ARM: Short Wave Flux Analysis: 15-min resolution on SIRS data, Long algorithm
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Stoffel, Tom; Kay, Bev; Habte, Aron; Anderberg, Mary; Kutchenreiter, Mark
Short Wave Flux Analysis: 15-min resolution on SIRS data, Long algorithm. Measurements began in January, 1994, and have continued to the present time. Data collected are from the Southern Great Plains (SGP) location.
Wave momentum flux parameter: a descriptor for nearshore waves
US Army Corps of Engineers
Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution
Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter
US Army Corps of Engineers
Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter-examines existing wave run-up data for regular, irregular and solitary waves on smooth, impermeable plane slopes. A simple physical argument is used to derive a new wave run-up equation in terms of a dimensionless wave
Energy flux of timeharmonic waves in anisotropic dissipative media
Cerveny, Vlastislav
Energy flux of timeÂharmonic waves in anisotropic dissipative media Vlastislav Å¸ Cerven 2, Czech Republic. EÂmail vcerveny@seis.karlov.m#.cuni.cz Summary The energy flux of time to consider the average energy flux, which is realÂvalued and timeÂindependent. An extension
Electrostatic-plasma-wave energy flux
Amendt, P.; Rostoker, N.
1984-01-01T23:59:59.000Z
would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of
Energy propagation by transverse waves in multiple flux tube systems using filling factors
Van Doorsselaere, T.; Gijsen, S. E. [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Andries, J. [Solar-Terrestrial Center of Excellence, Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels (Belgium); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be, E-mail: stief.gijsen@wis.kuleuven.be, E-mail: jesse.andries@oma.be, E-mail: g.verth@sheffield.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)
2014-11-01T23:59:59.000Z
In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated by kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.
Fluctuations of energy flux in wave turbulence Eric Falcon,1
Falcon, Eric
Fluctuations of energy flux in wave turbulence ´Eric Falcon,1 S´ebastien Auma^itre,2 Claudio Falc gravity and capillary wave turbulence in a statistically stationary regime displays fluctuations much interactions transfer kinetic energy toward small scales where viscous dissipation takes place
Ulmschneider, Peter
ON THE GENERATION OF FLUX-TUBE WAVES IN STELLAR CONVECTION ZONES. IV. LONGITUDINAL WAVE ENERGY- tudinal tube waves in stellar convection zones and used it to compute the wave energy spectra and fluxes are important only for cool stars with Teff wave energy decreases
Whistler mode waves and the electron heat flux in the solar wind: cluster observations
Lacombe, C.; Alexandrova, O.; Cornilleau-Wehrlin, N.; Mangeney, A.; De Conchy, Y.; Maksimovic, M. [LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC Université Paris 06, Université Paris-Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Matteini, L. [Imperial College, London SW7 2AZ (United Kingdom); Santolík, O. [Institute of Atmospheric Physics ASCR, 141 31 Prague (Czech Republic)
2014-11-20T23:59:59.000Z
The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies f in [1, 400] Hz, during five years (2001-2005), when Cluster was in the free solar wind. In ?10% of the selected data, we observe narrowband, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The lifetime of these waves varies between a few seconds and several hours. Here, we present, for the first time, an analysis of long-lived whistler waves, i.e., lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of background turbulence, a slow wind, a relatively large electron heat flux, and a low electron collision frequency. When the electron parallel beta factor ? {sub e?} is larger than 3, the whistler waves are seen along the heat flux threshold of the whistler heat flux instability. The presence of such whistler waves confirms that the whistler heat flux instability contributes to the regulation of the solar wind heat flux, at least for ? {sub e?} ? 3, in slow wind at 1 AU.
Traveling-wave device with mass flux suppression
Swift, Gregory W. (Santa Fe, NM); Backhaus, Scott N. (Los Alamos, NM); Gardner, David L. (White Rock, NM)
2000-01-01T23:59:59.000Z
A traveling-wave device is provided with the conventional moving pistons eliminated. Acoustic energy circulates in a direction through a fluid within a torus. A side branch may be connected to the torus for transferring acoustic energy into or out of the torus. A regenerator is located in the torus with a first heat exchanger located on a first side of the regenerator downstream of the regenerator relative to the direction of the circulating acoustic energy; and a second heat exchanger located on an upstream side of the regenerator. The improvement is a mass flux suppressor located in the torus to minimize time-averaged mass flux of the fluid. In one embodiment, the device further includes a thermal buffer column in the torus to thermally isolate the heat exchanger that is at the operating temperature of the device.
Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH
Balasubramanian, Ravi
Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH College of Oceanic of boundary energy in local budgets. Until recently, internal wave energy fluxes in ocean observations were 2004, in final form 3 February 2005) ABSTRACT Energy flux is a fundamental quantity for understanding
Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves
Fringer, Oliver B.
Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves S waves. Our results show that the contributions to the total energy flux from these additional terms as well as non- linearity. The partitioning of the incident internal wave energy over the course
Soler, Roberto
2015-01-01T23:59:59.000Z
Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles for the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfv\\'en continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In ...
Alexander, M. Joan
Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via observations of mountain wave events in the stratosphere above South Georgia Island in the remote southern important drag forces on the circulation. Small island orography is generally neglected in mountain wave
Falcon, Eric
2014-01-01T23:59:59.000Z
energy flux are in good agreement with wave turbulence theory. The Kolmogorov-Zakharov constant waves interact with each other, they can develop a regime of wave turbulence where the wave energyPHYSICAL REVIEW E 89, 023003 (2014) Energy flux measurement from the dissipated energy in capillary
Propagation and dispersion of sausage wave trains in magnetic flux tubes
Oliver, R; Terradas, J
2015-01-01T23:59:59.000Z
A localized perturbation of a magnetic flux tube produces a pair of wave trains that propagate in opposite directions along the tube. These wave packets disperse as they propagate, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. (2014) we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. Previous studies on wave propagation in magnetic wave guides have emphasized that the wave train dispersion is influenced by the particular dependence of the group velocity on the longitudinal wavenumber. Here we also find that long initial perturbations result in low amplitude wave packets and that large values of the magnetic tube to environment density ratio yield longer wave trains. To test the detectability ...
Torsional Alfven Waves in Solar Magnetic Flux Tubes of Axial Symmetry
Murawski, K; Musielak, Z E; Srivastava, A K; Kraskiewicz, J
2015-01-01T23:59:59.000Z
Aims: Propagation and energy transfer of torsional Alfv\\'en waves in solar magnetic flux tubes of axial symmetry is studied. Methods: An analytical model of a solar magnetic flux tube of axial symmetry is developed by specifying a magnetic flux and deriving general analytical formulae for the equilibrium mass density and a gas pressure. The main advantage of this model is that it can be easily adopted to any axisymmetric magnetic structure. The model is used to simulate numerically the propagation of nonlinear Alfv\\'en waves in such 2D flux tubes of axial symmetry embedded in the solar atmosphere. The waves are excited by a localized pulse in the azimuthal component of velocity and launched at the top of the solar photosphere, and they propagate through the solar chromosphere, transition region, and into the solar corona. Results: The results of our numerical simulations reveal a complex scenario of twisted magnetic field lines and flows associated with torsional Alfv\\'en waves as well as energy transfer to t...
E × B shear pattern formation by radial propagation of heat flux waves
Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); IAS and RIAM, Kyushu University, Fukuoka (Japan); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of) [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CASS and CMTFO, University of California, San Diego, California 92093 (United States); Dif-Pradalier, G. [CEA, IRFM, Paul-lez-Durance Cedex (France)] [CEA, IRFM, Paul-lez-Durance Cedex (France); Gürcan, Ö. D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)] [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)
2014-05-15T23:59:59.000Z
A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E×B staircase is discussed.
ARM - PI Product - Radiative Flux Analysis
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirt Documentation ARMupwelling irradiance ARM DataRatesProductsLarge Scale IceProductsRadiative Flux
GLOBAL AND LOCAL CUTOFF FREQUENCIES FOR TRANSVERSE WAVES PROPAGATING ALONG SOLAR MAGNETIC FLUX TUBES
Routh, S. [Department of Physics, R. V. College of Engineering, Bangalore (India)] [Department of Physics, R. V. College of Engineering, Bangalore (India); Musielak, Z. E. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)] [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Hammer, R., E-mail: routhswati@rvce.edu.in, E-mail: zmusielak@uta.edu, E-mail: hammer@kis.uni-freiburg.de [Kiepenheuer-Institut fuer Sonnenphysik, Schoeneckstr. 6, Freiburg, D-79104 Germany (Germany)
2013-01-20T23:59:59.000Z
It is a well-established result that the propagation of linear transverse waves along a thin but isothermal magnetic flux tube is affected by the existence of the global cutoff frequency, which separates the propagating and non-propagating waves. In this paper, the wave propagation along a thin and non-isothermal flux tube is considered and a local cutoff frequency is derived. The effects of different temperature profiles on this local cutoff frequency are studied by considering different power-law temperature distributions, as well as the semi-empirical VAL C model of the solar atmosphere. The obtained results show that the conditions for wave propagation strongly depend on the temperature gradients. Moreover, the local cutoff frequency calculated for the VAL C model gives constraints on the range of wave frequencies that are propagating in different parts of the solar atmosphere. These theoretically predicted constraints are compared to observational data and are used to discuss the role played by transverse tube waves in the atmospheric heating and dynamics, and in the excitation of solar atmospheric oscillations.
Metabolic Flux Analysis for Succinic Acid Production by Recombinant Escherichia
some pyruvate and succinic acid were accumulated intracellularly. Therefore, a new flux analysis method was proposed by introducing intra- cellular pyruvate and succinic acid pools. By this new method dehydrogenase (Mdh). Malic acid can also be synthesized from pyruvate by the action of malic enzyme (coded
Falcon, Eric
Fluctuations of the Energy Flux in Wave Turbulence S. Auma^itre , E. Falcon,§ and S. Fauve SPEC, DSM, CEA.falcon@univ-paris-diderot.fr The key governing parameter of wave turbulence is the energy flux that drives the waves and cascades of energy among different scales through the weak interaction between waves. It was understood first
Multiple Scattering of Seismic Waves from Ensembles of Upwardly Lossy Thin Flux Tubes
Hanson, Chris S
2015-01-01T23:59:59.000Z
Our previous semi-analytic treatment of f- and p-mode multiple scattering from ensembles of thin flux tubes (Hanson and Cally, Astrophys. J. 781, 125; 791, 129, 2014) is extended by allowing both sausage and kink waves to freely escape at the top of the model using a radiative boundary condition there. As expected, this additional avenue of escape, supplementing downward loss into the deep solar interior, results in substantially greater absorption of incident f- and p-modes. However, less intuitively, it also yields mildly to substantially smaller phase shifts in waves emerging from the ensemble. This may have implications for the interpretation of seismic data for solar plage regions, and in particular their small measured phase shifts.
Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux
Ryan N. Lang
2015-05-08T23:59:59.000Z
We derive the scalar waveform generated by a binary of nonspinning compact objects (black holes or neutron stars) in a general class of scalar-tensor theories of gravity. The waveform is accurate to 1.5 post-Newtonian order [$O((v/c)^3)$] beyond the leading-order tensor gravitational waves (the "Newtonian quadrupole"). To solve the scalar-tensor field equations, we adapt the direct integration of the relaxed Einstein equations formalism developed by Will, Wiseman, and Pati. The internal gravity of the compact objects is treated with an approach developed by Eardley. We find that the scalar waves are described by the same small set of parameters which describes the equations of motion and tensor waves. For black hole--black hole binaries, the scalar waveform vanishes, as expected from previous results which show that these systems in scalar-tensor theory are indistinguishable from their general relativistic counterparts. For black hole--neutron star binaries, the scalar waveform simplifies considerably from the generic case, essentially depending on only a single parameter up to first post-Newtonian order. With both the tensor and scalar waveforms in hand, we calculate the total energy flux carried by the outgoing waves. This quantity is computed to first post-Newtonian order relative to the "quadrupole formula" and agrees with previous, lower order calculations.
Wavelet Spectrum Analysis and Ocean Wind Waves
Wavelet Spectrum Analysis and Ocean Wind Waves Paul C. Liu Abstract. Wavelet spectrum analysis characteristics. These insights are due to the nature of the wavelet transform that would not be immediately or decay, is Wavelets in Geophysics 151 Efi Foufoula-Georgiou and Praveen Kumar (eds.), pp. 151-166. ISBN 0
Electromagnetic waves, gravitational coupling and duality analysis
E. M. C. Abreu; C. Pinheiro; S. A. Diniz; F. C. Khanna
2005-10-27T23:59:59.000Z
In this letter we introduce a particular solution for parallel electric and magnetic fields, in a gravitational background, which satisfy free-wave equations and the phenomenology suggested by astrophysical plasma physics. These free-wave equations are computed such that the electric field does not induce the magnetic field and vice-versa. In a gravitational field, we analyze the Maxwell equations and the corresponding electromagnetic waves. A continuity equation is presented. A commutative and noncommutative analysis of the electromagnetic duality is described.
S. S. Zilitinkevich; T. Elperin; N. Kleeorin; V. L'vov; I. Rogachevskii
2009-08-18T23:59:59.000Z
We advance our prior energy- and flux-budget turbulence closure model (Zilitinkevich et al., 2007, 2008) for the stably stratified atmospheric flows and extend it accounting for additional vertical flux of momentum and additional productions of turbulent kinetic energy, turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). Main effects of IGW are following: the maximal value of the flux Richardson number (universal constant 0.2-0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. In the heterogeneous stratification, when IGW propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. IGW also reduce anisotropy of turbulence and increase the share of TPE in the turbulent total energy. Depending on the direction (downward or upward), IGW either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.
Wave Energy Resource Analysis for Use in Wave Energy Conversion
Pastor, J.; Liu, Y.; Dou, Y.
2014-01-01T23:59:59.000Z
In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...
Fast Flux Test Facility final safety analysis report. Amendment 73
Gantt, D.A.
1993-08-01T23:59:59.000Z
This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.
Whistler mode waves and the electron heat flux in the solar wind: Cluster observations
Lacombe, Catherine; Matteini, Lorenzo; Santolik, Ondrej; Cornilleau-Wehrlin, Nicole; Mangeney, Andre; de Conchy, Yvonne; Maksimovic, Milan
2014-01-01T23:59:59.000Z
The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies $f\\in[1,400]$ Hz, during five years (2001-2005), when Cluster was in the free solar wind. In $\\sim 10\\%$ of the selected data, we observe narrow-band, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The life time of these waves varies between a few seconds and several hours. Here we present, for the first time, an analysis of long-lived whistler waves, i.e. lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of the background turbulence, a slow wind, a relative...
A DISCRETE WAVELET ANALYSIS OF FREAK WAVES IN THE OCEAN
A DISCRETE WAVELET ANALYSIS OF FREAK WAVES IN THE OCEAN EN-BING LIN AND PAUL C. LIU Received 25 wavelet analysis on a freak wave. We demonstrate several applications of wavelets and discrete and continuous wavelet transforms on the study of a freak wave. A modeling setting for freak waves will also
A Wave Analysis of the Subset Sum Problem Mark Jelasity
Jelasity, Márk
A Wave Analysis of the Subset Sum Problem M´ark Jelasity Research Group of Artificial Intelligence the wave model, a novel approach on analyzing the behavior of GAs. Our aim is to give techniques that have and effective heuristics on certain problem classes. The wave analysis is the process of building wave models
Marsat, Sylvain
2014-01-01T23:59:59.000Z
We investigate cubic-in-spin effects for inspiralling compact objects binaries, both in the dynamics and the energy flux emitted in gravitational waves, at the leading post-Newtonian order. We use a Lagrangian formalism to implement finite-size effects, and extend it at cubic order in the spins, which corresponds to the octupolar order in a multipolar decomposition. This formalism allows us to derive the equation of motion, equations of precession for the spin, and stress-energy tensor of each body in covariant form, and admits a formal generalization to any multipolar order. For spin-induced multipoles, i.e. in the case where the rotation of the compact object is sole responsible for the additional multipole moments, we find a unique structure for the octupolar moment representing cubic-in-spin effects. We apply these results to compute the associated effects in the dynamics of compact binary systems, and deduce the corresponding terms in the energy loss rate due to gravitational waves. These effects enter a...
Sylvain Marsat
2015-01-23T23:59:59.000Z
We investigate cubic-in-spin effects for inspiralling compact objects binaries, both in the dynamics and the energy flux emitted in gravitational waves, at the leading post-Newtonian order. We use a Lagrangian formalism to implement finite-size effects, and extend it at cubic order in the spins, which corresponds to the octupolar order in a multipolar decomposition. This formalism allows us to derive the equation of motion, equations of precession for the spin, and stress-energy tensor of each body in covariant form, and admits a formal generalization to any multipolar order. For spin-induced multipoles, i.e. in the case where the rotation of the compact object is sole responsible for the additional multipole moments, we find a unique structure for the octupolar moment representing cubic-in-spin effects. We apply these results to compute the associated effects in the dynamics of compact binary systems, and deduce the corresponding terms in the energy loss rate due to gravitational waves. These effects enter at the third-and-a-half post-Newtonian order, and can be important for binaries involving rapidly spinning black holes. We provide simplified results for spin-aligned, circular orbits, and discuss the quantitative importance of the new contributions.
Wave Energy Resource Analysis for Use in Wave Energy Conversion
Pastor, J.; Liu, Y.; Dou, Y.
2014-01-01T23:59:59.000Z
the naturally available and technically recoverable resource in a given location. The methodology was developed by the EPRI and uses a modified Gamma spectrum that interoperates hindcast sea state parameter data produced by NOAA's Wave watch III. This Gamma...
Analysis of Metabolic Pathways and Fluxes in a Newly Discovered...
Office of Scientific and Technical Information (OSTI)
a maximum ethanol yield of 0.38+-0.07 mol mol-1 more glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius...
Stochastic analysis of ocean wave states with and without rogue waves
Hadjihosseini, A; Hoffmann, N P
2014-01-01T23:59:59.000Z
This work presents an analysis of ocean wave data including rogue waves. A stochastic approach based on the theory of Markov processes is applied. With this analysis we achieve a characterization of the scale dependent complexity of ocean waves by means of a Fokker-Planck equation, providing stochastic information of multi-scale processes. In particular we show evidence of Markov properties for increment processes, which means that a three point closure for the complexity of the wave structures seems to be valid. Furthermore we estimate the parameters of the Fokker-Planck equation by parameter-free data analysis. The resulting Fokker-Planck equations are verified by numerical reconstruction. This work presents a new approach where the coherent structure of rogue waves seems to be integrated into the fundamental statistics of complex wave states.
Analysis of optimum Lamb wave tuning
Shi, Yijun, 1970-
2002-01-01T23:59:59.000Z
Guided waves are of enormous interest in the nondestructive evaluation of thin-walled structures and layered media. Due to their dispersive and multi-modal nature, it is desirable to tune the waves by discriminating one ...
IWA : an analysis program for isentropic wave measurements.
Ao, Tommy
2009-02-01T23:59:59.000Z
IWA (Isentropic Wave Analysis) is a program for analyzing velocity profiles of isentropic compression experiments. IWA applies incremental impedance matching correction to measured velocity profiles to obtain in-situ particle velocity profiles for Lagrangian wave analysis. From the in-situ velocity profiles, material properties such as wave velocities, stress, strain, strain rate, and strength are calculated. The program can be run in any current version of MATLAB (2008a or later) or as a Windows XP executable.
Shafii, Mohammad Ali, E-mail: mashafii@fmipa.unand.ac.id; Meidianti, Rahma, E-mail: mashafii@fmipa.unand.ac.id; Wildian,, E-mail: mashafii@fmipa.unand.ac.id; Fitriyani, Dian, E-mail: mashafii@fmipa.unand.ac.id [Department of Physics, Andalas University Padang West Sumatera Indonesia (Indonesia); Tongkukut, Seni H. J. [Department of Physics, Sam Ratulangi University Manado North Sulawesi Indonesia (Indonesia); Arkundato, Artoto [Department of Physics, Jember University Jember East Java Indonesia (Indonesia)
2014-09-30T23:59:59.000Z
Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.
Use of a moments method for the analysis of flux distributions in subcritical assemblies
Cheng, Hsiang-Shou
1968-01-01T23:59:59.000Z
A moments method has been developed for the analysis of flux distributions in subcritical neutron-multiplying assemblies. The method determines values of the asymptotic axial and radial buckling, and of the extrapolated ...
Possible Zero-Flux Transport induced by Density Waves in a Tube filled with Solid Helium
Kwang-Hua W. Chu
2006-11-07T23:59:59.000Z
Macroscopic derivation of the entrainment in a supersolid cylinder induced by a surface elastic wave (of small amplitude) propagating along the flexible interface is conducted by considering the nonlinear coupling between the interface and the rarefaction effect. We obtain the critical bounds for zero-volume-flow-rate states corresponding to specific rarefaction measure and wave number which is relevant to the rather small critical velocity or disappearance of supersolid flows reported by Rittner and Reppy.
K G Arun; Luc Blanchet; Bala R Iyer; Moh'd S S Qusailah
2008-04-11T23:59:59.000Z
The far-zone flux of energy contains hereditary (tail) contributions that depend on the entire past history of the source. Using the multipolar post-Minkowskian wave generation formalism, we propose and implement a semi-analytical method in the frequency domain to compute these contributions from the inspiral phase of a binary system of compact objects moving in quasi-elliptical orbits up to 3PN order. The method explicitly uses the quasi-Keplerian representation of elliptical orbits at 1PN order and exploits the doubly periodic nature of the motion to average the 3PN fluxes over the binary's orbit. Together with the instantaneous (non-tail) contributions evaluated in a companion paper, it provides crucial inputs for the construction of ready-to-use templates for compact binaries moving on quasi-elliptic orbits, an interesting class of sources for the ground based gravitational wave detectors such as LIGO and Virgo as well as space based detectors like LISA.
The Allegro gravitational wave detector: Data acquisition and analysis
E. Mauceli; Z. K. Geng; W. O. Hamilton; W. W. Johnson; S. Merkowitz; A. Morse; B. Price; N. Solomonson
1996-10-26T23:59:59.000Z
We discuss the data acquisition and analysis procedures used on the Allegro gravity wave detector, including a full description of the filtering used for bursts of gravity waves. The uncertainties introduced into timing and signal strength estimates due to stationary noise are measured, giving the windows for both quantities in coincidence searches.
Parameterization and Statistical Analysis of Hurricane Waves
Mclaughlin, Patrick William
2014-05-03T23:59:59.000Z
the JPM-OS methodology yielded extreme value statistics for 179 stations of interest. Maps detailing the spatial extents of the 100 and 1000 year maximum wave event were created using ArcGIS....
Helicity and partial wave amplitude analysis of D -> K^* ?decay
El hassan El aaoud; A. N. Kamal
1999-10-14T23:59:59.000Z
We have carried out an analysis of helicity and partial-wave amplitudes for the process D -> K^* \\rho in the factorization approximation using several models for the form factors. All the models, with the exception of one, generate partial-wave amplitudes with the hierarchy $\\mid S\\mid >\\mid P\\mid >\\mid D\\mid$. The one exception gives $\\mid S \\mid >\\mid D \\mid >\\mid P \\mid$. Even though in most models the D-wave amplitude is an order of magnitude smaller than the S-wave amplitude, its effect on the longitudinal polarization could be as large as 30%. Due to a misidentification of the partial-wave amplitudes in terms of the Lorentz structures in the relevant literature, we cast doubt on the veracity of the listed data, particularly the partial-wave branching ratios. (PACS numbers: 13.25.-k, 13.25.Ft)
Grilli, Stéphan T.
Ocean Waves Measurement and Analysis, Fifth International Symposium WAVES 2005, 3rd-7th, July, 2005 WAVES 2005, 3rd-7th, July, 2005. Madrid, Spain #12;Ocean Waves Measurement and Analysis, Fifth International Symposium WAVES 2005, 3rd-7th, July, 2005. Madrid, Spain #12;Ocean Waves Measurement and Analysis
Victoria, University of
A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical of Mechanical Engineering) ABSTRACT Within a wave energy converter's operational bandwidth, device operation
A multi-site analysis of random error2 in tower-based measurements of carbon and energy fluxes3
1 A multi-site analysis of random error2 in tower-based measurements of carbon and energy fluxes3 4 Forest Service, 271 Mast Road, Durham, NH 03824 USA.25 #12;RANDOM ERRORS IN ENERGY AND CO2 FLUX MEASUREMENTS Richardson et al. 1 January 13, 2006 Abstract1 Measured surface-atmosphere fluxes of energy
Boyer, Edmond
surface: analysis through critical flux and osmotic pressure Benjamin Espinasse, Patrice Bacchin* , Pierre of the critical flux on these conditions is discussed and analysed through the osmotic pressure of the colloidal dispersion. Keywords: Critical flux, ultrafiltration, colloids, membrane, irreversibility, fouling, osmotic
Telloni, D. [National Institute for Astrophysics, Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Perri, S.; Carbone, V. [Department of Physics, University of Calabria, Ponte P. Bucci Cubo 31C, I-87036 Rende (Italy); Bruno, R.; D Amicis, R. [National Institute for Astrophysics, Institute for Space Astrophysics and Planetology, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)
2013-10-10T23:59:59.000Z
A statistical analysis of magnetic flux ropes, identified by large-amplitude, smooth rotations of the magnetic field vector and a low level of both proton density and temperature, has been performed by computing the invariants of the ideal magnetohydrodynamic (MHD) equations, namely the magnetic helicity, the cross-helicity, and the total energy, via magnetic field and plasma fluctuations in the interplanetary medium. A technique based on the wavelet spectrograms of the MHD invariants allows the localization and characterization of those structures in both scales and time: it has been observed that flux ropes show, as expected, high magnetic helicity states (|?{sub m}| in [0.6: 1]), but extremely variable cross-helicity states (|?{sub c}| in [0: 0.8]), which, however, are not independent of the magnetic helicity content of the flux rope itself. The two normalized MHD invariants observed within the flux ropes tend indeed to distribute, neither trivially nor automatically, along the ?(?{sub m}{sup 2}+?{sub c}{sup 2})=1 curve, thus suggesting that some constraint should exist between the magnetic and cross-helicity content of the structures. The analysis carried out has further showed that the flux rope properties are totally independent of their time duration and that they are detected either as a sort of interface between different portions of solar wind or as isolated structures embedded in the same stream.
Goldstein, Allen
Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux Abstract High ground-level ozone concentrations are typical of Mediterranean climates. Plant exposure to this oxidant is known to reduce carbon assimilation. Ozone damage has been traditionally measured through
Fourier analysis of the flux-tube distribution in SU(3) lattice QCD
Arata Yamamoto
2010-04-16T23:59:59.000Z
This letter presents a novel analysis of the action/energy density distribution around a static quark-antiquark pair in SU(3) lattice quantum chromodynamics. Using the Fourier transformation of the link variable, we remove the high-momentum gluon and extract the flux-tube component from the action/energy density. When the high-momentum gluon is removed, the statistical fluctuation is drastically suppressed, and the singularities from the quark self-energy disappear. The obtained flux-tube component is broadly distributed around the line connecting the quark and the antiquark.
Michael Boyle; Alessandra Buonanno; Lawrence E. Kidder; Abdul H. Mroué; Yi Pan; Harald P. Pfeiffer; Mark A. Scheel
2008-10-06T23:59:59.000Z
Expressions for the gravitational wave (GW) energy flux and center-of-mass energy of a compact binary are integral building blocks of post-Newtonian (PN) waveforms. In this paper, we compute the GW energy flux and GW frequency derivative from a highly accurate numerical simulation of an equal-mass, non-spinning black hole binary. We also estimate the (derivative of the) center-of-mass energy from the simulation by assuming energy balance. We compare these quantities with the predictions of various PN approximants (adiabatic Taylor and Pade models; non-adiabatic effective-one-body (EOB) models). We find that Pade summation of the energy flux does not accelerate the convergence of the flux series; nevertheless, the Pade flux is markedly closer to the numerical result for the whole range of the simulation (about 30 GW cycles). Taylor and Pade models overestimate the increase in flux and frequency derivative close to merger, whereas EOB models reproduce more faithfully the shape of and are closer to the numerical flux, frequency derivative and derivative of energy. We also compare the GW phase of the numerical simulation with Pade and EOB models. Matching numerical and untuned 3.5 PN order waveforms, we find that the phase difference accumulated until $M \\omega = 0.1$ is -0.12 radians for Pade approximants, and 0.50 (0.45) radians for an EOB approximant with Keplerian (non-Keplerian) flux. We fit free parameters within the EOB models to minimize the phase difference, and confirm degeneracies among these parameters. By tuning pseudo 4PN order coefficients in the radial potential or in the flux, or, if present, the location of the pole in the flux, we find that the accumulated phase difference can be reduced - if desired - to much less than the estimated numerical phase error (0.02 radians).
Raffray, A. René
1999-01-01T23:59:59.000Z
Fusion Engineering and Design 45 (1999) 377407 Critical heat flux analysis and R&D for the design and the design analysis performed in converging on a choice of reference configuration and parameters which of the ITER divertor have to be designed for high heat fluxes (up to 20 MW/m2 over :10 s). Accommodation
An analysis of pavement heat flux to optimize the1 water efficiency of a pavement-watering method2
Paris-Sud XI, Université de
An analysis of pavement heat flux to optimize the1 water efficiency of a pavement-watering method2.hendel@paris.fr)8 9 Preprint version. Uploaded on May 12th , 2014.10 Abstract: Pavement-watering as a technique rarely been conducted. We propose an15 analysis of pavement heat flux at a depth of 5 cm and solar
HHFW (High Harmonic Fast Wave) Eddy Current Analysis for Antenna
Princeton Plasma Physics Laboratory
1 NSTX HHFW (High Harmonic Fast Wave) Eddy Current Analysis for Antenna NSTX-CALC-24-03-01 June 1 performed.) The model was first built for NSTX to verify the eddy current effect on antenna during plasma force of the induced eddy current in the components. The force data was transferred to the structural
Parameterization and Statistical Analysis of Hurricane Waves
Mclaughlin, Patrick William
2014-05-03T23:59:59.000Z
improvements ranging from 0.13-0.32 m. Once WRF coefficients are adjust to minimize RMSE at each station under consideration, extreme value analysis via the Joint Probability Method with Optimal Sampling (JPM-OS) was conducted. When applied to Panama City, FL...
Statistical Analysis of Microgravity Two-Phase Slug Flow via the Drift Flux Model
Larsen, Benjamin A
2014-05-01T23:59:59.000Z
STATISTICAL ANALYSIS OF MICROGRAVITY TWO-PHASE SLUG FLOW VIA THE DRIFT FLUX MODEL A Thesis by BENJAMIN ANDREW LARSEN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment... made their data available to me and willingly took the time to converse about their work. Finally I would like to thank my parents Donald and Christine Larsen for their love and support in completing my graduate work. v NOMENCLATURE Symbol...
Fourier analysis of wave turbulence in a thin elastic plate
Nicolas Mordant
2010-06-18T23:59:59.000Z
The spatio-temporal dynamics of the deformation of a vibrated plate is measured by a high speed Fourier transform profilometry technique. The space-time Fourier spectrum is analyzed. It displays a behavior consistent with the premises of the Weak Turbulence theory. A isotropic continuous spectrum of waves is excited with a non linear dispersion relation slightly shifted from the linear dispersion relation. The spectral width of the dispersion relation is also measured. The non linearity of this system is weak as expected from the theory. Finite size effects are discussed. Despite a qualitative agreement with the theory, a quantitative mismatch is observed which origin may be due to the dissipation that ultimately absorbs the energy flux of the Kolmogorov-Zakharov casade.
A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes
A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes 2006 Abstract Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE of which include ``tall tower'' instrumentation), one grassland site, and one agricultural site, to conduct
Vermont, University of
; increasing use of renewable fuels; and enhancing forest carbon (C) sequestration (IPCC, 2007). Forests haveFactors contributing to carbon fluxes from bioenergy harvests in the U.S. Northeast: an analysis fossil fuels. Although quantifying postharvest carbon (C) fluxes will require accurate data, relatively
Simulation and Analysis of Converging Shock Wave Test Problems
Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory
2012-06-21T23:59:59.000Z
Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.
Wurtele, Jonathan S.
2008-01-01T23:59:59.000Z
Powered by a Relativistic Klystron", Phys. Rev. Lett. 11.Analysis the Relativistic Klystron and the Standing-WaveANALYSIS OF THE RELATIVISTIC KLYSTRON AND THE STANDING-WAVE
Wu, L.; Ko, E.; Dulkin, A.; Park, K. J.; Fields, S.; Leeser, K. [Novellus Systems, Inc., 4000 North 1st St., San Jose, California 95134 (United States); Meng, L.; Ruzic, D. N. [Center for Plasma-Material Interactions, University of Illinois at Urbana-Champaign, 201 South Goodwin, Urbana, Illinois 61801 (United States)
2010-12-15T23:59:59.000Z
To meet the stringent requirements of interconnect metallization for sub-32 nm technologies, an unprecedented level of flux and energy control of film forming species has become necessary to further advance ionized physical vapor deposition technology. Such technology development mandates improvements in methods to quantify the metal ion fraction, the gas/metal ion ratio, and the associated ion energies in the total ion flux to the substrate. In this work, a novel method combining planar Langmuir probes, quartz crystal microbalance (QCM), and gridded energy analyzer (GEA) custom instrumentation is developed to estimate the plasma density and temperature as well as to measure the metal ion fraction and ion energy. The measurements were conducted in a Novellus Systems, Inc. Hollow Cathode Magnetron (HCM{sup TM}) physical vapor deposition source used for deposition of Cu seed layer for 65-130 nm technology nodes. The gridded energy analyzer was employed to measure ion flux and ion energy, which was compared to the collocated planar Langmuir probe data. The total ion-to-metal neutral ratio was determined by the QCM combined with GEA. The data collection technique and the corresponding analysis are discussed. The effect of concurrent resputtering during the deposition process on film thickness profile is also discussed.
Fresnel analysis of the wave propagation in nonlinear electrodynamics
Yuri N. Obukhov; Guillermo F. Rubilar
2002-04-05T23:59:59.000Z
We study the wave propagation in nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of general nonlinear Lagrangian models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains non-trivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.
Yield Modeling and Analysis of a Clockless Asynchronous Wave Pipeline with Pulse Faults
Ayers, Joseph
Yield Modeling and Analysis of a Clockless Asynchronous Wave Pipeline with Pulse Faults T. Feng fault model and its modeling and analysis methods in a clockless asynchronous wave pipeline fault rate model for establishing a sound theoretical foundation for clockless wave pipeline design
Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion
Frandsen, Jannette B.
Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion Ralf Starzmann Fluid of harnessing the energy from ocean waves is the oscillating water column (OWC) device. The OWC converts
Time Variations of the Superkamiokande Solar Neutrino Flux Data by Rayleigh Power Spectrum Analysis
Koushik Ghosh; Probhas Raychaudhuri
2006-06-05T23:59:59.000Z
We have used the Rayleigh Power Spectrum Analysis of the solar neutrino flux data from 1) 5-day-long samples from Super-Kamiokande-I detector during the period from June, 1996 to July, 2001; 2) 10 -day-long samples from the same detector during the same period and (3) 45-day long from the same detector during the same period. According to our analysis (1) gives periodicities around 0.25, 23.33, 33.75 and 42.75 months; (2) exhibits periodicities around 0.5, 1.0, 28.17, 40.67 and 52.5 months and (3) shows periodicities around 16.5 and 28.5 months. We have found almost similar periods in the solar flares, sunspot data, solar proton data.
Christov, Ivan C.
Introduction Nonlinear Fourier Analysis Ocean Internal Waves KdV Hidden Solitons Closure Two case studies in nonlinear Fourier analysis: Ocean internal solitary waves and the ZabuskyKruskal solitons Ivan Engineering, The University of Sheffield September 10, 2010 Ivan C. Christov (NU) Nonlinear Fourier Analysis
Christov, Ivan C.
Introduction Nonlinear Fourier Analysis Ocean Internal Waves KdV Hidden Solitons Closure Two case studies in nonlinear Fourier analysis: Ocean internal solitary waves and the ZabuskyKruskal solitons Ivan Ivan C. Christov (PU) Nonlinear Fourier Analysis INRNE Seminar 1 / 26 #12;Introduction Nonlinear
Piana, Michele
ELECTRON FLUX SPECTRAL IMAGING OF SOLAR FLARES THROUGH REGULARIZED ANALYSIS OF HARD X-RAY SOURCE a new method for imaging spectroscopy analysis of hard X-ray emission during solar flares. The method the method to a solar flare observed on 2002 February 20 by the RHESSI instrument. The event is characterized
Measuring the CO2 flux at the air/water interface in lakes using flow injection analysis
Jardim, Wilson de Figueiredo
Measuring the CO2 flux at the air/water interface in lakes using flow injection analysis F. V was calculated after the determination of H2CO3* (free CO2) and atmospheric CO2 using flow injection analysis (FIA) coupled to a conductometric detector. The method is based on the diffusion of CO2 through
Rigorous Analysis of Traveling Wave Photodetectors under High-Power Illumination
Aste, Andreas
Rigorous Analysis of Traveling Wave Photodetectors under High- Power Illumination Damir Pasalic data has shown excellent agreement. I. INTRODUCTION High-power traveling-wave photodetectors (TWPDs and velocity mismatch between the optical and RF waves over the length of the TWPD. For high power handling
Analysis and Development of a Three Body Heaving Wave Energy Scott J. Beatty
Victoria, University of
Analysis and Development of a Three Body Heaving Wave Energy Converter by Scott J. Beatty BASc Body Heaving Wave Energy Converter by Scott J. Beatty BASc, University of British Columbia, 2003 A relative motion based heaving point absorber wave energy converter is being co- developed by researchers
A perturbative analysis of modulated amplitude waves in BoseEinstein condensates
Porter, Mason A.
A perturbative analysis of modulated amplitude waves in BoseEinstein condensates Mason A. Portera-temporal structures in nonlinear Schro¨dinger equations and thereby study the dynamics of quasi-one-dimensional BoseEinstein waves on their wave number. We also explore the band structure of BoseEinstein condensates in detail
Wavefield Analysis of Rayleigh Waves for Near-Surface Shear-Wave Velocity
Zeng, Chong
2011-05-18T23:59:59.000Z
Shear (S)-wave velocity is a key property of near-surface materials and is the fundamental parameter for many environmental and engineering geophysical studies. Directly acquiring accurate S-wave velocities from a seismic ...
LaCure, Mari Mae
2010-04-29T23:59:59.000Z
Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...
Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor
Primm, Trent [ORNL; Gehin, Jess C [ORNL
2009-04-01T23:59:59.000Z
A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.
Benjamin Espinasse; Patrice Bacchin; Pierre Aimar
2008-01-17T23:59:59.000Z
A filtration procedure was developed to measure the reversibility of fouling during cross-flow filtration based on the square wave of applied pressure. The principle of this method, the apparatus required, and the associated mathematical relationships are detailed. This method allows for differentiating the reversible accumulation of matter on, and the irreversible fouling of, a membrane surface. Distinguishing these two forms of attachment to a membrane surface provides a means by which the critical flux may be determined. To validate this method, experiments were performed with a latex suspension at different degrees of destabilization (obtained by the addition of salt to the suspension) and at different cross-flow velocities. The dependence of the critical flux on these conditions is discussed and analysed through the osmotic pressure of the colloidal dispersion.
Rafael A. Porto; Andreas Ross; Ira Z. Rothstein
2011-03-29T23:59:59.000Z
Using effective field theory techniques we calculate the source multipole moments needed to obtain the spin contributions to the power radiated in gravitational waves from inspiralling compact binaries to third Post-Newtonian order (3PN). The multipoles depend linearly and quadratically on the spins and include both spin(1)spin(2) and spin(1)spin(1) components. The results in this paper provide the last missing ingredient required to determine the phase evolution to 3PN including all spin effects which we will report in a separate paper.
Alejandro Bohé; Guillaume Faye; Sylvain Marsat; Edward K Porter
2015-01-07T23:59:59.000Z
We investigate the dynamics of spinning binaries of compact objects at the next-to-leading order in the quadratic-in-spin effects, which corresponds to the third post-Newtonian order (3PN). Using a Dixon-type multipolar formalism for spinning point particles endowed with spin-induced quadrupoles and computing iteratively in harmonic coordinates the relevant pieces of the PN metric within the near zone, we derive the post-Newtonian equations of motion as well as the equations of spin precession. We find full equivalence with available results. We then focus on the far-zone field produced by those systems and obtain the previously unknown 3PN spin contributions to the gravitational-wave energy flux by means of the multipolar post-Minkowskian (MPM) wave generation formalism. Our results are presented in the center-of-mass frame for generic orbits, before being further specialized to the case of spin-aligned, circular orbits. We derive the orbital phase of the binary based on the energy balance equation and briefly discuss the relevance of the new terms.
Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors
Deirdre Shoemaker; Karan Jani; Lionel London; Larne Pekowsky
2015-03-09T23:59:59.000Z
Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Eintein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.
Preliminary Investigations on Uncertainty Analysis of Wind-Wave Predictions in Lake Michigan
Nekouee, Navid
2015-01-01T23:59:59.000Z
With all the improvement in wave and hydrodynamics numerical models, the question rises in our mind that how the accuracy of the forcing functions and their input can affect the results. In this paper, a commonly used numerical third generation wave model, SWAN is applied to predict waves in Lake Michigan. Wind data were analyzed to determine wind variation frequency over Lake Michigan. Wave predictions uncertainty due to wind local effects were compared during a period where wind had a fairly constant speed and direction over the northern and southern basins. The study shows that despite model calibration in Lake Michigan area, the model deficiency arises from ignoring wind effects in small scales. Wave prediction also emphasizes that small scale turbulence in meteorological forces can increase error in predictions up to 35%. Wave frequency and coherence analysis showed that both models are able to reveal the time scale of the wave variation with same accuracy. Insufficient number of meteorological stations ...
Root cause analysis of solder flux residue incidence in the manufacture of electronic power modules
Jain, Pranav
2011-01-01T23:59:59.000Z
This work investigates the root causes of the incidence of solder flux residue underneath electronic components in the manufacture of power modules. The existing deionized water-based centrifugal cleaning process was ...
Statistical Analysis of Microgravity Two-Phase Slug Flow via the Drift Flux Model
Larsen, Benjamin A
2014-05-01T23:59:59.000Z
of microgravity two-phase flow data difficult. Multiple researchers have postulated the microgravity drift flux model parameters to predict void fraction, however, these methods were initially developed with no consideration given to a microgravity environment...
RESEARCH PAPER Simulation-based analysis of flow due to traveling-plane-wave
Yanikoglu, Berrin
RESEARCH PAPER Simulation-based analysis of flow due to traveling-plane-wave deformations: 28 March 2007 Ó Springer-Verlag 2007 Abstract One of the propulsion mechanisms of micro- organisms be placed in a channel and actuated for pumping of the fluid by means of introducing a series of traveling-wave
Analysis of seismic waves generated by surface blasting at Indiana coal mines
Polly, David
Analysis of seismic waves generated by surface blasting at Indiana coal mines A project pursuant is to investigate the characteristics of mine blast seismic waves in southern Indiana. Coal mines are prevalent in the more active southern half of the state, which would allow for better assessment of earthquake risk
Tsunami Wave Analysis and Possibility of Splay Fault Rupture During the 2004 Indian Ocean Earthquake
Tsunami Wave Analysis and Possibility of Splay Fault Rupture During the 2004 Indian Ocean Earthquake NORA DEDONTNEY 1 and JAMES R. RICE 1,2 Abstract--The 2004 Indian Ocean tsunami was observed by two, but which observed different tsunami lead wave morphologies. The earlier satellite, Jason-1, recorded a lead
Analysis of a Fivefold Symmetric Superposition of Plane Waves
Michael H. Schwarz; Robert A. Pelcovits
2012-03-17T23:59:59.000Z
We show that a symmetric superposition of five standing plane waves can be expressed as an infinite series of terms of decreasing wavenumber, where each term is a product of five plane waves. We show that this series converges pointwise in R^2 and uniformly in any disk domain in R^2. Using this series, we provide a heuristic argument for why the locations of the local extrema of a symmetric superposition of five standing plane waves can be approximated by the vertices of a Penrose tiling.
MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER ARNAUD ROUGIREL
Paris-Sud XI, Université de
for buoy-type ocean wave energy converter. The simplest model for this scheme is a non autonomous piecewise): see [OOS10]. Basically, a WEC is a floating body with a power takeoff system. It uses the vertical
Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.
Nakos, James Thomas
2005-12-01T23:59:59.000Z
The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.
Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam; Arkin, Adam; Keasling, Jay D.
2009-08-19T23:59:59.000Z
Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.
Partial wave analysis at BES III harnessing the power of GPUs
Niklaus Berger
2011-08-29T23:59:59.000Z
Partial wave analysis is a core tool in hadron spectroscopy. With the high statistics data available at facilities such as the Beijing Spectrometer III, this procedure becomes computationally very expensive. We have successfully implemented a framework for performing partial wave analysis on graphics processors. We discuss the implementation, the parallel computing frameworks employed and the performance achieved, with a focus on the recent transition to the OpenCL framework.
Application of wave-shape functions and Synchrosqueezing transform to pulse signal analysis
Wu, Hau-tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang
2015-01-01T23:59:59.000Z
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and study the pulse wave signal. Based on the wave shape function model and SST, we extract features, called the spectral pulse signature, based on the functional regression technique, to characterize the hemodynamics from the pulse wave signals. To demonstrate how the algorithm and the extracted features work, we study the radial pulse wave signal recorded by the sphygmomanometer from normal subjects and patients with congestive heart failure. The analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. In addition, it shows that different positions of the radial artery contain significant different information, which is compatible with the empirical conclusion of the pulse diagnosis in the traditional Chinese medicine.
Lee, Khee-Gan; Spergel, David N. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Suzuki, Nao, E-mail: lee@astro.princeton.edu [E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)
2012-02-15T23:59:59.000Z
Continuum fitting is an important aspect of Ly{alpha} forest science, since errors in the derived optical depths scale with the fractional continuum error. However, traditional methods of estimating continua in noisy and moderate-resolution spectra (e.g., Sloan Digital Sky Survey, SDSS; S/N {approx}< 10 pixel{sup -1} and R {approx} 2000), such as power-law extrapolation or dividing by the mean spectrum, achieve no better than {approx}15% rms accuracy. To improve on this, we introduce mean-flux-regulated principal component analysis (MF-PCA) continuum fitting. In this technique, PCA fitting is carried out redward of the quasar Ly{alpha} line in order to provide a prediction for the shape of the Ly{alpha} forest continuum. The slope and amplitude of this continuum prediction is then corrected using external constraints for the Ly{alpha} forest mean flux. This requires prior knowledge of the mean flux, (F), but significantly improves the accuracy of the flux transmission, F {identical_to} exp (- {tau}), estimated from each pixel. From tests on mock spectra, we find that MF-PCA reduces the errors to 8% rms in S/N {approx} 2 spectra, and <5% rms in spectra with S/N {approx}> 5. The residual Fourier power in the continuum is decreased by a factor of a few in comparison with dividing by the mean continuum, enabling Ly{alpha} flux power spectrum measurements to be extended to {approx}2 Multiplication-Sign larger scales. Using this new technique, we make available continuum fits for 12,069 z > 2.3 Ly{alpha} forest spectra from SDSS Data Release 7 for use by the community. This technique is also applicable to future releases of the ongoing Baryon Oscillations Spectroscopic Survey, which obtains spectra for {approx}150, 000 Ly{alpha} forest spectra at low signal-to-noise (S/N {approx} 2).
P. Astone; D. Babusci; M. Bassan; P. Carelli; E. Coccia; C. Cosmelli; S. D'Antonio; V. Fafone; F. Frontera; G. Giordano; C. Guidorzi; A. Marini; Y. Minenkov; I. Modena; G. Modestino; A. Moleti; E. Montanari; G. V. Pallottino; G. Pizzella; L. Quintieri; A. Rocchi; F. Ronga; L. Sperandio; R. Terenzi; G. Torrioli; M. Visco
2005-02-10T23:59:59.000Z
The statistical association between the output of the Gravitational Wave (GW) detectors EXPLORER and NAUTILUS and a list of Gamma Ray Bursts (GRBs) detected by the satellite experiments BATSE and BeppoSAX has been analyzed using cumulative algorithms. GW detector data collected between 1991 and 1999 have been correlated to the GRB flux peak times. The cumulative analysis of a large number of GRBs (387) allows to push the upper bound for the corresponding GW burst amplitude down to $h = 2.5\\cdot10^{-19}$.
Generation and analysis of multi-directional waves
Liagre, Pierre-Yves Francois Bernard
1999-01-01T23:59:59.000Z
distribution technique through computer simulated wave data and found it to be accurate. Later, Hasle and Stansberg 5 (1984) applied this method for the determination of the directional spectrum in a laboratory basin by means of 12 gauges. 1.1.2 Parametric...
Yamaguchi, Y. [Plasma Research Center, University of Tsukuba (Japan); Ichimura, M. [Plasma Research Center, University of Tsukuba (Japan); Higaki, H. [Plasma Research Center, University of Tsukuba (Japan); Kakimoto, S. [Plasma Research Center, University of Tsukuba (Japan); Ide, K. [Plasma Research Center, University of Tsukuba (Japan); Inoue, D. [Plasma Research Center, University of Tsukuba (Japan); Nagai, H. [Plasma Research Center, University of Tsukuba (Japan); Nakagome, K. [Plasma Research Center, University of Tsukuba (Japan); Fukuyama, A. [Kyoto University (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)
2005-01-15T23:59:59.000Z
The numerical analysis is performed with two dimensional wave code for controlling the eigenmode formation of fast Alfven waves in the GAMMA 10 central cell. The plasma production by fast waves depends on the wave excitation in the plasma. Eigenmodes are strongly formed when the boundary conditions in the axial and radial directions are satisfied. As the optimum density for the formation of eigenmode exists discretely, the density is clamped at the value where the eigenmode is strongly formed. For the higher density plasma production, the eigenmodes must be continuously excited as the density increases. It is found that the almost continuous excitation of eigenmodes can be realized by using two waves with different frequencies at the same time.
Zhang, Y. S. [Department of Scientific Research, Dalian Naval Academy, Dalian 116018 (China); Cai, F. [Department of Navigation, Dalian Naval Academy, Dalian 116018 (China); Xu, W. M. [Department of Hydrography and Cartography, Dalian Naval Academy, Dalian 116018 (China)
2011-09-28T23:59:59.000Z
The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.
Length Scale Analysis of Surface Energy Fluxes Derived from Remote Sensing
Brunsell, Nathaniel A.; Gillies, Robert R.
2003-01-01T23:59:59.000Z
temperature and the resultant turbulent fluxes is important for the ability to compute large-scale esti- mations of the surface energy balance with remote sens- ing. A problem in land–atmosphere-interactions re- search is that the processes that govern... by the surface as transmitted through the atmosphere. This provides information concerning the radiative balance of the sur- face at the resolution of the sensor, assuming the energy balance is closed at all spatial resolutions. There have been a number...
Johnson-McDaniel, Nathan K
2014-01-01T23:59:59.000Z
(Abridged) High-order terms in the post-Newtonian (PN) expansions of various quantities for compact binaries exhibit a combinatorial increase in complexity, including ever-increasing numbers of transcendentals. Here we consider the gravitational wave energy flux at infinity from a point particle in a circular orbit around a Schwarzschild black hole, which is known to 22PN beyond the lowest-order Newtonian prediction, at which point each order has over 1000 terms. We introduce a factorization that considerably simplifies the spherical harmonic modes of the energy flux (and thus also the amplitudes of the spherical harmonic modes of the gravitational waves); it is likely that much of the complexity this factorization removes is due to curved-space wave propagation (e.g., tail effects). For the modes with azimuthal number l of 7 or greater, this factorization reduces the expressions for the modes that enter the 22PN total energy flux to pure integer PN series with rational coefficients, which amounts to a reduct...
Millimeter wave analysis of the dielectric properties of oil shales
John A. Scales; Michael Batzle
2006-06-06T23:59:59.000Z
Natural sedimentation processes give rise to fine layers in shales. If these layers alternate between organic-rich and organic-poor sediments, then the contrast in dielectric properties gives rise to an effective birefringence as the presence of hydrocarbons suppresses the dielectric constant of the host rock. We have measured these effects with a quasioptical millimeter wave setup that is rapid and noncontacting. We find that the strength of this birefringence and the overall dielectric permittivity provide two useful diagnostic of the organic content of oil shales.
Xihao Deng
2014-10-23T23:59:59.000Z
Gravitational wave background results from the superposition of gravitational waves generated from all sources across the Universe. Previous efforts on detecting such a background with pulsar timing arrays assume it is an isotropic Gaussian background with a power law spectrum. However, when the number of sources is limited, the background might be non-Gaussian or the spectrum might not be a power law. Correspondingly previous analysis may not work effectively. Here we use a method --- Bayesian Nonparametric Analysis --- to try to detect a generic gravitational wave background, which directly sets constraints on the feasible shapes of the pulsar timing signals induced by a gravitational wave background and allows more flexible forms of the background. Our Bayesian nonparametric analysis will infer if a gravitational wave background is present in the data, and also estimate the parameters that characterize the background. This method will be much more effective than the conventional one assuming the background spectrum follows a power law in general cases. While the context of our discussion focuses on pulsar timing arrays, the analysis itself is directly applicable to detect and characterize any signals that arise from the superposition of a large number of astrophysical events.
Wootan, D.W.; Rawlins, J.A.; Carter, L.L.; Brager, H.R.; Schenter, R.E.
1988-06-01T23:59:59.000Z
A cobalt test assembly containing yttrium hydride pins for neutron moderation was irradiated in the Fast Flux Test Facility during Cycle 9A for 137.7 equivalent full-power days at a power level of 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal used to produce /sup 60/Co and a set of four pins with europium oxide to produce /sup 153/Gd, a radioisotope used in detection of the bone disease osteoporosis. Postirradiation examination of the cobalt pins determined the /sup 60/Co was produced with an accuracy of about 5%. The measured /sup 60/Co spatially distributed concentrations were within 20% of the calculated concentrations. The assembly average /sup 60/Co measured activity was 4% less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes /sup 152/Eu and /sup 154/Eu to an absolute accuracy of about 10%. The measured europium radioisotope and /sup 153/Gd concentrations were within 20% of calculated values. The hydride assembly performed well and is an excellent vehicle for many Fast Flux Test Facility isotope production applications. The results also demonstrate the accuracy of the calculational methods developed by the Westinghouse Hanford Company for predicting isotope production rates in this type of assembly. 4 refs., 5 figs., 2 tabs.
Nathan K. Johnson-McDaniel
2014-07-24T23:59:59.000Z
(Abridged) High-order terms in the post-Newtonian (PN) expansions of various quantities for compact binaries exhibit a combinatorial increase in complexity, including ever-increasing numbers of transcendentals. Here we consider the gravitational wave energy flux at infinity from a point particle in a circular orbit around a Schwarzschild black hole, which is known to 22PN beyond the lowest-order Newtonian prediction, at which point each order has over 1000 terms. We introduce a factorization that considerably simplifies the spherical harmonic modes of the energy flux (and thus also the amplitudes of the spherical harmonic modes of the gravitational waves); it is likely that much of the complexity this factorization removes is due to curved-space wave propagation (e.g., tail effects). For the modes with azimuthal number l of 7 or greater, this factorization reduces the expressions for the modes that enter the 22PN total energy flux to pure integer PN series with rational coefficients, which amounts to a reduction of up to a factor of ~150 in the total number of terms in a given mode. The reduction in complexity becomes less dramatic for smaller l, due to the structure of the expansion, though the factorization is still able to remove all the half-integer PN terms. For the 22PN l = 2 modes, this factorization still reduces the total number of terms (and size) by a factor of ~10 and gives purely rational coefficients through 8PN. This factorization also improves the convergence of the series, though we find the exponential resummation introduced for the full energy flux by Isoyama et al. to be even more effective at improving the convergence of the individual modes, producing improvements of over four orders of magnitude over the original series for some modes. However, the exponential resummation is not as effective at simplifying the series, particularly for the higher-order modes.
Multichannel Analysis of Surface Wave An Application to Diagnose Dam Bodies
Barrash, Warren
Multichannel Analysis of Surface Wave An Application to Diagnose Dam Bodies Noppadol Poomvises it use as a part of geological program to explore an appropriated rock foundation at a proposed dam location, but also use to investigate the condition of dam after water being storage as well
Troian, Sandra M.
MICROFLUIDIC DETECTION AND ANALYSIS BY INTEGRATION OF EVANESCENT WAVE SENSING WITH THERMOCAPILLARY, Princeton, NJ, USA ABSTRACT An integrated system capable of microfluidic actuation, detection and sensing surface tension-driven microfluidic devices [1-5] requires new and innovative methods for in-situ droplet
Development and analysis of non-linearity in the pressure waves resulting from thermoacoustic heat
Paris-Sud XI, Université de
Development and analysis of non-linearity in the pressure waves resulting from thermoacoustic heat@aucegypt.edu Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France 1123 #12;Thermoacoustic. In this work, a thermoacoustic prototype was designed, built and operated and its performance indices
Schnor, Bettina
in a Tsunami early warning center. Within such a center, sensor data is aggregated. In case of a seismic eventA Performance and Scalability Analysis of the Tsunami Simulation EasyWave for Different Multi and Scalability Analysis of the Tsunami Simulation EasyWave for Different Multi-Core Architectures and Programming
A DATA-CENTERED COLLABORATION PORTAL TO SUPPORT GLOBAL CARBON-FLUX ANALYSIS
Agarwal, Deborah A.; Humphrey, Marty; Beekwilder, Norm; Jackson, Keith; Goode, Monte; van Ingen, Catharine
2009-04-07T23:59:59.000Z
Carbon-climate, like other environmental sciences, has been changing. Large-scalesynthesis studies are becoming more common. These synthesis studies are often conducted by science teams that are geographically distributed and on datasets that are global in scale. A broad array of collaboration and data analytics tools are now available that could support these science teams. However, building tools that scientists actually use is hard. Also, moving scientists from an informal collaboration structure to one mediated by technology often exposes inconsistencies in the understanding of the rules of engagement between collaborators. We have developed a scientific collaboration portal, called fluxdata.org, which serves the community of scientists providing and analyzing the global FLUXNET carbon-flux synthesis dataset. Key things we learned or re-learned during our portal development include: minimize the barrier to entry, provide features on a just-in-time basis, development of requirements is an on-going process, provide incentives to change leaders and leverage the opportunity they represent, automate as much as possible, and you can only learn how to make it better if people depend on it enough to give you feedback. In addition, we also learned that splitting the portal roles between scientists and computer scientists improved user adoption and trust. The fluxdata.org portal has now been in operation for ~;;1.5 years and has become central to the FLUXNET synthesis efforts.
Analysis of WACSIS data using a directional hybrid wave model
Zhang, Shaosong
2007-04-25T23:59:59.000Z
.5 WACSIS Data Analysis ...................................................................102 6.5.1 Data Sets Recorded By the Directional Waverider Buoy .......105 6.5.2 Estimation Based On the PUV................................................108 6... (before shifted)..................................................31 4.2 Time series of pressure and Vx (after shifted).....................................................32 4.3 Power spectrum of pressure...
The measurement of pile driving forces and its application to wave equation analysis of piles
Kaiser, Francis Xavier
1975-01-01T23:59:59.000Z
THE MEASUREMENT OF PILE DRIVING FORCES AND ITS APPLICATION TO NAVE EDUATION ANALYSIS OF PILES A Thesis by Francis Kavier Kaiser, Jr. Submitted to the Graduate College of Texas A & M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1975 Major Subject: Civil Engineering THE MEASUREMENT OF PILE DRIVING FORCES AND ITS APPLICATION TO WAVE EQUATION ANALYSIS OF PILES A Thesis Francis Xavier Kaiser, Jr. Approved as to style and content by...
Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint
Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.
2014-02-01T23:59:59.000Z
Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.
Glüsenkamp, Thorsten
2015-01-01T23:59:59.000Z
The recent discovery of a diffuse neutrino flux up to PeV energies raises the question of which populations of astrophysical sources contribute to this diffuse signal. One extragalactic candidate source population to produce high-energy neutrinos are Blazars. We present results from a likelihood analysis searching for cumulative neutrino emission from Blazar populations selected with the 2nd Fermi-LAT AGN catalog (2LAC) using an IceCube data set that has been optimized for the detection of individual sources. In contrast to previous searches with IceCube, the investigated populations contain up to hundreds of sources, the biggest one being the entire Blazar sample measured by the Fermi-LAT. No significant neutrino signal was found from any of these populations. Some implications of this non-observation for the origin of the observed PeV diffuse signal will be discussed.
Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint
Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.
2014-03-01T23:59:59.000Z
This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.
NONLINEAR WAVE EVOLUTION IN VLASOV PLASMA: A LIE-TRANSFORM ANALYSIS
Cary, J.R.
2010-01-01T23:59:59.000Z
Packets: The Meaning of Wave Energy and Momentum and theAnalyzing Wave Packets Wave Energy and Momentum Derivationa) . We f i r s t consider wave energy and wave momentum. We
NONLINEAR WAVE EVOLUTION IN VLASOV PLASMA: A LIE-TRANSFORM ANALYSIS
Cary, J.R.
2010-01-01T23:59:59.000Z
Packets: The Meaning of Wave Energy and Momentum and theAnalyzing Wave Packets Wave Energy and Momentum Derivationf i r s t consider wave energy and wave momentum. We prove
Wu Jianlan [Physics Department, Zhejiang University, 38 ZheDa Road, Hangzhou, Zhejiang 310027 (China); Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Liu Fan; Silbey, Robert J.; Cao Jianshu [Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Ma Jian [Physics Department, Zhejiang University, 38 ZheDa Road, Hangzhou, Zhejiang 310027 (China)
2012-11-07T23:59:59.000Z
Following the calculation of optimal energy transfer in thermal environment in our first paper [J. L. Wu, F. Liu, Y. Shen, J. S. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010)], full quantum dynamics and leading-order 'classical' hopping kinetics are compared in the seven-site Fenna-Matthews-Olson (FMO) protein complex. The difference between these two dynamic descriptions is due to higher-order quantum corrections. Two thermal bath models, classical white noise (the Haken-Strobl-Reineker (HSR) model) and quantum Debye model, are considered. In the seven-site FMO model, we observe that higher-order corrections lead to negligible changes in the trapping time or in energy transfer efficiency around the optimal and physiological conditions (2% in the HSR model and 0.1% in the quantum Debye model for the initial site at BChl 1). However, using the concept of integrated flux, we can identify significant differences in branching probabilities of the energy transfer network between hopping kinetics and quantum dynamics (26% in the HSR model and 32% in the quantum Debye model for the initial site at BChl 1). This observation indicates that the quantum coherence can significantly change the distribution of energy transfer pathways in the flux network with the efficiency nearly the same. The quantum-classical comparison of the average trapping time with the removal of the bottleneck site, BChl 4, demonstrates the robustness of the efficient energy transfer by the mechanism of multi-site quantum coherence. To reconcile with the latest eight-site FMO model which is also investigated in the third paper [J. Moix, J. L. Wu, P. F. Huo, D. F. Coker, and J. S. Cao, J. Phys. Chem. Lett. 2, 3045 (2011)], the quantum-classical comparison with the flux network analysis is summarized in Appendix C. The eight-site FMO model yields similar trapping time and network structure as the seven-site FMO model but leads to a more disperse distribution of energy transfer pathways.
Physics of String Flux Compactifications
Frederik Denef; Michael R. Douglas; Shamit Kachru
2007-01-06T23:59:59.000Z
We provide a qualitative review of flux compactifications of string theory, focusing on broad physical implications and statistical methods of analysis.
Naoto Yokoyama; Masanori Takaoka
2014-12-09T23:59:59.000Z
A single-wavenumber representation of nonlinear energy spectrum, i.e., stretching energy spectrum is found in elastic-wave turbulence governed by the F\\"oppl-von K\\'arm\\'an (FvK) equation. The representation enables energy decomposition analysis in the wavenumber space, and analytical expressions of detailed energy budget in the nonlinear interactions are obtained for the first time in wave turbulence systems. We numerically solved the FvK equation and observed the following facts. Kinetic and bending energies are comparable with each other at large wavenumbers as the weak turbulence theory suggests. On the other hand, the stretching energy is larger than the bending energy at small wavenumbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode $a_{\\bm{k}}$ and its companion mode $a_{-\\bm{k}}$ is observed at the small wavenumbers. Energy transfer shows that the energy is input into the wave field through stretching-energy transfer at the small wavenumbers, and dissipated through the quartic part of kinetic-energy transfer at the large wavenumbers. A total-energy flux consistent with the energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells
Wiskott, Laurenz
Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells Sven Da¨hne1,2,3 *, Niko Wilbert2 such that it is best prepared for coding input from the natural world. Citation: Da¨hne S, Wilbert N, Wiskott L (2014 Received June 25, 2013; Accepted December 20, 2013; Published May 8, 2014 Copyright: ß 2014 Da¨hne et al
Delgado-Frias, José G.
Abstract-- A hybrid wave-pipeline multiplier architecture is described in this paper. Mathematical analysis is provided to show the performance gains possible with hybrid wave-pipeline over conventional pipeline architectures. The clock period in conventional pipeline scheme is proportional to the maximum
Southern California, University of
1 Earthquake Damage Detection in the Imperial County Services Building III: Analysis of Wave Travel characteristics of the structure, and are not sensitive to local damage. Wave travel times between selected changes in such characteristics of response are potentially more sensitive to local damage. In this paper
Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials
Wosko, Paul; Sundram, S. K.
2012-10-16T23:59:59.000Z
New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 ºC inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 – 1200 °C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 ºC.
Black-hole quasinormal resonances: Wave analysis versus a geometric-optics approximation
Shahar Hod
2009-09-02T23:59:59.000Z
It has long been known that null unstable geodesics are related to the characteristic modes of black holes-- the so called quasinormal resonances. The basic idea is to interpret the free oscillations of a black hole in the eikonal limit in terms of null particles trapped at the unstable circular orbit and slowly leaking out. The real part of the complex quasinormal resonances is related to the angular velocity at the unstable null geodesic. The imaginary part of the resonances is related to the instability timescale (or the inverse Lyapunov exponent) of the orbit. While this geometric-optics description of the black-hole quasinormal resonances in terms of perturbed null {\\it rays} is very appealing and intuitive, it is still highly important to verify the validity of this approach by directly analyzing the Teukolsky wave equation which governs the dynamics of perturbation {\\it waves} in the black-hole spacetime. This is the main goal of the present paper. We first use the geometric-optics technique of perturbing a bundle of unstable null rays to calculate the resonances of near-extremal Kerr black holes in the eikonal approximation. We then directly solve the Teukolsky wave equation (supplemented by the appropriate physical boundary conditions) and show that the resultant quasinormal spectrum obtained directly from the wave analysis is in accord with the spectrum obtained from the geometric-optics approximation of perturbed null rays.
Black-hole quasinormal resonances: Wave analysis versus a geometric-optics approximation
Hod, Shahar [Ruppin Academic Center, Emeq Hefer 40250 (Israel) and Hadassah Institute, Jerusalem 91010 (Israel)
2009-09-15T23:59:59.000Z
It has long been known that null unstable geodesics are related to the characteristic modes of black holes--the so-called quasinormal resonances. The basic idea is to interpret the free oscillations of a black hole in the eikonal limit in terms of null particles trapped at the unstable circular orbit and slowly leaking out. The real part of the complex quasinormal resonances is related to the angular velocity at the unstable null geodesic. The imaginary part of the resonances is related to the instability time scale (or the inverse Lyapunov exponent) of the orbit. While this geometric-optics description of the black-hole quasinormal resonances in terms of perturbed null rays is very appealing and intuitive, it is still highly important to verify the validity of this approach by directly analyzing the Teukolsky wave equation which governs the dynamics of perturbation waves in the black-hole spacetime. This is the main goal of the present paper. We first use the geometric-optics technique of perturbing a bundle of unstable null rays to calculate the resonances of near-extremal Kerr black holes in the eikonal approximation. We then directly solve the Teukolsky wave equation (supplemented by the appropriate physical boundary conditions) and show that the resultant quasinormal spectrum obtained directly from the wave analysis is in accord with the spectrum obtained from the geometric-optics approximation of perturbed null rays.
Accurate near-field calculation in the rigorous coupled-wave analysis method
Weismann, Martin; Panoiu, Nicolae C
2015-01-01T23:59:59.000Z
The rigorous coupled-wave analysis (RCWA) is one of the most successful and widely used methods for modeling periodic optical structures. It yields fast convergence of the electromagnetic far-field and has been adapted to model various optical devices and wave configurations. In this article, we investigate the accuracy with which the electromagnetic near-field can be calculated by using RCWA and explain the observed slow convergence and numerical artifacts from which it suffers, namely unphysical oscillations at material boundaries due to the Gibb's phenomenon. In order to alleviate these shortcomings, we also introduce a mathematical formulation for accurate near-field calculation in RCWA, for one- and two-dimensional straight and slanted diffraction gratings. This accurate near-field computational approach is tested and evaluated for several representative test-structures and configurations in order to illustrate the advantages provided by the proposed modified formulation of the RCWA.
Hatakenaka, Sachi, 1961-
2002-01-01T23:59:59.000Z
University-industry relationships are in a state of flux. They represent important strategic issues for universities, for industry, and for governments alike. This confluence of interests has led to experimentation in which ...
Introduction to the Analysis of Low-Frequency Gravitational Wave Data
B. F. Schutz
1997-10-15T23:59:59.000Z
The space-based gravitational wave detector LISA will observe in the low-frequency gravitational-wave band (0.1 mHz up to 1 Hz). LISA will search for a variety of expected signals, and when it detects a signal it will have to determine a number of parameters, such as the location of the source on the sky and the signal's polarisation. This requires pattern-matching, called matched filtering, which uses the best available theoretical predictions about the characteristics of waveforms. All the estimates of the sensitivity of LISA to various sources assume that the data analysis is done in the optimum way. Because these techniques are unfamiliar to many young physicists, I use the first part of this lecture to give a very basic introduction to time-series data analysis, including matched filtering. The second part of the lecture applies these techniques to LISA, showing how estimates of LISA's sensitivity can be made, and briefly commenting on aspects of the signal-analysis problem that are special to LISA.
Pre-Stack Depth Migration and Attribute Analysis of 3-D Time-Lapse P-wave Data
Pre-Stack Depth Migration and Attribute Analysis of 3-D Time-Lapse P-wave Data Vacuum Field, New the application of Pre-Stack Depth Migration (PSDM) and innovative window-based attribute analysis applied to 4-D seismic data. The data were acquired in Central Vacuum Unit, Lea County, New Mexico by the Reservoir
Anomalous electron-ion energy coupling in electron drift wave turbulence
Zhao, Lei
annulus arises due to a wave energy flux differential acrossprincipal collisionless wave energy dissipation channel inOn the other hand, wave energy can be dissipated by ion
Wave breaking along the stratospheric polar vortex as seen in ERA-40 data
Abatzoglou, John T; Magnusdottir, Gudrun
2007-01-01T23:59:59.000Z
1983), Breaking planetary waves in the stratosphere, Nature,structure of breaking Rossby waves in the polar wintertimecontrol of upward wave flux near the tropopause, Geophys.
Gregor Tanner
2008-03-12T23:59:59.000Z
We propose a new approach towards determining the distribution of mechanical and acoustic wave energy in complex built-up structures. The technique interpolates between standard Statistical Energy Analysis (SEA) and full ray tracing containing both these methods as limiting case. By writing the flow of ray trajectories in terms of linear phase space operators, it is suggested here to reformulate ray-tracing algorithms in terms of boundary operators containing only short ray segments. SEA can now be identified as a low resolution ray tracing algorithm and typical SEA assumptions can be quantified in terms of the properties of the ray dynamics. The new technique presented here enhances the range of applicability of standard SEA considerably by systematically incorporating dynamical correlations wherever necessary. Some of the inefficiencies inherent in typical ray tracing methods can be avoided using only a limited amount of the geometrical ray information. The new dynamical theory - Dynamical Energy Analysis (DEA) - thus provides a universal approach towards determining wave energy distributions in complex structures.
Dynamical Horizons: Energy, Angular Momentum, Fluxes and Balance Laws
Abhay Ashtekar; Badri Krishnan
2002-11-03T23:59:59.000Z
Dynamical horizons are considered in full, non-linear general relativity. Expressions of fluxes of energy and angular momentum carried by gravitational waves across these horizons are obtained. Fluxes are local, the energy flux is positive and change in the horizon area is related to these fluxes. The flux formulae also give rise to balance laws analogous to the ones obtained by Bondi and Sachs at null infinity and provide generalizations of the first and second laws of black hole mechanics.
Nault, Rance, E-mail: naultran@msu.edu [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Abdul-Fattah, Hiba [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Mironov, Gleb G.; Berezovski, Maxim V. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Moon, Thomas W. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada)
2013-08-15T23:59:59.000Z
Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist ?-naphthoflavone (?NF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 ?M ?NF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by ?NF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to ?NF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.
Wave-Turbulence Interactions in a Breaking Mountain Wave Craig Epifanio and Tingting Qian
#12;Dissipation of Mean Wave Energy · Mean wave energy E is just the total energy (kinetic + available · The dissipation of mean wave energy is caused by the turbulent momentum fluxes--specifically, by their tendency
SAID Partial Wave Analyses from CNS DAC (Center for Nuclear Studies Data Analysis Center)
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
George Washington University (GW) has one of the largest university-based nuclear-physics groups in the nation. Many of the current and future projects are geared to Thomas Jefferson National Accelerator Facility (JLab) at Newport News, VA. JLab is the world's premier electron accelerator for nuclear physics, and GW is one of the charter members of the governing body of JLab, the Southeastern Universities Research Association (SURA). The George Washington Data Analysis Center (DAC) was created in 1998 by an agreement among the Department of Energy, Jefferson Lab, and the GW Center for Nuclear Studies.The activities of the DAC fall into four distinct categories: 1) Performing partial-wave analyses of fundamental two- and three-body reactions; 2) Maintenance of databases associated with these reactions; 3) Development of software to disseminate DAC results (as well as the results of competing model-independent analyses and potential approaches); and 4) Phenomenological and theoretical investigations which bridge the gap between theory and experiment; in particular, the extraction of N* and D * hadronic and electromagnetic couplings. Partial Wave Analyses (and the associated databases) available at GW are: Pion-Nucleon, Kaon-Nucleon, Nucleon-Nucleon, Pion Photoproduction, Pion Electroproduction, Kaon Photoproduction, Eta Photoproduction, Eta-Prime Photoproduction, Pion-Deuteron (elastic), and Pion-Deuteron to Proton+Proton. [Taken from http://www.gwu.edu/~ndl/dac.htm">http://www.gwu.edu/~ndl/dac.htm
A. Fix; H. Arenhoevel
2013-03-25T23:59:59.000Z
A truncated partial wave analysis for the photoproduction of two pseudoscalar mesons on a nucleon is discussed with respect to the determination of a complete set of observables. For the selection of such a set we have applied a criterion previously developed for photo- and electrodisintegration of a deuteron, which allows one to find a 'minimal' set of observables for determining the partial wave amplitudes up to possible discrete ambiguities. The question of resolving the remaining ambiguities by invoking additional observables is discussed for the simplest case, when the partial wave expansion is truncated at the lowest total angular momentum of the final state $J_{max}=1/2$. The resulting 'fully' complete set, allowing an unambiguous determination of the partial wave amplitudes, is presented.
Turbulence and internal waves in numerical models of the equatorial undercurrents system
Pham, Hieu T.
2010-01-01T23:59:59.000Z
w ? field at t = 80; (b) Wave energy flux p ? w ? across thestress u ? w ? and (f) wave energy flux p ? w ? . Thefor dissipation of the internal wave energy by turbulence is
Turbulence and internal waves in numerical models of the equatorial undercurrents system
Pham, Hieu T.
2010-01-01T23:59:59.000Z
w ? field at t = 80; (b) Wave energy flux p ? w ? across thethe shear layer is wave energy and not turbulence. ) Thestress u ? w ? and (f) wave energy flux p ? w ? . The
Partial-Wave Analysis of the Centrally Produced ?+?- System in pp Reactions at COMPASS
A. Austregesilo; T. Schlueter; for the COMPASS collaboration
2012-07-05T23:59:59.000Z
COMPASS is a fixed-target experiment at CERN SPS which investigates the structure and spectroscopy of hadrons. During nine weeks in 2008 and 2009, a 190 GeV/c proton beam impinging on a liquid hydrogen target was used in order to study the production of exotic mesons and glueball candidates at central rapidities. As no bias on the production mechanism was introduced by the trigger system, the contribution from diffractive dissociation of the beam proton poses a challenge. We select a centrally produced sample by kinematic cuts and introduce a model to describe the data in terms of partial waves. Preliminary fits are presented, which are consistent with results from previous experiments. Particular attention is paid to the ambiguities in the amplitude analysis of the two-pseudoscalar final state.
Bayesian semiparametric power spectral density estimation in gravitational wave data analysis
Edwards, Matthew C; Christensen, Nelson
2015-01-01T23:59:59.000Z
The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with non-stationary data by breaking longer data streams into smaller and locally stationary components.
Benjamin Aylott; John G. Baker; William D. Boggs; Michael Boyle; Patrick R. Brady; Duncan A. Brown; Bernd Brügmann; Luisa T. Buchman; Alessandra Buonanno; Laura Cadonati; Jordan Camp; Manuela Campanelli; Joan Centrella; Shourov Chatterji; Nelson Christensen; Tony Chu; Peter Diener; Nils Dorband; Zachariah B. Etienne; Joshua Faber; Stephen Fairhurst; Benjamin Farr; Sebastian Fischetti; Gianluca Guidi; Lisa M. Goggin; Mark Hannam; Frank Herrmann; Ian Hinder; Sascha Husa; Vicky Kalogera; Drew Keppel; Lawrence E. Kidder; Bernard J. Kelly; Badri Krishnan; Pablo Laguna; Carlos O. Lousto; Ilya Mandel; Pedro Marronetti; Richard Matzner; Sean T. McWilliams; Keith D. Matthews; R. Adam Mercer; Satyanarayan R. P. Mohapatra; Abdul H. Mroué; Hiroyuki Nakano; Evan Ochsner; Yi Pan; Larne Pekowsky; Harald P. Pfeiffer; Denis Pollney; Frans Pretorius; Vivien Raymond; Christian Reisswig; Luciano Rezzolla; Oliver Rinne; Craig Robinson; Christian Röver; Lucía Santamaría; Bangalore Sathyaprakash; Mark A. Scheel; Erik Schnetter; Jennifer Seiler; Stuart L. Shapiro; Deirdre Shoemaker; Ulrich Sperhake; Alexander Stroeer; Riccardo Sturani; Wolfgang Tichy; Yuk Tung Liu; Marc van der Sluys; James R. van Meter; Ruslan Vaulin; Alberto Vecchio; John Veitch; Andrea Viceré; John T. Whelan; Yosef Zlochower
2009-07-09T23:59:59.000Z
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.
Joint migration velocity analysis of PP-and PS-waves for VTI media Pengfei Cai1
Tsvankin, Ilya
estimated, accurate depth images can be obtained by migrating the recorded PP and PS data. INTRODUCTION Prestack depth migration (PSDM) and reflection tomography in the migrated domain are widely used in PJoint migration velocity analysis of PP- and PS-waves for VTI media Pengfei Cai1 and Ilya Tsvankin2
H. Cai; Y. Matsuzaki; K. Kakuyanagi; H. Toida; X. Zhu; N. Mizuochi; K. Nemoto; K. Semba; W. J. Munro; S. Saito; H. Yamaguchi
2015-05-28T23:59:59.000Z
A hybrid system that combines the advantages of a superconducting flux qubit and an electron spin ensemble in diamond is one of the promising devices to realize quantum information processing. Exploring the properties of the superconductor diamond system is essential for the efficient use of this device. When we perform spectroscopy of this system, significant power broadening is observed. However, previous models to describe this system are known to be applicable only when the power broadening is negligible. Here, we construct a new approach to analyze this system with strong driving, and succeed to reproduce the spectrum with the power broadening. Our results provide an efficient way to analyze this hybrid system.
Tang, Yinjie J.; Chakraborty, Romy; Martin, Hector Garcia; Chu,Jeannie; Hazen, Terry C.; Keasling, Jay D.
2007-08-13T23:59:59.000Z
We analyzed the carbon fluxes in the central metabolism ofGeobacter metallireducens strain GS-15 using 13C isotopomer modeling.Acetate labeled in the 1st or 2nd position was the sole carbon source,and Fe-NTA was the sole terminal electron acceptor. The measured labeledacetate uptake rate was 21 mmol/gdw/h in the exponential growth phase.The resulting isotope labeling pattern of amino acids allowed an accuratedetermination of the in vivo global metabolic reaction rates (fluxes)through the central metabolic pathways using a computational isotopomermodel. The model indicated that over 90 percent of the acetate wascompletely oxidized to CO2 via a complete tricarboxylic acid (TCA) cyclewhile reducing iron. Pyruvate carboxylase and phosphoenolpyruvatecarboxykinase were present under these conditions, but enzymes in theglyoxylate shunt and malic enzyme were absent. Gluconeogenesis and thepentose phosphate pathway were mainly employed for biosynthesis andaccounted for less than 3 percent of total carbon consumption. The modelalso indicated surprisingly high reversibility in the reaction betweenoxoglutarate and succinate. This step operates close to the thermodynamicequilibrium possibly because succinate is synthesized via a transferasereaction, and its product, acetyl-CoA, inhibits the conversion ofoxoglutarate to succinate. These findings enable a better understandingof the relationship between genome annotation and extant metabolicpathways in G. metallireducens.
Secular Sediment Waves, Channel Bed Waves, and Legacy Sediment
James, L. Allan
Secular Sediment Waves, Channel Bed Waves, and Legacy Sediment L. Allan James* Geography Department, University South Carolina Abstract The concept of sediment waves is reviewed and clarifications are proposed for nomenclature con- cerning vertical channel responses to large fluvial sediment fluxes over a period of a decade
Analysis of Shear-horizontal Vibrations of Crystal Plates for Acoustic Wave Resonators and Sensors
Liu, Bo
2010-01-01T23:59:59.000Z
capacitance because mechanical vibration of the resonator iscapacitance because mechanical vibration of the resonator isdevices are based on mechanical vibration modes and waves.
Zhi-Yuan Li
2014-10-16T23:59:59.000Z
Wave-particle duality and complementarity principle stand at the conceptual core of quantum theory in its orthodox Copenhagen interpretation. They imply that the wave behavior and particle behavior of quantum objects are mutually exclusive to each other in experimental observation. Here we make a systematic analysis using the elementary methodology of quantum mechanics upon Young`s two-slit interferometer and Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instrument that are well separated in space and whose perturbation on each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instrument in the interferometer would lead to failure of simultaneous observation of wave and particle behavior. The internal freedoms of quantum object could be harnessed to probe both the which-way information and interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.
Akl, Tony [Texas A& M University] [Texas A& M University; Wilson, Mark A. [University of Pittsburgh School of Medicine, Pittsburgh PA] [University of Pittsburgh School of Medicine, Pittsburgh PA; Ericson, Milton Nance [ORNL] [ORNL; Cote, Gerard L. [Texas A& M University] [Texas A& M University
2014-01-01T23:59:59.000Z
Photoplethysmography is a widely used technique in monitoring perfusion and blood oxygen saturation by using the amplitude of the pulsatile signal on one or multiple wavelengths. However, the pulsatile signal carries in its waveform a substantial amount of information about the mechanical properties of the tissue and vasculature under investigation that is still yet to be utilized to its full potential. In this work, we present the feasibility of pulse wave analysis for the application of monitoring hepatic implants and diagnosing graft complications. In particular, we show the possibility of computing the slope of the pulse during the diastole phase to assess the location of vascular complications when they take place. This hypothesis was tested in a series of in vitro experiments using a PDMS based phantom mimicking the optical and mechanical properties of the portal vein. The emptying time of the vessel increased from 305 ms to 515 ms when an occlusion was induced downstream from the phantom. However, in the case of upstream occlusions, the emptying time remained constant. In both cases, a decrease in the amplitude of the pulse was recorded indicating the drop in flow levels. In addition, we show that quantifying the emptying time of the vasculature under investigation can be used to assess its compliance. The emptying time decreased from 305 ms for phantoms with compliance of 15 KPa to 195 ms for phantoms with compliance of 100 KPa. These compliance levels mimic those seen for normal and fibrotic hepatic tissue respectively.
Wootan, D.W.; Rawlins, J.A.; Carter, L.L.; Brager, H.R.; Schenter, R.E. (Westinghouse Hanford Co., Richland, WA (USA))
1989-10-01T23:59:59.000Z
This paper reports on a cobalt test assembly containing yttrium hydride pins for neutron moderation irradiated in the Fast Flux Test Facility (FFTF) during cycle 9A for 137.7 equivalent full-power days at a power level of 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal used to produce {sup 60}Co and a set of four pins with europium oxide to produce {sup 153}Gd, a radioisotope used in detection of the bone disease osteoporosis. Postirradiation examination of the cobalt pins determined the {sup 60}Co production to be predictable to an accuracy of {approximately} 5%. The measured {sup 60}Co spatially distributed concentrations were within 20% of the calculated concentrations. The assembly average {sup 60}Co measured activity was 4% less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes {sup 152}Eu and {sup 154}Eu to an absolute accuracy of {approx equal} 10%. The measured europium radioisotope and {sup 153}Gd concentrations were within 20% of calculated values. The hydride assembly performed well and is an excellent vehicle for many FFTF isotope production applications. The results also demonstrate the accuracy of the calculational methods developed by the Westinghouse Hanford Company for predicting isotope production rates in this type of assembly.
WAVE PROPAGATION AND JET FORMATION IN THE CHROMOSPHERE
Heggland, L.; Hansteen, V. H.; Carlsson, M. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); De Pontieu, B., E-mail: lars.heggland@astro.uio.no [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Organization ADBS, Building 252, Palo Alto, CA 94304 (United States)
2011-12-20T23:59:59.000Z
We present the results of numerical simulations of wave propagation and jet formation in solar atmosphere models with different magnetic field configurations. The presence in the chromosphere of waves with periods longer than the acoustic cutoff period has been ascribed to either strong inclined magnetic fields, or changes in the radiative relaxation time. Our simulations include a sophisticated treatment of radiative losses, as well as fields with different strengths and inclinations. Using Fourier and wavelet analysis techniques, we investigate the periodicity of the waves that travel through the chromosphere. We find that the velocity signal is dominated by waves with periods around 5 minutes in regions of strong, inclined field, including at the edges of strong flux tubes where the field expands, whereas 3 minute waves dominate in regions of weak or vertically oriented fields. Our results show that the field inclination is very important for long-period wave propagation, whereas variations in the radiative relaxation time have little effect. Furthermore, we find that atmospheric conditions can vary significantly on timescales of a few minutes, meaning that a Fourier analysis of wave propagation can be misleading. Wavelet techniques take variations with time into account and are more suitable analysis tools. Finally, we investigate the properties of jets formed by the propagating waves once they reach the transition region, and find systematic differences between the jets in inclined-field regions and those in vertical field regions, in agreement with observations of dynamic fibrils.
Overstability of acoustic waves in strongly magnetized anisotropic magnetohydrodynamic shear flows
Uchava, E. S. [Abastumani Astrophysical Observatory, Ilia State University, Tbilisi, Georgia (United States); Nodia Institute of Geophysics, Javakhishvili Tbilisi State University, Tbilisi, Georgia (United States); Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 3 Chavchavadze Ave., Tbilisi 0179, Georgia (United States); Shergelashvili, B. M. [Institut für Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universitat Bochum, 44780 Bochum (Germany); Abastumani Astrophysical Observatory, Ilia State University, Tbilisi, Georgia (United States); CODeS, KU Leuven Campus Kortrijk, E. Sabbelaan 53, 8500 Kortrijk (Belgium); Tevzadze, A. G. [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 3 Chavchavadze Ave., Tbilisi 0179, Georgia (United States); Poedts, S. [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Leuven Mathematical Modeling and Computational Science Center (LMCC), KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium)
2014-08-15T23:59:59.000Z
We present a linear stability analysis of the perturbation modes in anisotropic magnetohydrodynamic (MHD) flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model that takes into account not only the effect of pressure anisotropy but also the effect of anisotropic heat fluxes. In this model, the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower frequency slow thermo-acoustic waves. It is shown that thermo-acoustic waves become unstable and grow exponentially when the heat flux parameter exceeds some critical value. It seems that velocity shear makes thermo-acoustic waves overstable even at subcritical heat flux parameters. Thus, when the effect of heat fluxes is not profound acoustic waves will grow due to the velocity shear, while at supercritical heat fluxes the flow reveals compressible thermal instability. Anisotropic thermal instability should be also important in astrophysical environments, where it will limit the maximal value of magnetic field that a low density ionized anisotropic flow can sustain.
Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)
2002-09-10T23:59:59.000Z
A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.
A finite element method and the method of finite spheres enriched for analysis of wave propagations
Ham, Seounghyun, 1982-
2014-01-01T23:59:59.000Z
The objective of this thesis is to present a finite element method and the method of finite spheres enriched for the solution of various wave propagation problems. The first part of this thesis is to present an enriched ...
Analysis of PS-converted wave seismic data in the presence of azimuthal anisotropy
Liu, Weining
2014-11-27T23:59:59.000Z
Shear-wave splitting and azimuthal variations of seismic attributes are two major anisotropic effects induced by vertically-aligned fractures. They both have influences on seismic data processing and interpretation, and ...
Analysis of P-wave seismic response for fracture detection: modelling and case studies
Xu, Yungui
2012-06-25T23:59:59.000Z
This thesis addresses a few specific issues in the use of wide azimuth P-wave seismic data for fracture detection based on numerical modelling and real data. These issues include the seismic response of discrete fractures, ...
X-Pipeline: an analysis package for autonomous gravitational-wave burst searches
Sutton, Patrick J.
Autonomous gravitational-wave searches—fully automated analyses of data that run without human intervention or assistance—are desirable for a number of reasons. They are necessary for the rapid identification of ...
Long-term analysis of the wave climate in the North East Atlantic and North Sea
Agarwal, Atul
2015-06-29T23:59:59.000Z
Changes in the marine environment have been reported for over three decades in terms of mean annual wave heights, exceedance probabilities and extreme conditions. More recently, the existence of a link between these ...
Time domain analysis of a gyrotron traveling wave amplifier with misaligned electron beam
Wang, Qiushi, E-mail: qiushiwork@gmail.com; Peng, Shuyuan [Institute of Electronics, Chinese Academy of Sciences, P.O. Box 2652, Beijing 100080 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Luo, Jirun [Institute of Electronics, Chinese Academy of Sciences, P.O. Box 2652, Beijing 100080 (China)
2014-08-15T23:59:59.000Z
This article develops a time-domain theory to study the beam-wave interaction in gyrotron traveling wave amplifier (gyro-TWA) with a misaligned electron beam. The effects of beam misalignment on the TE{sub 01} mode gyro-TWA operating at the fundamental are discussed. Numerical results show that the effect of misalignment is less obvious when the input power is larger, and the influences of misalignment on the stable gain and the stable time are basically opposite.
Mandelis, Andreas
-photon-density and thermal-wave model is developed for theoretical analysis of the photothermal field in demineralized teeth. Intact and demineralized layers of enamel, as well as dentin, are described as a layered one
Miyamoto, Mayu [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Tokumaru, Munetoshi; Shiota, Daikou [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 484-8601 (Japan); Isobe, Hiroaki; Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Häusler, Bernd [Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg (Germany); Pätzold, Martin [Rheinisches Institut für Umweltforschung, Department Planetenforschung, Universität zu Köln, Aachener Str. 209, D-50931 Köln (Germany); Nabatov, Alexander [The Institute of Radio Astronomy, National Academy of Science of Ukraine, Chervonoprapornaya, Str. 4, Kharkov 61002 (Ukraine)
2014-12-10T23:59:59.000Z
Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ?30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux on the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ?6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.
Ultrahigh-Speed Traveling-Wave Electroabsorption Modulator—Design and Analysis
Yu, Paul K.L.
1999-01-01T23:59:59.000Z
Electroabsorption Modulator—Design and Analysis G. L. Li,ULTRAHIGH-SPEED TW-EAM—DESIGN AND ANALYSIS Fig. 4. Effect ofSPEED TW-EAM—DESIGN AND ANALYSIS a discrete transmission
Salgado, Carlos W. [Norfolk State University, Norfolk, VA (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weygand, Dennis P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2014-04-01T23:59:59.000Z
Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (Jlab) using photon beams. In particular this report broaden this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.
Aperture synthesis of time-limited X waves and analysis of their propagation characteristics
Lu, Jian-yu
of Engineering Physics and Mathematics, Faculty of Engineering Cairo University, Giza, Egypt Ioannis M. Besieris. Also, the possibility of using a finite-time excitation of a dynamic aperture to generate a finite-energy-time aperture. This confirms the fact that time windowing the infinite energy X-wave excitation is a viable
Two-Dimensional Simulation Analysis of the Standing-wave Free-electron Laser Two-Beam Accelerator
Wang, C.
2008-01-01T23:59:59.000Z
Standing-wave free-electron laser two-beam accelerator,"of a standing-wave free-electron laser," Lawrence Berkeleyof a standing-wave free-electron laser," Lawrence Berkeley
Samady, Mezhgan Frishta
2011-01-01T23:59:59.000Z
designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by
On solar neutrino fluxes in radiochemical experiments
R. N. Ikhsanov; Yu. N. Gnedin; E. V. Miletsky
2005-12-08T23:59:59.000Z
We analyze fluctuations of the solar neutrino flux using data from the Homestake, GALLEX, GNO, SAGE and Super Kamiokande experiments. Spectral analysis and direct quantitative estimations show that the most stable variation of the solar neutrino flux is a quasi-five-year periodicity. The revised values of the mean solar neutrino flux are presented in Table 4. They were used to estimate the observed pp-flux of the solar electron neutrinos near the Earth. We consider two alternative explanations for the origin of a variable component of the solar neutrino deficit.
Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
Pokol, G I; Budai, A; Stahl, A; Fülöp, T
2014-01-01T23:59:59.000Z
Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the $100-1000\\;\\rm \\mu s$ time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing a possible experimental detection method for such an interaction.
Su, Zhiyong
2012-10-19T23:59:59.000Z
................................................................83 viii LIST OF FIGURES Fig. 1. Body fixed coordinate system x-y and principal system xN - yN ......................... 6 Fig. 2. Illustration of the SCK equation (2.8) (Moe, 1997.... 5. Rolling moment amplitude per unit wave height ............................................... 41 Fig. 6. GZ curve of T-AGOS (C1=3.618m,C3=-2.513m) ............................................ 42 Fig. 7. Comparison of original force...
Su, Zhiyong
2012-10-19T23:59:59.000Z
................................................................83 viii LIST OF FIGURES Fig. 1. Body fixed coordinate system x-y and principal system xN - yN ......................... 6 Fig. 2. Illustration of the SCK equation (2.8) (Moe, 1997.... 5. Rolling moment amplitude per unit wave height ............................................... 41 Fig. 6. GZ curve of T-AGOS (C1=3.618m,C3=-2.513m) ............................................ 42 Fig. 7. Comparison of original force...
Relativistic distorted-wave analysis of quasielastic proton-nucleus scattering
Titus, N. P.; Ventel, B. I. S. van der; Niekerk, D. D. van; Hillhouse, G. C. [Department of Physics, University of Stellenbosch, Private Bag X1, Matieland 7602 (South Africa); University for Information Science and Technology, Partizanska Street, Ohrid 6000 (Macedonia, The Former Yugoslav Republic of)
2011-04-15T23:59:59.000Z
A relativistic distorted-wave impulse approximation formalism is presented for the calculation of quasielastic proton-nucleus scattering. It is shown that the double differential cross section may be written as a contraction between the hadronic tensor (describing the projectile and ejectile) and the polarization tensor (describing the nuclear target) and that this mathematical structure also holds for the case where distortions are included. The eikonal approximation is used to introduce distortions in the wave functions, and the nuclear response is described using a Fermi gas model. The highly oscillatory nine-dimensional integrand contained in the expression for the double differential cross section is computed using a novel technique based on combining traditional Gaussian integration methods with the powerful fitting functions in the matlab programming language. This work has successfully calculated the distorted-wave quasielastic differential cross section for proton-nucleus scattering within a fully relativistic framework. It is found that the distortions lead to a reduction in the double differential cross section and have a negligible effect on the computed spin observables.
Long-range propagation of ocean waves
Young, William R.
hours. Friday, February 22, 2013 #12;OceanPowerTechnologies A 103 foot long, 260ton buoy being tested #12;Wave Power? PelamisWavePower With T=10sec and a = 1 meter, the energy flux is 40kW/meter. An average 40kW/meter of wave power is typical of good sites. Energy Flux = cg × Energy Density = g2 Ta2 8
Impedance-based analysis and study of phase sensitivity in slow-wave two-beam accelerators
Wurtele, J.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Whittum, D.H. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Sessler, A.M. [Lawrence Berkeley Lab., CA (United States)
1992-06-01T23:59:59.000Z
This paper presents a new formalism which makes the analysis and understanding of both the relativistic klystron (RK) and the standing-wave free-electron laser (SWFEL) two-beam accelerator (TBA) available to a wide audience of accelerator physicists. A ``coupling impedance`` for both the RK and SWFEWL is introduced, which can include realistic cavity features, such as beam and vacuum ports, in a simple manner. The RK and SWFEL macroparticle equations, which govern the energy and phase evolution of successive bunches in the beam, are of identical form, differing only by multiplicative factors. Expressions are derived for the phase and amplitude sensitivities of the TBA schemes to errors (shot-to-shot jitter) in current and energy. The analysis allows, for the first time, relative comparisons of the RK and the SWFEL TBAs.
Koushik Ghosh; Probhas Raychaudhuri
2006-06-05T23:59:59.000Z
We have used Rayleigh power spectrum analysis of the monthly solar neutrino flux data from (1) SAGE detector during the period from 1st January 1990 to 31st December 2000; (2) SAGE detector during the period from April 1998 to December 2001; (3) GALLEX detector during the period from May 1991 to January 1997; (4) GNO detector during the period from May 1998 to December 2001; (5) GALLEX-GNO detector (combined data) from May 1991 to December 2001 and (6) average of the data from GNO and SAGE detectors during the period from May 1998 to December 2001. (1) exhibits periodicity around 1.3, 4.3, 5.5, 6.3, 7.9, 8.7, 15.9, 18.7, 23.9, 32.9 and 48.7 months. (2) shows periodicity around 1.5, 2.9, 4.5, 10.1 months. For (3) we observe periodicity around 1.7, 18.7 and 26.9 months. For (4) periodicity is seen around 3.5, 5.5, 7.7 and 10.5 months. (5) gives periodicity around 1.7, 18.5, 28.5 and 42.1 months while (6) shows periodicity around 4.3, 6.9, 10.3 and 18.1 months. We have found almost similar periods in the solar flares, sunspot data, solar proton data which indicates that the solar activity cycle may be due to the variable character of nuclear energy generation inside the sun.
Nonrelativistic molecular models under external magnetic and AB flux fields
Sameer M. Ikhdair; Babatunde J. Falaye; Majid Hamzavi
2014-12-21T23:59:59.000Z
By using the wave function ansatz method, we study the energy eigenvalues and wave function for any arbitrary $m$-state in two-dimensional Schr\\"{o}dinger wave equation with various power interaction potentials in constant magnetic and Aharonov-Bohm (AB) flux fields perpendicular to the plane where the interacting particles are confined. We calculate the energy levels of some diatomic molecules in the presence and absence of external magnetic and AB flux fields using different potential models. We found that the effect of the Aharonov-Bohm field is much as it creates a wider shift for $m\
Alberto Lencina; Beatriz Ruiz; Pablo Vaveliuk
2006-07-02T23:59:59.000Z
This paper uses an alternative approach to study the monochromatic plane wave propagation within dielectric and conductor linear media of plane-parallel-faces. This approach introduces the time-averaged Poynting vector modulus as field variable. The conceptual implications of this formalism are that the nonequivalence between the time-averaged Poynting vector and the squared-field amplitude modulus is naturally manifested as a consequence of interface effects. Also, two practical implications are considered: first, the exact transmittance is compared with that given by the Beer's Law, employed commonly in experiments. The departure among them can be significative for certain material parameter values. Second, when the exact reflectance is studied for negative permittivity slabs, it is show that the high reflectance can be diminished if a small amount of absorption is present.
Thomas K. Gaisser
2005-02-18T23:59:59.000Z
Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.
Electric Flux Tube in Magnetic Plasma
Jinfeng Liao; Edward Shuryak
2007-12-06T23:59:59.000Z
In this paper we study a methodical problem related to the magnetic scenario recently suggested and initiated by the authors \\cite{Liao_ES_mono} to understand the strongly coupled quark-gluon plasma (sQGP): the electric flux tube in monopole plasma. A macroscopic approach, interpolating between Bose condensed (dual superconductor) and classical gas medium is developed first. Then we work out a microscopic approach based on detailed quantum mechanical calculation of the monopole scattering on electric flux tube, evaluating induced currents for all partial waves. As expected, the flux tube looses its stability when particles can penetrate it: we make this condition precise by calculating the critical value for the product of the flux tube size times the particle momentum, above which the flux tube dissolves. Lattice static potentials indicate that flux tubes seem to dissolve at $T>T_{dissolution} \\approx 1.3 T_c$. Using our criterion one gets an estimate of the magnetic density $n\\approx 4.4 \\sim 6.6 fm^{-3}$ at this temperature.
Weijgaert, Rien van de
transitions in flow properties such as density, velocity and pressure; 2. In shocks the kinetic energy-flux conservation Energy-flux conservation 1 1 2 2n nV V 2 2 1 1 1 2 2 2n nV P V P 1 2t tV V 2 21 21 1 1 the various thermonuclear reactions Â· The sequence of thermonuclear reactions stops here: - formation
Performance of a Chirplet-based analysis for gravitational waves from binary black hole mergers
Satya Mohapatra; Zachary Nemtzow; Eric Chassande-Mottin; Laura Cadonati
2011-11-15T23:59:59.000Z
The gravitational wave (GW) signature of a binary black hole (BBH) coalescence is characterized by rapid frequency evolution in the late inspiral and merger phases. For a system with total mass larger than 100 M_sun, ground based GW detectors are sensitive to the merger phase, and the in-band whitened waveform is a short-duration transient lasting about 10-30 ms. For a symmetric mass system with total mass between 10 and 100 M_sun, the detector is sensitive instead to the inspiral phase and the in-band signal has a longer duration, between 30 ms - 3 s. Omega is a search algorithm for GW bursts that, with the assumption of locally stationary frequency evolution, uses sine-Gaussian wavelets as a template bank to decompose interferometer strain data. The local stationarity of sine-Gaussians induces a performance loss for the detection of lower mass BBH signatures, due to the mismatch between template and signal. We present the performance of a modified version of the Omega algorithm, Chirplet Omega, which allows a linear variation of frequency, to target BBH coalescences. The use of Chirplet-like templates enhances the measured signal-to-noise ratio due to less mismatch between template and data, and increases the detectability of lower mass BBH coalescences. We present the results of a performance study of Chirplet Omega in colored Gaussian noise at initial LIGO sensitivity.
Guzina, Bojan
to the pore fluid. Introduction During the past two decades, the spectral analysis of surface waves (SASW design of structures (Gazetas, 1991), evaluation of the soil lique- faction potential (Robertson et al., 1992; Andrus and Stokoe, 2000), and assessment of the effectiveness of ground- improvement techniques
Denton, M. Bonner (Tucson, AZ); Sperline, Roger (Tucson, AZ), Koppenaal, David W. (Richland, WA), Barinaga, Charles J. (Richland, WA), Hieftje, Gary (Bloomington, IN), Barnes, IV, James H. (Santa Fe, NM); Atlas, Eugene (Irvine, CA)
2009-03-03T23:59:59.000Z
A charged particle detector and method are disclosed providing for simultaneous detection and measurement of charged particles at one or more levels of particle flux in a measurement cycle. The detector provides multiple and independently selectable levels of integration and/or gain in a fully addressable readout manner.
Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann; Ackerman, Andrew; Del Genio, Anthony D.; Pauluis, Olivier; Varble, Adam; Fan, Jiwen
2012-10-02T23:59:59.000Z
We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadings differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.
Time series analysis of ionization waves in dc neon glow discharge
Hassouba, M. A.; Al-Naggar, H. I.; Al-Naggar, N. M.; Wilke, C. [Department of Physics, Faculty of Science, Benha University (Egypt); Institute of Physics, E. M. A. University, Domstrasse 10a, 17489 Greifswald (Germany)
2006-07-15T23:59:59.000Z
The dynamics of dc neon glow discharge is examined by calculating a Lyapunov exponent spectrum (LES) and correlation dimension (D{sub corr}) from experimental time series. The embedding theory is used to reconstruct an attractor with the delay coordinate method. The analysis refers to periodic, chaotic, and quasi-periodic attractors. The results obtained are confirmed by a comparison with other methods of time series analysis such as the Fourier power spectrum and autocorrelation function. The main object of the present work is the positive column of a dc neon glow discharge. The positive column is an excellent model for the study of a non-linearity plasma system because it is nonisothermal plasma far from equilibrium.
Wave-wave interactions in solar type III radio bursts
Thejappa, G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); MacDowall, R. J. [NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)
2014-02-11T23:59:59.000Z
The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.
Computing Solar Absolute Fluxes
Carlos Allende Prieto
2007-09-14T23:59:59.000Z
Computed color indices and spectral shapes for individual stars are routinely compared with observations for essentially all spectral types, but absolute fluxes are rarely tested. We can confront observed irradiances with the predictions from model atmospheres for a few stars with accurate angular diameter measurements, notably the Sun. Previous calculations have been hampered by inconsistencies and the use of outdated atomic data and abundances. I provide here a progress report on our current efforts to compute absolute fluxes for solar model photospheres. Uncertainties in the solar composition constitute a significant source of error in computing solar radiative fluxes.
Determining Reactor Neutrino Flux
Jun Cao
2012-03-08T23:59:59.000Z
Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.
Samady, Mezhgan Frishta
2011-01-01T23:59:59.000Z
e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature
Sermeus, J.; Glorieux, C., E-mail: christ.glorieux@fys.kuleuven.be [Laboratory for Acoustics and Thermal Physics, KU Leuven, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Sinha, R.; Vereecken, P. M. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Center for Surface Chemistry and Catalysis, KU Leuven, University of Leuven, Kasteelpark Arenberg 23, B-3001 Leuven (Belgium); Vanstreels, K. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)
2014-07-14T23:59:59.000Z
MnO{sub 2} is a material of interest in the development of high energy-density batteries, specifically as a coating material for internal 3D structures, thus ensuring rapid energy deployment. Its electrochemical properties have been mapped extensively, but there are, to the best of the authors' knowledge, no records of the elastic properties of thin film MnO{sub 2}. Impulsive stimulated thermal scattering (ISTS), also known as the heterodyne diffraction or transient grating technique, was used to determine the Young's modulus (E) and porosity (?) of a 500?nm thick MnO{sub 2} coating on a Si(001) substrate. ISTS is an all optical method that is able to excite and detect surface acoustic waves (SAWs) on opaque samples. From the measured SAW velocity dispersion, the Young's modulus and porosity were determined to be E?=?25?±?1?GPa and ?=42±1%, respectively. These values were confirmed by independent techniques and determined by a most-squares analysis of the carefully fitted SAW velocity dispersion. This study demonstrates the ability of the presented technique to determine the elastic parameters of a thin, porous film on an anisotropic substrate.
AmeriFlux Measurement Network: Science Team Research
Law, B E
2012-12-12T23:59:59.000Z
Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.
Gravitational wave recoils in non-axisymmetric Robinson-Trautman spacetimes
R. F. Aranha; I. Damião Soares; E. V. Tonini
2014-07-16T23:59:59.000Z
We examine the gravitational wave recoil waves and the associated net kick velocities in non-axisymmetric Robinson-Trautman spacetimes. We use characteristic initial data for the dynamics corresponding to non-head-on collisions of black holes. We make a parameter study of the kick distributions, corresponding to an extended range of the incidence angle $\\rho_0$ in the initial data. For the range of $\\rho_0$ examined ($3^{\\circ} \\leq \\rho_0 \\leq 110^{\\circ}$) the kick distributions as a function of the symmetric mass parameter $\\eta$ satisfy a law obtained from an empirical modification of the Fitchett law, with a parameter $C$ that accounts for the non-zero net gravitational momentum wave fluxes for the equal mass case. The law fits accurately the kick distributions for the range of $\\rho_0$ examined, with a rms normalized error of the order of $5 \\%$. For the equal mass case the nonzero net gravitational wave momentum flux increases as $\\rho_0$ increases, up to $\\rho_0 \\simeq 55^{\\circ}$ beyond which it decreases. The maximum net kick velocity is about $190 {\\rm km/s}$ for for the boost parameter considered. For $\\rho_0 \\geq 50^{\\circ}$ the distribution is a monotonous function of $\\eta$. The angular patterns of the gravitational waves emitted are examined. Our analysis includes the two polarization modes present in wave zone curvature.
Paris-Sud XI, Université de
Communications Commission (FCC) for wireless communications and automotive radar [14]. The 77-GHz band has been transceivers for communication and radar systems at millimeter-wave frequencies. 1. INTRODUCTION Using on their applications. There are several frequency bands in the mm-wave range which have been approved by the Federal
Estimating the contribution of Alfv\\'en waves to the process of heating the quiet solar corona
Gonzalez-Aviles, J J
2015-01-01T23:59:59.000Z
We solve numerically the ideal MHD equations with an external gravitational field in 2D in order to study the effects of impulsively generated linear and non-linear Alfv\\'en waves into isolated solar arcades and coronal funnels. We analyze the region containing the interface between the photosphere and the corona. The main interest is to study the possibility that Alfv\\'en waves triggers the energy flux transfer toward the quiet solar corona and heat it, including the case that two consecutive waves can occur. We find that in the case of arcades, short or large, the transferred fluxes by Alfv\\'en waves are sufficient to heat the quiet corona only during a small lapse of time and in a certain region. In the case of funnels the threshold is achieved only when the wave is faster than 10 km/s, which is extremely high. We conclude from our analysis, that Alfv\\'en waves, even in the optimistic scenario of having two consecutive Alfv\\'en wave pulses, cannot transport enough energy as to heat the quiet corona.
Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)
1991-01-01T23:59:59.000Z
A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.
Thermal Gravitational Waves from Primordial Black Holes
C. Sivaram; Kenath Arun
2010-05-19T23:59:59.000Z
Thermal gravitational waves can be generated in various sources such as, in the cores of stars, white dwarfs and neutron stars due to the fermion collisions in the dense degenerate Fermi gas. Such high frequency thermal gravitational waves can also be produced during the collisions in a gamma ray burst or during the final stages of the evaporation of primordial black holes. Here we estimate the thermal gravitational waves from primordial black holes and estimate the integrated energy of the gravitational wave emission over the entire volume of the universe and over Hubble time. We also estimate the gravitational wave flux from gamma ray bursts and jets.
Guha, Amitava 1984-
2012-11-29T23:59:59.000Z
domain or the time domain. This study presents the development of a 3D frequency domain Green’s function method in infinite water depth for predicting hydrodynamic coefficients, wave induced forces and motions. The complete theory and its numerical...
Betzwieser, Joseph (Joseph Charles)
2008-01-01T23:59:59.000Z
Over the last several years the Laser Interferometer Gravitational Wave Observatory (LIGO) has been making steady progress in improving the sensitivities of its three interferometers, two in Hanford, Washington, and one ...
Quinn, Eoghan
2011-11-23T23:59:59.000Z
Scotland is currently at the forefront of development and expansion of wave energy, especially with recent renewable energy targets. Research and development has increased greatly off the Scottish coastline. Various adjectives can be used...
Wurtele, Jonathan S.
2008-01-01T23:59:59.000Z
of the standing-wave free-electron laser on the same footingSessler, A.M. , "The Free Electron Laser as a Power SourceNew Version of a Free Electron Laser Two-Beam Accelerator",
Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.
1990-05-01T23:59:59.000Z
A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs.
Wu, Jianyong; Zhou, Ying; Gao, Yang; Fu, Joshua S.; Johnson, Brent; Huang, Cheng; Kim, Young-Min; Liu, Yang
2014-01-01T23:59:59.000Z
Background: It is anticipated that climate change will influence heat-related mortality in the future. However, the estimation of excess mortality attributable to future heat waves is subject to large uncertainties, which have not been examined under the latest greenhouse gas emission scenarios. Objectives: We estimated the future heat wave impact on mortality in the eastern United States (~ 1,700 counties) under two Representative Concentration Pathways (RCPs) and analyzed the sources of uncertainties. Methods Using dynamically downscaled hourly temperature projections in 2057-2059, we calculated heat wave days and episodes based on four heat wave metrics, and estimated the excess mortality attributable to them. The sources of uncertainty in estimated excess mortality were apportioned using a variance-decomposition method. Results: In the eastern U.S., the excess mortality attributable to heat waves could range from 200-7,807 with the mean of 2,379 persons/year in 2057-2059. The projected average excess mortality in RCP 4.5 and 8.5 scenarios was 1,403 and 3,556 persons/year, respectively. Excess mortality would be relatively high in the southern and eastern coastal areas. The major sources of uncertainty in the estimates are relative risk of heat wave mortality, the RCP scenarios, and the heat wave definitions. Conclusions: The estimated mortality risks from future heat waves are likely an order of magnitude higher than its current level and lead to thousands of deaths each year under the RCP8.5 scenario. The substantial spatial variability in estimated county-level heat mortality suggests that effective mitigation and adaptation measures should be developed based on spatially resolved data.
Wave Energy Resources Representative Sites Around the Hawaiian Islands
Flux p14 Appendix A SWAN Numerical Model Calibration with NOAA/NDBO Buoys p21 #12;Wave Power. Vega Ph.D October 11, 2010 #12;Wave Power Resources off the Hawaiian Islands October 11, 2010 1 of Contents Summary p2 Background: Wave Power Conversion p3 Licensing and Permitting p3 Challenges
Extracting the Green's function from measurements of the energy flux
Snieder, Roel
Extracting the Green's function from measurements of the energy flux Roel Sniedera) Center for Wave, Cambridge CB3 0EL, United Kingdom ivasconc@gmail.com Abstract: Existing methods for Green's function extraction give the Green's function from the correlation of field fluctuations recorded at those points
Resonant absorption in dissipative flux tubes
Safari, H; Karami, K; Sobouti, Y
2005-01-01T23:59:59.000Z
Oscillations of coronal loops are believed to be the primary cause of the solar corona heating. We study the resonant absorbtion of MHD waves in magnetized flux tubes with graded densities across the cross section of the tube. Within the approximation that resistive and viscous processes are operative in thin layers surrounding the singularities of the MHD equations, we give the full spectrum of the eigenfrequencies, damping rates, as well as, the eigenfields of the normal MHD modes of the tube. Both surface and body modes are analyzed and the contribution of each class to heating of the corona is commented on.
Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.
1991-04-09T23:59:59.000Z
A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.
Momentum Flux Budget across the AirSea Interface under Uniform and Tropical Cyclone Winds
Rhode Island, University of
into ocean currents is equal to the flux from air (wind stress). However, when the surface wave field grows into currents under TCs. 1. Introduction The passage of a tropical cyclone (TC) over a warm ocean represents one is mainly due to the vertical turbulent mixing induced by the strong momentum flux into ocean currents
Mapping and Assessment of the United States Ocean Wave Energy...
Broader source: Energy.gov (indexed) [DOE]
describes the analysis and results of a rigorous assessment of the United States ocean wave energy resource. mapping and assessment of us ocean More Documents & Publications Wave...
Duputel, Zacharie
tractable on a common field computer, to constrain the 1D vertical profile of shear velocities, and static seismic corrections in shear-wave profiling e.g., Mari, 1984 . MASW is based on a frequency multimode dispersion data. Several methods have been de- veloped to isolate the different modes from seismic
Guha, Amitava 1984-
2012-11-29T23:59:59.000Z
.............................................. 32 2.12 Added Mass and Damping Coefficients ............................................. 34 2.13 Exciting Forces ................................................................................... 34 2.14 Body Motion in Waves.... Irregular frequency of the truncated floating cylinder of radius R ....................... 43 Fig. 6. Irregular frequency at non dimensional frequency 1.96 shown in numerically calculated surge added mass (A11...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hall, S. J; McNicol, G.; Natake, T.; Silver, W. L.
2015-04-29T23:59:59.000Z
It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised themore »large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (66 ± 2%) was rapid (11 to 26 years; mean and SE: 18 ± 3 years) in 25 of 30 soil samples across surface horizons (0–10 and 10–20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial–millennial turnover was typically much less abundant (34 ± 3%), even at 10–20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral-associated C over decadal scales. Steady-state inputs of mineral-associated C were statistically similar among the three topographic positions, and could represent 10–25% of annual litter production. Observed trends in mineral-associated ?14C over time could not be fit using the single-pool model used in many other studies, which generated contradictory relationships between turnover and ?14C as compared with a more realistic two-pool model. The large C fluxes in surface and near-surface soils documented here are supported by findings from paired 14C studies in other types of ecosystems, and suggest that most mineral-associated C cycles relatively rapidly (decadal scales) across ecosystems that span a broad range of state factors.« less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.
2015-01-16T23:59:59.000Z
It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised themore »large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (74 ± 4%) was rapid (9 to 29 years, mean and SE 20 ± 2 years) in 25 of 30 soil samples across surface horizons (0–10 and 10–20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial – millennial turnover was much less abundant (26%), even at 10–20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral associated C over decadal scales. Steady-state inputs of mineral-associated C were similar among the three topographic positions, and could represent 10–30% of annual litterfall production (estimated by doubling aboveground litterfall). Observed trends in mineral-associated ?14C over time could not be fit using the single pool model used in many other studies, which generated contradictory relationships between turnover and ?14C as compared with a more realistic constrained two-pool model. The large C fluxes in surface and near-surface soils implied by our data suggest that other studies using single-pool ?14C models of mineral-associated C dynamics, unconstrained by multiple time points, may have systematically underestimated C turnover.« less
Wang, C.
2008-01-01T23:59:59.000Z
Standing-wave free-electron laser two-beam accelerator,"of a standing-wave free electron laser," Nucl. Instr. anda standing-wave free-electron laser," Proc. SPIE Conference
ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES
Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)
2013-05-10T23:59:59.000Z
Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.
Lake, James A. (Idaho Falls, ID); Heath, Russell L. (Idaho Falls, ID); Liebenthal, John L. (Idaho Falls, ID); DeBoisblanc, Deslonde R. (Summit, NJ); Leyse, Carl F. (Idaho Falls, ID); Parsons, Kent (Idaho Falls, ID); Ryskamp, John M. (Idaho Falls, ID); Wadkins, Robert P. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID); Fillmore, Gary N. (Idaho Falls, ID); Oh, Chang H. (Idaho Falls, ID)
1988-01-01T23:59:59.000Z
A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.
J. Lundin; M. Marklund; E. Lundstrom; G. Brodin; J. Collier; R. Bingham; J. T. Mendonca; P. Norreys
2006-10-10T23:59:59.000Z
We derive expressions for the coupling coefficients for electromagnetic four-wave mixing in the non-linear quantum vacuum. An experimental setup for detection of elastic photon-photon scattering is suggested, where three incoming laser pulses collide and generate a fourth wave with a new frequency and direction of propagation. An expression for the number of scattered photons is derived and, using beam parameters for the Astra Gemini system at the Rutherford Appleton Laboratory, it is found that the signal can reach detectable levels. Problems with shot-to-shot reproducibility are reviewed, and the magnitude of the noise arising from competing scattering processes is estimated. It is found that detection of elastic photon-photon scattering may for the first time be achieved.
Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M A; Bayer, K; Belczynski, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgamy, M; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Casey, M M; Castaldi, G; Cepeda, C; Chalkey, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Chin, D; Chin, E; Chow, J; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Colacino, C N; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coward, D; Coyne, D; Creighton, J D E; Creighton, T D; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; De Bra, D; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S V; Díaz, M; Dickson, J; Di Credico, A; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L; González, G; Gossler, S; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Günther, M; Gustafson, R; Hage, B; Hamilton, W O; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Howell, E; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Jackrel, D; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lee, B; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McNabb, J W C; McWilliams, S; Meier, T; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Miller, P; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moody, V; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mudge, D; Müller, G; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Nettles, D; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Paik, H J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Samidi, M; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Tarallo, M; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D W; Ungarelli, C; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P
2007-01-01T23:59:59.000Z
Data from the LIGO Livingston interferometer and the ALLEGRO resonant bar detector, taken during LIGO's fourth science run, were examined for cross-correlations indicative of a stochastic gravitational-wave background in the frequency range 850-950 Hz, with most of the sensitivity arising between 905 Hz and 925 Hz. ALLEGRO was operated in three different orientations during the experiment to modulate the relative sign of gravitational-wave and environmental correlations. No statistically significant correlations were seen in any of the orientations, and the results were used to set a Bayesian 90% confidence level upper limit of Omega_gw(f) <= 1.02, which corresponds to a gravitational wave strain at 915 Hz of 1.5e-23/rHz. In the traditional units of h_100^2 Omega_gw(f), this is a limit of 0.53, two orders of magnitude better than the previous direct limit at these frequencies. The method was also validated with successful extraction of simulated signals injected in hardware and software.
WAVE HEIGHTS IN A 4D OCEAN WAVE FIELD Paul C. Liu
WAVE HEIGHTS IN A 4D OCEAN WAVE FIELD Paul C. Liu NOAA Great Lakes Environmental Research a preliminary examination and analysis of a small suite of 4-D wave data to explore what new insight century. We feel it is timely to encourage further 4-D ocean wave measurement and thereby facilitate fresh
Cavaleri, Luigi; Bidlot, Jean-Raymond
2015-01-01T23:59:59.000Z
We consider the effect of rain on wind wave generation and dissipation. Rain falling on a wavy surface may have a marked tendency to dampen the shorter waves in the tail of the spectrum, the related range increasing with the rain rate. Following the coupling between meteorological and wave models, we derive that on the whole this should imply stronger wind and higher waves in the most energetic part of the spectrum. This is supported by numerical experiments. However, a verification based on the comparison between operational model results and measured data suggests that the opposite is true. This leads to a keen analysis of the overall process, in particular on the role of the tail of the spectrum in modulating the wind input and the white-capping. We suggest that the relationship between white-capping and generation by wind is deeper and more implicative than presently generally assumed.
Contents lists available at ScienceDirect. Wave Motion .... The mudstone layers are fully saturated with water and their properties are frequency independent.
Tang, Yinjie; Pingitore, Francesco; Mukhopadhyay, Aindrila; Phan,Richard; Hazen, Terry C.; Keasling, Jay D.
2006-07-11T23:59:59.000Z
It has been proposed that during growth under anaerobic oroxygen-limited conditions Shewanella oneidensis MR-1 uses theserine-isocitrate lyase pathway common to many methylotrophic anaerobes,in which formaldehyde produced from pyruvate is condensed with glycine toform serine. The serine is then transformed through hydroxypyruvate andglycerate to enter central metabolism at phosphoglycerate. To examine itsuse of the serine-isocitrate lyase pathway under anaerobic conditions, wegrew S. oneidensis MR-1 on [1-13C]lactate as the sole carbon source witheither trimethylamine N-oxide (TMAO) or fumarate as an electron acceptor.Analysis of cellular metabolites indicates that a large percentage(>75 percent) of lactate was partially oxidized to either acetate orpyruvate. The 13C isotope distributions in amino acids and other keymetabolites indicate that, under anaerobic conditions, a complete serinepathway is not present, and lactate is oxidized via a highly reversibleserine degradation pathway. The labeling data also suggest significantactivity in the anaplerotic (malic enzyme and phosphoenolpyruvatecarboxylase) and glyoxylate shunt (isocitrate lyase and malate synthase)reactions. Although the tricarboxylic acid (TCA) cycle is often observedto be incomplete in many other anaerobes (absence of 2-oxoglutaratedehydrogenase activity), isotopic labeling supports the existence of acomplete TCA cycle in S. oneidensis MR-1 under TMAO reductioncondition.
Paul S. Wesson
2012-12-11T23:59:59.000Z
As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.
Hollinger, D. Y.; Evans, R. S.
2003-05-20T23:59:59.000Z
A portable flux measurement system has been used within the AmeriFlux network of CO{sub 2} flux measurement stations to enhance the comparability of data collected across the network. No systematic biases were observed in a comparison between portable system and site H, LE, or CO{sub 2} flux values although there were biases observed between the portable system and site measurement of air temperature and PPFD. Analysis suggests that if values from two stations differ by greater than 26% for H, 35% for LE, and 32% for CO{sub 2} flux they are likely to be significant. Methods for improving the intercomparability of the network are also discussed.
Samady, Mezhgan Frishta
2011-01-01T23:59:59.000Z
influence on the heat transfer as the radiation. Since thethe heat transfer analysis, the difference of net radiationheat transfer involved i n this project were conduction, convection and radiation.
Gravitational waves: a foundational review
J. G. Pereira
2015-05-27T23:59:59.000Z
The standard linear approach to the gravitational waves theory is critically reviewed. Contrary to the prevalent understanding, it is pointed out that this theory contains many conceptual and technical obscure issues that require further analysis.
Schwenk, Jacob Tyler
2013-08-31T23:59:59.000Z
evaluations of anthropological voids and natural sinkholes have used Vs analysis to delineate such structures through their anomalous signatures (Billington et al., 2006; Miller et al., 2010a; Xia et al., 2007b). Furthermore, the relation between Vs...
High precision photon flux determination for photon tagging experiments
Teymurazyan, A.; Ahmidouch, A.; Ambrozewicz, P.; Asratyan, A.; Baker, K.; Benton, L.; Burkert, V.; Clinton, E.; Cole, P.; Collins, P.; Dale, D.; Danagoulian, S.; Davidenko, G.; Demirchyan, R.; Deur, A.; Dolgolenko, A.; Dzyubenko, G.; Ent, R.; Evdokimov, A.; Feng, J.; Gabrielyan, M.; Gan, L.; Gasparian, A.; Glamazdin, A.; Goryachev, V.; Hardy, K.; He, J.; Ito, M.; Jiang, L.; Kashy, D.; Khandaker, M.; Kolarkar, A.; Konchatnyi, M.; Korchin, A.; Korsch, W.; Kosinov, O.; Kowalski, S.; Kubantsev, M.; Kubarovsky, V.; Larin, I.; Lawrence, D.; Li, X.; Martel, P.; Matveev, V.; McNulty, D.; Mecking, B.; Milbrath, B.; Minehart, R.; Miskimen, R.; Mochalov, V.; Nakagawa, I.; Overby, S.; Pasyuk, E.; Payen, M.; Pedroni, R.; Prok, Y.; Ritchie, B.; Salgado, C.; Shahinyan, A.; Sitnikov, A.; Sober, D.; Stepanyan, S.; Stevens, W.; Underwood, J.; Vasiliev, A.; Vishnyakov, V.; Wood, M.; Zhou, S.
2014-07-01T23:59:59.000Z
The Jefferson Laboratory PrimEx Collaboration has developed and implemented a method to control the tagged photon flux in photoproduction experiments at the 1% level over the photon energy range from 4.9 to 5.5 GeV. This method has been successfully implemented in a high precision measurement of the neutral pion lifetime. Here, we outline the experimental equipment and the analysis techniques used to accomplish this. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and a new method for post-bremsstrahlung electron counting.
Wave represents displacement Wave represents pressure Source -Sound Waves
Colorado at Boulder, University of
Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency
Partial wave analysis of the reaction p(3.5 GeV) + ? pK+ ? to search for the "ppK–" bound state
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; et al
2015-01-26T23:59:59.000Z
Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV) + p ? pK+?. This reaction might contain information about the kaonic cluster “ppK-” (with quantum numbers JP=0- and total isospin I =1/2) via its decay into p?. Due to interference effects in our coherent description of the data, a hypothetical K ¯NN (or, specifically “ppK-”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like p?. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a goodmore »description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ¯NN cluster. At a confidence level of CLs=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK+ ? final state, which translates into a production cross-section between 0.7 ?b and 4.2 ?b, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.« less
Chat, G Le; Meyer-Vernet, N
2012-01-01T23:59:59.000Z
The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW < 700 km/s), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.
Michalis Agathos; Walter Del Pozzo; Tjonnie G. F. Li; Chris Van Den Broeck; John Veitch; Salvatore Vitale
2014-06-06T23:59:59.000Z
The direct detection of gravitational waves with upcoming second-generation gravitational wave detectors such as Advanced LIGO and Virgo will allow us to probe the genuinely strong-field dynamics of general relativity (GR) for the first time. We present a data analysis pipeline called TIGER (Test Infrastructure for GEneral Relativity), which is designed to utilize detections of compact binary coalescences to test GR in this regime. TIGER is a model-independent test of GR itself, in that it is not necessary to compare with any specific alternative theory. It performs Bayesian inference on two hypotheses: the GR hypothesis $\\mathcal{H}_{\\rm GR}$, and $\\mathcal{H}_{\\rm modGR}$, which states that one or more of the post-Newtonian coefficients in the waveform are not as predicted by GR. By the use of multiple sub-hypotheses of $\\mathcal{H}_{\\rm modGR}$, in each of which a different number of parameterized deformations of the GR phase are allowed, an arbitrarily large number of 'testing parameters' can be used without having to worry about a model being insufficiently parsimonious if the true number of extra parameters is in fact small. TIGER is well-suited to the regime where most sources have low signal-to-noise ratios, again through the use of these sub-hypotheses. Information from multiple sources can trivially be combined, leading to a stronger test. We focus on binary neutron star coalescences, for which sufficiently accurate waveform models are available that can be generated fast enough on a computer to be fit for use in Bayesian inference. We show that the pipeline is robust against a number of fundamental, astrophysical, and instrumental effects, such as differences between waveform approximants, a limited number of post-Newtonian phase contributions being known, the effects of neutron star spins and tidal deformability on the orbital motion, and instrumental calibration errors.
Wave Propagation in Multiferroic Materials
Keller, Scott Macklin
2013-01-01T23:59:59.000Z
130 SAW Waves . . . . . . . . . . . . . .QuasiStatic MEE Waves . . . . . . . . . . . . . . . . . . .General MEE Wave Solution . . . . . . . . . . . .
Integrated Study of the Nonlinear Dynamics of Collisional Drift Wave Turbulence
George R. Tynan
2012-04-24T23:59:59.000Z
An existing linear magnetized plasma device, the Controlled Shear Decorrelation experiment (CSDX) was used to study the transition from a state of coherent wave like activity to a state of turbulent activity using the magnetic field and thus magnetization of the plasma as the control parameter. The results show the onset of coherent drift waves consistent with linear stability analysis. As the magnetization is raised, at first multiple harmonics appear, consistent with wave steepening. This period is then followed by the beginning of nonlinear interactions between different wave modes, which then results in the formation of narrow frequency but distributed azimuthal wave number fluctuations that are consistent with the formation of long-lived coherent nonlinear structures within the plasmas. These structures, termed quasicoherent modes, persist as the magnetic field is raised. Measurements of turbulent momentum flux indicate that the plasma is also forming an azimuthally symmetric radially sheared fluid flow that is nonlinearly driven by smaller scaled turbulent fluctuations. Further increases in the magnetic field result in the breakup of the quasicoherent mode, and the clear formation of the sheared flow. Numerical simulations of the experiment reproduce the formation of the sheared flow via a vortex merging process, and confirm that the experiment is providing the first clear experimental evidence of the formation of sheared zonal flows from drift turbulent fluctuations in a magnetized plasma.
Acceleration of Energetic Particles Through Self-Generated Waves in a Decelerating Coronal Shock
Sanahuja, Blai
Acceleration of Energetic Particles Through Self-Generated Waves in a Decelerating Coronal Shock M model of particle acceleration in coronal shock waves. The model is based on a Monte Carlo method, where and a growth rate computed from the net flux of the accelerated particles. We consider initial wave amplitudes
Hydrodynamical simulations of penetrative convection and generation of internal gravity waves
StÃªpieÃ±, Kazimierz
of hydrodynamical simulations. We measure the energy flux transported by these waves and find it compatibleÂLopez & Spruit 1991), mixing by random motions induced by the waves (Schatzman 1996), and the transport depends on the efficiency of the generation of internal gravity waves, which is linked to the dynamics
-point motion in a d-wave superconductor. The vortex is treated as a point flux tube, carrying fluxElectronic states near a quantum fluctuating point vortex in a d-wave superconductor: Dirac fermion model of the low-energy electronic states in the vicinity of a vortex undergoing quantum zero
Shallow Water Waves and Solitary Waves
Hereman, Willy
2013-01-01T23:59:59.000Z
Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.
Solar Model Parameters and Direct Measurements of Solar Neutrino Fluxes
Abhijit Bandyopadhyay; Sandhya Choubey; Srubabati Goswami; S. T. Petcov
2006-08-30T23:59:59.000Z
We explore a novel possibility of determining the solar model parameters, which serve as input in the calculations of the solar neutrino fluxes, by exploiting the data from direct measurements of the fluxes. More specifically, we use the rather precise value of the $^8B$ neutrino flux, $\\phi_B$ obtained from the global analysis of the solar neutrino and KamLAND data, to derive constraints on each of the solar model parameters on which $\\phi_B$ depends. We also use more precise values of $^7Be$ and $pp$ fluxes as can be obtained from future prospective data and discuss whether such measurements can help in reducing the uncertainties of one or more input parameters of the Standard Solar Model.
Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)
2009-10-13T23:59:59.000Z
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Korneev, Valeri A [LaFayette, CA
2009-05-05T23:59:59.000Z
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Thermality of the Hawking flux
Matt Visser
2015-05-06T23:59:59.000Z
Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only "approximately" Planck-shaped over a bounded frequency range. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is "approximately" Planck-shaped from both above and below --- the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.
Thermality of the Hawking flux
Visser, Matt
2014-01-01T23:59:59.000Z
Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lum...
High flux solar energy transformation
Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)
1991-04-09T23:59:59.000Z
Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.
Beta ray flux measuring device
Impink, Jr., Albert J. (Murrysville, PA); Goldstein, Norman P. (Murrysville, PA)
1990-01-01T23:59:59.000Z
A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.
High flux solar energy transformation
Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.
1991-04-09T23:59:59.000Z
Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.
Wave turbulence revisited: Where does the energy flow?
L. V. Abdurakhimov; I. A. Remizov; A. A. Levchenko; G. V. Kolmakov; Y. V. Lvov
2014-04-03T23:59:59.000Z
Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.
Magnetohydrodynamic Shearing Waves
Bryan M. Johnson
2007-02-12T23:59:59.000Z
I consider the nonaxisymmetric linear theory of a rotating, isothermal magnetohydrodynamic (MHD) shear flow. The analysis is performed in the shearing box, a local model of a thin disk, using a decomposition in terms of shearing waves, i.e., plane waves in a frame comoving with the shear. These waves do not have a definite frequency as in a normal mode decomposition, and numerical integration of a coupled set of amplitude equations is required to characterize their time dependence. Their generic time dependence, however, is oscillatory with slowly-varying frequency and amplitude, and one can construct accurate analytical solutions by applying the Wentzel-Kramers-Brillouin method to the full set of amplitude equations. The solutions have the following properties: 1) Their accuracy increases with wavenumber, so that most perturbations that fit within the disk are well-approximated as modes with time-dependent frequencies and amplitudes. 2) They can be broadly classed as incompressive and compressive perturbations, the former including the nonaxisymmetric extension of magnetorotationally unstable modes, and the latter being the extension of fast and slow modes to a differentially-rotating medium. 3) Wave action is conserved, implying that their energy varies with frequency. 4) Their shear stress is proportional to the slope of their frequency, so that they transport angular momentum outward (inward) when their frequency increases (decreases). The complete set of solutions constitutes a comprehensive linear test suite for numerical MHD algorithms that incorporate a background shear flow. I conclude with a brief discussion of possible astrophysical applications.
Type II superconductivity and magnetic flux transport in neutrons stars
P. B. Jones
2005-10-13T23:59:59.000Z
The transition to a type II proton superconductor which is believed to occur in a cooling neutron star is accompanied by changes in the equation of hydrostatic equilibrium and by the formation of proton vortices with quantized magnetic flux. Analysis of the electron Boltzmann equation for this system and of the proton supercurrent distribution formed at the transition leads to the derivation of a simple expression for the transport velocity of magnetic flux in the liquid interior of a neutron star. This shows that flux moves easily as a consequence of the interaction between neutron and proton superfluid vortices during intervals of spin-down or spin-up in binary systems. The differences between the present analysis and those of previous workers are reviewed and an error in the paper of Jones (1991) is corrected.
Interaction of Kelvin waves and non-locality of the energy transfer in superfluids
Laurie, Jason; Nazarenko, Sergey; Rudenko, Oleksii
2009-01-01T23:59:59.000Z
We argue that the physics of interacting Kelvin Waves (KWs) is highly non-trivial and cannot be understood on the basis of pure dimensional reasoning only. A consistent theory of KWs turbulence in superfluids should be based on explicit knowledge of the details of their interactions. To achieve this, we present a detailed calculation and comprehensive analysis of the interaction coefficients for KWs, thereby fixing previous mistakes stemming from unaccounted contributions. As a first application of this analysis, we show that the previously suggested Kozik-Svistunov energy spectrum of KWs, which has been often used for analysis of experimental and numerical data in superfluid turbulence, is irrelevant, because it is based on an erroneous assumption of the locality of the energy transfer through scales. We also demonstrate weak non-locality of the inverse cascade spectrum with a constant particle-number flux and find resulting logarithmic corrections to this spectrum.
Superconducting flux flow digital circuits
Hietala, V.M.; Martens, J.S.; Zipperian, T.E.
1995-02-14T23:59:59.000Z
A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.
Fan, Y. [HAO, ESSL, National Center for Atmospheric Research , P.O. Box 3000, Boulder, CO 80307 (United States)
2009-06-01T23:59:59.000Z
We present a three-dimensional simulation of the dynamic emergence of a twisted magnetic flux tube from the top layer of the solar convection zone into the solar atmosphere and corona. It is found that after a brief initial stage of flux emergence during which the two polarities of the bipolar region become separated and the tubes intersecting the photosphere become vertical, significant rotational motion sets in within each polarity. The rotational motions of the two polarities are found to twist up the inner field lines of the emerged fields such that they change their orientation into an inverse configuration (i.e., pointing from the negative polarity to the positive polarity over the neutral line). As a result, a flux rope with sigmoid-shaped, dipped core fields forms in the corona, and the center of the flux rope rises in the corona with increasing velocity as the twisting of the flux rope footpoints continues. The rotational motion in the two polarities is a result of propagation of nonlinear torsional Alfven waves along the flux tube, which transports significant twist from the tube's interior portion toward its expanded coronal portion. This is a basic process whereby twisted flux ropes are developed in the corona with increasing twist and magnetic energy, leading up to solar eruptions.
Coda wave interferometry 1 Coda wave interferometry
Snieder, Roel
Coda wave interferometry 1 Coda wave interferometry An interferometer is an instrument that is sensitive to the interference of two or more waves (optical or acoustic). For example, an optical interferometer uses two interfering light beams to measure small length changes. Coda wave interferometry
Center for Wave Phenomena Wave Phenomena
CWP Center for Wave Phenomena Center for Wave Phenomena Dave Hale CWP Director dhale in pursu- ing a focused and high- quality program in geo- physics." "The Center for Wave Phenomena for Wave Phenomena (CWP) at the Colorado School of Mines supports a graduate- level interdisciplinary
Flux cancellation and coronal mass ejectionsa... Jon A. Linker,b)
California at Berkeley, University of
and coronal mass ejections CMEs . This paper shows that flux cancellation in an energized two into the solar wind and forms an interplanetary shock wave. A similar eruption occurs for a three, ener- getic events in the solar corona that expel plasma and mag- netic fields into the solar wind
Quantum Fusion of Domain Walls with Fluxes
S. Bolognesi; M. Shifman; M. B. Voloshin
2009-07-20T23:59:59.000Z
We study how fluxes on the domain wall world volume modify quantum fusion of two distant parallel domain walls into a composite wall. The elementary wall fluxes can be separated into parallel and antiparallel components. The parallel component affects neither the binding energy nor the process of quantum merger. The antiparallel fluxes, instead, increase the binding energy and, against naive expectations, suppress quantum fusion. In the small flux limit we explicitly find the bounce solution and the fusion rate as a function of the flux. We argue that at large (antiparallel) fluxes there exists a critical value of the flux (versus the difference in the wall tensions), which switches off quantum fusion altogether. This phenomenon of flux-related wall stabilization is rather peculiar: it is unrelated to any conserved quantity. Our consideration of the flux-related all stabilization is based on substantiated arguments that fall short of complete proof.
Local Dynamics of Synoptic Waves in the Martian Atmosphere
Kavulich, Michael J., Jr.
2011-10-21T23:59:59.000Z
The sources and sinks of energy for transient waves in the Martian atmosphere are investigated, applying diagnostic techniques developed for the analysis of terrestrial baroclinic waves to output from a Mars General Circulation Model...
A characterization of causal automorphisms by wave equations
Do-Hyung Kim
2011-11-07T23:59:59.000Z
A characterization of causal automorphism on Minkowski spacetime is given by use of wave equation. The result shows that causal analysis of spacetime may be replaced by studies of wave equation on manifolds.
The Nature of Running Penumbral Waves Revealed
D. Shaun Bloomfield; Andreas Lagg; Sami K. Solanki
2007-09-24T23:59:59.000Z
We seek to clarify the nature of running penumbral (RP) waves: are they chromospheric trans-sunspot waves or a visual pattern of upward-propagating waves? Full Stokes spectropolarimetric time series of the photospheric Si I 10827 \\AA line and the chromospheric He I 10830 \\AA multiplet were inverted using a Milne-Eddington atmosphere. Spatial pixels were paired between the outer umbral/inner penumbral photosphere and the penumbral chromosphere using inclinations retrieved by the inversion and the dual-height pairings of line-of-sight velocity time series were studied for signatures of wave propagation using a Fourier phase difference analysis. The dispersion relation for radiatively cooling acoustic waves, modified to incorporate an inclined propagation direction, fits well the observed phase differences between the pairs of photospheric and chromospheric pixels. We have thus demonstrated that RP waves are in effect low-beta slow-mode waves propagating along the magnetic field.
Irregular wave induced velocities in shallow water
Sultan, Nels John
1991-01-01T23:59:59.000Z
probabil- ity density function. This thesis applies this expanded distribution to fluid particle velocities instead of wave elevations. Ochi (1982) presents a review of recent ad- vances in the stochastic analysis of random seas. He notes that the first..., (Longuet-Higgins 1963), that purely linear waves will have a Gaussian distribu- tion. Therefore, any deviation from a Gaussian distribution must be attributed to wave nonlinearities. Ochi (1982) discusses a series of experiments by Honda and Mitsuyasu...
Generalized drift-flux correlation
Takeuchi, K.; Young, M.Y.; Hochreiter, L.E. (Westinghouse Electric Corp., Pittsburgh, PA (United States))
1991-01-01T23:59:59.000Z
A one-dimensional drift-flux model with five conservation equations is frequently employed in major computer codes, such as TRAC-PD2, and in simulator codes. In this method, the relative velocity between liquid and vapor phases, or slip ratio, is given by correlations, rather than by direct solution of the phasic momentum equations, as in the case of the two-fluid model used in TRAC-PF1. The correlations for churn-turbulent bubbly flow and slug flow regimes were given in terms of drift velocities by Zuber and Findlay. For the annular flow regime, the drift velocity correlations were developed by Ishii et al., using interphasic force balances. Another approach is to define the drift velocity so that flooding and liquid hold-up conditions are properly simulated, as reported here. The generalized correlation is used to reanalyze the MB-2 test data for two-phase flow in a large-diameter pipe. The results are applied to the generalized drift flux velocity, whose relationship to the other correlations is discussed. Finally, the generalized drift flux correlation is implemented in TRAC-PD2. Flow reversal from countercurrent to cocurrent flow is computed in small-diameter U-shaped tubes and is compared with the flooding curve.
Plane waves in anisotropic viscoelastic media
Andrzej Hanyga
2015-07-13T23:59:59.000Z
Two concepts of plane waves in anisotropic viscoelastic media are studied. One of these concepts allows for the use of methods based on the theory of complete Bernstein functions. This allows for a deeper study of frequency-domain asymptotics of the attenuation function and time-domain regularity at the wavefronts. A relation between the direction of the energy flux density and the attenuation vector is examined under much more general assumptions.
HFIR | High Flux Isotope Reactor | ORNL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and ancient technology Home | User Facilities | HFIR HFIR | High Flux Isotope Reactor SHARE Scientific investigation with neutrons gives researchers unprecedented...
Turbulent Fluxes in Stably Stratified Boundary Layers
L'vov, Victor S; Rudenko, Oleksii; 10.1088/0031-8949/2008/T132/014010
2008-01-01T23:59:59.000Z
We present an extended version of an invited talk given on the International Conference "Turbulent Mixing and Beyond". The dynamical and statistical description of stably stratified turbulent boundary layers with the important example of the stable atmospheric boundary layer in mind is addressed. Traditional approaches to this problem, based on the profiles of mean quantities, velocity second-order correlations, and dimensional estimates of the turbulent thermal flux run into a well known difficulty, predicting the suppression of turbulence at a small critical value of the Richardson number, in contradiction with observations. Phenomenological attempts to overcome this problem suffer from various theoretical inconsistencies. Here we present an approach taking into full account all the second-order statistics, which allows us to respect the conservation of total mechanical energy. The analysis culminates in an analytic solution of the profiles of all mean quantities and all second-order correlations removing t...
Recommended Procedures for Measuring Radon Fluxes from
#12;#12;Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual instrurr,entc.tion and metr,ods suitable for measuring radon fluxes t·manatinq h·om co·n~red d and temporal var·iahons 1n radon flux are discussed and the advantages and disadvantages of severa·l instri
Type IIB flux vacua from G-theory I
Philip Candelas; Andrei Constantin; Cesar Damian; Magdalena Larfors; Jose Francisco Morales
2015-02-02T23:59:59.000Z
We construct non-perturbatively exact four-dimensional Minkowski vacua of type IIB string theory with non-trivial fluxes. These solutions are found by gluing together, consistently with U-duality, local solutions of type IIB supergravity on $T^4 \\times \\mathbb{C}$ with the metric, dilaton and flux potentials varying along $\\mathbb{C}$ and the flux potentials oriented along $T^4$. We focus on solutions locally related via U-duality to non-compact Ricci-flat geometries. More general solutions and a complete analysis of the supersymmetry equations are presented in the companion paper [1]. We build a precise dictionary between fluxes in the global solutions and the geometry of an auxiliary $K3$ surface fibered over $\\mathbb{CP}^1$. In the spirit of F-theory, the flux potentials are expressed in terms of locally holomorphic functions that parametrize the complex structure moduli space of the $K3$ fiber in the auxiliary geometry. The brane content is inferred from the monodromy data around the degeneration points of the fiber.
Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks
Robert J. Goldston
2009-08-20T23:59:59.000Z
The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.
ELECTRON HALO AND STRAHL FORMATION IN THE SOLAR WIND BY RESONANT INTERACTION WITH WHISTLER WAVES
California at Berkeley, University of
. A thermal core and a suprathermal halo and antisunward, magnetic fieldaligned beam, or ``strahl,'' can- trons in the solar corona and wind, including resonant interaction between electrons and whistler waves, can repro- duce an enhancement of suprathermal electron fluxes compared to the core flux. The whistler
On the wave energy potential of Western Black Sea shelf
Galabov, Vasko
2013-01-01T23:59:59.000Z
In the present study we evaluate the approaches to estimate the wave energy potential of the western Black Sea shelf with numerical models. For the purpose of our evaluation and due to the lack of long time series of measurements in the selected area of the Black Sea, we compare the modeled mean wave power flux output from the SWAN wave model with the only available long term measurements from the buoy of Gelendzhik for the period 1997-2003 (with gaps). The forcing meteorological data for the numerical wave models for the selected years is extracted from the ERA Interim reanalysis of ECMWF (European Centre for Medium range Forecasts). For the year 2003 we also compare the estimated wave power with the modeled by SWAN, using ALADIN regional atmospheric model winds. We try to identify the shortcomings and limitations of the numerical modeling approach to the evaluation of the wave energy potential in Black Sea.
The Statistics of the Prompt-to-Afterglow GRB Flux Ratios and the Supercritical Pile GRB Model
Kazanas, D; Sultana, J; Mastichiadis, A
2015-01-01T23:59:59.000Z
We present the statistics of the ratio, ${\\mathrm R}$, between the prompt and afterglow "plateau" fluxes of GRB. This we define as the ratio between the mean prompt energy flux in the {\\em Swift} BAT and the {\\em Swift} XRT, immediately following the steep transition between these two states and the beginning of the afterglow stage referred to as the "plateau". Like the distribution of other GRB observables, the histogram of ${\\mathrm R}$ is close to log-normal, with maximum at ${\\mathrm R = R}_{\\rm m} \\simeq 2,000$, FWHM of about 2 decades and with the entire distribution spanning about 6 decades in the value of ${\\mathrm R}$. We note that the peak of the distribution is close to the proton-to-electron mass ratio $({\\mathrm R}_{\\rm m} \\simeq m_p/m_e = 1836)$, as proposed by us earlier, on the basis of a specific model for the conversion of the GRB blast wave kinetic energy into radiation, before any similar analysis were made. It therefore appears that, in addition to the values of the energy of peak luminos...
Gradual eddy-wave crossover in superfluid turbulence
L'vov, Victor S; Rudenko, Oleksii
2008-01-01T23:59:59.000Z
We revise the theory of superfluid turbulence near the absolute zero of temperature and suggest a model with differential approximation for the energy fluxes in the k-space carried by the collective hydrodynamic motions of quantized vortex lines and by their individual uncorrelated motions known as Kelvin waves. The model predicts energy spectra of the hydrodynamic and the Kelvin waves components of the system, which experience a smooth crossover between different regimes of motion over a finite range of scales.
Gradual eddy-wave crossover in superfluid turbulence
Victor S. L'vov; Sergey V. Nazarenko; Oleksii Rudenko
2008-07-08T23:59:59.000Z
We revise the theory of superfluid turbulence near the absolute zero of temperature and suggest a model with differential approximation for the energy fluxes in the k-space carried by the collective hydrodynamic motions of quantized vortex lines and by their individual uncorrelated motions known as Kelvin waves. The model predicts energy spectra of the hydrodynamic and the Kelvin waves components of the system, which experience a smooth crossover between different regimes of motion over a finite range of scales.
Broader source: Energy.gov [DOE]
Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity.
Estimation of advective fluxes from CO2 flux profile observations at the Cabauw Tower
Stoffelen, Ad
Estimation of advective fluxes from CO2 flux profile observations at the Cabauw Tower Kasper O profile observations at the Cabauw Tower Version 1.0 Date April 2012 Status Final #12;#12;Estimation of Advective Fluxes from CO2 Flux Profile Observations at the Cabauw Tower Master of Science Thesis Kasper O
Wave functions of linear systems
Tomasz Sowinski
2007-06-05T23:59:59.000Z
Complete analysis of quantum wave functions of linear systems in an arbitrary number of dimensions is given. It is shown how one can construct a complete set of stationary quantum states of an arbitrary linear system from purely classical arguments. This construction is possible because for linear systems classical dynamics carries the whole information about quantum dynamics.
High Heat Flux Thermoelectric Module Using Standard Bulk Material...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...
A high-flux BEC source for mobile atom interferometers
Jan Rudolph; Waldemar Herr; Christoph Grzeschik; Tammo Sternke; Alexander Grote; Manuel Popp; Dennis Becker; Hauke Müntinga; Holger Ahlers; Achim Peters; Claus Lämmerzahl; Klaus Sengstock; Naceur Gaaloul; Wolfgang Ertmer; Ernst M. Rasel
2015-06-16T23:59:59.000Z
Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of $4 \\times 10^5$ quantum degenerate $^{87}$Rb atoms every 1.6$\\,$s. Ensembles of $1 \\times 10^5$ atoms can be produced at a 1$\\,$Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.
An experimental investigation of critical heat flux in subcooled internal flow
Shatto, Donald Patrick
1997-01-01T23:59:59.000Z
diameters, tube lengths, and mass flow rates. Methods of developing predictive correlations for subcooled critical heat flux based on dimensional analysis, and the sublayer dryout model, are described and applied to the data from these experiments. When...
Geometrical vs wave optics under gravitational waves
Raymond Angélil; Prasenjit Saha
2015-05-20T23:59:59.000Z
We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics - rather than solving Maxwell's equations directly for the fields, as in most previous approaches - we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.
Adeyeye, Adekunle
and forbidden magnonic energy bands. The measured frequencies as a function of the exchanged wave vector have Nanoscienze, Centro S3, Via Campi 213A, I-41125 Modena, Italy 4 Information Storage Materials Laboratory and can be considered as a model system for reprogrammable dynamical response, where the band structure
Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.
2014-08-01T23:59:59.000Z
The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstom’s DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: • Simulations of Alstom’s 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) • A simulation study of the University of Utah’s oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. • Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. • Collection of heat flux and temperature measurements in the University of Utah’s OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the generation of high-fidelity data from a turbulent oxy-coal flame for the validation of oxy-coal simulation models. Experiments were also conducted on the OFC to determine heat flux profiles using advanced strategies for O2 injection. This is important when considering retrofit of advanced O2 injection in retrofit configurations.
Long wave expansions for water waves over random topography
Anne de Bouard; Walter Craig; Oliver Díaz-Espinosa; Philippe Guyenne; Catherine Sulem
2007-10-01T23:59:59.000Z
In this paper, we study the motion of the free surface of a body of fluid over a variable bottom, in a long wave asymptotic regime. We assume that the bottom of the fluid region can be described by a stationary random process $\\beta(x, \\omega)$ whose variations take place on short length scales and which are decorrelated on the length scale of the long waves. This is a question of homogenization theory in the scaling regime for the Boussinesq and KdV equations. The analysis is performed from the point of view of perturbation theory for Hamiltonian PDEs with a small parameter, in the context of which we perform a careful analysis of the distributional convergence of stationary mixing random processes. We show in particular that the problem does not fully homogenize, and that the random effects are as important as dispersive and nonlinear phenomena in the scaling regime that is studied. Our principal result is the derivation of effective equations for surface water waves in the long wave small amplitude regime, and a consistency analysis of these equations, which are not necessarily Hamiltonian PDEs. In this analysis we compute the effects of random modulation of solutions, and give an explicit expression for the scattered component of the solution due to waves interacting with the random bottom. We show that the resulting influence of the random topography is expressed in terms of a canonical process, which is equivalent to a white noise through Donsker's invariance principle, with one free parameter being the variance of the random process $\\beta$. This work is a reappraisal of the paper by Rosales & Papanicolaou \\cite{RP83} and its extension to general stationary mixing processes.
Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model
Boyer, Edmond
Engineering, Imperial College London, London SW7 2AZ, United Kingdom 2 Dynamics Group, Hamburg University on the surface that results in a flux of energy from the wind to the waves and (ii) it generates a rotationalExperiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model A
Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments
Andi Cucoanes; Pau Novella; Anatael Cabrera; Muriel Fallot; Anthony Onillon; Michel Obolensky; Frederic Yermia
2015-01-02T23:59:59.000Z
This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications on the global $\\theta_{13}$ knowledge today. First, Double Chooz, in its final configuration, is the only experiment benefiting from a negligible reactor flux error due to a $\\sim$90\\% geometrical suppression. Second, Daya Bay and RENO could benefit from their partial geometrical cancellation, yielding a potential $\\sim$50\\% error suppression, thus significantly improving the global $\\theta_{13}$ precision today. And third, we illustrate the rationale behind further error suppression upon the exploitation of the inter-reactor error correlations, so far neglected. So, our publication is a key step forward in the context of high precision neutrino reactor experiments providing insight on the suppression of their intrinsic flux error uncertainty, thus affecting past and current experimental results, as well as the design of future experiments.
Uncertainty of calorimeter measurements at NREL's high flux solar furnace
Bingham, C.E.
1991-12-01T23:59:59.000Z
The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.
Hu, Jinbing; Chen, Jiabi; Jiang, Qiang; Wang, Yan; Zhuang, Songlin
2015-01-01T23:59:59.000Z
The energy flux patterns of inverse Goos-Hanchen (GH) shift around the interface between air and negatively refractive photonic crystal (NRPhC) with different surface terminations is investigated. Results show that NRPhC exhibits inverse GH shift in TM and TE polarization, and the localization and pattern of energy flux differ in TM and TE polarizations and are strongly affected by surface termination. This is different to the condition of negative permittivity materials (i.e., metal), which only presents inverse GH shift in TM polarization. In the case of TE polarization, the energy flux pattern exhibits the flux of backward wave whose localization changes from the surface to inside of NRPhC with the variation of surface termination. In the case of TM polarization, the energy flux pattern is always confined within the surface of NRPhC, whereas its pattern changes from the flux of backward wave to vortices at the surface of NRPhC, which is different to the energy flux of TM polarization of metal. By properly ...
California at Santa Barbara, University of
Verdes, Campus Point, Coal Oil Point (Sands) Waves propagate perpendicular to isobaths (lines of constant
Water Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves nonlinear waves. Throughout the theory is based on the traditional assumptions that water is inviscid
Atmospheric neutrino flux at INO site
Honda, Morihiro [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan)
2011-11-23T23:59:59.000Z
To illustrate the calculation of the atmospheric neutrino flux, we briefly explain our calculation scheme and important components, such as primary cosmic ray spectra, interaction model, and geomagnetic model. Then, we calculate the atmospheric neutrino flux at INO site in our calculation scheme. We compare the calculated atmospheric neutrino fluxes predicted at INO with those at other major neutrino detector sites, especially that at SK site.
Fluxing agent for metal cast joining
Gunkel, Ronald W. (Lower Burrell, PA); Podey, Larry L. (Greensburg, PA); Meyer, Thomas N. (Murrysville, PA)
2002-11-05T23:59:59.000Z
A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF.sub.3, and about 10 wt. % Al.sub.2 O.sub.3.
RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles
Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States)
2012-07-01T23:59:59.000Z
The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)
NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE
Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)
2013-08-10T23:59:59.000Z
Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.
the wave model A traveling wave is an organized disturbance
Winokur, Michael
1 waves the wave model A traveling wave is an organized disturbance propagating at a well-defined wave speed v. · In transverse waves the particles of the medium move perpendicular to the direction of wave propagation. · In longitudinal waves the particles of the medium move parallel to the direction
Experimental determination of radiated internal wave power without pressure field data Frank M. Lee) Experimental determination of radiated internal wave power without pressure field data Frank M. Lee,1 M. S-averaged energy flux J and total radiated power P for two-dimensional internal gravity waves. Both J and P
Photospheric Logarithmic Velocity Spirals as MHD Wave Generation Mechanisms
Mumford, S J
2015-01-01T23:59:59.000Z
High-resolution observations of the solar photosphere have identified a wide variety of spiralling motions in the plasma. These spirals vary in properties, but are observed to be abundant on the solar surface. In this work these spirals are studied for their potential as magnetohydrodynamic (MHD) wave generation mechanisms. The inter-granular lanes, where these spirals are commonly observed, are also regions where the magnetic field strength is higher than average. This combination of magnetic field and spiralling plasma is a recipe for the generation of Alfv\\'en waves and other MHD waves. This work employs numerical simulations of a self-similar magnetic flux tube embedded in a realistic, gravitationally stratified, solar atmosphere to study the effects of a single magnetic flux tube perturbed by a logarithmic velocity spiral driver. The expansion factor of the logarithmic spiral driver is varied, multiple simulations are run for a range of values of the expansion factor centred around observational data. Th...
Blanchat, Thomas K.; Hanks, Charles R.
2013-04-01T23:59:59.000Z
Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.
Barthelemy, X; Peirson, W L; Fedele, F; Allis, M; Dias, F
2015-01-01T23:59:59.000Z
We revisit the classical, but as yet unresolved problem of predicting the breaking onset of 2D and 3D irrotational gravity water waves. This study focuses on domains with flat bottom topography and conditions ranging from deep to intermediate depth (depth to wavelength ratio between 1 and 0.2). Using a fully-nonlinear boundary element model, our initial calculations investigated geometric, kinematic and energetic differences between maximally recurrent and marginally breaking waves in focusing wave groups. Maximallyrecurrent waves are clearly separated from marginally-breaking waves by their energy fluxes localized near the crest region. Specifically, tracking the local ratio of energy flux velocity to crest speed at the crest of the tallest wave in the evolving group provides a robust breaking onset threshold parameter. Warning of imminent breaking onset was found to depend on the strength of breaking, but was detectable only up to half a carrier wave period prior to a breaking event.
PHELIX for flux compression studies
Turchi, Peter J [Los Alamos National Laboratory; Rousculp, Christopher L [Los Alamos National Laboratory; Reinovsky, Robert E [Los Alamos National Laboratory; Reass, William A [Los Alamos National Laboratory; Griego, Jeffrey R [Los Alamos National Laboratory; Oro, David M [Los Alamos National Laboratory; Merrill, Frank E [Los Alamos National Laboratory
2010-06-28T23:59:59.000Z
PHELIX (Precision High Energy-density Liner Implosion eXperiment) is a concept for studying electromagnetic implosions using proton radiography. This approach requires a portable pulsed power and liner implosion apparatus that can be operated in conjunction with an 800 MeV proton beam at the Los Alamos Neutron Science Center. The high resolution (< 100 micron) provided by proton radiography combined with similar precision of liner implosions driven electromagnetically can permit close comparisons of multi-frame experimental data and numerical simulations within a single dynamic event. To achieve a portable implosion system for use at high energy-density in a proton laboratory area requires sub-megajoule energies applied to implosions only a few cms in radial and axial dimension. The associated inductance changes are therefore relatively modest, so a current step-up transformer arrangement is employed to avoid excessive loss to parasitic inductances that are relatively large for low-energy banks comprising only several capacitors and switches. We describe the design, construction and operation of the PHELIX system and discuss application to liner-driven, magnetic flux compression experiments. For the latter, the ability of strong magnetic fields to deflect the proton beam may offer a novel technique for measurement of field distributions near perturbed surfaces.
Data system for automatic flux mapping applications
Couch, R.D.; Kasinoff, A.M.; Neuner, J.A.; Oates, R.M.
1980-12-16T23:59:59.000Z
In an automatic flux mapping system utilizing a microprocessor for control and data information processing, signals from the incore detectors providing the flux mapping operation are converted to a frequency link and are made available to the microprocessor via a programmable timer thus minimizing the participation of the microprocessor so that the microprocessor can be made more available to satisfy other tasks.
Today's Material Gauss' Law and Flux
Ashlock, Dan
Field Lines' #12;© 2013 Pearson Education, Inc. The Concept of Flux Consider a box surrounding a region;© 2013 Pearson Education, Inc. The Concept of Flux Consider a box surrounding a region of space. We can.1 22.3 Next lecture · More on Gauss's law #12;Copyright © 2008 Pearson Education, Inc., publishing
AN EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A SURGE
Zheng, Ruisheng; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Hong, Junchao; Yang, Bo; Yang, Dan, E-mail: zhrsh@ynao.ac.cn [National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China)] [National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China)
2013-02-10T23:59:59.000Z
Taking advantage of the high temporal and spatial resolution observations from the Solar Dynamics Observatory, we present an extreme-ultraviolet (EUV) wave associated with a surge on 2010 November 13. Due to the magnetic flux cancelation, some surges formed in the source active region (AR). The strongest surge produced our studied event. The surge was deflected by the nearby loops that connected to another AR, and disrupted the overlying loops that slowly expanded and eventually evolved into a weak coronal mass ejection (CME). The surge was likely associated with the core of the CME. The EUV wave happened after the surge deflected. The wave departed far from the flare center and showed a close location relative to the deflected surge. The wave propagated in a narrow angular extent, mainly in the ejection direction of the surge. The close timing and location relations between the EUV wave and the surge indicate that the wave was closely associated with the CME. The wave had a velocity of 310-350 km s{sup -1}, while the speeds of the surge and the expanding loops were about 130 and 150 km s{sup -1}, respectively. All of the results suggest that the EUV wave was a fast-mode wave and was most likely triggered by the weak CME.
Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)
1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution
LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY CONVERTERS
Haller, Merrick
1 LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY of wave energy converters (WECs) on water waves through the analysis of extensive laboratory experiments absorption is a reasonable predictor of the effect of WECs on the far field. Keywords: wave- energy; spectral
Mathur, Manikandan S.
Internal waves are a ubiquitous and significant means of momentum and energy transport in the oceans, atmosphere, and astrophysical bodies. Here, we show that internal wave propagation in nonuniform density stratifications, ...
Wirosoetisno, Djoko
the Oscillating Water Column (OWC) device with wind turbine a new device with a more direct energy conversion? #12 & safety offshore structures Pyramidal rogue wave (Faulkner 2001): #12;Wave Control Onno Bokhove
Mercier, Matthieu J.
We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...
A high-flux BEC source for mobile atom interferometers
Rudolph, Jan; Grzeschik, Christoph; Sternke, Tammo; Grote, Alexander; Popp, Manuel; Becker, Dennis; Müntinga, Hauke; Ahlers, Holger; Peters, Achim; Lämmerzahl, Claus; Sengstock, Klaus; Gaaloul, Naceur; Ertmer, Wolfgang; Rasel, Ernst M
2015-01-01T23:59:59.000Z
Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a technological challenge. Here we report on the realization of a miniaturized setup, generating a flux of $4 \\times 10^5$ quantum degenerate $^{87}$Rb atoms every 1.6 s. Ensembles of $1 \\times 10^5$ atoms can be produced at a 1 Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based experiments while offering significantly higher repetition rates. The compact and robust design allows for mobile operation in a variety of...
A high-flux BEC source for mobile atom interferometers
Jan Rudolph; Waldemar Herr; Christoph Grzeschik; Tammo Sternke; Alexander Grote; Manuel Popp; Dennis Becker; Hauke Müntinga; Holger Ahlers; Achim Peters; Claus Lämmerzahl; Klaus Sengstock; Naceur Gaaloul; Wolfgang Ertmer; Ernst M. Rasel
2015-01-02T23:59:59.000Z
Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a technological challenge. Here we report on the realization of a miniaturized setup, generating a flux of $4 \\times 10^5$ quantum degenerate $^{87}$Rb atoms every 1.6 s. Ensembles of $1 \\times 10^5$ atoms can be produced at a 1 Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based experiments while offering significantly higher repetition rates. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for portable high-precision quantum sensors.
Wijngaarden, Rinke J.
Flux penetration into superconducting Nb3Sn in oblique magnetic fields Diana G. Gheorghe, Mariela; published 14 June 2006 Penetration of magnetic flux into a rectangular platelet of superconducting Nb3Sn-II superconductors. For such an analysis, often the simplest solutions of the critical state problem are used, which
Garfinkel, Chaim I.
Barotropic Impacts of Surface Friction on Eddy Kinetic Energy and Momentum Fluxes: An Alternative energy decreases, a response that is inconsistent with the conventional barotropic governor mechanism on eddy momentum fluxes and eddy kinetic energy. Analysis of the pseudomomentum budget shows
Traveling water waves with critical layers
Ailo Aasen; Kristoffer Varholm
2015-08-19T23:59:59.000Z
We establish the existence of small-amplitude uni- and bimodal steady periodic gravity waves with an affine vorticity distribution. The solutions describe waves with critical layers and an arbitrary number of crests and troughs in each minimal period. Our bifurcation argument differs slightly from earlier theory, and under certain conditions we prove that the waves found are different from the ones in previous investigations. An important part of the analysis is a fairly complete description of the small-amplitude solutions. Finally, we investigate the asymptotic behavior of solutions on the local bifurcation set.
Internal wave instability: Wave-wave versus wave-induced mean flow interactions
Sutherland, Bruce
, known as parametric sub- harmonic instability, results generally when a disturbance of one frequency imparts energy to disturbances of half that frequency.13,14 Generally, a plane periodic internal wave, energy from primary waves is transferred, for example, to waves with half frequency. Self
Degasperis, Antonio; Aceves, Alejandro B
2015-01-01T23:59:59.000Z
We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing, may lead to extreme waves at extremely low powers.
THE ROLE OF SUPERLUMINAL ELECTROMAGNETIC WAVES IN PULSAR WIND TERMINATION SHOCKS
Amano, Takanobu [Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033 (Japan); Kirk, John G., E-mail: amano@eps.s.u-tokyo.ac.jp [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)
2013-06-10T23:59:59.000Z
The dynamics of a standing shock front in a Poynting-flux-dominated relativistic flow is investigated by using a one-dimensional, relativistic, two-fluid simulation. An upstream flow containing a circularly polarized, sinusoidal magnetic shear wave is considered, mimicking a wave driven by an obliquely rotating pulsar. It is demonstrated that this wave is converted into large-amplitude electromagnetic waves with superluminal phase speeds by interacting with the shock when the shock-frame frequency of the wave exceeds the proper plasma frequency. The superluminal waves propagate in the upstream, modify the shock structure substantially, and form a well-developed precursor region ahead of a subshock. Dissipation of Poynting flux occurs in the precursor as well as in the downstream region through a parametric instability driven by the superluminal waves. The Poynting flux remaining in the downstream region is carried entirely by the superluminal waves. The downstream plasma is therefore an essentially unmagnetized, relativistically hot plasma with a non-relativistic flow speed, as suggested by observations of pulsar wind nebulae.
Performance Assessment of the Wave Dragon Wave Energy Converter
Hansen, René Rydhof
Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave
Nonlinear acoustic wave generation in a three-phase seabed
A. B. Kukarkin; N. I. Pushkina; Ya. M. Zhileikin
2015-03-03T23:59:59.000Z
Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.
Nonlinear acoustic wave generation in a three-phase seabed
Kukarkin, A B; Zhileikin, Ya M
2015-01-01T23:59:59.000Z
Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.
Eddy Correlation Flux Measurement System (ECOR) Handbook
Cook, DR
2011-01-31T23:59:59.000Z
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.
High-Flux Microchannel Solar Receiver
Broader source: Energy.gov [DOE]
This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.
Emission Origin for the Wave of Quanta
Sanjay M Wagh
2009-07-07T23:59:59.000Z
We argue that certain assumptions about the process of the emission of the quanta by their (oscillating) emitter provide for their changing (oscillatory) flux at any location. This mechanism underlying (such) wave phenomena is not based, both, on the newtonian notion of force and the field concept (of Faraday, Maxwell, Lorentz and Einstein). When applied to the case of thermal radiation, this emission origin for the wave of quanta is shown here to be consistent with the laws of the black body radiation. We conclude therefore also that a conceptual framework, which is not rooted in the notion of force and in the field concept, may provide a deterministic basis underlying the probabilistic methods of the quantum theory.
Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics
Qian, Tingting
2010-07-14T23:59:59.000Z
Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...
Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics
Qian, Tingting
2010-07-14T23:59:59.000Z
Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...
Tetrakis-amido high flux membranes
McCray, S.B.
1989-10-24T23:59:59.000Z
Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.
A low cost high flux solar simulator
Codd, Daniel S.
A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...
Neutrino flux variations and solar activity
Ikhsanov, R N
2003-01-01T23:59:59.000Z
We investigate temporal variations of the solar neutrino flux in 1970-1997. The periods of 11, 5 and 2 years have been found in the variations of the neutrino flux. The results indicate that a periodicity close to 5 years is the most significant in the data from both the Homestake and GALLEX experiments. Two groups of the solar activity indices have been distinguished regarding their interconnection with the neutrino flux series. The first group contains the indices showing predominantly 11-year period, while a periodicity at approximately 5 years is observed in the second group. The correlation coefficients between the neutrino flux and indices from the first group are negative, with their module not exceeding 0.5. The second group is characterized by positive correlation with the neutrino counting rates with coefficients not lower than 0.6. A discussion of findings is presented.
Particle and Wave: Developing the Quantum Wave Accompanying a Classical Particle
C. L. Herzenberg
2008-12-04T23:59:59.000Z
The relationship between classical and quantum mechanics is explored in an intuitive manner by the exercise of constructing a wave in association with a classical particle. Using special relativity, the time coordinate in the frame of reference of a moving particle is expressed in terms of the coordinates in the laboratory frame of reference in order to provide an initial spatiotemporal function to work from in initiating the development of a quantum wave. When temporal periodicity is ascribed to the particle, a provisional spatiotemporal function for a particle travelling at constant velocity manifests itself as an running wave characterized by parameters associated with the moving particle. A wave description for bidirectional motion is generated based on an average time coordinate for a combination of oppositely directed elementary running waves, and the resulting spatiotemporal function exhibits wave behavior characteristic of a standing wave. Ascribing directional orientation to the intrinsic periodicity of the particle introduces directional sub-states; variations in the relative number of sub-states as a function of angle in combined states lead to spatially varying magnitudes for the associated waves. Further analysis leads to full mathematical expression for all waves representing free particle motion. A generalization for particles subject to force fields enables us to develop a governing differential equation identical in form to the Schroedinger equation.
Moreton Waves and EIT Waves Related to the Flare Events of June 3, 2012 and July 6, 2012
Admiranto, A G; Yus'an, U; Puspitaningrum, E
2015-01-01T23:59:59.000Z
We present geometrical and kinematical analysis of Moreton waves and EIT waves observed on June 3, 2012 and Moreton waves observed on July 6, 2012. The Moreton waves were recorded in H$\\alpha$ images of Global Oscillation Network Group (GONG) archive and EIT waves obtained from SDO/AIA observations, especially in 193 nm channel. The observed wave of June 3 has angular span of about $70^{\\circ}$ with a broad wave front associated to NOAA active region 11496. It was found that the speed of the wave that started propagating at 17.53 UT is between 950 to 1500 km/s. Related to this wave occurrence, there was solar type II and III radio bursts. The speed of the EIT in this respect about 247 km/sec. On the other hand, the wave of July 6 may be associated to X1.1 class flare that occurred at 23.01 UT around the 11514 active region. From the kinematical analysis, the wave propagated with the initial velocity of about 1180 km/s which is in agreement with coronal shock velocity derived from type II radio burst observati...
Cycloidal Wave Energy Converter
Stefan G. Siegel, Ph.D.
2012-11-30T23:59:59.000Z
This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.
Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...
CO2 fluxes and the atmospheric parameters over a comparable time period. Energy balance closure was assessed by statistical regression of EC energy fluxes (sensible and...
Integration of Novel Flux Coupling Motor and Current Source Inverter...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Merit Review and Peer Evaluation ape034hsu2011p.pdf More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling...
Bifurcations of traveling wave solutions for an integrable equation
Li Jibin [Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China) and Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Qiao Zhijun [Department of Mathematics, University of Texas Pan-American, 1201 West University Drive, Edinburg, Texas 78541 (United States)
2010-04-15T23:59:59.000Z
This paper deals with the following equation m{sub t}=(1/2)(1/m{sup k}){sub xxx}-(1/2)(1/m{sup k}){sub x}, which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the cases of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.
Nonlocal resonances in weak turbulence of gravity-capillary waves
Quentin Aubourg; Nicolas Mordant
2015-03-13T23:59:59.000Z
We report a laboratory investigation of weak turbulence of water surface waves in the gravity-capillary crossover. By using time-space resolved profilometry and a bicoherence analysis, we observe that the nonlinear processes involve 3-wave resonant interactions. By studying the solutions of the resonance conditions we show that the nonlinear interaction is dominantly 1D and involves collinear wave vectors. Furthermore taking into account the spectral widening due to weak nonlinearity explains that nonlocal interactions are possible between a gravity wave and high frequency capillary ones. We observe also that nonlinear 3-wave coupling is possible among gravity waves and we raise the question of the relevance of this mechanism for oceanic waves.
Kinetic Alfvén wave turbulence and formation of localized structures
Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India)] [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Modi, K. V. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India) [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Mechanical Engineering Department, Government Engineering College Valsad, Gujarat 396001 (India)
2013-08-15T23:59:59.000Z
This work presents non-linear interaction of magnetosonic wave with kinetic Alfvén wave for intermediate ?-plasma (m{sub e}/m{sub i}???1). A set of dimensionless equations have been developed for analysis by considering ponderomotive force due to pump kinetic Alfvén wave in the dynamics of magnetosonic wave. Stability analysis has been done to study modulational instability or linear growth rate. Further, numerical simulation has been carried out to study the nonlinear stage of instability and resulting power spectrum applicable to solar wind around 1 AU. Due to the nonlinearity, background density of magnetosonic wave gets modified which results in localization of kinetic Alfvén wave. From the obtained results, we observed that spectral index follows k{sup ?3.0}, consistent with observation received by Cluster spacecraft for the solar wind around 1 AU. The result shows the steepening of power spectrum which may be responsible for heating and acceleration of plasma particles in solar wind.
Sych, Robert
2015-01-01T23:59:59.000Z
The review addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, height localization with the mechanism of cut-off frequency that forms the observed emission variability. Dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, investigates the oscillation frequency transformation depending on the wave energy is shown. The initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks are discussed. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves. A short review of theoretical models of sunspot oscillations is provided.
Modeling of the recycling particle flux and electron particle transport in the DIII-D tokamak
Baker, D.R.; Jackson, G.L. [General Atomics, San Diego, CA (United States); Maingi, R. [Oak Ridge Associated Universities, Inc., TN (United States); Owen, L.W. [Oak Ridge National Lab., TN (United States); Porter, G.D. [Lawrence Livermore National Lab., CA (United States)
1996-10-01T23:59:59.000Z
One of the most difficult aspects of performing an equilibrium particle transport analysis in a diverted tokamak is the determination of the particle flux which enters the plasma after recycling from the divertor plasma, the divertor target plates or the vessel wall. An approach which has been utilized in the past is to model the edge, scrape-off layer (SOL), and divertor plasma to match measured plasma parameters and then use a neutral transport code to obtain an edge recycling flux while trying to match the measured divertor D(x emissivity. Previous simulations were constrained by electron density (n{sub e}) and temperature (T{sub e}), ion temperature (T{sub i}) data at the outer midplane, divertor heat flux from infrared television cameras, and n{sub e}, T{sub e} and particle flux at the target from fixed Langmuir probes, along with the divertor D{sub {alpha}} emissivity. In this paper, we present results of core fueling calculations from the 2-D modeling for ELM-free discharges, constrained by data from the new divertor diagnostics. In addition, we present a simple technique for estimating the recycling flux just after the L-H transition and demonstrate how this technique is supported by the detailed modeling. We will show the effect which inaccuracies in the recycling flux have on the calculated particle flux in the plasma core. For some specific density profiles, it is possible to separate the convective flux from the conductive flux. The diffusion coefficients obtained show a sharp decrease near a normalized radius of 0.9 indicating the presence of a transport barrier.
Wave Propagation Theory 2.1 The Wave Equation
2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived #12;66 2. Wave Propagation Theory quantities of the quiescent (time independent) medium are identified perturbations is much smaller than the speed of sound. 2.1.1 The Nonlinear Wave Equation Retaining higher
Structure-borne sound Flexural wave (bending wave)
Berlin,Technische Universität
1 Structure-borne sound · Flexural wave (bending wave) »One dimensional (beam) +(/x)dx +(/x)dx = (/x) (/x)dx=(2/x2)dx Mz +(Mz/x)dx Mz vy Fy Fy +(Fy/x)dx Structure-borne sound · Bending wave flexural wave #12;2 Structure-borne sound · Two obliquely propagating waves + - + + - + - Structure
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
Chapman, S. C., E-mail: S.C.Chapman@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Dendy, R. O. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Todd, T. N.; Webster, A. J.; Morris, J. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Watkins, N. W. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Centre for the Analysis of Time Series, London School of Economics, London (United Kingdom); Department of Engineering and Innovation, Open University, Milton Keynes (United Kingdom); Calderon, F. A. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom)
2014-06-15T23:59:59.000Z
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM.
Mats Ehrnström; Erik Wahlén
2013-10-31T23:59:59.000Z
We construct three-dimensional families of small-amplitude gravity-driven rotational steady water waves on finite depth. The solutions contain counter-currents and multiple crests in each minimal period. Each such wave generically is a combination of three different Fourier modes, giving rise to a rich and complex variety of wave patterns. The bifurcation argument is based on a blow-up technique, taking advantage of three parameters associated with the vorticity distribution, the strength of the background stream, and the period of the wave.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Fisher Research Group Layered Chalcogenides 29 February 2008 Controlling the Wave by Brad Plummer, SLAC Communications Stanford University researchers working in part at SSRL have...
Can High Frequency Acoustic Waves Heat the Quiet Sun Chromosphere?
Mats Carlsson; Viggo H. Hansteen; Bart De Pontieu; Scott McIntosh; Theodore D. Tarbell; Dick Shine; Saku Tsuneta; Yukio Katsukawa; Kiyoshi Ichimoto; Yoshinori Suematsu; Toshifumi Shimizu; Shin'ichi Nagata
2007-09-21T23:59:59.000Z
We use Hinode/SOT Ca II H-line and blue continuum broadband observations to study the presence and power of high frequency acoustic waves at high spatial resolution. We find that there is no dominant power at small spatial scales; the integrated power using the full resolution of Hinode (0.05'' pixels, 0.16'' resolution) is larger than the power in the data degraded to 0.5'' pixels (TRACE pixel size) by only a factor of 1.2. At 20 mHz the ratio is 1.6. Combining this result with the estimates of the acoustic flux based on TRACE data of Fossum & Carlsson (2006), we conclude that the total energy flux in acoustic waves of frequency 5-40 mHz entering the internetwork chromosphere of the quiet Sun is less than 800 W m$^{-2}$, inadequate to balance the radiative losses in a static chromosphere by a factor of five.
The role of torsional Alfven waves in coronal heating
Antolin, P
2009-01-01T23:59:59.000Z
In the context of coronal heating, among the zoo of MHD waves that exist in the solar atmosphere, Alfven waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption or turbulent cascade in order to heat the plasma. New observations with polarimetric, spectroscopic and imaging instruments such as those on board of the japanese satellite Hinode, or the SST or CoMP, are bringing strong evidence for the existence of energetic Alfven waves in the solar corona. In order to assess the role of Alfven waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfven wave heating through the mode conversion mechanism. Using a 1.5-dimensional MHD code we carry out a paramete...
Wave Energy Resource Assessment | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Wave Energy Resource Assessment Wave Energy Resource Assessment Wave Energy Resource Assessment 52waveresourceassessmenteprijacobson.ppt More Documents & Publications OTEC...
Wave Energy challenges and possibilities
© Wave Energy challenges and possibilities By: Per Resen Steenstrup www.WaveStarEnergy.com Risø-R-1608(EN) 161 #12;© Wave energy is an old story.... The first wave energy patent is 200 years old. Over the last 100 years more than 200 new wave energy devices have been developped and more than 1.000 patents
Rani, B; Marscher, A P; Hodgson, J A; Fuhrmann, L; Angelakis, E; Britzen, S; Zensus, J A
2015-01-01T23:59:59.000Z
We present a high-frequency very long baseline interferometry (VLBI) kinematical study of the BL Lac object S5 0716+714 over the time period of September 2008 to October 2010. The aim of the study is to investigate the relation of the jet kinematics to the observed broadband flux variability. We find significant non-radial motions in the jet outflow of the source. In the radial direction, the highest measured apparent speed is \\sim37 c, which is exceptionally high, especially for a BL Lac object. Patterns in the jet flow reveal a roughly stationary feature \\sim0.15 mas downstream of the core. The long-term fits to the component trajectories reveal acceleration in the sub-mas region of the jet. The measured brightness temperature, T_{B}, follows a continuous trend of decline with distance, T_B \\propto r_{jet}^{-(2.36\\pm0.41)}, which suggests a gradient in Doppler factor along the jet axis. Our analysis suggest that a moving disturbance (or a shock wave) from the base of the jet produces the high-energy (optica...
Inbound waves in the solar corona: A direct indicator of Alfvén surface location
DeForest, C. E.; Howard, T. A. [Southwest Research Institute, 1050 Walnut Street, Boulder, CO (United States); McComas, D. J., E-mail: deforest@boulder.swri.edu [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX (United States)
2014-06-01T23:59:59.000Z
The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary—the Alfvén surface—that marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfvén surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfvén speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar corona and the inner boundary of interplanetary space. Using a new and unique motion analysis to separate inbound and outbound motions in synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft, we have identified inbound wave motion in the outer corona beyond 6 solar radii for the first time and used it to determine that the Alfvén surface is at least 12 solar radii from the Sun over the polar coronal holes and 15 solar radii in the streamer belt, well beyond the distance planned for NASA's upcoming Solar Probe Plus mission. To our knowledge, this is the first measurement of inbound waves in the outer solar corona and the first direct measurement of lower bounds for the Alfvén surface.
Super-radiance and flux conservation
Boonserm, Petarpa; Visser, Matt
2014-01-01T23:59:59.000Z
The theoretical foundations of the phenomenon known as super-radiance still continues to attract considerable attention. Despite many valiant attempts at pedagogically clear presentations, the effect nevertheless still continues to generate some significant confusion. Part of the confusion arises from the fact that super-radiance in a quantum field theory [QFT] context is not the same as super-radiance (super-fluorescence) in some condensed matter contexts; part of the confusion arises from traditional but sometimes awkward normalization conventions, and part is due to sometimes unnecessary confusion between fluxes and probabilities. We shall argue that the key point underlying the effect is flux conservation, (and, in the presence of dissipation, a controlled amount of flux non-conservation), and that attempting to phrase things in terms of reflection and transmission probabilities only works in the absence of super-radiance. To help clarify the situation we present a simple exactly solvable toy model exhibi...
Freezing E3-brane instantons with fluxes
Massimo Bianchi; Andres Collinucci; Luca Martucci
2012-02-22T23:59:59.000Z
E3-instantons that generate non-perturbative superpotentials in IIB N=1 compactifications are more frequent than currently believed. Worldvolume fluxes will typically lift the E3-brane geometric moduli and their fermionic superpartners, leaving only the two required universal fermionic zero-modes. We consistently incorporate SL(2, Z) monodromies and world-volume fluxes in the effective theory of the E3-brane fermions and study the resulting zero-mode spectrum, highlighting the relation between F-theory and perturbative IIB results. This leads us to a IIB derivation of the index for generation of superpotential terms, which reproduces and generalizes available results. Furthermore, we show how worldvolume fluxes can be explicitly constructed in a one-modulus compactification, such that an E3-instanton has exactly two fermonic zero-modes. This construction is readily applicable to numerous scenarios.
Microstructural Design for Stress Wave Energy Management /
Tehranian, Aref
2013-01-01T23:59:59.000Z
Nasser, S. , 2010. Stress-wave energy management throughNemat-Nasser, Stress-wave energy management through materialconstitute pressure wave energy and/or shear wave energy.
Wave-Corpuscle Mechanics for Electric Charges
Babin, Anatoli; Figotin, Alexander
2010-01-01T23:59:59.000Z
superposition in nonlinear wave dynamics. Rev. Math. Phys.6. Babin, A. , Figotin, A. : Wave-corpuscle mechanics forV. , Fortunato, D. : Solitary waves in the nonlinear wave
Plasma momentum meter for momentum flux measurements
Zonca, Fulvio (Rome, IT); Cohen, Samuel A. (Hopewell, NJ); Bennett, Timothy (Princeton, NJ); Timberlake, John R. (Allentown, NJ)
1993-01-01T23:59:59.000Z
Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.
Dual neutron flux/temperature measurement sensor
Mihalczo, John T. (Oak Ridge, TN); Simpson, Marc L. (Knoxville, TN); McElhaney, Stephanie A. (Oak Ridge, TN)
1994-01-01T23:59:59.000Z
Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.
Classical and quantum flux energy conditions
Martin-Moruno, Prado
2013-01-01T23:59:59.000Z
The classical energy conditions are known to not be fundamental physics -- they are typically violated by semiclassical quantum effects. Consequently, some effort has gone into finding possible semiclassical replacements for the classical energy conditions -- the most well developed being the Ford-Roman quantum inequalities. In the current article we shall instead develop classical and quantum versions of a "flux energy condition" (FEC and QFEC) based on the notion of constraining the possible fluxes measured by timelike observers. The classical FEC will be seen to be satisfied by some quantum states, while its quantum analogue (the QFEC) is satisfied under a rather wide range of conditions.
Dual neutron flux/temperature measurement sensor
Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.
1994-10-04T23:59:59.000Z
Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.
Harmonic generation of gravitational wave induced Alfven waves
Mats Forsberg; Gert Brodin
2007-11-26T23:59:59.000Z
Here we consider the nonlinear evolution of Alfven waves that have been excited by gravitational waves from merging binary pulsars. We derive a wave equation for strongly nonlinear and dispersive Alfven waves. Due to the weak dispersion of the Alfven waves, significant wave steepening can occur, which in turn implies strong harmonic generation. We find that the harmonic generation is saturated due to dispersive effects, and use this to estimate the resulting spectrum. Finally we discuss the possibility of observing the above process.
Imaging wave-penetrable objects in a finite depth ocean
Zou, Jun
Imaging wave-penetrable objects in a finite depth ocean Keji Liu Yongzhi Xu Jun Zou Abstract. We- penetrable inhomogeneous medium in a 3D finite depth ocean. The method is based on a scat- tering analysis extend the direct sampling method proposed in [13] to image a wave- penetrable inhomogeneous medium
Theory of High Frequency Acoustic Wave Scattering by Turbulent Flames
Lieuwen, Timothy C.
combustion processes that occur in a wide range of processing, power generating and propulsion applicationsTheory of High Frequency Acoustic Wave Scattering by Turbulent Flames TIM LIEUWEN* School an analysis of acoustic wave scattering by turbulent premixed flames with moving, convoluted fronts that have
WAVE-VORTEX INTERACTIONS IN THE ATMOSPHERE, AND CLIMATE
Al Hanbali, Ahmad
WAVE-VORTEX INTERACTIONS IN THE ATMOSPHERE, AND CLIMATE PREDICTION Onno Bokhove Numerical Analysis, The Netherlands o.bokhove@math.utwente.nl Abstract Can we construct an accurate atmospheric climate model parcel dynamics, linear modes, balan- ced models, gravity waves, weather and climate prediction
Electromagnetic Wave Dynamics in
Kaiser, Robin
Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases Robin Kaiser and Mark D. Havey Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases #12;39 E xperimental developments permit in the transport proper- ties of electromagnetic radiation in strongly scattering random media. Even in weakly
Bieber, Michael
CATCHING THE FOURTH WAVE YOU MAY HAVE RIDDEN THEM YOURSELF -- the swells that develop farther out beyond Toffler, the fourth wave -- biologi- cal intelligence and medical technology -- is on the horizon second and fourth nationally in terms of cities that receive the most research funds from the National
J X Zheng-Johansson; P-I Johansson
2006-08-27T23:59:59.000Z
The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity $v$, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed $c$ between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength ${\\mit\\Lambda}_d$$=(\\frac{v}{c}){\\mit\\Lambda}$ and phase velocity $c^2/v+v$ which resembles directly L. de Broglie's hypothetic phase wave. This phase wave in terms of transporting the particle mass at the speed $v$ and angular frequency ${\\mit\\Omega}_d=2\\pi v /{\\mit\\Lambda}_d$, with ${\\mit\\Lambda}_d$ and ${\\mit\\Omega}_d$ obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase) wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schr\\"odinger equation of an identical system.
by simultaneous observations of both temperature and horizontal wind with high vertical and temporal reso- lutions heat flux transport. These observed features are highly suggestive of wave breaking in these altitudes with a period of $1.5 hr, whose spectrum power was greatly reduced after the sudden horizontal wind a
-wave superconductor. The vortex is treated as a point flux tube, carrying flux of an auxiliary U(1) gauge fieldarXiv:cond-mat/0606001v222Jul2006 Electronic states near a quantum fluctuating point vortex in a d energy electronic states in the vicinity of a vortex under- going quantum zero-point motion in a d
MHD wave modes resolved in fine-scale chromospheric magnetic structures
Verth, G
2015-01-01T23:59:59.000Z
Within the last decade, due to significant improvements in the spatial and temporal resolution of chromospheric data, magnetohydrodynamic (MHD) wave studies in this fascinating region of the Sun's atmosphere have risen to the forefront of solar physics research. In this review we begin by reviewing the challenges and debates that have manifested in relation to MHD wave mode identification in fine-scale chromospheric magnetic structures, including spicules, fibrils and mottles. Next we go on to discuss how the process of accurately identifying MHD wave modes also has a crucial role to play in estimating their wave energy flux. This is of cardinal importance for estimating what the possible contribution of MHD waves is to solar atmospheric heating. Finally, we detail how such advances in chromospheric MHD wave studies have also allowed us, for the first time, to implement cutting-edge magnetoseismological techniques that provide new insight into the sub-resolution plasma structuring of the lower solar atmospher...
BIOLOGICAL ANALYSIS Mass Spectrometry
Greenaway, Alan
Testing Facility Rotating House Wave Basin Wind Tunnel Anechoic Chamber Reverberant Chamber Horizontal Analysis CHN Micro Analysis High Temperature Furnaces Micromechanics · Focused ion beam scanning electron chamber with Near field scanner Superconductor Chamber Microwave Network Analysers OPTICAL DIAGNOSTICS
FFTF (Fast Flux Test Facility) reactor shutdown system reliability reevaluation
Pierce, B.F.
1986-07-01T23:59:59.000Z
The reliability analysis of the Fast Flux Test Facility reactor shutdown system was reevaluated. Failure information based on five years of plant operating experience was used to verify original reliability numbers or to establish new ones. Also, system modifications made subsequent to performance of the original analysis were incorporated into the reevaluation. Reliability calculations and sensitivity analyses were performed using a commercially available spreadsheet on a personal computer. The spreadsheet was configured so that future failures could be tracked and compared with expected failures. A number of recommendations resulted from the reevaluation including both increased and decreased surveillance intervals. All recommendations were based on meeting or exceeding existing reliability goals. Considerable cost savings will be incurred upon implementation of the recommendations.
Recirculation in multiple wave conversions
Brizard, A.J.
2008-01-01T23:59:59.000Z
model lies with the simple wave energy conservation law itthe recirculation of wave energy introduces interference e?particles, the tertiary-wave energy may be negative and thus
Hybrid wave model and its applications
Yang, Jun
1998-01-01T23:59:59.000Z
forces. The sensitivity of wave forces to the cutoff frequency, that was found by Hu et al. (1995), is caused by the divergence of the MCM for broad-band and relatively steep spectra. Based on the analysis and simulation, vital conclusions...
D. A. Simakov
2015-04-28T23:59:59.000Z
In this article we study a particular method of detection of chirp signals from coalescing compact binary stars -- the so-called dynamical tuning, i.e. amplification of the signal via tracking of its instantaneous frequency by the tuning of the signal-recycled detector. A time-domain consideration developed for signal-recycled interferometers, in particular GEO 600, describes the signal and noise evolution in the non-stationary detector. Its non-stationarity is caused by motion of the signal recycling mirror, whose position defines the tuning of the detector. We prove that the shot noise from the dark port and optical losses remains white. The analysis of the transient effects shows that during the perfect tracking of the chirp frequency only transients from amplitude changes arise. The signal-to-noise-ratio gain, calculated in this paper, is ~ 16 for a shot-noise limited detector and ~ 4 for a detector with thermal noise.
Mapping the nano-Hertz gravitational wave sky
Neil J. Cornish; Rutger van Haasteren
2014-06-19T23:59:59.000Z
We describe a new method for extracting gravitational wave signals from pulsar timing data. We show that any gravitational wave signal can be decomposed into an orthogonal set of sky maps, with the number of maps equal to the number of pulsars in the timing array. These maps may be used as a basis to construct gravitational wave templates for any type of source, including collections of point sources. A variant of the standard Hellings-Downs correlation analysis is recovered for statistically isotropic signals. The template based approach allows us to probe potential anisotropies in the signal and produce maps of the gravitational wave sky.
Defect-free ultrahigh flux asymmetric membranes
Pinnau, Ingo (Austin, TX); Koros, William J. (Austin, TX)
1990-01-01T23:59:59.000Z
Defect-free, ultrahigh flux integrally-skinned asymmetric membranes having extremely thin surface layers (<0.2 .mu.m) comprised of glassy polymers are disclosed. The membranes are formed by casting an appropriate drope followed by forced convective evaporation of solvent to obtain a dry phase separated asymmetrical structure. The structure is then washed in a precipitation liquid and dried.
EUV mirror based absolute incident flux detector
Berger, Kurt W.
2004-03-23T23:59:59.000Z
A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.
Energies of Quantum QED Flux Tubes
H Weigel
2006-01-26T23:59:59.000Z
In this talk I present recent studies on vacuum polarization energies and energy densities induced by QED flux tubes. I focus on comparing three and four dimensional scenarios and the discussion of various approximation schemes in view of the exact treatment.
BROOKHAVEN NATIONAL LABORATORY'S HIGH FLUX BEAM REACTOR
Ohta, Shigemi
1 BROOKHAVEN NATIONAL LABORATORY'S HIGH FLUX BEAM REACTOR Compiled by S. M. Shapiro I. PICTORIAL with fiberglass insulation and a protective aluminum skin. The reactor vessel is shaped somewhat like a very large at the spherical end. It is located at the center of the reactor building and is surrounded by a lead and steel
Diagnosis of Ocean Mesoscale Eddy Tracer Fluxes
Fox-Kemper, Baylor
Diagnosis of Ocean Mesoscale Eddy Tracer Fluxes Baylor Fox-Kemper U. Colorado-Boulder, with Scott - 10,000 km, yrs->centuries) => resolved · Mesoscale variability (10 - 100 km, mo -> yrs) => resolved) => parameterized Boundary Layer Models Mesoscale resolving models Climate models Submesoscale variability Coupling
URANIUM MILL TAILINGS RADON FLUX CALCULATIONS
URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIÑON RIDGE PROJECT MONTROSE COUNTY, COLORADO an administration building, a 17-acre mill, a 30.5-acre tailings cell with phased expansion capacity to 91.5 acres, a 40-acre evaporation pond area with an expansion capacity to 80 acres, an approximately 6-acre ore
SYNOPTIC MAPPING OF CHROMOSPHERIC MAGNETIC FLUX
Jin, C. L. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Harvey, J. W.; Pietarila, A., E-mail: cljin@nao.cas.cn, E-mail: jharvey@nso.edu, E-mail: apietarila@nso.edu [National Solar Observatory, Tucson, AZ 85719 (United States)
2013-03-10T23:59:59.000Z
We used daily full-disk Ca II 854.2 nm magnetograms from the Synoptic Optical Long Term Investigations of the Sun (SOLIS) facility to study the chromospheric magnetic field from 2006 April through 2009 November. We determined and corrected previously unidentified zero offsets in the SOLIS magnetograms. By tracking the disk passages of stable unipolar regions, the measured net flux densities were found to systematically decrease from the disk center to the limb by a factor of about two. This decrease was modeled using a thin flux tube model with a difference in signal formation height between the center and limb sides. Comparison of photospheric and chromospheric observations shows that their differences are largely due to horizontal spreading of magnetic flux with increasing height. The north polar magnetic field decreased nearly linearly with time during our study period while the south polar field was nearly constant. We used the annual change in the viewing angle of the polar regions to estimate the radial and meridional components of the polar fields and found that the south polar fields were tilted away from the pole. Synoptic maps of the chromospheric radial flux density distribution were used as boundary conditions for extrapolation of the field from the chromosphere into the corona. A comparison of modeled and observed coronal hole boundaries and coronal streamer positions showed better agreement when using the chromospheric rather than the photospheric synoptic maps.
Adaptive Representation of Specular Light Flux
Montréal, Université de
Adaptive Representation of Specular Light Flux Normand Bri`ere Pierre Poulin D´epartement d in all but the simplest con- figurations. To capture their appearance, we present an adaptive approach based upon light beams. The coher- ence between light rays forming a light beam greatly re- duces
Flux tubes in the SU(3) vacuum
Mario S. Cardaci; Paolo Cea; Leonardo Cosmai; Rossella Falcone; Alessandro Papa
2011-09-30T23:59:59.000Z
We analyze the distribution of the chromoelectric field generated by a static quark-antiquark pair in the SU(3) vacuum. We find that the transverse profile of the flux tube resembles the dual version of the Abrikosov vortex field distribution and give an estimate of the London penetration length in the confined vacuum.
B. V. Ivanov
1997-05-21T23:59:59.000Z
A coordinate transformation is found which diagonalizes the axisymmetric pp-waves. Its effect upon concrete solutions, including impulsive and shock waves, is discussed.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Deiterding, Ralf
2011-01-01T23:59:59.000Z
Numerical simulation can be key to the understanding of the multidimensional nature of transient detonation waves. However, the accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme and the treatment of the nonequilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniquesmore »in practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under transient conditions, that is, under diffraction and for propagation through bends are presented. Some of the observed patterns are classified by shock polar analysis, and a diagram of the transition boundaries between possible Mach reflection structures is constructed.« less
Integrability of D1-brane on Group Manifold with Mixed Three Form Flux
Kluson, J
2015-01-01T23:59:59.000Z
We consider D1-brane as a natural probe of the group manifold with mixed three form fluxes. We determine Lax connection for given theory. Then we switch to the canonical analysis and calculate the Poisson brackets between spatial components of Lax connections and we argue for integrability of given theory.
Jalal Sarabadani; Timo Ikonen; Tapio Ala-Nissila
2014-09-30T23:59:59.000Z
We investigate the dynamics of pore-driven polymer translocation by theoretical analysis and molecular dynamics (MD) simulations. Using the tension propagation theory within the constant flux approximation we derive an explicit equation of motion for the tension front. From this we derive a scaling relation for the average translocation time $\\tau$, which captures the asymptotic result $\\tau \\propto N_0^{1+\
Role of the basin boundary conditions in gravity wave turbulence
Luc Deike; Benjamin Miquel; Pablo Gutiérrez-Matus; Timothée Jamin; Benoit Semin; Sébastien Aumaitre; Michael Berhanu; Eric Falcon; Félicien BONNEFOY
2014-12-16T23:59:59.000Z
Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation that highlights the important role of a large scale Fourier mode. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant is evaluated and found to be compatible with a recent theoretical value.
Role of the basin boundary conditions in gravity wave turbulence
Luc Deike; Benjamin Miquel; Pablo Gutiérrez-Matus; Timothée Jamin; Benoit Semin; Michael Berhanu; Eric Falcon; Félicien Bonnefoy
2015-09-02T23:59:59.000Z
Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation that highlights the important role of a large scale Fourier mode. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant is evaluated and found to be compatible with a recent theoretical value.
Analysis of Metabolic Pathways and Fluxes in a Newly Discovered
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23TribalInformation Access toTenEnvironmentdecays (Journal Article) |An update
Analysis of Metabolic Pathways and Fluxes in a Newly Discovered
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23TribalInformation Access toTenEnvironmentdecays (Journal Article) |An updateThermophilic and
Mechanical balance laws for fully nonlinear and weakly dispersive water waves
Henrik Kalisch; Zahra Khorsand; Dimitrios Mitsotakis
2015-08-20T23:59:59.000Z
The Serre-Green-Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations which approximates the full water wave problem. The system is an extension of the well known shallow-water system to the situation where the waves are long, but not so long that dispersive effects can be neglected. In the current work, the focus is on deriving mass, momentum and energy densities and fluxes associated with the Serre-Green-Naghdi system. These quantities arise from imposing balance equations of the same asymptotic order as the evolution equations. In the case of an even bed, the conservation equations are satisfied exactly by the solutions of the Serre-Green-Naghdi system. The case of variable bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the corresponding counterparts in both the Boussinesq and the shallow-water scaling. One consequence of the present analysis is that the energy loss appearing in the shallow-water theory of undular bores is fully compensated by the emergence of oscillations behind the bore front. The situation is analyzed numerically by approximating solutions of the Serre-Green-Naghdi equations using a finite-element discretization coupled with an adaptive Runge-Kutta time integration scheme, and it is found that the energy is indeed conserved nearly to machine precision. As a second application, the shoaling of solitary waves on a plane beach is analyzed. It appears that the Serre-Green-Naghdi equations are capable of predicting both the shape of the free surface and the evolution of kinetic and potential energy with good accuracy in the early stages of shoaling.
EVIDENCE FOR THE PHOTOSPHERIC EXCITATION OF INCOMPRESSIBLE CHROMOSPHERIC WAVES
Morton, R. J.; Verth, G.; Fedun, V.; Erdelyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Shelyag, S., E-mail: richard.morton@northumbria.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Main Physics Building, Queen's University Belfast, Belfast, County Antrim BT7 1NN (United Kingdom)
2013-05-01T23:59:59.000Z
Observing the excitation mechanisms of incompressible transverse waves is vital for determining how energy propagates through the lower solar atmosphere. We aim to show the connection between convectively driven photospheric flows and incompressible chromospheric waves. The observations presented here show the propagation of incompressible motion through the quiet lower solar atmosphere, from the photosphere to the chromosphere. We determine photospheric flow vectors to search for signatures of vortex motion and compare results to photospheric flows present in convective simulations. Further, we search for the chromospheric response to vortex motions. Evidence is presented that suggests incompressible waves can be excited by the vortex motions of a strong magnetic flux concentration in the photosphere. A chromospheric counterpart to the photospheric vortex motion is also observed, presenting itself as a quasi-periodic torsional motion. Fine-scale, fibril structures that emanate from the chromospheric counterpart support transverse waves that are driven by the observed torsional motion. A new technique for obtaining details of transverse waves from time-distance diagrams is presented and the properties of transverse waves (e.g., amplitudes and periods) excited by the chromospheric torsional motion are measured.
THE EVOLUTION OF SOLAR FLUX FROM 0.1 nm TO 160 {mu}m: QUANTITATIVE ESTIMATES FOR PLANETARY STUDIES
Claire, Mark W. [School of Environmental Sciences, University of East Anglia, Norwich, UK NR4 7TJ (United Kingdom); Sheets, John; Meadows, Victoria S. [Virtual Planetary Laboratory and Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Cohen, Martin [Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Ribas, Ignasi [Institut de Ciencies de l'Espai (CSIC-IEEC), Facultat de Ciencies, Torre C5 parell, 2a pl, Campus UAB, E-08193 Bellaterra (Spain); Catling, David C., E-mail: M.Claire@uea.ac.uk [Virtual Planetary Laboratory and Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195 (United States)
2012-09-20T23:59:59.000Z
Understanding changes in the solar flux over geologic time is vital for understanding the evolution of planetary atmospheres because it affects atmospheric escape and chemistry, as well as climate. We describe a numerical parameterization for wavelength-dependent changes to the non-attenuated solar flux appropriate for most times and places in the solar system. We combine data from the Sun and solar analogs to estimate enhanced UV and X-ray fluxes for the young Sun and use standard solar models to estimate changing visible and infrared fluxes. The parameterization, a series of multipliers relative to the modern top of the atmosphere flux at Earth, is valid from 0.1 nm through the infrared, and from 0.6 Gyr through 6.7 Gyr, and is extended from the solar zero-age main sequence to 8.0 Gyr subject to additional uncertainties. The parameterization is applied to a representative modern day flux, providing quantitative estimates of the wavelength dependence of solar flux for paleodates relevant to the evolution of atmospheres in the solar system (or around other G-type stars). We validate the code by Monte Carlo analysis of uncertainties in stellar age and flux, and with comparisons to the solar proxies {kappa}{sup 1} Cet and EK Dra. The model is applied to the computation of photolysis rates on the Archean Earth.
Long wave expansions for water waves over random topography
Craig, Walter
Long wave expansions for water waves over random topography Anne de Bouard1 , Walter Craig2 interacting with the random bottom. We show that the resulting influence of the random topography is expressed numbers: 76B15, 35Q53, 76M50, 60F17 Keywords :Water waves, random topography, long wave asymptotics #12
Shallow Water Waves and Solitary Waves Willy Hereman
Hereman, Willy A.M.
. Water Wave Experiments and Observations VII. Future Directions VIII. Bibliography Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depthShallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer
WAVE ENERGY RESOURCE CHARACTERIZATION US NAVY WAVE ENERGY TEST SITE
WAVE ENERGY RESOURCE CHARACTERIZATION AT THE US NAVY WAVE ENERGY TEST SITE AND OTHER LOCATIONS hindcasting from surface winds provides an important source of information for wave energy resource assessment the US Navy Wave Energy Test Site (WETS) offshore of the Marine Corps Base in Kaneohe, Oahu. One
The effect of nonuniform axial heat flux distribution on the critical heat flux
Todreas, Neil E.
1965-01-01T23:59:59.000Z
A systematic experimental and analytic investigation of the effect of nonuniform axial heat flux distribution on critical heat rilux was performed with water in the quality condition. Utilizing a model which ascribes the ...
The Third Wave: Innovation and Strategic Military Capacity in the Future
COWHEY, Peter
2013-01-01T23:59:59.000Z
APRIL 2013 The Third Wave: Innovation and Strategic Militaryassumes that the balance of innovation capacity matters forThe analysis treats innovation as the successful
Instantaneous Baseline Damage Detection using a Low Power Guided Waves System
Ha, Dong S.
Instantaneous Baseline Damage Detection using a Low Power Guided Waves System #12;2 can produce information. On the use of the instantaneous baseline SHM method, a low-power guided waves system developed) analysis is carried out on the DSP module of the low power guided waves system. Finally, effects of Lamb
A study of wind waves in the Gulf Intracoastal Waterway near the Arkansas National Wildlife Refuge
Hershberger, Darla Anne
1993-01-01T23:59:59.000Z
of the wind waves and ship induced water motions. The wind wave analysis is examined in this thesis with a brief summary of the ship induced water motions. The wind wave characteristics were measured at the refuge and are compared to the characteristics...
Deflection microwave and millimeter-wave amplifiers
Tang., C.M. [Naval Research Lab., Washington, DC (United States)] [Naval Research Lab., Washington, DC (United States); Lau, Y.Y. [Univ. of Michigan, Ann Arbor, MI (United States)] [Univ. of Michigan, Ann Arbor, MI (United States); Swyden, T.A. [FM Technologies, Inc., Fairfax, VA (United States)] [FM Technologies, Inc., Fairfax, VA (United States)
1994-03-01T23:59:59.000Z
A new class of microwave and millimeter-wave amplifiers, called deflectron amplifiers, which are based on the deflection of low voltage electron beams in a microstructure were analyzed. This concept may be applied in two ways: as microelectronic amplifiers or as bunched beam cathodes to power conventional amplifier configurations such as klystrodes and traveling wave tubes. Estimates for gain and efficiency are obtained from a circuit analysis. Particle codes are used to test the viability of the concept. Frequencies of operation are projected up to a few tens of GHz for microelectronic amplifiers and up to {approx}80 GHz for power amplifiers 29 refs., 5 figs.
Soft Capacitors for Wave Energy Harvesting
Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jørgen Jørgensen; Guggi Kofod
2011-10-14T23:59:59.000Z
Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.
Evolution of Rogue Waves in Interacting Wave Systems
A. Grönlund; B. Eliasson; M. Marklund
2009-04-03T23:59:59.000Z
Large amplitude water waves on deep water has long been known in the sea faring community, and the cause of great concern for, e.g., oil platform constructions. The concept of such freak waves is nowadays, thanks to satellite and radar measurements, well established within the scientific community. There are a number of important models and approaches for the theoretical description of such waves. By analyzing the scaling behavior of freak wave formation in a model of two interacting waves, described by two coupled nonlinear Schroedinger equations, we show that there are two different dynamical scaling behaviors above and below a critical angle theta_c of the direction of the interacting waves below theta_c all wave systems evolve and display statistics similar to a wave system of non-interacting waves. The results equally apply to other systems described by the nonlinear Schroedinger equations, and should be of interest when designing optical wave guides.
Kim, Seoktae
2006-04-12T23:59:59.000Z
New millimeter wave interferometric, multifunctional sensors have been studied for industrial sensing applications: displacement measurement, liquid-level gauging and velocimetry. Two types of configuration were investigated to implement the sensor...
Hietala, Vincent M. (Placitas, NM); Vawter, Gregory A. (Albuquerque, NM)
1993-01-01T23:59:59.000Z
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.
Minnesota, University of
LABORATORY VII: WAVE OPTICS Lab VII - 1 In this lab, you will solve problems in ways that take-like behavior. These conditions may be less familiar to you than the conditions for which geometrical optics
Hietala, V.M.; Vawter, G.A.
1993-12-14T23:59:59.000Z
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.
Halliday, David Fraser
2009-01-01T23:59:59.000Z
This thesis concerns the application of seismic interferometry to surface waves. Seismic interferometry is the process by which the wavefield between two recording locations is estimated, resulting in new recordings at ...
Wave localization as a manifestation of ray chaos in underwater acoustics
A. Iomin; Yu. Bliokh
2007-06-03T23:59:59.000Z
Wave chaos is demonstrated by studying a wave propagation in a periodically corrugated wave-guide. In the limit of a short wave approximation (SWA) the underlying description is related to the chaotic ray dynamics. In this case the control parameter of the problem is characterized by the corrugation amplitude and the SWA parameter. The considered model is fairly suitable and tractable for the analytical analysis of a wave localization length. The number of eigenmodes characterized the width of the localized wave packet is estimated analytically.
Flow instabilities of magnetic flux tubes IV. Flux storage in the solar overshoot region
Isik, Emre
2009-01-01T23:59:59.000Z
We consider the effects of material flows on the dynamics of toroidal magnetic flux tubes located close to the base of the solar convection zone, initially within the overshoot region. The problem is to find the physical conditions in which magnetic flux can be stored for periods comparable to the dynamo amplification time, which is of the order of a few years. We carry out nonlinear numerical simulations to investigate the stability and dynamics of thin flux tubes subject to perpendicular and longitudinal flows. We compare the simulations with the results of simplified analytical approximations. We determine ranges of the flow parameters for which a linearly Parker-stable magnetic flux tube is stored in the middle of the overshoot region for a period comparable to the dynamo amplification time. The residence time for magnetic flux tubes with fluxes of 2x10^{21} Mx in the convective overshoot layer is comparable to the dynamo amplification time, provided that the average speed and the duration of the downflow...
Wave Propagation in Multiferroic Materials
Keller, Scott Macklin
2013-01-01T23:59:59.000Z
Waves in Magnetoelectric Materials . . . Need forApplication of Multiferroic Materials to Receive AntennaMaterials . . . . . . . . . . . . . . . . . . . . . . . . .
An Index for the Dirac Operator on D3 Brane withBackground Fluxes
Bergshoeff, Eric; /Groningen U.; Kallosh, Renata; /Stanford U., Phys. Dept. /Kyoto U., Yukawa Inst., Kyoto; Kashani-Poor, Amir-Kian; /Stanford U., Phys. Dept. /SLAC; Sorokin, Dmitri; /INFN, Padua /Padua U.; Tomasiello, Alessandro; /Stanford U., Phys. Dept.
2005-08-03T23:59:59.000Z
We study the problem of instanton generated superpotentials in Calabi-Yau orientifold compactifications directly in type IIB string theory. To this end, we derive the Dirac equation on a Euclidean D3 brane in the presence of background fluxes. We propose an index which governs whether the generation of a superpotential in the effective 4d theory by D3 brane instantons is possible. Applying the formalism to various classes of examples, including the K3 x T{sup 2}/Z{sub 2} orientifold, in the absence and presence of fluxes, we show that our results are consistent with conclusions attainable via duality from an M-theory analysis.
MAGNETIC FLUX CONSERVATION IN THE HELIOSHEATH
Richardson, J. D. [Kavli Center for Astrophysics and Space Science Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States); Decker, R. B. [Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723 (United States); Drake, J. F. [Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Ness, N. F. [Institute for Astrophysics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Opher, M., E-mail: jdr@space.mit.edu, E-mail: lburlagahsp@verizon.net, E-mail: robert.decker@jhuapl.edu, E-mail: drake@umd.edu, E-mail: nfnudel@yahoo.com, E-mail: mopher@bu.edu [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States)
2013-01-01T23:59:59.000Z
Voyager 1(V1) and Voyager 2(V2) have observed heliosheath plasma since 2005 December and 2007 August, respectively. The observed speed profiles are very different at the two spacecrafts. Speeds at V1 decreased to zero in 2010 while the average speed at V2 is a constant 150 km s{sup -1} with the direction rotating tailward. The magnetic flux is expected to be constant in these heliosheath flows. We show that the flux is constant at V2 but decreases by an order of magnitude at V1, even after accounting for divergence of the flows and changes in the solar field. If reconnection were responsible for this decrease, the magnetic field would lose 70% of its free energy to reconnection and the energy density released would be 0.6 eV cm{sup -3}.
Atmospheric State, Cloud Microphysics and Radiative Flux
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Mace, Gerald
Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.
ARM - VAP Product - lblch1flux
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtAProductstwrmr1twrmrProductsbefluxbeflux1long Documentation DatauthProductslbllblch1flux Documentation
ARM - VAP Product - lblch2flux
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtAProductstwrmr1twrmrProductsbefluxbeflux1long Documentation DatauthProductslbllblch1flux
Coupling spin ensembles via superconducting flux qubits
Yueyin Qiu; Wei Xiong; Lin Tian; J. Q. You
2014-09-10T23:59:59.000Z
We study a hybrid quantum system consisting of spin ensembles and superconducting flux qubits, where each spin ensemble is realized using the nitrogen-vacancy centers in a diamond crystal and the nearest-neighbor spin ensembles are effectively coupled via a flux qubit.We show that the coupling strengths between flux qubits and spin ensembles can reach the strong and even ultrastrong coupling regimes by either engineering the hybrid structure in advance or tuning the excitation frequencies of spin ensembles via external magnetic fields. When extending the hybrid structure to an array with equal coupling strengths, we find that in the strong-coupling regime, the hybrid array is reduced to a tight-binding model of a one-dimensional bosonic lattice. In the ultrastrong-coupling regime, it exhibits quasiparticle excitations separated from the ground state by an energy gap. Moreover, these quasiparticle excitations and the ground state are stable under a certain condition that is tunable via the external magnetic field. This may provide an experimentally accessible method to probe the instability of the system.
Surface Magnetic Flux Maintenance In Quiet Sun
Y. Iida
2012-12-27T23:59:59.000Z
We investigate surface processes of magnetic patches, namely merging, splitting, emergence, and cancellation, by using an auto-detection technique. We find that merging and splitting are locally predominant in the surface level, while the frequencies of the other two are less by one or two orders of magnitude. The frequency dependences on flux con- tent of surface processes are further investigated. Based on these observations, we discuss a possible whole picture of the maintenance. Our conclusion is that the photospheric magnetic field structure, especially its power-law nature, is maintained by the processes locally in the surface not by the interactions between different altitudes. We suggest a scenario of the flux maintenance as follows: The splitting and merging play a crucial role for the generation of the power-law distribution, not the emergence nor cancellation do. This power-law distribution results in another power-law one of the cancellation with an idea of the random convective transport. The cancellation and emergence have a common value for the power-law indices in their frequency distributions, which may suggest a "recycle of fluxes by submergence and re-emergence".
Characterizing Vertical Mass Flux Profiles in Aeolian Saltation Systems
Farrell, Eugene
2012-07-16T23:59:59.000Z
This dissertation investigates characteristics of the vertical distributions of mass flux observed in field and laboratory experiments. Thirty vertical mass flux profiles were measured during a field experiment in Jericoacoara, Brazil from October...
High Flux Isotope Reactor named Nuclear Historic Landmark | ornl...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
High Flux Isotope Reactor named Nuclear Historic Landmark The High Flux Isotope Reactor vessel at Oak Ridge National Laboratory resides in a pool of water illuminated by the blue...
The transverse and rotational motions of magnetohydrodynamic kink waves in the solar atmosphere
Goossens, M.; Van Doorsselaere, T. [Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, bus 2400, B-3001 Herverlee (Belgium); Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)
2014-06-10T23:59:59.000Z
Magnetohydrodynamic (MHD) kink waves have now been observed to be ubiquitous throughout the solar atmosphere. With modern instruments, they have now been detected in the chromosphere, interface region, and corona. The key purpose of this paper is to show that kink waves do not only involve purely transverse motions of solar magnetic flux tubes, but the velocity field is a spatially and temporally varying sum of both transverse and rotational motion. Taking this fact into account is particularly important for the accurate interpretation of varying Doppler velocity profiles across oscillating structures such as spicules. It has now been shown that, as well as bulk transverse motions, spicules have omnipresent rotational motions. Here we emphasize that caution should be used before interpreting the particular MHD wave mode/s responsible for these rotational motions. The rotational motions are not necessarily signatures of the classic axisymmetric torsional Alfvén wave alone, because kink motion itself can also contribute substantially to varying Doppler velocity profiles observed across these structures. In this paper, the displacement field of the kink wave is demonstrated to be a sum of its transverse and rotational components, both for a flux tube with a discontinuous density profile at its boundary, and one with a more realistic density continuum between the internal and external plasma. Furthermore, the Doppler velocity profile of the kink wave is forward modeled to demonstrate that, depending on the line of sight, it can either be quite distinct or very similar to that expected from a torsional Alfvén wave.
Kinetic Alfven Waves at the Magnetopause--Mode Conversion, Transport and Formation of LLBL
Jay R. Johnson; C.Z. Cheng
2002-05-31T23:59:59.000Z
At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity [Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D {approx} 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 > 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity [Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D {approx} 10{sup 9}m{sup 2}/s) can occur. Moreover, if the wave amplitude is sufficiently large (B{sub wave}/B{sub 0} > 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.
Remote sensing of soil radionuclide fluxes in a tropical ecosystem
Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.
1980-11-06T23:59:59.000Z
We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant /sup 137/Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose.
Performance and safety parameters for the high flux isotope reactor
Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)
2012-07-01T23:59:59.000Z
A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)
Performance and Safety Parameters for the High Flux Isotope Reactor
Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC
2012-01-01T23:59:59.000Z
A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.
First measurements of the flux integral with the NIST-4 watt balance
Haddad, D; Chao, L S; Cao, A; Sineriz, G; Pratt, J R; Newell, D B; Schlamminger, S
2015-01-01T23:59:59.000Z
In early 2014, construction of a new watt balance, named NIST-4, has started at the National Institute of Standards and Technology (NIST). In a watt balance, the gravitational force of an unknown mass is compensated by an electromagnetic force produced by a coil in a magnet system. The electromagnetic force depends on the current in the coil and the magnetic flux integral. Most watt balances feature an additional calibration mode, referred to as velocity mode, which allows one to measure the magnetic flux integral to high precision. In this article we describe first measurements of the flux integral in the new watt balance. We introduce measurement and data analysis techniques to assess the quality of the measurements and the adverse effects of vibrations on the instrument.
Tang, Yinjie; Martin, Hector Garcia; Deutschbauer, Adam; Feng, Xueyang; Huang, Rick; Llora, Xavier; Arkin, Adam; Keasling, Jay D.
2009-04-21T23:59:59.000Z
An environmentally important bacterium with versatile respiration, Shewanella oneidensis MR-1, displayed significantly different growth rates under three culture conditions: minimal medium (doubling time {approx} 3 hrs), salt stressed minimal medium (doubling time {approx} 6 hrs), and minimal medium with amino acid supplementation (doubling time {approx}1.5 hrs). {sup 13}C-based metabolic flux analysis indicated that fluxes of central metabolic reactions remained relatively constant under the three growth conditions, which is in stark contrast to the reported significant changes in the transcript and metabolite profiles under various growth conditions. Furthermore, ten transposon mutants of S. oneidensis MR-1 were randomly chosen from a transposon library and their flux distributions through central metabolic pathways were revealed to be identical, even though such mutational processes altered the secondary metabolism, for example, glycine and C1 (5,10-Me-THF) metabolism.
Local Runup Amplification By Resonant Wave Interactions
Stefanakis, Themistoklis; Dutykh, Denys
2011-01-01T23:59:59.000Z
Until now the analysis of long wave runup on a plane beach has been focused on finding its maximum value, failing to capture the existence of resonant regimes. One-dimensional numerical simulations in the framework of the Nonlinear Shallow Water Equations (NSWE) are used to investigate the Boundary Value Problem (BVP) for plane and non-trivial beaches. Monochromatic waves, as well as virtual wave-gage recordings from real tsunami simulations, are used as forcing conditions to the BVP. Resonant phenomena between the incident wavelength and the beach slope are found to occur, which result in enhanced runup of non-leading waves. The evolution of energy reveals the existence of a quasi-periodic state for the case of sinusoidal waves, the energy level of which, as well as the time required to reach that state, depend on the incident wavelength for a given beach slope. Dispersion is found to slightly reduce the value of maximum runup, but not to change the overall picture. Runup amplification occurs for both leadin...
MAPPING HIGH-RESOLUTION LAND SURFACE RADIATIVE FLUXES FROM MODIS
Liang, Shunlin
Chapter 6 MAPPING HIGH-RESOLUTION LAND SURFACE RADIATIVE FLUXES FROM MODIS: ALGORITHMS.1007/978-1-4419-0050-0_6, #12;142 Mapping Radiative Fluxes There are several global radiative flux data sets derived from either. For example, the CERES team uses the predefined albedo and emissivity maps to calculate surface radiative
Spheromak reactor with poloidal flux-amplifying transformer
Furth, Harold P. (Princeton, NJ); Janos, Alan C. (East Windsor, NJ); Uyama, Tadao (Osaka, JP); Yamada, Masaaki (Lawrenceville, NJ)
1987-01-01T23:59:59.000Z
An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.
The Complete Flux Scheme for Spherically Symmetric Conservation Laws
Eindhoven, Technische Universiteit
and M.J.H. Anthonissen Eindhoven University of Technology Department of Mathematics and Computer Science for computing the numerical fluxes. The approximation for the flux is based on the complete differential to a spherically symmet- ric conservation law of advection-diffusion-reaction type. For the numer- ical flux we use
A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime
Enno Harms; Sebastiano Bernuzzi; Alessandro Nagar; Anil Zenginoglu
2014-11-25T23:59:59.000Z
We present a new approach to solve the 2+1 Teukolsky equation for gravitational perturbations of a Kerr black hole. Our approach relies on a new horizon penetrating, hyperboloidal foliation of Kerr spacetime and spatial compactification. In particular, we present a framework for waveform generation from point-particle perturbations. Extensive tests of a time domain implementation in the code {\\it Teukode} are presented. The code can efficiently deliver waveforms at future null infinity. As a first application of the method, we compute the gravitational waveforms from inspiraling and coalescing black-hole binaries in the large-mass-ratio limit. The smaller mass black hole is modeled as a point particle whose dynamics is driven by an effective-one-body-resummed analytical radiation reaction force. We compare the analytical angular momentum loss to the gravitational wave angular momentum flux. We find that higher-order post-Newtonian corrections are needed to improve the consistency for rapidly spinning binaries. Close to merger, the subdominant multipolar amplitudes (notably the $m=0$ ones) are enhanced for retrograde orbits with respect to prograde ones. We argue that this effect mirrors nonnegligible deviations from circularity of the dynamics during the late-plunge and merger phase. We compute the gravitational wave energy flux flowing into the black hole during the inspiral using a time-domain formalism proposed by Poisson. Finally, a self-consistent, iterative method to compute the gravitational wave fluxes at leading-order in the mass of the particle is presented. For a specific case study with $\\hat{a}$=0.9, a simulation that uses the consistent flux differs from one that uses the analytical flux by $\\sim35$ gravitational wave cycles over a total of about $250$ cycles. In this case the horizon absorption accounts for about $+5$ gravitational wave cycles.
Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels
Li, Ting; Ji, Haisheng
2015-01-01T23:59:59.000Z
We make a comparative analysis for two filaments that showed quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) are carried out to analyze the two filaments on 2013 August 17-20 and September 29. The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4*10^21 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed within 3 days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2*10^20 Mx, about one ...
Geometrical investigation of the kinetic evolution of the magnetic field in a periodic flux rope
Restante, A. L.; Lapenta, G. [Afdeling Plasma-astrofysica, Departement Wiskunde, KULeuven, University of Leuven, Leuven (Belgium)] [Afdeling Plasma-astrofysica, Departement Wiskunde, KULeuven, University of Leuven, Leuven (Belgium); Markidis, S. [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden)] [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden); Intrator, T. [Los Alamos National Laboratory, M.S. E526, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, M.S. E526, Los Alamos, New Mexico 87545 (United States)
2013-08-15T23:59:59.000Z
Flux ropes are bundles of magnetic field wrapped around an axis. Many laboratory, space, and astrophysics processes can be represented using this idealized concept. Here, a massively parallel 3D kinetic simulation of a periodic flux rope undergoing the kink instability is studied. The focus is on the topology of the magnetic field and its geometric structures. The analysis considers various techniques such as Poincaré maps and the quasi-separatrix layer (QSL). These are used to highlight regions with expansion or compression and changes in the connectivity of magnetic field lines and consequently to outline regions where heating and current may be generated due to magnetic reconnection. The present study is, to our knowledge, the first QSL analysis of a fully kinetic 3D particle in cell simulation and focuses the existing QSL method of analysis to periodic systems.
The energy of high frequency waves in the low solar Chromosphere
Aleksandra Andic
2007-03-28T23:59:59.000Z
High frequency acoustic waves have been suggested as a source of mechanical heating in the chromosphere. In this work the radial component of waves in the frequency interval 22mHz to 1mHz are investigated. Observations were performed using 2D spectroscopy in the spectral lines of Fe I 543.45nm and Fe I 543.29nm at the Vacuum Tower Telescope, Tenerife, Spain. Speckle reconstruction has been applied to the observations. We have used Fourier and wavelet techniques to identify oscillatory power. The energy flux is estimated assuming that all observed oscillations are acoustics running waves. We find that the estimated energy flux is not sufficient to cover the chromospheric radiative losses.
Marsh, S.P.
1988-03-08T23:59:59.000Z
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Marsh, S.P.
1987-03-12T23:59:59.000Z
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)
1991-01-01T23:59:59.000Z
A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.
Yerganian, Simon Scott (Lee's Summit, MO)
2003-02-11T23:59:59.000Z
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
Yerganian, Simon Scott (Lee's Summit, MO)
2001-07-17T23:59:59.000Z
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
AmeriFlux Network Data from the ORNL AmeriFlux Website
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
The AmeriFlux network was established in 1996 to provide continuous observations of ecosystem level exchanges of CO2, water, energy and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. It is fed by sites from North America, Central America, and South America. DOE's CDIAC stores and maintains AmeriFlux data, and this web site explains the different levels of data available there, with links to the CDIAC ftp site. A separate web-based data interface is also provided; it allows users to graph, query, and download Level 2 data for up to four sites at a time. Data may be queried by site, measurement period, or parameter. More than 550 site-years of level 2 data are available from AmeriFlux sites through the interface.
Multiscale Problems: Numerical Analysis and Scientific Computing
Wirosoetisno, Djoko
/Transport Equations Alternative (Wind, Solar, Wave, . . . ) Weather and Climate Prediction Wave Energy Fuel CellsMultiscale Problems: Numerical Analysis and Scientific Computing with Applications in Energy inverse problems, data assimilation, stochastic differential equations Networks, compressed sensing
Microlocal Analysis of Thermoacoustic (or Multiwave) Tomography, III
Plamen Stefanov
2012-07-20T23:59:59.000Z
Microlocal Analysis of Thermoacoustic (or Multiwave). Tomography, III. Plamen Stefanov. Purdue University. TAT of brain imaging (discontinuous wave speed).
Millimeter-wave polarimetry instrumentation and analysis
Bierman, Evan M.
2011-01-01T23:59:59.000Z
tion using El-nods . . . . . . . . . . . . . . . . . . 4.1.4El-nod implemented with the FRMs turned on (top) shown withxix Figure 4.8: The el-nod magnitudes from four working FRM
Millimeter-wave polarimetry instrumentation and analysis
Bierman, Evan M.
2011-01-01T23:59:59.000Z
J. A. , Dotson, J. L. , Dowell, C. D. , Hildebrand, R. H. ,J. E. , Kirby, L. , Dowell, C. D. , Hildebrand, R. H. , &R. H. , Dotson, J. L. , Dowell, C. D. , Schleuning, D.
Schrijver, Carolus J.; Title, Alan M. [Lockheed Martin Advanced Technology Center, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Aulanier, Guillaume; Pariat, Etienne; Delannee, Cecile, E-mail: schrijver@lmsal.com, E-mail: title@lmsal.com, E-mail: guillaume.aulanier@obspm.fr, E-mail: etienne.pariat@obspm.fr, E-mail: ceaulanier@voila.fr [LESIA, Observatoire de Paris, CNRS, UPMC, Universite Paris Diderot, 5 Place Jules Janssen, 92190 Meudon (France)
2011-09-10T23:59:59.000Z
The 2011 February 15 X2.2 flare and associated Earth-directed halo coronal mass ejection were observed in unprecedented detail with high resolution in spatial, temporal, and thermal dimensions by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, as well as by instruments on the two STEREO spacecraft, then at near-quadrature relative to the Sun-Earth line. These observations enable us to see expanding loops from a flux-rope-like structure over the shearing polarity-inversion line between the central {delta}-spot groups of AR 11158, developing a propagating coronal front ('EIT wave'), and eventually forming the coronal mass ejection moving into the inner heliosphere. The observations support the interpretation that all of these features, including the 'EIT wave', are signatures of an expanding volume traced by loops (much larger than the flux rope only), surrounded by a moving front rather than predominantly wave-like perturbations; this interpretation is supported by previously published MHD models for active-region and global scales. The lateral expansion of the eruption is limited to the local helmet-streamer structure and halts at the edges of a large-scale domain of connectivity (in the process exciting loop oscillations at the edge of the southern polar coronal hole). The AIA observations reveal that plasma warming occurs within the expansion front as it propagates over quiet Sun areas. This warming causes dimming in the 171 A (Fe IX and Fe X) channel and brightening in the 193 and 211 A (Fe XII-XIV) channels along the entire front, while there is weak 131 A (Fe VIII and Fe XXI) emission in some directions. An analysis of the AIA response functions shows that sections of the front running over the quiet Sun are consistent with adiabatic warming; other sections may require additional heating which MHD modeling suggests could be caused by Joule dissipation. Although for the events studied here the effects of volumetric expansion are much more obvious than true wave phenomena, we discuss how different magnetic environments within and around the erupting region can lead to the signatures of either or both of these aspects.
Väänänen, Daavid; Volpe, Cristina, E-mail: vaananen@ipno.in2p3.fr, E-mail: volpe@ipno.in2p3.fr [Institut de Physique Nucléaire, F-91406 Orsay cedex, CNRS/IN2P3 and University of Paris-XI (France)
2011-10-01T23:59:59.000Z
Core-collapse supernova neutrinos undergo a variety of phenomena when they travel from the high neutrino density region and large matter densities to the Earth. We perform analytical calculations of the supernova neutrino fluxes including collective effects due to the neutrino-neutrino interactions, the Mikheev-Smirnov-Wolfenstein (MSW) effect due to the neutrino interactions with the background matter and decoherence of the wave packets as they propagate in space. We predict the numbers of one- and two-neutron charged and neutral-current electron-neutrino scattering on lead events. We show that, due to the energy thresholds, the ratios of one- to two-neutron events are sensitive to the pinching parameters of neutrino fluxes at the neutrinosphere, almost independently of the presently unknown neutrino properties. Besides, such events have an interesting sensitivity to the spectral split features that depend upon the presence/absence of energy equipartition among neutrino flavors. Our calculations show that a lead-based observatory like the Helium And Lead Observatory (HALO) has the potential to pin down important characteristics of the neutrino fluxes at the neutrinosphere, and provide us with information on the neutrino transport in the supernova core.
SU(2) Flux Distributions on Finite Lattices
Peng, Y; Peng, Yingcai; Haymaker, Richard W.
1993-01-01T23:59:59.000Z
We studied SU(2) flux distributions on four dimensional euclidean lattices with one dimension very large. By choosing the time direction appropriately we can study physics in two cases: one is finite volume in the zero temperature limit, another is finite temperature in the the intermediate to large volume limit. We found that for cases of beta > beta crit there is no intrinsic string formation. Our lattices with beta > beta crit belong to intermediate volume region, and the string tension in this region is due to finite volume effects. In large volumes we found evidence for intrinsic string formation.
Contactless heat flux control with photonic devices
Ben-Abdallah, Philippe
2015-01-01T23:59:59.000Z
The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.
Flux Power Incorporated | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorksVillagesourceEuromoney EnergyInformationEnergyInformationSystem- A CasesourceFlux
Semiconducting glasses with flux pinning inclusions
Johnson, William L. (Pasadena, CA); Poon, Siu-Joe (Palo Alto, CA); Duwez, Pol E. (Pasadena, CA)
1981-01-01T23:59:59.000Z
A series of amorphous superconducting glassy alloys containing 1% to 10% by volume of flux pinning crystalline inclusions have been found to have potentially useful properties as high field superconducting magnet materials. The alloys are prepared by splat cooling by the piston and anvil technique. The alloys have the composition (TM).sub.90-70 (M).sub.10-30 where TM is a transition metal selected from at least one metal of Groups IVB, VB, VIB, VIIB or VIIIB of the Periodic Table such as Nb, Mo, Ru, Zr, Ta, W or Re and M is at least one metalloid such as B, P, C, N, Si, Ge or Al.
Catching a Wave: Innovative Wave Energy Device Surfs for Power...
Broader source: Energy.gov (indexed) [DOE]
The Azura device sits 30m out from the Wave Energy Test Site (WETS) in Oahu. The Azura device sits 30m out from the Wave Energy Test Site (WETS) in Oahu. With support from the...
Real-time Water Waves with Wave Particles
Yuksel, Cem
2010-10-12T23:59:59.000Z
This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in ...
mm-Wave Phase Shifters and Switches
Adabi Firouzjaei, Ehsan
2010-01-01T23:59:59.000Z
combiners . . . . . . . . . . . 5.3 mm-Wave implementationfailed to predict current mm-wave design trend [1] . . . . .solutions . . . . . . . . mm-wave imaging for medical and
California Small Hydropower and Ocean Wave Energy
California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy............................................................................................................. 20 Wave Energy Conversion Technology
Guided wave monitoring of prestressing tendons
Nucera, Claudio
2010-01-01T23:59:59.000Z
and applications of ultrasonic waves. CRC series in pure andStrands by Guided Stress Waves, ASCE Journal of Materials inin Cable Stays via Guided Wave Magnetostrictive Ultrasonics,
mm-Wave Phase Shifters and Switches
Adabi Firouzjaei, Ehsan
2010-01-01T23:59:59.000Z
4.1.1 Slow wave transmissioncombiners . . . . . . . . . . . 5.3 mm-Wave implementationfailed to predict current mm-wave design trend [1] . . . . .
Soliton Turbulence in Shallow Water Ocean Surface Waves
Costa, Andrea; Resio, Donald T; Alessio, Silvia; Chrivì, Elisabetta; Saggese, Enrica; Bellomo, Katinka; Long, Chuck E
2014-01-01T23:59:59.000Z
We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm, for the first time, the presence of $soliton$ $turbulence$ in ocean waves. Soliton turbulence is an exotic form of nonlinear wave motion where low frequency energy may also be viewed as a $dense$ $soliton$ $gas$, described theoretically by the soliton limit of the Korteweg-deVries (KdV) equation, a $completely$ $integrable$ $soliton$ $system$: Hence the phrase "soliton turbulence" is synonymous with "integrable soliton turbulence." For periodic/quasiperiodic boundary conditions the $ergodic$ $solutions$ of KdV are exactly solvable by $finite$ $gap$ $theory$ (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the energetic peak of a storm have low frequency power spectra that behave as $\\sim\\omega^{-1}$. We use the linear Fourier transform to estimate this power law from the power spectrum and to filter $densely$ $packed$ $soliton$ $wave$ $trains$ from the data. We apply ...
Wave refraction and wave energy on Cayo Arenas
Walsh, Donald Eugene
1962-01-01T23:59:59.000Z
WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...
Wave refraction and wave energy on Cayo Arenas
Walsh, Donald Eugene
1962-01-01T23:59:59.000Z
WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...
PROPERTIES OF MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR PHOTOSPHERE OBTAINED WITH HINODE
Fujimura, D. [Department of Earth and Planetary Science, School of Science, University of Tokyo, Bunkyoku, 113-0033 Tokyo (Japan); Tsuneta, S. [National Astronomical Observatory, 2-21-1, Osawa, Mitaka, 181-8588 Tokyo (Japan)], E-mail: daisuke.fujimura@nao.ac.jp
2009-09-10T23:59:59.000Z
We report the observations of the magnetohydrodynamic (MHD) waves propagating along magnetic flux tubes in the solar photosphere. We identified 20 isolated strong peaks (8 peaks for pores and 12 peaks for intergranular magnetic structure) in the power spectra of the line-of-sight (LOS) magnetic flux, the LOS velocity, and the intensity for 14 different magnetic concentrations. The observation is performed with the spectro-polarimeter of the Solar Optical Telescope aboard the Hinode satellite. The oscillation periods are located in 3-6 minutes for the pores and in 4-9 minutes for the intergranular magnetic elements. These peaks correspond to the magnetic, the velocity, and the intensity fluctuation in time domain with root-mean-square amplitudes of 4-17 G (0.3%-1.2%), 0.03-0.12 km s{sup -1}, and 0.1%-1%, respectively. Phase differences between the LOS magnetic flux ({phi}{sub B}), the LOS velocity ({phi} {sub v}), the intensities of the line core ({phi}{sub I,core}), and the continuum intensity ({phi}{sub I,}c{sub ont}) have striking concentrations at around -90 deg. for {phi}{sub B} - {phi} {sub v} and {phi}{sub v} - {phi}{sub I,core}, around 180 deg. for {phi}{sub I,core} - {phi}{sub B}, and around 10 deg. for {phi} {sub I,core} - {phi}{sub I,cont}. Here, for example, {phi}{sub B} - {phi}{sub v} {approx} -90 deg. means that the velocity leads the magnetic field by a quarter of cycle. The observed phase relation between the magnetic and the photometric intensity fluctuations would not be consistent with that caused by the opacity effect, if the magnetic field strength decreases with height along the oblique LOS. We suggest that the observed fluctuations are due to longitudinal (sausage-mode) and/or transverse (kink-mode) MHD waves. The observed phase relation between the fluctuations in the magnetic flux and the velocity is consistent with the superposition of the ascending wave and the descending wave reflected at chromosphere/corona boundary (standing wave). Even with such reflected waves, the residual upward Poynting flux is estimated to be 2.7 x 10{sup 6} erg cm{sup -2} s{sup -1} for a case of the kink wave. Seismology of the magnetic flux tubes is possible to obtain various physical parameters from the observed period and amplitude of the oscillations.
Supersymmetric branes on curved spaces and fluxes
Triendl, Hagen
2015-01-01T23:59:59.000Z
We discuss general supersymmetric brane configurations in flux backgrounds of string and M-theory and derive a necessary condition for the worldvolume theory to be supersymmetric on a given curved manifold. This condition resembles very much the conditions found from coupling a supersymmetric field theory to off-shell supergravity but can be derived in any dimension and for up to sixteen supercharges. Apart from the topological twist, all couplings appearing in the supersymmetry condition are linked to fluxes in the bulk. We explicitly derive the condition for D3-, M2- and M5-branes, in which case the results are also useful for constructing holographic duals to the corresponding field theories. In $N=1$ setups we compare the supersymmetry conditions to those that arise by coupling the field theory to off-shell supergravity. We find that the couplings of both old and new minimal supergravity are simultaneously realized, indicating that off-shell supergravity should be coupled via the S-multiplet of 16/16 supe...
LONG WAVE EXPANSIONS FOR WATER WAVES OVER RANDOM TOPOGRAPHY
LONG WAVE EXPANSIONS FOR WATER WAVES OVER RANDOM TOPOGRAPHY ANNE DE BOUARD 1 , WALTER CRAIG 2 with the ran dom bottom. We show that the resulting influence of the random topography is expressed in terms of bottom topography a#ects the equations describing the limit of solutions in the long wave regime. We
Rossen I. Ivanov
2007-07-12T23:59:59.000Z
The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.
Menikoff, Ralph [Los Alamos National Laboratory
2012-04-03T23:59:59.000Z
Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.
Liu Wei; Nitta, Nariaki V.; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Ofman, Leon, E-mail: weiliu@lmsal.com [Department of Physics, Catholic University of America, Washingtom, DC 20064 (United States)
2012-07-01T23:59:59.000Z
We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances {approx}> R{sub Sun }/2 along the solar surface, with initial velocities up to 1400 km s{sup -1} decelerating to {approx}650 km s{sup -1}. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by {approx}50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.
Transformative Wave Technologies Kent, Washington
California at Davis, University of
Transformative Wave Technologies Kent, Washington www.transformativewave.com #12;#12;North America are shifted to off peak times #12;#12;Transformative Wave Technologies www.transformativewave.com #12
O'Donnell, John Joseph
1983-01-01T23:59:59.000Z
. There is a shift of the neutron energy spectrum during a pulse toward higher energies based on analysis of the measured variation in the cadmium ratio. The extent of the shift is not known in detail, however there is an obvicus hardening of the neutron... 12 16 LIST OF TABLES Page Table 1. Cross Section Data Table 2. Peak Neutron Flux Values (Pulse) Table 3. Steady-State Neutron Flux Values 14 23 24 Table 4. Cadmium Ratios (Pulse vs. Steady-State) 25 Table 5. Activation Analysis Isotope Data...
CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland
Haller, Merrick
CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms at station 139. Keywords: wave energy, survivability, breaking waves, joint distribution, OWEC INTRODUCTION
ORIGIN OF MACROSPICULE AND JET IN POLAR CORONA BY A SMALL-SCALE KINKED FLUX TUBE
Kayshap, P.; Srivastava, Abhishek K. [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263129 (India); Murawski, K. [Group of Astrophysics, UMCS, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Tripathi, Durgesh, E-mail: pradeep.kashyap@aries.res.in, E-mail: aks@aries.res.in, E-mail: kmur@kft.umcs.lublin.pl, E-mail: durgesh@iucaa.ernet.in [Inter-University Centre for Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India)
2013-06-10T23:59:59.000Z
We report an observation of a small-scale flux tube that undergoes kinking and triggers the macrospicule and a jet on 2010 November 11 in the north polar corona. The small-scale flux tube emerged well before the triggering of the macrospicule and as time progresses the two opposite halves of this omega-shaped flux tube bent transversely and approach each other. After {approx}2 minutes, the two approaching halves of the kinked flux tube touch each other and an internal reconnection as well as an energy release takes place at the adjoining location and a macrospicule was launched which goes up to a height of 12 Mm. Plasma begins to move horizontally as well as vertically upward along with the onset of the macrospicule and thereafter converts into a large-scale jet in which the core denser plasma reaches up to {approx}40 Mm in the solar atmosphere with a projected speed of {approx}95 km s{sup -1}. The fainter and decelerating plasma chunks of this jet were also seen up to {approx}60 Mm. We perform a two-dimensional numerical simulation by considering the VAL-C initial atmospheric conditions to understand the physical scenario of the observed macrospicule and associated jet. The simulation results show that reconnection-generated velocity pulse in the lower solar atmosphere steepens into slow shock and the cool plasma is driven behind it in the form of macrospicule. The horizontal surface waves also appeared with shock fronts at different heights, which most likely drove and spread the large-scale jet associated with the macrospicule.
FLUX MEASUREMENTS FROM A TALL TOWER IN A COMPLEX LANDSCAPE
Kurzeja, R.; Weber, A.; Chiswell, S.; Parker, M.
2010-07-22T23:59:59.000Z
The accuracy and representativeness of flux measurements from a tall tower in a complex landscape was assessed by examining the vertical and sector variability of the ratio of wind speed to momentum flux and the ratio of vertical advective to eddy flux of heat. The 30-60 m ratios were consistent with theoretical predictions which indicate well mixed flux footprints. Some variation with sector was observed that were consistent with upstream roughness. Vertical advection was negligible compared with vertical flux except for a few sectors at night. This implies minor influence from internal boundary layers. Flux accuracy is a function of sector and stability but 30-60 m fluxes were found to be generally representative of the surrounding landscape. This paper will study flux data from a 300 m tower, with 4 levels of instruments, in a complex landscape. The surrounding landscape will be characterized in terms of the variation in the ratio of mean wind speed to momentum flux as a function of height and wind direction. The importance of local advection will be assessed by comparing vertical advection with eddy fluxes for momentum and heat.
The solar internetwork. I. Contribution to the network magnetic flux
Goši?, M.; Rubio, L. R. Bellot; Del Toro Iniesta, J. C. [Instituto de Astrofísica de Andalucía (CSIC), Apdo. 3004, E-18080 Granada (Spain); Orozco Suárez, D. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Katsukawa, Y., E-mail: mgosic@iaa.es [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)
2014-12-10T23:59:59.000Z
The magnetic network (NE) observed on the solar surface harbors a sizable fraction of the total quiet Sun flux. However, its origin and maintenance are not well known. Here we investigate the contribution of internetwork (IN) magnetic fields to the NE flux. IN fields permeate the interior of supergranular cells and show large emergence rates. We use long-duration sequences of magnetograms acquired by Hinode and an automatic feature tracking algorithm to follow the evolution of NE and IN flux elements. We find that 14% of the quiet Sun (QS) flux is in the form of IN fields with little temporal variations. IN elements interact with NE patches and modify the flux budget of the NE either by adding flux (through merging processes) or by removing it (through cancellation events). Mergings appear to be dominant, so the net flux contribution of the IN is positive. The observed rate of flux transfer to the NE is 1.5 × 10{sup 24} Mx day{sup –1} over the entire solar surface. Thus, the IN supplies as much flux as is present in the NE in only 9-13 hr. Taking into account that not all the transferred flux is incorporated into the NE, we find that the IN would be able to replace the entire NE flux in approximately 18-24 hr. This renders the IN the most important contributor to the NE, challenging the view that ephemeral regions are the main source of flux in the QS. About 40% of the total IN flux eventually ends up in the NE.
Extreme wave impinging and overtopping
Ryu, Yong Uk
2009-06-02T23:59:59.000Z
This investigates the velocity fields of a plunging breaking wave impinging on a structure through measurements in a two-dimensional wave tank. As the wave breaks and overtops the structure, so-called green water is generated. The flow becomes multi-phased...
2, 70177025, 2014 Freaque wave
NHESSD 2, 70177025, 2014 Freaque wave occurrences in 2013 P. C. Liu Title Page Abstract to the corresponding final paper in NHESS if available. Brief Communication: Freaque wave occurrences in 2013 P. C. Liu7025, 2014 Freaque wave occurrences in 2013 P. C. Liu Title Page Abstract Introduction Conclusions References
Arnold Schwarzenegger CALIFORNIA OCEAN WAVE
Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California, State and Federal Agencies and their expectations in respect to potential wave power deployments Jim a huge amount of wave measurement data from various data sources Asfaw Beyene of the Department
Small Scale Magnetic Flux Emergence Observed with Hinode/Solar Optical Telescope
Kenichi Otsuji; Kazunari Shibata; Reizaburo Kitai; Satoru Ueno; Shin'ichi Nagata; Takuma Matsumoto; Tahei Nakamura; Hiroko Watanabe; Saku Tsuneta; Yoshinori Suematsu; Kiyoshi Ichimoto; Toshifumi Shimizu; Yukio Katsukawa; Theodore D. Tarbell; Bruce W. Lites; Richard A. Shine; Alan M. Title
2007-09-20T23:59:59.000Z
We observed small scale magnetic flux emergence in a sunspot moat region by the Solar Optical Telescope (SOT) aboard the Hinode satellite. We analyzed filtergram images observed in the wavelengths of Fe 6302 angstrom, G-band and Ca II H. In Stokes I images of Fe 6302 angstrom, emerging magnetic flux were recognized as dark lanes. In G-band, they showed their shapes almost the same as in Stokes I images. These magnetic flux appeared as dark filaments in Ca II H images. Stokes V images of Fe 6302 angstrom showed pairs of opposite polarities at footpoints of each filament. These magnetic concentrations are identified to correspond to bright points in G-band/Ca II H images. From the analysis of time-sliced diagrams, we derived following properties of emerging flux, which are consistent with the previous works. (1) Two footpoints separate each other at a speed of 4.2 km/s during the initial phase of evolution and decreases to about 1 km/s in 10 minutes later. (2) Ca II H filaments appear almost simultaneously with the formation of dark lanes in Stokes I in the observational cadence of 2 minutes. (3) The lifetime of the dark lanes in Stokes I and G-band is 8 minutes, while that of Ca filament is 12 minutes. An interesting phenomena was observed that an emerging flux tube expands laterally in the photosphere with a speed of 3.8 km/s. Discussion on the horizontal expansion of flux tube will be given with refernce to previous simulation studies.
GravEn: Software for the simulation of gravitational wave detector network response
Amber L. Stuver; Lee Samuel Finn
2006-09-24T23:59:59.000Z
Physically motivated gravitational wave signals are needed in order to study the behaviour and efficacy of different data analysis methods seeking their detection. GravEn, short for Gravitational-wave Engine, is a MATLAB software package that simulates the sampled response of a gravitational wave detector to incident gravitational waves. Incident waves can be specified in a data file or chosen from among a group of pre-programmed types commonly used for establishing the detection efficiency of analysis methods used for LIGO data analysis. Every aspect of a desired signal can be specified, such as start time of the simulation (including inter-sample start times), wave amplitude, source orientation to line of sight, location of the source in the sky, etc. Supported interferometric detectors include LIGO, GEO, Virgo and TAMA.
Quantum Features of Vacuum Flux Impact: An Interpretation of Quantum Phenomena
C. L. Herzenberg
2005-11-25T23:59:59.000Z
Special relativity combined with the stochastic vacuum flux impact model lead to an explicit interpretation of many of the phenomena of elementary quantum mechanics. We examine characteristics of a repetitively impacted submicroscopic particle in conjunction with examination of the ways in which effects associated with the particle's behavior appear in moving frames of reference. As seen from relatively moving frames of reference, the time and location of impacts and recoils automatically exhibit wave behavior. This model leads to free particle waves with frequencies proportional to the energy and wavelengths inversely proportional to the momentum. As seen from relatively moving frames of reference, impacts and their associated recoils can appear to an observer to take place simultaneously at multiple locations in space. For superposed free particle waves corresponding to bidirectional motion, an amplitude that varies sinusoidally with distance results. A governing equation identical in form to the Schroedinger equation is developed that describes the behavior of the impacts and their associated recoils. This approach permits many features of quantum mechanics to be examined within an intuitively visualizable framework.
High Flux Isotope Reactor system RELAP5 input model
Morris, D.G.; Wendel, M.W.
1993-01-01T23:59:59.000Z
A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.
Rutledge, Steven
Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since radar involves the transmission, propagation and scattering of EM waves by various is the electrostatic force between two point charges. #12;Electromagnetic WavesElectromagnetic Waves Electric fields
Variability of Gas Composition and Flux Intensity in Natural Marine Hydrocarbon Seeps
Clark, J F; Schwager, Katherine; Washburn, Libe
2005-01-01T23:59:59.000Z
of gas composition and flux intensity in natural marineof gas composition and flux intensity in natural marine
Chiral Heat Wave and wave mixing in chiral media
Chernodub, M N
2015-01-01T23:59:59.000Z
We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective excitation associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This excitation, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. We find that the coupled waves - which are coherent fluctuations of the vector, axial and energy currents - have generally different velocities compared to the velocities of the individual waves. We also demonstrate that rotating chiral systems subjected to external magnetic field possess non-propagating metastable thermal excitations, the Dense Hot Spots.
Permanent-magnet switched-flux machine
Trzynadlowski, Andrzej M.; Qin, Ling
2011-06-14T23:59:59.000Z
A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
Permanent-magnet switched-flux machine
Trzynadlowski, Andrzej M.; Qin, Ling
2012-02-21T23:59:59.000Z
A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
Permanent-magnet switched-flux machine
Trzynadlowski, Andrzej M.; Qin, Ling
2010-01-12T23:59:59.000Z
A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
Tracking heat flux sensors for concentrating solar applications
Andraka, Charles E; Diver, Jr., Richard B
2013-06-11T23:59:59.000Z
Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.
Rayleigh Wave-Internal Wave Coupling and Internal Wave Generation Above a Model Jet Stream
Sutherland, Bruce
Rayleigh Wave-Internal Wave Coupling and Internal Wave Generation Above a Model Jet Stream B. R instability of the upper flank of the Jet Stream are discussed. 1 Introduction Although the most significant in the stratosphere have also been noted near the Jet Stream in the absence of topographic, convective and geostrophic
Rayleigh WaveInternal Wave Coupling and Internal Wave Generation Above a Model Jet Stream
Sutherland, Bruce
Rayleigh WaveInternal Wave Coupling and Internal Wave Generation Above a Model Jet Stream B. R instability of the upper flank of the Jet Stream are discussed. 1 Introduction Although the most significant in the stratosphere have also been noted near the Jet Stream in the absence of topographic, convective and geostrophic
Fast Traveling-Wave Reactor of the Channel Type
Vitaliy D. Rusov; Victor A. Tarasov; Volodymyr N. Vashchenko; Sergei A. Chernezhenko; Andrei A. Kakaev; Oksana I. Pantak
2015-04-06T23:59:59.000Z
The main aim of this paper is to solve the technological problems of the TWR based on the technical concept described in our priority of invention reference, which makes it impossible, in particular, for the fuel claddings damaging doses of fast neutrons to excess the ~200 dpa limit. Thus the essence of the technical concept is to provide a given neutron flux at the fuel claddings by setting the appropriate speed of the fuel motion relative to the nuclear burning wave. The basic design of the fast uranium-plutonium nuclear traveling-wave reactor with a softened neutron spectrum is developed, which solves the problem of the radiation resistance of the fuel claddings material.
Fast Traveling-Wave Reactor of the Channel Type
Rusov, Vitaliy D; Vashchenko, Volodymyr N; Chernezhenko, Sergei A; Kakaev, Andrei A; Pantak, Oksana I
2015-01-01T23:59:59.000Z
The main aim of this paper is to solve the technological problems of the TWR based on the technical concept described in our priority of invention reference, which makes it impossible, in particular, for the fuel claddings damaging doses of fast neutrons to excess the ~200 dpa limit. Thus the essence of the technical concept is to provide a given neutron flux at the fuel claddings by setting the appropriate speed of the fuel motion relative to the nuclear burning wave. The basic design of the fast uranium-plutonium nuclear traveling-wave reactor with a softened neutron spectrum is developed, which solves the problem of the radiation resistance of the fuel claddings material.
Flux avalanches in superconducting films with periodic arrays of holes.
Vlasko-Vlasov, V.; Welp, U.; Metlushko, V.; Crabtree, G. W.; Materials Science Division; Inst. of Solid State Physics RAS
2000-01-01T23:59:59.000Z
The magnetic flux dynamics in Nb films with periodic hole arrays is studied magneto-optically. Flux motion in the shape of microavalanches along {l_brace}100{r_brace} and {l_brace}110{r_brace} directions of the hole lattice is observed. At lower temperatures anisotropic large scale thermo-magnetic avalanches dominate flux entry and exit. At T-T{sub c} critical-state-like field patterns periodically appear at fractions of the matching field.
Theodora Volti and Stuart Crampin Shear-wave splitting in Iceland: 1 1 3/6.02 V1a
Theodora Volti and Stuart Crampin Shear-wave splitting in Iceland: 1 1 3/6.02 V1a TITLE PAGE A four-year study of shear-wave splitting in Iceland: 1 background and preliminary analysis THEODORA. Received..... Page heading: Shear-wave splitting in Iceland: 1 Intended for publication in J. Geol. Soc
Nishida, Kiwamu
-wave exploration by seismic interferometry, these differences should be con- sidered. 1. Introduction Seismic revealed by cross-correlation analysis of seismic hum K. Nishida1 Seismic interferometry has now been-wave prop- agation (of P, PP, PKP, S, SS, ScS, P P , etc. waves) using seismic hum with wavenumber
Fractional Electromagnetic Waves
J. F. Gómez; J. J. Rosales; J. J. Bernal; V. I. Tkach; M. Guía
2011-08-31T23:59:59.000Z
In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.
L. Montagnier; J. Aissa; E. Del Giudice; C. Lavallee; A. Tedeschi; G. Vitiello
2010-12-23T23:59:59.000Z
Some bacterial and viral DNA sequences have been found to induce low frequency electromagnetic waves in high aqueous dilutions. This phenomenon appears to be triggered by the ambient electromagnetic background of very low frequency. We discuss this phenomenon in the framework of quantum field theory. A scheme able to account for the observations is proposed. The reported phenomenon could allow to develop highly sensitive detection systems for chronic bacterial and viral infections.
The generation and damping of propagating MHD kink waves in the solar atmosphere
Morton, R. J. [Mathematics and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Verth, G.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Hillier, A., E-mail: richard.morton@northumbria.ac.uk, E-mail: g.verth@sheffield.ac.uk, E-mail: robertus@sheffield.ac.uk [Kwasan and Hida Observatories, Kyoto University, 17 Ohmine-cho Kita Kazan, Yamashina-ku, Kyoto City, Kyoto 607-8471 (Japan)
2014-03-20T23:59:59.000Z
The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvén and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.
Asgari-Targhi, M.; Van Ballegooijen, A. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-15, Cambridge, MA 02138 (United States)
2012-02-10T23:59:59.000Z
It has been suggested that the solar corona may be heated by dissipation of Alfven waves that propagate up from the solar photosphere. According to this theory, counterpropagating Alfven waves are subject to nonlinear interactions that lead to turbulent decay of the waves and heating of the chromospheric and coronal plasma. To test this theory, better models for the dynamics of Alfven waves in coronal loops are required. In this paper, we consider wave heating in an active region observed with the Solar Dynamics Observatory in 2010 May. First a three-dimensional (3D) magnetic model of the region is constructed, and ten magnetic field lines that match observed coronal loops are selected. For each loop we construct a 3D magnetohydrodynamic model of the Alfven waves near the selected field line. The waves are assumed to be generated by footpoint motions inside the kilogauss magnetic flux elements at the two ends of the loop. Based on such models, we predict the spatial and temporal profiles of the heating along the selected loops. We also estimate the temperature fluctuations resulting from such heating. We find that the Alfven wave turbulence model can reproduce the observed characteristics of the hotter loops in the active region core, but the loops at the periphery of the region have large expansion factors and are predicted to be thermally unstable.
Magnetic pinning of flux lattice in superconducting-nanomagnet hybrids
2011-01-01T23:59:59.000Z
of flux lattice in superconducting-nanomagnet hybrids D.This plays a key role in superconductor properties such as ?ingre- dients in superconductor based applications. The
Ising interaction between capacitively-coupled superconducting flux qubits
Takahiko Satoh; Yuichiro Matsuzaki; Kosuke Kakuyanagi; Koichi Semba; Hiroshi Yamaguchi; Shiro Saito
2015-01-30T23:59:59.000Z
Here, we propose a scheme to generate a controllable Ising interaction between superconducting flux qubits. Existing schemes rely on inducting couplings to realize Ising interactions between flux qubits, and the interaction strength is controlled by an applied magnetic field On the other hand, we have found a way to generate an interaction between the flux qubits via capacitive couplings. This has an advantage in individual addressability, because we can control the interaction strength by changing an applied voltage that can be easily localized. This is a crucial step toward the realizing superconducting flux qubit quantum computation.
Elevated carbon dioxide flux at the Dixie Valley geothermal field...
Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada- relations between surface phenomena and the geothermal reservoir Jump to: navigation, search OpenEI...
Integration of Novel Flux Coupling Motor and Current Source Inverter...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter...
Examining How Radiative Fluxes Are Affected by Cloud and Particle...
Office of Science (SC) Website
How Radiative Fluxes Are Affected by Cloud and Particle Characteristics Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights...
Developing the Theory of Flux Limits from $?$-Ray Cascades
John A. Cairns
2007-05-18T23:59:59.000Z
Dark matter annihilation and other processes may precipitate a flux of diffuse ultra-high energy $\\gamma$-rays. These $\\gamma$-rays may be observable in present day experiments which observe diffuse fluxes at the GeV scale. Yet the universe is presently opaque to $\\gamma$-rays above 10 TeV. It is generally assumed that cascade radiation is observable at all high energies, however the disparity in energy from production to observation has important consequences for theoretical flux limits. We detail the physics of cascade radiation development and consider the influence of energy and redshift scale on arbitrary flux limits that result from electromagnetic cascade.