period April 1, 2011 through March 31, 2013. The goal of this project was to perform iterated finite-orbit Monte Carlo simulations with full-wall fields for modeling tokamak ICRF wave heating experiments. In year 1, the finite-orbit Monte-Carlo code ORBIT-RF and its iteration algorithms with the full-wave code AORSA were improved to enable systematical study of the factors responsible for the discrepancy in the simulated and the measured fast-ion FIDA signals in the DIII-D and NSTX ICRF fast-wave (FW) experiments. In year 2, ORBIT-RF was coupled to the TORIC full-wave code for a comparative study of ORBIT-RF/TORIC and ORBIT-RF/AORSA results in FW experiments.

Choi, Myunghee [Retired] [Retired; Chan, Vincent S. [General Atomics] [General Atomics

2014-02-28T23:59:59.000Z

431

Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium

The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period ? is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the sound wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods ? between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.

Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de [Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg (Germany); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Grigoryan, K.K.; Petrosyan, R.G. [Yerevan State University, 1 Alex Manoogian Str., 0025 Yerevan (Armenia)] [Yerevan State University, 1 Alex Manoogian Str., 0025 Yerevan (Armenia); Fritzsche, S. [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany) [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

2013-06-15T23:59:59.000Z

432

Periodic subsystem density-functional theory

By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

Genova, Alessandro; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); Ceresoli, Davide [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); CNR-ISTM, Institute of Molecular Sciences and Technologies, Milano (Italy)

2014-11-07T23:59:59.000Z

433

Nondestructive testing using stress waves: wave propagation in layered media

The use of stress waves in several civil engineering applications such as nondestructive testing of soil deposits or pavement systems has become extremely popular over the last few years. In all cases, a dynamic impulse is applied to the surface...

Ortega, Jose Alberto

2013-02-22T23:59:59.000Z

434

Small angle neutron scattering intensity distributions taken from cytochrome C and lysozyme protein solutions show a rising intensity at very small wave vector, Q, which can be interpreted in terms of the presence of a weak long-range attraction between protein molecules. This interaction has a range several times that of the diameter of the protein molecule, much greater than the range of the screened electrostatic repulsion. We show evidence that this long-range attraction is closely related to the type of anion present and ion concentration in the solution.

Yun Liu; Emiliano Fratini; Piero Baglioni; Wei-Ren Chen; Sow-Hsin Chen

2005-08-05T23:59:59.000Z

435

Branes are Waves and Monopoles

In a recent paper it was shown that fundamental strings are null waves in Double Field Theory. Similarly, membranes are waves in exceptional extended geometry. Here the story is continued by showing how various branes are Kaluza-Klein monopoles of these higher dimensional theories. Examining the specific case of the E7 exceptional extended geometry, we see that all branes are both waves and monopoles. Along the way we discuss the O(d; d) transformation of localized brane solutions not associated to an isometry and how true T-duality emerges in Double Field Theory when the background possesses isometries.

David S. Berman; Felix J. Rudolph

2014-09-22T23:59:59.000Z

436

Backreacting p-wave Superconductors

We study the gravitational backreaction of the non-abelian gauge field on the gravity dual to a 2+1 p-wave superconductor. We observe that as in the $p+ip$ system a second order phase transition exists between a superconducting and a normal state. Moreover, we conclude that, below the phase transition temperature $T_c$ the lowest free energy is achieved by the p-wave solution. In order to probe the solution, we compute the holographic entanglement entropy. For both $p$ and $p+ip$ systems the entanglement entropy satisfies an area law. For any given entangling surface, the p-wave superconductor has lower entanglement entropy.

Raúl E. Arias; Ignacio Salazar Landea

2013-01-28T23:59:59.000Z

437

Periodic Exponential Shear of Complex Fluids

We define a class of flows with exponential kinematics termed Periodic Exponential Shear (PES) flow which involve periodic exponential stretching of fluid elements along with their rotation. We exhibit analytical and numerical results for PES flow by using the Oldroyd-B model for viscoelastic fluids. We calculate the growth in the shear and the normal stresses analytically as well as demonstrate that repeated application of the flow leads to stable oscillatory shear and normal stresses. We define a material function applicable to a periodic, unsteady shear flow and show numerically that this material function exhibits deformation-rate thickening behavior for viscoelastic fluids subject to PES flow. We demonstrate the feasibility of PES flow by presenting preliminary experimental results from a controlled-strain rate rheometer, using a Newtonian mineral oil.

Chirag Kalelkar; Gareth McKinley

2012-05-31T23:59:59.000Z

438

Progress in experiment and simulation capability in the lower hybrid range of frequencies at ITER relevant parameters is reviewed. Use of LH power in reactor devices is motivated in terms of its potential for efficient off-axis current profile control. Recent improvements in simulation capability including the development of full-wave field solvers, inclusion of the scrape off layer (SOL) in wave propagation codes, the use of coupled ray tracing/full-wave/3D (r v{sub ?}, v{sub //}) Fokker Planck models, and the inclusion of wave scattering as well as nonlinear broadening effects in ray tracing / Fokker Planck codes are discussed. Experimental and modeling results are reviewed which are aimed at understanding the spectral gap problem in LH current drive (LHCD) and the density limit that has been observed and mitigated in LHCD experiments. Physics mechanisms that could be operative in these experiments are discussed, including toroidally induced variations in the parallel wavenumber, nonlinear broadening of the pump wave, scattering of LH waves from density fluctuations in the SOL, and spectral broadening at the plasma edge via full-wave effects.

Bonoli, Paul T. [Plasma Science and Fusion Center, NW16-240, MIT, Cambridge, Massachusetts 02139 (United States)

2014-06-15T23:59:59.000Z

439

Plasma waves driven by gravitational waves in an expanding universe

In a Friedmann-Robertson-Walker (FRW) cosmological model with zero spatial curvature, we consider the interaction of the gravitational waves with the plasma in the presence of a weak magnetic field. Using the relativistic hydromagnetic equations it is verified that large amplitude magnetosonic waves are excited, assuming that both, the gravitational field and the weak magnetic field do not break the homogeneity and isotropy of the considered FRW spacetime.

D. B. Papadopoulos

2002-05-22T23:59:59.000Z

440

Nonlinear dust acoustic waves and shocks

We describe experiments on (1) nonlinear dust acoustic waves and (2) dust acoustic shocks performed in a direct current (DC) glow discharge dusty plasma. First, we describe experiments showing nonlinear dust acoustic waves characterized by waveforms of the dust density that are typically sharper in the wave crests and flatter in the wave troughs (compared to sinusoidal waves), indicating the development of wave harmonics. We discuss this behavior in terms of a second-order fluid theory for dust acoustic waves. Second, experimental observations of the propagation and steepening of large-amplitude dust acoustic waves into dust acoustic shock waves are presented. The observed shock wave evolution is compared with numerical calculations based on the Riemann solution of the fully nonlinear fluid equations for dust acoustic waves.

Merlino, R. L.; Heinrich, J. R.; Hyun, S.-H.; Meyer, J. K. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

2012-05-15T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

441

Parc Periodical | Photosynthetic Antenna Research Center

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizingToolsto controlParc Periodical Parc Periodical

442

Laser Range Finder Objective: Use a forward pointing laser range finder to

Laser Range Finder Objective: Use a forward pointing laser range finder to detect and avoid obstacles. Principle Investigators: Randy Beard, Tim McLain Laser Range Finder Opti-Logic RS400 Laser path, laser detects object. 2. Upon detection, insert cylindrical object into world map and plan path

Wirthlin, Michael J.

443

Waves in the ocean Nick Hall, LEGOS, University of Toulouse

properties of waves 2) Deep and shallow water waves 3) Internal waves 4) Waves in geophysical fluids 5) Tides Books: Waves, tides and shallow water processes, Open University, Vibrations and waves in physics, Main and wavenumber #12;Wave kinematics Consider a propagating sinusoidal wave equivalently so and we note

444

Gravitational waves: a foundational review

The standard linear approach to the gravitational waves theory is critically reviewed. Contrary to the prevalent understanding, it is pointed out that this theory contains many conceptual and technical obscure issues that require further analysis.

J. G. Pereira

2013-07-25T23:59:59.000Z

445

Nuclear transparency is calculated for high-energy, semi-inclusive $(e,e'p)$ reactions, by accounting for all orders of Glauber multiple-scattering and by using realistic finite-range $p N$ interaction and (dynamically and statistically) correlated nuclear wave functions. The nuclear correlation effect is reduced due to the $p N$ finite-range effect. The net effect is small, and depends sensitively on details of the nuclear correlations in finite nuclei, which are poorly known at present.

Ryoichi Seki; T. D. Shoppa; Akihisa Kohama; Koichi Yazaki

1995-12-06T23:59:59.000Z

446

Direct Drive Wave Energy Buoy – 33rd scale experiment

Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

447

The Whitham Equation as a Model for Surface Water Waves

The Whitham equation was proposed as an alternate model equation for the simplified description of uni-directional wave motion at the surface of an inviscid fluid. As the Whitham equation incorporates the full linear dispersion relation of the water wave problem, it is thought to provide a more faithful description of shorter waves of small amplitude than traditional long wave models such as the KdV equation. In this work, we identify a scaling regime in which the Whitham equation can be derived from the Hamiltonian theory of surface water waves. The Whitham equation is integrated numerically, and it is shown that the equation gives a close approximation of inviscid free surface dynamics as described by the Euler equations. The performance of the Whitham equation as a model for free surface dynamics is also compared to two standard free surface models: the KdV and the BBM equation. It is found that in a wide parameter range of amplitudes and wavelengths, the Whitham equation performs on par with or better than both the KdV and BBM equations.

Daulet Moldabayev; Henrik Kalisch; Denys Dutykh

2014-10-30T23:59:59.000Z

448

Extended range radiation dose-rate monitor

An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

Valentine, Kenneth H. (Knoxville, TN)

1988-01-01T23:59:59.000Z

449

Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave) Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave pulse cleaning over a wide range of input energies (from 0.1 to >10 mJ) and is successfully qualified

450

Wave function as geometric entity

A new approach to the geometrization of the electron theory is proposed. The particle wave function is represented by a geometric entity, i.e., Clifford number, with the translation rules possessing the structure of Dirac equation for any manifold. A solution of this equation is obtained in terms of geometric treatment. Interference of electrons whose wave functions are represented by geometric entities is considered. New experiments concerning the geometric nature of electrons are proposed.

B. I. Lev

2011-02-10T23:59:59.000Z

451

Cluster Dynamics of Planetary Waves

The dynamics of nonlinear atmospheric planetary waves is determined by a small number of independent wave clusters consisting of a few connected resonant triads. We classified the different types of connections between neighboring triads that determine the general dynamics of a cluster. Each connection type corresponds to substantially different scenarios of energy flux among the modes. The general approach can be applied directly to various mesoscopic systems with 3-mode interactions, encountered in hydrodynamics, astronomy, plasma physics, chemistry, medicine, etc.

Elena Kartashova; Victor S. L'vov

2008-11-05T23:59:59.000Z

452

The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

453

The position-representation wave function for multi-photon states and its equation of motion are introduced. A major strength of the theory is that it describes the complete evolution (including polarization and entanglement) of multi-photon states propagating through inhomogeneous media. As a demonstration of the two-photon wave function's use, we show how two photons in an orbital-angular-momentum entangled state decohere upon propagation through a turbulent atmosphere.

Brian J. Smith; M. G. Raymer

2007-02-21T23:59:59.000Z

454

Quantum transport calculations using periodic boundaryconditions

An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal groundstate calculations, thus is makes accurate quantum transport calculations for large systems possible.

Wang, Lin-Wang

2004-06-15T23:59:59.000Z

455

Utility Building Analysis Billing Period: NOV -2013

ELECTRICITY Consumption MUNICIPAL WATER Consumption 8 CCF STEAM Consumption CHILLED WATER Consumption GAS Building Analysis Billing Period: NOV - 2013 032 JACKSON HALL: 150,393 Square Feet ELECTRICITY Consumption,550 Square Feet ELECTRICITY Consumption 114,185 KWHRS MUNICIPAL WATER Consumption 1,423 CCF STEAM Consumption

Ciocan-Fontanine, Ionut

456

Coherency saturation in periodic structures with randomization

,28 or multicascade stimulated Raman scattering.29Â31 A major example of naturally occurring spatially periodic with very reasonable precision. In the specific case of x ray transition radiation of low layers can generate resonantly enhanced radiation in the hard x ray domain with almost unhampered

Kaplan, Alexander

457

Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the range-related cost as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empirical application to a sample (N=36,664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. The bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.

Lin, Zhenhong [ORNL

2014-01-01T23:59:59.000Z

458

The transition from phase chaos to defect chaos in the complex Ginzburg-Landau equation (CGLE) is related to saddle-node bifurcations of modulated amplitude waves (MAWs). First, the spatial period P of MAWs is shown to be limited by a maximum P_SN which depends on the CGLE coefficients; MAW-like structures with period larger than P_SN evolve to defects. Second, slowly evolving near-MAWs with average phase gradients $\

Lutz Brusch; Alessandro Torcini; Martin van Hecke; Martin G. Zimmermann; Markus Baer

2001-04-10T23:59:59.000Z

459

Simulation of the Reflected Blast Wave froma C-4 Charge

The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 ranges (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.

Howard, W M; Kuhl, A L; Tringe, J W

2011-08-01T23:59:59.000Z

460

First upper limits from LIGO on gravitational wave bursts

We report on a search for gravitational wave bursts using data from the first science run of the LIGO detectors. Our search focuses on bursts with durations ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians) as a function of their root-sum-square strain h{sub rss}; typical sensitivities lie in the range h{sub rss} {approx} 10{sup -19} - 10{sup -17} strain/{radical}Hz, depending on waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.

B. Abbott et al.

2004-03-09T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

461

Encyclopedia of Atmospheric Sciences, 2002 ROSSBY WAVES

WAVES Peter B. Rhines School of Oceanography, University of Washington, Seattle, Washington Large` wave. These waves owe their existence to the rotation and spherical shape of the Earth. Weather reinforce this inequality. Waves then become possible, which are dominated by nearly horizontal wind

Bordoni, Simona

462

Wavelet Spectrum Analysis and Ocean Wind Waves

Wavelet Spectrum Analysis and Ocean Wind Waves Paul C. Liu Abstract. Wavelet spectrum analysis is applied to a set of measured ocean wind waves data collected during the 1990 SWADE {Surface Wave Dynamics Experi- ment) program. The results reveal significantly new and previously unexplored Insights on wave

463

SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

2012-07-10T23:59:59.000Z

464

Rogue Waves UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL

Rogue Waves UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL OF MARINE AND ATMOSPHERIC SCIENCE 4600 Rickenbacker Causeway Miami, Florida 33149 http://www.rsmas.miami.edu Taking the Surprise Out of the Freak Wave another to create monster waves that not even the bravest surfer could love. Big waves are big news

Miami, University of

465

We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint ...

Aartsen, M.?G.

466

Range Creek Calibrated Dates Beta-202190

Range Creek Calibrated Dates 0 200 400 600 800 1000 1200 1400 Beta-202190 Beta-175753 Beta-175755 Beta-235067 Beta-202189 Beta-214831 Beta-202188 Beta-202191 Beta-203630 Beta-214832 Beta-175754 Beta a Carbon-14 calibrated date (95% CI) between 1000 and 1200 C.E. (Figure 5: Beta-235067). The calibrated

Provancher, William

467

Electrical Engineering Technology (EET) LONG RANGE SCHEDULE

and Machinery C T C T EET 365W Electrical Power & Machinery Laboratory C C, V V C C, V V EET 370T Energy=Virtual Laboratory, W=Web based This schedule is tentative. All Course offerings are subject to minimum enrollmentElectrical Engineering Technology (EET) LONG RANGE SCHEDULE Course Number and Name Fall 2010 Spr

468

6, 1018310216, 2006 Long-range transport

ACPD 6, 10183Â10216, 2006 Long-range transport of Asian dust and air pollutants to Taiwan C.-Y. Lin and air pollutants to Taiwan: observed evidence and model simulation C.-Y. Lin 1 , Z. Wang 2 , W.-N. Chen and air pollutants to Taiwan C.-Y. Lin et al. Title Page Abstract Introduction Conclusions References

Boyer, Edmond

469

Gravitomagnetism and the Earth-Mercury range

We numerically work out the impact of the general relativistic Lense-Thirring effect on the Earth-Mercury range caused by the gravitomagnetic field of the rotating Sun. The peak-to peak nominal amplitude of the resulting time-varying signal amounts to 1.75 10^1 m over a temporal interval 2 yr. Future interplanetary laser ranging facilities should reach a cm-level in ranging to Mercury over comparable timescales; for example, the BepiColombo mission, to be launched in 2014, should reach a 4.5 - 10 cm level over 1 - 8 yr. We looked also at other Newtonian (solar quadrupole mass moment, ring of the minor asteroids, Ceres, Pallas, Vesta, Trans-Neptunian Objects) and post-Newtonian (gravitoelectric Schwarzschild solar field) dynamical effects on the Earth-Mercury range. They act as sources of systematic errors for the Lense-Thirring signal which, in turn, if not properly modeled, may bias the recovery of some key parameters of such other dynamical features of motion. Their nominal peak-to-peak amplitudes are as large as 4 10^5 m (Schwarzschild), 3 10^2 m (Sun's quadrupole), 8 10^1 m (Ceres, Pallas, Vesta), 4 m (ring of minor asteroids), 8 10^-1 m (Trans-Neptunian Objects). Their temporal patterns are different with respect to that of the gravitomagnetic signal.

Lorenzo Iorio

2011-08-29T23:59:59.000Z

470

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah Hughes University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 Key Terms: earthquake

Sheehan, Anne F.

471

Tracking Dynamic Boundary Fronts using Range Sensors

are being deployed for real-time monitoring applica- tions, such as detecting leakage of hazardous material location whereas in the latter approach a sensor finds approximate distance to a remote location where degrees and gather reflec- tivity and wind velocity information. Lidars (LIght Detection and Ranging

Ramamritham, Krithi

472

Non-Steady wall-bounded flows of viscoelastic fluids under periodic forcing

The problem of oscillating flows inside pipes under periodic forcing of viscoelastic fluids is addressed here. Starting from the linear Oldroyd-B model, a generalized Darcy's law is obtained in frequency domain and an explicit expression for the dependence of the dynamic permeability on fluid parameters and forcing frequency is derived. Previous results in both viscoelastic and Newtonian fluids are here shown to be particular cases of our results. On the basis of our calculations, a possible explanation for the observed damping of local dynamic response as the forcing frequency increases is given. Good fitting with recent experimental studies of wave propagation in viscoelastic media is here exhibited. Sound wave propagation in viscoelastic media flowing inside straight pipes is investigated. In particular, we obtain the local dynamic response for weakly compressible flows.

Anier Hernández-García; Antonio Fernández-Barbero; Oscar Sotolongo-Costa

2013-01-18T23:59:59.000Z

473

Gravitational Wave Sources from New Physics

Forthcoming advances in direct gravitational wave detection from kilohertz to nanohertz frequencies have unique capabilities to detect signatures from or set meaningful constraints on a wide range of new cosmological phenomena and new fundamental physics. A brief survey is presented of the post-inflationary gravitational radiation backgrounds predicted in cosmologies that include intense new classical sources such as first-order phase transitions, late-ending inflation, and dynamically active mesoscopic extra dimensions. LISA will provide the most sensitive direct probes of such phenomena near TeV energies or Terascale. LISA will also deeply probe the broadband background, and possibly bursts, from loops of cosmic superstrings predicted to form in current models of brane inflation.

Craig J. Hogan

2006-08-25T23:59:59.000Z

474

Study of an Ising model with competing long- and short-range interactions

A classical spin-one lattice gas model is used to study the competition between short-range ferromagnetic coupling and long-range antiferromagnetic Coulomb interactions. The model is a coarse-grained representation of frustrated phase separation in high-temperature superconductors. The ground states are determined for the complete range of parameters by using a combination of numerical and analytical techniques. The crossover between ferromagnetic and antiferromagnetic states proceeds via a rich structure of highly symmetric striped and checkerboard phases. There is no devil's staircase behavior because mixtures of stripes with different period phase separate.

Loew, U.; Emery, V.J. (Department of Physics, Brookhaven National Laboratory, Upton, New York 11973 (United States)); Fabricius, K. (Department of Physics, University of Wuppertal, 42097 Wuppertal (Germany)); Kivelson, S.A. (Department of Physics, University of California, Los Angeles, California 90024 (United States))

1994-03-21T23:59:59.000Z

475

Design of 3D eye-safe middle range vibrometer

Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1–100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t?30psec) and low energy (E?200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P?30mW). Both lasers perform on the eye-safe wavelength 1.5 ?m. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and a scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.

Polulyakh, Valeriy [Advanced Data Security, 1933 O'Toole Way, San Jose, CA 95131 (United States); Poutivski, Iouri [Terimber Corporation, 2456 Homewood Drive, San Jose, CA 95128, USA and Facebook Inc, 1601 Willow Road, Menlo Park, CA 94025 (United States)

2014-05-27T23:59:59.000Z

476

Gravity Wave Turbulence in Wave Tanks: Space and Time Statistics Sergei Lukaschuk,1,* Sergey the first simultaneous space-time measurements for gravity wave turbulence in a large laboratory flume. We found that the slopes of k and ! wave spectra depend on wave intensity. This cannot be explained by any

Nazarenko, Sergey

477

Dances with waves Air-sea interaction The generation and growth of waves due to

Dances with waves Air-sea interaction Â· The generation and growth of waves due to wind blowing over to the sea causes the waves to grow until equilibrium is reached between input and dissipation of energy. The most obvious manifestation of wave energy dissipation is breaking waves, often visible as whitecaps

Haak, Hein

478

Physica D 159 (2001) 3557 Wave group dynamics in weakly nonlinear long-wave models

Physica D 159 (2001) 35Â57 Wave group dynamics in weakly nonlinear long-wave models Roger Grimshawa Communicated by A.C. Newell Abstract The dynamics of wave groups is studied for long waves, using the framework reserved. Keywords: Wave group dynamics; KortewegÂde Vries equation; Nonlinear SchrÂ¨odinger equation 1

Pelinovsky, Dmitry

479