ARM: Short Wave Flux Analysis: 15-min resolution on SIRS data, Long algorithm
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Stoffel, Tom; Kay, Bev; Habte, Aron; Anderberg, Mary; Kutchenreiter, Mark
Short Wave Flux Analysis: 15-min resolution on SIRS data, Long algorithm. Measurements began in January, 1994, and have continued to the present time. Data collected are from the Southern Great Plains (SGP) location.
Wave momentum flux parameter: a descriptor for nearshore waves
US Army Corps of Engineers
Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution
Long, Chuck
2008-05-14
The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.
Energy flux of timeharmonic waves in anisotropic dissipative media
Cerveny, Vlastislav
Energy flux of timeÂharmonic waves in anisotropic dissipative media Vlastislav Å¸ Cerven/transmission problem. Energy flux quantities related to the summary wavefield, composed of several waves, are derived in the summary energy flux in addition to the energy fluxes of the individual waves. The interaction energy
Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter
US Army Corps of Engineers
Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter-examines existing wave run-up data for regular, irregular and solitary waves on smooth, impermeable plane slopes. A simple physical argument is used to derive a new wave run-up equation in terms of a dimensionless wave
Electrostatic-plasma-wave energy flux
Amendt, P.; Rostoker, N.
1984-01-01
would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thefeature of cross-field wave-energy transport, previous con-
Electrostatic-plasma-wave energy flux
Amendt, P.; Rostoker, N.
1984-01-01
would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of
Energy propagation by transverse waves in multiple flux tube systems using filling factors
Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.; Verth, G. E-mail: stief.gijsen@wis.kuleuven.be E-mail: g.verth@sheffield.ac.uk
2014-11-01
In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated by kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.
Fluctuations of energy flux in wave turbulence Eric Falcon,1
Falcon, Eric
Fluctuations of energy flux in wave turbulence ´Eric Falcon,1 S´ebastien Auma^itre,2 Claudio Falc gravity and capillary wave turbulence in a statistically stationary regime displays fluctuations much interactions transfer kinetic energy toward small scales where viscous dissipation takes place
Whistler mode waves and the electron heat flux in the solar wind: cluster observations
Lacombe, C.; Alexandrova, O.; Cornilleau-Wehrlin, N.; Mangeney, A.; De Conchy, Y.; Maksimovic, M.; Matteini, L.; Santolík, O.
2014-11-20
The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies f in [1, 400] Hz, during five years (2001-2005), when Cluster was in the free solar wind. In ?10% of the selected data, we observe narrowband, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The lifetime of these waves varies between a few seconds and several hours. Here, we present, for the first time, an analysis of long-lived whistler waves, i.e., lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of background turbulence, a slow wind, a relatively large electron heat flux, and a low electron collision frequency. When the electron parallel beta factor ? {sub e?} is larger than 3, the whistler waves are seen along the heat flux threshold of the whistler heat flux instability. The presence of such whistler waves confirms that the whistler heat flux instability contributes to the regulation of the solar wind heat flux, at least for ? {sub e?} ? 3, in slow wind at 1 AU.
Ulmschneider, Peter
ON THE GENERATION OF FLUX-TUBE WAVES IN STELLAR CONVECTION ZONES. IV. LONGITUDINAL WAVE ENERGY are important only for cool stars with Teff generated wave energy decreases. The maximum wave energy flux generated in Population II stars is 7 Â 108 ergs cmÀ2 sÀ1, and it is practically
Traveling-wave device with mass flux suppression
Swift, Gregory W. (Santa Fe, NM); Backhaus, Scott N. (Los Alamos, NM); Gardner, David L. (White Rock, NM)
2000-01-01
A traveling-wave device is provided with the conventional moving pistons eliminated. Acoustic energy circulates in a direction through a fluid within a torus. A side branch may be connected to the torus for transferring acoustic energy into or out of the torus. A regenerator is located in the torus with a first heat exchanger located on a first side of the regenerator downstream of the regenerator relative to the direction of the circulating acoustic energy; and a second heat exchanger located on an upstream side of the regenerator. The improvement is a mass flux suppressor located in the torus to minimize time-averaged mass flux of the fluid. In one embodiment, the device further includes a thermal buffer column in the torus to thermally isolate the heat exchanger that is at the operating temperature of the device.
Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves
Fringer, Oliver B.
Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves S waves. Our results show that the contributions to the total energy flux from these additional terms as well as non- linearity. The partitioning of the incident internal wave energy over the course
Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH
Balasubramanian, Ravi
Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH College of Oceanic FE u p cgE is a fundamental quan- tity in internal wave energetics to identify energy sources, wave propagation, and energy sinks. Internal wave radiation transports energy from the boundaries
CONDITIONS FOR TRANSVERSE WAVES PROPAGATION ALONG THIN MAGNETIC FLUX TUBES ON THE SUN
Lopin, Igor; Nagorny, Ivan
2013-09-10
The propagation of kink waves in the thin gravity stratified flux tubes with a generalized magnetic field distribution model is considered in cylindrical geometry. The new kink wave equations for both wave variables are obtained. It is shown that the inclusion of the radial component of an unperturbed tube magnetic field sufficiently transforms the conditions for the propagation of transverse waves. It is demonstrated that, for the models of isothermal and polytropic atmosphere in the tube and its environment, the propagation of kink waves along thin magnetic flux tubes is cutoff-free.
Soler, Roberto
2015-01-01
Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles for the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfv\\'en continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In ...
Alexander, M. Joan
Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via observations of mountain wave events in the stratosphere above South Georgia Island in the remote southern important drag forces on the circulation. Small island orography is generally neglected in mountain wave
Analysis of formaldehyde fluxes above a Ponderosa Pine forest measured via eddy-covariance
Digangi, FABCDE
2011-01-01
Analysis of formaldehyde fluxes above a Ponderosa Pine Go To Analysis of formaldehyde fluxes above a Ponderosa 2011: Analysis of formaldehyde fluxes above a Ponderosa
Falcon, Eric
2014-01-01
energy flux are in good agreement with wave turbulence theory. The Kolmogorov-Zakharov constant waves interact with each other, they can develop a regime of wave turbulence where the wave energyPHYSICAL REVIEW E 89, 023003 (2014) Energy flux measurement from the dissipated energy in capillary
Non-linear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes
E. Khomenko; M. Collados; T. Felipe
2008-01-25
We present results of non-linear, 2D, numerical simulations of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of three to five minutes are studied, after applying horizontal and vertical oscillatory perturbations to the equilibrium model. Spurious reflections of shock waves from the upper boundary are minimized thanks to a special boundary condition. This has allowed us to increase the duration of the simulations and to make it long enough to perform a statistical analysis of oscillations. The simulations show that deep horizontal motions of the flux tube generate a slow (magnetic) mode and a surface mode. These modes are efficiently transformed into a slow (acoustic) mode in the vA acoustic) mode propagates vertically along the field lines, forms shocks and remains always within the flux tube. It might deposit effectively the energy of the driver into the chromosphere. When the driver oscillates with a high frequency, above the cut-off, non-linear wave propagation occurs with the same dominant driver period at all heights. At low frequencies, below the cut-off, the dominant period of oscillations changes with height from that of the driver in the photosphere to its first harmonic (half period) in the chromosphere. Depending on the period and on the type of the driver, different shock patterns are observed.
Propagation and dispersion of sausage wave trains in magnetic flux tubes
Oliver, R; Terradas, J
2015-01-01
A localized perturbation of a magnetic flux tube produces a pair of wave trains that propagate in opposite directions along the tube. These wave packets disperse as they propagate, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. (2014) we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. Previous studies on wave propagation in magnetic wave guides have emphasized that the wave train dispersion is influenced by the particular dependence of the group velocity on the longitudinal wavenumber. Here we also find that long initial perturbations result in low amplitude wave packets and that large values of the magnetic tube to environment density ratio yield longer wave trains. To test the detectability ...
Torsional Alfven Waves in Solar Magnetic Flux Tubes of Axial Symmetry
Murawski, K; Musielak, Z E; Srivastava, A K; Kraskiewicz, J
2015-01-01
Aims: Propagation and energy transfer of torsional Alfv\\'en waves in solar magnetic flux tubes of axial symmetry is studied. Methods: An analytical model of a solar magnetic flux tube of axial symmetry is developed by specifying a magnetic flux and deriving general analytical formulae for the equilibrium mass density and a gas pressure. The main advantage of this model is that it can be easily adopted to any axisymmetric magnetic structure. The model is used to simulate numerically the propagation of nonlinear Alfv\\'en waves in such 2D flux tubes of axial symmetry embedded in the solar atmosphere. The waves are excited by a localized pulse in the azimuthal component of velocity and launched at the top of the solar photosphere, and they propagate through the solar chromosphere, transition region, and into the solar corona. Results: The results of our numerical simulations reveal a complex scenario of twisted magnetic field lines and flows associated with torsional Alfv\\'en waves as well as energy transfer to t...
Non-convex flux functions and compound shock waves in sediment beds
De Sterck, Hans
Non-convex flux functions and compound shock waves in sediment beds Gert Bartholomeeusen1 , Hans De of Engineering Science, Parks Road, Oxford OX1 3PJ, UK gilliane.sills@eng.ox.ac.uk Summary. Sediment layers in sediment beds and the numerical modelling of the sedimentation process using an experimentally obtained
Signal photon flux generated by high-frequency relic gravitational waves
Xin Li; Sai Wang; Hao Wen
2015-08-26
The power spectrum of primordial tensor perturbations $\\mathcal{P}_t$ increases rapidly in high frequency region if the spectral index $n_t>0$. It is shown that the amplitude of relic gravitational wave $h_t$($5\\times10^9$Hz) varies from $10^{-36}$ to $10^{-25}$ while $n_t$ varies from $-6.25\\times 10^{-3}$ to $0.87$. High frequency gravitational waves detector that is proposed by F.-Y. Li detects gravitational waves through observing the perturbed photon flux that is generated by interaction between the relic gravitational waves and electromagnetic system. It is shown that the perturbative photon flux $N_x^1$($5\\times10^9$Hz) varies from $1.40\\times10^{-4}\\rm s^{-1}$ to $2.85\\times10^{7}\\rm s^{-1}$ while $n_t$ varies from $-6.25\\times 10^{-3}$ to $0.87$. Correspondingly, the ratio of the transverse perturbative photon flux $N_x^1$ to the background photon flux varies from $10^{-28}$ to $10^{-16}$.
GLOBAL AND LOCAL CUTOFF FREQUENCIES FOR TRANSVERSE WAVES PROPAGATING ALONG SOLAR MAGNETIC FLUX TUBES
Routh, S. [Department of Physics, R. V. College of Engineering, Bangalore (India)] [Department of Physics, R. V. College of Engineering, Bangalore (India); Musielak, Z. E. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)] [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Hammer, R., E-mail: routhswati@rvce.edu.in, E-mail: zmusielak@uta.edu, E-mail: hammer@kis.uni-freiburg.de [Kiepenheuer-Institut fuer Sonnenphysik, Schoeneckstr. 6, Freiburg, D-79104 Germany (Germany)
2013-01-20
It is a well-established result that the propagation of linear transverse waves along a thin but isothermal magnetic flux tube is affected by the existence of the global cutoff frequency, which separates the propagating and non-propagating waves. In this paper, the wave propagation along a thin and non-isothermal flux tube is considered and a local cutoff frequency is derived. The effects of different temperature profiles on this local cutoff frequency are studied by considering different power-law temperature distributions, as well as the semi-empirical VAL C model of the solar atmosphere. The obtained results show that the conditions for wave propagation strongly depend on the temperature gradients. Moreover, the local cutoff frequency calculated for the VAL C model gives constraints on the range of wave frequencies that are propagating in different parts of the solar atmosphere. These theoretically predicted constraints are compared to observational data and are used to discuss the role played by transverse tube waves in the atmospheric heating and dynamics, and in the excitation of solar atmospheric oscillations.
Giommi, P; Cavazzuti, E; Colafrancesco, S; Cucchiara, A; Falcone, A; Kennea, J; Nesci, R; Perri, M; Tagliaferri, G; Tramacere, A; Tosti, G; Blustin, A J; Branduardi-Raymont, G; Burrows, D N; Chincarini, G; Dean, A J; Gehrels, N; Krimm, H; Marshall, F; Parsons, A M; Zhang, B
2007-01-01
Almost the totality of the bright foreground sources in the WMAP CMB maps are blazars, a class of sources that show usually also X-ray emission. However, 23 objects in a flux-limited sample of 140 blazars of the WMAP catalog (first year) were never reported before as X-ray sources. We present here the results of 41 Swift observations which led to the detection of all these 23 blazars in the 0.3-10 keV band. We conclude that all micro-wave selected blazars are X-ray emitters and that the distribution of the micro-wave to X-ray spectral slope $\\alpha_{mu x}$ of LBL blazars is very narrow, confirming that the X-ray flux of most blazars is a very good estimator of their micro-wave emission. The X-ray spectral shape of all the objects that were observed long enough to allow spectral analysis is flat and consistent with inverse Compton emission within the commonly accepted view where the radiation from blazars is emitted in a Sychrotron-Inverse-Compton scenario. We predict that all blazars and most radio galaxies a...
Wave-Climate Risk Analysis: Predicting the Size, Frequency and Duration of Large Wave Events
Sobey, Rodney
2002-01-01
2001, “Wave Climate Risk Analysis. ” Winslow, Kyle, Ph.D. in2.28.2001 Wave-Climate Risk Analysis: Predicting the Size,
Falcon, Eric
Fluctuations of the Energy Flux in Wave Turbulence S. Auma^itre , E. Falcon,§ and S. Fauve SPEC, DSM, CEA.falcon@univ-paris-diderot.fr The key governing parameter of wave turbulence is the energy flux that drives the waves and cascades of energy among different scales through the weak interaction between waves. It was understood first
Fangyu Li; Hao Wen; Zhenyun Fang
2015-10-20
Interaction of very low-frequency primordial(relic) gravitational waves(GWs) to cosmic microwave background(CMB) can generate B-mode polarization. Here, for the first time we point out that the electromagnetic(EM) response to high-frequency GWs(HFGWs) would produce quasi-B-mode distribution of the perturbative photon fluxes, and study the duality and high complementarity between such two B-modes. Based on this quasi-B-mode in HFGWs, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.
Multiple Scattering of Seismic Waves from Ensembles of Upwardly Lossy Thin Flux Tubes
Hanson, Chris S
2015-01-01
Our previous semi-analytic treatment of f- and p-mode multiple scattering from ensembles of thin flux tubes (Hanson and Cally, Astrophys. J. 781, 125; 791, 129, 2014) is extended by allowing both sausage and kink waves to freely escape at the top of the model using a radiative boundary condition there. As expected, this additional avenue of escape, supplementing downward loss into the deep solar interior, results in substantially greater absorption of incident f- and p-modes. However, less intuitively, it also yields mildly to substantially smaller phase shifts in waves emerging from the ensemble. This may have implications for the interpretation of seismic data for solar plage regions, and in particular their small measured phase shifts.
P. Giommi; M. Capalbi; E. Cavazzuti; S. Colafrancesco; A. Cucchiara; A. Falcone; J. Kennea; R. Nesci; M. Perri; G. Tagliaferri; A. Tramacere; G. Tosti; A. J. Blustin; G. Branduardi-Raymont; D. N. Burrows; G. Chincarini; A. J. Dean; N. Gehrels; H. Krimm; F. Marshall; A. M. Parsons; B. Zhang
2007-03-07
Almost the totality of the bright foreground sources in the WMAP CMB maps are blazars, a class of sources that show usually also X-ray emission. However, 23 objects in a flux-limited sample of 140 blazars of the WMAP catalog (first year) were never reported before as X-ray sources. We present here the results of 41 Swift observations which led to the detection of all these 23 blazars in the 0.3-10 keV band. We conclude that all micro-wave selected blazars are X-ray emitters and that the distribution of the micro-wave to X-ray spectral slope $\\alpha_{mu x}$ of LBL blazars is very narrow, confirming that the X-ray flux of most blazars is a very good estimator of their micro-wave emission. The X-ray spectral shape of all the objects that were observed long enough to allow spectral analysis is flat and consistent with inverse Compton emission within the commonly accepted view where the radiation from blazars is emitted in a Sychrotron-Inverse-Compton scenario. We predict that all blazars and most radio galaxies above the sensitivity limit of the WMAP and of the Planck CMB missions are X-ray sources detectable by the present generation of X-ray satellites. An hypothetical all-sky soft X-ray survey with sensitivity of approximately $10^{-15}$ erg/s would be crucial to locate and remove over 100,000 blazars from CMB temperature and polarization maps and therefore accurately clean the primordial CMB signal from the largest population of extragalactic foreground contaminants.
Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux
Ryan N. Lang
2015-05-08
We derive the scalar waveform generated by a binary of nonspinning compact objects (black holes or neutron stars) in a general class of scalar-tensor theories of gravity. The waveform is accurate to 1.5 post-Newtonian order [$O((v/c)^3)$] beyond the leading-order tensor gravitational waves (the "Newtonian quadrupole"). To solve the scalar-tensor field equations, we adapt the direct integration of the relaxed Einstein equations formalism developed by Will, Wiseman, and Pati. The internal gravity of the compact objects is treated with an approach developed by Eardley. We find that the scalar waves are described by the same small set of parameters which describes the equations of motion and tensor waves. For black hole--black hole binaries, the scalar waveform vanishes, as expected from previous results which show that these systems in scalar-tensor theory are indistinguishable from their general relativistic counterparts. For black hole--neutron star binaries, the scalar waveform simplifies considerably from the generic case, essentially depending on only a single parameter up to first post-Newtonian order. With both the tensor and scalar waveforms in hand, we calculate the total energy flux carried by the outgoing waves. This quantity is computed to first post-Newtonian order relative to the "quadrupole formula" and agrees with previous, lower order calculations.
Propagation and dispersion of transverse wave trains in magnetic flux tubes
Oliver, R.; Terradas, J.; Ruderman, M. S.
2014-07-01
The dispersion of small-amplitude, impulsively excited wave trains propagating along a magnetic flux tube is investigated. The initial disturbance is a localized transverse displacement of the tube that excites a fast kink wave packet. The spatial and temporal evolution of the perturbed variables (density, plasma displacement, velocity, ...) is given by an analytical expression containing an integral that is computed numerically. We find that the dispersion of fast kink wave trains is more important for shorter initial disturbances (i.e., more concentrated in the longitudinal direction) and for larger density ratios (i.e., for larger contrasts of the tube density with respect to the environment density). This type of excitation generates a wave train whose signature at a fixed position along a coronal loop is a short event (duration ? 20 s) in which the velocity and density oscillate very rapidly with typical periods of the order of a few seconds. The oscillatory period is not constant but gradually declines during the course of this event. Peak values of the velocity are of the order of 10 km s{sup –1} and are accompanied by maximum density variations of the order of 10%-15% the unperturbed loop density.
Electromagnetic waves, gravitational coupling and duality analysis
E. M. C. Abreu; C. Pinheiro; S. A. Diniz; F. C. Khanna
2005-10-27
In this letter we introduce a particular solution for parallel electric and magnetic fields, in a gravitational background, which satisfy free-wave equations and the phenomenology suggested by astrophysical plasma physics. These free-wave equations are computed such that the electric field does not induce the magnetic field and vice-versa. In a gravitational field, we analyze the Maxwell equations and the corresponding electromagnetic waves. A continuity equation is presented. A commutative and noncommutative analysis of the electromagnetic duality is described.
Impurity states in multiband s -wave superconductors: Analysis...
Office of Scientific and Technical Information (OSTI)
Impurity states in multiband s -wave superconductors: Analysis of iron pnictides Citation Details In-Document Search Title: Impurity states in multiband s -wave superconductors:...
S. S. Zilitinkevich; T. Elperin; N. Kleeorin; V. L'vov; I. Rogachevskii
2009-08-18
We advance our prior energy- and flux-budget turbulence closure model (Zilitinkevich et al., 2007, 2008) for the stably stratified atmospheric flows and extend it accounting for additional vertical flux of momentum and additional productions of turbulent kinetic energy, turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). Main effects of IGW are following: the maximal value of the flux Richardson number (universal constant 0.2-0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. In the heterogeneous stratification, when IGW propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. IGW also reduce anisotropy of turbulence and increase the share of TPE in the turbulent total energy. Depending on the direction (downward or upward), IGW either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.
Wave Energy Resource Analysis for Use in Wave Energy Conversion
Pastor, J.; Liu, Y.; Dou, Y.
2014-01-01
In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...
A Wave Analysis of the Subset Sum Problem Mark Jelasity
Jelasity, Márk
A Wave Analysis of the Subset Sum Problem M´ark Jelasity Research Group of Artificial Intelligence the wave model, a novel approach on analyzing the behavior of GAs. Our aim is to give techniques that have and effective heuristics on certain problem classes. The wave analysis is the process of building wave models
Fast Flux Test Facility final safety analysis report. Amendment 73
Gantt, D.A.
1993-08-01
This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.
Fangyu Li; Robert M L Baker Jr.; Zhenyun Fang; Gary V. Stephenson; Zhenya Chen
2008-06-12
We consider the electromagnetic (EM) perturbative effects produced by the high-frequency gravitational waves (HFGWs) in the GHz band in a special EM resonance system, which consists of fractal membranes, a Gaussian beam (GB) passing through a static magnetic field. It is predicted, under the synchroresonance condition, coherence modulation of the HFGWs to the preexisting transverse components of the GB produces the transverse perturbative photon flux (PPF),which has three novel and important properties: (1)The PPF has maximum at a longitudinal symmetrical surface of the GB where the transverse background photon flux (BPF) vanishes; (2) the resonant effect will be high sensitive to the propagating directions of the HFGWs; (3) the PPF reflected or transmitted by the fractal membrane exhibits a very small decay compared with very large decay of the much stronger BPF. Such properties might provide a new way to distinguish and display the perturbative effects produced by the HFGWs. We also discuss the high-frequency asymptotic behavior of the relic GWs in the microwave band and the positive definite issues of their energy-momentum pseudo-tensor.
Sylvain Marsat
2015-01-23
We investigate cubic-in-spin effects for inspiralling compact objects binaries, both in the dynamics and the energy flux emitted in gravitational waves, at the leading post-Newtonian order. We use a Lagrangian formalism to implement finite-size effects, and extend it at cubic order in the spins, which corresponds to the octupolar order in a multipolar decomposition. This formalism allows us to derive the equation of motion, equations of precession for the spin, and stress-energy tensor of each body in covariant form, and admits a formal generalization to any multipolar order. For spin-induced multipoles, i.e. in the case where the rotation of the compact object is sole responsible for the additional multipole moments, we find a unique structure for the octupolar moment representing cubic-in-spin effects. We apply these results to compute the associated effects in the dynamics of compact binary systems, and deduce the corresponding terms in the energy loss rate due to gravitational waves. These effects enter at the third-and-a-half post-Newtonian order, and can be important for binaries involving rapidly spinning black holes. We provide simplified results for spin-aligned, circular orbits, and discuss the quantitative importance of the new contributions.
Marsat, Sylvain
2014-01-01
We investigate cubic-in-spin effects for inspiralling compact objects binaries, both in the dynamics and the energy flux emitted in gravitational waves, at the leading post-Newtonian order. We use a Lagrangian formalism to implement finite-size effects, and extend it at cubic order in the spins, which corresponds to the octupolar order in a multipolar decomposition. This formalism allows us to derive the equation of motion, equations of precession for the spin, and stress-energy tensor of each body in covariant form, and admits a formal generalization to any multipolar order. For spin-induced multipoles, i.e. in the case where the rotation of the compact object is sole responsible for the additional multipole moments, we find a unique structure for the octupolar moment representing cubic-in-spin effects. We apply these results to compute the associated effects in the dynamics of compact binary systems, and deduce the corresponding terms in the energy loss rate due to gravitational waves. These effects enter a...
A DISCRETE WAVELET ANALYSIS OF FREAK WAVES IN THE OCEAN
measurement of landslide-generated impulse waves was presented in [2]. In fact, the measured results of continuous wave recordings made in the Sea of Japan during 19861990 by the Ship Research Institute of JapanA DISCRETE WAVELET ANALYSIS OF FREAK WAVES IN THE OCEAN EN-BING LIN AND PAUL C. LIU Received 25
MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER ARNAUD ROUGIREL
Paris-Sud XI, Université de
MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER MODEL ARNAUD ROUGIREL Abstract. In a context where for buoy-type ocean wave energy converter. The simplest model for this scheme is a non autonomous piecewise and periodic solutions, and compare the energy performance of this novel WEC with respect to the one of wave
Hay, J.; Schwender, J.
2011-08-01
Plant oils are an important renewable resource, and seed oil content is a key agronomical trait that is in part controlled by the metabolic processes within developing seeds. A large-scale model of cellular metabolism in developing embryos of Brassica napus (bna572) was used to predict biomass formation and to analyze metabolic steady states by flux variability analysis under different physiological conditions. Predicted flux patterns are highly correlated with results from prior 13C metabolic flux analysis of B. napus developing embryos. Minor differences from the experimental results arose because bna572 always selected only one sugar and one nitrogen source from the available alternatives, and failed to predict the use of the oxidative pentose phosphate pathway. Flux variability, indicative of alternative optimal solutions, revealed alternative pathways that can provide pyruvate and NADPH to plastidic fatty acid synthesis. The nutritional values of different medium substrates were compared based on the overall carbon conversion efficiency (CCE) for the biosynthesis of biomass. Although bna572 has a functional nitrogen assimilation pathway via glutamate synthase, the simulations predict an unexpected role of glycine decarboxylase operating in the direction of NH4+ assimilation. Analysis of the light-dependent improvement of carbon economy predicted two metabolic phases. At very low light levels small reductions in CO2 efflux can be attributed to enzymes of the tricarboxylic acid cycle (oxoglutarate dehydrogenase, isocitrate dehydrogenase) and glycine decarboxylase. At higher light levels relevant to the 13C flux studies, ribulose-1,5-bisphosphate carboxylase activity is predicted to account fully for the light-dependent changes in carbon balance.
Analysis of Metabolic Pathways and Fluxes in a Newly Discovered...
Office of Scientific and Technical Information (OSTI)
a maximum ethanol yield of 0.38+-0.07 mol mol-1 more glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius...
Partial wave analysis of J/?\\to ???
BES Collaboration
2008-04-15
Using $5.8 \\times 10^7 J/\\psi$ events collected in the BESII detector, the radiative decay $J/\\psi \\to \\gamma \\phi \\phi \\to \\gamma K^+ K^- K^0_S K^0_L$ is studied. The $\\phi\\phi$ invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/$c^{2}$. A partial wave analysis shows that the structure is dominated by a $0^{-+}$ state ($\\eta(2225)$) with a mass of $2.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02}$ GeV/$c^{2}$ and a width of $0.19 \\pm 0.03^{+0.06}_{-0.04}$ GeV/$c^{2}$. The product branching fraction is: $Br(J/\\psi \\to \\gamma \\eta(2225))\\cdot Br(\\eta(2225)\\to \\phi\\phi) = (4.4 \\pm 0.4 \\pm 0.8)\\times 10^{-4}$.
Stochastic analysis of ocean wave states with and without rogue waves
Hadjihosseini, A; Hoffmann, N P
2014-01-01
This work presents an analysis of ocean wave data including rogue waves. A stochastic approach based on the theory of Markov processes is applied. With this analysis we achieve a characterization of the scale dependent complexity of ocean waves by means of a Fokker-Planck equation, providing stochastic information of multi-scale processes. In particular we show evidence of Markov properties for increment processes, which means that a three point closure for the complexity of the wave structures seems to be valid. Furthermore we estimate the parameters of the Fokker-Planck equation by parameter-free data analysis. The resulting Fokker-Planck equations are verified by numerical reconstruction. This work presents a new approach where the coherent structure of rogue waves seems to be integrated into the fundamental statistics of complex wave states.
Analysis of optimum Lamb wave tuning
Shi, Yijun, 1970-
2002-01-01
Guided waves are of enormous interest in the nondestructive evaluation of thin-walled structures and layered media. Due to their dispersive and multi-modal nature, it is desirable to tune the waves by discriminating one ...
IWA : an analysis program for isentropic wave measurements.
Ao, Tommy
2009-02-01
IWA (Isentropic Wave Analysis) is a program for analyzing velocity profiles of isentropic compression experiments. IWA applies incremental impedance matching correction to measured velocity profiles to obtain in-situ particle velocity profiles for Lagrangian wave analysis. From the in-situ velocity profiles, material properties such as wave velocities, stress, strain, strain rate, and strength are calculated. The program can be run in any current version of MATLAB (2008a or later) or as a Windows XP executable.
Um, E.S.
2013-01-01
mod- eling of the acoustic wave equation: Geophysics, 39,solution analysis of acoustic wave equation in the Laplace-solutions to the acoustic wave equation in the Laplace-
Shafii, Mohammad Ali Meidianti, Rahma Wildian, Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto
2014-09-30
Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.
Use of a moments method for the analysis of flux distributions in subcritical assemblies
Cheng, Hsiang-Shou
1968-01-01
A moments method has been developed for the analysis of flux distributions in subcritical neutron-multiplying assemblies. The method determines values of the asymptotic axial and radial buckling, and of the extrapolated ...
K G Arun; Luc Blanchet; Bala R Iyer; Moh'd S S Qusailah
2008-04-11
The far-zone flux of energy contains hereditary (tail) contributions that depend on the entire past history of the source. Using the multipolar post-Minkowskian wave generation formalism, we propose and implement a semi-analytical method in the frequency domain to compute these contributions from the inspiral phase of a binary system of compact objects moving in quasi-elliptical orbits up to 3PN order. The method explicitly uses the quasi-Keplerian representation of elliptical orbits at 1PN order and exploits the doubly periodic nature of the motion to average the 3PN fluxes over the binary's orbit. Together with the instantaneous (non-tail) contributions evaluated in a companion paper, it provides crucial inputs for the construction of ready-to-use templates for compact binaries moving on quasi-elliptic orbits, an interesting class of sources for the ground based gravitational wave detectors such as LIGO and Virgo as well as space based detectors like LISA.
Parameterization and Statistical Analysis of Hurricane Waves
Mclaughlin, Patrick William
2014-05-03
Recently, Gulf coast communities have experienced significant damage from landfalling hurricanes. While the effects of hurricane surge on coastal communities have been examined and better defined, risk of damage due to hurricane waves is less...
Helicity and partial wave amplitude analysis of D -> K^* ?decay
El hassan El aaoud; A. N. Kamal
1999-10-14
We have carried out an analysis of helicity and partial-wave amplitudes for the process D -> K^* \\rho in the factorization approximation using several models for the form factors. All the models, with the exception of one, generate partial-wave amplitudes with the hierarchy $\\mid S\\mid >\\mid P\\mid >\\mid D\\mid$. The one exception gives $\\mid S \\mid >\\mid D \\mid >\\mid P \\mid$. Even though in most models the D-wave amplitude is an order of magnitude smaller than the S-wave amplitude, its effect on the longitudinal polarization could be as large as 30%. Due to a misidentification of the partial-wave amplitudes in terms of the Lorentz structures in the relevant literature, we cast doubt on the veracity of the listed data, particularly the partial-wave branching ratios. (PACS numbers: 13.25.-k, 13.25.Ft)
Grilli, Stéphan T.
Ocean Waves Measurement and Analysis, Fifth International Symposium WAVES 2005, 3rd-7th, July, 2005 WAVES 2005, 3rd-7th, July, 2005. Madrid, Spain #12;Ocean Waves Measurement and Analysis, Fifth International Symposium WAVES 2005, 3rd-7th, July, 2005. Madrid, Spain #12;Ocean Waves Measurement and Analysis
Victoria, University of
A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical of Mechanical Engineering) ABSTRACT Within a wave energy converter's operational bandwidth, device operation
Boyer, Edmond
surface: analysis through critical flux and osmotic pressure Benjamin Espinasse, Patrice Bacchin* , Pierre of the critical flux on these conditions is discussed and analysed through the osmotic pressure of the colloidal dispersion. Keywords: Critical flux, ultrafiltration, colloids, membrane, irreversibility, fouling, osmotic
Goldstein, Allen
Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux Abstract High ground-level ozone concentrations are typical of Mediterranean climates. Plant exposure to this oxidant is known to reduce carbon assimilation. Ozone damage has been traditionally measured through
ANALYSIS OF THE RADIATION FLUX PROFILE OF THE 100 SUN PROMOTEO FACETTED DISH CONCENTRATOR
ANALYSIS OF THE RADIATION FLUX PROFILE OF THE 100 SUN PROMOTEO FACETTED DISH CONCENTRATOR J, due to the need for both a tightly toleranced mirror support structure and a precise solar tracking on a commercially available satellite dish tracking actuation system, although a more cost effective tracking system
Fangyu Li; R. M. L. Baker, Jr.; Zhenya Chen
2006-04-26
There exist corresponding metric perturbations of the relic gravitational waves (GWs) in the region of approximately h~10^(-30)-10^(-32)in the GHz band. A detector for these GWs is described in which we measure the perturbative photon flux (PPF) or signal generated by such high-frequency relic GWs (HFRGWs) via a coupling system of fractal membranes and a Gaussian beam (GB) passing through a static magnetic field. It is found that under the synchro-resonance condition in which the frequency of the GB is set equal to the frequency of the expected HFRGWs (h~2.00*10^(-31), v_g=10^10Hz in the quintessential inflationary models (QIM) and h~6.32*10^(-31), v_g=10^10Hz in the pre-big bang scenario (PBBS) may produce the PPFs of ~4.04*10^2/s and ~1.27*10^3/s in a surface of 100cm^2 area at the waist of the GB, respectively. The relatively weak first-order PPF, directed at right angles to the expected HFRGWs, is reflected by fractal membrane and the resulting reflected PPF (signal) exhibits a very small decay in transit to the detector (tunable microwave receiver) compared with the much stronger background photon flux, which allows for detection of the reflected PPF with signal to background noise ratios greater than one at the distance of the detector. We also discuss the selection capability of system and directional sensitivity for the resonance components from the stochastic relic GW background. The resolution of tiny difference between the PPFs generated by the relic GWs in the QIM and in the PBBS may be established and will be of cosmological significance. PACS numbers: 04.30.Nk, 04.30.Db, and 98.80.Cq.
Um, E.S.
2013-01-01
mod- eling of the acoustic wave equation: Geophysics, 39,and C. Shin, 2011, 3D acoustic wave form inversion in thesolution analysis of acoustic wave equation in the Laplace-
Particle flux transformation in the mesopelagic water column: process analysis and global balance
Guidi, Lionel
2008-10-10
IN THE MESOPELAGIC WATER COLUMN: PROCESS ANALYSIS AND GLOBAL BALANCE A Dissertation by LIONEL GUIDI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR... OF PHILOSOPHY May 2008 Major Subject: Oceanography PARTICLE FLUX TRANSFORMATION IN THE MESOPELAGIC WATER COLUMN: PROCESS ANALYSIS AND GLOBAL BALANCE A Dissertation by LIONEL GUIDI Submitted to the Office of Graduate...
Fourier analysis of the flux-tube distribution in SU(3) lattice QCD
Arata Yamamoto
2010-04-16
This letter presents a novel analysis of the action/energy density distribution around a static quark-antiquark pair in SU(3) lattice quantum chromodynamics. Using the Fourier transformation of the link variable, we remove the high-momentum gluon and extract the flux-tube component from the action/energy density. When the high-momentum gluon is removed, the statistical fluctuation is drastically suppressed, and the singularities from the quark self-energy disappear. The obtained flux-tube component is broadly distributed around the line connecting the quark and the antiquark.
Michael Boyle; Alessandra Buonanno; Lawrence E. Kidder; Abdul H. Mroué; Yi Pan; Harald P. Pfeiffer; Mark A. Scheel
2008-10-06
Expressions for the gravitational wave (GW) energy flux and center-of-mass energy of a compact binary are integral building blocks of post-Newtonian (PN) waveforms. In this paper, we compute the GW energy flux and GW frequency derivative from a highly accurate numerical simulation of an equal-mass, non-spinning black hole binary. We also estimate the (derivative of the) center-of-mass energy from the simulation by assuming energy balance. We compare these quantities with the predictions of various PN approximants (adiabatic Taylor and Pade models; non-adiabatic effective-one-body (EOB) models). We find that Pade summation of the energy flux does not accelerate the convergence of the flux series; nevertheless, the Pade flux is markedly closer to the numerical result for the whole range of the simulation (about 30 GW cycles). Taylor and Pade models overestimate the increase in flux and frequency derivative close to merger, whereas EOB models reproduce more faithfully the shape of and are closer to the numerical flux, frequency derivative and derivative of energy. We also compare the GW phase of the numerical simulation with Pade and EOB models. Matching numerical and untuned 3.5 PN order waveforms, we find that the phase difference accumulated until $M \\omega = 0.1$ is -0.12 radians for Pade approximants, and 0.50 (0.45) radians for an EOB approximant with Keplerian (non-Keplerian) flux. We fit free parameters within the EOB models to minimize the phase difference, and confirm degeneracies among these parameters. By tuning pseudo 4PN order coefficients in the radial potential or in the flux, or, if present, the location of the pole in the flux, we find that the accumulated phase difference can be reduced - if desired - to much less than the estimated numerical phase error (0.02 radians).
Raffray, A. René
1999-01-01
Fusion Engineering and Design 45 (1999) 377407 Critical heat flux analysis and R&D for the design and the design analysis performed in converging on a choice of reference configuration and parameters which of the ITER divertor have to be designed for high heat fluxes (up to 20 MW/m2 over :10 s). Accommodation
HHFW (High Harmonic Fast Wave) Eddy Current Analysis for Antenna
Princeton Plasma Physics Laboratory
1 NSTX HHFW (High Harmonic Fast Wave) Eddy Current Analysis for Antenna NSTX-CALC-24-03-01 June 1 performed.) The model was first built for NSTX to verify the eddy current effect on antenna during plasma force of the induced eddy current in the components. The force data was transferred to the structural
Fourier analysis of wave turbulence in a thin elastic plate
Nicolas Mordant
2010-06-18
The spatio-temporal dynamics of the deformation of a vibrated plate is measured by a high speed Fourier transform profilometry technique. The space-time Fourier spectrum is analyzed. It displays a behavior consistent with the premises of the Weak Turbulence theory. A isotropic continuous spectrum of waves is excited with a non linear dispersion relation slightly shifted from the linear dispersion relation. The spectral width of the dispersion relation is also measured. The non linearity of this system is weak as expected from the theory. Finite size effects are discussed. Despite a qualitative agreement with the theory, a quantitative mismatch is observed which origin may be due to the dissipation that ultimately absorbs the energy flux of the Kolmogorov-Zakharov casade.
Simulation and Analysis of Converging Shock Wave Test Problems
Ramsey, Scott D.; Shashkov, Mikhail J.
2012-06-21
Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.
A multi-site analysis of random error2 in tower-based measurements of carbon and energy fluxes3
Forest Service, 271 Mast Road, Durham, NH 03824 USA.25 #12;RANDOM ERRORS IN ENERGY AND CO2 FLUX1 A multi-site analysis of random error2 in tower-based measurements of carbon and energy fluxes3 4 Forest Service, 271 Mast Road, Durham, NH 03824, USA.11 3 LI-COR Biosciences, Inc., 4421 Superior Street
Wurtele, Jonathan S.
2008-01-01
Powered by a Relativistic Klystron", Phys. Rev. Lett. 11.Analysis the Relativistic Klystron and the Standing-WaveANALYSIS OF THE RELATIVISTIC KLYSTRON AND THE STANDING-WAVE
Analysis of optical interferometric measurements of guided acoustic waves in transparent solid media
Paris 7 - Denis Diderot, Université
Analysis of optical interferometric measurements of guided acoustic waves in transparent solid mechanisms and dispersion characteristics of guided waves in multilayered cylindrical solid media J. Acoust.1063/1.110550 DEFLECTION OF AN OPTICAL GUIDED WAVE BY A SURFACE ACOUSTIC WAVE Appl. Phys. Lett. 17, 265 (1970); 10
Fresnel analysis of the wave propagation in nonlinear electrodynamics
Yuri N. Obukhov; Guillermo F. Rubilar
2002-04-05
We study the wave propagation in nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of general nonlinear Lagrangian models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains non-trivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.
Yield Modeling and Analysis of a Clockless Asynchronous Wave Pipeline with Pulse Faults
Ayers, Joseph
Yield Modeling and Analysis of a Clockless Asynchronous Wave Pipeline with Pulse Faults T. Feng fault model and its modeling and analysis methods in a clockless asynchronous wave pipeline fault rate model for establishing a sound theoretical foundation for clockless wave pipeline design
Length Scale Analysis of Surface Energy Fluxes Derived from Remote Sensing
Brunsell, Nathaniel A.; Gillies, Robert R.
2003-01-01
thermal measurements. Remote Sens. Rev., 1, 197–247. ——, and F. E. Boland, 1996: Will a doubling of atmospheric carbon dioxide concentration lead to an increase or a decrease in water consumption by crops? Ecol. Modell., 88, 241–246. ——, and D. Ripley.../plain; charset=UTF-8 1212 VOLUME 4J O U R N A L O F H Y D R O M E T E O R O L O G Y q 2003 American Meteorological Society Length Scale Analysis of Surface Energy Fluxes Derived from Remote Sensing NATHANIEL A. BRUNSELL* Department of Plants, Soils...
Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion
Frandsen, Jannette B.
Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion Ralf Starzmann Fluid of harnessing the energy from ocean waves is the oscillating water column (OWC) device. The OWC converts
Time Variations of the Superkamiokande Solar Neutrino Flux Data by Rayleigh Power Spectrum Analysis
Koushik Ghosh; Probhas Raychaudhuri
2006-06-05
We have used the Rayleigh Power Spectrum Analysis of the solar neutrino flux data from 1) 5-day-long samples from Super-Kamiokande-I detector during the period from June, 1996 to July, 2001; 2) 10 -day-long samples from the same detector during the same period and (3) 45-day long from the same detector during the same period. According to our analysis (1) gives periodicities around 0.25, 23.33, 33.75 and 42.75 months; (2) exhibits periodicities around 0.5, 1.0, 28.17, 40.67 and 52.5 months and (3) shows periodicities around 16.5 and 28.5 months. We have found almost similar periods in the solar flares, sunspot data, solar proton data.
Piana, Michele
ELECTRON FLUX SPECTRAL IMAGING OF SOLAR FLARES THROUGH REGULARIZED ANALYSIS OF HARD X-RAY SOURCE a new method for imaging spectroscopy analysis of hard X-ray emission during solar flares. The method the method to a solar flare observed on 2002 February 20 by the RHESSI instrument. The event is characterized
A perturbative analysis of modulated amplitude waves in BoseEinstein condensates
Porter, Mason A.
A perturbative analysis of modulated amplitude waves in BoseEinstein condensates Mason A. Portera-temporal structures in nonlinear Schro¨dinger equations and thereby study the dynamics of quasi-one-dimensional BoseEinstein waves on their wave number. We also explore the band structure of BoseEinstein condensates in detail
Rigorous Analysis of Traveling Wave Photodetectors under High-Power Illumination
Aste, Andreas
Rigorous Analysis of Traveling Wave Photodetectors under High- Power Illumination Damir Pasalic data has shown excellent agreement. I. INTRODUCTION High-power traveling-wave photodetectors (TWPDs and velocity mismatch between the optical and RF waves over the length of the TWPD. For high power handling
Modal analysis of Lamb wave generation in elastic plates by liquid wedge transducers
Paris 7 - Denis Diderot, Université
Modal analysis of Lamb wave generation in elastic plates by liquid wedge transducers X. Jia Groupe by a variety of methods. For signal processing applications, Lamb waves are generated by using interdigital is presented to describe the excitation of Lamb waves in an elastic plate using a liquid wedge transducer
Analysis of seismic waves generated by surface blasting at Indiana coal mines
Polly, David
Analysis of seismic waves generated by surface blasting at Indiana coal mines A project pursuant is to investigate the characteristics of mine blast seismic waves in southern Indiana. Coal mines are prevalent implications for understanding different seismic sources, earthquake structures in Indiana, and wave
Integrated standing-wave transform spectrometer for near infrared optical analysis
Miller, David A. B.
Integrated standing-wave transform spectrometer for near infrared optical analysis S. R. Bhalotra standing-wave Fourier-transform spectrometer design has been developed for applica- tions in the near IR. Whereas recent development of the standing-wave architecture has been focused on interferometric sensing
Analysis and Development of a Three Body Heaving Wave Energy Scott J. Beatty
Victoria, University of
Analysis and Development of a Three Body Heaving Wave Energy Converter by Scott J. Beatty BASc Body Heaving Wave Energy Converter by Scott J. Beatty BASc, University of British Columbia, 2003 A relative motion based heaving point absorber wave energy converter is being co- developed by researchers
Wavefield Analysis of Rayleigh Waves for Near-Surface Shear-Wave Velocity
Zeng, Chong
2011-05-18
Shear (S)-wave velocity is a key property of near-surface materials and is the fundamental parameter for many environmental and engineering geophysical studies. Directly acquiring accurate S-wave velocities from a seismic shot gather is usually...
Spatial and temporal modulation of internal waves and thermohaline structure
Cole, Sylvia T.
2010-01-01
of outward internal wave energy and dissipation was 17 GW.between internal wave energy density, energy flux, andstructure of internal wave energy density, energy flux, and
Hay, J.; Schwender, J.
2011-08-01
Computational simulation of large-scale biochemical networks can be used to analyze and predict the metabolic behavior of an organism, such as a developing seed. Based on the biochemical literature, pathways databases and decision rules defining reaction directionality we reconstructed bna572, a stoichiometric metabolic network model representing Brassica napus seed storage metabolism. In the highly compartmentalized network about 25% of the 572 reactions are transport reactions interconnecting nine subcellular compartments and the environment. According to known physiological capabilities of developing B. napus embryos, four nutritional conditions were defined to simulate heterotrophy or photoheterotrophy, each in combination with the availability of inorganic nitrogen (ammonia, nitrate) or amino acids as nitrogen sources. Based on mathematical linear optimization the optimal solution space was comprehensively explored by flux variability analysis, thereby identifying for each reaction the range of flux values allowable under optimality. The range and variability of flux values was then categorized into flux variability types. Across the four nutritional conditions, approximately 13% of the reactions have variable flux values and 10-11% are substitutable (can be inactive), both indicating metabolic redundancy given, for example, by isoenzymes, subcellular compartmentalization or the presence of alternative pathways. About one-third of the reactions are never used and are associated with pathways that are suboptimal for storage synthesis. Fifty-seven reactions change flux variability type among the different nutritional conditions, indicating their function in metabolic adjustments. This predictive modeling framework allows analysis and quantitative exploration of storage metabolism of a developing B. napus oilseed.
Generation and analysis of multi-directional waves
Liagre, Pierre-Yves Francois Bernard
1999-01-01
Real sea states cannot be represented adequately by a single sine wave. Indeed, wind-generated waves in the ocean have obviously different amplitudes and frequencies, but also come from different directions. Consequently, the distribution of energy...
Efficiency analysis of a pneu-mechanical Wave Energy Converter : model of the device losses,
Psaltis, Demetri
ENAC/ Efficiency analysis of a pneu-mechanical Wave Energy Converter : model of the device losses. Van Herle 1 Mots Clés: Efficiency Analysis, Power Take Off, Renewable Energy, WEC, Wave Energy. 1 have been focused on the efficiency of the different technologies on a test rig and building
S-wave Splitting Analysis: Covariance Matrix Method and Preliminary Application
Li, Xu
2004-01-01
From polarization analysis on a covariance matrix, a method of S-wave splitting analysis is developed, which processes 3-component recordings simultaneously, rather than just 2 horizontal components as done traditionally. ...
Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor
Primm, Trent [ORNL; Gehin, Jess C [ORNL
2009-04-01
A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.
Benjamin Espinasse; Patrice Bacchin; Pierre Aimar
2008-01-17
A filtration procedure was developed to measure the reversibility of fouling during cross-flow filtration based on the square wave of applied pressure. The principle of this method, the apparatus required, and the associated mathematical relationships are detailed. This method allows for differentiating the reversible accumulation of matter on, and the irreversible fouling of, a membrane surface. Distinguishing these two forms of attachment to a membrane surface provides a means by which the critical flux may be determined. To validate this method, experiments were performed with a latex suspension at different degrees of destabilization (obtained by the addition of salt to the suspension) and at different cross-flow velocities. The dependence of the critical flux on these conditions is discussed and analysed through the osmotic pressure of the colloidal dispersion.
Luther, Douglas S.
The SubAntarctic Flux and Dynamics Experiment (SAFDE): Renewal Proposal for Data Analysis and Model Comparisons A "Group Proposal" Submitted to the National Science Foundation Division of Ocean's modeling work is fully funded by LANL, he does not require additional funding from NSF, except that some
Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors
Deirdre Shoemaker; Karan Jani; Lionel London; Larne Pekowsky
2015-03-09
Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Eintein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.
Alejandro Bohé; Guillaume Faye; Sylvain Marsat; Edward K Porter
2015-01-07
We investigate the dynamics of spinning binaries of compact objects at the next-to-leading order in the quadratic-in-spin effects, which corresponds to the third post-Newtonian order (3PN). Using a Dixon-type multipolar formalism for spinning point particles endowed with spin-induced quadrupoles and computing iteratively in harmonic coordinates the relevant pieces of the PN metric within the near zone, we derive the post-Newtonian equations of motion as well as the equations of spin precession. We find full equivalence with available results. We then focus on the far-zone field produced by those systems and obtain the previously unknown 3PN spin contributions to the gravitational-wave energy flux by means of the multipolar post-Minkowskian (MPM) wave generation formalism. Our results are presented in the center-of-mass frame for generic orbits, before being further specialized to the case of spin-aligned, circular orbits. We derive the orbital phase of the binary based on the energy balance equation and briefly discuss the relevance of the new terms.
Tsunami Wave Analysis and Possibility of Splay Fault Rupture During the 2004 Indian Ocean Earthquake
Tsunami Wave Analysis and Possibility of Splay Fault Rupture During the 2004 Indian Ocean Earthquake NORA DEDONTNEY 1 and JAMES R. RICE 1,2 Abstract--The 2004 Indian Ocean tsunami was observed by two, but which observed different tsunami lead wave morphologies. The earlier satellite, Jason-1, recorded a lead
Analysis of a Fivefold Symmetric Superposition of Plane Waves
Michael H. Schwarz; Robert A. Pelcovits
2012-03-17
We show that a symmetric superposition of five standing plane waves can be expressed as an infinite series of terms of decreasing wavenumber, where each term is a product of five plane waves. We show that this series converges pointwise in R^2 and uniformly in any disk domain in R^2. Using this series, we provide a heuristic argument for why the locations of the local extrema of a symmetric superposition of five standing plane waves can be approximated by the vertices of a Penrose tiling.
Root cause analysis of solder flux residue incidence in the manufacture of electronic power modules
Jain, Pranav
2011-01-01
This work investigates the root causes of the incidence of solder flux residue underneath electronic components in the manufacture of power modules. The existing deionized water-based centrifugal cleaning process was ...
Statistical Analysis of Microgravity Two-Phase Slug Flow via the Drift Flux Model
Larsen, Benjamin A
2014-05-01
of microgravity two-phase flow data difficult. Multiple researchers have postulated the microgravity drift flux model parameters to predict void fraction, however, these methods were initially developed with no consideration given to a microgravity environment...
Acoustic wave propagation through a supercooled liquid: A normal mode analysis
Yuki Matsuoka; Hideyuki Mizuno; Ryoichi Yamamoto
2012-10-17
The mechanism of acoustic wave propagation in supercooled liquids is not yet fully understood since the vibrational dynamics of supercooled liquids are strongly affected by their amorphous inherent structures. In this paper, the acoustic wave propagation in a supercooled model liquid is studied by using normal mode analysis. Due to the highly disordered inherent structure, a single acoustic wave is decomposed into many normal modes in broad frequency range. This causes the rapid decay of the acoustic wave and results in anomalous wavenumber dependency of the dispersion relation and the rate of attenuation.
Fully Coupled Electromechanical Elastodynamic Model for Guided Wave Propagation Analysis
Borkowski, Luke; Chattopadhyay, Aditi
2013-01-01
Physics-based computational models play a key role in the study of wave propagation for structural health monitoring (SHM) and the development of improved damage detection methodologies. Due to the complex nature of guided waves, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, a fully coupled electromechanical elastodynamic model for wave propagation in a heterogeneous, anisotropic material system is developed. The final framework provides the full three dimensional displacement and electrical potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated theoretically and proven computationally efficient. Studies are performed with surface bonded piezoelectric sensors to gain insight into the physics of experimental techniques used for SHM. Collocated actuation of the fundamental Lamb wave modes is modeled over a range of frequenc...
Ivanov, Julian; Miller, Richard D.; Xia, Jianghai; Steeples, Don W.; Park, Choon Byong
2006-11-01
constraint. The application of the joint analysis of refractions with surface waves (JARS) method provided a more realistic solution than the conventional refraction/tomography methods, which did not benefit from a reference model derived from real data...
Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Murphy, Neil; Nuno, Raquel G. E-mail: Charles.Smith@unh.edu E-mail: Bernie.Vasquez@unh.edu E-mail: raquel.nuno@asu.edu
2014-04-01
We have examined Ulysses magnetic field data using dynamic spectrogram techniques that compute wave amplitude, polarization, and direction of propagation over a broad range of frequencies and time. Events were identified that showed a strong polarization signature and an enhancement of power above the local proton gyrofrequency. We perform a statistical study of 502 wave events in an effort to determine when, where, and why they are observed. Most notably, we find that waves arising from newborn interstellar pickup ions are relatively rare and difficult to find. The quantities normally employed in theories of wave growth are neutral atom density and quantities related to their ionization and the subsequent dynamics such as wind speed, solar wind flux, and magnetic field orientation. We find the observations of waves to be largely uncorrelated to these quantities except for mean field direction where quasi-radial magnetic fields are favored and solar wind proton flux where wave observations appear to be favored by low flux conditions which runs contrary to theoretical expectations of wave generation. It would appear that an explanation based on source physics and instability growth rates alone is not adequate to account for the times when these waves are seen.
Partial wave analysis at BES III harnessing the power of GPUs
Niklaus Berger
2011-08-29
Partial wave analysis is a core tool in hadron spectroscopy. With the high statistics data available at facilities such as the Beijing Spectrometer III, this procedure becomes computationally very expensive. We have successfully implemented a framework for performing partial wave analysis on graphics processors. We discuss the implementation, the parallel computing frameworks employed and the performance achieved, with a focus on the recent transition to the OpenCL framework.
Application of wave-shape functions and Synchrosqueezing transform to pulse signal analysis
Wu, Hau-tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang
2015-01-01
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and study the pulse wave signal. Based on the wave shape function model and SST, we extract features, called the spectral pulse signature, based on the functional regression technique, to characterize the hemodynamics from the pulse wave signals. To demonstrate how the algorithm and the extracted features work, we study the radial pulse wave signal recorded by the sphygmomanometer from normal subjects and patients with congestive heart failure. The analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. In addition, it shows that different positions of the radial artery contain significant different information, which is compatible with the empirical conclusion of the pulse diagnosis in the traditional Chinese medicine.
Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.
Nakos, James Thomas
2005-12-01
The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.
Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam; Arkin, Adam; Keasling, Jay D.
2009-08-19
Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.
P. Astone; D. Babusci; M. Bassan; P. Carelli; E. Coccia; C. Cosmelli; S. D'Antonio; V. Fafone; F. Frontera; G. Giordano; C. Guidorzi; A. Marini; Y. Minenkov; I. Modena; G. Modestino; A. Moleti; E. Montanari; G. V. Pallottino; G. Pizzella; L. Quintieri; A. Rocchi; F. Ronga; L. Sperandio; R. Terenzi; G. Torrioli; M. Visco
2005-02-10
The statistical association between the output of the Gravitational Wave (GW) detectors EXPLORER and NAUTILUS and a list of Gamma Ray Bursts (GRBs) detected by the satellite experiments BATSE and BeppoSAX has been analyzed using cumulative algorithms. GW detector data collected between 1991 and 1999 have been correlated to the GRB flux peak times. The cumulative analysis of a large number of GRBs (387) allows to push the upper bound for the corresponding GW burst amplitude down to $h = 2.5\\cdot10^{-19}$.
Schwenk, Jacob Tyler
2013-08-31
Field data from Yuma Proving Ground, Arizona was used to test the feasibility of merging common multichannel analysis of surface waves (MASW) processing routines with mode- consistent shear-wave refraction traveltime ...
Analysis of WACSIS data using a directional hybrid wave model
Zhang, Shaosong
2007-04-25
and consistent estimates of the energy spreading parameter and mean wave direction of directional seas based on a cosine-2s model. In this approach, a Maximum Likelihood Method (MLM) is employed. Because it is more tolerant of errors in the estimated cross...
Yamaguchi, Y. [Plasma Research Center, University of Tsukuba (Japan); Ichimura, M. [Plasma Research Center, University of Tsukuba (Japan); Higaki, H. [Plasma Research Center, University of Tsukuba (Japan); Kakimoto, S. [Plasma Research Center, University of Tsukuba (Japan); Ide, K. [Plasma Research Center, University of Tsukuba (Japan); Inoue, D. [Plasma Research Center, University of Tsukuba (Japan); Nagai, H. [Plasma Research Center, University of Tsukuba (Japan); Nakagome, K. [Plasma Research Center, University of Tsukuba (Japan); Fukuyama, A. [Kyoto University (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)
2005-01-15
The numerical analysis is performed with two dimensional wave code for controlling the eigenmode formation of fast Alfven waves in the GAMMA 10 central cell. The plasma production by fast waves depends on the wave excitation in the plasma. Eigenmodes are strongly formed when the boundary conditions in the axial and radial directions are satisfied. As the optimum density for the formation of eigenmode exists discretely, the density is clamped at the value where the eigenmode is strongly formed. For the higher density plasma production, the eigenmodes must be continuously excited as the density increases. It is found that the almost continuous excitation of eigenmodes can be realized by using two waves with different frequencies at the same time.
Zhang, Y. S. [Department of Scientific Research, Dalian Naval Academy, Dalian 116018 (China); Cai, F. [Department of Navigation, Dalian Naval Academy, Dalian 116018 (China); Xu, W. M. [Department of Hydrography and Cartography, Dalian Naval Academy, Dalian 116018 (China)
2011-09-28
The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.
Analysis of Acoustic Wave Propagation in a Thin Moving Fluid
Patrick Joly; Ricardo Weder
2009-07-31
We study the propagation of acoustic waves in a fluid that is contained in a thin two-dimensional tube, and that it is moving with a velocity profile that only depends on the transversal coordinate of the tube. The governing equations are the Galbrun equations, or, equivalently, the linearized Euler equations. We analyze the approximate model that was recently derived by Bonnet-Bendhia, Durufl\\'e and Joly to describe the propagation of the acoustic waves in the limit when the width of the tube goes to zero. We study this model for strictly monotonic stable velocity profiles. We prove that the equations of the model of Bonnet-Bendhia, Durufl\\'e and Joly are well posed, i.e., that there is a unique global solution, and that the solution depends continuously on the initial data. Moreover, we prove that for smooth profiles the solution grows at most as $t^3$ as $t \\to \\infty$, and that for piecewise linear profiles it grows at most as $t^4$. This establishes the stability of the model in a weak sense. These results are obtained constructing a quasi-explicit representation of the solution. Our quasi-explicit representation gives a physical interpretation of the propagation of acoustic waves in the fluid and it provides an efficient way to compute numerically the solution.
Johnson-McDaniel, Nathan K
2014-01-01
(Abridged) High-order terms in the post-Newtonian (PN) expansions of various quantities for compact binaries exhibit a combinatorial increase in complexity, including ever-increasing numbers of transcendentals. Here we consider the gravitational wave energy flux at infinity from a point particle in a circular orbit around a Schwarzschild black hole, which is known to 22PN beyond the lowest-order Newtonian prediction, at which point each order has over 1000 terms. We introduce a factorization that considerably simplifies the spherical harmonic modes of the energy flux (and thus also the amplitudes of the spherical harmonic modes of the gravitational waves); it is likely that much of the complexity this factorization removes is due to curved-space wave propagation (e.g., tail effects). For the modes with azimuthal number l of 7 or greater, this factorization reduces the expressions for the modes that enter the 22PN total energy flux to pure integer PN series with rational coefficients, which amounts to a reduct...
Millimeter wave analysis of the dielectric properties of oil shales
John A. Scales; Michael Batzle
2006-06-06
Natural sedimentation processes give rise to fine layers in shales. If these layers alternate between organic-rich and organic-poor sediments, then the contrast in dielectric properties gives rise to an effective birefringence as the presence of hydrocarbons suppresses the dielectric constant of the host rock. We have measured these effects with a quasioptical millimeter wave setup that is rapid and noncontacting. We find that the strength of this birefringence and the overall dielectric permittivity provide two useful diagnostic of the organic content of oil shales.
Relevance of complex branch points for partial wave analysis
Ceci, S.; Svarc, A.; Doering, M.; Hanhart, C.; Krewald, S.; Meissner, U.-G.
2011-07-15
A central issue in hadron spectroscopy is to deduce--and interpret--resonance parameters, namely, pole positions and residues, from experimental data, for those are the quantities to be compared to lattice QCD or model calculations. However, not every structure in the observables derives from a resonance pole: the origin might as well be branch points, either located on the real axis (when a new channel composed of stable particles opens) or in the complex plane (when at least one of the intermediate particles is unstable). In this paper we demonstrate first the existence of such branch points in the complex plane and then show on the example of the {pi}N P{sub 11} partial wave that it is not possible to distinguish the structures induced by the latter from a true pole signal based on elastic data alone.
Nathan K. Johnson-McDaniel
2014-07-24
(Abridged) High-order terms in the post-Newtonian (PN) expansions of various quantities for compact binaries exhibit a combinatorial increase in complexity, including ever-increasing numbers of transcendentals. Here we consider the gravitational wave energy flux at infinity from a point particle in a circular orbit around a Schwarzschild black hole, which is known to 22PN beyond the lowest-order Newtonian prediction, at which point each order has over 1000 terms. We introduce a factorization that considerably simplifies the spherical harmonic modes of the energy flux (and thus also the amplitudes of the spherical harmonic modes of the gravitational waves); it is likely that much of the complexity this factorization removes is due to curved-space wave propagation (e.g., tail effects). For the modes with azimuthal number l of 7 or greater, this factorization reduces the expressions for the modes that enter the 22PN total energy flux to pure integer PN series with rational coefficients, which amounts to a reduction of up to a factor of ~150 in the total number of terms in a given mode. The reduction in complexity becomes less dramatic for smaller l, due to the structure of the expansion, though the factorization is still able to remove all the half-integer PN terms. For the 22PN l = 2 modes, this factorization still reduces the total number of terms (and size) by a factor of ~10 and gives purely rational coefficients through 8PN. This factorization also improves the convergence of the series, though we find the exponential resummation introduced for the full energy flux by Isoyama et al. to be even more effective at improving the convergence of the individual modes, producing improvements of over four orders of magnitude over the original series for some modes. However, the exponential resummation is not as effective at simplifying the series, particularly for the higher-order modes.
Design of photonic metamaterial multi-junction solar cells using rigorous coupled wave analysis
Lansey, Eli
Design of photonic metamaterial multi-junction solar cells using rigorous coupled wave analysis Eli a horizontally-oriented multi-junction solar cell by creating an array of cavities tuned with targeted CMs of New York, New York, NY, USA 10031 August 26, 2010 ABSTRACT We have developed a method to design multi-junction
Troian, Sandra M.
MICROFLUIDIC DETECTION AND ANALYSIS BY INTEGRATION OF EVANESCENT WAVE SENSING WITH THERMOCAPILLARY, Princeton, NJ, USA ABSTRACT An integrated system capable of microfluidic actuation, detection and sensing surface tension-driven microfluidic devices [1-5] requires new and innovative methods for in-situ droplet
Development and analysis of non-linearity in the pressure waves resulting from thermoacoustic heat
Paris-Sud XI, Université de
Development and analysis of non-linearity in the pressure waves resulting from thermoacoustic heat@aucegypt.edu Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France 1123 #12;Thermoacoustic. In this work, a thermoacoustic prototype was designed, built and operated and its performance indices
Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint
Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.
2014-02-01
Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.
Glüsenkamp, Thorsten
2015-01-01
The recent discovery of a diffuse neutrino flux up to PeV energies raises the question of which populations of astrophysical sources contribute to this diffuse signal. One extragalactic candidate source population to produce high-energy neutrinos are Blazars. We present results from a likelihood analysis searching for cumulative neutrino emission from Blazar populations selected with the 2nd Fermi-LAT AGN catalog (2LAC) using an IceCube data set that has been optimized for the detection of individual sources. In contrast to previous searches with IceCube, the investigated populations contain up to hundreds of sources, the biggest one being the entire Blazar sample measured by the Fermi-LAT. No significant neutrino signal was found from any of these populations. Some implications of this non-observation for the origin of the observed PeV diffuse signal will be discussed.
Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint
Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.
2014-03-01
This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.
NONLINEAR WAVE EVOLUTION IN VLASOV PLASMA: A LIE-TRANSFORM ANALYSIS
Cary, J.R.
2010-01-01
Packets: The Meaning of Wave Energy and Momentum and theAnalyzing Wave Packets Wave Energy and Momentum Derivationa) . We f i r s t consider wave energy and wave momentum. We
NONLINEAR WAVE EVOLUTION IN VLASOV PLASMA: A LIE-TRANSFORM ANALYSIS
Cary, J.R.
2010-01-01
Packets: The Meaning of Wave Energy and Momentum and theAnalyzing Wave Packets Wave Energy and Momentum Derivationf i r s t consider wave energy and wave momentum. We prove
Turbulence and internal waves in numerical models of the equatorial undercurrents system
Pham, Hieu T.
2010-01-01
w ? field at t = 80; (b) Wave energy flux p ? w ? across thestress u ? w ? and (f) wave energy flux p ? w ? . Thewaves. The ratio of the wave energy flux to the rate of
Naoto Yokoyama; Masanori Takaoka
2014-12-09
A single-wavenumber representation of nonlinear energy spectrum, i.e., stretching energy spectrum is found in elastic-wave turbulence governed by the F\\"oppl-von K\\'arm\\'an (FvK) equation. The representation enables energy decomposition analysis in the wavenumber space, and analytical expressions of detailed energy budget in the nonlinear interactions are obtained for the first time in wave turbulence systems. We numerically solved the FvK equation and observed the following facts. Kinetic and bending energies are comparable with each other at large wavenumbers as the weak turbulence theory suggests. On the other hand, the stretching energy is larger than the bending energy at small wavenumbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode $a_{\\bm{k}}$ and its companion mode $a_{-\\bm{k}}$ is observed at the small wavenumbers. Energy transfer shows that the energy is input into the wave field through stretching-energy transfer at the small wavenumbers, and dissipated through the quartic part of kinetic-energy transfer at the large wavenumbers. A total-energy flux consistent with the energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
Analysis of Shear-horizontal Vibrations of Crystal Plates for Acoustic Wave Resonators and Sensors
Liu, Bo
2010-01-01
field excited liquid acoustic wave sensor,? IEEE Trans.3 high-frequency bulk acoustic wave sensor,? IEEE Trans.field excited liquid acoustic wave sensor,? IEEE Trans.
Physics of String Flux Compactifications
Frederik Denef; Michael R. Douglas; Shamit Kachru
2007-01-06
We provide a qualitative review of flux compactifications of string theory, focusing on broad physical implications and statistical methods of analysis.
Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells
Wiskott, Laurenz
Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells Sven Da¨hne1,2,3 *, Niko Wilbert2 such that it is best prepared for coding input from the natural world. Citation: Da¨hne S, Wilbert N, Wiskott L (2014 Received June 25, 2013; Accepted December 20, 2013; Published May 8, 2014 Copyright: ß 2014 Da¨hne et al
Southern California, University of
1 Earthquake Damage Detection in the Imperial County Services Building III: Analysis of Wave Travel characteristics of the structure, and are not sensitive to local damage. Wave travel times between selected changes in such characteristics of response are potentially more sensitive to local damage. In this paper
Delgado-Frias, José G.
Abstract-- A hybrid wave-pipeline multiplier architecture is described in this paper. Mathematical analysis is provided to show the performance gains possible with hybrid wave-pipeline over conventional pipeline architectures. The clock period in conventional pipeline scheme is proportional to the maximum
, the main cost driver in a flat plate system. PV systems, whether flat plate or concentrating, normally haveANALYSIS OF THE RADIATION FLUX PROFILE ALONG A PV TROUGH CONCENTRATOR J.S. Coventry, A. Blakers, E, ACT, 0200 Australia, email: Joe.Coventry@anu.edu.au ABSTRACT: The primary advantage of a PV
Black-hole quasinormal resonances: Wave analysis versus a geometric-optics approximation
Shahar Hod
2009-09-02
It has long been known that null unstable geodesics are related to the characteristic modes of black holes-- the so called quasinormal resonances. The basic idea is to interpret the free oscillations of a black hole in the eikonal limit in terms of null particles trapped at the unstable circular orbit and slowly leaking out. The real part of the complex quasinormal resonances is related to the angular velocity at the unstable null geodesic. The imaginary part of the resonances is related to the instability timescale (or the inverse Lyapunov exponent) of the orbit. While this geometric-optics description of the black-hole quasinormal resonances in terms of perturbed null {\\it rays} is very appealing and intuitive, it is still highly important to verify the validity of this approach by directly analyzing the Teukolsky wave equation which governs the dynamics of perturbation {\\it waves} in the black-hole spacetime. This is the main goal of the present paper. We first use the geometric-optics technique of perturbing a bundle of unstable null rays to calculate the resonances of near-extremal Kerr black holes in the eikonal approximation. We then directly solve the Teukolsky wave equation (supplemented by the appropriate physical boundary conditions) and show that the resultant quasinormal spectrum obtained directly from the wave analysis is in accord with the spectrum obtained from the geometric-optics approximation of perturbed null rays.
Black-hole quasinormal resonances: Wave analysis versus a geometric-optics approximation
Hod, Shahar [Ruppin Academic Center, Emeq Hefer 40250 (Israel) and Hadassah Institute, Jerusalem 91010 (Israel)
2009-09-15
It has long been known that null unstable geodesics are related to the characteristic modes of black holes--the so-called quasinormal resonances. The basic idea is to interpret the free oscillations of a black hole in the eikonal limit in terms of null particles trapped at the unstable circular orbit and slowly leaking out. The real part of the complex quasinormal resonances is related to the angular velocity at the unstable null geodesic. The imaginary part of the resonances is related to the instability time scale (or the inverse Lyapunov exponent) of the orbit. While this geometric-optics description of the black-hole quasinormal resonances in terms of perturbed null rays is very appealing and intuitive, it is still highly important to verify the validity of this approach by directly analyzing the Teukolsky wave equation which governs the dynamics of perturbation waves in the black-hole spacetime. This is the main goal of the present paper. We first use the geometric-optics technique of perturbing a bundle of unstable null rays to calculate the resonances of near-extremal Kerr black holes in the eikonal approximation. We then directly solve the Teukolsky wave equation (supplemented by the appropriate physical boundary conditions) and show that the resultant quasinormal spectrum obtained directly from the wave analysis is in accord with the spectrum obtained from the geometric-optics approximation of perturbed null rays.
Physica D 135 (2000) 98116 Turbulence of capillary waves --theory and numerical simulation
Zakharov, Vladimir
2000-01-01
wavebreaking at arbitrary small wind [1]. Capillary waves are pumped by gravity waves and carry the energy flux
Accurate near-field calculation in the rigorous coupled-wave analysis method
Weismann, Martin; Panoiu, Nicolae C
2015-01-01
The rigorous coupled-wave analysis (RCWA) is one of the most successful and widely used methods for modeling periodic optical structures. It yields fast convergence of the electromagnetic far-field and has been adapted to model various optical devices and wave configurations. In this article, we investigate the accuracy with which the electromagnetic near-field can be calculated by using RCWA and explain the observed slow convergence and numerical artifacts from which it suffers, namely unphysical oscillations at material boundaries due to the Gibb's phenomenon. In order to alleviate these shortcomings, we also introduce a mathematical formulation for accurate near-field calculation in RCWA, for one- and two-dimensional straight and slanted diffraction gratings. This accurate near-field computational approach is tested and evaluated for several representative test-structures and configurations in order to illustrate the advantages provided by the proposed modified formulation of the RCWA.
Hatakenaka, Sachi, 1961-
2002-01-01
University-industry relationships are in a state of flux. They represent important strategic issues for universities, for industry, and for governments alike. This confluence of interests has led to experimentation in which ...
fluxes using stable isotope labeling and either nuclear magnetic resonance (NMR) or mass spectrometry (MS research in systems biology and metabolic engineering. It will allow us to provide a complete package
Introduction to the Analysis of Low-Frequency Gravitational Wave Data
B. F. Schutz
1997-10-15
The space-based gravitational wave detector LISA will observe in the low-frequency gravitational-wave band (0.1 mHz up to 1 Hz). LISA will search for a variety of expected signals, and when it detects a signal it will have to determine a number of parameters, such as the location of the source on the sky and the signal's polarisation. This requires pattern-matching, called matched filtering, which uses the best available theoretical predictions about the characteristics of waveforms. All the estimates of the sensitivity of LISA to various sources assume that the data analysis is done in the optimum way. Because these techniques are unfamiliar to many young physicists, I use the first part of this lecture to give a very basic introduction to time-series data analysis, including matched filtering. The second part of the lecture applies these techniques to LISA, showing how estimates of LISA's sensitivity can be made, and briefly commenting on aspects of the signal-analysis problem that are special to LISA.
Pre-Stack Depth Migration and Attribute Analysis of 3-D Time-Lapse P-wave Data
Pre-Stack Depth Migration and Attribute Analysis of 3-D Time-Lapse P-wave Data Vacuum Field, New the application of Pre-Stack Depth Migration (PSDM) and innovative window-based attribute analysis applied to 4-D seismic data. The data were acquired in Central Vacuum Unit, Lea County, New Mexico by the Reservoir
Wave breaking along the stratospheric polar vortex as seen in ERA-40 data
Abatzoglou, John T; Magnusdottir, Gudrun
2007-01-01
1983), Breaking planetary waves in the stratosphere, Nature,structure of breaking Rossby waves in the polar wintertimecontrol of upward wave flux near the tropopause, Geophys.
Anomalous electron-ion energy coupling in electron drift wave turbulence
Zhao, Lei
annulus arises due to a wave energy flux differential acrossprincipal collisionless wave energy dissipation channel inOn the other hand, wave energy can be dissipated by ion
Gregor Tanner
2008-03-12
We propose a new approach towards determining the distribution of mechanical and acoustic wave energy in complex built-up structures. The technique interpolates between standard Statistical Energy Analysis (SEA) and full ray tracing containing both these methods as limiting case. By writing the flow of ray trajectories in terms of linear phase space operators, it is suggested here to reformulate ray-tracing algorithms in terms of boundary operators containing only short ray segments. SEA can now be identified as a low resolution ray tracing algorithm and typical SEA assumptions can be quantified in terms of the properties of the ray dynamics. The new technique presented here enhances the range of applicability of standard SEA considerably by systematically incorporating dynamical correlations wherever necessary. Some of the inefficiencies inherent in typical ray tracing methods can be avoided using only a limited amount of the geometrical ray information. The new dynamical theory - Dynamical Energy Analysis (DEA) - thus provides a universal approach towards determining wave energy distributions in complex structures.
Muraki, David J.
& Geofluids The propagation of waves represents one of the fundamental mechanisms for the transport of energy and geophysical flows. Many of the new types of waves and instabilities introduced through these buoyancy effects captures an at- mospheric wave off the Australian coast, as evidenced by cloud and sea surface waves
Wave-Turbulence Interactions in a Breaking Mountain Wave Craig Epifanio and Tingting Qian
#12;Dissipation of Mean Wave Energy · Mean wave energy E is just the total energy (kinetic + available · The dissipation of mean wave energy is caused by the turbulent momentum fluxes--specifically, by their tendency
Dynamical Horizons: Energy, Angular Momentum, Fluxes and Balance Laws
Abhay Ashtekar; Badri Krishnan
2002-11-03
Dynamical horizons are considered in full, non-linear general relativity. Expressions of fluxes of energy and angular momentum carried by gravitational waves across these horizons are obtained. Fluxes are local, the energy flux is positive and change in the horizon area is related to these fluxes. The flux formulae also give rise to balance laws analogous to the ones obtained by Bondi and Sachs at null infinity and provide generalizations of the first and second laws of black hole mechanics.
Nault, Rance; Abdul-Fattah, Hiba; Mironov, Gleb G.; Berezovski, Maxim V.; Moon, Thomas W.
2013-08-15
Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist ?-naphthoflavone (?NF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 ?M ?NF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by ?NF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to ?NF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.
SAID Partial Wave Analyses from CNS DAC (Center for Nuclear Studies Data Analysis Center)
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
George Washington University (GW) has one of the largest university-based nuclear-physics groups in the nation. Many of the current and future projects are geared to Thomas Jefferson National Accelerator Facility (JLab) at Newport News, VA. JLab is the world's premier electron accelerator for nuclear physics, and GW is one of the charter members of the governing body of JLab, the Southeastern Universities Research Association (SURA). The George Washington Data Analysis Center (DAC) was created in 1998 by an agreement among the Department of Energy, Jefferson Lab, and the GW Center for Nuclear Studies.The activities of the DAC fall into four distinct categories: 1) Performing partial-wave analyses of fundamental two- and three-body reactions; 2) Maintenance of databases associated with these reactions; 3) Development of software to disseminate DAC results (as well as the results of competing model-independent analyses and potential approaches); and 4) Phenomenological and theoretical investigations which bridge the gap between theory and experiment; in particular, the extraction of N* and D * hadronic and electromagnetic couplings. Partial Wave Analyses (and the associated databases) available at GW are: Pion-Nucleon, Kaon-Nucleon, Nucleon-Nucleon, Pion Photoproduction, Pion Electroproduction, Kaon Photoproduction, Eta Photoproduction, Eta-Prime Photoproduction, Pion-Deuteron (elastic), and Pion-Deuteron to Proton+Proton. [Taken from http://www.gwu.edu/~ndl/dac.htm">http://www.gwu.edu/~ndl/dac.htm
Turbulence and internal waves in numerical models of the equatorial undercurrents system
Pham, Hieu T.
2010-01-01
w ? field at t = 80; (b) Wave energy flux p ? w ? across thestress u ? w ? and (f) wave energy flux p ? w ? . Thefor dissipation of the internal wave energy by turbulence is
Turbulence and internal waves in numerical models of the equatorial undercurrents system
Pham, Hieu T.
2010-01-01
w ? field at t = 80; (b) Wave energy flux p ? w ? across thethe shear layer is wave energy and not turbulence. ) Thestress u ? w ? and (f) wave energy flux p ? w ? . The
Partial wave analysis of J/psi to p pbar pi0
BES Collaboration
2009-09-07
Using a sample of 58 million $J/\\psi$ events collected with the BESII detector at the BEPC, more than 100,000 $J/\\psi \\to p\\bar p \\pi^0$ events are selected, and a detailed partial wave analysis is performed. The branching fraction is determined to be $Br(J/\\psi \\to p \\bar p \\pi^0)=(1.33 \\pm 0.02 \\pm 0.11) \\times 10^{-3}$. A long-sought `missing' $N^*$, first observed in $J/\\psi \\to p \\bar n \\pi^-$, is observed in this decay too, with mass and width of $2040_{-4}^{+3}\\pm 25$ MeV/c$^2$ and $230_{-8}^{+8}\\pm 52$ MeV/c$^2$, respectively. Its spin-parity favors ${3/2}^+$. The masses, widths, and spin-parities of other $N^*$ states are obtained as well.
Partial-Wave Analysis of the Centrally Produced ?+?- System in pp Reactions at COMPASS
A. Austregesilo; T. Schlueter; for the COMPASS collaboration
2012-07-05
COMPASS is a fixed-target experiment at CERN SPS which investigates the structure and spectroscopy of hadrons. During nine weeks in 2008 and 2009, a 190 GeV/c proton beam impinging on a liquid hydrogen target was used in order to study the production of exotic mesons and glueball candidates at central rapidities. As no bias on the production mechanism was introduced by the trigger system, the contribution from diffractive dissociation of the beam proton poses a challenge. We select a centrally produced sample by kinematic cuts and introduce a model to describe the data in terms of partial waves. Preliminary fits are presented, which are consistent with results from previous experiments. Particular attention is paid to the ambiguities in the amplitude analysis of the two-pseudoscalar final state.
Joint migration velocity analysis of PP-and PS-waves for VTI media Pengfei Cai1
Tsvankin, Ilya
estimated, accurate depth images can be obtained by migrating the recorded PP and PS data. INTRODUCTION Prestack depth migration (PSDM) and reflection tomography in the migrated domain are widely used in PJoint migration velocity analysis of PP- and PS-waves for VTI media Pengfei Cai1 and Ilya Tsvankin2
Benjamin Aylott; John G. Baker; William D. Boggs; Michael Boyle; Patrick R. Brady; Duncan A. Brown; Bernd Brügmann; Luisa T. Buchman; Alessandra Buonanno; Laura Cadonati; Jordan Camp; Manuela Campanelli; Joan Centrella; Shourov Chatterji; Nelson Christensen; Tony Chu; Peter Diener; Nils Dorband; Zachariah B. Etienne; Joshua Faber; Stephen Fairhurst; Benjamin Farr; Sebastian Fischetti; Gianluca Guidi; Lisa M. Goggin; Mark Hannam; Frank Herrmann; Ian Hinder; Sascha Husa; Vicky Kalogera; Drew Keppel; Lawrence E. Kidder; Bernard J. Kelly; Badri Krishnan; Pablo Laguna; Carlos O. Lousto; Ilya Mandel; Pedro Marronetti; Richard Matzner; Sean T. McWilliams; Keith D. Matthews; R. Adam Mercer; Satyanarayan R. P. Mohapatra; Abdul H. Mroué; Hiroyuki Nakano; Evan Ochsner; Yi Pan; Larne Pekowsky; Harald P. Pfeiffer; Denis Pollney; Frans Pretorius; Vivien Raymond; Christian Reisswig; Luciano Rezzolla; Oliver Rinne; Craig Robinson; Christian Röver; Lucía Santamaría; Bangalore Sathyaprakash; Mark A. Scheel; Erik Schnetter; Jennifer Seiler; Stuart L. Shapiro; Deirdre Shoemaker; Ulrich Sperhake; Alexander Stroeer; Riccardo Sturani; Wolfgang Tichy; Yuk Tung Liu; Marc van der Sluys; James R. van Meter; Ruslan Vaulin; Alberto Vecchio; John Veitch; Andrea Viceré; John T. Whelan; Yosef Zlochower
2009-07-09
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.
Partial wave analysis of the Dirac fermions scattered from Schwarzschild black holes
Ion I. Cotaescu; Cosmin Crucean; Ciprian A. Sporea
2015-06-23
Asymptotic analytic solutions of the Dirac equation, giving the scattering modes (of the continuous energy spectrum, $E>mc^2$) in Schwarzschild's chart and Cartesian gauge, are used for building the partial wave analysis of Dirac fermions scattered by black holes. The contribution of the bound states to absorption and possible resonant scattering is neglected because of some technical difficulties related to the discrete spectrum that is less studied so far. In this framework, the analytic expressions of the differential cross section and induced polarization degree are derived in terms of scattering angle, mass of the black hole, energy and mass of the fermion. Moreover, the closed form of the absorption cross section due to the scattering modes is derived showing that in the high-energy limit this tends to the event horizon area regardless of the fermion mass (including zero). A graphical study presents the differential cross section analyzing the forward/backward scattering (known also as glory scattering) and the polarization degree as functions of scattering angle. The graphical analysis shows the presence of oscillations in scattering intensity around forward/backward directions, phenomena known as spiral scattering. The energy dependence of the differential cross section is also established by using analytical and graphical methods.
H. Cai; Y. Matsuzaki; K. Kakuyanagi; H. Toida; X. Zhu; N. Mizuochi; K. Nemoto; K. Semba; W. J. Munro; S. Saito; H. Yamaguchi
2015-05-28
A hybrid system that combines the advantages of a superconducting flux qubit and an electron spin ensemble in diamond is one of the promising devices to realize quantum information processing. Exploring the properties of the superconductor diamond system is essential for the efficient use of this device. When we perform spectroscopy of this system, significant power broadening is observed. However, previous models to describe this system are known to be applicable only when the power broadening is negligible. Here, we construct a new approach to analyze this system with strong driving, and succeed to reproduce the spectrum with the power broadening. Our results provide an efficient way to analyze this hybrid system.
Secular Sediment Waves, Channel Bed Waves, and Legacy Sediment
James, L. Allan
Secular Sediment Waves, Channel Bed Waves, and Legacy Sediment L. Allan James* Geography Department, University South Carolina Abstract The concept of sediment waves is reviewed and clarifications are proposed for nomenclature con- cerning vertical channel responses to large fluvial sediment fluxes over a period of a decade
Analysis of Shear-horizontal Vibrations of Crystal Plates for Acoustic Wave Resonators and Sensors
Liu, Bo
2010-01-01
devices are based on mechanical vibration modes and waves.capacitance because mechanical vibration of the resonator iscapacitance because mechanical vibration of the resonator is
Time series analysis of Adaptive Optics wave-front sensor telemetry...
Office of Scientific and Technical Information (OSTI)
for each subaperture are available. The primary problem is performance comparison of alternative wave-front sensing algorithms. Using direct comparison of data in open loop and...
S. Zieba; J. Maslowski; A. Michalec; G. Michalek; A. Kulak
2007-01-15
Long-running measurements of the solar radio flux density at 810 MHz were processed. Based on the least-squares method and using modified periodograms and an iterative technique of fitting and subtracting sinusoids in the time domain, frequency, amplitude, and phase characteristics of any analyzed time series were obtained. Solar cycles 20, 21, and 22 and shorter segments around solar minima and maxima were examined separately. Also, dynamic studies with 405, 810, and 1620 day windows were undertaken. The harmonic representations obtained for all these time series indicate large differences among solar cycles and their segments. We show that the solar radio flux at 810 MHz violates the Gnevyshev-Ohl rule for the pair of cycles 22-23. Analyzing the period 1957-2004, the following spectral periods longer than 1350 days were detected: 10.6, 8.0, 28.0, 5.3, 55.0, 3.9, 6.0, 4.4, and 14.6 yr. For spectral periods between 270 and 1350 days the 11 yr cycle is not recognized. We think that these harmonics form ``impulses of activity'' or a quasi-biennial cycle defined in the Benevolenskaya model of the ``double magnetic cycle.'' The value of about 0.09 is proposed for the interaction parameter (between the low- and high-frequency components) of this model. We confirm the intermittent behavior of the periodicity near 155 days. Correlation coefficients between the radio emission at 810 MHz and sunspot numbers, as well as the radio emission at 2800 MHz calculated for 540 day intervals, depend on the solar cycle phase.
Akl, Tony; Wilson, Mark A.; Ericson, Milton Nance; Cote, Gerard L.
2014-01-01
Photoplethysmography is a widely used technique in monitoring perfusion and blood oxygen saturation by using the amplitude of the pulsatile signal on one or multiple wavelengths. However, the pulsatile signal carries in its waveform a substantial amount of information about the mechanical properties of the tissue and vasculature under investigation that is still yet to be utilized to its full potential. In this work, we present the feasibility of pulse wave analysis for the application of monitoring hepatic implants and diagnosing graft complications. In particular, we show the possibility of computing the slope of the pulse during the diastole phase to assess the location of vascular complications when they take place. This hypothesis was tested in a series of in vitro experiments using a PDMS based phantom mimicking the optical and mechanical properties of the portal vein. The emptying time of the vessel increased from 305 ms to 515 ms when an occlusion was induced downstream from the phantom. However, in the case of upstream occlusions, the emptying time remained constant. In both cases, a decrease in the amplitude of the pulse was recorded indicating the drop in flow levels. In addition, we show that quantifying the emptying time of the vasculature under investigation can be used to assess its compliance. The emptying time decreased from 305 ms for phantoms with compliance of 15 KPa to 195 ms for phantoms with compliance of 100 KPa. These compliance levels mimic those seen for normal and fibrotic hepatic tissue respectively.
Equatorial Magnetosonic Waves in the Earth's Inner Magnetosphere
Ma, Qianli
2015-01-01
magnetosonic waves and the ion differential energy flux areEnergy scattering rates due to typical magnetosonic waves . . . .the waves and are scattered in pitch angle and energy. The
Ortiz, Jose L; Morales, Nicolas; Santos-Sanz, Pablo; Aceituno, Francisco J
2015-01-01
We analyze lunar impact flashes recorded by our team during runs in December 2007, 2011, 2013 and 2014. In total, 12 impact flashes with magnitudes ranging between 7.1 and 9.3 in V band were identified. From these, 9 events could be linked to the Geminid stream. Using these observations the ratio of luminous energy emitted in the flashes with respect to the kinetic energy of the impactors for meteoroids of the Geminid stream is estimated. By making use of the known Geminids meteoroid flux on Earth we found this ratio to be 2.1x10$^{-3}$ on average. We compare this luminous efficiency with other estimations derived in the past for other meteoroid streams and also compare it with other estimations that we present here for the first time by making use of crater diameter measurements. We think that the luminous efficiency has to be revised downward, not upward, at least for sporadic impacts. This implies an increase in the influx of kilogram-sized and larger bodies on Earth that has been derived thus far through ...
Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)
2002-09-10
A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.
X-Pipeline: an analysis package for autonomous gravitational-wave burst searches
Sutton, Patrick J.
Autonomous gravitational-wave searches—fully automated analyses of data that run without human intervention or assistance—are desirable for a number of reasons. They are necessary for the rapid identification of ...
Three-dimensional coupled mode analysis of internal-wave acoustic ducts
Shmelev, Alexey A.
A fully three-dimensional coupled mode approach is used in this paper to describe the physics of low frequency acoustic signals propagating through a train of internal waves at an arbitrary azimuth. A three layer model of ...
A finite element method and the method of finite spheres enriched for analysis of wave propagations
Ham, Seounghyun, 1982-
2014-01-01
The objective of this thesis is to present a finite element method and the method of finite spheres enriched for the solution of various wave propagation problems. The first part of this thesis is to present an enriched ...
Analysis of PS-converted wave seismic data in the presence of azimuthal anisotropy
Liu, Weining
2014-11-27
Shear-wave splitting and azimuthal variations of seismic attributes are two major anisotropic effects induced by vertically-aligned fractures. They both have influences on seismic data processing and interpretation, and ...
Long-term analysis of the wave climate in the North East Atlantic and North Sea
Agarwal, Atul
2015-06-29
Changes in the marine environment have been reported for over three decades in terms of mean annual wave heights, exceedance probabilities and extreme conditions. More recently, the existence of a link between these ...
One-Way Wave Propagators For Velocity Analysis On Curvilinear Coordinates
Budkick, Scott
2008-01-01
Due to present computational limitations, migration by the one-way wave equation remains an integral tool in seismic exploration. For the realistic interpretation of common image point gathers, it is necessary that migration ...
Time domain analysis of a gyrotron traveling wave amplifier with misaligned electron beam
Wang, Qiushi Peng, Shuyuan; Luo, Jirun
2014-08-15
This article develops a time-domain theory to study the beam-wave interaction in gyrotron traveling wave amplifier (gyro-TWA) with a misaligned electron beam. The effects of beam misalignment on the TE{sub 01} mode gyro-TWA operating at the fundamental are discussed. Numerical results show that the effect of misalignment is less obvious when the input power is larger, and the influences of misalignment on the stable gain and the stable time are basically opposite.
Measuring the CO2 flux at the air/water interface in lakes using flow injection analysis
Jardim, Wilson de Figueiredo
measurements. The use of flow analysis for the determination of dissolved carbon dioxide by membrane separation a hydrophobic membrane into a flow of deionized water, generating a gradient of conductivity proportional the processes related to the carbon cycle within the aquatic environment. The direction of CO2 gas exchange
Mandelis, Andreas
-photon-density and thermal-wave model is developed for theoretical analysis of the photothermal field in demineralized teeth. Intact and demineralized layers of enamel, as well as dentin, are described as a layered one
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Miyamoto, Mayu; Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato; Tokumaru, Munetoshi; Shiota, Daikou; Isobe, Hiroaki; Asai, Ayumi; Häusler, Bernd; Pätzold, Martin; Nabatov, Alexander
2014-12-10
Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ?30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux on the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ?6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.
Kelin Wang; Zexian Cao
2012-01-06
Non-dispersive wave packet for massless fermions is formulated on the basis of squeezed coherent states that are put in a form of common eigenfunction for the Hamiltonian and the helicity operator, starting from the Dirac equation. The wave packet thus constructed is demonstrated to propagate at a constant velocity as that of light. This explicit expression of wave packet for the massless fermions can facilitate theoretical analysis of problems where a wave packet is of formal significance. Furthermore, extensive wave packet may result in a superluminal velocity statistics if determined from the time-of-flight measurement, as recently done on muon neutrinos, when a threshold particle flux or energy transfer, which is eventually referred to the propagation of wave packet, to invoke a detection event is assumed.
Aperture synthesis of time-limited X waves and analysis of their propagation characteristics
Lu, Jian-yu
of Engineering Physics and Mathematics, Faculty of Engineering Cairo University, Giza, Egypt Ioannis M. Besieris of the FWM pulse does not require infinite power. This is the case because as the generating aperture becomes of the aperture increases as (ct)2 . These two effects balance each other and the power of the excitation wave
One dimensional full wave analysis of slow-to-fast mode conversion in lower hybrid frequencies
Jia, Guo-Zhang; Gao, Zhe
2014-12-15
The linear conversion from the slow wave to the fast wave in the lower hybrid range of frequencies is analyzed numerically by using the set of field equations describing waves in a cold plane-stratified plasma. The equations are solved as a two-point boundary value problem, where the polarizations of each mode are set consistently in the boundary conditions. The scattering coefficients and the field patterns are obtained for various density profiles. It is shown that, for large density scale length, the results agree well with the traditional cognitions. In contrast, the reflected component and the probable transmitted-converted component from the conversion region, which are neglected in the usual calculations, become significant when the scale length is smaller than the wavelength of the mode. The inclusion of these new components will improve the accuracy of the simulated propagation and deposition for the injected rf power when the conversion process is involved within a sharp-varying density profile. Meanwhile, the accessibility of the incident slow wave for the low frequency case is also affected by the scale length of the density profile.
Ultrahigh-Speed Traveling-Wave Electroabsorption Modulator—Design and Analysis
Yu, Paul K.L.
1999-01-01
Electroabsorption Modulator—Design and Analysis G. L. Li,ULTRAHIGH-SPEED TW-EAM—DESIGN AND ANALYSIS Fig. 4. Effect ofSPEED TW-EAM—DESIGN AND ANALYSIS a discrete transmission
Salgado, Carlos W.; Weygand, Dennis P.
2014-04-01
Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (Jlab) using photon beams. In particular this report broaden this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.
P. A. Sturrock
2008-05-23
A search for any particular feature in any single solar neutrino dataset is unlikely to establish variability of the solar neutrino flux since the count rates are very low. It helps to combine datasets, and in this article we examine data from both the Homestake and GALLEX experiments. These show evidence of modulation with a frequency of 11.85 yr-1, which could be indicative of rotational modulation originating in the solar core. We find that precisely the same frequency is prominent in power spectrum analyses of the ACRIM irradiance data for both the Homestake and GALLEX time intervals. These results suggest that the solar core is inhomogeneous and rotates with sidereal frequency 12.85 yr-1. We find, by Monte Carlo calculations, that the probability that the neutrino data would by chance match the irradiance data in this way is only 2 parts in 10,000. This rotation rate is significantly lower than that of the inner radiative zone (13.97 yr-1) as recently inferred from analysis of Super-Kamiokande data, suggesting that there may be a second, inner tachocline separating the core from the radiative zone. This opens up the possibility that there may be an inner dynamo that could produce a strong internal magnetic field and a second solar cycle.
Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
Pokol, G. I.; Kómár, A.; Budai, A.; Stahl, A.; Fülöp, T.
2014-10-15
Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the 100–1000??s time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing a possible experimental detection method for such an interaction.
Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
Pokol, G I; Budai, A; Stahl, A; Fülöp, T
2014-01-01
Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the $100-1000\\;\\rm \\mu s$ time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing a possible experimental detection method for such an interaction.
Samady, Mezhgan Frishta
2011-01-01
designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by
On solar neutrino fluxes in radiochemical experiments
R. N. Ikhsanov; Yu. N. Gnedin; E. V. Miletsky
2005-12-08
We analyze fluctuations of the solar neutrino flux using data from the Homestake, GALLEX, GNO, SAGE and Super Kamiokande experiments. Spectral analysis and direct quantitative estimations show that the most stable variation of the solar neutrino flux is a quasi-five-year periodicity. The revised values of the mean solar neutrino flux are presented in Table 4. They were used to estimate the observed pp-flux of the solar electron neutrinos near the Earth. We consider two alternative explanations for the origin of a variable component of the solar neutrino deficit.
Flow instabilities of magnetic flux tubes II. Longitudinal flow
V. Holzwarth; D. Schmitt; M. Schuessler
2007-04-27
Flow-induced instabilities are relevant for the storage and dynamics of magnetic fields in stellar convection zones and possibly also in other astrophysical contexts. We continue the study started in the first paper of this series by considering the stability properties of longitudinal flows along magnetic flux tubes. A linear stability analysis was carried out to determine criteria for the onset of instability in the framework of the approximation of thin magnetic flux tubes. In the non-dissipative case, we find Kelvin-Helmholtz instability for flow velocities exceeding a critical speed that depends on the Alfv{\\'e}n speed and on the ratio of the internal and external densities. Inclusion of a friction term proportional to the relative transverse velocity leads to a friction-driven instability connected with backward (or negative energy) waves. We discuss the physical nature of this instability. In the case of a stratified external medium, the Kelvin-Helmholtz instability and the friction-driven instability can set in for flow speeds significantly lower than the Alfv{\\'e}n speed. Dissipative effects can excite flow-driven instability below the thresholds for the Kelvin-Helmholtz and the undulatory (Parker-type) instabilities. This may be important for magnetic flux storage in stellar convection zones and for the stability of astrophysical jets.
Force-controlled absorption in a fully-nonlinear numerical wave tank
Spinneken, Johannes Christou, Marios; Swan, Chris
2014-09-01
An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.
Koushik Ghosh; Probhas Raychaudhuri
2006-06-05
We have used Rayleigh power spectrum analysis of the monthly solar neutrino flux data from (1) SAGE detector during the period from 1st January 1990 to 31st December 2000; (2) SAGE detector during the period from April 1998 to December 2001; (3) GALLEX detector during the period from May 1991 to January 1997; (4) GNO detector during the period from May 1998 to December 2001; (5) GALLEX-GNO detector (combined data) from May 1991 to December 2001 and (6) average of the data from GNO and SAGE detectors during the period from May 1998 to December 2001. (1) exhibits periodicity around 1.3, 4.3, 5.5, 6.3, 7.9, 8.7, 15.9, 18.7, 23.9, 32.9 and 48.7 months. (2) shows periodicity around 1.5, 2.9, 4.5, 10.1 months. For (3) we observe periodicity around 1.7, 18.7 and 26.9 months. For (4) periodicity is seen around 3.5, 5.5, 7.7 and 10.5 months. (5) gives periodicity around 1.7, 18.5, 28.5 and 42.1 months while (6) shows periodicity around 4.3, 6.9, 10.3 and 18.1 months. We have found almost similar periods in the solar flares, sunspot data, solar proton data which indicates that the solar activity cycle may be due to the variable character of nuclear energy generation inside the sun.
Nonrelativistic molecular models under external magnetic and AB flux fields
Sameer M. Ikhdair; Babatunde J. Falaye; Majid Hamzavi
2014-12-21
By using the wave function ansatz method, we study the energy eigenvalues and wave function for any arbitrary $m$-state in two-dimensional Schr\\"{o}dinger wave equation with various power interaction potentials in constant magnetic and Aharonov-Bohm (AB) flux fields perpendicular to the plane where the interacting particles are confined. We calculate the energy levels of some diatomic molecules in the presence and absence of external magnetic and AB flux fields using different potential models. We found that the effect of the Aharonov-Bohm field is much as it creates a wider shift for $m\
Gustafsson, Torgny
2011 Waves - 1 STANDING WAVES ON A STRING The objectives of the experiment are: · To show that standing waves can be set up on a string. · To determine the velocity of a standing wave. · To understand of waves. A #12;2011 Waves - 2 A standing wave is caused by superposing two similar (same frequency
Double Quarter Wave Crab Cavity Field Profile Analysis and Higher Order Mode Characterization
Marques, Carlos; Xiao, B. P.; Belomestnykh, S.
2014-06-01
The Large Hadron Collider (LHC) is underway for a major upgrade to increase its luminosity by an order of magnitude beyond its original design specifications. This novel machine configuration known as the High Luminosity LHC (HL-LHC) will rely on various innovative technologies including very compact and ultra-precise superconducting crab cavities for beam rotation. A double quarter wave crab cavity (DQWCC) has been designed at Brookhaven National Laboratory for the HL-LHC. This cavity as well as the structural support components were fabricated and assembled at Niowave. The field profile of the crabbing mode for the DQWCC was investigated using a phase shift bead pulling technique and compared with simulated results to ensure proper operation or discover discrepancies from modeled results and/or variation in fabrication tolerances. Higher-Order Mode (HOM) characterization was also performed and correlated with simulations.
Alberto Lencina; Beatriz Ruiz; Pablo Vaveliuk
2006-07-02
This paper uses an alternative approach to study the monochromatic plane wave propagation within dielectric and conductor linear media of plane-parallel-faces. This approach introduces the time-averaged Poynting vector modulus as field variable. The conceptual implications of this formalism are that the nonequivalence between the time-averaged Poynting vector and the squared-field amplitude modulus is naturally manifested as a consequence of interface effects. Also, two practical implications are considered: first, the exact transmittance is compared with that given by the Beer's Law, employed commonly in experiments. The departure among them can be significative for certain material parameter values. Second, when the exact reflectance is studied for negative permittivity slabs, it is show that the high reflectance can be diminished if a small amount of absorption is present.
TJ-II wave forms analysis with wavelets and support vector machines
Dormido-Canto, S.; Farias, G.; Dormido, R.; Vega, J.; Sanchez, J.; Santos, M.
2004-10-01
Since the fusion plasma experiment generates hundreds of signals, it is essential to have automatic mechanisms for searching similarities and retrieving of specific data in the wave form database. Wavelet transform (WT) is a transformation that allows one to map signals to spaces of lower dimensionality. Support vector machine (SVM) is a very effective method for general purpose pattern recognition. Given a set of input vectors which belong to two different classes, the SVM maps the inputs into a high-dimensional feature space through some nonlinear mapping, where an optimal separating hyperplane is constructed. In this work, the combined use of WT and SVM is proposed for searching and retrieving similar wave forms in the TJ-II database. In a first stage, plasma signals will be preprocessed by WT to reduce their dimensionality and to extract their main features. In the next stage, and using the smoothed signals produced by the WT, SVM will be applied to show up the efficiency of the proposed method to deal with the problem of sorting out thousands of fusion plasma signals.From observation of several experiments, our WT+SVM method is very viable, and the results seems promising. However, we have further work to do. We have to finish the development of a Matlab toolbox for WT+SVM processing and to include new relevant features in the SVM inputs to improve the technique. We have also to make a better preprocessing of the input signals and to study the performance of other generic and self custom kernels. To reach it, and since the preprocessing stages are very time consuming, we are going to study the viability of using DSPs, RPGAs or parallel programming techniques to reduce the execution time.
Thomas K. Gaisser
2005-02-18
Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.
Lieuwen, Timothy C.
Institute of Technology Atlanta, GA 30332-0150, USA This paper analyzes acoustic wave interactions to the prior study the problem is posed with an integral formulation of the wave equation and assumes burning rate. This result contrasts with the strong impor- tance of these parameters in laminar-flameÂacoustic-wave
Electric Flux Tube in Magnetic Plasma
Jinfeng Liao; Edward Shuryak
2007-12-06
In this paper we study a methodical problem related to the magnetic scenario recently suggested and initiated by the authors \\cite{Liao_ES_mono} to understand the strongly coupled quark-gluon plasma (sQGP): the electric flux tube in monopole plasma. A macroscopic approach, interpolating between Bose condensed (dual superconductor) and classical gas medium is developed first. Then we work out a microscopic approach based on detailed quantum mechanical calculation of the monopole scattering on electric flux tube, evaluating induced currents for all partial waves. As expected, the flux tube looses its stability when particles can penetrate it: we make this condition precise by calculating the critical value for the product of the flux tube size times the particle momentum, above which the flux tube dissolves. Lattice static potentials indicate that flux tubes seem to dissolve at $T>T_{dissolution} \\approx 1.3 T_c$. Using our criterion one gets an estimate of the magnetic density $n\\approx 4.4 \\sim 6.6 fm^{-3}$ at this temperature.
PHOTOSPHERIC FLUX CANCELLATION AND THE BUILD-UP OF SIGMOIDAL FLUX ROPES ON THE SUN
Savcheva, A. S.; Van Ballegooijen, A. A.; DeLuca, E. E.; Green, L. M.
2012-11-10
In this study we explore the scenario of photospheric flux cancellation being the primary formation mechanism of sigmoidal flux ropes in decaying active regions. We analyze magnetogram and X-ray observations together with data-driven non-linear force-free field (NLFFF) models of observed sigmoidal regions to test this idea. We measure the total and canceled fluxes in the regions from MDI magnetograms, as well as the axial and poloidal flux content of the modeled NLFFF flux ropes for three sigmoids-2007 February, 2007 December, and 2010 February. We infer that the sum of the poloidal and axial flux in the flux ropes for most models amounts to about 60%-70% of the canceled flux and 30%-50% of the total flux in the regions. The flux measurements and the analysis of the magnetic field structure show that the sigmoids first develop a strong axial field manifested as a sheared arcade and then, as flux cancellation proceeds, form long S-shaped field lines that contribute to the poloidal flux. In addition, the dips in the S-shaped field lines are located at the sites of flux cancellation that have been identified from the MDI magnetograms. We find that the line-of-sight-integrated free energy is also concentrated at these locations for all three regions, which can be liberated in the process of eruption. Flare-associated brightenings and flare loops coincide with the location of the X-line topology that develops at the site of most vigorous flux cancellation.
Performance of a Chirplet-based analysis for gravitational waves from binary black hole mergers
Satya Mohapatra; Zachary Nemtzow; Eric Chassande-Mottin; Laura Cadonati
2011-11-15
The gravitational wave (GW) signature of a binary black hole (BBH) coalescence is characterized by rapid frequency evolution in the late inspiral and merger phases. For a system with total mass larger than 100 M_sun, ground based GW detectors are sensitive to the merger phase, and the in-band whitened waveform is a short-duration transient lasting about 10-30 ms. For a symmetric mass system with total mass between 10 and 100 M_sun, the detector is sensitive instead to the inspiral phase and the in-band signal has a longer duration, between 30 ms - 3 s. Omega is a search algorithm for GW bursts that, with the assumption of locally stationary frequency evolution, uses sine-Gaussian wavelets as a template bank to decompose interferometer strain data. The local stationarity of sine-Gaussians induces a performance loss for the detection of lower mass BBH signatures, due to the mismatch between template and signal. We present the performance of a modified version of the Omega algorithm, Chirplet Omega, which allows a linear variation of frequency, to target BBH coalescences. The use of Chirplet-like templates enhances the measured signal-to-noise ratio due to less mismatch between template and data, and increases the detectability of lower mass BBH coalescences. We present the results of a performance study of Chirplet Omega in colored Gaussian noise at initial LIGO sensitivity.
Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann; Ackerman, Andrew; Del Genio, Anthony D.; Pauluis, Olivier; Varble, Adam; Fan, Jiwen
2012-10-02
We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadings differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.
Time series analysis of ionization waves in dc neon glow discharge
Hassouba, M. A.; Al-Naggar, H. I.; Al-Naggar, N. M.; Wilke, C. [Department of Physics, Faculty of Science, Benha University (Egypt); Institute of Physics, E. M. A. University, Domstrasse 10a, 17489 Greifswald (Germany)
2006-07-15
The dynamics of dc neon glow discharge is examined by calculating a Lyapunov exponent spectrum (LES) and correlation dimension (D{sub corr}) from experimental time series. The embedding theory is used to reconstruct an attractor with the delay coordinate method. The analysis refers to periodic, chaotic, and quasi-periodic attractors. The results obtained are confirmed by a comparison with other methods of time series analysis such as the Fourier power spectrum and autocorrelation function. The main object of the present work is the positive column of a dc neon glow discharge. The positive column is an excellent model for the study of a non-linearity plasma system because it is nonisothermal plasma far from equilibrium.
Wave-wave interactions in solar type III radio bursts
Thejappa, G.; MacDowall, R. J.
2014-02-11
The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.
Computing Solar Absolute Fluxes
Carlos Allende Prieto
2007-09-14
Computed color indices and spectral shapes for individual stars are routinely compared with observations for essentially all spectral types, but absolute fluxes are rarely tested. We can confront observed irradiances with the predictions from model atmospheres for a few stars with accurate angular diameter measurements, notably the Sun. Previous calculations have been hampered by inconsistencies and the use of outdated atomic data and abundances. I provide here a progress report on our current efforts to compute absolute fluxes for solar model photospheres. Uncertainties in the solar composition constitute a significant source of error in computing solar radiative fluxes.
Sermeus, J.; Glorieux, C.; Sinha, R.; Vereecken, P. M.; Vanstreels, K.
2014-07-14
MnO{sub 2} is a material of interest in the development of high energy-density batteries, specifically as a coating material for internal 3D structures, thus ensuring rapid energy deployment. Its electrochemical properties have been mapped extensively, but there are, to the best of the authors' knowledge, no records of the elastic properties of thin film MnO{sub 2}. Impulsive stimulated thermal scattering (ISTS), also known as the heterodyne diffraction or transient grating technique, was used to determine the Young's modulus (E) and porosity (?) of a 500?nm thick MnO{sub 2} coating on a Si(001) substrate. ISTS is an all optical method that is able to excite and detect surface acoustic waves (SAWs) on opaque samples. From the measured SAW velocity dispersion, the Young's modulus and porosity were determined to be E?=?25?±?1?GPa and ?=42±1%, respectively. These values were confirmed by independent techniques and determined by a most-squares analysis of the carefully fitted SAW velocity dispersion. This study demonstrates the ability of the presented technique to determine the elastic parameters of a thin, porous film on an anisotropic substrate.
Samady, Mezhgan Frishta
2011-01-01
e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature
AmeriFlux Measurement Network: Science Team Research
Law, B E
2012-12-12
Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.
M. Carcione, F. Cavallini, Simulation of waves in porn-viscoelastic rocks Saturated by immiscible ?uids. Numerical evidence ofa second slow wave,]. Comput.
MAGNETIC ROSSBY WAVES IN THE SOLAR TACHOCLINE AND RIEGER-TYPE PERIODICITIES
Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis E-mail: marc.carbonell@uib.e E-mail: joseluis.ballester@uib.e
2010-02-01
Apart from the eleven-year solar cycle, another periodicity around 155-160 days was discovered during solar cycle 21 in high-energy solar flares, and its presence in sunspot areas and strong magnetic flux has been also reported. This periodicity has an elusive and enigmatic character, since it usually appears only near the maxima of solar cycles, and seems to be related with a periodic emergence of strong magnetic flux at the solar surface. Therefore, it is probably connected with the tachocline, a thin layer located near the base of the solar convection zone, where a strong dynamo magnetic field is stored. We study the dynamics of Rossby waves in the tachocline in the presence of a toroidal magnetic field and latitudinal differential rotation. Our analysis shows that the magnetic Rossby waves are generally unstable and that the growth rates are sensitive to the magnetic field strength and to the latitudinal differential rotation parameters. Variation of the differential rotation and the magnetic field strength throughout the solar cycle enhance the growth rate of a particular harmonic in the upper part of the tachocline around the maximum of the solar cycle. This harmonic is symmetric with respect to the equator and has a period of 155-160 days. A rapid increase of the wave amplitude could give rise to a magnetic flux emergence leading to observed periodicities in solar activity indicators related to magnetic flux.
Yao, H; Beghein, C; Van Der Hilst, RD
2008-01-01
M.N. , 2006. Constraining P-wave velocity variations in2005. High- resolution surface wave tomography from ambienterror (? v ) of the shear wave speed along five vertical
Estimating the contribution of Alfv\\'en waves to the process of heating the quiet solar corona
Gonzalez-Aviles, J J
2015-01-01
We solve numerically the ideal MHD equations with an external gravitational field in 2D in order to study the effects of impulsively generated linear and non-linear Alfv\\'en waves into isolated solar arcades and coronal funnels. We analyze the region containing the interface between the photosphere and the corona. The main interest is to study the possibility that Alfv\\'en waves triggers the energy flux transfer toward the quiet solar corona and heat it, including the case that two consecutive waves can occur. We find that in the case of arcades, short or large, the transferred fluxes by Alfv\\'en waves are sufficient to heat the quiet corona only during a small lapse of time and in a certain region. In the case of funnels the threshold is achieved only when the wave is faster than 10 km/s, which is extremely high. We conclude from our analysis, that Alfv\\'en waves, even in the optimistic scenario of having two consecutive Alfv\\'en wave pulses, cannot transport enough energy as to heat the quiet corona.
F. Yan; S. Gustavsson; A. Kamal; J. Birenbaum; A. P. Sears; D. Hover; T. J. Gudmundsen; J. L. Yoder; T. P. Orlando; J. Clarke; A. J. Kerman; W. D. Oliver
2015-08-25
The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). In this work, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad frequency tunability, strong anharmonicity, high reproducibility, and coherence times in excess of 40 us at its flux-insensitive point. Qubit relaxation times across 21 qubits of widely varying designs are consistently matched with a single model involving ohmic charge noise, quasiparticle fluctuations, resonator loss, and 1/f flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, reaching T2 ~ 80 us , approximately the 2T1 limit. In addition to realizing a dramatically improved flux qubit, our results uniquely identify photon shot noise as limiting T2 in contemporary state-of-art qubits based on transverse qubit-resonator interaction.
Thermal Gravitational Waves from Primordial Black Holes
C. Sivaram; Kenath Arun
2010-05-19
Thermal gravitational waves can be generated in various sources such as, in the cores of stars, white dwarfs and neutron stars due to the fermion collisions in the dense degenerate Fermi gas. Such high frequency thermal gravitational waves can also be produced during the collisions in a gamma ray burst or during the final stages of the evaporation of primordial black holes. Here we estimate the thermal gravitational waves from primordial black holes and estimate the integrated energy of the gravitational wave emission over the entire volume of the universe and over Hubble time. We also estimate the gravitational wave flux from gamma ray bursts and jets.
Quinn, Eoghan
2011-11-23
Scotland is currently at the forefront of development and expansion of wave energy, especially with recent renewable energy targets. Research and development has increased greatly off the Scottish coastline. Various ...
Alam, Mohammad-Reza
We investigate, via perturbation analyses, the mechanisms of nonlinear resonant interaction of surface-interfacial waves with a rippled bottom in a two-layer density-stratified fluid. As in a one-layer fluid, three classes ...
Betzwieser, Joseph (Joseph Charles)
2008-01-01
Over the last several years the Laser Interferometer Gravitational Wave Observatory (LIGO) has been making steady progress in improving the sensitivities of its three interferometers, two in Hanford, Washington, and one ...
Wu, Jianyong; Zhou, Ying; Gao, Yang; Fu, Joshua S.; Johnson, Brent; Huang, Cheng; Kim, Young-Min; Liu, Yang
2014-01-01
Background: It is anticipated that climate change will influence heat-related mortality in the future. However, the estimation of excess mortality attributable to future heat waves is subject to large uncertainties, which have not been examined under the latest greenhouse gas emission scenarios. Objectives: We estimated the future heat wave impact on mortality in the eastern United States (~ 1,700 counties) under two Representative Concentration Pathways (RCPs) and analyzed the sources of uncertainties. Methods Using dynamically downscaled hourly temperature projections in 2057-2059, we calculated heat wave days and episodes based on four heat wave metrics, and estimated the excess mortality attributable to them. The sources of uncertainty in estimated excess mortality were apportioned using a variance-decomposition method. Results: In the eastern U.S., the excess mortality attributable to heat waves could range from 200-7,807 with the mean of 2,379 persons/year in 2057-2059. The projected average excess mortality in RCP 4.5 and 8.5 scenarios was 1,403 and 3,556 persons/year, respectively. Excess mortality would be relatively high in the southern and eastern coastal areas. The major sources of uncertainty in the estimates are relative risk of heat wave mortality, the RCP scenarios, and the heat wave definitions. Conclusions: The estimated mortality risks from future heat waves are likely an order of magnitude higher than its current level and lead to thousands of deaths each year under the RCP8.5 scenario. The substantial spatial variability in estimated county-level heat mortality suggests that effective mitigation and adaptation measures should be developed based on spatially resolved data.
Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)
1991-01-01
A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.
Wave soldering with Pb-free solders
Artaki, I.; Finley, D.W.; Jackson, A.M.; Ray, U.; Vianco, P.T.
1995-07-01
The manufacturing feasibility and attachment reliability of a series of newly developed lead-free solders were investigated for wave soldering applications. Some of the key assembly aspects addressed included: wettability as a function of board surface finish, flux activation and surface tension of the molten solder, solder joint fillet quality and optimization of soldering thermal profiles. Generally, all new solder formulations exhibited adequate wave soldering performance and can be considered as possible alternatives to eutectic SnPb for wave soldering applications. Further process optimization and flux development is necessary to achieve the defect levels associated with the conventional SnPb process.
Properties of Flares-Generated Seismic Waves on the Sun
A. G. Kosovichev
2005-12-31
The solar seismic waves excited by solar flares (``sunquakes'') are observed as circular expanding waves on the Sun's surface. The first sunquake was observed for a flare of July 9, 1996, from the Solar and Heliospheric Observatory (SOHO) space mission. However, when the new solar cycle started in 1997, the observations of solar flares from SOHO did not show the seismic waves, similar to the 1996 event, even for large X-class flares during the solar maximum in 2000-2002. The first evidence of the seismic flare signal in this solar cycle was obtained for the 2003 ``Halloween'' events, through acoustic ``egression power'' by Donea and Lindsey. After these several other strong sunquakes have been observed. Here, I present a detailed analysis of the basic properties of the helioseismic waves generated by three solar flares in 2003-2005. For two of these flares, X17 flare of October 28, 2003, and X1.2 flare of January 15, 2005, the helioseismology observations are compared with simultaneous observations of flare X-ray fluxes measured from the RHESSI satellite. These observations show a close association between the flare seismic waves and the hard X-ray source, indicating that high-energy electrons accelerated during the flare impulsive phase produced strong compression waves in the photosphere, causing the sunquake. The results also reveal new physical properties such as strong anisotropy of the seismic waves, the amplitude of which varies significantly with the direction of propagation. The waves travel through surrounding sunspot regions to large distances, up to 120 Mm, without significant decay. These observations open new perspectives for helioseismic diagnostics of flaring active regions on the Sun and for understanding the mechanisms of the energy release and transport in solar flares.
Dual variational principles for nonlinear traveling waves in multifluid plasmas
Webb, G. M.; McKenzie, J. F.; Mace, R. L.; Ko, C. M.; Zank, G. P.
2007-08-15
A Hamiltonian description of nonlinear, obliquely propagating traveling waves in a charge neutral, electron-proton, multifluid plasma is developed. The governing equations are written as a dual spatial Hamiltonian system. In the first formulation, the Hamiltonian is identified with the longitudinal, x-momentum flux integral P{sub x}=const, in which the energy integral {epsilon}={epsilon}{sub 0} acts as a constraint, and the Hamiltonian evolution operator is d/dx, where x is the position coordinate in the wave frame. In the second Hamiltonian formulation, the Hamiltonian is proportional to the conserved energy integral {epsilon}, in which the momentum integral P{sub x}=const acts as a constraint, and the Hamiltonian evolution operator d/d{tau}=u{sub x}d/dx is the Lagrangian time derivative where u{sub x} is the x component of the electron and proton fluids. The analysis is facilitated by using the de Hoffman-Teller frame of magnetohydrodynamic shock theory to simplify the transverse electron and proton momentum equations. The system is exactly integrable in cases in which the total transverse momentum fluxes of the system are zero in the de Hoffman-Teller frame. The implications of this constraint for the Alfven Mach number of the traveling wave are discussed. The physical conditions for the formation of whistler oscillitons based on the whistler dispersion equation are discussed.
The advanced system for the electromagnetic response of high-frequency gravitational waves
Jin Li; Lu Zhang; Kai Lin; Hao Wen
2014-11-20
Based on the electromagnetic (EM) response system of high frequency gravitational waves (HFGWs) in GHz band, we mainly discuss the EM response to the relic HFGWs, which are predicted by quintessential and ordinary inflationary models, and the braneworld HFGWs from braneworld scenarios. Both of them would generate detectable transverse perturbative photon fluxes (PPFs) thought to be the signal. Through resetting the magnetic component of Gaussian Beam to be in the standard gaussian form, the signal strength would be enhanced theoretically. Under the typical conditions, the analysis of background noise (background photon fluxes) and shot noise provides the possible transverse detection width for these HFGWs, meanwhile the standard quantum limit estimation proves our detection is possible. Finally according to the principle of maximum signal to noise ratio, we find some optimal system parameters and the relationship between effective width for energy fluxes accumulation and frequency.
Two-day wave observations of UARS Microwave Limb Sounder mesospheric water vapor and temperature
Limpasuvan, Varavut
of phase. Poleward heat flux associated with upward wave energy propagation in the Southern Hemisphere Carolina, USA Dong L. Wu Jet Propulsion Laboratory, California Institute of Technology, Pasadena
Miller, William H.
a potential energy surface and also one that avoids having to solve explicitly the complete state-to- state wave boundary conditions. Though this is indeed true, our present feeling is that the price paid- tional energies: the flux exiting most rapidly will hit the edge of the grid and undergo unphysical
McDonald, Angus Kai
2005-01-01
The dynamics of breaking waves significantly affect air-sea fluxes of heat, momentum, mass and energy across the ocean interface. Breaking waves also contribute considerable loading to offshore and coastal structures, and ...
Momentum Flux Budget across the AirSea Interface under Uniform and Tropical Cyclone Winds
Rhode Island, University of
into ocean currents is equal to the flux from air (wind stress). However, when the surface wave field grows into currents under TCs. 1. Introduction The passage of a tropical cyclone (TC) over a warm ocean represents one is mainly due to the vertical turbulent mixing induced by the strong momentum flux into ocean currents
Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.
1991-04-09
A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.
Mapping and Assessment of the United States Ocean Wave Energy...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Mapping and Assessment of the United States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and...
Duputel, Zacharie
tractable on a common field computer, to constrain the 1D vertical profile of shear velocities, and static seismic corrections in shear-wave profiling e.g., Mari, 1984 . MASW is based on a frequency multimode dispersion data. Several methods have been de- veloped to isolate the different modes from seismic
OBSERVATION OF FLUX-TUBE CROSSINGS IN THE SOLAR WIND
Arnold, L.; Li, G.; Li, X.; Yan, Y.
2013-03-20
Current sheets are ubiquitous in the solar wind. They are a major source of the solar wind MHD turbulence intermittency. They may result from nonlinear interactions of the solar wind MHD turbulence or are the boundaries of flux tubes that originate from the solar surface. Some current sheets appear in pairs and are the boundaries of transient structures such as magnetic holes and reconnection exhausts or the edges of pulsed Alfven waves. For an individual current sheet, discerning whether it is a flux-tube boundary or due to nonlinear interactions or the boundary of a transient structure is difficult. In this work, using data from the Wind spacecraft, we identify two three-current-sheet events. Detailed examination of these two events suggests that they are best explained by the flux-tube-crossing scenario. Our study provides convincing evidence supporting the scenario that the solar wind consists of flux tubes where distinct plasmas reside.
SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves
Pierce, Stephen
SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M of coastline. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes
APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves
Pierce, Stephen
APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M. KLYMAK2. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes important
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.
2015-04-29
It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised themore »large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (66 ± 2%) was rapid (11 to 26 years; mean and SE: 18 ± 3 years) in 25 of 30 soil samples across surface horizons (0–10 and 10–20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial–millennial turnover was typically much less abundant (34 ± 3%), even at 10–20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral-associated C over decadal scales. Steady-state inputs of mineral-associated C were statistically similar among the three topographic positions, and could represent 10–25% of annual litter production. Observed trends in mineral-associated ?14C over time could not be fit using the single-pool model used in many other studies, which generated contradictory relationships between turnover and ?14C as compared with a more realistic two-pool model. The large C fluxes in surface and near-surface soils documented here are supported by findings from paired 14C studies in other types of ecosystems, and suggest that most mineral-associated C cycles relatively rapidly (decadal scales) across ecosystems that span a broad range of state factors.« less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.
2015-01-16
It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised themore »large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (74 ± 4%) was rapid (9 to 29 years, mean and SE 20 ± 2 years) in 25 of 30 soil samples across surface horizons (0–10 and 10–20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial – millennial turnover was much less abundant (26%), even at 10–20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral associated C over decadal scales. Steady-state inputs of mineral-associated C were similar among the three topographic positions, and could represent 10–30% of annual litterfall production (estimated by doubling aboveground litterfall). Observed trends in mineral-associated ?14C over time could not be fit using the single pool model used in many other studies, which generated contradictory relationships between turnover and ?14C as compared with a more realistic constrained two-pool model. The large C fluxes in surface and near-surface soils implied by our data suggest that other studies using single-pool ?14C models of mineral-associated C dynamics, unconstrained by multiple time points, may have systematically underestimated C turnover.« less
ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES
Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)
2013-05-10
Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.
Wave represents displacement Wave represents pressure Source -Sound Waves
Colorado at Boulder, University of
is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio. The Sound Waves simulation becomes the source of an analogical mapping to Radio Waves. Concepts Radio Waves 1 - Sound Waves references water waves 2 - Water is analogy for Sound Waves 3 - Radio
J. Lundin; M. Marklund; E. Lundstrom; G. Brodin; J. Collier; R. Bingham; J. T. Mendonca; P. Norreys
2006-10-10
We derive expressions for the coupling coefficients for electromagnetic four-wave mixing in the non-linear quantum vacuum. An experimental setup for detection of elastic photon-photon scattering is suggested, where three incoming laser pulses collide and generate a fourth wave with a new frequency and direction of propagation. An expression for the number of scattered photons is derived and, using beam parameters for the Astra Gemini system at the Rutherford Appleton Laboratory, it is found that the signal can reach detectable levels. Problems with shot-to-shot reproducibility are reviewed, and the magnitude of the noise arising from competing scattering processes is estimated. It is found that detection of elastic photon-photon scattering may for the first time be achieved.
Hansen, S; Gaherty, J; Schwartz, S; Rodgers, A; Al-Amri, A
2007-07-25
We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.
Lake, James A. (Idaho Falls, ID); Heath, Russell L. (Idaho Falls, ID); Liebenthal, John L. (Idaho Falls, ID); DeBoisblanc, Deslonde R. (Summit, NJ); Leyse, Carl F. (Idaho Falls, ID); Parsons, Kent (Idaho Falls, ID); Ryskamp, John M. (Idaho Falls, ID); Wadkins, Robert P. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID); Fillmore, Gary N. (Idaho Falls, ID); Oh, Chang H. (Idaho Falls, ID)
1988-01-01
A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.
Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M A; Bayer, K; Belczynski, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgamy, M; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Casey, M M; Castaldi, G; Cepeda, C; Chalkey, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Chin, D; Chin, E; Chow, J; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Colacino, C N; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coward, D; Coyne, D; Creighton, J D E; Creighton, T D; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; De Bra, D; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S V; Díaz, M; Dickson, J; Di Credico, A; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L; González, G; Gossler, S; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Günther, M; Gustafson, R; Hage, B; Hamilton, W O; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Howell, E; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Jackrel, D; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lee, B; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McNabb, J W C; McWilliams, S; Meier, T; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Miller, P; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moody, V; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mudge, D; Müller, G; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Nettles, D; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Paik, H J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Samidi, M; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Tarallo, M; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D W; Ungarelli, C; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P
2007-01-01
Data from the LIGO Livingston interferometer and the ALLEGRO resonant bar detector, taken during LIGO's fourth science run, were examined for cross-correlations indicative of a stochastic gravitational-wave background in the frequency range 850-950 Hz, with most of the sensitivity arising between 905 Hz and 925 Hz. ALLEGRO was operated in three different orientations during the experiment to modulate the relative sign of gravitational-wave and environmental correlations. No statistically significant correlations were seen in any of the orientations, and the results were used to set a Bayesian 90% confidence level upper limit of Omega_gw(f) <= 1.02, which corresponds to a gravitational wave strain at 915 Hz of 1.5e-23/rHz. In the traditional units of h_100^2 Omega_gw(f), this is a limit of 0.53, two orders of magnitude better than the previous direct limit at these frequencies. The method was also validated with successful extraction of simulated signals injected in hardware and software.
M. K. Gaidarov; Y. Watanabe; K. Ogata; M. Kohno; M. Kawai; A. N. Antonov
2003-07-28
A semiclassical distorted wave (SCDW) model with Wigner transform of one-body density matrix is presented for multistep direct $(p,p^{\\prime}x)$ reactions to the continuum. The model uses Wigner distribution functions obtained in methods which include nucleon-nucleon correlations to a different extent, as well as Woods-Saxon (WS) single-particle wave function. The higher momentum components of target nucleons that play a crucial role in reproducing the high-energy part of the backward proton spectra are properly taken into account. This SCDW model is applied to analyses of multistep direct processes in $^{12}$C$(p,p^{\\prime}x)$, $^{40}$Ca$(p,p^{\\prime}x)$ and $^{90}$Zr$(p,p^{\\prime}x)$ in the incident energy range of 150--392 MeV. The double differential cross sections are calculated up to three-step processes. The calculated angular distributions are in good agreement with the experimental data, in particular at backward angles where the previous SCDW calculations with the WS single-particle wave function showed large underestimation. It is found that the result with the Wigner distribution function based on the coherent density fluctuation model provides overall better agreement with the experimental data over the whole emission energies.
WAVE HEIGHTS IN A 4D OCEAN WAVE FIELD Paul C. Liu
WAVE HEIGHTS IN A 4D OCEAN WAVE FIELD Paul C. Liu NOAA Great Lakes Environmental Research a preliminary examination and analysis of a small suite of 4-D wave data to explore what new insight century. We feel it is timely to encourage further 4-D ocean wave measurement and thereby facilitate fresh
IS VOYAGER 1 INSIDE AN INTERSTELLAR FLUX TRANSFER EVENT?
Schwadron, N. A.; McComas, D. J.
2013-12-01
Plasma wave observations from Voyager 1 have recently shown large increases in plasma density, to about 0.1 cm{sup –3}, consistent with the density of the local interstellar medium. However, corresponding magnetic field observations continue to show the spiral magnetic field direction observed throughout the inner heliosheath. These apparently contradictory observations may be reconciled if Voyager 1 is inside an interstellar flux transfer event—similar to flux transfer events routinely seen at the Earth's magnetopause. If this were the case, Voyager 1 remains inside the heliopause and based on the Voyager 1 observations we can determine the polarity of the interstellar magnetic field for the first time.
Tang, Yinjie; Pingitore, Francesco; Mukhopadhyay, Aindrila; Phan,Richard; Hazen, Terry C.; Keasling, Jay D.
2006-07-11
It has been proposed that during growth under anaerobic oroxygen-limited conditions Shewanella oneidensis MR-1 uses theserine-isocitrate lyase pathway common to many methylotrophic anaerobes,in which formaldehyde produced from pyruvate is condensed with glycine toform serine. The serine is then transformed through hydroxypyruvate andglycerate to enter central metabolism at phosphoglycerate. To examine itsuse of the serine-isocitrate lyase pathway under anaerobic conditions, wegrew S. oneidensis MR-1 on [1-13C]lactate as the sole carbon source witheither trimethylamine N-oxide (TMAO) or fumarate as an electron acceptor.Analysis of cellular metabolites indicates that a large percentage(>75 percent) of lactate was partially oxidized to either acetate orpyruvate. The 13C isotope distributions in amino acids and other keymetabolites indicate that, under anaerobic conditions, a complete serinepathway is not present, and lactate is oxidized via a highly reversibleserine degradation pathway. The labeling data also suggest significantactivity in the anaplerotic (malic enzyme and phosphoenolpyruvatecarboxylase) and glyoxylate shunt (isocitrate lyase and malate synthase)reactions. Although the tricarboxylic acid (TCA) cycle is often observedto be incomplete in many other anaerobes (absence of 2-oxoglutaratedehydrogenase activity), isotopic labeling supports the existence of acomplete TCA cycle in S. oneidensis MR-1 under TMAO reductioncondition.
Paul S. Wesson
2012-12-11
As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.
Agathos, Michalis; Li, Tjonnie G F; Broeck, Chris Van Den; Veitch, John; Vitale, Salvatore
2013-01-01
The direct detection of gravitational waves with upcoming second-generation gravitational wave detectors such as Advanced LIGO and Virgo will allow us to probe the genuinely strong-field dynamics of general relativity (GR) for the first time. We present a data analysis pipeline called TIGER (Test Infrastructure for GEneral Relativity), which is designed to utilize detections of compact binary coalescences to test GR in this regime. TIGER is a model-independent test of GR itself, in that it is not necessary to compare with any specific alternative theory. It performs Bayesian inference on two hypotheses: the GR hypothesis $\\mathcal{H}_{\\rm GR}$, and $\\mathcal{H}_{\\rm modGR}$, which states that one or more of the post-Newtonian coefficients in the waveform are not as predicted by GR. By the use of multiple sub-hypotheses of $\\mathcal{H}_{\\rm modGR}$, in each of which a different number of parameterized deformations of the GR phase are allowed, an arbitrarily large number of 'testing parameters' can be used with...
Gravitational waves: a foundational review
J. G. Pereira
2015-05-27
The standard linear approach to the gravitational waves theory is critically reviewed. Contrary to the prevalent understanding, it is pointed out that this theory contains many conceptual and technical obscure issues that require further analysis.
Hollinger, D. Y.; Evans, R. S.
2003-05-20
A portable flux measurement system has been used within the AmeriFlux network of CO{sub 2} flux measurement stations to enhance the comparability of data collected across the network. No systematic biases were observed in a comparison between portable system and site H, LE, or CO{sub 2} flux values although there were biases observed between the portable system and site measurement of air temperature and PPFD. Analysis suggests that if values from two stations differ by greater than 26% for H, 35% for LE, and 32% for CO{sub 2} flux they are likely to be significant. Methods for improving the intercomparability of the network are also discussed.
Samady, Mezhgan Frishta
2011-01-01
influence on the heat transfer as the radiation. Since thethe heat transfer analysis, the difference of net radiationheat transfer involved i n this project were conduction, convection and radiation.
Fire Imposed Heat Fluxes for Structural Analysis
Jowsey, Allan
The last two decades have seen new insights, data and analytical methods to establish the behaviour of structures in fire. These methods have slowly migrated into practice and now form the basis for modern quantitative ...
ARM - PI Product - Radiative Flux Analysis
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSAProductsMerged and corrected
Partial wave analysis of the reaction p(3.5 GeV) + p ? pK+ ? to search for the "ppK–" bound state
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; et al
2015-01-26
Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV) + p ? pK+?. This reaction might contain information about the kaonic cluster “ppK-” (with quantum numbers JP=0- and total isospin I =1/2) via its decay into p?. Due to interference effects in our coherent description of the data, a hypothetical K ¯NN (or, specifically “ppK-”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like p?. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a goodmore »description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ¯NN cluster. At a confidence level of CLs=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK+ ? final state, which translates into a production cross-section between 0.7 ?b and 4.2 ?b, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.« less
Wave Propagation in Multiferroic Materials
Keller, Scott Macklin
2013-01-01
130 SAW Waves . . . . . . . . . . . . . .QuasiStatic MEE Waves . . . . . . . . . . . . . . . . . . .General MEE Wave Solution . . . . . . . . . . . .
Integrated Study of the Nonlinear Dynamics of Collisional Drift Wave Turbulence
George R. Tynan
2012-04-24
An existing linear magnetized plasma device, the Controlled Shear Decorrelation experiment (CSDX) was used to study the transition from a state of coherent wave like activity to a state of turbulent activity using the magnetic field and thus magnetization of the plasma as the control parameter. The results show the onset of coherent drift waves consistent with linear stability analysis. As the magnetization is raised, at first multiple harmonics appear, consistent with wave steepening. This period is then followed by the beginning of nonlinear interactions between different wave modes, which then results in the formation of narrow frequency but distributed azimuthal wave number fluctuations that are consistent with the formation of long-lived coherent nonlinear structures within the plasmas. These structures, termed quasicoherent modes, persist as the magnetic field is raised. Measurements of turbulent momentum flux indicate that the plasma is also forming an azimuthally symmetric radially sheared fluid flow that is nonlinearly driven by smaller scaled turbulent fluctuations. Further increases in the magnetic field result in the breakup of the quasicoherent mode, and the clear formation of the sheared flow. Numerical simulations of the experiment reproduce the formation of the sheared flow via a vortex merging process, and confirm that the experiment is providing the first clear experimental evidence of the formation of sheared zonal flows from drift turbulent fluctuations in a magnetized plasma.
Internal wave instability: Wave-wave versus wave-induced mean flow interactions
Sutherland, Bruce
Internal wave instability: Wave-wave versus wave-induced mean flow interactions B. R. Sutherland fluid, vertically propagating internal gravity waves of moderately large amplitude can become unstable, energy from primary waves is transferred, for example, to waves with half frequency. Self
Hu, Chia-Ren.
1984-01-01
inteaction in real magnetic supercon- ductor s. ACKNOW LEDGMENTS This work was supported by National Science Founda- tion Grant No. DMR82-05697. It was partially worked out while the author was visiting the Argonne National Laboratory (ANL...). The dislocation support from ANL and the warm hospitality of Dr. G. W. Crabtree are grate- fully acknowledged. 30 EXACT NEAR-ONSET ANALYSIS OF THE SPIN-DENSITY-. . . 2589 ~E. I. Blount and C. M. Valma, Phys. Rev. Lett. 42, 1079 (1979). ~D. E. Moncton, D. B...
Shallow Water Waves and Solitary Waves
Hereman, Willy
2013-01-01
Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.
-point motion in a d-wave superconductor. The vortex is treated as a point flux tube, carrying fluxElectronic states near a quantum fluctuating point vortex in a d-wave superconductor: Dirac fermion model of the low-energy electronic states in the vicinity of a vortex undergoing quantum zero
Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)
2009-10-13
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Korneev, Valeri A [LaFayette, CA
2009-05-05
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Solar Model Parameters and Direct Measurements of Solar Neutrino Fluxes
Abhijit Bandyopadhyay; Sandhya Choubey; Srubabati Goswami; S. T. Petcov
2006-08-30
We explore a novel possibility of determining the solar model parameters, which serve as input in the calculations of the solar neutrino fluxes, by exploiting the data from direct measurements of the fluxes. More specifically, we use the rather precise value of the $^8B$ neutrino flux, $\\phi_B$ obtained from the global analysis of the solar neutrino and KamLAND data, to derive constraints on each of the solar model parameters on which $\\phi_B$ depends. We also use more precise values of $^7Be$ and $pp$ fluxes as can be obtained from future prospective data and discuss whether such measurements can help in reducing the uncertainties of one or more input parameters of the Standard Solar Model.
Wu, Ke-Li
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 10, OCTOBER 2003 2801 A Plane Wave Expansion of Spherical Wave Functions for Modal Analysis of Guided Wave Structures and Scatterers Robert H. MacPhie, Life Fellow, IEEE, and Ke-Li Wu, Senior Member, IEEE Abstract--A new finite plane wave series
Wave variability and wave spectra for wind generated gravity waves
Bretschneider, Charles L.
1959-01-01
A series of experiments of forces on a fixed vertical truncated column due to Stokes 5th order like waves were done in a wave tank. An effort was made to generate the waves as close as possible to theoretical Stokes 5th order waves. A systematic...
Thermality of the Hawking flux
Matt Visser
2015-05-06
Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only "approximately" Planck-shaped over a bounded frequency range. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is "approximately" Planck-shaped from both above and below --- the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.
Thermality of the Hawking flux
Visser, Matt
2014-01-01
Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lum...
Wave turbulence revisited: Where does the energy flow?
L. V. Abdurakhimov; I. A. Remizov; A. A. Levchenko; G. V. Kolmakov; Y. V. Lvov
2014-04-03
Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.
High flux solar energy transformation
Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.
1991-04-09
Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.
Beta ray flux measuring device
Impink, Jr., Albert J. (Murrysville, PA); Goldstein, Norman P. (Murrysville, PA)
1990-01-01
A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.
High flux solar energy transformation
Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)
1991-04-09
Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.
Type II superconductivity and magnetic flux transport in neutrons stars
P. B. Jones
2005-10-13
The transition to a type II proton superconductor which is believed to occur in a cooling neutron star is accompanied by changes in the equation of hydrostatic equilibrium and by the formation of proton vortices with quantized magnetic flux. Analysis of the electron Boltzmann equation for this system and of the proton supercurrent distribution formed at the transition leads to the derivation of a simple expression for the transport velocity of magnetic flux in the liquid interior of a neutron star. This shows that flux moves easily as a consequence of the interaction between neutron and proton superfluid vortices during intervals of spin-down or spin-up in binary systems. The differences between the present analysis and those of previous workers are reviewed and an error in the paper of Jones (1991) is corrected.
Localization of Classical Waves I: Acoustic Waves.
Localization of Classical Waves I: Acoustic Waves. Alexander Figotin \\Lambda Department, 1997 Abstract We consider classical acoustic waves in a medium described by a position dependent mass the existence of localized waves, i.e., finite energy solutions of the acoustic equations with the property
Coda wave interferometry 1 Coda wave interferometry
Snieder, Roel
Coda wave interferometry 1 Coda wave interferometry An interferometer is an instrument that is sensitive to the interference of two or more waves (optical or acoustic). For example, an optical interferometer uses two interfering light beams to measure small length changes. Coda wave interferometry
Superconducting flux flow digital circuits
Hietala, V.M.; Martens, J.S.; Zipperian, T.E.
1995-02-14
A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.
Superconducting flux flow digital circuits
Hietala, Vincent M. (Placitas, NM); Martens, Jon S. (Sunnyvale, CA); Zipperian, Thomas E. (Albuquerque, NM)
1995-01-01
A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.
A characterization of causal automorphisms by wave equations
Do-Hyung Kim
2011-11-07
A characterization of causal automorphism on Minkowski spacetime is given by use of wave equation. The result shows that causal analysis of spacetime may be replaced by studies of wave equation on manifolds.
Local Dynamics of Synoptic Waves in the Martian Atmosphere
Kavulich, Michael J., Jr.
2011-10-21
The sources and sinks of energy for transient waves in the Martian atmosphere are investigated, applying diagnostic techniques developed for the analysis of terrestrial baroclinic waves to output from a Mars General Circulation Model...
Flux cancellation and coronal mass ejectionsa... Jon A. Linker,b)
California at Berkeley, University of
and coronal mass ejections CMEs . This paper shows that flux cancellation in an energized two into the solar wind and forms an interplanetary shock wave. A similar eruption occurs for a three, ener- getic events in the solar corona that expel plasma and mag- netic fields into the solar wind
Quantum Fusion of Domain Walls with Fluxes
S. Bolognesi; M. Shifman; M. B. Voloshin
2009-07-20
We study how fluxes on the domain wall world volume modify quantum fusion of two distant parallel domain walls into a composite wall. The elementary wall fluxes can be separated into parallel and antiparallel components. The parallel component affects neither the binding energy nor the process of quantum merger. The antiparallel fluxes, instead, increase the binding energy and, against naive expectations, suppress quantum fusion. In the small flux limit we explicitly find the bounce solution and the fusion rate as a function of the flux. We argue that at large (antiparallel) fluxes there exists a critical value of the flux (versus the difference in the wall tensions), which switches off quantum fusion altogether. This phenomenon of flux-related wall stabilization is rather peculiar: it is unrelated to any conserved quantity. Our consideration of the flux-related all stabilization is based on substantiated arguments that fall short of complete proof.
DETECTING GRAVITY MODES IN THE SOLAR {sup 8} B NEUTRINO FLUX
Lopes, Ilídio; Turck-Chièze, Sylvaine E-mail: ilopes@uevora.pt
2014-09-10
The detection of gravity modes produced in the solar radiative zone has been a challenge in modern astrophysics for more than 30 yr and their amplitude in the core is not yet determined. In this Letter, we develop a new strategy to look for standing gravity modes through solar neutrino fluxes. We note that due to a resonance effect, the gravity modes of low degree and low order have the largest impact on the {sup 8} B neutrino flux. The strongest effect is expected to occur for the dipole mode with radial order 2, corresponding to periods of about 1.5 hr. These standing gravity waves produce temperature fluctuations that are amplified by a factor of 170 in the boron neutrino flux for the corresponding period, in consonance with the gravity modes. From current neutrino observations, we determine that the maximum temperature variation due to the gravity modes in the Sun's core is smaller than 5.8 × 10{sup –4}. This study clearly shows that due to their high sensitivity to the temperature, the {sup 8} B neutrino flux time series is an excellent tool to determine the properties of gravity modes in the solar core. Moreover, if gravity mode footprints are discovered in the {sup 8} B neutrino flux, this opens a new line of research to probe the physics of the solar core as non-standing gravity waves of higher periods cannot be directly detected by helioseismology but could leave their signature on boron neutrino or on other neutrino fluxes.
Anthropogenic and Biogenic Carbon Dioxide Fluxes From Typical Land Uses in Houston, Texas
Werner, Nicholas D
2013-04-29
the development of a correction for latent heat and carbon dioxide (CO2) fluxes due to a low-pass filtering of the true water vapor and CO2 atmospheric signals. A method of spectral analysis was used to develop a correction scheme for this flux underestimation...
Plane waves in anisotropic viscoelastic media
Andrzej Hanyga
2015-07-13
Two concepts of plane waves in anisotropic viscoelastic media are studied. One of these concepts allows for the use of methods based on the theory of complete Bernstein functions. This allows for a deeper study of frequency-domain asymptotics of the attenuation function and time-domain regularity at the wavefronts. A relation between the direction of the energy flux density and the attenuation vector is examined under much more general assumptions.
Generalized drift-flux correlation
Takeuchi, K.; Young, M.Y.; Hochreiter, L.E. (Westinghouse Electric Corp., Pittsburgh, PA (United States))
1991-01-01
A one-dimensional drift-flux model with five conservation equations is frequently employed in major computer codes, such as TRAC-PD2, and in simulator codes. In this method, the relative velocity between liquid and vapor phases, or slip ratio, is given by correlations, rather than by direct solution of the phasic momentum equations, as in the case of the two-fluid model used in TRAC-PF1. The correlations for churn-turbulent bubbly flow and slug flow regimes were given in terms of drift velocities by Zuber and Findlay. For the annular flow regime, the drift velocity correlations were developed by Ishii et al., using interphasic force balances. Another approach is to define the drift velocity so that flooding and liquid hold-up conditions are properly simulated, as reported here. The generalized correlation is used to reanalyze the MB-2 test data for two-phase flow in a large-diameter pipe. The results are applied to the generalized drift flux velocity, whose relationship to the other correlations is discussed. Finally, the generalized drift flux correlation is implemented in TRAC-PD2. Flow reversal from countercurrent to cocurrent flow is computed in small-diameter U-shaped tubes and is compared with the flooding curve.
The Generation of Coronal Loop Waves below the Photosphere by p-Mode Forcing
Bradley W. Hindman; Rekha Jain
2008-05-13
Recent observations of coronal-loop waves by TRACE and within the corona as a whole by CoMP clearly indicate that the dominant oscillation period is 5 minutes, thus implicating the solar p modes as a possible source. We investigate the generation of tube waves within the solar convection zone by the buffeting of p modes. The tube waves--in the form of longitudinal sausage waves and transverse kink waves--are generated on the many magnetic fibrils that lace the convection zone and pierce the solar photosphere. Once generated by p-mode forcing, the tube waves freely propagate up and down the tubes, since the tubes act like light fibers and form a waveguide for these magnetosonic waves. Those waves that propagate upward pass through the photosphere and enter the upper atmosphere where they can be measured as loop oscillations and other forms of propagating coronal waves. We treat the magnetic fibrils as vertically aligned, thin flux tubes and compute the energy flux of tube waves that can generated and driven into the upper atmosphere. We find that a flux in excess of 10^5 ergs/cm^2/s can be produced, easily supplying enough wave energy to explain the observations. Furthermore, we compute the associated damping rate of the driving p modes and find that the damping is significant compared to observed line widths only for the lowest order p modes.
On the wave energy potential of Western Black Sea shelf
Galabov, Vasko
2013-01-01
In the present study we evaluate the approaches to estimate the wave energy potential of the western Black Sea shelf with numerical models. For the purpose of our evaluation and due to the lack of long time series of measurements in the selected area of the Black Sea, we compare the modeled mean wave power flux output from the SWAN wave model with the only available long term measurements from the buoy of Gelendzhik for the period 1997-2003 (with gaps). The forcing meteorological data for the numerical wave models for the selected years is extracted from the ERA Interim reanalysis of ECMWF (European Centre for Medium range Forecasts). For the year 2003 we also compare the estimated wave power with the modeled by SWAN, using ALADIN regional atmospheric model winds. We try to identify the shortcomings and limitations of the numerical modeling approach to the evaluation of the wave energy potential in Black Sea.
Broader source: Energy.gov [DOE]
Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity.
Wirosoetisno, Djoko
focussing: in crossing seas due to coastal or submarine convergences. Moreover, (rogue) wave energy devices maker to create the highest rogue wave? geometry and dynamo in a new rogue wave energy device? maximum
Type IIB flux vacua from G-theory I
Philip Candelas; Andrei Constantin; Cesar Damian; Magdalena Larfors; Jose Francisco Morales
2015-02-02
We construct non-perturbatively exact four-dimensional Minkowski vacua of type IIB string theory with non-trivial fluxes. These solutions are found by gluing together, consistently with U-duality, local solutions of type IIB supergravity on $T^4 \\times \\mathbb{C}$ with the metric, dilaton and flux potentials varying along $\\mathbb{C}$ and the flux potentials oriented along $T^4$. We focus on solutions locally related via U-duality to non-compact Ricci-flat geometries. More general solutions and a complete analysis of the supersymmetry equations are presented in the companion paper [1]. We build a precise dictionary between fluxes in the global solutions and the geometry of an auxiliary $K3$ surface fibered over $\\mathbb{CP}^1$. In the spirit of F-theory, the flux potentials are expressed in terms of locally holomorphic functions that parametrize the complex structure moduli space of the $K3$ fiber in the auxiliary geometry. The brane content is inferred from the monodromy data around the degeneration points of the fiber.
Wave functions of linear systems
Tomasz Sowinski
2007-06-05
Complete analysis of quantum wave functions of linear systems in an arbitrary number of dimensions is given. It is shown how one can construct a complete set of stationary quantum states of an arbitrary linear system from purely classical arguments. This construction is possible because for linear systems classical dynamics carries the whole information about quantum dynamics.
K. Huang; H. Le Jeannic; V. B. Verma; M. D. Shaw; F. Marsili; S. W. Nam; E Wu; H. Zeng; O. Morin; J. Laurat
2015-11-06
Conditional preparation is a well-established technique for quantum state engineering of light. A general trend is to increase the number of heralding detection events in such realization to reach larger photon-number states or their arbitrary superpositions. In contrast to pulsed implementations, where detections only occur within the pulse window, for continuous-wave light the temporal separation of the conditioning detections is an additional degree of freedom and a critical parameter. Based on the theoretical study by A.E.B. Nielsen and K. Molmer and on a continuous-wave two-mode squeezed vacuum from a nondegenerate optical parametric oscillator, we experimentally investigate the generation of two-photon state with tunable delay between the heralding events. The present work illustrates the temporal multimode features in play for conditional state generation based on continuous-wave light sources.
Geometrical vs wave optics under gravitational waves
Raymond Angélil; Prasenjit Saha
2015-05-20
We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics - rather than solving Maxwell's equations directly for the fields, as in most previous approaches - we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.
Fillingim, Matthew
Electron Energy Flux M. O. Fillingim1, (matt@ess.washington.edu), G. K. Parks2, D. Chua1, G. A. Germany3, R intensity ~ precipitating electron energy flux Peak energy flux "near" WIND fQuantitative Comparison of Measured Plasma Sheet Electron Energy Flux and Remotely Sensed Auroral
High Heat Flux Thermoelectric Module Using Standard Bulk Material...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...
A high-flux BEC source for mobile atom interferometers
Jan Rudolph; Waldemar Herr; Christoph Grzeschik; Tammo Sternke; Alexander Grote; Manuel Popp; Dennis Becker; Hauke Müntinga; Holger Ahlers; Achim Peters; Claus Lämmerzahl; Klaus Sengstock; Naceur Gaaloul; Wolfgang Ertmer; Ernst M. Rasel
2015-06-16
Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of $4 \\times 10^5$ quantum degenerate $^{87}$Rb atoms every 1.6$\\,$s. Ensembles of $1 \\times 10^5$ atoms can be produced at a 1$\\,$Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.
ARM - Measurement - Soil heat flux
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Homepolarization ARMtotal downwelling irradianceheat flux
Adeyeye, Adekunle
and forbidden magnonic energy bands. The measured frequencies as a function of the exchanged wave vector have Nanoscienze, Centro S3, Via Campi 213A, I-41125 Modena, Italy 4 Information Storage Materials Laboratory and can be considered as a model system for reprogrammable dynamical response, where the band structure
Guzina, Bojan
. Madyarov Abstract The focus of this study is an analytical and computational platform for shallow seismic stratigraphy, little attention has been paid so far to utilizing their horizontally polarized, Love site stratigraphy and dispersive characteristics of (vertically polarized) Rayleigh waves, the SASW
Alfven Wave-Driven Supernova Explosion
T. K. Suzuki; K. Sumiyoshi; S. Yamada
2007-12-06
We investigate the role of Alfven waves in the core-collapse supernova (SN) explosion. We assume that Alfven waves are generated by convections inside a proto-neutron star (PNS) and emitted from its surface. Then these waves propagate outwards, dissipate via nonlinear processes, and heat up matter around a stalled prompt shock. To quantitatively assess the importance of this process for the revival of the stalled shock, we perform 1D time-dependent hydrodynamical simulations, taking into account the heating via the dissipation of Alfven waves that propagate radially outwards along open flux tubes. We show that the shock revival occurs if the surface field strength is larger than ~2e15 G and if the amplitude of velocity fluctuation at the PNS surface is larger than 20% of the local sound speed. Interestingly, the Alfven wave mechanism is self-regulating in the sense that the explosion energy is not very sensitive to the surface field strength and initial amplitude of Alfven waves as long as they are larger than the threshold values given above.
Long wave expansions for water waves over random topography
Anne de Bouard; Walter Craig; Oliver Díaz-Espinosa; Philippe Guyenne; Catherine Sulem
2007-10-01
In this paper, we study the motion of the free surface of a body of fluid over a variable bottom, in a long wave asymptotic regime. We assume that the bottom of the fluid region can be described by a stationary random process $\\beta(x, \\omega)$ whose variations take place on short length scales and which are decorrelated on the length scale of the long waves. This is a question of homogenization theory in the scaling regime for the Boussinesq and KdV equations. The analysis is performed from the point of view of perturbation theory for Hamiltonian PDEs with a small parameter, in the context of which we perform a careful analysis of the distributional convergence of stationary mixing random processes. We show in particular that the problem does not fully homogenize, and that the random effects are as important as dispersive and nonlinear phenomena in the scaling regime that is studied. Our principal result is the derivation of effective equations for surface water waves in the long wave small amplitude regime, and a consistency analysis of these equations, which are not necessarily Hamiltonian PDEs. In this analysis we compute the effects of random modulation of solutions, and give an explicit expression for the scattered component of the solution due to waves interacting with the random bottom. We show that the resulting influence of the random topography is expressed in terms of a canonical process, which is equivalent to a white noise through Donsker's invariance principle, with one free parameter being the variance of the random process $\\beta$. This work is a reappraisal of the paper by Rosales & Papanicolaou \\cite{RP83} and its extension to general stationary mixing processes.
The effect of bottom sediment transport on wave set-up
The effect of bottom sediment transport on wave set-up Roger Grimshaw and Evans Osaisai Department-shore zone, with an empirical sediment flux law depending only on the wave-induced mean current and mean total depth. This model allows the bottom to evolve slowly in time, and is used to examine how sediment
Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.
2014-08-01
The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstom’s DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: • Simulations of Alstom’s 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) • A simulation study of the University of Utah’s oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. • Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. • Collection of heat flux and temperature measurements in the University of Utah’s OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the generation of high-fidelity data from a turbulent oxy-coal flame for the validation of oxy-coal simulation models. Experiments were also conducted on the OFC to determine heat flux profiles using advanced strategies for O2 injection. This is important when considering retrofit of advanced O2 injection in retrofit configurations.
Energy Contents of Gravitational Waves in Teleparallel Gravity
M. Sharif; Sumaira Taj
2009-10-02
The conserved quantities, that are, gravitational energy-momentum and its relevant quantities are investigated for cylindrical and spherical gravitational waves in the framework of teleparallel equivalent of General Relativity using the Hamiltonian approach. For both cylindrical and spherical gravitational waves, we obtain definite energy and constant momentum. The constant momentum shows consistency with the results available in General Relativity and teleparallel gravity. The angular momentum for cylindrical and spherical gravitational waves also turn out to be constant. Further, we evaluate their gravitational energy-momentum fluxes and gravitational pressure.
California at Santa Barbara, University of
Verdes, Campus Point, Coal Oil Point (Sands) Waves propagate perpendicular to isobaths (lines of constant
Water Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves nonlinear waves. Throughout the theory is based on the traditional assumptions that water is inviscid
Leclerc, Monique Y.
2014-11-17
This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.
Uncertainty of calorimeter measurements at NREL's high flux solar furnace
Bingham, C.E.
1991-12-01
The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.
Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments
Andi Cucoanes; Pau Novella; Anatael Cabrera; Muriel Fallot; Anthony Onillon; Michel Obolensky; Frederic Yermia
2015-01-02
This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications on the global $\\theta_{13}$ knowledge today. First, Double Chooz, in its final configuration, is the only experiment benefiting from a negligible reactor flux error due to a $\\sim$90\\% geometrical suppression. Second, Daya Bay and RENO could benefit from their partial geometrical cancellation, yielding a potential $\\sim$50\\% error suppression, thus significantly improving the global $\\theta_{13}$ precision today. And third, we illustrate the rationale behind further error suppression upon the exploitation of the inter-reactor error correlations, so far neglected. So, our publication is a key step forward in the context of high precision neutrino reactor experiments providing insight on the suppression of their intrinsic flux error uncertainty, thus affecting past and current experimental results, as well as the design of future experiments.
Hu, Jinbing; Chen, Jiabi; Jiang, Qiang; Wang, Yan; Zhuang, Songlin
2015-01-01
The energy flux patterns of inverse Goos-Hanchen (GH) shift around the interface between air and negatively refractive photonic crystal (NRPhC) with different surface terminations is investigated. Results show that NRPhC exhibits inverse GH shift in TM and TE polarization, and the localization and pattern of energy flux differ in TM and TE polarizations and are strongly affected by surface termination. This is different to the condition of negative permittivity materials (i.e., metal), which only presents inverse GH shift in TM polarization. In the case of TE polarization, the energy flux pattern exhibits the flux of backward wave whose localization changes from the surface to inside of NRPhC with the variation of surface termination. In the case of TM polarization, the energy flux pattern is always confined within the surface of NRPhC, whereas its pattern changes from the flux of backward wave to vortices at the surface of NRPhC, which is different to the energy flux of TM polarization of metal. By properly ...
The size of macroscopic superposition states in flux qubits
J. I. Korsbakken; F. K. Wilhelm; K. B. Whaley
2010-03-27
The question as to whether or not quantum mechanics is applicable to the macroscopic scale has motivated efforts to generate superposition states of macroscopic numbers of particles and to determine their effective size. Superpositions of circulating current states in flux qubits constitute candidate states that have been argued to be at least mesoscopic. We present a microscopic analysis that reveals the number of electrons participating in these superpositions to be surprisingly but not trivially small, even though differences in macroscopic observables are large.
the wave model A traveling wave is an organized disturbance
Winokur, Michael
1 waves the wave model A traveling wave is an organized disturbance propagating at a well-defined wave speed v. · In transverse waves the particles of the medium move perpendicular to the direction of wave propagation. · In longitudinal waves the particles of the medium move parallel to the direction
NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE
Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)
2013-08-10
Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.
Fluxing agent for metal cast joining
Gunkel, Ronald W. (Lower Burrell, PA); Podey, Larry L. (Greensburg, PA); Meyer, Thomas N. (Murrysville, PA)
2002-11-05
A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF.sub.3, and about 10 wt. % Al.sub.2 O.sub.3.
RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles
Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States)
2012-07-01
The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)
Merlino, Robert L.
Acoustic Waves C. Thompson, A. Barkan, R. L. Merlino, and N. D'Angelo Fig. 1. Single video frame image of a dust acoustic wave. The bright vertical bands correspond to the wave crests (dust compressions "dust waves." A sample image of a dust acoustic wave is presented. Index Terms--Image analysis, plasma
Photospheric Logarithmic Velocity Spirals as MHD Wave Generation Mechanisms
Mumford, S J
2015-01-01
High-resolution observations of the solar photosphere have identified a wide variety of spiralling motions in the plasma. These spirals vary in properties, but are observed to be abundant on the solar surface. In this work these spirals are studied for their potential as magnetohydrodynamic (MHD) wave generation mechanisms. The inter-granular lanes, where these spirals are commonly observed, are also regions where the magnetic field strength is higher than average. This combination of magnetic field and spiralling plasma is a recipe for the generation of Alfv\\'en waves and other MHD waves. This work employs numerical simulations of a self-similar magnetic flux tube embedded in a realistic, gravitationally stratified, solar atmosphere to study the effects of a single magnetic flux tube perturbed by a logarithmic velocity spiral driver. The expansion factor of the logarithmic spiral driver is varied, multiple simulations are run for a range of values of the expansion factor centred around observational data. Th...
ELECTRON HEAT FLUX IN THE SOLAR WIND: ARE WE OBSERVING THE COLLISIONAL LIMIT IN THE 1 AU DATA?
Landi, S.; Matteini, L.; Pantellini, F.
2014-07-20
Using statistically significant data at 1 AU, it has recently been shown (Bale et al.) that in the solar wind, when the Knudsen number K {sub T} (the ratio between the electron mean free path and the electron temperature scale height) drops below about 0.3, the electron heat flux q intensity rapidly approaches the classical collisional Spitzer-Härm limit. Using a fully kinetic model including the effect of Coulomb collisions and the expansion of the solar wind with heliocentric distance, we observe that the heat flux strength does indeed approach the collisional value for Knudsen numbers smaller than about 0.3 in very good agreement with the observations. However, closer inspection of the heat flux properties, such as its variation with the heliocentric distance and its dependence on the plasma parameters, shows that for Knudsen numbers between 0.02 and 0.3 the heat flux is not conveniently described by the Spitzer-Härm formula. We conclude that even though observations at 1 AU seem to indicate that the electron heat flux intensity approaches the collisional limit when the Knudsen drops below ?0.3, the collisional limit is not a generally valid closure for a Knudsen larger than 0.01. Moreover, the good agreement between the heat flux from our model and the heat flux from solar wind measurements in the high-Knudsen number regime seems to indicate that the heat flux at 1 AU is not constrained by electromagnetic instabilities as both wave-particle and wave-wave interactions are neglected in our calculations.
Barthelemy, X; Peirson, W L; Fedele, F; Allis, M; Dias, F
2015-01-01
We revisit the classical, but as yet unresolved problem of predicting the breaking onset of 2D and 3D irrotational gravity water waves. This study focuses on domains with flat bottom topography and conditions ranging from deep to intermediate depth (depth to wavelength ratio between 1 and 0.2). Using a fully-nonlinear boundary element model, our initial calculations investigated geometric, kinematic and energetic differences between maximally recurrent and marginally breaking waves in focusing wave groups. Maximallyrecurrent waves are clearly separated from marginally-breaking waves by their energy fluxes localized near the crest region. Specifically, tracking the local ratio of energy flux velocity to crest speed at the crest of the tallest wave in the evolving group provides a robust breaking onset threshold parameter. Warning of imminent breaking onset was found to depend on the strength of breaking, but was detectable only up to half a carrier wave period prior to a breaking event.
Blanchat, Thomas K.; Hanks, Charles R.
2013-04-01
Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.
AN EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A SURGE
Zheng, Ruisheng; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Hong, Junchao; Yang, Bo; Yang, Dan
2013-02-10
Taking advantage of the high temporal and spatial resolution observations from the Solar Dynamics Observatory, we present an extreme-ultraviolet (EUV) wave associated with a surge on 2010 November 13. Due to the magnetic flux cancelation, some surges formed in the source active region (AR). The strongest surge produced our studied event. The surge was deflected by the nearby loops that connected to another AR, and disrupted the overlying loops that slowly expanded and eventually evolved into a weak coronal mass ejection (CME). The surge was likely associated with the core of the CME. The EUV wave happened after the surge deflected. The wave departed far from the flare center and showed a close location relative to the deflected surge. The wave propagated in a narrow angular extent, mainly in the ejection direction of the surge. The close timing and location relations between the EUV wave and the surge indicate that the wave was closely associated with the CME. The wave had a velocity of 310-350 km s{sup -1}, while the speeds of the surge and the expanding loops were about 130 and 150 km s{sup -1}, respectively. All of the results suggest that the EUV wave was a fast-mode wave and was most likely triggered by the weak CME.
Relativistic Quaternionic Wave Equation II
Schwartz, Charles
2007-01-01
Relativistic quaternionic wave equation. II J. Math. Phys.Relativistic quaternionic wave equation. II Charles Schwartzcomponent quaternionic wave equation recently introduced. A
Separation of gas mixtures by thermoacoustic waves.
Swift, G. W.; Geller, D. A.
2001-01-01
Imposing sound on a binary gas mixture in a duct separates the two gases along the acoustic-propagation axis. Mole-fraction differences as large as 10% and separation fluxes as high as 0.001 M-squared c, where M is Mach number and c is sound speed, are easily observed. We describe the accidental discovery of this phenomenon in a helium-xenon mixture, subsequent experiments with a helium-argon mixture, and theoretical developments. The phenomenon occurs because a thin layer of the gas adjacent to the wall is immobilized by viscosity while the rest of the gas moves back and forth with the wave, and the heat capacity of the wall holds this thin layer of the gas at constant temperature while the rest of the gas experiences temperature oscillations due to the wave's oscillating pressure. The oscillating temperature gradient causes the light and heavy atoms in the gas to take turns diffusing into and out of the immobilized layer, so that the oscillating motion of the wave outside the immobilized layer tends to carry light-enriched gas in one direction and heavy-enriched gas in the opposite direction. Experiment and theory are in very good agreement for the initial separation fluxes and the saturation mole-fraction differences.
SEPARATION OF GAS MIXTURES BY THERMOACOUSTIC WAVES
G.W. SWIFT; D.A. GELLER; P.S. SPOOR
2001-06-01
Imposing sound on a binary gas mixture in a duct separates the two gases along the acoustic-propagation axis. Mole-fraction differences as large as 10% and separation fluxes as high as 0.001 M-squared c, where M is Mach number and c is sound speed, are easily observed. We describe the accidental discovery of this phenomenon in a helium-xenon mixture, subsequent experiments with a helium-argon mixture, and theoretical developments. The phenomenon occurs because a thin layer of the gas adjacent to the wall is immobilized by viscosity while the rest of the gas moves back and forth with the wave, and the heat capacity of the wall holds this thin layer of the gas at constant temperature while the rest of the gas experiences temperature oscillations due to the wave's oscillating pressure. The oscillating temperature gradient causes the light and heavy atoms in the gas to take turns diffusing into and out of the immobilized layer, so that the oscillating motion of the wave outside the immobilized layer tends to carry light-enriched gas in one direction and heavy-enriched gas in the opposite direction. Experiment and theory are in very good agreement for the initial separation fluxes and the saturation mole-fraction differences.
California at Irvine, University of
was obtained from the CTD data, surface fluxes, and assumptions about solar radiative absorption with depth of the budget. The results show variability typical of the tropics: low winds (LW) with maximum solar radiation were made with the Integrated Sounding System (ISS) with ancillary measurements of longwave radiation
Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)
1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution
Rogue Wave Modes for the Long WaveShort Wave Resonance Model Kwok Wing CHOW
Rogue Wave Modes for the Long WaveShort Wave Resonance Model Kwok Wing CHOW 1Ã , Hiu Ning CHAN 1 online June 11, 2013) The long waveshort wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution equations
Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)
of a long wave matches the group velocity of a short wave. Significant interactions and energy transfer can1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase
LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY CONVERTERS
Haller, Merrick
1 LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY of wave energy converters (WECs) on water waves through the analysis of extensive laboratory experiments absorption is a reasonable predictor of the effect of WECs on the far field. Keywords: wave- energy; spectral
PHELIX for flux compression studies
Turchi, Peter J; Rousculp, Christopher L; Reinovsky, Robert E; Reass, William A; Griego, Jeffrey R; Oro, David M; Merrill, Frank E
2010-06-28
PHELIX (Precision High Energy-density Liner Implosion eXperiment) is a concept for studying electromagnetic implosions using proton radiography. This approach requires a portable pulsed power and liner implosion apparatus that can be operated in conjunction with an 800 MeV proton beam at the Los Alamos Neutron Science Center. The high resolution (< 100 micron) provided by proton radiography combined with similar precision of liner implosions driven electromagnetically can permit close comparisons of multi-frame experimental data and numerical simulations within a single dynamic event. To achieve a portable implosion system for use at high energy-density in a proton laboratory area requires sub-megajoule energies applied to implosions only a few cms in radial and axial dimension. The associated inductance changes are therefore relatively modest, so a current step-up transformer arrangement is employed to avoid excessive loss to parasitic inductances that are relatively large for low-energy banks comprising only several capacitors and switches. We describe the design, construction and operation of the PHELIX system and discuss application to liner-driven, magnetic flux compression experiments. For the latter, the ability of strong magnetic fields to deflect the proton beam may offer a novel technique for measurement of field distributions near perturbed surfaces.
Today's Material Gauss' Law and Flux
Ashlock, Dan
Field Lines' #12;© 2013 Pearson Education, Inc. The Concept of Flux Consider a box surrounding a region;© 2013 Pearson Education, Inc. The Concept of Flux Consider a box surrounding a region of space. We can.1 22.3 Next lecture · More on Gauss's law #12;Copyright © 2008 Pearson Education, Inc., publishing
Mathur, Manikandan S.
Internal waves are a ubiquitous and significant means of momentum and energy transport in the oceans, atmosphere, and astrophysical bodies. Here, we show that internal wave propagation in nonuniform density stratifications, ...
Mercier, Matthieu J.
We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...
Gravitational Waves on Conductors
A. Lewis Licht
2004-03-12
We consider a gravitational wave of arbitrary frequency incident on a normal or a super-conductor. The gravitationally induced fields inside the conductor are derived. The outward propagating EM waves are calculated for a low frequency wave on a small sphere and for a high frequency wave incident on a large disk. We estimate for both targets the GW to EM conversion efficiencies and also the magnitude of the superconductor's phase perturbation.
Degasperis, Antonio; Aceves, Alejandro B
2015-01-01
We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing, may lead to extreme waves at extremely low powers.
Keyser, John
Wave Particles Cem Yuksel Computer Science Texas A&M University Donald H. House Visualization captured from our real-time simulation system (approximately 100,000 wave particles) Abstract We present a new method for the real-time simulation of fluid sur- face waves and their interactions with floating
Internal wave instability: Wave-wave versus wave-induced mean flow interactions
Sutherland, Bruce
, known as parametric sub- harmonic instability, results generally when a disturbance of one frequency imparts energy to disturbances of half that frequency.13,14 Generally, a plane periodic internal wave, energy from primary waves is transferred, for example, to waves with half frequency. Self
Traveling water waves with critical layers
Ailo Aasen; Kristoffer Varholm
2015-08-19
We establish the existence of small-amplitude uni- and bimodal steady periodic gravity waves with an affine vorticity distribution. The solutions describe waves with critical layers and an arbitrary number of crests and troughs in each minimal period. Our bifurcation argument differs slightly from earlier theory, and under certain conditions we prove that the waves found are different from the ones in previous investigations. An important part of the analysis is a fairly complete description of the small-amplitude solutions. Finally, we investigate the asymptotic behavior of solutions on the local bifurcation set.
A Wave-function for Stringy Universes
Costas Kounnas; Nicolaos Toumbas; Jan Troost
2007-07-27
We define a wave-function for string theory cosmological backgrounds. We give a prescription for computing its norm following an earlier analysis within general relativity. Under Euclidean continuation, the cosmologies we discuss in this paper are described in terms of compact parafermionic worldsheet systems. To define the wave-function we provide a T-fold description of the parafermionic conformal field theory, and of the corresponding string cosmology. In specific examples, we compute the norm of the wave-function and comment on its behavior as a function of moduli.
Performance Assessment of the Wave Dragon Wave Energy Converter
Hansen, René Rydhof
Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave
THE ROLE OF SUPERLUMINAL ELECTROMAGNETIC WAVES IN PULSAR WIND TERMINATION SHOCKS
Amano, Takanobu [Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033 (Japan); Kirk, John G., E-mail: amano@eps.s.u-tokyo.ac.jp [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)
2013-06-10
The dynamics of a standing shock front in a Poynting-flux-dominated relativistic flow is investigated by using a one-dimensional, relativistic, two-fluid simulation. An upstream flow containing a circularly polarized, sinusoidal magnetic shear wave is considered, mimicking a wave driven by an obliquely rotating pulsar. It is demonstrated that this wave is converted into large-amplitude electromagnetic waves with superluminal phase speeds by interacting with the shock when the shock-frame frequency of the wave exceeds the proper plasma frequency. The superluminal waves propagate in the upstream, modify the shock structure substantially, and form a well-developed precursor region ahead of a subshock. Dissipation of Poynting flux occurs in the precursor as well as in the downstream region through a parametric instability driven by the superluminal waves. The Poynting flux remaining in the downstream region is carried entirely by the superluminal waves. The downstream plasma is therefore an essentially unmagnetized, relativistically hot plasma with a non-relativistic flow speed, as suggested by observations of pulsar wind nebulae.
Electronic structure of superposition states in flux qubits
J. I. Korsbakken; F. K. Wilhelm; K. B. Whaley
2010-04-13
Flux qubits, small superconducting loops interrupted by Josephson junctions, are successful realizations of quantum coherence for macroscopic variables. Superconductivity in these loops is carried by $\\sim 10^6$ -- $10^{10}$ electrons, which has been interpreted as suggesting that coherent superpositions of such current states are macroscopic superpositions analogous to Schr\\"odinger's cat. We provide a full microscopic analysis of such qubits, from which the macroscopic quantum description can be derived. This reveals that the number of microscopic constituents participating in superposition states for experimentally accessible flux qubits is surprisingly but not trivially small. The combination of this relatively small size with large differences between macroscopic observables in the two branches is seen to result from the Fermi statistics of the electrons and the large disparity between the values of superfluid and Fermi velocity in these systems.
Nonlinear acoustic wave generation in a three-phase seabed
Kukarkin, A B; Zhileikin, Ya M
2015-01-01
Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.
Nonlinear acoustic wave generation in a three-phase seabed
A. B. Kukarkin; N. I. Pushkina; Ya. M. Zhileikin
2015-03-03
Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.
Barnes, Elizabeth A.
Barotropic Impacts of Surface Friction on Eddy Kinetic Energy and Momentum Fluxes: An Alternative energy decreases, a response that is inconsistent with the conventional barotropic governor mechanism on eddy momentum fluxes and eddy kinetic energy. Analysis of the pseudomomentum budget shows
Resonantly enhanced four-wave mixing
Begley, Richard F. (Los Alamos, NM); Kurnit, Norman A. (Santa Fe, NM)
1978-01-01
A method and apparatus for achieving large susceptibilities and long interaction lengths in the generation of new wavelengths in the infrared spectral region. A process of resonantly enhanced four-wave mixing is employed, utilizing existing laser sources, such as the CO.sub.2 laser, to irradiate a gaseous media. The gaseous media, comprising NH.sub.3, CH.sub.3 F, D.sub.2, HCl, HF, CO, and H.sub.2 or some combination thereof, are of particular interest since they are capable of providing high repetition rate operation at high flux densities where crystal damage problems become a limitation.
Applications of the DFLU flux to systems of conservation laws
Adimurthi, Adimurthi; Jaffré, Jérôme
2009-01-01
The DFLU numerical flux was introduced in order to solve hyperbolic scalar conservation laws with a flux function discontinuous in space. We show how this flux can be used to solve systems of conservation laws. The obtained numerical flux is very close to a Godunov flux. As an example we consider a system modeling polymer flooding in oil reservoir engineering.
Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics
Qian, Tingting
2010-07-14
Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...
Emission Origin for the Wave of Quanta
Sanjay M Wagh
2009-07-07
We argue that certain assumptions about the process of the emission of the quanta by their (oscillating) emitter provide for their changing (oscillatory) flux at any location. This mechanism underlying (such) wave phenomena is not based, both, on the newtonian notion of force and the field concept (of Faraday, Maxwell, Lorentz and Einstein). When applied to the case of thermal radiation, this emission origin for the wave of quanta is shown here to be consistent with the laws of the black body radiation. We conclude therefore also that a conceptual framework, which is not rooted in the notion of force and in the field concept, may provide a deterministic basis underlying the probabilistic methods of the quantum theory.
High-Flux Microchannel Solar Receiver
Broader source: Energy.gov [DOE]
This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.
Eddy Correlation Flux Measurement System (ECOR) Handbook
Cook, DR
2011-01-31
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.
Minsley, Burke J.
2004-05-26
Amplitude versus offset (AVO) analysis of seismic reflection data has been a successful tool in describing changes in rock properties along a reflector. This method is extended to azimuthal AVO (AVOA) in order to characterize ...
Particle and Wave: Developing the Quantum Wave Accompanying a Classical Particle
C. L. Herzenberg
2008-12-04
The relationship between classical and quantum mechanics is explored in an intuitive manner by the exercise of constructing a wave in association with a classical particle. Using special relativity, the time coordinate in the frame of reference of a moving particle is expressed in terms of the coordinates in the laboratory frame of reference in order to provide an initial spatiotemporal function to work from in initiating the development of a quantum wave. When temporal periodicity is ascribed to the particle, a provisional spatiotemporal function for a particle travelling at constant velocity manifests itself as an running wave characterized by parameters associated with the moving particle. A wave description for bidirectional motion is generated based on an average time coordinate for a combination of oppositely directed elementary running waves, and the resulting spatiotemporal function exhibits wave behavior characteristic of a standing wave. Ascribing directional orientation to the intrinsic periodicity of the particle introduces directional sub-states; variations in the relative number of sub-states as a function of angle in combined states lead to spatially varying magnitudes for the associated waves. Further analysis leads to full mathematical expression for all waves representing free particle motion. A generalization for particles subject to force fields enables us to develop a governing differential equation identical in form to the Schroedinger equation.
Neutrino flux variations and solar activity
Ikhsanov, R N
2003-01-01
We investigate temporal variations of the solar neutrino flux in 1970-1997. The periods of 11, 5 and 2 years have been found in the variations of the neutrino flux. The results indicate that a periodicity close to 5 years is the most significant in the data from both the Homestake and GALLEX experiments. Two groups of the solar activity indices have been distinguished regarding their interconnection with the neutrino flux series. The first group contains the indices showing predominantly 11-year period, while a periodicity at approximately 5 years is observed in the second group. The correlation coefficients between the neutrino flux and indices from the first group are negative, with their module not exceeding 0.5. The second group is characterized by positive correlation with the neutrino counting rates with coefficients not lower than 0.6. A discussion of findings is presented.
Tetrakis-amido high flux membranes
McCray, S.B.
1989-10-24
Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.
A low cost high flux solar simulator
Codd, Daniel S.
A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...
Cycloidal Wave Energy Converter
Stefan G. Siegel, Ph.D.
2012-11-30
This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.
Moreton Waves and EIT Waves Related to the Flare Events of June 3, 2012 and July 6, 2012
Admiranto, A G; Yus'an, U; Puspitaningrum, E
2015-01-01
We present geometrical and kinematical analysis of Moreton waves and EIT waves observed on June 3, 2012 and Moreton waves observed on July 6, 2012. The Moreton waves were recorded in H$\\alpha$ images of Global Oscillation Network Group (GONG) archive and EIT waves obtained from SDO/AIA observations, especially in 193 nm channel. The observed wave of June 3 has angular span of about $70^{\\circ}$ with a broad wave front associated to NOAA active region 11496. It was found that the speed of the wave that started propagating at 17.53 UT is between 950 to 1500 km/s. Related to this wave occurrence, there was solar type II and III radio bursts. The speed of the EIT in this respect about 247 km/sec. On the other hand, the wave of July 6 may be associated to X1.1 class flare that occurred at 23.01 UT around the 11514 active region. From the kinematical analysis, the wave propagated with the initial velocity of about 1180 km/s which is in agreement with coronal shock velocity derived from type II radio burst observati...
Flux expulsion variation in SRF cavities
Posen, S; Romanenko, A; Melnychuk, O; Sergatskov, D A; Martinello, M; Checchin, M; Crawford, A C
2015-01-01
Treating a cavity with nitrogen doping significantly increases $Q_0$ at medium fields, reducing cryogenic costs for high duty factor linear accelerators such as LCLS II. N-doping also makes cavities more sensitive to increased residual resistance due to trapped magnetic flux, making it critical to either have extremely effective magnetic shielding, or to prevent flux from being trapped in the cavity during cooldown. In this paper, we report on results of a study of flux expulsion. We discuss possible ways in which flux can be pinned in the inner surface, outer surface, or bulk of a cavity, and we present experimental results studying these mechanisms. We show that grain structure appears to play a key role and that a cavity that expelled flux poorly changed to expelling flux well after a high temperature furnace treatment. We further show that after furnace treatment, this cavity exhibited a significant improvement in quality factor when cooled in an external magnetic field. We conclude with implications for ...
Parametric Modulation of Dynamo Waves
Kitchatinov, Leonid
2015-01-01
Long-term variations of solar activity, including the Grand minima, are believed to result from temporal variations of dynamo parameters. The simplest approximation of dynamo waves is applied to show that cyclic variations of the parameters can lead to an exponential growth or decay of magnetic oscillations depending on the variations frequency. There is no parametric resonance in a dynamo, however: the selective sensitivity to distinct frequencies, characteristic of resonant phenomena, is absent. A qualitative explanation for this finding is suggested. Nonlinear analysis of dynamo-waves reveals the hysteresis phenomenon found earlier in more advanced models. However, the simplified model allows a computation of a sufficiently large number of dynamo-cycles for constructing the distribution function of their amplitudes to reproduce qualitatively two modes of solar activity inferred recently from cosmogenic isotope content in natural archives.
Nonlocal resonances in weak turbulence of gravity-capillary waves
Quentin Aubourg; Nicolas Mordant
2015-03-13
We report a laboratory investigation of weak turbulence of water surface waves in the gravity-capillary crossover. By using time-space resolved profilometry and a bicoherence analysis, we observe that the nonlinear processes involve 3-wave resonant interactions. By studying the solutions of the resonance conditions we show that the nonlinear interaction is dominantly 1D and involves collinear wave vectors. Furthermore taking into account the spectral widening due to weak nonlinearity explains that nonlocal interactions are possible between a gravity wave and high frequency capillary ones. We observe also that nonlinear 3-wave coupling is possible among gravity waves and we raise the question of the relevance of this mechanism for oceanic waves.
Kinetic Alfvén wave turbulence and formation of localized structures
Sharma, R. P.; Modi, K. V.; Mechanical Engineering Department, Government Engineering College Valsad, Gujarat 396001
2013-08-15
This work presents non-linear interaction of magnetosonic wave with kinetic Alfvén wave for intermediate ?-plasma (m{sub e}/m{sub i}???1). A set of dimensionless equations have been developed for analysis by considering ponderomotive force due to pump kinetic Alfvén wave in the dynamics of magnetosonic wave. Stability analysis has been done to study modulational instability or linear growth rate. Further, numerical simulation has been carried out to study the nonlinear stage of instability and resulting power spectrum applicable to solar wind around 1 AU. Due to the nonlinearity, background density of magnetosonic wave gets modified which results in localization of kinetic Alfvén wave. From the obtained results, we observed that spectral index follows k{sup ?3.0}, consistent with observation received by Cluster spacecraft for the solar wind around 1 AU. The result shows the steepening of power spectrum which may be responsible for heating and acceleration of plasma particles in solar wind.
Sych, Robert
2015-01-01
The review addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, height localization with the mechanism of cut-off frequency that forms the observed emission variability. Dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, investigates the oscillation frequency transformation depending on the wave energy is shown. The initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks are discussed. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves. A short review of theoretical models of sunspot oscillations is provided.
Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino
Merlino, Robert L.
Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some findings and outstanding problems are also presented. Keywords: dusty plasmas, dust acoustic waves PACS: 52
Structure-borne sound Flexural wave (bending wave)
Berlin,Technische Universität
1 Structure-borne sound · Flexural wave (bending wave) »One dimensional (beam) +(/x)dx +(/x)dx = (/x) (/x)dx=(2/x2)dx Mz +(Mz/x)dx Mz vy Fy Fy +(Fy/x)dx Structure-borne sound · Bending wave flexural wave #12;2 Structure-borne sound · Two obliquely propagating waves + - + + - + - Structure
REAL-TIME WATER WAVES WITH WAVE PARTICLES
Keyser, John
REAL-TIME WATER WAVES WITH WAVE PARTICLES A Dissertation by Cem Yuksel Submitted to the Office of DOCTOR OF PHILOSOPHY August 2010 Major Subject: Computer Science #12;REAL-TIME WATER WAVES WITH WAVE, Valerie E. Taylor August 2010 Major Subject: Computer Science #12;iii ABSTRACT Real-time Water Waves
GN Wave theory and TEBEM for Wave-Body Interaction
GN Wave theory and TEBEM for Wave-Body Interaction Dr. BinBin Zhao and Professor Wenyang Duan of simulating irregular nonlinear water wave interaction with arbitrary floating bodies, the Green-Naghdi wave corners. The results show that the high-level GN theory can predict wave transformation over uneven seabed
T. Heinemann; J. C. B. Papaloizou
2009-04-30
We study and elucidate the mechanism of spiral density wave excitation in a differentially rotating turbulent flow. We formulate a set of wave equations with sources that are only non-zero in the presence of turbulent fluctuations. We solve these in a shearing box domain using a WKBJ method. It is found that, for a particular azimuthal wave length, the wave excitation occurs through a sequence of regularly spaced swings during which the wave changes from leading to trailing form. This is a generic process that is expected to occur in shearing discs with turbulence. Trailing waves of equal amplitude propagating in opposite directions are produced, both of which produce an outward angular momentum flux that we give expressions for as functions of the disc parameters and azimuthal wave length. By solving the wave amplitude equations numerically we justify the WKBJ approach for a Keplerian rotation law for all parameter regimes of interest. In order to quantify the wave excitation completely the important wave source terms need to be specified. Assuming conditions of weak nonlinearity, these can be identified and are associated with a quantity related to the potential vorticity, being the only survivors in the linear regime. Under the additional assumption that the source has a flat power spectrum at long azimuthal wave lengths, the optimal azimuthal wave length produced is found to be determined solely by the WKBJ response and is estimated to be 2 pi H, with H being the nominal disc scale height.
Mats Ehrnström; Erik Wahlén
2013-10-31
We construct three-dimensional families of small-amplitude gravity-driven rotational steady water waves on finite depth. The solutions contain counter-currents and multiple crests in each minimal period. Each such wave generically is a combination of three different Fourier modes, giving rise to a rich and complex variety of wave patterns. The bifurcation argument is based on a blow-up technique, taking advantage of three parameters associated with the vorticity distribution, the strength of the background stream, and the period of the wave.
Directed Relativistic Blast Wave
Andrei Gruzinov
2007-04-23
A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.
Can High Frequency Acoustic Waves Heat the Quiet Sun Chromosphere?
Mats Carlsson; Viggo H. Hansteen; Bart De Pontieu; Scott McIntosh; Theodore D. Tarbell; Dick Shine; Saku Tsuneta; Yukio Katsukawa; Kiyoshi Ichimoto; Yoshinori Suematsu; Toshifumi Shimizu; Shin'ichi Nagata
2007-09-21
We use Hinode/SOT Ca II H-line and blue continuum broadband observations to study the presence and power of high frequency acoustic waves at high spatial resolution. We find that there is no dominant power at small spatial scales; the integrated power using the full resolution of Hinode (0.05'' pixels, 0.16'' resolution) is larger than the power in the data degraded to 0.5'' pixels (TRACE pixel size) by only a factor of 1.2. At 20 mHz the ratio is 1.6. Combining this result with the estimates of the acoustic flux based on TRACE data of Fossum & Carlsson (2006), we conclude that the total energy flux in acoustic waves of frequency 5-40 mHz entering the internetwork chromosphere of the quiet Sun is less than 800 W m$^{-2}$, inadequate to balance the radiative losses in a static chromosphere by a factor of five.
The role of torsional Alfven waves in coronal heating
Antolin, P
2009-01-01
In the context of coronal heating, among the zoo of MHD waves that exist in the solar atmosphere, Alfven waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption or turbulent cascade in order to heat the plasma. New observations with polarimetric, spectroscopic and imaging instruments such as those on board of the japanese satellite Hinode, or the SST or CoMP, are bringing strong evidence for the existence of energetic Alfven waves in the solar corona. In order to assess the role of Alfven waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfven wave heating through the mode conversion mechanism. Using a 1.5-dimensional MHD code we carry out a paramete...
Evidence for wave heating of the quiet-sun corona
Hahn, M.; Savin, D. W.
2014-11-10
We have measured the energy and dissipation of Alfvénic waves in the quiet Sun. A magnetic field model was used to infer the location and orientation of the magnetic field lines along which the waves are expected to travel. The waves were measured using spectral lines to infer the wave amplitude. The waves cause a non-thermal broadening of the spectral lines, which can be expressed as a non-thermal velocity v {sub nt}. By combining the spectroscopic measurements with this magnetic field model, we were able to trace the variation of v {sub nt} along the magnetic field. At each footpoint of the quiet-Sun loops, we find that waves inject an energy flux in the range of 1.3-5.5 × 10{sup 5} erg cm{sup –2} s{sup –1}. At the minimum of this range, this amounts to more than 80% of the energy needed to heat the quiet Sun. We also find that these waves are dissipated over a region centered on the top of the loops. The position along the loop where the damping begins is strongly correlated with the length of the loop, implying that the damping mechanism depends on the global loop properties rather than on local collisional dissipation.
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
Chapman, S. C., E-mail: S.C.Chapman@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Dendy, R. O. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Todd, T. N.; Webster, A. J.; Morris, J. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Watkins, N. W. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Centre for the Analysis of Time Series, London School of Economics, London (United Kingdom); Department of Engineering and Innovation, Open University, Milton Keynes (United Kingdom); Calderon, F. A. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom)
2014-06-15
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM.
Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility
Maudlin, P.J.; Maerker, R.E.
1982-01-01
A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.
Wave Energy challenges and possibilities
© Wave Energy challenges and possibilities By: Per Resen Steenstrup www.WaveStarEnergy.com Risø-R-1608(EN) 161 #12;© Wave energy is an old story.... The first wave energy patent is 200 years old. Over the last 100 years more than 200 new wave energy devices have been developped and more than 1.000 patents
Wave-Corpuscle Mechanics for Electric Charges
Babin, Anatoli; Figotin, Alexander
2010-01-01
superposition in nonlinear wave dynamics. Rev. Math. Phys.6. Babin, A. , Figotin, A. : Wave-corpuscle mechanics forV. , Fortunato, D. : Solitary waves in the nonlinear wave
Microstructural Design for Stress Wave Energy Management /
Tehranian, Aref
2013-01-01
Nasser, S. , 2010. Stress-wave energy management throughNemat-Nasser, Stress-wave energy management through materialconstitute pressure wave energy and/or shear wave energy.
QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES
Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis E-mail: marc.carbonell@uib.e E-mail: joseluis.ballester@uib.e
2010-11-20
Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of {>=}10{sup 5} G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of {approx}2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.
Inbound waves in the solar corona: A direct indicator of Alfvén surface location
DeForest, C. E.; Howard, T. A. [Southwest Research Institute, 1050 Walnut Street, Boulder, CO (United States); McComas, D. J., E-mail: deforest@boulder.swri.edu [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX (United States)
2014-06-01
The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary—the Alfvén surface—that marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfvén surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfvén speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar corona and the inner boundary of interplanetary space. Using a new and unique motion analysis to separate inbound and outbound motions in synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft, we have identified inbound wave motion in the outer corona beyond 6 solar radii for the first time and used it to determine that the Alfvén surface is at least 12 solar radii from the Sun over the polar coronal holes and 15 solar radii in the streamer belt, well beyond the distance planned for NASA's upcoming Solar Probe Plus mission. To our knowledge, this is the first measurement of inbound waves in the outer solar corona and the first direct measurement of lower bounds for the Alfvén surface.
Rani, B; Marscher, A P; Hodgson, J A; Fuhrmann, L; Angelakis, E; Britzen, S; Zensus, J A
2015-01-01
We present a high-frequency very long baseline interferometry (VLBI) kinematical study of the BL Lac object S5 0716+714 over the time period of September 2008 to October 2010. The aim of the study is to investigate the relation of the jet kinematics to the observed broadband flux variability. We find significant non-radial motions in the jet outflow of the source. In the radial direction, the highest measured apparent speed is \\sim37 c, which is exceptionally high, especially for a BL Lac object. Patterns in the jet flow reveal a roughly stationary feature \\sim0.15 mas downstream of the core. The long-term fits to the component trajectories reveal acceleration in the sub-mas region of the jet. The measured brightness temperature, T_{B}, follows a continuous trend of decline with distance, T_B \\propto r_{jet}^{-(2.36\\pm0.41)}, which suggests a gradient in Doppler factor along the jet axis. Our analysis suggest that a moving disturbance (or a shock wave) from the base of the jet produces the high-energy (optica...
Harmonic generation of gravitational wave induced Alfven waves
Mats Forsberg; Gert Brodin
2007-11-26
Here we consider the nonlinear evolution of Alfven waves that have been excited by gravitational waves from merging binary pulsars. We derive a wave equation for strongly nonlinear and dispersive Alfven waves. Due to the weak dispersion of the Alfven waves, significant wave steepening can occur, which in turn implies strong harmonic generation. We find that the harmonic generation is saturated due to dispersive effects, and use this to estimate the resulting spectrum. Finally we discuss the possibility of observing the above process.
Electromagnetic Wave Dynamics in
Kaiser, Robin
Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases Robin Kaiser and Mark D. Havey Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases #12;39 E xperimental developments permit in the transport proper- ties of electromagnetic radiation in strongly scattering random media. Even in weakly
Bieber, Michael
CATCHING THE FOURTH WAVE YOU MAY HAVE RIDDEN THEM YOURSELF -- the swells that develop farther out beyond Toffler, the fourth wave -- biologi- cal intelligence and medical technology -- is on the horizon second and fourth nationally in terms of cities that receive the most research funds from the National
J X Zheng-Johansson; P-I Johansson
2006-08-27
The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity $v$, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed $c$ between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength ${\\mit\\Lambda}_d$$=(\\frac{v}{c}){\\mit\\Lambda}$ and phase velocity $c^2/v+v$ which resembles directly L. de Broglie's hypothetic phase wave. This phase wave in terms of transporting the particle mass at the speed $v$ and angular frequency ${\\mit\\Omega}_d=2\\pi v /{\\mit\\Lambda}_d$, with ${\\mit\\Lambda}_d$ and ${\\mit\\Omega}_d$ obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase) wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schr\\"odinger equation of an identical system.
Jia, Pan; Claudin, Philippe
2015-01-01
A flexible sheet clamped at both ends and submitted to a permanent wind is unstable and propagates waves. Here, we experimentally study the selection of frequency and wavenumber as a function of the wind velocity. These quantities obey simple scaling laws, which are analytically derived from a linear stability analysis of the problem, and which also involve a gravity-induced velocity scale. This approach allows us to collapse data obtained with sheets whose flexible rigidity is varied by two orders of magnitude. This principle may be applied in the future for energy harvesting.
WAVE-VORTEX INTERACTIONS IN THE ATMOSPHERE, AND CLIMATE
Al Hanbali, Ahmad
WAVE-VORTEX INTERACTIONS IN THE ATMOSPHERE, AND CLIMATE PREDICTION Onno Bokhove Numerical Analysis, The Netherlands o.bokhove@math.utwente.nl Abstract Can we construct an accurate atmospheric climate model parcel dynamics, linear modes, balan- ced models, gravity waves, weather and climate prediction
Imaging wave-penetrable objects in a finite depth ocean
Zou, Jun
Imaging wave-penetrable objects in a finite depth ocean Keji Liu Yongzhi Xu Jun Zou Abstract. We- penetrable inhomogeneous medium in a 3D finite depth ocean. The method is based on a scat- tering analysis extend the direct sampling method proposed in [13] to image a wave- penetrable inhomogeneous medium
Dam-Breach Flood Wave Propagation Using Dimensionless Parameters
Ponce, V. Miguel
Dam-Breach Flood Wave Propagation Using Dimensionless Parameters Victor M. Ponce, M.ASCE1 ; Ahmad to study the sensitivity of dam-breach flood waves to breach-outflow hydrograph volume, peak discharge the channel. A dam-breach Froude number is defined to enable analysis through a wide range of site and flow
Real Time Flux Control in PM Motors
Otaduy, P.J.
2005-09-27
Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of trying to oppose it. It is robust and could be particularly useful for PM generators and electric vehicle drives. Recent efforts have introduced a brushless machine that transfers a magneto-motive force (MMF) generated by a stationary excitation coil to the rotor [4]. Although a conventional PM machine may be field weakened using vector control, the air-gap flux density cannot be effectively enhanced. In Hsu's new machine, the magnetic field generated by the rotor's PM may be augmented by the field from the stationery excitation coil and channeled with flux guides to its desired destination to enhance the air-gap flux that produces torque. The magnetic field can also be weakened by reversing the current in the stationary excitation winding. A patent for advanced technology in this area is pending. Several additional RTFC methods have been discussed in open literature. These include methods of changing the number of poles by magnetizing and demagnetizing the magnets poles with pulses of current corresponding to direct-axis (d-axis) current of vector control [5,6], changing the number of stator coils [7], and controlling the air gap [8]. Test experience has shown that the magnet strengths may vary and weaken naturally as rotor temperature increases suggesting that careful control of the rotor temperature, which is no easy task, could yield another method of RTFC. The purpose of this report is to (1) examine the interaction of rotor and stator flux with regard to RTFC, (2) review and summarize the status of RTFC technology, and (3) compare and evaluate methods for RTFC with respect to maturity, advantages and limitations, deployment difficulty and relative complexity.
Freezing E3-brane instantons with fluxes
Massimo Bianchi; Andres Collinucci; Luca Martucci
2012-02-22
E3-instantons that generate non-perturbative superpotentials in IIB N=1 compactifications are more frequent than currently believed. Worldvolume fluxes will typically lift the E3-brane geometric moduli and their fermionic superpartners, leaving only the two required universal fermionic zero-modes. We consistently incorporate SL(2, Z) monodromies and world-volume fluxes in the effective theory of the E3-brane fermions and study the resulting zero-mode spectrum, highlighting the relation between F-theory and perturbative IIB results. This leads us to a IIB derivation of the index for generation of superpotential terms, which reproduces and generalizes available results. Furthermore, we show how worldvolume fluxes can be explicitly constructed in a one-modulus compactification, such that an E3-instanton has exactly two fermonic zero-modes. This construction is readily applicable to numerous scenarios.
Super-radiance and flux conservation
Boonserm, Petarpa; Visser, Matt
2014-01-01
The theoretical foundations of the phenomenon known as super-radiance still continues to attract considerable attention. Despite many valiant attempts at pedagogically clear presentations, the effect nevertheless still continues to generate some significant confusion. Part of the confusion arises from the fact that super-radiance in a quantum field theory [QFT] context is not the same as super-radiance (super-fluorescence) in some condensed matter contexts; part of the confusion arises from traditional but sometimes awkward normalization conventions, and part is due to sometimes unnecessary confusion between fluxes and probabilities. We shall argue that the key point underlying the effect is flux conservation, (and, in the presence of dissipation, a controlled amount of flux non-conservation), and that attempting to phrase things in terms of reflection and transmission probabilities only works in the absence of super-radiance. To help clarify the situation we present a simple exactly solvable toy model exhibi...
Rayleigh WaveInternal Wave Coupling and Internal Wave Generation Above a Model Jet Stream
Sutherland, Bruce
Rayleigh WaveInternal Wave Coupling and Internal Wave Generation Above a Model Jet Stream B. R to the study of unstable jet flows and applications of this work for internal wave generation by dynamic remains poorly understood. Most investigations of sheargeneration of inter nal waves in the atmosphere
Rayleigh Wave-Internal Wave Coupling and Internal Wave Generation Above a Model Jet Stream
Sutherland, Bruce
Rayleigh Wave-Internal Wave Coupling and Internal Wave Generation Above a Model Jet Stream B. R to the study of unstable jet flows and applications of this work for internal wave generation by dynamic remains poorly understood. Most investigations of shear-generation of inter- nal waves in the atmosphere
An unsteady wave driver for narrowbanded waves: modeling nearshore circulation driven by wave groups
Kirby, James T.
An unsteady wave driver for narrowbanded waves: modeling nearshore circulation driven by wave Abstract In this paper, we derive an unsteady refractiondiffraction model for narrowbanded water waves for use in computing coupled wavecurrent motion in the nearshore. The end result is a variable
by simultaneous observations of both temperature and horizontal wind with high vertical and temporal reso- lutions heat flux transport. These observed features are highly suggestive of wave breaking in these altitudes with a period of $1.5 hr, whose spectrum power was greatly reduced after the sudden horizontal wind a
MHD wave modes resolved in fine-scale chromospheric magnetic structures
Verth, G
2015-01-01
Within the last decade, due to significant improvements in the spatial and temporal resolution of chromospheric data, magnetohydrodynamic (MHD) wave studies in this fascinating region of the Sun's atmosphere have risen to the forefront of solar physics research. In this review we begin by reviewing the challenges and debates that have manifested in relation to MHD wave mode identification in fine-scale chromospheric magnetic structures, including spicules, fibrils and mottles. Next we go on to discuss how the process of accurately identifying MHD wave modes also has a crucial role to play in estimating their wave energy flux. This is of cardinal importance for estimating what the possible contribution of MHD waves is to solar atmospheric heating. Finally, we detail how such advances in chromospheric MHD wave studies have also allowed us, for the first time, to implement cutting-edge magnetoseismological techniques that provide new insight into the sub-resolution plasma structuring of the lower solar atmospher...
-wave superconductor. The vortex is treated as a point flux tube, carrying flux of an auxiliary U(1) gauge fieldarXiv:cond-mat/0606001v222Jul2006 Electronic states near a quantum fluctuating point vortex in a d energy electronic states in the vicinity of a vortex under- going quantum zero-point motion in a d
Recirculation in multiple wave conversions
Brizard, A.J.
2008-01-01
model lies with the simple wave energy conservation law itthe recirculation of wave energy introduces interference e?particles, the tertiary-wave energy may be negative and thus
Plasma momentum meter for momentum flux measurements
Zonca, Fulvio (Rome, IT); Cohen, Samuel A. (Hopewell, NJ); Bennett, Timothy (Princeton, NJ); Timberlake, John R. (Allentown, NJ)
1993-01-01
Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.
Dual neutron flux/temperature measurement sensor
Mihalczo, John T. (Oak Ridge, TN); Simpson, Marc L. (Knoxville, TN); McElhaney, Stephanie A. (Oak Ridge, TN)
1994-01-01
Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.
Classical and quantum flux energy conditions
Martin-Moruno, Prado
2013-01-01
The classical energy conditions are known to not be fundamental physics -- they are typically violated by semiclassical quantum effects. Consequently, some effort has gone into finding possible semiclassical replacements for the classical energy conditions -- the most well developed being the Ford-Roman quantum inequalities. In the current article we shall instead develop classical and quantum versions of a "flux energy condition" (FEC and QFEC) based on the notion of constraining the possible fluxes measured by timelike observers. The classical FEC will be seen to be satisfied by some quantum states, while its quantum analogue (the QFEC) is satisfied under a rather wide range of conditions.
Center for Wave Phenomena Wave Phenomena
Snieder, Roel
research and education program in seismic exploration, monitoring and wave propagation. The main focus into a life of scientific discovery." Kurang Mehta, Ph.D. Class of 2007 Shell Exploration and Production Phil of CWP is on seismic modeling, imaging and inversion methods, as well as on improving the accuracy
Wave equations with energy dependent potentials
J. Formanek; R. J. Lombard; J. Mares
2003-09-22
We study wave equations with energy dependent potentials. Simple analytical models are found useful to illustrate difficulties encountered with the calculation and interpretation of observables. A formal analysis shows under which conditions such equations can be handled as evolution equation of quantum theory with an energy dependent potential. Once these conditions are met, such theory can be transformed into ordinary quantum theory.
FFTF (Fast Flux Test Facility) reactor shutdown system reliability reevaluation
Pierce, B.F.
1986-07-01
The reliability analysis of the Fast Flux Test Facility reactor shutdown system was reevaluated. Failure information based on five years of plant operating experience was used to verify original reliability numbers or to establish new ones. Also, system modifications made subsequent to performance of the original analysis were incorporated into the reevaluation. Reliability calculations and sensitivity analyses were performed using a commercially available spreadsheet on a personal computer. The spreadsheet was configured so that future failures could be tracked and compared with expected failures. A number of recommendations resulted from the reevaluation including both increased and decreased surveillance intervals. All recommendations were based on meeting or exceeding existing reliability goals. Considerable cost savings will be incurred upon implementation of the recommendations.
B. V. Ivanov
1997-05-21
A coordinate transformation is found which diagonalizes the axisymmetric pp-waves. Its effect upon concrete solutions, including impulsive and shock waves, is discussed.
Flux tubes in the SU(3) vacuum
Mario S. Cardaci; Paolo Cea; Leonardo Cosmai; Rossella Falcone; Alessandro Papa
2011-09-30
We analyze the distribution of the chromoelectric field generated by a static quark-antiquark pair in the SU(3) vacuum. We find that the transverse profile of the flux tube resembles the dual version of the Abrikosov vortex field distribution and give an estimate of the London penetration length in the confined vacuum.
EUV mirror based absolute incident flux detector
Berger, Kurt W.
2004-03-23
A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.
Diagnosis of Ocean Mesoscale Eddy Tracer Fluxes
Fox-Kemper, Baylor
Diagnosis of Ocean Mesoscale Eddy Tracer Fluxes Baylor Fox-Kemper U. Colorado-Boulder, with Scott - 10,000 km, yrs->centuries) => resolved · Mesoscale variability (10 - 100 km, mo -> yrs) => resolved) => parameterized Boundary Layer Models Mesoscale resolving models Climate models Submesoscale variability Coupling
Engineering Notes Microgravity Demonstrations of Flux
Peck, Mason A.
Cornell University, Ithaca, New York 14853 DOI: 10.2514/1.50343 I. Introduction MAGNETIC flux pinning, a noncontacting interaction between Type II superconductors and magnetic fields, has been studied at length by the scientific community for its applications to levitating objects in a 1g environment [13]. However, due
Orientation of eddy fluxes in geostrophic turbulence
Nadiga, Balasubramanya T. "Balu"
of potential vorticity (PV) in geostrophic turbulence. We take two different points of view, a classical of the eddy flux of PV with the appropriate mean gradient or the large-scale gradient of PV is required-temporal characteristics of the flow. One way to improve on this is to adopt unsteady RA. In this case, averages
Adaptive Representation of Specular Light Flux
Montréal, Université de
Adaptive Representation of Specular Light Flux Normand Bri`ere Pierre Poulin D´epartement d in all but the simplest con- figurations. To capture their appearance, we present an adaptive approach based upon light beams. The coher- ence between light rays forming a light beam greatly re- duces
Energies of Quantum QED Flux Tubes
H Weigel
2006-01-26
In this talk I present recent studies on vacuum polarization energies and energy densities induced by QED flux tubes. I focus on comparing three and four dimensional scenarios and the discussion of various approximation schemes in view of the exact treatment.
URANIUM MILL TAILINGS RADON FLUX CALCULATIONS
URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIÑON RIDGE PROJECT MONTROSE COUNTY, COLORADO (EFRC) proposes to license, construct, and operate a conventional acid leach uranium and vanadium mill storage pad, and access roads. The mill is designed to process ore containing uranium and vanadium
SYNOPTIC MAPPING OF CHROMOSPHERIC MAGNETIC FLUX
Jin, C. L.; Harvey, J. W.; Pietarila, A. E-mail: jharvey@nso.edu
2013-03-10
We used daily full-disk Ca II 854.2 nm magnetograms from the Synoptic Optical Long Term Investigations of the Sun (SOLIS) facility to study the chromospheric magnetic field from 2006 April through 2009 November. We determined and corrected previously unidentified zero offsets in the SOLIS magnetograms. By tracking the disk passages of stable unipolar regions, the measured net flux densities were found to systematically decrease from the disk center to the limb by a factor of about two. This decrease was modeled using a thin flux tube model with a difference in signal formation height between the center and limb sides. Comparison of photospheric and chromospheric observations shows that their differences are largely due to horizontal spreading of magnetic flux with increasing height. The north polar magnetic field decreased nearly linearly with time during our study period while the south polar field was nearly constant. We used the annual change in the viewing angle of the polar regions to estimate the radial and meridional components of the polar fields and found that the south polar fields were tilted away from the pole. Synoptic maps of the chromospheric radial flux density distribution were used as boundary conditions for extrapolation of the field from the chromosphere into the corona. A comparison of modeled and observed coronal hole boundaries and coronal streamer positions showed better agreement when using the chromospheric rather than the photospheric synoptic maps.
Muon Flux at the Geographical South Pole
X. Bai; T. K. Gaisser; A. Karle; K. Rawlins; G. M. Spiczak; Todor Stanev
2006-02-17
The muon flux at the South-Pole was measured for five zenith angles, $0^{\\circ}$, $15^{\\circ}$, $35^{\\circ}$, $82.13^{\\circ}$ and $85.15^{\\circ}$ with a scintillator muon telescope incorporating ice Cherenkov tank detectors as the absorber. We compare the measurements with other data and with calculations.
Defect-free ultrahigh flux asymmetric membranes
Pinnau, Ingo (Austin, TX); Koros, William J. (Austin, TX)
1990-01-01
Defect-free, ultrahigh flux integrally-skinned asymmetric membranes having extremely thin surface layers (<0.2 .mu.m) comprised of glassy polymers are disclosed. The membranes are formed by casting an appropriate drope followed by forced convective evaporation of solvent to obtain a dry phase separated asymmetrical structure. The structure is then washed in a precipitation liquid and dried.
Role of the basin boundary conditions in gravity wave turbulence
Luc Deike; Benjamin Miquel; Pablo Gutiérrez-Matus; Timothée Jamin; Benoit Semin; Michael Berhanu; Eric Falcon; Félicien Bonnefoy
2015-09-02
Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation that highlights the important role of a large scale Fourier mode. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant is evaluated and found to be compatible with a recent theoretical value.
Role of the basin boundary conditions in gravity wave turbulence
Luc Deike; Benjamin Miquel; Pablo Gutiérrez-Matus; Timothée Jamin; Benoit Semin; Sébastien Aumaitre; Michael Berhanu; Eric Falcon; Félicien BONNEFOY
2014-12-16
Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation that highlights the important role of a large scale Fourier mode. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant is evaluated and found to be compatible with a recent theoretical value.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Deiterding, Ralf
2011-01-01
Numerical simulation can be key to the understanding of the multidimensional nature of transient detonation waves. However, the accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme and the treatment of the nonequilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniquesmore »in practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under transient conditions, that is, under diffraction and for propagation through bends are presented. Some of the observed patterns are classified by shock polar analysis, and a diagram of the transition boundaries between possible Mach reflection structures is constructed.« less
Mechanical balance laws for fully nonlinear and weakly dispersive water waves
Henrik Kalisch; Zahra Khorsand; Dimitrios Mitsotakis
2015-08-20
The Serre-Green-Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations which approximates the full water wave problem. The system is an extension of the well known shallow-water system to the situation where the waves are long, but not so long that dispersive effects can be neglected. In the current work, the focus is on deriving mass, momentum and energy densities and fluxes associated with the Serre-Green-Naghdi system. These quantities arise from imposing balance equations of the same asymptotic order as the evolution equations. In the case of an even bed, the conservation equations are satisfied exactly by the solutions of the Serre-Green-Naghdi system. The case of variable bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the corresponding counterparts in both the Boussinesq and the shallow-water scaling. One consequence of the present analysis is that the energy loss appearing in the shallow-water theory of undular bores is fully compensated by the emergence of oscillations behind the bore front. The situation is analyzed numerically by approximating solutions of the Serre-Green-Naghdi equations using a finite-element discretization coupled with an adaptive Runge-Kutta time integration scheme, and it is found that the energy is indeed conserved nearly to machine precision. As a second application, the shoaling of solitary waves on a plane beach is analyzed. It appears that the Serre-Green-Naghdi equations are capable of predicting both the shape of the free surface and the evolution of kinetic and potential energy with good accuracy in the early stages of shoaling.
Shallow Water Waves and Solitary Waves Willy Hereman
Hereman, Willy A.M.
. Water Wave Experiments and Observations VII. Future Directions VIII. Bibliography Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depthShallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer
Long wave expansions for water waves over random topography
Craig, Walter
Long wave expansions for water waves over random topography Anne de Bouard1 , Walter Craig2 interacting with the random bottom. We show that the resulting influence of the random topography is expressed numbers: 76B15, 35Q53, 76M50, 60F17 Keywords :Water waves, random topography, long wave asymptotics #12
On Generating Gravity Waves with Matter and Electromagnetic Waves
C. Barrabes; P. A. Hogan
2008-04-05
If a homogeneous plane light-like shell collides head-on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.
EVIDENCE FOR THE PHOTOSPHERIC EXCITATION OF INCOMPRESSIBLE CHROMOSPHERIC WAVES
Morton, R. J.; Verth, G.; Fedun, V.; Erdelyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Shelyag, S., E-mail: richard.morton@northumbria.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Main Physics Building, Queen's University Belfast, Belfast, County Antrim BT7 1NN (United Kingdom)
2013-05-01
Observing the excitation mechanisms of incompressible transverse waves is vital for determining how energy propagates through the lower solar atmosphere. We aim to show the connection between convectively driven photospheric flows and incompressible chromospheric waves. The observations presented here show the propagation of incompressible motion through the quiet lower solar atmosphere, from the photosphere to the chromosphere. We determine photospheric flow vectors to search for signatures of vortex motion and compare results to photospheric flows present in convective simulations. Further, we search for the chromospheric response to vortex motions. Evidence is presented that suggests incompressible waves can be excited by the vortex motions of a strong magnetic flux concentration in the photosphere. A chromospheric counterpart to the photospheric vortex motion is also observed, presenting itself as a quasi-periodic torsional motion. Fine-scale, fibril structures that emanate from the chromospheric counterpart support transverse waves that are driven by the observed torsional motion. A new technique for obtaining details of transverse waves from time-distance diagrams is presented and the properties of transverse waves (e.g., amplitudes and periods) excited by the chromospheric torsional motion are measured.
Time-Resolved Magnetic Flux and AC-Current Distributions in Superconducting YBCO Thin Films and
Shaw, Leah B.
Time-Resolved Magnetic Flux and AC-Current Distributions in Superconducting YBCO Thin Films on superconductors. The high time and spatial resolutions of the measurements also offer good quantitative data analysis of the MO images. Y Ba2Cu3O7-8 (YBCO) was discovered as a high-temperature superconductor (HTSC
Integrability of D1-brane on Group Manifold with Mixed Three Form Flux
Kluson, J
2015-01-01
We consider D1-brane as a natural probe of the group manifold with mixed three form fluxes. We determine Lax connection for given theory. Then we switch to the canonical analysis and calculate the Poisson brackets between spatial components of Lax connections and we argue for integrability of given theory.
The Third Wave: Innovation and Strategic Military Capacity in the Future
COWHEY, Peter
2013-01-01
APRIL 2013 The Third Wave: Innovation and Strategic Militaryassumes that the balance of innovation capacity matters forThe analysis treats innovation as the successful
Analysis of Metabolic Pathways and Fluxes in a Newly Discovered...
Office of Scientific and Technical Information (OSTI)
provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to...
Analysis of Piston Heat Flux for Highly Complex Piston Shapes...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-10lee.pdf More Documents & Publications Optical...
Soft Capacitors for Wave Energy Harvesting
Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jørgen Jørgensen; Guggi Kofod
2011-10-14
Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.
Evolution of Rogue Waves in Interacting Wave Systems
A. Grönlund; B. Eliasson; M. Marklund
2009-04-03
Large amplitude water waves on deep water has long been known in the sea faring community, and the cause of great concern for, e.g., oil platform constructions. The concept of such freak waves is nowadays, thanks to satellite and radar measurements, well established within the scientific community. There are a number of important models and approaches for the theoretical description of such waves. By analyzing the scaling behavior of freak wave formation in a model of two interacting waves, described by two coupled nonlinear Schroedinger equations, we show that there are two different dynamical scaling behaviors above and below a critical angle theta_c of the direction of the interacting waves below theta_c all wave systems evolve and display statistics similar to a wave system of non-interacting waves. The results equally apply to other systems described by the nonlinear Schroedinger equations, and should be of interest when designing optical wave guides.
Minnesota, University of
LABORATORY VII: WAVE OPTICS Lab VII - 1 In this lab, you will solve problems in ways that take-like behavior. These conditions may be less familiar to you than the conditions for which geometrical optics
Hietala, Vincent M. (Placitas, NM); Vawter, Gregory A. (Albuquerque, NM)
1993-01-01
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.
Halliday, David Fraser
2009-01-01
This thesis concerns the application of seismic interferometry to surface waves. Seismic interferometry is the process by which the wavefield between two recording locations is estimated, resulting in new recordings at ...
Relativistic quaternionic wave equation
Schwartz, C
2006-01-01
Schrodinger ?time dependent? equation, ? 1 and ? 2 , then?TCP?. The current conservation equation ?3.2? is still truefor this extended wave equation ?8.1?, however, Eq. ?6.7?
Hietala, V.M.; Vawter, G.A.
1993-12-14
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.
Wave localization as a manifestation of ray chaos in underwater acoustics
A. Iomin; Yu. Bliokh
2007-06-03
Wave chaos is demonstrated by studying a wave propagation in a periodically corrugated wave-guide. In the limit of a short wave approximation (SWA) the underlying description is related to the chaotic ray dynamics. In this case the control parameter of the problem is characterized by the corrugation amplitude and the SWA parameter. The considered model is fairly suitable and tractable for the analytical analysis of a wave localization length. The number of eigenmodes characterized the width of the localized wave packet is estimated analytically.
THE EVOLUTION OF SOLAR FLUX FROM 0.1 nm TO 160 {mu}m: QUANTITATIVE ESTIMATES FOR PLANETARY STUDIES
Claire, Mark W.; Sheets, John; Meadows, Victoria S.; Cohen, Martin; Ribas, Ignasi; Catling, David C.
2012-09-20
Understanding changes in the solar flux over geologic time is vital for understanding the evolution of planetary atmospheres because it affects atmospheric escape and chemistry, as well as climate. We describe a numerical parameterization for wavelength-dependent changes to the non-attenuated solar flux appropriate for most times and places in the solar system. We combine data from the Sun and solar analogs to estimate enhanced UV and X-ray fluxes for the young Sun and use standard solar models to estimate changing visible and infrared fluxes. The parameterization, a series of multipliers relative to the modern top of the atmosphere flux at Earth, is valid from 0.1 nm through the infrared, and from 0.6 Gyr through 6.7 Gyr, and is extended from the solar zero-age main sequence to 8.0 Gyr subject to additional uncertainties. The parameterization is applied to a representative modern day flux, providing quantitative estimates of the wavelength dependence of solar flux for paleodates relevant to the evolution of atmospheres in the solar system (or around other G-type stars). We validate the code by Monte Carlo analysis of uncertainties in stellar age and flux, and with comparisons to the solar proxies {kappa}{sup 1} Cet and EK Dra. The model is applied to the computation of photolysis rates on the Archean Earth.
The effect of nonuniform axial heat flux distribution on the critical heat flux
Todreas, Neil E.
1965-01-01
A systematic experimental and analytic investigation of the effect of nonuniform axial heat flux distribution on critical heat rilux was performed with water in the quality condition. Utilizing a model which ascribes the ...
Wave Propagation in Multiferroic Materials
Keller, Scott Macklin
2013-01-01
Waves in Magnetoelectric Materials . . . Need forApplication of Multiferroic Materials to Receive AntennaMaterials . . . . . . . . . . . . . . . . . . . . . . . . .
Nonlinear internal waves over New Jersey's continental shelf E. L. Shroyer,1,2
March 2011. [1] Ship and mooring data collected off the coast of New Jersey are used to describeNonlinear internal waves over New Jersey's continental shelf E. L. Shroyer,1,2 J. N. Moum,1 and J to neap barotropic conditions, but when the shoreward baroclinic energy flux was elevated. During the time
Flow instabilities of magnetic flux tubes IV. Flux storage in the solar overshoot region
Isik, Emre
2009-01-01
We consider the effects of material flows on the dynamics of toroidal magnetic flux tubes located close to the base of the solar convection zone, initially within the overshoot region. The problem is to find the physical conditions in which magnetic flux can be stored for periods comparable to the dynamo amplification time, which is of the order of a few years. We carry out nonlinear numerical simulations to investigate the stability and dynamics of thin flux tubes subject to perpendicular and longitudinal flows. We compare the simulations with the results of simplified analytical approximations. We determine ranges of the flow parameters for which a linearly Parker-stable magnetic flux tube is stored in the middle of the overshoot region for a period comparable to the dynamo amplification time. The residence time for magnetic flux tubes with fluxes of 2x10^{21} Mx in the convective overshoot layer is comparable to the dynamo amplification time, provided that the average speed and the duration of the downflow...
MAGNETIC FLUX CONSERVATION IN THE HELIOSHEATH
Richardson, J. D. [Kavli Center for Astrophysics and Space Science Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States); Decker, R. B. [Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723 (United States); Drake, J. F. [Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Ness, N. F. [Institute for Astrophysics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Opher, M., E-mail: jdr@space.mit.edu, E-mail: lburlagahsp@verizon.net, E-mail: robert.decker@jhuapl.edu, E-mail: drake@umd.edu, E-mail: nfnudel@yahoo.com, E-mail: mopher@bu.edu [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States)
2013-01-01
Voyager 1(V1) and Voyager 2(V2) have observed heliosheath plasma since 2005 December and 2007 August, respectively. The observed speed profiles are very different at the two spacecrafts. Speeds at V1 decreased to zero in 2010 while the average speed at V2 is a constant 150 km s{sup -1} with the direction rotating tailward. The magnetic flux is expected to be constant in these heliosheath flows. We show that the flux is constant at V2 but decreases by an order of magnitude at V1, even after accounting for divergence of the flows and changes in the solar field. If reconnection were responsible for this decrease, the magnetic field would lose 70% of its free energy to reconnection and the energy density released would be 0.6 eV cm{sup -3}.
The transverse and rotational motions of magnetohydrodynamic kink waves in the solar atmosphere
Goossens, M.; Van Doorsselaere, T. [Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, bus 2400, B-3001 Herverlee (Belgium); Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)
2014-06-10
Magnetohydrodynamic (MHD) kink waves have now been observed to be ubiquitous throughout the solar atmosphere. With modern instruments, they have now been detected in the chromosphere, interface region, and corona. The key purpose of this paper is to show that kink waves do not only involve purely transverse motions of solar magnetic flux tubes, but the velocity field is a spatially and temporally varying sum of both transverse and rotational motion. Taking this fact into account is particularly important for the accurate interpretation of varying Doppler velocity profiles across oscillating structures such as spicules. It has now been shown that, as well as bulk transverse motions, spicules have omnipresent rotational motions. Here we emphasize that caution should be used before interpreting the particular MHD wave mode/s responsible for these rotational motions. The rotational motions are not necessarily signatures of the classic axisymmetric torsional Alfvén wave alone, because kink motion itself can also contribute substantially to varying Doppler velocity profiles observed across these structures. In this paper, the displacement field of the kink wave is demonstrated to be a sum of its transverse and rotational components, both for a flux tube with a discontinuous density profile at its boundary, and one with a more realistic density continuum between the internal and external plasma. Furthermore, the Doppler velocity profile of the kink wave is forward modeled to demonstrate that, depending on the line of sight, it can either be quite distinct or very similar to that expected from a torsional Alfvén wave.
Atmospheric State, Cloud Microphysics and Radiative Flux
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Mace, Gerald
2008-01-15
Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.
Energy flux density in a thermoacoustic couple
Cao, N.; Chen, S. |; Olson, R.; Swift, G.W.
1996-06-01
The hydro- and thermodynamical processes near and within a thermoacoustic couple are simulated and analyzed by numerical solution of the compressible Navier-Stokes, continuity, and energy equations for an ideal gas, concentrating on the time-averaged energy flux density in the gas. The numerical results show details of the heat sink at one end of the plates in the thermoacoustic couple. 15 refs., 10 figs., 1 tab.
The Cosmic Ray Muon Flux at WIPP
Esch, E I; Hime, A; Pichlmaier, A; Reifarth, R; Wollnik, H
2005-01-01
In this work a measurement of the muon intensity at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM, USA is presented. WIPP is a salt mine with a depth of 655 m. The vertical muon flux was measured with a two panels scintillator coincidence setup to Phi_{vert}=3.10(+0.05/-0.07)*10^(-7)s^(-1)cm^(-2)sr^(-1).
The Cosmic Ray Muon Flux at WIPP
E. -I. Esch; T. J. Bowles; A. Hime; A. Pichlmaier; R. Reifarth; H. Wollnik
2004-08-25
In this work a measurement of the muon intensity at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM, USA is presented. WIPP is a salt mine with a depth of 655 m. The vertical muon flux was measured with a two panels scintillator coincidence setup to Phi_{vert}=3.10(+0.05/-0.07)*10^(-7)s^(-1)cm^(-2)sr^(-1).
Atmospheric State, Cloud Microphysics and Radiative Flux
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Mace, Gerald
Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.
Heat flux dynamics in dissipative cascaded systems
Salvatore Lorenzo; Alessandro Farace; Francesco Ciccarello; G. Massimo Palma; Vittorio Giovannetti
2015-03-24
We study the dynamics of heat flux in the thermalization process of a pair of identical quantum system that interact dissipatively with a reservoir in a {\\it cascaded} fashion. Despite the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a non-exponential time behaviour which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at the beginning can considerably affect the heat flux rate. We carry out our study in two paradigmatic cases -- a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes -- and compare the corresponding behaviours. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.
Surface Magnetic Flux Maintenance In Quiet Sun
Y. Iida
2012-12-27
We investigate surface processes of magnetic patches, namely merging, splitting, emergence, and cancellation, by using an auto-detection technique. We find that merging and splitting are locally predominant in the surface level, while the frequencies of the other two are less by one or two orders of magnitude. The frequency dependences on flux con- tent of surface processes are further investigated. Based on these observations, we discuss a possible whole picture of the maintenance. Our conclusion is that the photospheric magnetic field structure, especially its power-law nature, is maintained by the processes locally in the surface not by the interactions between different altitudes. We suggest a scenario of the flux maintenance as follows: The splitting and merging play a crucial role for the generation of the power-law distribution, not the emergence nor cancellation do. This power-law distribution results in another power-law one of the cancellation with an idea of the random convective transport. The cancellation and emergence have a common value for the power-law indices in their frequency distributions, which may suggest a "recycle of fluxes by submergence and re-emergence".
Heating by Acoustic Waves of Multiphase Media
Doron Chelouche
2007-08-02
We study the emission and dissipation of acoustic waves from cool dense clouds in pressure equilibrium with a hot, volume-filling dilute gas component. In our model, the clouds are exposed to a source of ionizing radiation whose flux level varies with time, forcing the clouds to pulsate. We estimate the rate at which acoustic energy is radiated away by an ensemble of clouds and the rate at which it is absorbed by, and dissipated in, the hot dilute phase. We show that acoustic energy can be a substantial heating source of the hot gas phase when the mass in the cool component is a substantial fraction of the total gas mass. We investigate the applicability of our results to the multiphase media of several astrophysical systems, including quasar outflows and cooling flows. We find that acoustic heating can have a substantial effect on the thermal properties of the hot phase in those systems.
Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...
energy fluxes (sensible and latent heat) against available energy (net radiation, less soil heat flux). While incomplete (R2 0.77 for 1:1 line), the degree of energy balance...
Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew
2010-11-01
Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin to dominate. Beyond this threshold, higher heat fluxes lead to the boiling crisis and eventual burnout. This predictive capability is essential in determining the critical heat flux margin for the design of complex 3d components.
Gravitational-wave Detection With Matter-wave Interferometers Based On Standing Light Waves
Dongfeng Gao; Peng Ju; Baocheng Zhang; Mingsheng Zhan
2011-03-25
We study the possibility of detecting gravitational-waves with matter-wave interferometers, where atom beams are split, deflected and recombined totally by standing light waves. Our calculation shows that the phase shift is dominated by terms proportional to the time derivative of the gravitational wave amplitude. Taking into account future improvements on current technologies, it is promising to build a matter-wave interferometer detector with desired sensitivity.
Tang, Yinjie; Martin, Hector Garcia; Deutschbauer, Adam; Feng, Xueyang; Huang, Rick; Llora, Xavier; Arkin, Adam; Keasling, Jay D.
2009-04-21
An environmentally important bacterium with versatile respiration, Shewanella oneidensis MR-1, displayed significantly different growth rates under three culture conditions: minimal medium (doubling time {approx} 3 hrs), salt stressed minimal medium (doubling time {approx} 6 hrs), and minimal medium with amino acid supplementation (doubling time {approx}1.5 hrs). {sup 13}C-based metabolic flux analysis indicated that fluxes of central metabolic reactions remained relatively constant under the three growth conditions, which is in stark contrast to the reported significant changes in the transcript and metabolite profiles under various growth conditions. Furthermore, ten transposon mutants of S. oneidensis MR-1 were randomly chosen from a transposon library and their flux distributions through central metabolic pathways were revealed to be identical, even though such mutational processes altered the secondary metabolism, for example, glycine and C1 (5,10-Me-THF) metabolism.
A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime
Enno Harms; Sebastiano Bernuzzi; Alessandro Nagar; Anil Zenginoglu
2014-11-25
We present a new approach to solve the 2+1 Teukolsky equation for gravitational perturbations of a Kerr black hole. Our approach relies on a new horizon penetrating, hyperboloidal foliation of Kerr spacetime and spatial compactification. In particular, we present a framework for waveform generation from point-particle perturbations. Extensive tests of a time domain implementation in the code {\\it Teukode} are presented. The code can efficiently deliver waveforms at future null infinity. As a first application of the method, we compute the gravitational waveforms from inspiraling and coalescing black-hole binaries in the large-mass-ratio limit. The smaller mass black hole is modeled as a point particle whose dynamics is driven by an effective-one-body-resummed analytical radiation reaction force. We compare the analytical angular momentum loss to the gravitational wave angular momentum flux. We find that higher-order post-Newtonian corrections are needed to improve the consistency for rapidly spinning binaries. Close to merger, the subdominant multipolar amplitudes (notably the $m=0$ ones) are enhanced for retrograde orbits with respect to prograde ones. We argue that this effect mirrors nonnegligible deviations from circularity of the dynamics during the late-plunge and merger phase. We compute the gravitational wave energy flux flowing into the black hole during the inspiral using a time-domain formalism proposed by Poisson. Finally, a self-consistent, iterative method to compute the gravitational wave fluxes at leading-order in the mass of the particle is presented. For a specific case study with $\\hat{a}$=0.9, a simulation that uses the consistent flux differs from one that uses the analytical flux by $\\sim35$ gravitational wave cycles over a total of about $250$ cycles. In this case the horizon absorption accounts for about $+5$ gravitational wave cycles.
Performance and safety parameters for the high flux isotope reactor
Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)
2012-07-01
A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)
Performance and Safety Parameters for the High Flux Isotope Reactor
Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC
2012-01-01
A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.
Remote sensing of soil radionuclide fluxes in a tropical ecosystem
Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.
1980-11-06
We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant /sup 137/Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose.
The energy of high frequency waves in the low solar Chromosphere
Aleksandra Andic
2007-03-28
High frequency acoustic waves have been suggested as a source of mechanical heating in the chromosphere. In this work the radial component of waves in the frequency interval 22mHz to 1mHz are investigated. Observations were performed using 2D spectroscopy in the spectral lines of Fe I 543.45nm and Fe I 543.29nm at the Vacuum Tower Telescope, Tenerife, Spain. Speckle reconstruction has been applied to the observations. We have used Fourier and wavelet techniques to identify oscillatory power. The energy flux is estimated assuming that all observed oscillations are acoustics running waves. We find that the estimated energy flux is not sufficient to cover the chromospheric radiative losses.
MAPPING HIGH-RESOLUTION LAND SURFACE RADIATIVE FLUXES FROM MODIS
Liang, Shunlin
Chapter 6 MAPPING HIGH-RESOLUTION LAND SURFACE RADIATIVE FLUXES FROM MODIS: ALGORITHMS.1007/978-1-4419-0050-0_6, #12;142 Mapping Radiative Fluxes There are several global radiative flux data sets derived from either. For example, the CERES team uses the predefined albedo and emissivity maps to calculate surface radiative
The Complete Flux Scheme for Spherically Symmetric Conservation Laws
Eindhoven, Technische Universiteit
and M.J.H. Anthonissen Eindhoven University of Technology Department of Mathematics and Computer Science for computing the numerical fluxes. The approximation for the flux is based on the complete differential to a spherically symmet- ric conservation law of advection-diffusion-reaction type. For the numer- ical flux we use
Marsh, S.P.
1988-03-08
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Marsh, S.P.
1987-03-12
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
Yerganian, Simon Scott (Lee's Summit, MO)
2001-07-17
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)
1991-01-01
A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.
Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels
Li, Ting; Ji, Haisheng
2015-01-01
We make a comparative analysis for two filaments that showed quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) are carried out to analyze the two filaments on 2013 August 17-20 and September 29. The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4*10^21 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed within 3 days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2*10^20 Mx, about one ...
Measurement of Heat Flux at Metal-Mold Interface during Casting Solidification
Sabau, Adrian S [ORNL
2006-01-01
All previous studies on interfacial heat transfer coefficient have been based on indirect methods for estimating the heat flux that employed either inverse heat transfer analysis procedures or instrumentation arrangements to measure temperatures and displacements near the metal-mold interface. In this paper, the heat transfer at the metal-mold interfaces is investigated using a sensor for the direct measurement of heat flux. The heat flux sensor (HFS) was rated for 700oC and had a time response of less than 10 ms. Casting experiments were conducted using graphite molds for aluminum alloy A356. Several casting experiments were performed using a graphite coating and a boron nitride coating. The measurement errors were estimated. The temperature of the mold surface was provided by the HFS while the temperature of the casting surface was measured using a thermocouple. Results for the heat transfer coefficients were obtained based on measured heat flux and temperatures. Four stages were clearly identified for the variation in time of the heat flux. Values of the heat transfer coefficient were in good agreement with data from previous studies.
Geometrical investigation of the kinetic evolution of the magnetic field in a periodic flux rope
Restante, A. L.; Lapenta, G. [Afdeling Plasma-astrofysica, Departement Wiskunde, KULeuven, University of Leuven, Leuven (Belgium)] [Afdeling Plasma-astrofysica, Departement Wiskunde, KULeuven, University of Leuven, Leuven (Belgium); Markidis, S. [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden)] [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden); Intrator, T. [Los Alamos National Laboratory, M.S. E526, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, M.S. E526, Los Alamos, New Mexico 87545 (United States)
2013-08-15
Flux ropes are bundles of magnetic field wrapped around an axis. Many laboratory, space, and astrophysics processes can be represented using this idealized concept. Here, a massively parallel 3D kinetic simulation of a periodic flux rope undergoing the kink instability is studied. The focus is on the topology of the magnetic field and its geometric structures. The analysis considers various techniques such as Poincaré maps and the quasi-separatrix layer (QSL). These are used to highlight regions with expansion or compression and changes in the connectivity of magnetic field lines and consequently to outline regions where heating and current may be generated due to magnetic reconnection. The present study is, to our knowledge, the first QSL analysis of a fully kinetic 3D particle in cell simulation and focuses the existing QSL method of analysis to periodic systems.
Adaptive multiconfigurational wave functions
Evangelista, Francesco A.
2014-03-28
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.
Thermoplastic waves in magnetars
Beloborodov, Andrei M
2014-01-01
Magnetar activity is generated by shear motions of the neutron star surface, which relieve internal magnetic stresses. An analogy with earthquakes and faults is problematic, as the crust is permeated by strong magnetic fields, which greatly constrain crustal displacements. We describe a new deformation mechanism that is specific to strongly magnetized neutron stars. The magnetically stressed crust begins to move because of a thermoplastic instability, which launches a wave that shears the crust and burns its magnetic energy. The propagating wave front resembles the deflagration front in combustion physics. We describe the conditions for the instability, the front structure and velocity, and discuss implications for observed magnetar activity.
Mazur, V. A. Chuiko, D. A.
2013-12-15
The coefficient of reflection of a fast magnetosonic wave incident on the magnetosphere from the solar wind is studied analytically in the framework of a plane-stratified model of the medium with allowance for the transverse inhomogeneity of the magnetosphere and a jump of the plasma parameters at the magnetopause. Three factors decisively affecting the properties of reflection are taken into account: the shear flow of the solar wind plasma relative to the magnetosphere; the presence of a magnetospheric magnetohydrodynamic waveguide caused by the transverse plasma inhomogeneity; and the presence of an Alfvén resonance deep in the magnetosphere, where the oscillation energy dissipates. If the solar wind velocity exceeds the wave phase velocity along the magnetopause, then the wave energy in the solar wind is negative and such a wave experiences overreflection. In the opposite case, the wave energy is positive and the wave is reflected only partially. The wave reflection has a pronounced resonant character: the reflection coefficient has deep narrow minima or high narrow maxima at the eigenfrequencies of the magnetospheric waveguide. For other frequencies, the reflection coefficient only slightly differs from unity. The wave energy influx into the magnetosphere is positive for waves with both positive and negative energies. For waves with a negative energy, this is a consequence of their overreflection, because the flux of negative energy carried away by the reflected wave exceeds the incident flux of negative energy.
Millimeter-wave polarimetry instrumentation and analysis
Bierman, Evan M.
2011-01-01
tion using El-nods . . . . . . . . . . . . . . . . . . 4.1.4El-nod implemented with the FRMs turned on (top) shown withxix Figure 4.8: The el-nod magnitudes from four working FRM
Millimeter-wave polarimetry instrumentation and analysis
Bierman, Evan M.
2011-01-01
J. A. , Dotson, J. L. , Dowell, C. D. , Hildebrand, R. H. ,J. E. , Kirby, L. , Dowell, C. D. , Hildebrand, R. H. , &R. H. , Dotson, J. L. , Dowell, C. D. , Schleuning, D.
Microlocal Analysis of Thermoacoustic (or Multiwave) Tomography, III
Plamen Stefanov
2012-07-20
Microlocal Analysis of Thermoacoustic (or Multiwave). Tomography, III. Plamen Stefanov. Purdue University. TAT of brain imaging (discontinuous wave speed).
Wave runup on cylinders subject to deep water random waves
Indrebo, Ann Kristin
2001-01-01
runup. Laboratory measurements of irregular waves interfering with vertical platform cylinders were used to obtain the Weibull coefficients necessary for the analytical model. Six data sets with different configurations where the wave elevation...
Real-time Water Waves with Wave Particles
Yuksel, Cem
2010-10-12
This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in our environment...
AmeriFlux Network Data from the ORNL AmeriFlux Website
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
The AmeriFlux network was established in 1996 to provide continuous observations of ecosystem level exchanges of CO2, water, energy and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. It is fed by sites from North America, Central America, and South America. DOE's CDIAC stores and maintains AmeriFlux data, and this web site explains the different levels of data available there, with links to the CDIAC ftp site. A separate web-based data interface is also provided; it allows users to graph, query, and download Level 2 data for up to four sites at a time. Data may be queried by site, measurement period, or parameter. More than 550 site-years of level 2 data are available from AmeriFlux sites through the interface.
Ecosystem carbon dioxide fluxes after disturbance in forests of North America
2010-01-01
2010 Ecosystem carbon dioxide fluxes after disturbance in2007), Comparison of carbon dioxide fluxes over three borealharvest influence carbon dioxide fluxes of black spruce
Schrijver, Carolus J.; Title, Alan M.; Aulanier, Guillaume; Pariat, Etienne; Delannee, Cecile E-mail: title@lmsal.com E-mail: etienne.pariat@obspm.fr
2011-09-10
The 2011 February 15 X2.2 flare and associated Earth-directed halo coronal mass ejection were observed in unprecedented detail with high resolution in spatial, temporal, and thermal dimensions by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, as well as by instruments on the two STEREO spacecraft, then at near-quadrature relative to the Sun-Earth line. These observations enable us to see expanding loops from a flux-rope-like structure over the shearing polarity-inversion line between the central {delta}-spot groups of AR 11158, developing a propagating coronal front ('EIT wave'), and eventually forming the coronal mass ejection moving into the inner heliosphere. The observations support the interpretation that all of these features, including the 'EIT wave', are signatures of an expanding volume traced by loops (much larger than the flux rope only), surrounded by a moving front rather than predominantly wave-like perturbations; this interpretation is supported by previously published MHD models for active-region and global scales. The lateral expansion of the eruption is limited to the local helmet-streamer structure and halts at the edges of a large-scale domain of connectivity (in the process exciting loop oscillations at the edge of the southern polar coronal hole). The AIA observations reveal that plasma warming occurs within the expansion front as it propagates over quiet Sun areas. This warming causes dimming in the 171 A (Fe IX and Fe X) channel and brightening in the 193 and 211 A (Fe XII-XIV) channels along the entire front, while there is weak 131 A (Fe VIII and Fe XXI) emission in some directions. An analysis of the AIA response functions shows that sections of the front running over the quiet Sun are consistent with adiabatic warming; other sections may require additional heating which MHD modeling suggests could be caused by Joule dissipation. Although for the events studied here the effects of volumetric expansion are much more obvious than true wave phenomena, we discuss how different magnetic environments within and around the erupting region can lead to the signatures of either or both of these aspects.
Heat Waves, Global Warming, and Mitigation
Carlson, Ann E.
2008-01-01
Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177
mm-Wave Phase Shifters and Switches
Adabi Firouzjaei, Ehsan
2010-01-01
combiners . . . . . . . . . . . 5.3 mm-Wave implementationfailed to predict current mm-wave design trend [1] . . . . .solutions . . . . . . . . mm-wave imaging for medical and
Cellular Mechanisms Underlying Retinal Wave Generation
Ford, Kevin
2011-01-01
Underlying Retinal Wave Generation By Kevin J Ford AUnderlying Retinal Wave Generation By Kevin J Ford Doctor ofwith age, so does the wave generation mechanism. The most
Guided wave monitoring of prestressing tendons
Nucera, Claudio
2010-01-01
and applications of ultrasonic waves. CRC series in pure andStrands by Guided Stress Waves, ASCE Journal of Materials inin Cable Stays via Guided Wave Magnetostrictive Ultrasonics,
mm-Wave Phase Shifters and Switches
Adabi Firouzjaei, Ehsan
2010-01-01
4.1.1 Slow wave transmissioncombiners . . . . . . . . . . . 5.3 mm-Wave implementationfailed to predict current mm-wave design trend [1] . . . . .
Super compact equation for water waves
Dyachenko, A I; Zakharov, V E
2015-01-01
We derive very simple compact equation for gravity water waves which includes nonlinear wave term (`a la NLSE) and advection term (may results in wave breaking).
California Small Hydropower and Ocean Wave Energy
California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy............................................................................................................. 20 Wave Energy Conversion Technology
Propagation of High Frequency Waves in the Quiet Solar Atmosphere
Aleksandra Andi?
2008-10-13
High-frequency waves (5 mHz to 20mHz) have previously been suggested as a source of energy accounting partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences are taken using the German Vacuum Tower Telescope (VTT), Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis is performed to determine whether the waves propagate. We observe the propagation of waves in the frequency range 10mHz to 13mHz. We also observe propagation of low-frequency waves in the ranges where they are thought to be evanescent in regions where magnetic structures are present.
Soliton Turbulence in Shallow Water Ocean Surface Waves
Costa, Andrea; Resio, Donald T; Alessio, Silvia; Chrivì, Elisabetta; Saggese, Enrica; Bellomo, Katinka; Long, Chuck E
2014-01-01
We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm, for the first time, the presence of $soliton$ $turbulence$ in ocean waves. Soliton turbulence is an exotic form of nonlinear wave motion where low frequency energy may also be viewed as a $dense$ $soliton$ $gas$, described theoretically by the soliton limit of the Korteweg-deVries (KdV) equation, a $completely$ $integrable$ $soliton$ $system$: Hence the phrase "soliton turbulence" is synonymous with "integrable soliton turbulence." For periodic/quasiperiodic boundary conditions the $ergodic$ $solutions$ of KdV are exactly solvable by $finite$ $gap$ $theory$ (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the energetic peak of a storm have low frequency power spectra that behave as $\\sim\\omega^{-1}$. We use the linear Fourier transform to estimate this power law from the power spectrum and to filter $densely$ $packed$ $soliton$ $wave$ $trains$ from the data. We apply ...
Generating Electromagnetic Waves from Gravity Waves in Cosmology
P. A. Hogan; S. O'Farrell
2009-05-18
Examples of test electromagnetic waves on a Friedmann-Lemaitre-Robertson-Walker(FLRW) background are constructed from explicit perturbations of the FLRW space-times describing gravitational waves propagating in the isotropic universes. A possible physical mechanism for the production of the test electromagnetic waves is shown to be the coupling of the gravitational waves with a test magnetic field, confirming the observation of Marklund, Dunsby and Brodin [Phys.Rev. D62,101501(R) (2000)].
Wave refraction and wave energy on Cayo Arenas
Walsh, Donald Eugene
1962-01-01
WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...
Semiconducting glasses with flux pinning inclusions
Johnson, William L. (Pasadena, CA); Poon, Siu-Joe (Palo Alto, CA); Duwez, Pol E. (Pasadena, CA)
1981-01-01
A series of amorphous superconducting glassy alloys containing 1% to 10% by volume of flux pinning crystalline inclusions have been found to have potentially useful properties as high field superconducting magnet materials. The alloys are prepared by splat cooling by the piston and anvil technique. The alloys have the composition (TM).sub.90-70 (M).sub.10-30 where TM is a transition metal selected from at least one metal of Groups IVB, VB, VIB, VIIB or VIIIB of the Periodic Table such as Nb, Mo, Ru, Zr, Ta, W or Re and M is at least one metalloid such as B, P, C, N, Si, Ge or Al.
Contactless heat flux control with photonic devices
Ben-Abdallah, Philippe
2015-01-01
The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.
ARM - VAP Product - lblch1flux
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeTheProductswacrarsclarsclwacrbnd1kolliasuth DocumentationProductslbllblch1flux
ARM - Field Campaign - ISDAC - Hemispheric Flux Spectroradiometer
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic- Hemispheric Flux Spectroradiometer ARM
Flux Power Incorporated | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlintInformationFlux Power
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework uses concrete7 Assessment ofLana7,MimickingThe Neutrino Flux
LONG WAVE EXPANSIONS FOR WATER WAVES OVER RANDOM TOPOGRAPHY
LONG WAVE EXPANSIONS FOR WATER WAVES OVER RANDOM TOPOGRAPHY ANNE DE BOUARD 1 , WALTER CRAIG 2 with the ran dom bottom. We show that the resulting influence of the random topography is expressed in terms of bottom topography a#ects the equations describing the limit of solutions in the long wave regime. We
Wave Propagation Theory 2.1 The Wave Equation
2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived from hydrodynamics and the adia- batic relation between pressure and density. The equation for conservation of mass, Euler's equation (Newton's 2nd Law), and the adiabatic equation of state are respec
Rossen I. Ivanov
2007-07-12
The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.
Menikoff, Ralph
2012-04-03
Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.