Sample records for wave energy test

  1. Advancing Technology Readiness: Wave Energy Testing and Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    National Marine Renewable Energy Center (NNMREC), verified the functionality of the Wave Energy Technology - New Zealand (WET-NZ) device through wave tank testing and...

  2. Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH)

    E-Print Network [OSTI]

    Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH) Alexandra DeVisser, NAVFAC-EXWC Brian June 10, 2013 #12;Wave Energy Test Site (WETS) Objective: Provide location for year-long in Cable, Sound & Sea Technology (SST) Luis A. Vega, HNEI-University of Hawaii Energy Ocean International

  3. EA-1917: Wave Energy Test Facility Project, Newport, OR

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE.

  4. Manta Wings: Wave Energy Testing Floats to Puget Sound

    Broader source: Energy.gov [DOE]

    Columbia Power Technologies plans to test an intermediate-scale version of its wave energy converter device in Puget Sound later this year. The device, which is called Manta because its movements are similar to those of a manta stingray, sits like an iceberg on the water.

  5. Characterization of U.S. Wave Energy Converter Test Sites: A...

    Energy Savers [EERE]

    Characterization of U.S. Wave Energy Converter Test Sites: A Catalogue of Met-Ocean Data Characterization of U.S. Wave Energy Converter Test Sites: A Catalogue of Met-Ocean Data...

  6. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect (OSTI)

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01T23:59:59.000Z

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  7. Advancing Technology Readiness: Wave Energy Testing and Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM LoanActiveMission

  8. Advancing Technology Readiness: Wave Energy Testing and Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001EnergyNewsletter AdvancedWindow

  9. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1,Energy ConsumersExperimental Test ofExperimental

  10. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    SciTech Connect (OSTI)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01T23:59:59.000Z

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  11. Energy Department Announces $10 million for Wave Energy Demonstration...

    Energy Savers [EERE]

    10 million for Wave Energy Demonstration at Navy's Hawaii Test Site Energy Department Announces 10 million for Wave Energy Demonstration at Navy's Hawaii Test Site April 28, 2014...

  12. Sandia National Laboratories: Wave Energy Resource Characterization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eECEnergyComputational Modeling & SimulationWave Energy Resource Characterization at US Test Sites Wave Energy Resource Characterization at US Test Sites Sandia Report Presents...

  13. Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

  14. Cycloidal Wave Energy Converter

    SciTech Connect (OSTI)

    Stefan G. Siegel, Ph.D.

    2012-11-30T23:59:59.000Z

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

  15. MHK Projects/Wave Star Energy 1 10 Scale Model Test | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy InformationSEAREV Pays

  16. Wave Energy Extraction from buoys

    E-Print Network [OSTI]

    Garnaud, Xavier

    2009-01-01T23:59:59.000Z

    Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

  17. Direct Drive Wave Energy Buoy

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29T23:59:59.000Z

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  18. Wave Energy challenges and possibilities

    E-Print Network [OSTI]

    © Wave Energy ­ challenges and possibilities By: Per Resen Steenstrup www.WaveStarEnergy.com Risø-R-1608(EN) 161 #12;© Wave energy is an old story.... The first wave energy patent is 200 years old. Over the last 100 years more than 200 new wave energy devices have been developped and more than 1.000 patents

  19. Wave-Energy Company Looks to Test Prototypes in Maine Waters

    Broader source: Energy.gov [DOE]

    The state has been working to position itself in the alternative energy market, and selection would create local jobs.

  20. Characterization of U.S. Wave Energy Converter (WEC) Test Sites | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEI JumpChandradeepForms | Open EnergyEnergy

  1. Bearing options, including design and testing, for direct drive linear generators in wave energy converters 

    E-Print Network [OSTI]

    Caraher, Sarah

    2011-11-22T23:59:59.000Z

    The key focus of this research was to investigate the bearing options most suited to operation in a novel direct drive linear generator. This was done through bearing comparisons, modelling and testing. It is fundamental ...

  2. Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy AS Jump to:WaveWave

  3. Energy Department Announces $10 Million for Full-Scale Wave Energy...

    Office of Environmental Management (EM)

    10 Million for Full-Scale Wave Energy Device Testing Energy Department Announces 10 Million for Full-Scale Wave Energy Device Testing October 29, 2014 - 2:55pm Addthis The Energy...

  4. Wave Energy Resource Analysis for Use in Wave Energy Conversion 

    E-Print Network [OSTI]

    Pastor, J.; Liu, Y.; Dou, Y.

    2014-01-01T23:59:59.000Z

    In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...

  5. Characterization of U.S. Wave Energy Converter Test Sites: A Catalogue of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock & ProductionChapter 6 --3078Met-Ocean Data

  6. Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    harvesting buoy systems, using the heave motion of the buoys to produce useful electrical power. Two energy that can be used to indefinitely power remote buoys, equipped with sensors arrays, as well as electronics for processing and communications. These power sources can be integrated with buoy systems

  7. California Small Hydropower and Ocean Wave Energy

    E-Print Network [OSTI]

    California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy............................................................................................................. 20 Wave Energy Conversion Technology

  8. Microstructural Design for Stress Wave Energy Management /

    E-Print Network [OSTI]

    Tehranian, Aref

    2013-01-01T23:59:59.000Z

    Nemat-Nasser, Stress-wave energy management through materialNasser, S. , 2010. Stress-wave energy management throughconstitute pressure wave energy and/or shear wave energy.

  9. Performance Assessment of the Wave Dragon Wave Energy Converter

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

  10. Nondestructive testing using stress waves: wave propagation in layered media

    E-Print Network [OSTI]

    Ortega, Jose Alberto

    2013-02-22T23:59:59.000Z

    NONDESTRUCTIVE TESTING USING STRESS WAVES: WAVE PROPAGATION IN LAYERED MEDIA A Senior Honors Thesis by JOSE ALBERTO ORTEGA Submitted to the Office of Honors Program & Academic Scholarships Texas A&M University in partial fulfillment... of the requirement of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS April 2002 Group: Engineering NONDESTRUCTIVE TESTING USI WAVE PROPAGATION IN LA A Senior Honors The ~pe -C JOSE ALBERTO ORTI /CI Submitted to the Office of Honors Program k. Academic...

  11. WEC up! Energy Department Announces Wave Energy Conversion Prize...

    Office of Environmental Management (EM)

    WEC up Energy Department Announces Wave Energy Conversion Prize Administrator WEC up Energy Department Announces Wave Energy Conversion Prize Administrator September 24, 2014 -...

  12. Electrostatic-plasma-wave energy flux

    E-Print Network [OSTI]

    Amendt, P.; Rostoker, N.

    1984-01-01T23:59:59.000Z

    would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of

  13. Establishing a Testing Center for Ocean Energy Technologies in...

    Broader source: Energy.gov (indexed) [DOE]

    and scaled devices in both laboratory and open water settings. To facilitate testing wave energy conversion devices, OSU developed and built a mobile ocean testing platform...

  14. Arnold Schwarzenegger DEVELOPING WAVE ENERGY IN

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor DEVELOPING WAVE ENERGY IN COASTAL CALIFORNIA: POTENTIAL SOCIO. Developing Wave Energy In Coastal California: Potential Socio-Economic And Environmental Effects. California-ECONOMIC AND ENVIRONMENTAL EFFECTS Prepared For: California Energy Commission Public Interest Energy Research Program

  15. RMOTC - Testing - Alternative Energies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    click here. RMOTC provides the opportunity for its partners to field test the latest alternative energy and environmental management technologies which have specific and...

  16. Wave Energy Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02ReportWaste-to-Energy andAprilWater andWatershedWaveWave

  17. Wave refraction and wave energy on Cayo Arenas

    E-Print Network [OSTI]

    Walsh, Donald Eugene

    1962-01-01T23:59:59.000Z

    WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...

  18. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  19. CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland

    E-Print Network [OSTI]

    Haller, Merrick

    CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms at station 139. Keywords: wave energy, survivability, breaking waves, joint distribution, OWEC INTRODUCTION

  20. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - April 2014 ENVIRONMENTALChapter2 Special206 Unlimited

  1. Seminario de Matemtica Aplicada "Renowable wave energy

    E-Print Network [OSTI]

    Tradacete, Pedro

    Seminario de Matemática Aplicada "Renowable wave energy: potencial and technical challenges Abstract: Among the various renewable energy sources, ocean wave energy has been only recently investiga will be at first to introduce the potential of wave energy, as a significant, and often neglected, contributor

  2. Identifying two steps in the internal wave energy cascade

    E-Print Network [OSTI]

    Sun, Oliver Ming-Teh

    2010-01-01T23:59:59.000Z

    1.1.1 The internal wave energy cascade . . . . . . .? ? , which contain only wave energy trav- eling upward anddistinction is made between wave energy propagating upward

  3. Wave Energy Machine Louise Butler, Bilal Demir, Caleb Lee, Joe Meiners, Christian Rodin

    E-Print Network [OSTI]

    Provancher, William

    Wave Energy Machine Louise Butler, Bilal Demir, Caleb Lee, Joe Meiners, Christian Rodin Advisor: Dr. Introduction Design Kinematic Model Testing Current wave energy technology harvests the vertical motion. Project Statement: Design a wave energy machine that harnesses underwater wave motion and converts

  4. Testing Cosmology with Cosmic Sound Waves

    E-Print Network [OSTI]

    Pier Stefano Corasaniti; Alessandro Melchiorri

    2008-03-25T23:59:59.000Z

    WMAP observations have accurately determined the position of the first two peaks and dips in the CMB temperature power spectrum. These encode information on the ratio of the distance to the last scattering surface to the sound horizon at decoupling. However pre-recombination processes can contaminate this distance information. In order to assess the amplitude of these effects we use the WMAP data and evaluate the relative differences of the CMB peaks and dips multipoles. We find that the position of the first peak is largely displaced with the respect to the expected position of the sound horizon scale at decoupling. In contrast the relative spacings of the higher extrema are statistically consistent with those expected from perfect harmonic oscillations. This provides evidence for a scale dependent phase shift of the CMB oscillations which is caused by gravitational driving forces affecting the propagation of sound waves before recombination. By accounting for these effects we have performed a MCMC likelihood analysis to constrain in combination with recent BAO data a constant dark energy equation w. For a flat universe we find at 95% upper limit w<-1.10, and including the HST prior w<-1.14, which are only marginally consistent with limits derived from the supernova SNLS sample. Larger limits are obtained for non-flat cosmologies. From the full CMB likelihood analysis we also estimate the values of the shift parameter R and the multipole l_a of the acoustic horizon at decoupling for several cosmologies to test their dependence on model assumptions. Although the analysis of the full CMB spectra should be always preferred, using the position of the CMB peaks and dips provide a simple and consistent method for combining CMB constraints with other datasets.

  5. Testing cosmology with cosmic sound waves

    SciTech Connect (OSTI)

    Corasaniti, Pier Stefano [LUTH, Observatoire de Paris, CNRS UMR 8102, Universite Paris Diderot, 5 Place Jules Janssen, 92195 Meudon Cedex (France); Melchiorri, Alessandro [Dipartimento di Fisica e Sezione INFN, Universita degli Studi di Roma 'La Sapienza', Ple Aldo Moro 5, 00185, Rome (Italy); CERN, Theory Division, CH-1211 Geneva 23 (Switzerland)

    2008-05-15T23:59:59.000Z

    Wilkinson Microwave Anisotropy Probe (WMAP) observations have accurately determined the position of the first two peaks and dips in the cosmic microwave background (CMB) temperature power spectrum. These encode information on the ratio of the distance to the last scattering surface to the sound horizon at decoupling. However prerecombination processes can contaminate this distance information. In order to assess the amplitude of these effects, we use the WMAP data and evaluate the relative differences of the CMB peak and dip multipoles. We find that the position of the first peak is largely displaced with respect to the expected position of the sound horizon scale at decoupling. In contrast, the relative spacings of the higher extrema are statistically consistent with those expected from perfect harmonic oscillations. This provides evidence for a scale dependent phase shift of the CMB oscillations which is caused by gravitational driving forces affecting the propagation of sound waves before recombination. By accounting for these effects we have performed a Markov Chain Monte Carlo likelihood analysis of the location of WMAP extrema to constrain, in combination with recent BAO data, a constant dark energy equation of state parameter w. For a flat universe we find a strong 2{sigma} upper limit w<-1.10, and including the Hubble Space Telescope prior, we obtain w<-1.14, which is only marginally consistent with limits derived from the Supernova Legacy Survey sample. On the other hand, we infer larger limits for nonflat cosmologies. From the full CMB likelihood analysis, we also estimate the values of the shift parameter R and the multipole l{sub a} of the acoustic horizon at decoupling for several cosmologies, to test their dependence on model assumptions. Although the analysis of the full CMB spectra should always be preferred, using the position of the CMB peaks and dips provides a simple and consistent method for combining CMB constraints with other data sets.

  6. Sandia National Laboratories: wave energy converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    release. This model has ... Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter On September 16, 2014, in Computational Modeling & Simulation, Energy,...

  7. Sandia National Laboratories: wave energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  8. Elgen Wave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagnetic ProfilingElgen Wave Jump to:

  9. Euro Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP) inEurico Ferreira SA JumpEuro Wave

  10. Wave Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02ReportWaste-to-Energy andAprilWater andWatershedWave

  11. Sandia Energy - Sandia, NREL Release Wave Energy Converter Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim Home Renewable Energy Energy Water Power Partnership News News & Events Computational Modeling &...

  12. Wave Energy Resource Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe Water Power Program,1Technology |Wave

  13. Wave Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, NewWauseon,Wave Dragon ApSWave

  14. Wave Energy Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, NewWauseon,Wave

  15. Streamlining ENERGY STAR Appliance Testing

    Broader source: Energy.gov [DOE]

    To save taxpayer dollars and help lower the costs of innovative energy-efficient technologies, the Energy Department is streamlining ENERGY STAR testing for appliances.

  16. On the Energy of Rotating Gravitational Waves

    E-Print Network [OSTI]

    Bahram Mashhoon; James C. McClune; Enrique Chavez; Hernando Quevedo

    1996-09-06T23:59:59.000Z

    A class of solutions of the gravitational field equations describing vacuum spacetimes outside rotating cylindrical sources is presented. A subclass of these solutions corresponds to the exterior gravitational fields of rotating cylindrical systems that emit gravitational radiation. The properties of these rotating gravitational wave spacetimes are investigated. In particular, we discuss the energy density of these waves using the gravitational stress-energy tensor.

  17. Wave Energy Resource Analysis for Use in Wave Energy Conversion

    E-Print Network [OSTI]

    Pastor, J.; Liu, Y.; Dou, Y.

    2014-01-01T23:59:59.000Z

    the naturally available and technically recoverable resource in a given location. The methodology was developed by the EPRI and uses a modified Gamma spectrum that interoperates hindcast sea state parameter data produced by NOAA's Wave watch III. This Gamma...

  18. Counting energy packets in the electromagnetic wave

    E-Print Network [OSTI]

    Stefan Popescu; Bernhard Rothenstein

    2007-05-18T23:59:59.000Z

    We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.

  19. Mapping and Assessment of the United States Ocean Wave Energy...

    Open Energy Info (EERE)

    Mapping and Assessment of the United States Ocean Wave Energy Resource This project estimates the naturally available and technically recoverable U.S. wave energy resources, using...

  20. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Energy Savers [EERE]

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

  1. Wave Energy Harvesting unmanned maritime vehicle, Concept and Applications

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Wave Energy Harvesting unmanned maritime vehicle, Concept and Applications Justin Manley Senior). By harvesting abundant natural energy Wave Gliders provide a persistent ocean presence to commercial scientific

  2. Binding Energy of dº Transition Metals to Alkenes By Wave...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy of dº Transition Metals to Alkenes By Wave Function Theory and Density Functional Theory. Binding Energy of dº Transition Metals to Alkenes By Wave Function Theory...

  3. Mapping and Assessment of the United States Ocean Wave Energy...

    Office of Environmental Management (EM)

    States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and results of a rigorous assessment of...

  4. Energy-momentum relation for solitary waves of relativistic wave equations

    E-Print Network [OSTI]

    T. V. Dudnikova; A. I. Komech; H. Spohn

    2005-08-23T23:59:59.000Z

    Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.

  5. New Perspectives on Wave Energy Converter Control 

    E-Print Network [OSTI]

    Price, Alexandra A E

    2009-01-01T23:59:59.000Z

    This work examines some of the fundamental problems behind the control of wave energy converters (WECs). Several new perspectives are presented to aid the understanding of the problem and the interpretation of the ...

  6. Guidelines in Wave Energy Conversion System Design 

    E-Print Network [OSTI]

    Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

    2014-01-01T23:59:59.000Z

    This paper presents an investigational study on wave energy converters (WECs). The types of WEC available from the market are studied first. The design considerations for implementing a WEC in the Gulf of Mexico (GOM) are then evaluated...

  7. Wave Energy Development in Oregon Licensing & Permitting Requirements

    E-Print Network [OSTI]

    July 09 Wave Energy Development in Oregon Licensing & Permitting Requirements Prepared by Pacific Energy Ventures on behalf of the Oregon Wave Energy Trust w w w . o r e g o n w a v e . o r g #12;This study was commissioned by Oregon Wave Energy Trust. Oregon Wave Energy Trust is funded by the Oregon

  8. Wave spectral energy variability in the northeast Peter D. Bromirski

    E-Print Network [OSTI]

    Bromirski, Peter D.

    January 2005; published 8 March 2005. [1] The dominant characteristics of wave energy variability of monthly wave energy anomalies reveal that all three wave energy components exhibit similar patterns of spatial variability. The dominant mode represents coherent heightened (or diminished) wave energy along

  9. WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA

    E-Print Network [OSTI]

    Cary, John R.

    2012-01-01T23:59:59.000Z

    case, the electrons have negative wave energy for 2w ne w wave energy for 2w .w > 0 nl Hence, unstable waves with negative phase velocity,

  10. Soft Capacitors for Wave Energy Harvesting

    E-Print Network [OSTI]

    Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jørgen Jørgensen; Guggi Kofod

    2011-10-14T23:59:59.000Z

    Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.

  11. Wave equations with energy dependent potentials

    E-Print Network [OSTI]

    J. Formanek; R. J. Lombard; J. Mares

    2003-09-22T23:59:59.000Z

    We study wave equations with energy dependent potentials. Simple analytical models are found useful to illustrate difficulties encountered with the calculation and interpretation of observables. A formal analysis shows under which conditions such equations can be handled as evolution equation of quantum theory with an energy dependent potential. Once these conditions are met, such theory can be transformed into ordinary quantum theory.

  12. Wave Energy Ecological Effects Workshop page 1 of 4 Ecological Effects of Wave Energy Development in the Pacific Northwest

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    Wave Energy Ecological Effects Workshop page 1 of 4 Ecological Effects of Wave Energy Development the capacity to harvest wave energy off its coast as a clean, renewable resource. An important part of moving this agenda forward must include understanding the potential effects of wave energy technology

  13. Research and Technology in Wave Energy for Electric Mobility

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Research and Technology in Wave Energy for Electric Mobility Reza Ghorbani Assistant Professor marine energy resources that are available for our utilization. These include wave energy, energy generated by ocean current and energy extraction through ocean thermal conversion (OTEC). For wave energy

  14. 2007 Survey of Energy Resources World Energy Council 2007 Wave Energy COUNTRY NOTES

    E-Print Network [OSTI]

    2007 Survey of Energy Resources World Energy Council 2007 Wave Energy 550 COUNTRY NOTES The following Country Notes on Wave Energy have been compiled by Tom Thorpe and the Editors. Every effort has been made to be comprehensive by making contact with all known wave energy developers. However

  15. Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project

    Broader source: Energy.gov [DOE]

    Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

  16. Energy-momentum Density of Gravitational Waves

    E-Print Network [OSTI]

    Amir M. Abbassi; Saeed Mirshekari

    2014-11-29T23:59:59.000Z

    In this paper, we elaborate the problem of energy-momentum in general relativity by energy-momentum prescriptions theory. Our aim is to calculate energy and momentum densities for the general form of gravitational waves. In this connection, we have extended the previous works by using the prescriptions of Bergmann and Tolman. It is shown that they are finite and reasonable. In addition, using Tolman prescription, exactly, leads to same results that have been obtained by Einstein and Papapetrou prescriptions.

  17. Sandia Energy - Experimental Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy CouncilEnergyShedding

  18. Summary of PIER-Funded Wave Energy Research

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION Summary of PIER-Funded Wave Energy Research STAFFREPORT MARCH 2008 CEC. Please cite this report as follows: PIER 2007. Summary of PIER Funded Wave Energy Research, California Interest Energy Research Programfunded research in wave energy conversion and discusses the program's view

  19. Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar JumpTennessee/Wind Resources <70079°,Terryville,Tesla Motors

  20. Sandia Energy - Mechanical Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand

  1. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, NewWauseon,

  2. Spectral Cascade and Energy Dissipation in Kinetic Alfven Wave Turbulence

    E-Print Network [OSTI]

    Lin, Zhihong

    Spectral Cascade and Energy Dissipation in Kinetic Alfv´en Wave Turbulence Xi Cheng, Zhihong Lin energy sources at large spatial scales. The energy of these non- linearly interacting Alfven waves. 2000). The wave-particle energy exchange rates of these channels depend on the spectral properties near

  3. C Wave Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy Information BurkinaButyl FuelC T Jump to:C Wave

  4. test | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclearand Characterization ofC u r r e n t I s s u e s C uON

  5. Leancon Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: Energy Resources

  6. Next Wave Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX LtdNew EnergyCity Data HomeNexamp

  7. Gravitational wave energy spectrum of hyperbolic encounters

    E-Print Network [OSTI]

    Lorenzo De Vittori; Philippe Jetzer; Antoine Klein

    2012-07-23T23:59:59.000Z

    The emission of gravitational waves is studied for a system of massive objects interacting on hyperbolic orbits within the quadrupole approximation following the work of Capozziello et al. Here we focus on the derivation of an analytic formula for the energy spectrum of the emitted waves. We checked numerically that our formula is in agreement with the two limiting cases for which results were already available: for the eccentricity {\\epsilon} = 1, the parabolic case whose spectrum was computed by Berry and Gair, and the large {\\epsilon} limit with the formula given by Turner.

  8. Gravitational wave energy spectrum of hyperbolic encounters

    E-Print Network [OSTI]

    De Vittori, Lorenzo; Klein, Antoine

    2012-01-01T23:59:59.000Z

    The emission of gravitational waves is studied for a system of massive objects interacting on hyperbolic orbits within the quadrupole approximation following the work of Capozziello et al. Here we focus on the derivation of an analytic formula for the energy spectrum of the emitted waves. We checked numerically that our formula is in agreement with the two limiting cases for which results were already available: for the eccentricity {\\epsilon} = 1, the parabolic case whose spectrum was computed by Berry and Gair, and the large {\\epsilon} limit with the formula given by Turner.

  9. Direct Drive Wave Energy Buoy – 33rd scale experiment

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29T23:59:59.000Z

    Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

  10. Anomalous electron-ion energy coupling in electron drift wave turbulence

    E-Print Network [OSTI]

    Zhao, Lei

    annulus arises due to a wave energy flux differential acrossprincipal collisionless wave energy dissipation channel inOn the other hand, wave energy can be dissipated by ion

  11. Energy Transfer via Solar Wind Driven Ultra Low Frequency Waves in the Earth's Magnetosphere

    E-Print Network [OSTI]

    Hartinger, Michael David

    2012-01-01T23:59:59.000Z

    spectral density comparison Wave polarization and energyEnergy transfer via MHD waves . . . . . . . . . . . . .magnetosphere (where wave energy can exit the magnetosphere

  12. Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /

    E-Print Network [OSTI]

    Chen, Tianjia

    2013-01-01T23:59:59.000Z

    Power Maximization in Wave-Energy Converters Using Sampled-design optimization of wave energy converters con- sistingN. Sahinkaya. A review of wave energy converter technology.

  13. Revamped Simulation Tool to Power Up Wave Energy Development...

    Energy Savers [EERE]

    Revamped Simulation Tool to Power Up Wave Energy Development Revamped Simulation Tool to Power Up Wave Energy Development May 21, 2015 - 2:40pm Addthis Revamped Simulation Tool to...

  14. DOE Announces Webinars on the Wave Energy Converter Prize, the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on the Wave Energy Converter Prize, the Best of the Clean Cities Tools and Resources, and More DOE Announces Webinars on the Wave Energy Converter Prize, the...

  15. Carnegie Wave Energy Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreen BioEnergy LLCCaribouCarlton,Maine:Carnegie

  16. Wave Energy AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy AS Jump to:

  17. Wave Star Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy AS JumpDenmark Zip:

  18. Dartmouth Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data andDarnestown, Maryland: Energy

  19. On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry

    E-Print Network [OSTI]

    Victoria, University of

    On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean wave

  20. Langlee Wave Power AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development Jump to:Wave Power AS Jump to:

  1. Long-Wave Infrared | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) Wind Farm Jump to:EnergyLong-Wave

  2. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01T23:59:59.000Z

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  3. Wave Turbulence in Superfluid 4 Energy Cascades, Rogue Waves & Kinetic Phenomena

    E-Print Network [OSTI]

    Fominov, Yakov

    Outline Wave Turbulence in Superfluid 4 He: Energy Cascades, Rogue Waves & Kinetic Phenomena Conference, Chernogolovka, 3 August 2009 McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4 He #12;Outline Outline 1 Introduction Motivation 2 Modelling wave turbulence Need for models

  4. Optimizing Ballast Design of Wave Energy Converters Using Evolutionary Algorithms

    E-Print Network [OSTI]

    Tumer, Kagan

    Optimizing Ballast Design of Wave Energy Converters Using Evolutionary Algorithms Mitch Colby, 97331 kagan.tumer@oregonstate.edu ABSTRACT Wave energy converters promise to be a viable alternative the ballast geometry of a wave energy genera- tor using a two step process. First, we generate a function

  5. Modelling and geometry optimisation of wave energy converters

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    Modelling and geometry optimisation of wave energy converters Adi Kurniawan Supervisors: Prof;Research questions Modelling How to develop more realistic wave energy converter (WEC) models while wave energy converter (WEC) models while at the same time reduce their simulation time? Optimisation

  6. E2I EPRI Assessment Offshore Wave Energy Conversion Devices

    E-Print Network [OSTI]

    E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

  7. Ecological Effects of Wave Energy Development in the Pacific Northwest

    E-Print Network [OSTI]

    Ecological Effects of Wave Energy Development in the Pacific Northwest A Scientific Workshop Technical Memorandum NMFS-F/SPO-92 #12;#12;Ecological Effects of Wave Energy Development in the Pacific Service; Justin Klure, Oregon Wave Energy Trust; Greg McMurray, Oregon Department of Land Conservation

  8. Dartmouth Wave Energy Searaser | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro Site Jump(RedirectedDalian XinyangDanishDaofuDartmouth

  9. Green Ocean Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:EthanolHabits JumpMachine

  10. Renewable Energy Wave Pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl.,RenGenAmes,

  11. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

  12. Regulation of Tidal and Wave Energy Projects (Maine)

    Broader source: Energy.gov [DOE]

    State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements regulation by the Federal Energy Regulation...

  13. DOE Announces Webinars on the Wave Energy Converter Prize, the...

    Broader source: Energy.gov (indexed) [DOE]

    24: Live Webinar on the Administration of the Wave Energy Converter Prize Funding Opportunity Announcement Webinar Sponsor: EERE Water Power Program The Energy Department will...

  14. High-frequency matrix converter with square wave input - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America...

  15. WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA

    E-Print Network [OSTI]

    Cary, John R.

    2012-01-01T23:59:59.000Z

    case, the electrons have negative wave energy for 2w ne w wave energy for 2w . > w > 0 nlw/k to the negative wave energy of the electrons. positive

  16. Three-cell traveling wave superconducting test structure

    SciTech Connect (OSTI)

    Avrakhov, Pavel; Kanareykin, Alexei; /Euclid Techlabs, Solon; Kazakov, Sergey; Solyak, Nikolay; Wu, Genfa; Yakovlev, Vyacheslav P.; /Fermilab

    2011-03-01T23:59:59.000Z

    Use of a superconducting traveling wave accelerating (STWA) structure with a small phase advance per cell rather than a standing wave structure may provide a significant increase of the accelerating gradient in the ILC linac. For the same surface electric and magnetic fields the STWA achieves an accelerating gradient 1.2 larger than TESLA-like standing wave cavities. The STWA allows also longer acceleration cavities, reducing the number of gaps between them. However, the STWA structure requires a SC feedback waveguide to return the few hundreds of MW of circulating RF power from the structure output to the structure input. A test single-cell cavity with feedback was designed, manufactured and successfully tested demonstrating the possibility of a proper processing to achieve a high accelerating gradient. These results open way to take the next step of the TW SC cavity development: to build and test a travelingwave three-cell cavity with a feedback waveguide. The latest results of the single-cell cavity tests are discussed as well as the design of the test 3-cell TW cavity.

  17. Simulation and Analysis of Converging Shock Wave Test Problems

    SciTech Connect (OSTI)

    Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory

    2012-06-21T23:59:59.000Z

    Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.

  18. Wave Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, NewWauseon,Wave Place: Sun

  19. Motor Wave Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill, California:Morse,Wave Group Jump to: navigation,

  20. Using a Bore-Soliton-Splash to understand Rogue Waves, Tsunamis & Wave Energy

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    )compression] use wave focussing in a convergence [3]. · IPS wave buoy has a linear dynamo below sea level. · Designed & built new RogueWavEnergy device: it works, a LED is blinking & we measured the power output. 8

  1. Open Ocean Aquaculture & Wave Energy Site | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: Energy Resourcesen) Open EnergyWave

  2. Internal energy relaxation in shock wave structure

    SciTech Connect (OSTI)

    Josyula, Eswar, E-mail: Eswar.Josyula@us.af.mil; Suchyta, Casimir J. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)] [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Boyd, Iain D. [University of Michigan, Ann Arbor, Michigan 48109 (United States)] [University of Michigan, Ann Arbor, Michigan 48109 (United States); Vedula, Prakash [University of Oklahoma, Norman, Oklahoma 73019 (United States)] [University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2013-12-15T23:59:59.000Z

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

  3. attenuator wave energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radio emission we found a monotonous energy amplification of 3-min waves in the sunspot umbra before the 2012 June 7 flare. This dynamics agrees with an increase in the wave-train...

  4. High Energy Gas Fracturing Test

    SciTech Connect (OSTI)

    Schulte, R.

    2001-02-27T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

  5. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

    2013-01-26T23:59:59.000Z

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys������� that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

  6. Wave Energy Technology New Zealand | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy AS Jump to:Wave

  7. Danish Wave Energy Development Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro Site Jump(RedirectedDalian XinyangDanish Wave Energy

  8. Acceleration of low energy charged particles by gravitational waves

    E-Print Network [OSTI]

    G. Voyatzis; L. Vlahos; S. Ichtiaroglou; D. Papadopoulos

    2005-12-07T23:59:59.000Z

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  9. Proceedings of the Hydrokinetic and Wave Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    techenviroworkshop More Documents & Publications Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Before the House Science and...

  10. Wind Testing and Certification | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind plant levels. These testing facilities are geographically diverse, located in key wind energy regions, and possess unique testing capabilities that allow the Department of...

  11. Gravitational waves from a test particle scattered by a neutron star: Axial mode case

    E-Print Network [OSTI]

    Kazuhiro Tominaga; Motoyuki Saijo; Kei-ichi Maeda

    1999-09-20T23:59:59.000Z

    Using a metric perturbation method, we study gravitational waves from a test particle scattered by a spherically symmetric relativistic star. We calculate the energy spectrum and the waveform of gravitational waves for axial modes. Since metric perturbations in axial modes do not couple to the matter fluid of the star, emitted waves for a normal neutron star show only one peak in the spectrum, which corresponds to the orbital frequency at the turning point, where the gravitational field is strongest. However, for an ultracompact star (the radius $R \\lesssim 3M$), another type of resonant periodic peak appears in the spectrum. This is just because of an excitation by a scattered particle of axial quasinormal modes, which were found by Chandrasekhar and Ferrari. This excitation comes from the existence of the potential minimum inside of a star. We also find for an ultracompact star many small periodic peaks at the frequency region beyond the maximum of the potential, which would be due to a resonance of two waves reflected by two potential barriers (Regge-Wheeler type and one at the center of the star). Such resonant peaks appear neither for a normal neutron star nor for a Schwarzschild black hole. Consequently, even if we analyze the energy spectrum of gravitational waves only for axial modes, it would be possible to distinguish between an ultracompact star and a normal neutron star (or a Schwarzschild black hole).

  12. Green Wave Energy Corp GWEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,IISrl Jump to: navigation, searchWave

  13. California Wave Energy Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass16Association JumpCaliforniaWater WellWave

  14. Wave Energy Converter Extreme Conditions Modeling Workshop | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, NewWauseon,Wave Dragon

  15. Oregon Wave Energy Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEITODOOregon PublicTrail WindOregon Wave

  16. MHK Projects/Oregon Coastal Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway Bay IE <Orcadian Wave

  17. MHK Technologies/CETO Wave Energy Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlane < MHK Technologies JumpWave

  18. Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions

    SciTech Connect (OSTI)

    Yu, Y.; Li, Y.

    2011-10-01T23:59:59.000Z

    This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

  19. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect (OSTI)

    Mirko Previsic

    2010-06-17T23:59:59.000Z

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

  20. Free energy in plasmas under wave-induced diffusion

    SciTech Connect (OSTI)

    Fisch, N.J. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Rax, J.M. (CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France))

    1993-05-01T23:59:59.000Z

    When waves propagate through a bounded plasma, the wave may be amplified or damped at the expense of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma diffusion in velocity and configuration space. In the absence of collisions, the rearrangement of the plasma conserves entropy, as large-grain structures are mixed and fine-grain structures emerge. The maximum extractable energy by waves so diffusing the plasma is a quantity of fundamental interest; it can be defined, but it is difficult to calculate. Through the consideration of specific examples, certain strategies for maximizing energy extraction are identified.

  1. Wave turbulence revisited: Where does the energy flow?

    E-Print Network [OSTI]

    L. V. Abdurakhimov; I. A. Remizov; A. A. Levchenko; G. V. Kolmakov; Y. V. Lvov

    2014-04-03T23:59:59.000Z

    Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.

  2. DESIGN AND TESTING FOR NOVEL JOINT FOR WAVE REFLECTORS James Tedd1

    E-Print Network [OSTI]

    tests. This is a steel bar reinforced concrete tank with the dimensions 15.7 m long, 8.5 m wide and 1DESIGN AND TESTING FOR NOVEL JOINT FOR WAVE REFLECTORS James Tedd1 , Erik Friis-Madsen2 , and Peter of the Wave Dragon has begun. This paper describes the design and testing process behind this. Tests conducted

  3. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect (OSTI)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

    2014-10-01T23:59:59.000Z

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  4. Sandia National Laboratories: resonant wave-energy converter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resonant wave-energy converter devices Inter-Agency Agreement Signed between DOE's Wind and Water Power Program and Carderock On December 3, 2014, in Energy, News, News & Events,...

  5. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

    2012-10-29T23:59:59.000Z

    The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  6. Wave-Packet Revivals for Quantum Systems with Nondegenerate Energies

    E-Print Network [OSTI]

    Robert Bluhm; Alan Kostelecky; Bogdan Tudose

    1996-09-26T23:59:59.000Z

    The revival structure of wave packets is examined for quantum systems having energies that depend on two nondegenerate quantum numbers. For such systems, the evolution of the wave packet is controlled by two classical periods and three revival times. These wave packets exhibit quantum beats in the initial motion as well as new types of long-term revivals. The issue of whether fractional revivals can form is addressed. We present an analytical proof showing that at certain times equal to rational fractions of the revival times the wave packet can reform as a sum of subsidiary waves and that both conventional and new types of fractional revivals can occur.

  7. Energy dissipation in wave propagation in general relativistic plasma

    E-Print Network [OSTI]

    Ajanta Das; S. Chatterjee

    2009-11-03T23:59:59.000Z

    Based on a recent communication by the present authors the question of energy dissipation in magneto hydrodynamical waves in an inflating background in general relativity is examined. It is found that the expanding background introduces a sort of dragging force on the propagating wave such that unlike the Newtonnian case energy gets dissipated as it progresses. This loss in energy having no special relativistic analogue is, however, not mechanical in nature as in elastic wave. It is also found that the energy loss is model dependent and also depends on the number of dimensions.

  8. Dark energy from quantum wave function collapse of dark matter

    E-Print Network [OSTI]

    A. S. Majumdar; D. Home; S. Sinha

    2009-09-03T23:59:59.000Z

    Dynamical wave function collapse models entail the continuous liberation of a specified rate of energy arising from the interaction of a fluctuating scalar field with the matter wave function. We consider the wave function collapse process for the constituents of dark matter in our universe. Beginning from a particular early era of the universe chosen from physical considerations, the rate of the associated energy liberation is integrated to yield the requisite magnitude of dark energy around the era of galaxy formation. Further, the equation of state for the liberated energy approaches $w \\to -1$ asymptotically, providing a mechanism to generate the present acceleration of the universe.

  9. A general design for energy test procedures

    SciTech Connect (OSTI)

    Meier, Alan

    2000-06-15T23:59:59.000Z

    Appliances are increasingly controlled by microprocessors. Unfortunately, energy test procedures have not been modified to capture the positive and negative contributions of the microprocessor to the appliance's energy use. A new test procedure is described which captures both the mechanical and logical features present in many new appliances. We developed an energy test procedure for refrigerators that incorporates most aspects of the proposed new approach. Some of the strengths and weaknesses of the new test are described.

  10. Wave EnergyFocusing in aThree-dimensional Numerical WaveTank C. Fochesato*, F. Dias**, S. Grilli***

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Wave EnergyFocusing in aThree-dimensional Numerical WaveTank C. Fochesato*, F. Dias**, S. Grilli Department (University of Rhode Island), Narragansett, RI, U.S.A. ABSTRACT Directional wave energy focusing in space is one of the mechanisms that may contribute to the generation of a rogue wave in the ocean

  11. Energy Department Announces Funding for Demonstration and Testing...

    Broader source: Energy.gov (indexed) [DOE]

    environmentally responsible marine and hydrokinetic energy devices and components. Wave Energy Converter (WEC) Prize The Energy Department will make 6.5 million available...

  12. Application of wave generator theory to the development of a Wave Energy Converter

    E-Print Network [OSTI]

    Wood, Stephen L.

    of the second buoy's curved face. Upon deployment, the WEC successfully logged the power output of the system a wave energy converter (WEC) capable of providing at least a quarter-Watt of power to a small aquatic and basic wave generation technology to improving the power capture design of a basic direct drive WEC

  13. Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /

    E-Print Network [OSTI]

    Chen, Tianjia

    2013-01-01T23:59:59.000Z

    design optimization of wave energy converters con- sistingN. Sahinkaya. A review of wave energy converter technology.2009. [6] A.F.O. Falc˜ao. Wave energy utilization: A review

  14. Energy Transfer via Solar Wind Driven Ultra Low Frequency Waves in the Earth's Magnetosphere

    E-Print Network [OSTI]

    Hartinger, Michael David

    2012-01-01T23:59:59.000Z

    wind to various sinks of wave energy in the magnetosphere.magnetosphere (where wave energy can exit the magnetospheresource and a sink for ULF wave energy. One of the most well-

  15. A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical Parameters

    E-Print Network [OSTI]

    Victoria, University of

    A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical of Mechanical Engineering) ABSTRACT Within a wave energy converter's operational bandwidth, device operation

  16. Energy Dispersed Large Data Wave Maps in 2 + 1 Dimensions

    E-Print Network [OSTI]

    Sterbenz, Jacob; Tataru, Daniel

    2010-01-01T23:59:59.000Z

    of Finite S Norm Wave-Maps and Energy Dispersion 10.1renormalization of large energy wave maps. In: Journées “of Finite S Norm Wave-Maps and Energy Dispersion In this

  17. On the wave energy potential of Western Black Sea shelf

    E-Print Network [OSTI]

    Galabov, Vasko

    2013-01-01T23:59:59.000Z

    In the present study we evaluate the approaches to estimate the wave energy potential of the western Black Sea shelf with numerical models. For the purpose of our evaluation and due to the lack of long time series of measurements in the selected area of the Black Sea, we compare the modeled mean wave power flux output from the SWAN wave model with the only available long term measurements from the buoy of Gelendzhik for the period 1997-2003 (with gaps). The forcing meteorological data for the numerical wave models for the selected years is extracted from the ERA Interim reanalysis of ECMWF (European Centre for Medium range Forecasts). For the year 2003 we also compare the estimated wave power with the modeled by SWAN, using ALADIN regional atmospheric model winds. We try to identify the shortcomings and limitations of the numerical modeling approach to the evaluation of the wave energy potential in Black Sea.

  18. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    SciTech Connect (OSTI)

    Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

    2013-05-10T23:59:59.000Z

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  19. Energy Contents of Gravitational Waves in Teleparallel Gravity

    E-Print Network [OSTI]

    M. Sharif; Sumaira Taj

    2009-10-02T23:59:59.000Z

    The conserved quantities, that are, gravitational energy-momentum and its relevant quantities are investigated for cylindrical and spherical gravitational waves in the framework of teleparallel equivalent of General Relativity using the Hamiltonian approach. For both cylindrical and spherical gravitational waves, we obtain definite energy and constant momentum. The constant momentum shows consistency with the results available in General Relativity and teleparallel gravity. The angular momentum for cylindrical and spherical gravitational waves also turn out to be constant. Further, we evaluate their gravitational energy-momentum fluxes and gravitational pressure.

  20. Energy of Alfven waves generated during magnetic reconnection

    E-Print Network [OSTI]

    Wang, L C; Ma, Z W; Zhang, X; Lee, L C

    2015-01-01T23:59:59.000Z

    A new method for the determination of the Alfven wave energy generated during magnetic reconnection is introduced and used to analyze the results from two-dimensional MHD simulations. It is found that the regions with strong Alfven wave perturbations almost coincide with that where both magnetic-field lines and flow-stream lines are bent, suggesting that this method is reliable for identifying Alfven waves. The magnetic energy during magnetic reconnection is mainly transformed into the thermal energy. The conversion rate to Alfven wave energy from the magnetic energy is strongly correlated to the magnetic reconnection rate. The maximum conversion rate at the time with the peak reconnection rate is found to be only about 4% for the cases with the plasma beta=0.01,0.1, and 1.0.

  1. Wave Function Properties in a High Energy Process

    E-Print Network [OSTI]

    Arjun Berera

    1994-11-14T23:59:59.000Z

    A model example is given of how properties of the hadronic light-cone wave function are revealed in a particular high energy process. The meson wave function is derived in scalar quark QCD. We apply it to compute the form of the cross section for lossless diffractive jet-production, an upcoming possiblity at HERA.

  2. Energy Content of Colliding Plane Waves using Approximate Noether Symmetries

    E-Print Network [OSTI]

    M. Sharif; Saira Waheed

    2011-09-19T23:59:59.000Z

    This paper is devoted to study the energy content of colliding plane waves using approximate Noether symmetries. For this purpose, we use approximate Lie symmetry method of Lagrangian for differential equations. We formulate the first-order perturbed Lagrangian for colliding plane electromagnetic and gravitational waves. It is shown that in both cases, there does not exist

  3. Energy and Momentum of a Class of Rotating Gravitational Waves

    E-Print Network [OSTI]

    M. Sharif

    2001-02-09T23:59:59.000Z

    We calculate energy and momentum for a class of cylindrical rotating gravitational waves using Einstein and Papapetrou's prescriptions. It is shown that the results obtained are reduced to the special case of the cylindrical gravitational waves already available in the literature.

  4. Energy storage and generation from thermopower waves

    E-Print Network [OSTI]

    Abrahamson, Joel T. (Joel Theodore)

    2012-01-01T23:59:59.000Z

    The nonlinear coupling between an exothermic chemical reaction and a nanowire or nanotube with large axial heat conduction guides a self-propagating thermal wave along the nano-conduit. The thermal conduit accelerates the ...

  5. Renewable Energy Specifications, Testing and Certification Terms...

    Open Energy Info (EERE)

    Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Specifications, Testing and Certification Terms of Reference Agency...

  6. On the configuration of arrays of floating wave energy converters 

    E-Print Network [OSTI]

    Child, Benjamin Frederick Martin

    2011-11-22T23:59:59.000Z

    In this thesis, certain issues relating to a number of wave energy absorbers operating in the same vicinity are investigated. Specifically, arrangements of the devices within such an array are sought, such that beneficial ...

  7. Mapping and Assessment of the United States Ocean Wave Energy...

    Open Energy Info (EERE)

    TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box...

  8. MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER ARNAUD ROUGIREL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for buoy-type ocean wave energy converter. The simplest model for this scheme is a non autonomous piecewise): see [OOS10]. Basically, a WEC is a floating body with a power takeoff system. It uses the vertical

  9. Internal wave energy radiated from a turbulent mixed layer

    SciTech Connect (OSTI)

    Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-09-15T23:59:59.000Z

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  10. Overview of Ocean Wave and Tidal Energy Lingchuan Mei

    E-Print Network [OSTI]

    Lavaei, Javad

    Overview of Ocean Wave and Tidal Energy Lingchuan Mei Department of Electrical Engineering Columbia with the climate change has led us to the exploration of new renewable energy in the past few decades. Oceans of this paper is to briefly overview the technology development of the ocean energy exploration, focusing on two

  11. ENERGY STAR Test Procedures and Verification | Department of...

    Energy Savers [EERE]

    ENERGY STAR ENERGY STAR Test Procedures and Verification ENERGY STAR Test Procedures and Verification The Department of Energy (DOE) is the lead agency in the development and...

  12. Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogenEnergy Information2003)Energy

  13. Test report : Milspray Scorpion energy storage device.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

  14. The Force of a Tsunami on a Wave Energy Converter

    E-Print Network [OSTI]

    O'Brien, Laura; Renzi, Emiliano; Dutykh, Denys; Dias, Frédéric

    2012-01-01T23:59:59.000Z

    With an increasing emphasis on renewable energy resources, wave power technology is fast becoming a realistic solution. However, the recent tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed creating large destructive waves. The question posed here is whether a nearshore wave energy converter (WEC) could withstand the force of an incoming tsunami. The analytical 3D model of Renzi & Dias (2012) developed within the framework of a linear theory and applied to an array of fixed plates is used. The time derivative of the velocity potential allows the hydrodynamic force to be calculated.

  15. Sandia Energy - Engine Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dynamometer for precision power measurements; and instrumentation, system protection, and power control channels.For measuring the thermal output of fuel-fired thermal energy...

  16. Flow Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisiaFlorida: Energy Resources Jump

  17. ON THE SELF-AVERAGING OF WAVE ENERGY IN RANDOM GUILLAUME BAL

    E-Print Network [OSTI]

    Bal, Guillaume

    ON THE SELF-AVERAGING OF WAVE ENERGY IN RANDOM MEDIA GUILLAUME BAL Abstract. We consider transport equations for arbitrary statistical moments of the wave field is used to show that wave energy initial energy distributions. We show that wave energy is not stable, and instead scintillation is created

  18. A Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter

    E-Print Network [OSTI]

    Brest, Université de

    A Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter in Irregular there are several wave energy converters to harness this energy. Some of them, as in tidal applications, use based Wave Energy Converter under irregular wave climate which is modeled as time series elevation from

  19. Tracer Testing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) Jump to:TownTownerOpenEnergyG, andTracer

  20. Energy-efficiency testing activities of the Mobile Energy Laboratory

    SciTech Connect (OSTI)

    Parker, G.B.

    1991-01-01T23:59:59.000Z

    This report summarizes energy-efficiency testing activities during the first and second quarters of fiscal year 1990 applying the Mobile Energy Laboratory (MEL) testing capabilities. Four MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) for energy testing and program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities.

  1. Test profiles for stationary energy storage applications

    SciTech Connect (OSTI)

    Butler, P.C. [Sandia National Labs., Albuquerque, NM (United States); Cole, J.F. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Taylor, P.A. [Energetics, Inc., Columbia, MD (United States)

    1998-09-01T23:59:59.000Z

    Evaluation of battery and other energy storage technologies for stationary uses is progressing rapidly toward application-specific testing that uses computer-based data acquisition and control equipment, active electronic loads and power supplies, and customized software, to enable sophisticated test regimes that simulate actual use conditions. These simulated-use tests provide more accurate performance and life evaluations than simple constant resistance or current testing regimes. Some of the tests use stepped constant-power charge and discharge regimes to simulate conditions created by electric utility applications such as frequency regulation and spinning reserve. Other test profiles under development simulate conditions for the energy storage component of Remote Area Power Supplies (RAPS) that include renewable and/or fossil-fueled generators. Various RAPS applications have unique sets of service conditions that require specialized test profiles. However, almost all RAPS tests and many tests that represent other stationary applications need to simulate significant time periods during which storage devices operate at low-to-medium states-of-charge without full recharge. Consideration of these and similar issues in simulated-use test regimes is necessary to effectively predict the responses of the various types of batteries in specific stationary applications. This paper describes existing and evolving stationary applications for energy storage technologies and test regimes that are designed to simulate them. The paper also discusses efforts to develop international testing standards.

  2. The study of waves is clearly an important subject in acoustics because sound energy is transmitted by waves traveling though air. Furthermore, it turns out that the

    E-Print Network [OSTI]

    Robertson, William

    Waves The study of waves is clearly an important subject in acoustics because sound energy, wavelength and speed of all types of waves, not only sound. In the case of sound waves in air the wave speed is transmitted by waves traveling though air. Furthermore, it turns out that the properties of waves on strings

  3. Tidal Energy Test Platform | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyoThornwood,Tianfu PVOverseeing

  4. Sandia Energy - Advanced Controls of Wave Energy Converters May...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC designs efficiently produce power only within a narrow wave frequency range. Advanced control of the power-conversion chain can alter this paradigm. Models have shown...

  5. QCD traveling waves at non-asymptotic energies

    E-Print Network [OSTI]

    C. Marquet; R. Peschanski; G. Soyez

    2005-10-03T23:59:59.000Z

    Using consistent truncations of the BFKL kernel, we derive analytical traveling-wave solutions of the Balitsky-Kovchegov saturation equation for both fixed and running coupling. A universal parametrization of the ``interior'' of the wave front is obtained and compares well with numerical simulations of the original Balitsky-Kovchegov equation, even at non-asymptotic energies. Using this universal parametrization, we find evidence for a traveling-wave pattern of the dipole amplitude determined from the gluon distribution extracted from deep inelastic scattering data.

  6. Galveston Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, NewG22 Jump to: navigation, search

  7. Stress Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, search Name Stratosolar Address 3411OpenStress

  8. Zero Energy of Plane-Waves for ELKOs

    E-Print Network [OSTI]

    Luca Fabbri

    2011-02-23T23:59:59.000Z

    We consider the ELKO field in interaction through contorsion with its own spin density, and we investigate the form of the consequent autointeractions; to do so we take into account the high-density limit and find plane wave solutions: such plane waves give rise to contorsional autointeractions for which the Ricci metric curvature vanishes and therefore the energy density is equal to zero identically. Consequences are discussed.

  9. Sandia National Laboratories: Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Test Pad (ESTP) Evaluating Powerful Batteries for Modular Electric Grid Energy Storage On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems,...

  10. LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY CONVERTERS

    E-Print Network [OSTI]

    Haller, Merrick

    1 LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY of wave energy converters (WECs) on water waves through the analysis of extensive laboratory experiments absorption is a reasonable predictor of the effect of WECs on the far field. Keywords: wave- energy; spectral

  11. Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study

    E-Print Network [OSTI]

    Georgiou, Georgios

    Data bank Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year Article history: Received 30 July 2013 Accepted 25 March 2014 Available online Keywords: Wave energy Numerical atmospheric Wave modeling a b s t r a c t The main characteristics of wave energy potential over

  12. ON THE GENERATION OF FLUX-TUBE WAVES IN STELLAR CONVECTION ZONES. IV. LONGITUDINAL WAVE ENERGY SPECTRA AND FLUXES FOR STARS WITH

    E-Print Network [OSTI]

    Ulmschneider, Peter

    ON THE GENERATION OF FLUX-TUBE WAVES IN STELLAR CONVECTION ZONES. IV. LONGITUDINAL WAVE ENERGY- tudinal tube waves in stellar convection zones and used it to compute the wave energy spectra and fluxes are important only for cool stars with Teff wave energy decreases

  13. Sandia Energy - Test and Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSitingStaffSunshineMolten

  14. Sandia Energy - Abuse Testing Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJulyCatalysts and2015

  15. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01T23:59:59.000Z

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  16. Wave Energy Conversion Overview and it's Renewable Energy Potential for the Oil and Gas Industry 

    E-Print Network [OSTI]

    Pastor, J.; Liu, Y.; Dou, Y.

    2014-01-01T23:59:59.000Z

    . Part III of this study focuses on wave energy converters (WEC) as opposed to ocean current energy converters. The point absorber, terminator, and attenuator WEC devices are addressed with regards to their operation and function. In Part IV...

  17. MHK Technologies/WaveTork | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider <WavePlaneWaveTork

  18. MHK Technologies/hyWave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG BuoyYOG < MHKbioWave <hyWave

  19. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    SciTech Connect (OSTI)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01T23:59:59.000Z

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  20. Solar Total Energy Project final test report

    SciTech Connect (OSTI)

    Nelson, R.F.; Abney, L.O.; Towner, M.L. (Georgia Power Co., Shenandoah, GA (USA))

    1990-09-01T23:59:59.000Z

    The Solar Total Energy Project (STEP), a cooperative effort between the United States Department of Energy (DOE) and Georgia Power Company (GPC) located at Shenandoah, Georgia, has undergone several design modifications based on experience from previous operations and test programs. The experiences encountered were discussed in detail in the Solar Total Energy Project Summary Report'' completed in 1987 for DOE. Most of the proposed changes discussed in this report were installed and tested in 1987 as part of two 15-day test programs (SNL Contract No. 06-3049). However, several of the suggested changes were not completed before 1988. These plant modifications include a new distributed control system for the balance of plant (BOP), a fiber a optical communications ring for the field control system, and new control configuration reflecting the new operational procedures caused by the plant modifications. These modifications were tested during a non-consecutive day test, and a 60-day field test conducted during the autumn of 1989. These test were partially funded by SNL under Contract No. 42-4859, dated June 22, 1989. Results of these tests and preliminary analysis are presented in this test summary report. 9 refs., 19 figs., 7 tabs.

  1. Potential of Development and Application of Wave Energy Conversion Technology in the Gulf of Mexico

    E-Print Network [OSTI]

    Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

    2014-01-01T23:59:59.000Z

    This paper focuses on the potential and application of developing wave energy technology in the Gulf of Mexico (GOM). The conditions (weather, wave climate, activity of the oil industry, etc.) in the GOM are assessed and the attributes of wave...

  2. Wave Energy Simulation Team Carries Home International Award | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacksof Energy Wave Energy Simulation

  3. Alden Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to: navigation, searchAlcoa Jump

  4. Wind Waves and Sun | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: EnergyWindCooperatives

  5. Sheets Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: Energy Resources Jump to:

  6. Wave Power Plant Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy AS Jump

  7. WaveCatcher Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy AS JumpDenmark

  8. Hinsdale Wave Basin 1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: Energy ResourcesHilshireCounty,

  9. Hinsdale Wave Basin 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: Energy ResourcesHilshireCounty,Hinsdale

  10. OTRC Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for Geothermal

  11. Triton Sea Wave Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas, Texas Zip:Hills Jump to:

  12. Mobile Energy Laboratory energy-efficiency testing programs

    SciTech Connect (OSTI)

    Parker, G.B.; Currie, J.W.

    1991-09-01T23:59:59.000Z

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  13. Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Jones, Craig

    2014-09-01T23:59:59.000Z

    The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

  14. First Test of High Frequency Gravity Waves from Inflation using ADVANCED LIGO

    E-Print Network [OSTI]

    Alejandro Lopez; Katherine Freese

    2015-01-11T23:59:59.000Z

    Inflation models ending in a first order phase transition produce gravitational waves (GW) via bubble collisions of the true vacuum phase. We demonstrate that these bubble collisions can leave an observable signature in Advanced LIGO, an upcoming ground-based GW experiment. These GW are dependent on two parameters of the inflationary model: $\\varepsilon$ represents the energy difference between the false vacuum and the true vacuum of the inflaton potential, and $\\chi$ measures how fast the phase transition ends ($\\chi \\sim$ the number of e-folds during the actual phase transition). Advanced LIGO will be able to test the validity of single-phase transition models within the parameter space $10^7 \\rm{GeV}\\lesssim \\varepsilon^{1/4} \\lesssim 10^{10} \\rm{GeV}$ and $0.19 \\lesssim \\chi \\lesssim 1$. If inflation occurred through a first order phase transition, then Advanced LIGO could be the first to discover high frequency GW from inflation.

  15. Prototype Testing Could Help Prove a Promising Energy Source...

    Energy Savers [EERE]

    Marine and Hydrokinetic Technology Manager The first third-party-validated, grid-tied wave energy device in North American waters started feeding renewable electricity to...

  16. Nonadiabatic corrections to the wave function and energy Krzysztof Pachucki #

    E-Print Network [OSTI]

    Pachucki, Krzysztof

    Nonadiabatic corrections to the wave function and energy Krzysztof Pachucki # Institute of Theoretical Physics, University of Warsaw, Hoâ??za 69, 00­681 Warsaw, Poland Jacek Komasa + Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60­780 Poznaâ??n, Poland (Dated: July 16, 2008) Nonadiabatic

  17. SeWave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump638324°,Schnell ZTools and Guidelines Jump

  18. Kinetic Wave Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,KasVinod Privatea metamorphic

  19. Haynes Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEIHas Been Happening JumpArmyNewA&M (Haynes)

  20. Rene Wave Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap JumpReliance Industries Limited SolarTechnicalRene

  1. The Sandia Wave Reflector - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's LowerFacilityTheSandia Hand Features

  2. Property:Wave Direction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This propertyVolume Jump to:

  3. Clean Wave Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClay ElectricClean EdgeProtection Tool for

  4. An alternative method for calculating the energy of gravitational waves

    E-Print Network [OSTI]

    Miroslav Sukenik; Jozef Sima

    1999-09-21T23:59:59.000Z

    In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.

  5. Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters M.S. Lagoun1. There are several wave energy converters to harness this energy. Some of them, as in tidal applications, use of a DFIG-based Wave Energy Converter (WEC). In the proposed control approach, the predicted output power

  6. Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System

    E-Print Network [OSTI]

    Wood, Stephen L.

    Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System Mark, alternative energy system to convert the circular motion of ocean waves as they propagate through the sea and feasible alternative, renewable, electrical energy producing subsea system. Index Terms--ocean energy, wave

  7. Physics 5B Winter 2009 Rate of Energy Transfer by Sinusoidal Waves on a String

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    , Vibrations and Waves (W.W. Norton and Company, New York, 1971). First, we compute the kinetic energyPhysics 5B Winter 2009 Rate of Energy Transfer by Sinusoidal Waves on a String Consider the kinetic energy and the potential energy of this string segment due to the passage of a traveling wave

  8. Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect (OSTI)

    Ruehl, K.; Michelen, C.; Kanner, S.; Lawson, M.; Yu, Y. H.

    2014-03-01T23:59:59.000Z

    To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests.

  9. Track 2: Sustainable Energy I. Renewable Energy: Wind and Wave

    E-Print Network [OSTI]

    turbines.!!!! Ocean Thermal Energy Technology Comes to Dry Land Jeremy Feakins, Ocean Engineering and Energy Systems !! Ocean Engineering and Energy Systems is scaling up ocean thermal energy conversion the sun to shine or the wind to blow. It extracts solar energy collected in tropical oceans and converts

  10. Maximum gravitational-wave energy emissible in magnetar flares

    E-Print Network [OSTI]

    Alessandra Corsi; Benjamin J. Owen

    2011-02-16T23:59:59.000Z

    Recent searches of gravitational-wave (GW) data raise the question of what maximum GW energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (\\sim 10^{49} erg) predicted so far come from a model [K. Ioka, Mon. Not. Roy. Astron. Soc. 327, 639 (2001)] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10^{48}-10^{49} erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  11. USABC Energy Storage Testing - High Power and PHEV Development...

    Energy Savers [EERE]

    Energy Storage Testing - High Power and PHEV Development USABC Energy Storage Testing - High Power and PHEV Development Presentation from the U.S. DOE Office of Vehicle...

  12. ISSUANCE 2015-05-26: Energy Conservation Program: Test Procedures...

    Office of Environmental Management (EM)

    Energy Conservation Program: Test Procedures for Ceiling Fans, Supplemental Notice of Proposed Rule ISSUANCE 2015-05-26: Energy Conservation Program: Test Procedures for Ceiling...

  13. Annex IV Environmental Webinar: Marine Renewable Energy Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annex IV Environmental Webinar: Marine Renewable Energy Test Centers and Environmental Effects Research Annex IV Environmental Webinar: Marine Renewable Energy Test Centers and...

  14. ISSUANCE 2015-06-05: Energy Conservation Program: Test Procedures...

    Energy Savers [EERE]

    05: Energy Conservation Program: Test Procedures for Commercial Prerinse Spray Valves, Notice of Proposed Rulemaking ISSUANCE 2015-06-05: Energy Conservation Program: Test...

  15. ISSUANCE 2015-06-26: Energy Conservation Program: Test Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    26: Energy Conservation Program: Test Procedures for Dehumidifiers, Final Rule ISSUANCE 2015-06-26: Energy Conservation Program: Test Procedures for Dehumidifiers, Final Rule This...

  16. 2014-10-16 Issuance: Energy Conservation Program Test Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16 Issuance: Energy Conservation Program Test Procedures for Residential Clothes Dryers, Notice of Public Meeting 2014-10-16 Issuance: Energy Conservation Program Test Procedures...

  17. Meeting Concerning Potential Test Procedures and Energy Conservation...

    Energy Savers [EERE]

    Meeting Concerning Potential Test Procedures and Energy Conservation Standards for Set-Top Boxes and Network Equipment Meeting Concerning Potential Test Procedures and Energy...

  18. 2014-10-29 Issuance: Energy Conservation Program: Test Procedures...

    Office of Environmental Management (EM)

    9 Issuance: Energy Conservation Program: Test Procedures for External Power Supplies, Notice of Public Meeting 2014-10-29 Issuance: Energy Conservation Program: Test Procedures for...

  19. DOE Issues Test Procedure Final Rule & Publishes Energy Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Procedure Final Rule & Publishes Energy Conservation Standards NOPR for Electric Motors DOE Issues Test Procedure Final Rule & Publishes Energy Conservation Standards NOPR for...

  20. DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Articles DOE Energy Star Testing Reveals Inefficient ASKO Dishwasher Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing DOE Refers Four...

  1. Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion Ralf Starzmann Fluid of harnessing the energy from ocean waves is the oscillating water column (OWC) device. The OWC converts

  2. Quantification of the influence of directional sea state parameters over the performances of wave energy converters 

    E-Print Network [OSTI]

    Pascal, Remy Claude Rene

    2012-11-29T23:59:59.000Z

    Accurate predictions of the annual energy yield from wave energy converters are essential to the development of the wave industry. The current method based on power matrices uses only a small part of the data available ...

  3. Energy-momentum relation for solitary waves of nonlinear Dirac equations

    E-Print Network [OSTI]

    T. V. Dudnikova

    2014-04-28T23:59:59.000Z

    Solitary waves of nonlinear Dirac, Maxwell-Dirac and Klein-Gordon-Dirac equations are considered. We prove that the energy-momentum relation for solitary waves coincides with the Einstein energy-momentum relation for point particles.

  4. Riding the Clean Energy Wave: New Projects Aim to Improve Water...

    Broader source: Energy.gov (indexed) [DOE]

    Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices April 16, 2014 - 1:56pm...

  5. Performance evaluation of booster materials in the plastic bonded explosive PBX 9502 in a hemispherical wave breakout test

    SciTech Connect (OSTI)

    Hooks, Daniel E [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Francois, Elizabeth [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    An explosive booster is normally required to initiate detonation in an insensitive high explosive (lHE). Booster materials must be ignitable by a conventional detonator and deliver sufficient energy and favorable pulse shape to initiate the IHE charge. The explosive booster should be as insensitive as reasonably possible to maintain the overall safety margin of the explosive assembly. A hemispherical wave breakout test termed the on ionskin test is one of the methods of testing the performance of booster materials in an initiation train assembly. There are several variations of this basic test which are known by other names. In this test, the wave breakout time-position history at the surface of a hemispherical IHE acceptor charge is recorded, and the relative uniformity of breakout allows qualitative comparison between booster candidates and quantitative comparison of several metrics. The results of a series of onionskin experiments evaluating the performance of some new booster formulations in the triaminotrinitrobenzene (TA TB) -based plastic bonded explosive PBX 9502 will be presented. The boosters were tested in an onionskin arrangement in which the booster pellet was cylindrical, and the tests were performed at a temperature of-55{sup o}C to emphasize variations in spreading performance. The modification from the traditional hemispherical geometry facilitated efficient explosive fabrication and charge assembly, but the results indicate that this geometry was not ideal for several reasons. Despite the complications arising from geometry, promising performance was observed from booster formulations including 3,3' -diamino-4,4'azoxyfurazan.

  6. Resonant behaviour of an oscillating wave energy converter in a channel

    E-Print Network [OSTI]

    E. Renzi; F. Dias

    2012-04-10T23:59:59.000Z

    A mathematical model is developed to study the behaviour of an oscillating wave energy converter in a channel. During recent laboratory tests in a wave tank, peaks in the hydrodynamic actions on the converter occurred at certain frequencies of the incident waves. This resonant mechanism is known to be generated by the transverse sloshing modes of the channel. Here the influence of the channel sloshing modes on the performance of the device is further investigated. Within the framework of a linear inviscid potential-flow theory, application of the Green theorem yields a hypersingular integral equation for the velocity potential in the fluid domain. The solution is found in terms of a fast-converging series of Chebyshev polynomials of the second kind. The physical behaviour of the system is then analysed, showing sensitivity of the resonant sloshing modes to the geometry of the device, that concurs in increasing the maximum efficiency. Analytical results are validated with available numerical and experimental data.

  7. Resonant behaviour of an oscillating wave energy converter in a channel

    E-Print Network [OSTI]

    Renzi, E

    2012-01-01T23:59:59.000Z

    A mathematical model is developed to study the behaviour of an oscillating wave energy converter in a channel. During recent laboratory tests in a wave tank, peaks in the hydrodynamic actions on the converter occurred at certain frequencies of the incident waves. This resonant mechanism is known to be generated by the transverse sloshing modes of the channel. Here the influence of the channel sloshing modes on the performance of the device is further investigated. Within the framework of a linear inviscid potential-flow theory, application of the Green theorem yields a hypersingular integral equation for the velocity potential in the fluid domain. The solution is found in terms of a fast-converging series of Chebyshev polynomials of the second kind. The physical behaviour of the system is then analysed, showing sensitivity of the resonant sloshing modes to the geometry of the device, that concurs in increasing the maximum efficiency. Analytical results are validated with available numerical and experimental d...

  8. DeFrees Large Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNew Jersey: EnergyDeForest,DeFrees FlumeWave

  9. Vertical Flowmeter Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:Isource HistoryVertexTest

  10. Influence of control strategy on the global efficiency of a Direct Wave Energy Converter with

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Influence of control strategy on the global efficiency of a Direct Wave Energy Converter, France Abstract--The choice of control strategy for Direct Wave Energy Converters (DWEC) is often a simple loss model in order to design a better control strategy. Keywords--Wave energy conversion; Point

  11. Cyclogenesis Simulation of Typhoon Prapiroon (2000) Associated with Rossby Wave Energy Dispersion*

    E-Print Network [OSTI]

    Li, Tim

    2000-01-01T23:59:59.000Z

    Cyclogenesis Simulation of Typhoon Prapiroon (2000) Associated with Rossby Wave Energy Dispersion (2000), in the western North Pacific, is simulated to understand the role of Rossby wave energy process is through the conventional barotropic Rossby wave energy dispersion, which enhances the low

  12. Tapping wave energy through Longuet-Higgins microseism effect , D. Lajoie2

    E-Print Network [OSTI]

    Boyer, Edmond

    Tapping wave energy through Longuet-Higgins microseism effect B. Molin1 , D. Lajoie2 , N. Jarry2 address the theoretical modeling of wave energy extraction with such a device, in the asymptotic case when´evel proposed that energy could be extracted from the waves with a heaving horizontal plate at the sea bottom

  13. Development of a Wireless Control and Monitoring System for Wave Energy Converters

    E-Print Network [OSTI]

    Wood, Stephen L.

    Development of a Wireless Control and Monitoring System for Wave Energy Converters Ismail Sultan Control and Monitoring Unit (PCMU) for the design and performance evaluation of wave energy converters (WECs). A prototype PCMU system was successfully deployed on June 8th , 2012 with wave energy convertor

  14. Surface current effects on the fetch-limited growth of wave energy Brian K. Haus1

    E-Print Network [OSTI]

    Miami, University of

    Surface current effects on the fetch-limited growth of wave energy Brian K. Haus1 Received 5 the fetch-limited growth of wind wave energy over a region with significant lateral shear of the current. Both the near-surface currents and wave energy and period were mapped over the highly sheared inshore

  15. Analysis and Development of a Three Body Heaving Wave Energy Scott J. Beatty

    E-Print Network [OSTI]

    Victoria, University of

    Analysis and Development of a Three Body Heaving Wave Energy Converter by Scott J. Beatty BASc Body Heaving Wave Energy Converter by Scott J. Beatty BASc, University of British Columbia, 2003 A relative motion based heaving point absorber wave energy converter is being co- developed by researchers

  16. Model-predicted distribution of wind-induced internal wave energy in the world's oceans

    E-Print Network [OSTI]

    Miami, University of

    Model-predicted distribution of wind-induced internal wave energy in the world's oceans Naoki 9 July 2008; published 30 September 2008. [1] The distribution of wind-induced internal wave energy-induced internal wave energy in the world's oceans, J. Geophys. Res., 113, C09034, doi:10.1029/2008JC004768. 1

  17. Horizontal displacements contribution to tsunami wave energy balance

    E-Print Network [OSTI]

    Dutykh, Denys; Chubarov, Leonid; Shokin, Yuriy

    2010-01-01T23:59:59.000Z

    The main reason for the generation of tsunamis is the deformation of the bottom of the ocean caused by an underwater earthquake. Usually, only the vertical bottom motion is taken into accound while the horizontal displacements are neglected. In the present paper we study both the vertical and the horizontal bottom motion while we propose a novel methodology for reconstructing the bottom coseismic displacements field which is transmitted to the free surface using a new three-dimensional Weakly Nonlinear (WN) approach. We pay a special attention to the evolution of kinetic and potential energies of the resulting wave while the contribution of horizontal displacements into wave energy balance is also quantified. Approaches proposed in this study are illustrated on the July 17, 2006 Java tsunami.

  18. Effective Gravitational Wave Stress-energy Tensor in Alternative Theories of Gravity

    E-Print Network [OSTI]

    Leo C. Stein; Nicolas Yunes

    2011-01-21T23:59:59.000Z

    The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature invariants, and show that the gravitational wave stress-energy tensor still reduces to Isaacson's. The calculations presented in this paper are crucial to perform systematic tests of such modified gravity theories through the orbital decay of binary pulsars or through gravitational wave observations.

  19. NREL's Controllable Grid Interface for Testing Renewable Energy Technologies (Presentation)

    SciTech Connect (OSTI)

    Gevorgian, V.

    2014-09-01T23:59:59.000Z

    This presentation is an overview of NREL's Controllable Grid Interface capabilities for testing renewable energy technologies.

  20. Wave equations for determining energy-level gaps of quantum systems

    E-Print Network [OSTI]

    Zeqian Chen

    2006-09-10T23:59:59.000Z

    An differential equation for wave functions is proposed, which is equivalent to Schr\\"{o}dinger's wave equation and can be used to determine energy-level gaps of quantum systems. Contrary to Schr\\"{o}dinger's wave equation, this equation is on `bipartite' wave functions. It is shown that those `bipartite' wave functions satisfy all the basic properties of Schr\\"{o}dinger's wave functions. Further, it is argued that `bipartite' wave functions can present a mathematical expression of wave-particle duality. This provides an alternative approach to the mathematical formalism of quantum mechanics.

  1. Test Site Sweden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest Site Sweden Test Site Sweden 2010

  2. Abstract--Wave energy will have a key role in meeting re-newable energy targets en route to a low carbon economy. How-

    E-Print Network [OSTI]

    Harrison, Gareth

    1 Abstract--Wave energy will have a key role in meeting re- newable energy targets en route will impact on wave energy conversion. Where the resource is restricted there may be reductions in energy the sensitivity of wave energy production and econom- ics to changes in climate. Index Terms--Wave energy

  3. European Wave and Tidal Energy Conference | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to maintain high...

  4. Ocean Wave Energy Company OWECO | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,andOasys WaterCity, NewGate,Shores,Energy

  5. Wave Dragon ApS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, NewWauseon,Wave Dragon ApS

  6. MHK Projects/Brough Head Wave Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AKBrough Head Wave Farm < MHK

  7. MHK Projects/Orcadian Wave Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway Bay IE <Orcadian Wave Farm

  8. MHK Technologies/GyroWaveGen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship < MHK Technologies JumpGyroWaveGen

  9. MHK Technologies/Syphon Wave Generator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHK TechnologiesSyphon Wave Generator

  10. MHK Technologies/Under Bottom Wave Generator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCKInformation MadaTechWave

  11. MHK Technologies/WavePlane | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider <WavePlane < MHK

  12. MHK Technologies/WaveStar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider <WavePlane <

  13. MHK Technologies/WaveSurfer | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider <WavePlane

  14. MHK Technologies/bioWave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG BuoyYOG < MHKbioWave < MHK

  15. MHL 2D Wind/Wave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG BuoyYOG < MHKbioWave

  16. Pelamis Wave Power Ocean Power Delivery Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)Pearl River Valley ElPelamis Wave Power

  17. Edinburgh University aka Wave Power Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka Wave Power Group Jump to:

  18. SyncWaveSystems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwater 4a JumpSyncWaveSystems Inc Jump

  19. Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint

    SciTech Connect (OSTI)

    Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

    2012-04-01T23:59:59.000Z

    The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

  20. Category:Flow Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton Greens Jumppage?Elkins,FOAFFlow Test,

  1. Chesapeake Bay Test Site | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER es unaChelmsford,Volcanic NationalValleyBay Test

  2. Property:Lab Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDsc JumpAlpha3 JumpLab Test

  3. Articles about Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgriculturalAn1(BENEFIT)GridOffshoreTesting

  4. Ocean Wave Wind Energy Ltd OWWE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,andOasys WaterCity,

  5. Oregon Wave Energy Trust OWET | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy Information FeesInformationWebsite | Open

  6. Nonlinear shear wave interaction at a frictional interface: Energy dissipation and generation of harmonics

    E-Print Network [OSTI]

    Norris, Andrew

    Nonlinear shear wave interaction at a frictional interface: Energy dissipation and generation solids, brought into frictional contact by remote normal compression. A shear wave, either time har the partition of energy resulting from a time harmonic obliquely incident plane SH wave reflected and refracted

  7. Equal energy phase space trajectories in resonant wave interactions O. Yaakobia

    E-Print Network [OSTI]

    Friedland, Lazar

    Equal energy phase space trajectories in resonant wave interactions O. Yaakobia and L. Friedlandb interacting wave systems with nonlinear frequency/ wave vector shifts is discussed. The corresponding these parameters vary in time or space. It is shown that the oscillation periods of two equal energy trajectories

  8. Test Procedures for Building Energy Simulation Tools | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon DOE-HDBK-1046-2008 AugustTermsTest

  9. Wave Energy Conversion Overview and it's Renewable Energy Potential for the Oil and Gas Industry

    E-Print Network [OSTI]

    Pastor, J.; Liu, Y.; Dou, Y.

    2014-01-01T23:59:59.000Z

    Ocean energy conversion has been of interest for many years. Recent developments such as concern over global warming have renewed interest in the topic. Part II provides an overview of the energy density found in ocean waves and how it is calculated...

  10. WEC up! Energy Department Announces Wave Energy Conversion Prize

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current

  11. European Wave and Tidal Energy Conference | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt | Department of Energy

  12. WETGen (Wave Energy Turbine GENerator) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah:InformationInformation WC 26

  13. List of Wave Energy Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other Alternative FuelEnergysourcesource History

  14. MHK Projects/Santona Wave Energy Park | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet.7413°, -155.488°InformationSantona

  15. MHK Technologies/OCEANTEC Wave Energy Converter | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNAREC < MHK

  16. MHK Technologies/Seatricity wave energy converter | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHK Technologies Jump to: navigation,

  17. MHK Technologies/The Crestwing Wave Energy Converter | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHK TechnologiesSyphonInformation

  18. MHK Technologies/The DEXAWAVE wave energy converter | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHK

  19. MHK Technologies/Tunneled Wave Energy Converter TWEC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCK <TidalStarInformation

  20. MHK Technologies/WAVE ENERGY CONVERTER | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHK Technologies Jump

  1. MHK Technologies/WEGA wave energy gravitational absorber | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHK Technologies

  2. MHK Technologies/Wave Energy Conversion Activator WECA | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHKWings <Dragon

  3. MHK Technologies/Wave Energy Propulsion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHKWings

  4. MHK Technologies/Wave Energy Seawater Transmission WEST | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHKWingsInformation

  5. Offshore Wave Energy Ltd OWEL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdaleOdersun AG Jump to:Office

  6. SyncWave Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwater 4a Jump

  7. Experimental studies of the hydrodynamic characteristics of a sloped wave energy device 

    E-Print Network [OSTI]

    Lin, Chia-Po

    2000-07-19T23:59:59.000Z

    Many wave energy convertors are designed to use either vertical (heave) or horizontal (surge) movements of waves. But the frequency response of small heaving buoys and oscillating water column devices shows that they are ...

  8. An evaluation of the potential of coastal wetlands for hurricane surge and wave energy reduction

    E-Print Network [OSTI]

    Loder, Nicholas Mason

    2009-05-15T23:59:59.000Z

    potential, a segmented marsh may offer comparable surge protection to that of a continuous marsh. Wave heights are generally increased within the marsh due to the transmission of wave energy through marsh channels. Results presented in this thesis may assist...

  9. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01T23:59:59.000Z

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  10. Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH

    E-Print Network [OSTI]

    Kurapov, Alexander

    Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH College of Oceanic of boundary energy in local budgets. Until recently, internal wave energy fluxes in ocean observations were 2004, in final form 3 February 2005) ABSTRACT Energy flux is a fundamental quantity for understanding

  11. PARTICLE ENERGY SPECTRA AT TRAVELING INTERPLANETARY SHOCK WAVES

    SciTech Connect (OSTI)

    Reames, Donald V., E-mail: dvreames@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2012-09-20T23:59:59.000Z

    We have searched for evidence of significant shock acceleration of He ions of {approx}1-10 MeV amu{sup -1} in situ at 258 interplanetary traveling shock waves observed by the Wind spacecraft. We find that the probability of observing significant acceleration, and the particle intensity observed, depends strongly upon the shock speed and less strongly upon the shock compression ratio. For most of the 39 fast shocks with significant acceleration, the observed spectral index agrees with either that calculated from the shock compression ratio or with the spectral index of the upstream background, when the latter spectrum is harder, as expected from diffusive shock theory. In many events the spectra are observed to roll downward at higher energies, as expected from Ellison-Ramaty and from Lee shock-acceleration theories. The dearth of acceleration at {approx}85% of the shocks is explained by (1) a low shock speed, (2) a low shock compression ratio, and (3) a low value of the shock-normal angle with the magnetic field, which may cause the energy spectra that roll downward at energies below our observational threshold. Quasi-parallel shock waves are rarely able to produce measurable acceleration at 1 AU. The dependence of intensity on shock speed, seen here at local shocks, mirrors the dependence found previously for the peak intensities in large solar energetic-particle events upon speeds of the associated coronal mass ejections which drive the shocks.

  12. ORNL tests energy-efficient technologies for expeditionary military...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tests energy-efficient technologies for expeditionary military bases in the tropics Over the summer, ORNL researchers tested the performance of various tent configurations and HVAC...

  13. Energy Conservation Program: Test Procedure for Pumps, Notice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conservation Program: Test Procedure for Pumps, Notice of Proposed Rulemaking Energy Conservation Program: Test Procedure for Pumps, Notice of Proposed Rulemaking This document is...

  14. Energy flux of Alfven waves in weakly ionized plasma

    E-Print Network [OSTI]

    J. Vranjes; S. Poedts; B. P. Pandey; B. De Pontieu

    2008-05-29T23:59:59.000Z

    The overshooting convective motions in the solar photosphere are frequently proposed as the source for the excitation of Alfv\\'en waves. However, the photosphere is a) very weakly ionized, and, b) the dynamics of the plasma particles in this region is heavily influenced by the plasma-neutral collisions. The purpose of this work is to check the consequences of these two facts on the above scenario and their effects on the electromagnetic waves. It is shown that the ions and electrons in the photosphere are both un-magnetized; their collision frequency with neutrals is much larger than the gyro-frequency. This implies that eventual Alfv\\'en-type electromagnetic perturbations must involve the neutrals as well. This has the following serious consequences: i) in the presence of perturbations, the whole fluid (plasma + neutrals) moves; ii) the Alfv\\'en velocity includes the total (plasma + neutrals) density and is thus considerably smaller compared to the collision-less case; iii) the perturbed velocity of a unit volume, which now includes both plasma and neutrals, becomes much smaller compared to the ideal (collision-less) case; and iv) the corresponding wave energy flux for the given parameters becomes much smaller compared to the ideal case.

  15. Hydropower, Wave and Tidal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage in CarbonLaboratories'Hydropower, Wave and

  16. Energy Department Announces $10 million for Wave Energy Demonstration at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog Energy Blog RSSLightingSystems into

  17. Testing gravitational parity violation with coincident gravitational waves and short gamma-ray bursts

    E-Print Network [OSTI]

    Nicolas Yunes; Richard O'Shaughnessy; Benjamin J. Owen; Stephon Alexander

    2010-05-18T23:59:59.000Z

    Gravitational parity violation is a possibility motivated by particle physics, string theory and loop quantum gravity. One effect of it is amplitude birefringence of gravitational waves, whereby left and right circularly-polarized waves propagate at the same speed but with different amplitude evolution. Here we propose a test of this effect through coincident observations of gravitational waves and short gamma-ray bursts from binary mergers involving neutron stars. Such gravitational waves are highly left or right circularly-polarized due to the geometry of the merger. Using localization information from the gamma-ray burst, ground-based gravitational wave detectors can measure the distance to the source with reasonable accuracy. An electromagnetic determination of the redshift from an afterglow or host galaxy yields an independent measure of this distance. Gravitational parity violation would manifest itself as a discrepancy between these two distance measurements. We exemplify such a test by considering one specific effective theory that leads to such gravitational parity-violation, Chern-Simons gravity. We show that the advanced LIGO-Virgo network and all-sky gamma-ray telescopes can be sensitive to the propagating sector of Chern-Simons gravitational parity violation to a level roughly two orders of magnitude better than current stationary constraints from the LAGEOS satellites.

  18. Accelerated Testing Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of roofing surfaces HugoTesting Validation

  19. Semiclassical wave functions and energy spectra in polygon billiards

    E-Print Network [OSTI]

    Stefan Giller

    2014-12-01T23:59:59.000Z

    A consistent scheme of semiclassical quantization in polygon billiards by wave function formalism is presented. It is argued that it is in the spirit of the semiclassical wave function formalism to make necessary rationalization of respective quantities accompanied the procedure of the semiclassical quantization in polygon billiards. Unfolding rational polygon billiards (RPB) into corresponding Riemann surfaces (RS) periodic structures of the latter are demonstrated with 2g independent periods on the respective multitori with g as their genuses. However it is the two dimensional real space of the real linear combinations of these periods which is used for quantizing RPB. A class of doubly rational polygon billiards (DRPB) is distinguished for which these real linear relations are rational and their semiclassical quantization by wave function formalism is presented. It is shown that semiclassical quantization of both the classical momenta and the energy spectra are determined completely by periodic structure of the corresponding RS. Each RS is then reduced to elementary polygon patterns (EPP) as its basic periodic elements. Each such EPP can be glued to a torus of genus g. Semiclassical wave functions (SWF) are then constructed on EPP. The SWF for DRPB appear to be exact. They satisfy the Dirichlet, the Neumannn or the mixed boundary conditions. Not every mixing is allowed however and a respective incompleteness of SWF is discussed. Dens families of DRPB are used for approximate semiclassical quantization of RPB. General rational polygons are quantized by approximating them by DRPB. An extension of the formalism to irrational polygons is described as well. The semiclassical approximations constructed in the paper are controlled by general criteria of the eigenvalue theory. A relation between the superscar solutions and SWF constructed in the paper is also discussed.

  20. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect (OSTI)

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01T23:59:59.000Z

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  1. Energy Department Launches Competition to Drive Innovations in Wave Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNF &Department ofDepartment ofProjectsApps for

  2. Sandia Energy - Sandia, NREL Release Wave Energy Converter Modeling and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments HomeDatabaseInternational

  3. Sandia Energy - WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety Home StationaryUpper RioVideos

  4. Sandia Energy - Advanced Controls of Wave Energy Converters May Increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJulyCatalysts and2015Advanced BitPower

  5. ISSUANCE 2015-06-08: Energy Conservation Program: Test Procedures...

    Energy Savers [EERE]

    ISSUANCE 2015-06-08: Energy Conservation Program: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule ISSUANCE 2015-06-08: Energy...

  6. Sandia National Laboratories: validation test bed for energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage systems Solar Regional Test Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar...

  7. Sea ice floes dissipate the energy of steep ocean waves

    E-Print Network [OSTI]

    Toffoli, Alessandro; Meylan, Michael H; Cavaliere, Claudio; Alberello, Alberto; Elsnab, John; Monty, Jason P

    2015-01-01T23:59:59.000Z

    Wave attenuation by ice floes is an important parameter for modelling the Arctic Oceans. At present, attenuation coefficients are extracted from linear models as a function of the incident wave period and floe thickness. Recent explorations in the Antarctic Mixed Ice Zone (MIZ) revealed a further dependence on wave amplitude, suggesting that nonlinear contributions are non-negligible. An experimental model for wave attenuation by a single ice floe in a wave flume is here presented. Observations are compared with linear predictions based on wave scattering. Results indicate that linear models perform well under the effect of gently sloping waves. For more energetic wave fields, however, transmitted wave height is normally over predicted. Deviations from linearity appear to be related to an enhancement of wave dissipation induced by unaccounted wave-ice interaction processes, including the floe over wash.

  8. Microsoft Word - test | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    test Microsoft Word - test Microsoft Word - test More Documents & Publications Interested Parties - WAPA Public Comment InterestedPartiesCOPSCoWAPA040309.pdf Microsoft Word -...

  9. Gravitational wave energy spectrum of a parabolic encounter

    E-Print Network [OSTI]

    Christopher P. L. Berry; Jonathan R. Gair

    2010-11-18T23:59:59.000Z

    We derive an analytic expression for the energy spectrum of gravitational waves from a parabolic Keplerian binary by taking the limit of the Peters and Matthews spectrum for eccentric orbits. This demonstrates that the location of the peak of the energy spectrum depends primarily on the orbital periapse rather than the eccentricity. We compare this weak-field result to strong-field calculations and find it is reasonably accurate (~10%) provided that the azimuthal and radial orbital frequencies do not differ by more than ~10%. For equatorial orbits in the Kerr spacetime, this corresponds to periapse radii of rp > 20M. These results can be used to model radiation bursts from compact objects on highly eccentric orbits about massive black holes in the local Universe, which could be detected by LISA.

  10. 1. We can hear around corners, but we cannot see around corners. The reason is that a) Sound waves carry more energy than do light waves

    E-Print Network [OSTI]

    Coleman, Piers

    1. We can hear around corners, but we cannot see around corners. The reason is that a) Sound waves carry more energy than do light waves b) The frequency of sound is much greater than that of light c) The wavelength of sound is much greater than that of light d) Sound waves are longitudinal, while light waves

  11. Unravelling the influence of water depth and wave energy on the facies diversity of shelf carbonates

    E-Print Network [OSTI]

    Purkis, Sam

    Unravelling the influence of water depth and wave energy on the facies diversity of shelf their production is tied to light and wave energy, carbonate sediments are most effectively produced in shallow energy regime to be reliable indicators of facies type when considered in isolation. Consid- ered

  12. Shell-instability generated waves by low energy electrons on converging magnetic field lines

    E-Print Network [OSTI]

    California at Berkeley, University of

    Shell-instability generated waves by low energy electrons on converging magnetic field lines D of observations of such shell type distributions having positive slope in velocity space at low energies, about 10´cre´au (2006), Shell-instability generated waves by low energy electrons on converging magnetic field lines

  13. Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish

    E-Print Network [OSTI]

    Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish Princeton Plasma Physics, the "Gardner free energy." Here, the plasma is rearranged incompressibly in the six- dimensional phase space of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma

  14. One-Way Wave Propagation Through Smoothly Varying Media Controlling the Energy Production at Home

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    One-Way Wave Propagation Through Smoothly Varying Media Controlling the Energy Production at Home propagation through the earth, governed by the acoustic wave equation. Downward continuation is a technique, Citadel T100 As part of the application called migration or reflection seismic imaging, we model wave

  15. Heteroclinic standing waves in defocussing DNLS equations -- Variational approach via energy minimization

    E-Print Network [OSTI]

    Michael Herrmann

    2010-02-08T23:59:59.000Z

    We study heteroclinic standing waves (dark solitons) in discrete nonlinear Schr\\"{o}dinger equations with defocussing nonlinearity. Our main result is a quite elementary existence proof for waves with monotone and odd profile, and relies on minimizing an appropriately defined energy functional. We also study the continuum limit and the numerical approximation of standing waves.

  16. Author's personal copy Wave energy resources along the Hawaiian Island chain

    E-Print Network [OSTI]

    model Wave atlas Wave energy Wave power a b s t r a c t Hawaii's access to the ocean and remoteness from heights show good agreement with data from satellites and buoys. Bi-monthly median and percentile plots Elsevier Ltd. All rights reserved. 1. Introduction The Earth's changing climate, the increasing cost of oil

  17. THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER LAURA O'BRIEN, PAUL CHRISTODOULIDES, EMILIANO RENZI, DENYS DUTYKH,

    E-Print Network [OSTI]

    THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER LAURA O'BRIEN, PAUL CHRISTODOULIDES, EMILIANO waves. The question posed here is whether a nearshore wave energy converter (WEC) could withstand Acknowledgements 10 References 10 1. Introduction Wave energy devices are slowly becoming a reality. Various

  18. Stress-wave energy management through material anisotropy Alireza V. Amirkhizi, Aref Tehranian, Sia Nemat-Nasser

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Stress-wave energy management through material anisotropy Alireza V. Amirkhizi, Aref Tehranian, Sia the required anisotropy, and to experimentally demonstrate the management of stress-wave energy in a desired that if this axis initially coincides with the stress-wave vector, then the energy of the plane waves would closely

  19. Low pumping energy mode of the "optical bars''/"optical lever" topologies of gravitational-wave antennae

    E-Print Network [OSTI]

    F. Ya. Khalili

    2003-04-16T23:59:59.000Z

    The ``optical bars''/``optical lever'' topologies of gravitational-wave antennae allow to obtain sensitivity better that the Standard Quantum Limit while keeping the optical pumping energy in the antenna relatively low. Element of the crucial importance in these schemes is the local meter which monitors the local test mirror position. Using cross-correlation of this meter back-action noise and its measurement noise it is possible to further decrease the optical pumping energy. In this case the pumping energy minimal value will be limited by the internal losses in the antenna only. Estimates show that for values of parameters available for contemporary and planned gravitational-wave antennae, sensitivity about one order of magnitude better than the Standard Quantum Limit can be obtained using the pumping energy about one order of magnitude smaller energy than is required in the traditional topology in order to obtain the the Standard Quantum Limit level of sensitivity.

  20. Mechanisms of Ignition by Transient Energy Deposition: Regimes of Combustion Waves Propagation

    E-Print Network [OSTI]

    Kiverin, Alexey D; Ivanov, Mikhail F; Liberman, Michael A

    2013-01-01T23:59:59.000Z

    Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source and the size of the hot spot. The main parameters which define regimes of the combustion waves facilitated by the transient deposition of thermal energy are: acoustic timescale, duration of the energy deposition, ignition time scale and size of the hot spot. The interplay between these parameters specifies the role of gasdynamical processes, the formation and steepness of the temperature gradient and speed of the spontaneous wave. The obtained results show how ignition of one or another regime of combustion wave depends on the value of energy, rate of the energy deposition and size of the hot spot, which is import...

  1. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has a gently sloping seabed, free of irregularities that could disturb the local wave field. Thus, it is likely that the wave field is homogeneous over the deployment area of...

  2. Waves

    E-Print Network [OSTI]

    LaCure, Mari Mae

    2010-04-29T23:59:59.000Z

    Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...

  3. Wave energy attenuation and shoreline alteration characteristics of submerged breakwaters

    E-Print Network [OSTI]

    Krafft, Katherine Margaret

    1993-01-01T23:59:59.000Z

    - frequency X ? distance from original shoreline, (assuming a constant slope of 1: 15) Xt - centered and padded time series data CHAPTER I INTRODUCTION 1. 1 General The dynamic behavior of waves on a shore in conjunction with inadequate littoral drift... periodogram, the asymptotically unbiased estimate of the spectral density function, the centered and padded data, time, wave frequency, The relationship between the incident wave spectrum, S;(m), and the transmitted wave spectrum, St(w), can...

  4. Wave Energy Resources Representative Sites Around the Hawaiian Islands

    E-Print Network [OSTI]

    Flux p14 Appendix A ­ SWAN Numerical Model Calibration with NOAA/NDBO Buoys p21 #12;Wave Power. Vega Ph.D October 11, 2010 #12;Wave Power Resources off the Hawaiian Islands October 11, 2010 1 of Contents Summary p2 Background: Wave Power Conversion p3 Licensing and Permitting p3 Challenges

  5. A Proposal for Determining the Energy Content of Gravitational Waves by Using Approximate Symmetries of Differential Equations

    E-Print Network [OSTI]

    Ibrar Hussain; F. M. Mahomed; Asghar Qadir

    2009-03-11T23:59:59.000Z

    Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's field equations, there is no unambiguous means to define their energy content. However, Weber and Wheeler had demonstrated that they do impart energy to test particles. There have been various proposals to define the energy content but they have not met with great success. Here we propose a definition using "slightly broken" Noether symmetries. We check whether this definition is physically acceptable. The procedure adopted is to appeal to "approximate symmetries" as defined in Lie analysis and use them in the limit of the exact symmetry holding. A problem is noted with the use of the proposal for plane-fronted gravitational waves. To attain a better understanding of the implications of this proposal we also use an artificially constructed time-varying non-vacuum metric and evaluate its Weyl and stress-energy tensors so as to obtain the gravitational and matter components separately and compare them with the energy content obtained by our proposal. The procedure is also used for cylindrical gravitational wave solutions. The usefulness of the definition is demonstrated by the fact that it leads to a result on whether gravitational waves suffer self-damping.

  6. Higher Energy States in the CO Dimer: Millimeter-Wave Spectra and Rovibrational Calculations

    E-Print Network [OSTI]

    Higher Energy States in the CO Dimer: Millimeter-Wave Spectra and Rovibrational Calculations Leonid, Russia Ge´ W. M. Vissers Department of Chemistry, The Ohio State UniVersity, Columbus, Ohio 43210 Ad van millimeter-wave data yielded the precise location of 33 new energy levels of A+ symmetry and 20 levels of A

  7. New energy test procedures for refrigerators and other appliances

    SciTech Connect (OSTI)

    Meier, Alan; Ernebrant, Stefan; Kawamoto, Kaoru; Wihlborg, Mats

    1999-04-01T23:59:59.000Z

    Many innovations in refrigerator design rely on microprocessors, sensors, and algorithms to control automatic defrost, variable speed,and other features. Even though these features strongly influence energy consumption, the major energy test procedures presently test only a refrigerator's mechanical efficiency and ignore the ''software'' aspects. We describe a new test procedure where both ''hardware'' and ''software'' tests are fed into a dynamic simulation model. A wide range of conditions can be tested and simulated. This approach promotes international harmonization because the simulation model can also be programmed to estimate energy use for the ISO, DOE, or JIS test. The approach outlined for refrigerators can also be applied to other appliances.

  8. Loss of purity by wave packet scattering at low energies

    E-Print Network [OSTI]

    Jia Wang; C. K. Law; M. -C. Chu

    2006-01-06T23:59:59.000Z

    We study the quantum entanglement produced by a head-on collision between two gaussian wave packets in three-dimensional space. By deriving the two-particle wave function modified by s-wave scattering amplitudes, we obtain an approximate analytic expression of the purity of an individual particle. The loss of purity provides an indicator of the degree of entanglement. In the case the wave packets are narrow in momentum space, we show that the loss of purity is solely controlled by the ratio of the scattering cross section to the transverse area of the wave packets.

  9. CURRENT TESTING ACTIVITIES AT THE ACRELAB RENEWABLE ENERGY SYSTEMS TEST FACILITY , E S Spooner2

    E-Print Network [OSTI]

    , AUSTRALIA 2 University of New South Wales, Kensington, NSW, AUSTRALIA 3 Australian CRC for Renewable Energy) on the Murdoch University campus in Perth, Western Australia. The facility provides independent testing of RECURRENT TESTING ACTIVITIES AT THE ACRELAB RENEWABLE ENERGY SYSTEMS TEST FACILITY T L Pryor1 , E

  10. Renewable Energy and the Nevada Test and Training Range

    E-Print Network [OSTI]

    Lewis, Robert Michael

    1 Renewable Energy and the Nevada Test and Training Range Wednesday, December 15, 2010 Melissa due to renewable energy infrastructure development at the Nevada Test and Training Range. Nevada has have ever-increasing renewable energy goals. However, proposals for the development of 116 renewable

  11. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    E-Print Network [OSTI]

    Giuseppe Congedo

    2014-09-29T23:59:59.000Z

    The basic constituent of interferometric gravitational wave detectors -- the test mass to test mass interferometric link -- behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as non-gravitational spurious forces. This last contribution is going to be characterised by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalise over nuisance parameters. The $\\mathcal{F}$-statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalised to marginalise over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  12. Fourth Novatek Hammer Field Test Department of Energy Well PM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fourth Novatek Hammer Field Test Department of Energy Well PM-2-31 Garfield County, Colorado September, 1995 Report Prepared for Mud Hammer Development Project Partners Mobil Oil...

  13. Energy Systems High Pressure Test Laboratory (Fact Sheet), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National laboratories Contact Us If you are interested in working with NREL's Energy Systems High Pressure Test Laboratory, please contact: ESIF Manager Carolyn Elam...

  14. 9/18/09 2:09 PM'Big Wave' Theory Offers Alternative to Dark Energy -Physical Science Page 1 of 3http://scienceblips.dailyradar.com/story/big_wave_theory_offers_alternative_to_dark_energy/

    E-Print Network [OSTI]

    Temple, Blake

    9/18/09 2:09 PM'Big Wave' Theory Offers Alternative to Dark Energy - Physical Science Page 1 of 3http://scienceblips.dailyradar.com/story/big_wave_theory_offers_alternative_to_dark_energy/ Gadget.com - 30 days ago 'Big Wave' Theory Offers Alternative to Dark Energy -- Mathematicians have proposed

  15. The unexpected role of D waves in low-energy neutral pion photoproduction

    E-Print Network [OSTI]

    C. Fernandez-Ramirez

    2009-12-21T23:59:59.000Z

    It has been commonly assumed that low-energy neutral pion photoproduction from the proton can be described accounting only for S and P waves, and that higher partial waves are irrelevant. We have found that this assumption is not correct and that the inclusion of D waves is necessary to obtain a reliable extraction of the $E_{0+}$ multipole from experimental data. This is due in large measure to the spontaneous breaking of chiral symmetry in QCD which leads to very small S-wave contributions. This makes the usual partial wave expansion less accurate and although D waves are small, their contribution is enhanced through the interference with P waves, which compromises the S-wave extraction from data if D waves are not taken into account. In our work we have used Heavy Baryon Chiral Perturbation Theory to one loop, and up to ${\\cal O}(q^4)$, to account for the S and P waves, while D waves are added in an almost model-independent way using standard Born terms and vector mesons. We also show that higher partial waves do not play an important role.

  16. EEB Hub: A Test Bed for Nationwide Energy Efficiency

    E-Print Network [OSTI]

    Hall, Sharon J.

    EEB Hub: A Test Bed for Nationwide Energy Efficiency Wednesday, May 1, 2013 11:00 a.m. - 12:00 p 2011, became the executive director of the Energy Efficient Buildings (EEB) HUB through the US

  17. Wave Power: Destroyer of Rocks; Creator of Clean Energy

    Broader source: Energy.gov [DOE]

    Presentation covers the topic of wave power at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  18. chi sup 2_ testing of optimal filters for gravitational wave signals: An experimental implementation

    E-Print Network [OSTI]

    L. Baggio; M. Cerdonio; A. Ortolan; G. Vedovato; L. Taffarello; J-P. Zendri; M. Bonaldi; P. Falferi; V. Martinucci; R. Mezzena; G. A. Prodi; S. Vitale

    2000-01-10T23:59:59.000Z

    We have implemented likelihood testing of the performance of an optimal filter within the online analysis of AURIGA, a sub-Kelvin resonant-bar gravitational wave detector. We demonstrate the effectiveness of this technique in discriminating between impulsive mechanical excitations of the resonant-bar and other spurious excitations. This technique also ensures the accuracy of the estimated parameters such as the signal-to-noise ratio. The efficiency of the technique to deal with non-stationary noise and its application to data from a network of detectors are also discussed.

  19. MHK Projects/Centreville OPT Wave Energy Park | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AKBrough HeadCentreville OPT Wave

  20. Measurement and Interpretation of Interaction of MeV Energy Protons with Lower Hybrid Waves in JET Plasmas

    E-Print Network [OSTI]

    Measurement and Interpretation of Interaction of MeV Energy Protons with Lower Hybrid Waves in JET Plasmas

  1. Sandia Energy - Central Receiver Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power generation. As the nation's prime test resource for the DOE program to develop solar thermal electric power, the CRTF also serves other researchers, including government...

  2. Dissipation of Modified Entropic Gravitational Energy Through Gravitational Waves

    E-Print Network [OSTI]

    Clovis Jacinto de Matos

    2011-11-04T23:59:59.000Z

    The phenomenological nature of a new gravitational type interaction between two different bodies derived from Verlinde's entropic approach to gravitation in combination with Sorkin's definition of Universe's quantum information content, is investigated. Assuming that the energy stored in this entropic gravitational field is dissipated under the form of gravitational waves and that the Heisenberg principle holds for this system, one calculates a possible value for an absolute minimum time scale in nature $\\tau=15/16 \\frac{\\Lambda^{1/2}\\hbar G}{c^4}\\sim9.27\\times10^{-105}$ seconds, which is much smaller than the Planck time $t_{P}=(\\hbar G/c^5)^{1/2}\\sim 5.38\\times10^{-44}$ seconds. This appears together with an absolute possible maximum value for Newtonian gravitational forces generated by matter $F_g=32/30\\frac{c^7}{\\Lambda \\hbar G^2}\\sim 3.84\\times 10^{165}$ Newtons, which is much higher than the gravitational field between two Planck masses separated by the Planck length $F_{gP}=c^4/G\\sim1.21\\times10^{44}$ Newtons.

  3. Resonant energy conversion of 3-minute intensity oscillations into Alfven waves in the solar atmosphere

    E-Print Network [OSTI]

    D. Kuridze; T. V. Zaqarashvili

    2007-03-19T23:59:59.000Z

    Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.

  4. Model test of wave forces on a structurally dense jacket platform

    SciTech Connect (OSTI)

    Gu, G.Z.; Parsley, M.A.; Berek, E.P.; Calvo, J.J.; Johnson, R.C.; Petruska, D.J. [Mobil Technology Co., Dallas, TX (United States)

    1996-12-31T23:59:59.000Z

    In the Gulf of Mexico, there are a significant number of jacket platforms built in the 1950`s and 60`s which are still in operation. Typically, these platforms have a large number of closely spaced legs and densely arranged bracing members. Since most of these platforms are beyond their design lives but the reservoirs are still producing, their safety, serviceability and fitness-for-purpose must be re-assessed in order to continue producing from them. During Mobil`s in-house re-qualification effort, it was found that the predictions by structural analysis programs (such as SACS and KARMA) were inconsistent with the platform inspection results. The programs predicted a large number of joint can failures during design storms (such as hurricane Andrew), but underwater inspections indicated only few failures had actually occurred. It was apparent that the procedure used for the assessment was conservative--either the wave loads the platforms experienced during the hurricanes were overestimated and/or the structural resistances were underestimated. This paper addresses the wave load issue. To calibrate the force algorithms typically used in structural analysis programs, a model test of a typical aging jacket platform was conducted in the wave basin.

  5. Shock Tube Design for High Intensity Blast Waves for Laboratory Testing of Armor and Combat Materiel

    E-Print Network [OSTI]

    Courtney, Elijah; Courtney, Michael

    2015-01-01T23:59:59.000Z

    Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from ~1 MPa to ~5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods were investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral priming section which works by increasing the turbulent flow of the deflagration wave, thus increasing its speed and pressure. This approach increased the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (Friedlander waveform). The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increased the peak pressure from 1.17 MPa to 2.25 MPa. Using a 1...

  6. Third-order Coulomb corrections to the S-wave Green function, energy levels and wave functions at the origin

    E-Print Network [OSTI]

    M. Beneke; Y. Kiyo; K. Schuller

    2007-05-30T23:59:59.000Z

    We obtain analytic expressions for the third-order corrections due to the strong interaction Coulomb potential to the S-wave Green function, energy levels and wave functions at the origin for arbitrary principal quantum number n. Together with the known non-Coulomb correction this results in the complete spectrum of S-states up to order alpha_s^5. The numerical impact of these corrections on the Upsilon spectrum and the top quark pair production cross section near threshold is estimated.

  7. Live Webinar on the Funding Opportunity for Administration of the Wave Energy Converter Prize

    Broader source: Energy.gov [DOE]

    The Water Power Program is seeking a Prize Administrator with expertise in prize competitions to collaborate with DOE, technical experts, and a wave tank testing facility in developing and...

  8. DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy Star

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions andDefinitionEnergy Implement

  9. Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy Annette R. Grilli

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy.g., latching) of the SSLG, in order to further improve power generation. KEYWORDS : Wave energy systems networks), based on captur- ing renewable wave energy. To do so, we design and optimize a new type

  10. Design Methodology for a SEAREV Wave Energy Marie Ruellan, Hamid BenAhmed, Bernard Multon, Christophe Josset, Aurelien Babarit,

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Design Methodology for a SEAREV Wave Energy Converter Marie Ruellan, Hamid BenAhmed, Bernard by presenting two power take-off (PTO) technologies for the SEAREV wave energy converter (WEC) followed technologies in- tended to transform wave energy into electricity. The types of systems are twofold

  11. Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersion of a Preexisting Typhoon. Part I: Satellite Data Analyses*

    E-Print Network [OSTI]

    Li, Tim

    Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersion of a Preexisting Typhoon. Part with the Rossby wave energy dispersion of a preexisting TC. The wave trains are oriented in a northwest induced by tropical cyclone (TC) energy dispersion are revealed based on the Quick Scatterometer (Quik

  12. Abstract This article will begin by presenting two power take-off (PTO) technologies for the SEAREV wave energy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for the SEAREV wave energy converter (WEC) followed by the design methodology applied to electromagnetic with the SEAREV WEC before discussing the two conversion technologies intended to transform wave energy, including one featuring power leveling. Index Terms ­ wave energy conversion - electromagnetic generator

  13. Test report : Raytheon / KTech RK30 energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-10-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.

  14. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  15. Design, prototyping and testing of a compact superconducting double quarter wave crab cavity

    E-Print Network [OSTI]

    Xiao, Binping; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdú-Andres, Silvia; Wu, Qiong

    2015-01-01T23:59:59.000Z

    A novel design of superconducting Crab Cavity was proposed and designed at Brookhaven National Laboratory. The new cavity shape is a Double Quarter Wave or DQWCC. After fabrication and surface treatments, the niobium proof-of-principle cavity was cryogenically tested in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service for the Large Hadron Collider luminosity upgrade. The electromagnetic properties of the cavity are also well matched for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the requirement for a crab cavity in the future High Luminosity LHC of 3.34 MV. In this paper we present the design, prototyping and test results of the DQWCC.

  16. Sandia Energy - Molten Salt Test Loop Commissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl HomeCommissioning Home Renewable Energy

  17. Openei test page | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: EnergyProjects/Search EngineStub

  18. Dynamical Energy Analysis - determining wave energy distributions in complex vibro-acoustical structures

    E-Print Network [OSTI]

    Gregor Tanner

    2008-03-12T23:59:59.000Z

    We propose a new approach towards determining the distribution of mechanical and acoustic wave energy in complex built-up structures. The technique interpolates between standard Statistical Energy Analysis (SEA) and full ray tracing containing both these methods as limiting case. By writing the flow of ray trajectories in terms of linear phase space operators, it is suggested here to reformulate ray-tracing algorithms in terms of boundary operators containing only short ray segments. SEA can now be identified as a low resolution ray tracing algorithm and typical SEA assumptions can be quantified in terms of the properties of the ray dynamics. The new technique presented here enhances the range of applicability of standard SEA considerably by systematically incorporating dynamical correlations wherever necessary. Some of the inefficiencies inherent in typical ray tracing methods can be avoided using only a limited amount of the geometrical ray information. The new dynamical theory - Dynamical Energy Analysis (DEA) - thus provides a universal approach towards determining wave energy distributions in complex structures.

  19. ISSUANCE 2014-12-29: Energy Conservation Program: Clarification for Energy Conservation Standards and Test Procedures for Fluorescent Lamp Ballasts

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Clarification for Energy Conservation Standards and Test Procedures for Fluorescent Lamp Ballasts

  20. Wave run-up on a high-energy dissipative beach Peter Ruggiero

    E-Print Network [OSTI]

    Wave run-up on a high-energy dissipative beach Peter Ruggiero Coastal and Marine Geology Program, U in foreshore beach morphology, wave run-up data collected along the central Oregon coast during February 1996 stand in contrast to run-up data currently available in the literature. During a single data run lasting

  1. Home energy rating system building energy simulation test (HERS BESTEST). Volume 2, Tier 1 and Tier 2 tests reference results

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1995-11-01T23:59:59.000Z

    The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, Subtitle A, Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that Facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. The HERS BESTEST work is divided into two volumes. Volume 1 contains the test case specifications and is a user's manual for anyone wishing to test a computer program. Volume 2 contains the reference results and suggestions for accrediting agencies on how to use and interpret the results.

  2. Using Fluctuations of the Local Energy to Improve Many-Body Wave Functions

    E-Print Network [OSTI]

    Williams, Kiel T

    2015-01-01T23:59:59.000Z

    A method is developed that allows analysis of quantum Monte Carlo simulations to identify errors in trial wave functions. The purpose of this method is to allow for the systematic improvement of variational wave functions by identifying degrees of freedom that are not well-described by an initial trial state. We provide proof of concept implementations of this method both by identifying the need for a Slater-Jastrow wave function, and implementing a selected multi-determinant wave function algorithm for small dimers that systematically decreases the variational energy. This method may provide a route to analyze and systematically improve descriptions of complex quantum systems in a scalable way.

  3. Hydrodynamic Testing Facilities Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei

  4. Test Procedure Waivers | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon DOE-HDBK-1046-2008 AugustTerms

  5. User:Twong/Tests | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy)Peteforsyth Jump to:Rterry JumpTfendez Jump

  6. Substance Abuse Testing Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafelyVirtualStephanieDepartment ofImproveSubscribe

  7. Test Cloth Qualification | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48H Treatment

  8. Hydrodynamic Testing Facilities Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9 CorporationHydra FuelLtdFacilities

  9. Geothermal Well Completion Tests | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)Energy InformationInformationGeothermal

  10. Atlas Material Testing Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuide | OpenAthensAtlas Material

  11. Well Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWaranaWaterEnergyWeeklyWelivit AGWell

  12. Sandia Energy - National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl HomeCommissioning HomeMore EnergyEarth

  13. Sandia Energy - National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl HomeCommissioning HomeMore EnergyEarthDr.

  14. Tracer Testing (Klein, 2007) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) Jump to:TownTownerOpen EnergyEt

  15. Articles about Testing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    by the U.S. Department of Energy (DOE) Wind Program. May 18, 2015 SNL Researchers Assess Wind Turbine Blade Inspection and Repair Methods Flaws in wind turbine blades emanating...

  16. Testing America's Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for Pumping System Efficiency TestMark

  17. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6 thCONTRACTORS

  18. CALiPER Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartmentCAIRS Registration Form CAIRS

  19. Novel millimeter wave sensor concepts for energy, environment, and national security

    E-Print Network [OSTI]

    Sundaram, S. K.

    Millimeter waves are ideally suited for sensing and diagnosing materials, devices, and processes that are broadly important to energy, environment, and national security. Thermal return reflection (TRR) techniques that ...

  20. Effect of a nonlinear power take off on a wave energy converter 

    E-Print Network [OSTI]

    Bailey, Helen Louise

    2011-11-22T23:59:59.000Z

    This thesis is titled The influence of a nonlinear Power Take Off on a Wave Energy Converter. It looks at the effect that having a nonlinear Power Take Off (PTO) has on an inertial referenced, slack moored, point absorber, ...

  1. Wave Energy Extraction from an Oscillating Water Column in a Truncated Circular Cylinder

    E-Print Network [OSTI]

    Wang, Hao

    2013-07-19T23:59:59.000Z

    Oscillating Water Column (OWC) device is a relatively practical and convenient way that converts wave energy to a utilizable form, which is usually electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure...

  2. Request for Information Regarding a Proposed Funding Opportunity for Administration of the Wave Energy Converter Prize

    Broader source: Energy.gov [DOE]

    This announcement is intended to serve as a Notice of Intent of the upcoming Funding Opportunity Announcement (FOA) regarding Administration of the Wave Energy Converter (WEC) Prize and Request for Information to solicit information regarding pote

  3. Optimisation and comparison of integrated models of direct-drive linear machines for wave energy conversion 

    E-Print Network [OSTI]

    Crozier, Richard Carson

    2014-06-30T23:59:59.000Z

    Combined electrical and structural models of five types of permanent magnet linear electrical machines suitable for direct-drive power take-off on wave energy applications are presented. Electromagnetic models were ...

  4. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean

    E-Print Network [OSTI]

    Nikurashin, Maxim

    A global estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean is presented. The estimate is based on a linear theory applied to bottom topography at O(1–10) km scales obtained ...

  5. Energy Momentum Pseudo-Tensor of Relic Gravitational Wave in Expanding Universe

    E-Print Network [OSTI]

    Daiqin Su; Yang Zhang

    2012-04-04T23:59:59.000Z

    We study the energy-momentum pseudo-tensor of gravitational wave, and examine the one introduced by Landau-Lifshitz for a general gravitational field and the effective one recently used in literature. In short wavelength limit after Brill-Hartle average, both lead to the same gauge invariant stress tensor of gravitational wave. For relic gravitational waves in the expanding universe, we examine two forms of pressure, $p_{gw}$ and $\\mathcal{P}_{gw}$, and trace the origin of their difference to a coupling between gravitational waves and the background matter. The difference is shown to be negligibly small for most of cosmic expansion stages starting from inflation. We demonstrate that the wave equation is equivalent to the energy conservation equation using the pressure $\\mathcal{P}_{gw}$ that includes the mentioned coupling.

  6. 1032 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / DECEMBER 1999 LIQUEFACTION OPPORTUNITY MAPPING VIA SEISMIC WAVE ENERGY

    E-Print Network [OSTI]

    Southern California, University of

    OPPORTUNITY MAPPING VIA SEISMIC WAVE ENERGY By M. I. Todorovska1 and M. D. Trifunac2 ABSTRACT: An empirical, energy-based methodology for liquefaction hazard assessment and microzonation mapping is presented at level ground. The energy of ground shaking is estimated from the Fourier amplitude spectra

  7. Internal wave energy radiated from a turbulent mixed layer James R. Munroe1, a)

    E-Print Network [OSTI]

    Sutherland, Bruce

    Internal wave energy radiated from a turbulent mixed layer James R. Munroe1, a) and Bruce R in the shear layer is characterized using particle image velocimetry to measure the kinetic energy den- sity, and energy density. We also perform fully nonlinear numer- ical simulations restricted to two dimensions

  8. Biodiesel + SCR Retrofit Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-Oil Deployment in the 2015 Project+

  9. Blower Door Tests | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10| DepartmentinMay5, 2015 AMay

  10. Standards and Test Procedures | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report:Spotlight: BryantisStaffordStanAwards

  11. CALiPER Testing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:WhetherNovember 13,NationalPhoto courtesy ofF.Energy JuneThe

  12. Gen 3 Cell Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003 IntellectualSECCSDepartment of

  13. Category:Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelp ispage?Injectivity

  14. Category:Stress Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolarall statesStress

  15. Category:Tracer Testing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as exploration techniques, clickpage? For detailed

  16. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6 thCONTRACTORS &8/2011,

  17. Property:Test Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutions Jump to: navigation, searchProperty

  18. Sandia Energy - Battery Abuse Testing Laboratory (BATLab)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied & Computational MathBattery

  19. Sandia Energy - National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows Jerry SimmonsModels &

  20. Resumption of Transient Testing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of0October 17,Results

  1. Thermal Regenerator Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of Energy (DOE) noticeofRegenerator

  2. Blower Door Tests | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green BusNews andMay 30, 2013July 20,Blower door

  3. TEST UTILITY COMPANY | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwater 4aSyntheticTAUTEST UTILITY

  4. Category:Testing Facilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocationSmart Jump to: navigation,

  5. User:Jayhuggins/Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG

  6. Property:Scale Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property is set byisPropertycustomers.Property

  7. Property:Testing Facilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property isType" Showing 25 pages

  8. Form:Testing Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd a MarineAdd a

  9. Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd a MarineAdd

  10. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect (OSTI)

    Paul T. Jacobson; George Hagerman; George Scott

    2011-12-01T23:59:59.000Z

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration�¢����s (NOAA�¢����s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  11. Complex Energy of Harmonic Oscillator under Non-Hermitian transformation of momentum with real wave function

    E-Print Network [OSTI]

    Biswanath Rath

    2015-05-19T23:59:59.000Z

    For the first time in the literature of Quantum Physics, we present complex energy eigenvalues of non-Hermitian Harmonic Oscillator $H=\\frac{(p+iLx)}^{2}}{2} + W^{2} \\frac{x^{2}}{2}$ with real wave function having positive frequency of vibration $(w)$ under some selective choice of $L$ and $W$ .Interestingly for the same values of $L$ and $W$, if the frequency of vibration $w$ in the real wave function is (some how) related as $w=L\\pmW$ or $w=W-L$ then the same oscillator can reflect either pure positive or negative energy eigenvalues.The real energy levels are in conformity with the perturbative calculation. PACS :03.65.Db;11.39.Er. Key words: Positive frequency, real wave function, complex energy, real positive energy,negative energy.

  12. WET-NZ Multi-Mode Wave Energy Converter Advancement Project

    SciTech Connect (OSTI)

    Kopf, Steven

    2013-10-15T23:59:59.000Z

    The overall objective of the project was to verify the ocean wavelength functionality of the WET-NZ through targeted hydrodynamic testing at wave tank scale and controlled open sea deployment of a 1/2 scale (1:2) experimental device. This objective was accomplished through a series of tasks designed to achieve four specific goals: ?Wave Tank Testing to Characterize Hydrodynamic Characteristics; ? Open-Sea Testing of a New 1:2 Scale Experimental Model; ? Synthesis and Analysis to Demonstrate and Confirm TRL5/6 Status; ? Market Impact & Competitor Analysis, Business Plan and Commercialization Strategy.

  13. 9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm

    E-Print Network [OSTI]

    Temple, Blake

    9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm login | register |home tv shows schedule to Dark Energy // Current Page 2 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy

  14. Energy Systems High Pressure Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems High Pressure Test Laboratory at the Energy Systems Integration Facility. The purpose of the Energy Systems High Pressure Test Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to provide space where high pressure hydrogen components can be safely tested. High pressure hydrogen storage is an integral part of energy storage technology for use in fuel cell and in other distributed energy scenarios designed to effectively utilize the variability inherent with renewable energy sources. The high pressure storage laboratory is co-located with energy storage activities such as ultra-capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to system development and demonstration. Hazards associated with hydrogen storage at pressures up to 10,000 psi include oxygen displacement, combustion, explosion, and pressurization of room air due to fast release and physical hazards associated with burst failure modes. A critical understanding of component failure modes is essential in developing reliable, robust designs that will minimize failure risk beyond the end of service life. Development of test protocol for accelerated life testing to accurately scale to real world operating conditions is essential for developing regulations, codes and standards required for safe operation. NREL works closely with industry partners in providing support of advanced hydrogen technologies. Innovative approaches to product design will accelerate commercialization into new markets. NREL works with all phases of the product design life cycle from early prototype development to final certification testing. High pressure tests are performed on hydrogen components, primarily for the validation of developing new codes and standards for high pressure hydrogen applications. The following types of tests can be performed: Performance, Component and system level efficiency, Strength of materials and hydrogen compatibility, Safety demonstration, Model validation, and Life cycle reliability.

  15. Current Test Procedure Waivers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014Contributing DataDepartment of Energy Current

  16. Constraining the gravitational wave energy density of the Universe using Earth's ring

    E-Print Network [OSTI]

    Michael Coughlin; Jan Harms

    2014-06-04T23:59:59.000Z

    The search for gravitational waves is one of today's major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earth's free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earth's structure. Making use of our detailed understanding of Earth's normal modes, numerical models are employed for the first time to accurately calculate Earth's gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this article, we constrain the energy density of gravitational waves to values in the range 0.035 - 0.15 normalized by the critical energy density of the Universe at frequencies between 0.3mHz and 5mHz, using 10 years of data from the gravimeter network of the Global Geodynamics Project that continuously monitors Earth's oscillations. This work is the first step towards a systematic investigation of the sensitivity of gravimeter networks to gravitational waves. Further advance in gravimeter technology could improve sensitivity of these networks and possibly lead to gravitational-wave detection.

  17. The Black Sea Wave Energy: The Present State and the Twentieth century Changes

    E-Print Network [OSTI]

    Galabov, Vasko

    2015-01-01T23:59:59.000Z

    In this paper we present a study of the present state of the Black Sea wave energy. The studies of other authors are based on the use of input data from atmospheric reanalysis or a downscaling of such reanalysis. Instead of reanalysis data, we use input data from the operational limited area numerical weather prediction model ALADIN. We showed that the estimations of the Black Sea wave energy based on reanalyses deviate significantly from the real potential. We showed also that the highest values of the mean annual wave power flux is between 4.5 and 5.0 kW/m2 and the near shore areas with the highest wave energy potential are the southernmost Bulgarian coast and the coast of Turkey north of Istanbul. While we showed that the wind data from the reanalysis are not useful for the estimation of the actual wave energy potential, we claimed that the reanalysis data is useful to study the long term changes of the wave energy of the Black Sea. We used the 10m winds from the recent ERA-20C reanalysis, which covers the...

  18. Solar Energy Research Institute Validation Test House Site Handbook

    SciTech Connect (OSTI)

    Burch, J.; Wortman, D.; Judkoff, R.; Hunn, B.

    1985-05-01T23:59:59.000Z

    The Validation Test House at the Solar Energy Research Institute in Golden, Colorado, is being used to collect performance data for analysis/design tool validation as part of the DOE Passive Solar Class A Performance Evaluation Program.

  19. Test Drive: Honda FCX Clarity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity May 14, 2010 - 10:52am Addthis A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S....

  20. BOEM Issues First Renewable Energy Lease for MHK Technology Testing...

    Energy Savers [EERE]

    to harness energy from ocean currents. Each floating test berth will consist of a buoy anchored to the sea floor to measure ocean conditions and will allow for the deployment...

  1. Design of test bench apparatus for piezoelectric energy harvesters

    E-Print Network [OSTI]

    Yoon, You C. (You Chang)

    2013-01-01T23:59:59.000Z

    This thesis presents the design and analysis of an experimental test bench for the characterization of piezoelectric microelectromechanical system (MEMS) energy harvester being developed by the Micro & Nano Systems Laboratory ...

  2. TEST ARTICLE 3: Energy Department Updates Home Energy Scoring...

    Broader source: Energy.gov (indexed) [DOE]

    Department's Building Technologies Office and Lawrence Berkeley National Laboratory (LBNL). The Home Energy Score allows homebuyers to compare homes on an "apples-to-apples"...

  3. New INL High Energy Battery Test Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |EnergyNewEnergy ServicesEnergyINL High

  4. DOE Energy Star Testing Reveals Inefficient ASKO Dishwasher | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project| DepartmentAdvisory Committee |Energy

  5. DOE Issues Test Procedure Final Rule & Publishes Energy Conservation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment offor EnergyDepartmentStandards NOPR for

  6. DOE Launches Public Test Procedure Guidance Website | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment offorEnergy LabSmart Grid Web

  7. Commercial Equipment Testing Enforcement Policies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial1 | EnergyFebruary

  8. OLED Testing Opportunity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No. EA-212-AOAHU2014)OHIO E.P.A. JULR&D

  9. Sandia Energy - Pratt Whitney Rocketdyne Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshoreLiveSustainable PowerPratt

  10. National SCADA Test Bed | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHowNQA-1.pdfLab Day 2014 Nationalof

  11. America's Wind Testing Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17,Agenda Agenda Agenda4 Image: Infographic

  12. Blower Door Tests | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17,Agenda AgendaDepartmentOregonApril 8, 2014

  13. Sandia Energy - Blade Materials and Substructures Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim Bay Coatings InitiatedMaterials and

  14. Sandia Energy - Central Receiver Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCapture HomeCenter forCentral

  15. Sandia Energy - National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink GalleryNational SCADA Testbed

  16. Surface Wave Enhanced Turbulence as an important source energy

    E-Print Network [OSTI]

    ) Pulling by wind stress & surface waves 9/15/2006 4 Heating Cooling Heating Cooling CoolingHeating . . Wind) Surface heating/cooling cannot maintain THC observed in the oceans. Sandstrom Theorem and the new debate 3 balance in the oceans Geostrophic Currents Ekman Drift Freshwater Flux 0.05 KE GPE Mean State Geothermal

  17. Identifying two steps in the internal wave energy cascade

    E-Print Network [OSTI]

    Sun, Oliver Ming-Teh

    2010-01-01T23:59:59.000Z

    the more-typical open ocean energy cascade. Observations ofa skeleton of the open-ocean energy cascade. xx Chapter 1interaction and energy flux in the upper ocean. Geophys Res

  18. Sandia National Laboratories: Marine Energy Technology Symposium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Energy Technology Symposium Wave Energy Resource Characterization at US Test Sites On September 16, 2014, in Computational Modeling & Simulation, Energy, News, News &...

  19. China Energy Efficiency Round Robin Testing Results for Room

    E-Print Network [OSTI]

    LBNL-3502E China Energy Efficiency Round Robin Testing Results for Room Air Conditioners Nan Zhou Berkeley National Laboratory is an equal opportunity employer. #12;i Table of Contents I. Air Conditioner.......................................................................................................................... 6 I.2.1 Necessity for Air Conditioner Round Robin Testing

  20. Constraining the gravitational wave energy density of the Universe using Earth's ring

    E-Print Network [OSTI]

    Coughlin, Michael

    2014-01-01T23:59:59.000Z

    The search for gravitational waves is one of today's major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earth's free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earth's structure. Making use of our detailed understanding of Earth's normal modes, numerical models are employed for the first time to accurately calculate Earth's gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this article, we constrain the energy density o...

  1. Relations for a periodic array of flap-type wave energy converters

    E-Print Network [OSTI]

    Renzi, Emiliano

    2012-01-01T23:59:59.000Z

    This paper investigates the interaction of plane incident waves with a wave farm in the open ocean. The farm consists of a periodic array of large flap-type wave energy converters. A linear inviscid potential-flow model, already developed by the authors for a single flap in a channel, is considered. Asymptotic analysis of the wave field allows to obtain new expressions of the reflection, transmission and radiation coefficients of the system. It is shown that, unlike a line of heaving buoys, an array of flap-type converters is able to exploit resonance of the system transverse modes in order to attain high capture factor levels. Relations between the hydrodynamic coefficients are derived and applied for optimising the power output of the wave farm.

  2. Two ENERGY STAR Products Fail Testing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfactTuscarora Phase II SEA DOE November 2014IfDOE

  3. Peculiarities in the energy transfer by waves on strained strings

    E-Print Network [OSTI]

    Butikov, Eugene

    potential and kinetic energies. All the texts and papers agree on the expression for the kinetic energy expressions for the density of potential energy encountered in the literature are clarified. The common statement regarding the relationship between the densities of kinetic and potential energies in a transverse

  4. appliance energy testing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    appliance energy testing First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy Star Appliances 1 Texas...

  5. DOE National SCADA Test Bed Program Multi-Year Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartmentContaminated GroundDOE National SCADA Test

  6. VOLUME54, NUMBER9 PHYSICAL REVIEW LETTERS 4 MARCH1985 Conversion of Wave Energy to Magnetic Field Energy in a Plasma Torus

    E-Print Network [OSTI]

    Karney, Charles

    VOLUME54, NUMBER9 PHYSICAL REVIEW LETTERS 4 MARCH1985 Conversion of Wave Energy to Magnetic Field on the Princeton Large Torus (PLT)' have converted wave energy to poloidal field energy with the remarkable Energy in a Plasma Torus N. J. Fisch and C. F. F. Karney Plasma Physics Laboratory, Princeton University

  7. Partial-wave analysis for elastic p{sup 13}C scattering at astrophysical energies

    SciTech Connect (OSTI)

    Dubovichenko, S. B., E-mail: dubovichenko@mail.ru [V.G. Fessenkov Astrophysical Institute (Kazakhstan)

    2012-03-15T23:59:59.000Z

    A standard partial-wave analysis was performed on the basis of known measurements of differential cross sections for elastic p{sup 13}C scattering at energies in the range 250-750 keV. This analysis revealed that, in the energy range being considered, it is sufficient to take into account the {sup 3}S{sub 1} wave alone. A potential for the triplet {sup 3}S{sub 1}-wave state of the p{sup 13}C system in the region of the J{sup p}T = 1{sup -1} resonance at 0.55 MeV was constructed on the basis of the phase shifts obtained from the aforementioned partial-wave analysis.

  8. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    SciTech Connect (OSTI)

    Li, Y.; Yu, Y. H.

    2012-05-01T23:59:59.000Z

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  9. Energy Levels and Wave Functions of Vector Bosons in Homogeneous Magnetic Field

    E-Print Network [OSTI]

    K. Sogut; A. Havare; I. Acikgoz

    2001-10-24T23:59:59.000Z

    We aimed to obtain the energy levels of spin-1 particles moving in a constant magnetic field. The method used here is completely algebraic. In the process to obtain the energy levels the wave function is choosen in terms of Laguerre Polynomials.

  10. 9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy

    E-Print Network [OSTI]

    Temple, Blake

    9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy show profanity settings Digg is a place Offers Alternative to Dark Energy space.com -- Mathematicians have proposed an alternative explanation

  11. Robust energy transfer mechanism via precession resonance in nonlinear turbulent wave systems

    E-Print Network [OSTI]

    Miguel D. Bustamante; Brenda Quinn; Dan Lucas

    2014-04-30T23:59:59.000Z

    A robust energy transfer mechanism is found in nonlinear wave systems, which favours transfers towards modes interacting via triads with nonzero frequency mismatch, applicable in meteorology, nonlinear optics and plasma wave turbulence. We introduce the concepts of truly dynamical degrees of freedom and triad precession. Transfer efficiency is maximal when the triads' precession frequencies resonate with the system's nonlinear frequencies, leading to a collective state of synchronised triads with strong turbulent cascades at intermediate nonlinearity. Numerical simulations confirm analytical predictions.

  12. Home energy rating system building energy simulation test (HERS BESTEST): Volume 1, Tier 1 and Tier 2 tests user's manual

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1995-11-01T23:59:59.000Z

    The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, subtitle A,l Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. This set of test cases represents the Tier 1 and Tier 2 Tests for Certification of Rating Tools as described in DOE 10 CFR Part 437 and the HERS Council Guidelines for Uniformity (HERS Council). A third Tier of tests not included in this document is also planned.

  13. Wave

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTURE LOOKS

  14. Orkney Marine Energy Test Centre | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThesource History View NewOrissa

  15. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal Test

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity of Holyoke,Monroe,CityCityCentre, |

  16. State Agency Energy Efficiency or Renewable Energy Technology Test Program (Connecticut)

    Broader source: Energy.gov [DOE]

    The State of Connecticut has an established pathway to test new energy efficiency or renewable energy technologies in state offices. The technology, product or process must be presently available...

  17. The Effects of Wave Energy Converters on a Monochromatic Wave Climate

    E-Print Network [OSTI]

    Fox-Kemper, Baylor

    at a rate of 1.25 percent annually. The Calfornia Global Warming Act of 2006 states that twenty percent The interest in renewable energies is currently increasing due to the reported rise in global temperature of California's electricity must come from renewable energy sources by 2010. However, due to the increases

  18. Energy-Momentum and Angular Momentum Carried by Gravitational Waves in Extended New General Relativity

    E-Print Network [OSTI]

    Eisaku Sakane; Toshiharu Kawai

    2002-09-30T23:59:59.000Z

    In an extended, new form of general relativity, which is a teleparallel theory of gravity, we examine the energy-momentum and angular momentum carried by gravitational wave radiated from Newtonian point masses in a weak-field approximation. The resulting wave form is identical to the corresponding wave form in general relativity, which is consistent with previous results in teleparallel theory. The expression for the dynamical energy-momentum density is identical to that for the canonical energy-momentum density in general relativity up to leading order terms on the boundary of a large sphere including the gravitational source, and the loss of dynamical energy-momentum, which is the generator of \\emph{internal} translations, is the same as that of the canonical energy-momentum in general relativity. Under certain asymptotic conditions for a non-dynamical Higgs-type field $\\psi^{k}$, the loss of ``spin'' angular momentum, which is the generator of \\emph{internal} $SL(2,C)$ transformations, is the same as that of angular momentum in general relativity, and the losses of canonical energy-momentum and orbital angular momentum, which constitute the generator of Poincar\\'{e} \\emph{coordinate} transformations, are vanishing. The results indicate that our definitions of the dynamical energy-momentum and angular momentum densities in this extended new general relativity work well for gravitational wave radiations, and the extended new general relativity accounts for the Hulse-Taylor measurement of the pulsar PSR1913+16.

  19. Sandia Energy - Joint Sandia-DOE-HMRC Testing of a Floating Oscillatin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wave Energy Converter Device From September 8th-20th, Diana Bull (in Sandia's Water Power Technologies Dept.) worked with the team from Ireland's Hydraulics and Maritime...

  20. Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation

    E-Print Network [OSTI]

    Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave) Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave pulse cleaning over a wide range of input energies (from 0.1 to >10 mJ) and is successfully qualified

  1. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    L ABORATORY China Energy Efficiency Round Robin TestingNeed to Improve the Energy Efficiency of Energy Consumingfor Implementing the China Energy Efficiency Label System (

  2. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    further passed the Energy Efficiency (Labeling of Products)L ABORATORY China Energy Efficiency Round Robin TestingNeed to Improve the Energy Efficiency of Energy Consuming

  3. Energy consumption testing of innovative refrigerator-freezers

    SciTech Connect (OSTI)

    Wong, M.T.; Howell, B.T.; Jones, W.R. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Long, D.L. [Statistical Solutions, Mississauga, Ontario (Canada)

    1995-12-31T23:59:59.000Z

    The high ambient temperature of the Canadian Standards Association (CSA) and the AHAM/DOE Refrigerator-Freezer Energy Consumption Standards is intended to compensate for the lack of door openings and other heat loads. Recently published results by Meier and Jansky (1993) indicate labeled consumption overpredicting typical field consumption by 15%. In-house field studies on conventional models showed labeled consumption overpredicting by about 22%. The Refrigerator-Freezer Technology Assessment (RFTA) test was developed to more accurately predict field consumption. This test has ambient temperature and humidity, door openings, and condensation control set at levels intended to typify Canadian household conditions. It also assesses consumption at exactly defined compartment rating temperatures. Ten conventional and energy-efficient production models were laboratory tested. The RFTA results were about 30% lower than labeled. Similarly, the four innovative refrigerator-freezer models, when field tested, also had an average of 30% lower consumption than labeled. Thus, the results of the limited testing suggest that the RFTA test may be a more accurate predictor of field use. Further testing with a larger sample is recommended. Experimental results also indicated that some innovative models could save up to 50% of the energy consumption compared with similar conventional units. The technologies that contributed to this performance included dual compressors, more efficient compressors and fan motors, off-state refrigerant control valve, fuzzy logic control, and thicker insulation. The larger savings were on limited production models, for which additional production engineering is required for full marketability.

  4. CoolCab Test and Evaluation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013 Sanyo:MarchPractices inAsphaltDistrictEvaluation

  5. High Energy Photons, Neutrinos and Gravitational Waves from Gamma-Ray Bursts

    E-Print Network [OSTI]

    P. Meszaros; S. Kobayashi; S. Razzaque; B. Zhang

    2003-05-06T23:59:59.000Z

    Most of the current knowldege about GRB is based on electromagnetic observations at MeV and lower energies. Here we focus on some recent theoretical work on GRB, in particular the higher energy (GeV-TeV) photon emission, and two potentially important non-electromagnetic channels, the TeV and higher energy neutrino signals, and the gravitational wave signals expected from GRB.

  6. Fallon Test Ranges Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolisFairway, Kansas: EnergyFallon GeothermalTest

  7. A DISTENSIBLETUBE WAVE ENERGY CONVERTER WITH A DISTRIBUTED POWERTAKEOFF R.C.T.Rainey, Atkins Ltd., Woodcote Grove, Epsom KT18 5BW, U.K. rod.rainey@atkinsglobal.com

    E-Print Network [OSTI]

    1 A DISTENSIBLETUBE WAVE ENERGY CONVERTER WITH A DISTRIBUTED POWERTAKEOFF R.C.T.Rainey, Atkins A distensibletube Wave Energy Converter (WEC) operates by converting the wave energy into "bulge waves interaction then occurs, and large bulge waves are generated, concentrating the wave energy

  8. BlueWave Capital LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirchBlockVIServicesValley Energy

  9. Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy

    E-Print Network [OSTI]

    R. W. Robinett; L. C. Bassett

    2004-08-06T23:59:59.000Z

    Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90% of the kinetic energy can be localized (at least conceptually) in the `front half' of such Gaussian wave packets, and we visualize these effects.

  10. Sandia Energy - Sandia Solar Energy Test System Cited in National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments HomeDatabase on EngineA

  11. Tracer Testing At Coso Geothermal Area (2004) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePtyTown Hall MeetingTracer TestingTesting

  12. Testing Subgroup Workshop on Critical Property Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest Site SwedenEnergyTesting Subgroup

  13. MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <

  14. Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDsc Jump to: navigation,

  15. Development of 3D Simulation Training and Testing for Home Energy...

    Energy Savers [EERE]

    Development of 3D Simulation Training and Testing for Home Energy Score Assessor Candidates Development of 3D Simulation Training and Testing for Home Energy Score Assessor...

  16. 9/18/09 2:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 6http://www.mastersconnection.com/index.php/articles/452-wave

    E-Print Network [OSTI]

    Temple, Blake

    9/18/09 2:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 6http;9/18/09 2:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 2 of 6http:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 4 of 6http

  17. Long-range propagation of ocean waves

    E-Print Network [OSTI]

    Young, William R.

    hours. Friday, February 22, 2013 #12;OceanPowerTechnologies A 103 foot long, 260ton buoy being tested #12;Wave Power? PelamisWavePower With T=10sec and a = 1 meter, the energy flux is 40kW/meter. An average 40kW/meter of wave power is typical of good sites. Energy Flux = cg × Energy Density = g2 Ta2 8

  18. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    SciTech Connect (OSTI)

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01T23:59:59.000Z

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  19. Hydropower, Wave and Tidal Technologies Available for Licensing - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy yearsCoordinationInnovation

  20. MHK ISDB/Sensors/Vented Wave Sensor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMAREC Jump to:2MHKMHK ISDB/Sensors/VentedMHK