National Library of Energy BETA

Sample records for wave energy sites

  1. Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH)

    E-Print Network [OSTI]

    Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH) Alexandra DeVisser, NAVFAC-EXWC Brian June 10, 2013 #12;Wave Energy Test Site (WETS) Objective: Provide location for year-long in Cable, Sound & Sea Technology (SST) Luis A. Vega, HNEI-University of Hawaii Energy Ocean International

  2. Wave Energy Resources Representative Sites Around the Hawaiian Islands

    E-Print Network [OSTI]

    Wave Energy Resources for Representative Sites Around the Hawaiian Islands Prepared by: Luis A Foreword This report provides wave energy resource information required to select coastal segments for specific wave-energy-conversion (WEC) technology and to initiate engineering design incorporating

  3. Wave Energy Test Site Hawai`i Natural Energy Institute | School of Ocean & Earth Science & Technology

    E-Print Network [OSTI]

    Energy Test Site (WETS). Design by Sound and Sea Technology for US Navy 30m 80m 60m Bunker #12;WaveWave Energy Test Site Hawai`i Natural Energy Institute | School of Ocean & Earth Science`i Wave Energy Test Site (WETS), the United States' first grid- connected test site of this kind

  4. Characterization of U.S. Wave Energy Converter Test Sites: A...

    Broader source: Energy.gov (indexed) [DOE]

    data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites. Its purpose is to enable the comparison of wave...

  5. WAVE ENERGY RESOURCE CHARACTERIZATION US NAVY WAVE ENERGY TEST SITE

    E-Print Network [OSTI]

    the islands of Oahu, Maui, Kauai, and Hawai`i from 1979 to 2013. The wind forcing includes the Climate IN HAWAI`I Prepared by: Ning Li and Kwok Fai Cheung Department of Ocean and Resources Engineering University of Hawai`i Prepared for: luisvega@hawaii.edu Hawai`i National Marine Renewable Energy Center Hawai`i

  6. A presentation of the U.S. Navy's Wave Energy Test Site (WETS)

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    A presentation of the U.S. Navy's Wave Energy Test Site (WETS) Patrick Cross Senior Project Specialist Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii Abstract The U.S. Navy's Wave Energy Test Site (WETS) in Hawaii is now fully operational

  7. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    SciTech Connect (OSTI)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  8. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

    2014-06-30

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  9. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

    2013-09-30

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  10. Wave Energy Basics

    Broader source: Energy.gov [DOE]

    Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity.

  11. Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

  12. Washington Energy Facility Site Evalutation Council - Siting...

    Open Energy Info (EERE)

    Washington Energy Facility Site Evalutation Council - Siting and Review Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Washington Energy...

  13. Primary and Site Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    electricity reflect the amount of energy actually consumed within the building. Site energy data are most useful to building engineers, energy managers, building owners and others...

  14. Wave Energy challenges and possibilities

    E-Print Network [OSTI]

    © Wave Energy ­ challenges and possibilities By: Per Resen Steenstrup www.WaveStarEnergy.com Risø-R-1608(EN) 161 #12;© Wave energy is an old story.... The first wave energy patent is 200 years old. Over the last 100 years more than 200 new wave energy devices have been developped and more than 1.000 patents

  15. Microstructural Design for Stress Wave Energy Management /

    E-Print Network [OSTI]

    Tehranian, Aref

    2013-01-01

    Nasser, S. , 2010. Stress-wave energy management throughNemat-Nasser, Stress-wave energy management through materialconstitute pressure wave energy and/or shear wave energy.

  16. Cycloidal Wave Energy Converter

    SciTech Connect (OSTI)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

  17. Wave Energy Resource Analysis for Use in Wave Energy Conversion 

    E-Print Network [OSTI]

    Pastor, J.; Liu, Y.; Dou, Y.

    2014-01-01

    In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...

  18. California Small Hydropower and Ocean Wave Energy

    E-Print Network [OSTI]

    California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy............................................................................................................. 20 Wave Energy Conversion Technology

  19. Site Energy Reduction Program 

    E-Print Network [OSTI]

    Jagen, P. R.

    2007-01-01

    /LB basis. By 2004, overall progress had slowed, energy consumption increased slightly, and area results were mixed. It was time to shake things up with a new perspective. A coordinated site energy program was launched. In 2005, the first full year...

  20. Performance Assessment of the Wave Dragon Wave Energy Converter

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

  1. Sandia Energy - WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC-Sim (Wave Energy Converter SIMulator) Home Stationary Power Energy Conversion Efficiency Water Power WEC-Sim (Wave Energy Converter SIMulator) WEC-Sim (Wave Energy Converter...

  2. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulkChapter 9Desert Arroyo Seepage

  3. Electrostatic-plasma-wave energy flux

    E-Print Network [OSTI]

    Amendt, P.; Rostoker, N.

    1984-01-01

    would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thefeature of cross-field wave-energy transport, previous con-

  4. Microstructural Design for Stress Wave Energy Management /

    E-Print Network [OSTI]

    Tehranian, Aref

    2013-01-01

    Nasser, S. , 2010. Stress-wave energy management throughNemat-Nasser, Stress-wave energy management through materialS. , 2009. Acoustic wave-energy management in composite

  5. Electrostatic-plasma-wave energy flux

    E-Print Network [OSTI]

    Amendt, P.; Rostoker, N.

    1984-01-01

    would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of

  6. Microstructural Design for Stress Wave Energy Management /

    E-Print Network [OSTI]

    Tehranian, Aref

    2013-01-01

    mode of pressure wave and energy transfer into shearmode of pressure wave and energy transfer into shear mode ItNasser, S. , 2010. Stress-wave energy management through

  7. Wave Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Articles Pressure profile of a wave moving through an offshore structure. Courtesy of MMI Engineering Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems An...

  8. Wave Energy Extraction from buoys

    E-Print Network [OSTI]

    Garnaud, Xavier

    2009-01-01

    Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

  9. Arnold Schwarzenegger DEVELOPING WAVE ENERGY IN

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor DEVELOPING WAVE ENERGY IN COASTAL CALIFORNIA: POTENTIAL SOCIO. Developing Wave Energy In Coastal California: Potential Socio-Economic And Environmental Effects. California-ECONOMIC AND ENVIRONMENTAL EFFECTS Prepared For: California Energy Commission Public Interest Energy Research Program

  10. Wave refraction and wave energy on Cayo Arenas 

    E-Print Network [OSTI]

    Walsh, Donald Eugene

    1962-01-01

    WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...

  11. Direct Drive Wave Energy Buoy

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  12. Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu Wave Resources for Representative Sites Around the Hawaiian Islands

    E-Print Network [OSTI]

    Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Wave Resources for Representative Sites Around the Hawaiian Islands Table of Contents Summary p2 Background: Wave Power Conversion p3 Licensing and Permitting p3 Challenges and Barriers p4 Wave Power Resources: Previous Work p5 Wave

  13. Paducah Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsomProgressPaducah SiteBackgroundSite

  14. Portsmouth Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnershipSite BackgroundMarch PortsmouthSite

  15. Sandia Energy - Siting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    potential conflicts. Water Availability Water availability is a critical issue with the potential to significantly impede utility-scale solar energy development in the desert...

  16. Wave Energy Converter Effects on Nearshore Wave Propagation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Converter Effects on Nearshore Wave Propagation Jesse Roberts 1 , Grace Chang *2 , Craig Jones *3 Sandia National Laboratories 1515 Eubank SE, Albuquerque, NM 87123 USA 1...

  17. Catching a Wave: Innovative Wave Energy Device Surfs for Power...

    Office of Environmental Management (EM)

    and cost-effective electricity from clean energy resources, including water. Marine and hydrokinetic (MHK) technologies, which generate power from waves, tides, or...

  18. Seminario de Matemtica Aplicada "Renowable wave energy

    E-Print Network [OSTI]

    Tradacete, Pedro

    Seminario de Matemática Aplicada "Renowable wave energy: potencial and technical challenges Abstract: Among the various renewable energy sources, ocean wave energy has been only recently investiga will be at first to introduce the potential of wave energy, as a significant, and often neglected, contributor

  19. Sandia Energy - Siting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization and Laser HeatingSeminarsSimulatingSiting

  20. A Novel Overtopping Wave Energy Device Concept Applied to California

    E-Print Network [OSTI]

    Imamura, John

    2009-01-01

    for overtopping wave energy devices are limited in theirhigh power output wave energy devices may be possible.design and modeling of wave energy devices. Nat- urally this

  1. Identifying two steps in the internal wave energy cascade

    E-Print Network [OSTI]

    Sun, Oliver Ming-Teh

    2010-01-01

    1.1.1 The internal wave energy cascade . . . . . . .? ? , which contain only wave energy trav- eling upward anddistinction is made between wave energy propagating upward

  2. Sandia Energy - Test Site Operations & Maintenance Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Site Operations & Maintenance Safety Home Stationary Power Energy Conversion Efficiency Wind Energy SWiFT Facility & Testing Test Site Operations & Maintenance Safety Test...

  3. Washington Energy Facility Site Evalutation Council - Generalized...

    Open Energy Info (EERE)

    Washington Energy Facility Site Evalutation Council - Generalized Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Chart: Washington Energy...

  4. Site Energy Surveys 

    E-Print Network [OSTI]

    Lockett, W., Jr.; Guide, J. J.

    1981-01-01

    Operating improvements and selected investments have already improved US refining and petrochemical energy utilization efficiency by about 20%, compared to 1972 operating efficiencies. This is equivalent to saving well over 250,000 B/D of crude...

  5. Wave Energy Development Roadmap: Design to Commercialization

    E-Print Network [OSTI]

    Siefert, Chris

    the pathway from initial design to commercialization for Wave Energy Converter (WEC) technologies. Commercialization of a wave energy technology is embodied in the deployment of an array of WEC's, a WEC Farm. Index Terms--Wave Energy, Roadmap, Technology Readiness Levels. Numerical Modeling, Experimentation I

  6. Sandia Energy - Siting and Barrier Mitigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siting and Barrier Mitigation Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Siting and Barrier MitigationTara Camacho-Lopez2015-08-12...

  7. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect (OSTI)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

  8. Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:Energy InformationWausau High School

  9. Cleanup Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOoffor use withCleanup Sites Cleanup Sites Center

  10. Cleanup Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOoffor use withCleanup Sites Cleanup Sites

  11. WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA

    E-Print Network [OSTI]

    Cary, John R.

    2012-01-01

    A LiBRARY ANL WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITYof Califomia. To be in WAVE-ENERGY DENSITY AND WAVE~HOMENTUMExpress1ons for the wave-energy density and wave-momentum

  12. Using a Bore-Soliton-Splash to understand Rogue Waves, Tsunamis & Wave Energy

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    & new experiments, in portable BSS wave tank or Roombeek channel [7]. 7 New Wave Energy Device [2]. · Clarify connection Bore-Soliton-Splash with rogue waves and tsunamis. · New wave energy device

  13. Sandia Energy - Advanced Controls of Wave Energy Converters May...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Controls of Wave Energy Converters May Increase Power Capture Up to 330% Home Renewable Energy Energy Water Power Partnership News News & Events Computational Modeling &...

  14. Sandia Energy - Sandia, NREL Release Wave Energy Converter Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim Home Renewable Energy Energy Water Power Partnership News News & Events Computational Modeling & Simulation...

  15. Idaho Site | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation Standards and TestEquipment:Ian Kalin AboutIdaho Site

  16. NNSA Sites | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW1for Acquisition and ProjectNNSA Sites

  17. Application of wave generator theory to the development of a Wave Energy Converter

    E-Print Network [OSTI]

    Wood, Stephen L.

    Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri approve the attached thesis Application of wave generator theory to the development of a Wave Energy Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri Principal

  18. Ocean floor mounting of wave energy converters

    DOE Patents [OSTI]

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  19. Controller for a wave energy converter

    DOE Patents [OSTI]

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  20. The Effects of Wave Energy Converters on a Monochromatic Wave Climate

    E-Print Network [OSTI]

    Fox-Kemper, Baylor

    in wave energy converters as a possible means of providing renewable energy, the effects of a wave energy The interest in renewable energies is currently increasing due to the reported rise in global temperature and mean wave period of wave energy fields. There is tremendous energy potential in the ocean. Solar energy

  1. Wave Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensourceCentre Jump to: navigation, search Name: Wave

  2. Wave Energy Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers TakeVoteWaterWave Energy Resource Assessment

  3. Completed Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOofforCompany TemplateCompleted Sites Completed

  4. Energy Department Announces $10 million for Wave Energy Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    million to test prototypes designed to generate clean, renewable electricity from ocean waves and help diversify America's energy portfolio. The Energy Department-supported...

  5. On the Energy of Rotating Gravitational Waves

    E-Print Network [OSTI]

    Bahram Mashhoon; James C. McClune; Enrique Chavez; Hernando Quevedo

    1996-09-06

    A class of solutions of the gravitational field equations describing vacuum spacetimes outside rotating cylindrical sources is presented. A subclass of these solutions corresponds to the exterior gravitational fields of rotating cylindrical systems that emit gravitational radiation. The properties of these rotating gravitational wave spacetimes are investigated. In particular, we discuss the energy density of these waves using the gravitational stress-energy tensor.

  6. EA-1917: Wave Energy Test Facility Project, Newport, OR

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE.

  7. Renewable Energy Wave Pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: Energy ResourcesProducts LLC JumpTech SchoolWave Pumps

  8. Carnegie Wave Energy Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:Fund forCarnegie Wave Energy Limited Jump to:

  9. Wave spectral energy variability in the northeast Peter D. Bromirski

    E-Print Network [OSTI]

    Bromirski, Peter D.

    Wave spectral energy variability in the northeast Pacific Peter D. Bromirski Integrative January 2005; published 8 March 2005. [1] The dominant characteristics of wave energy variability] s wave spectral energy components are considered separately. Empirical orthogonal function (EOF) analyses

  10. Energy-momentum relation for solitary waves of relativistic wave equations

    E-Print Network [OSTI]

    T. V. Dudnikova; A. I. Komech; H. Spohn

    2005-08-23

    Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.

  11. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  12. Mapping and Assessment of the United States Ocean Wave Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mapping and Assessment of the United States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and...

  13. A Novel Excitation Scheme for an Ocean Wave Energy Converter

    E-Print Network [OSTI]

    Orazov, Bayram

    2011-01-01

    1.2 Wave Energy Conversion Technology 1.3 Heavinglevelhow.html) 1.2 Wave Energy Conversion Technology The

  14. Proceedings of the Hydrokinetic and Wave Energy Technologies...

    Office of Environmental Management (EM)

    Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and...

  15. Advancing Technology Readiness: Wave Energy Testing and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Technology Readiness: Wave Energy Testing and Demonstration Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest...

  16. Wave Energy Harvesting unmanned maritime vehicle, Concept and Applications

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Wave Energy Harvesting unmanned maritime vehicle, Concept and Applications Justin Manley Senior). By harvesting abundant natural energy Wave Gliders provide a persistent ocean presence to commercial scientific

  17. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

  18. Counting energy packets in the electromagnetic wave

    E-Print Network [OSTI]

    Stefan Popescu; Bernhard Rothenstein

    2007-05-18

    We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.

  19. 2014 Site Sustainability Plan | Department of Energy

    Energy Savers [EERE]

    Executive Orders, Presidential Memorandums, and DOE directives or memorandums. 2014 Site Sustainability Plan, U.S. Department of Energy Office of Legacy Management More Documents...

  20. Wave Energy Development in Oregon Licensing & Permitting Requirements

    E-Print Network [OSTI]

    July 09 Wave Energy Development in Oregon Licensing & Permitting Requirements Prepared by Pacific Energy Ventures on behalf of the Oregon Wave Energy Trust w w w . o r e g o n w a v e . o r g #12;This study was commissioned by Oregon Wave Energy Trust. Oregon Wave Energy Trust is funded by the Oregon

  1. Trends in Commercial Buildings--Total Site Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Site Energy Consumption Graph Detail and Data Table 1979 to 1992 site consumption trend with 95% confidence ranges 1979 to 1992 site...

  2. WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA

    E-Print Network [OSTI]

    Cary, John R.

    2012-01-01

    case, the electrons have negative wave energy for 2w ne w wave energy for 2w .w > 0 nl Hence, unstable waves with negative phase velocity,

  3. New Perspectives on Wave Energy Converter Control 

    E-Print Network [OSTI]

    Price, Alexandra A E

    2009-01-01

    This work examines some of the fundamental problems behind the control of wave energy converters (WECs). Several new perspectives are presented to aid the understanding of the problem and the interpretation of the ...

  4. Guidelines in Wave Energy Conversion System Design 

    E-Print Network [OSTI]

    Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

    2014-01-01

    This paper presents an investigational study on wave energy converters (WECs). The types of WEC available from the market are studied first. The design considerations for implementing a WEC in the Gulf of Mexico (GOM) are then evaluated...

  5. CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland

    E-Print Network [OSTI]

    Haller, Merrick

    gradient technologies. This paper is focused on Ocean Wave Energy Converters (OWECs) and the needCHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms

  6. Wave Energy Ecological Effects Workshop page 1 of 4 Ecological Effects of Wave Energy Development in the Pacific Northwest

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    Wave Energy Ecological Effects Workshop page 1 of 4 Ecological Effects of Wave Energy Development the capacity to harvest wave energy off its coast as a clean, renewable resource. An important part of moving this agenda forward must include understanding the potential effects of wave energy technology

  7. Research and Technology in Wave Energy for Electric Mobility

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Research and Technology in Wave Energy for Electric Mobility Reza Ghorbani Assistant Professor marine energy resources that are available for our utilization. These include wave energy, energy generated by ocean current and energy extraction through ocean thermal conversion (OTEC). For wave energy

  8. Soft Capacitors for Wave Energy Harvesting

    E-Print Network [OSTI]

    Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jørgen Jørgensen; Guggi Kofod

    2011-10-14

    Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.

  9. Wave equations with energy dependent potentials

    E-Print Network [OSTI]

    J. Formanek; R. J. Lombard; J. Mares

    2003-09-22

    We study wave equations with energy dependent potentials. Simple analytical models are found useful to illustrate difficulties encountered with the calculation and interpretation of observables. A formal analysis shows under which conditions such equations can be handled as evolution equation of quantum theory with an energy dependent potential. Once these conditions are met, such theory can be transformed into ordinary quantum theory.

  10. PASSIVE WIRELESS SURFACE ACOUSTIC WAVE SENSORS FOR MONITORING SEQUESTRATION SITES CO2 EMISSION

    SciTech Connect (OSTI)

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2012-11-30

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/?. The overall effect of temperature on nanocomposite resistance was -1000ppm/?. The gas response of the nanocomposite was about 10% resistance increase under pure CO2. The sensor frequency change was around 300ppm for pure CO2. With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  11. A Novel Excitation Scheme for an Ocean Wave Energy Converter

    E-Print Network [OSTI]

    Orazov, Bayram

    2011-01-01

    1.2 Wave Energy Conversion Technology 1.3 Heavinglevelhow.html) 1.2 Wave Energy Conversion Technology Thewaves on the map as a viable energy source. Over the past 30 years, WEC technology

  12. Energy flux of timeharmonic waves in anisotropic dissipative media

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Energy flux of time­harmonic waves in anisotropic dissipative media Vlastislav Ÿ Cerven/transmission problem. Energy flux quantities related to the summary wavefield, composed of several waves, are derived in the summary energy flux in addition to the energy fluxes of the individual waves. The interaction energy

  13. Summary of PIER-Funded Wave Energy Research

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION Summary of PIER-Funded Wave Energy Research STAFFREPORT MARCH 2008 CEC. Please cite this report as follows: PIER 2007. Summary of PIER Funded Wave Energy Research, California Interest Energy Research Programfunded research in wave energy conversion and discusses the program's view

  14. Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project

    Broader source: Energy.gov [DOE]

    Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

  15. Energy-momentum Density of Gravitational Waves

    E-Print Network [OSTI]

    Amir M. Abbassi; Saeed Mirshekari

    2014-11-29

    In this paper, we elaborate the problem of energy-momentum in general relativity by energy-momentum prescriptions theory. Our aim is to calculate energy and momentum densities for the general form of gravitational waves. In this connection, we have extended the previous works by using the prescriptions of Bergmann and Tolman. It is shown that they are finite and reasonable. In addition, using Tolman prescription, exactly, leads to same results that have been obtained by Einstein and Papapetrou prescriptions.

  16. A Novel Excitation Scheme for an Ocean Wave Energy Converter

    E-Print Network [OSTI]

    Orazov, Bayram

    2011-01-01

    1.4 Tidal Energy . . . . . . .7th European Wave and Tidal Energy Conference. Porto (for such application. 1.4 Tidal Energy Often mistakenly

  17. Advancing Technology Readiness: Wave Energy Testing and Demonstration...

    Energy Savers [EERE]

    Addthis Northwest Energy Innovations, in partnership with the Northwest National Marine Renewable Energy Center (NNMREC), verified the functionality of the Wave Energy...

  18. 2007 Survey of Energy Resources World Energy Council 2007 Wave Energy COUNTRY NOTES

    E-Print Network [OSTI]

    2007 Survey of Energy Resources World Energy Council 2007 Wave Energy 550 COUNTRY NOTES The following Country Notes on Wave Energy have been compiled by Tom Thorpe and the Editors. Every effort has been made to be comprehensive by making contact with all known wave energy developers. However

  19. On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry

    E-Print Network [OSTI]

    Victoria, University of

    On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean wave

  20. Spectral Cascade and Energy Dissipation in Kinetic Alfven Wave Turbulence

    E-Print Network [OSTI]

    Lin, Zhihong

    Spectral Cascade and Energy Dissipation in Kinetic Alfv´en Wave Turbulence Xi Cheng, Zhihong Lin energy sources at large spatial scales. The energy of these non- linearly interacting Alfven waves. 2000). The wave-particle energy exchange rates of these channels depend on the spectral properties near

  1. Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /

    E-Print Network [OSTI]

    Chen, Tianjia

    2013-01-01

    A review of wave energy converter technology. Proceedings ofdecades. With the technology of wave-energy convert- ers(Wave energy utilization: A review of the technologies. Re-

  2. Design and Control of a Floating Wave-Energy Converter Utilizing a Permanent Magnet Linear Generator

    E-Print Network [OSTI]

    Tom, Nathan Michael

    2013-01-01

    control of resonant wave energy devices,” Phil. Trans. R.control of deep water wave energy devices using an activecapture of a wave energy device by inertia adjustment,”

  3. Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /

    E-Print Network [OSTI]

    Chen, Tianjia

    2013-01-01

    Power Maximization in Wave-Energy Converters Using Sampled-design optimization of wave energy converters con- sistingN. Sahinkaya. A review of wave energy converter technology.

  4. Anomalous electron-ion energy coupling in electron drift wave turbulence

    E-Print Network [OSTI]

    Zhao, Lei

    annulus arises due to a wave energy flux differential acrossprincipal collisionless wave energy dissipation channel inOn the other hand, wave energy can be dissipated by ion

  5. Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and...

  6. Sandia Energy - Siting: Wind Turbine/Radar Interference Mitigation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation (TSPEAR & IFT&E) Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Siting: Wind TurbineRadar Interference...

  7. Wave Turbulence in Superfluid 4 Energy Cascades, Rogue Waves & Kinetic Phenomena

    E-Print Network [OSTI]

    Fominov, Yakov

    Outline Wave Turbulence in Superfluid 4 He: Energy Cascades, Rogue Waves & Kinetic Phenomena Conference, Chernogolovka, 3 August 2009 McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4 He #12;Outline Outline 1 Introduction Motivation 2 Modelling wave turbulence Need for models

  8. Sheets Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low EmissionTianhongKansas: Energy Resources JumpSheets Wave

  9. Closure Sites | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof the CleanClient education isthe compliance

  10. Revamped Simulation Tool to Power Up Wave Energy Development...

    Energy Savers [EERE]

    Revamped Simulation Tool to Power Up Wave Energy Development Revamped Simulation Tool to Power Up Wave Energy Development May 21, 2015 - 2:40pm Addthis Revamped Simulation Tool to...

  11. DOE Announces Webinars on the Wave Energy Converter Prize, the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Wave Energy Converter Prize, the Best of the Clean Cities Tools and Resources, and More DOE Announces Webinars on the Wave Energy Converter Prize, the Best of the Clean Cities...

  12. WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA

    E-Print Network [OSTI]

    Cary, John R.

    2012-01-01

    case, the electrons have negative wave energy for 2w ne w wave energy for 2w . > w > 0 nlw/k to the negative wave energy of the electrons. positive

  13. Gravitational wave energy spectrum of hyperbolic encounters

    E-Print Network [OSTI]

    Lorenzo De Vittori; Philippe Jetzer; Antoine Klein

    2012-07-23

    The emission of gravitational waves is studied for a system of massive objects interacting on hyperbolic orbits within the quadrupole approximation following the work of Capozziello et al. Here we focus on the derivation of an analytic formula for the energy spectrum of the emitted waves. We checked numerically that our formula is in agreement with the two limiting cases for which results were already available: for the eccentricity {\\epsilon} = 1, the parabolic case whose spectrum was computed by Berry and Gair, and the large {\\epsilon} limit with the formula given by Turner.

  14. Gravitational wave energy spectrum of hyperbolic encounters

    E-Print Network [OSTI]

    De Vittori, Lorenzo; Klein, Antoine

    2012-01-01

    The emission of gravitational waves is studied for a system of massive objects interacting on hyperbolic orbits within the quadrupole approximation following the work of Capozziello et al. Here we focus on the derivation of an analytic formula for the energy spectrum of the emitted waves. We checked numerically that our formula is in agreement with the two limiting cases for which results were already available: for the eccentricity {\\epsilon} = 1, the parabolic case whose spectrum was computed by Berry and Gair, and the large {\\epsilon} limit with the formula given by Turner.

  15. LM Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | International NuclearKaren AtkinsonAboutLMLegacyLM

  16. Direct Drive Wave Energy Buoy

    SciTech Connect (OSTI)

    Rhinefrank, Ken

    2011-11-02

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progress and results for this project which will be used to inform the utility-scale design process, improve cost estimates, accurately forecast energy production and to observe system operation and survivability.

  17. Optimizing Ballast Design of Wave Energy Converters Using Evolutionary Algorithms

    E-Print Network [OSTI]

    Tumer, Kagan

    Optimizing Ballast Design of Wave Energy Converters Using Evolutionary Algorithms Mitch Colby, 97331 kagan.tumer@oregonstate.edu ABSTRACT Wave energy converters promise to be a viable alternative% improvement in power output over a ballast-free wave energy converter. General Terms Algorithms; Applications

  18. Ecological Effects of Wave Energy Development in the Pacific Northwest

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    ......................................................................................................7 The Technology: Wave Energy Development on the West Coast Mirko Previsic, re vision consultingEcological Effects of Wave Energy Development in the Pacific Northwest A Scientific Workshop Technical Memorandum NMFS-F/SPO-92 #12;#12;Ecological Effects of Wave Energy Development in the Pacific

  19. Peculiarities in the energy transfer by waves on strained strings

    E-Print Network [OSTI]

    Butikov, Eugene

    Peculiarities in the energy transfer by waves on strained strings Eugene I. Butikov St. Petersburg of elastic potential energy associated with waves in a stretched string is discussed. The influence of nonlinear coupling between transverse and longitudinal waves on the density of energy is investigated

  20. E2I EPRI Assessment Offshore Wave Energy Conversion Devices

    E-Print Network [OSTI]

    E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

  1. Ecological Effects of Wave Energy Development in the Pacific Northwest

    E-Print Network [OSTI]

    Ecological Effects of Wave Energy Development in the Pacific Northwest A Scientific Workshop Technical Memorandum NMFS-F/SPO-92 #12;#12;Ecological Effects of Wave Energy Development in the Pacific Service; Justin Klure, Oregon Wave Energy Trust; Greg McMurray, Oregon Department of Land Conservation

  2. MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER ARNAUD ROUGIREL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER MODEL ARNAUD ROUGIREL Abstract. In a context where for buoy-type ocean wave energy converter. The simplest model for this scheme is a non autonomous piecewise and periodic solutions, and compare the energy performance of this novel WEC with respect to the one of wave

  3. Modelling and geometry optimisation of wave energy converters

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    Modelling and geometry optimisation of wave energy converters Adi Kurniawan Supervisors: Prof;Research questions Modelling How to develop more realistic wave energy converter (WEC) models while wave energy converter (WEC) models while at the same time reduce their simulation time? Optimisation

  4. O.A.R. 345-015 - Energy Facility Siting Council Site Certification...

    Open Energy Info (EERE)

    Procedures (2014). Retrieved from "http:en.openei.orgwindex.php?titleO.A.R.345-015-EnergyFacilitySitingCouncilSiteCertificationProcedures&oldid789924" ...

  5. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource HistoryOregon:WattQuizWaunitaWauseon,Basin

  6. Paducah Site Management Plan | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes havePUBLIC ADMINISTRATIONPaducah Site

  7. Paducah Site Regulatory Documents | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes havePUBLIC ADMINISTRATIONPaducah SiteRegulatory

  8. Paducah WDA Site Selection | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes havePUBLIC ADMINISTRATIONPaducahSite Selection

  9. Paducah Site Description | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsomProgressPaducah SiteBackground »

  10. Paducah Site Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsomProgressPaducah SiteBackground

  11. Portsmouth Site Description | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnershipSite BackgroundMarch Portsmouth SSAB

  12. Wind Speed Dependence of Single-Site Wave-Height Retrievals from High-Frequency Radars

    E-Print Network [OSTI]

    Miami, University of

    -order returns to the ocean surface wave energy spectra. Methods to invert the Barrick (1972) equations, Georgia Institute of Technology, Savannah, Georgia @ Department of Earth and Ocean Sciences, Marine

  13. Siting solar energy development to minimize biological impacts

    E-Print Network [OSTI]

    Stoms, DM; Dashiell, SL; Davis, FW

    2013-01-01

    Wildlife conservation and solar energy development in theand the selection of solar energy sites in Andalusia (bio- diversity impacts of solar energy development in the

  14. Portsmouth Site Regulatory Agreements | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartment of Energy Portsmouth ScienceFacilitySite

  15. Integrated Energy Systems Multi-Media Webcast: Three CHP Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned,...

  16. On-Site Renewable Power Purchase Agreements | Department of Energy

    Office of Environmental Management (EM)

    Project Financing On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements The Federal Energy Management Program (FEMP) provides information,...

  17. Leancon Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy ResourcesProjectMississippi: EnergyLawrieEdgeLeake

  18. Development of SNL-SWAN, a Validated Wave Energy Converter Array Modeling Tool

    E-Print Network [OSTI]

    Siefert, Chris

    Development of SNL-SWAN, a Validated Wave Energy Converter Array Modeling Tool Kelley Ruehl#1 energy will lead to the necessary deployment of Wave Energy Converters (WECs) in arrays, or wave farms state dependent wave energy conversion of WECs. Keywords-- wave energy, wave farm, WEC array, SWAN

  19. Internal energy relaxation in shock wave structure

    SciTech Connect (OSTI)

    Josyula, Eswar, E-mail: Eswar.Josyula@us.af.mil; Suchyta, Casimir J. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)] [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Boyd, Iain D. [University of Michigan, Ann Arbor, Michigan 48109 (United States)] [University of Michigan, Ann Arbor, Michigan 48109 (United States); Vedula, Prakash [University of Oklahoma, Norman, Oklahoma 73019 (United States)] [University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2013-12-15

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

  20. Dartmouth Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa: EnergyDark River,Energy Information

  1. Evaluating Solar Energy Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program Management »Eric J. Fygi About

  2. Wave Energy Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensourceCentre Jump to: navigation, search

  3. Site Controls Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium de Provence SASSinemSissonville, West Virginia:Site

  4. Oregon Siting Process | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open EnergyInformationSiting Process Jump to:

  5. SPR Storage Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectData Dashboard Rutland Countyof EnergySOLANAStorage Sites SPR Storage

  6. Motor Wave Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation MontanaOhio:Hill,Morrisville, NewMoshanirMotorWave Group

  7. Triton Sea Wave Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP) | Open Energy InformationSea Wave

  8. Long-Wave Infrared | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided wavesLone StarEnergyInfrared

  9. Alden Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAirAlamoCalifornia:Wave Basin Jump to:

  10. Multi-Site Energy Reduction Through Teamwork 

    E-Print Network [OSTI]

    Tutterow, V.; Walters, T.

    2006-01-01

    . These are items that are most likely logged within the work order system for periodic re- occurrence. These items are tracked here so as not to lose site of the fact that they are part of the energy management program. ‘Not Economical at this Time... and subsequently lose interest in their implementation. This is a key element to maintaining justification of the energy management program. The cost and savings values will then allow a Simple Pay Back (SPB) to be determined for further prioritization...

  11. Euro Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,Power CorpEnergyEunice, Louisiana:Power Pvt Ltd

  12. Dartmouth Wave Energy Searaser | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation, searchDaimler Evonik JVDaofu Co LtdEnergy

  13. Next Wave Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy Resources Jump to:Inc Jump to: navigation,Inc

  14. Wave Energy AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:Energy InformationWausau High School Jump

  15. Wave Star Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:Energy InformationWausau High SchoolInc

  16. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect (OSTI)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  17. Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System

    E-Print Network [OSTI]

    Wood, Stephen L.

    and feasible alternative, renewable, electrical energy producing subsea system. Index Terms--ocean energy, wave energy, wave energy converter, WEC, electrical energy, alternative energy, hydrokinetic energy on the coasts of the United States the harvesting ocean wave energy is ideal. It is projected that wave energy

  18. GLOBAL INFINITE ENERGY SOLUTIONS FOR THE CUBIC WAVE EQUATION

    E-Print Network [OSTI]

    Thomann, Laurent

    energy) random initial data. To the best of our knowledge such a regularity is out of reachGLOBAL INFINITE ENERGY SOLUTIONS FOR THE CUBIC WAVE EQUATION by Nicolas Burq, Laurent Thomann & Nikolay Tzvetkov Abstract. -- We prove the existence of infinite energy global solutions of the cubic wave

  19. Acceleration of low energy charged particles by gravitational waves

    E-Print Network [OSTI]

    G. Voyatzis; L. Vlahos; S. Ichtiaroglou; D. Papadopoulos

    2005-12-07

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  20. Energy Department Invests $16 Million to Harness Wave and Tidal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wave conditions and adjust system settings to maximize power output. Responsible and Sustainable Energy Development As part of the Administration's commitment to developing...

  1. Energy Transfer via Solar Wind Driven Ultra Low Frequency Waves in the Earth's Magnetosphere

    E-Print Network [OSTI]

    Hartinger, Michael David

    2012-01-01

    Modeling energy transfer via solar wind driven ULFthrough which solar wind energy can drive wave activity. Inthrough which solar wind energy can drive wave activity. In

  2. Ten Year Site Plans | Department of Energy

    Energy Savers [EERE]

    Ten Year Site Plans Ten Year Site Plans A Ten Year Site Plan (TYSP) is the essential planning document linking a site's real property requirements to its mission in support of the...

  3. Siting solar energy development to minimize biological impacts

    E-Print Network [OSTI]

    Stoms, DM; Dashiell, SL; Davis, FW

    2013-01-01

    Areas of high solar energy potential are often in fragileby 20 km to ensure that potential solar energy sites weresolar development from the perspective of minimizing potential

  4. FTCP Site Specific Information | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22,673,list7.pdfFORD FORDDepartmentSite Specific

  5. Portsmouth Site Sustainability Team | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS -Portmouth Site Sustainability Team (SST)

  6. Fire Protection Related Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,EnergyFinancing andfor the StorageRelated Sites

  7. Savannah River Site | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummarySavannah River Site Savannah

  8. Open Ocean Aquaculture & Wave Energy Site | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information OlindaOnslow County,OpTIC Technium

  9. Wave turbulence revisited: Where does the energy flow?

    E-Print Network [OSTI]

    L. V. Abdurakhimov; I. A. Remizov; A. A. Levchenko; G. V. Kolmakov; Y. V. Lvov

    2014-04-03

    Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.

  10. Wave EnergyFocusing in aThree-dimensional Numerical WaveTank C. Fochesato*, F. Dias**, S. Grilli***

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Wave EnergyFocusing in aThree-dimensional Numerical WaveTank C. Fochesato*, F. Dias**, S. Grilli Department (University of Rhode Island), Narragansett, RI, U.S.A. ABSTRACT Directional wave energy focusing in space is one of the mechanisms that may contribute to the generation of a rogue wave in the ocean

  11. Fluctuations of energy flux in wave turbulence Eric Falcon,1

    E-Print Network [OSTI]

    Falcon, Eric

    Fluctuations of energy flux in wave turbulence ´Eric Falcon,1 S´ebastien Auma^itre,2 Claudio Falc gravity and capillary wave turbulence in a statistically stationary regime displays fluctuations much interactions transfer kinetic energy toward small scales where viscous dissipation takes place

  12. Wave-Packet Revivals for Quantum Systems with Nondegenerate Energies

    E-Print Network [OSTI]

    Robert Bluhm; Alan Kostelecky; Bogdan Tudose

    1996-09-26

    The revival structure of wave packets is examined for quantum systems having energies that depend on two nondegenerate quantum numbers. For such systems, the evolution of the wave packet is controlled by two classical periods and three revival times. These wave packets exhibit quantum beats in the initial motion as well as new types of long-term revivals. The issue of whether fractional revivals can form is addressed. We present an analytical proof showing that at certain times equal to rational fractions of the revival times the wave packet can reform as a sum of subsidiary waves and that both conventional and new types of fractional revivals can occur.

  13. The Role of Wave Energy Accumulation in Tropical Cyclogenesis over the Tropical North Atlantic

    E-Print Network [OSTI]

    Webster, Peter J.

    The Role of Wave Energy Accumulation in Tropical Cyclogenesis over the Tropical North Atlantic "wave energy"). Relative vorticity increases locally leading to an increase in the likelihood scales of interaction. The importance of wave energy accumulation for tropical cyclogenesis

  14. Design and Control of a Floating Wave-Energy Converter Utilizing a Permanent Magnet Linear Generator

    E-Print Network [OSTI]

    Tom, Nathan Michael

    2013-01-01

    electrical generator technology for wave energy converters,”wave energy point absorber,” Proceedings of the IFAC Conference on Control Methodologies and Technologyseen, clean technologies, such as ocean wave energy, present

  15. Wave Energy Prize Narrowed from 92 Teams to Top 20 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave Energy Prize Narrowed from 92 Teams to Top 20 Wave Energy Prize Narrowed from 92 Teams to Top 20 August 14, 2015 - 2:16pm Addthis Wave Energy Prize Narrowed from 92 Teams to...

  16. Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /

    E-Print Network [OSTI]

    Chen, Tianjia

    2013-01-01

    A review of wave energy converter technology. Proceedings ofWave energy utilization: A review of the technologies. Re-decades. With the technology of wave-energy convert- ers(

  17. Mass-modulation schemes for a class of wave energy converters: Experiments, models, and efficacy

    E-Print Network [OSTI]

    Diamond, CA; Judge, CQ; Orazov, B; Sava?, Ö; O'Reilly, OM

    2015-01-01

    dynamics of a novel ocean wave energy converter. Journal of5565. Dick, W. , 2005. Wave energy converter. U.S. Patentof the IPS buoy wave energy converter including the effect

  18. The impulsive effects of momentum transfer on the dynamics of a novel ocean wave energy converter

    E-Print Network [OSTI]

    Diamond, CA; O'Reilly, OM; Sava?, O

    2013-01-01

    7] J. Falnes, A review of wave-energy extraction, MarineOrazov, O. M. O’Reilly, O. wave energy converter, Journal ofsimple model for a novel wave energy converter: non-resonant

  19. Energy Dispersed Large Data Wave Maps in 2 + 1 Dimensions

    E-Print Network [OSTI]

    Sterbenz, Jacob; Tataru, Daniel

    2010-01-01

    of Finite S Norm Wave-Maps and Energy Dispersion 10.1renormalization of large energy wave maps. In: Journées “of Finite S Norm Wave-Maps and Energy Dispersion In this

  20. Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /

    E-Print Network [OSTI]

    Chen, Tianjia

    2013-01-01

    design optimization of wave energy converters con- sistingN. Sahinkaya. A review of wave energy converter technology.2009. [6] A.F.O. Falc˜ao. Wave energy utilization: A review

  1. Energy Transfer via Solar Wind Driven Ultra Low Frequency Waves in the Earth's Magnetosphere

    E-Print Network [OSTI]

    Hartinger, Michael David

    2012-01-01

    wind to various sinks of wave energy in the magnetosphere.magnetosphere (where wave energy can exit the magnetospheresource and a sink for ULF wave energy. One of the most well-

  2. A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical Parameters

    E-Print Network [OSTI]

    Victoria, University of

    A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical of Mechanical Engineering) ABSTRACT Within a wave energy converter's operational bandwidth, device operation

  3. Wave Energy Converter Design Tool for Point Absorbers with Arbitrary Device Geometry Kelley Ruehl

    E-Print Network [OSTI]

    Siefert, Chris

    Wave Energy Converter Design Tool for Point Absorbers with Arbitrary Device Geometry Kelley Ruehl University Corvallis, OR, USA ABSTRACT In order to promote and support the wave energy industry, a Wave strategies. KEY WORDS: wave energy; point absorber; time-domain; design tool. INTRODUCTION Wave Energy

  4. Energy dissipation in wave propagation in general relativistic plasma

    E-Print Network [OSTI]

    Ajanta Das; S. Chatterjee

    2009-11-03

    Based on a recent communication by the present authors the question of energy dissipation in magneto hydrodynamical waves in an inflating background in general relativity is examined. It is found that the expanding background introduces a sort of dragging force on the propagating wave such that unlike the Newtonnian case energy gets dissipated as it progresses. This loss in energy having no special relativistic analogue is, however, not mechanical in nature as in elastic wave. It is also found that the energy loss is model dependent and also depends on the number of dimensions.

  5. Hanford Site - 100-NR-2 | Department of Energy

    Office of Environmental Management (EM)

    NR-2 Hanford Site - 100-NR-2 July 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Hanford Site, WA...

  6. Savannah River Site - Central Shops GW OU | Department of Energy

    Office of Environmental Management (EM)

    Site - Central Shops GW OU January 1, 2013 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Savannah River Site, SC...

  7. On the wave energy potential of Western Black Sea shelf

    E-Print Network [OSTI]

    Galabov, Vasko

    2013-01-01

    In the present study we evaluate the approaches to estimate the wave energy potential of the western Black Sea shelf with numerical models. For the purpose of our evaluation and due to the lack of long time series of measurements in the selected area of the Black Sea, we compare the modeled mean wave power flux output from the SWAN wave model with the only available long term measurements from the buoy of Gelendzhik for the period 1997-2003 (with gaps). The forcing meteorological data for the numerical wave models for the selected years is extracted from the ERA Interim reanalysis of ECMWF (European Centre for Medium range Forecasts). For the year 2003 we also compare the estimated wave power with the modeled by SWAN, using ALADIN regional atmospheric model winds. We try to identify the shortcomings and limitations of the numerical modeling approach to the evaluation of the wave energy potential in Black Sea.

  8. Development of Feedforward Control Strategies for Wave Energy Conversion Technologies

    Energy Innovation Portal (Marketing Summaries) [EERE]

      The future of wave energy will depend on developing a new generation of wave energy converters (WECs) that maximize energy extraction and mitigate critical loads while reducing costs. Today’s WECs are relatively inefficient compared to their theoretical upper limit and lack the ability to concurrently maximize power capture and minimize structural loads.  The majority of existing WECs consist of fixed geometrical bodies relying predominantly on control of the power...

  9. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    SciTech Connect (OSTI)

    Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  10. Energy Contents of Gravitational Waves in Teleparallel Gravity

    E-Print Network [OSTI]

    M. Sharif; Sumaira Taj

    2009-10-02

    The conserved quantities, that are, gravitational energy-momentum and its relevant quantities are investigated for cylindrical and spherical gravitational waves in the framework of teleparallel equivalent of General Relativity using the Hamiltonian approach. For both cylindrical and spherical gravitational waves, we obtain definite energy and constant momentum. The constant momentum shows consistency with the results available in General Relativity and teleparallel gravity. The angular momentum for cylindrical and spherical gravitational waves also turn out to be constant. Further, we evaluate their gravitational energy-momentum fluxes and gravitational pressure.

  11. Energy of Alfven waves generated during magnetic reconnection

    E-Print Network [OSTI]

    Wang, L C; Ma, Z W; Zhang, X; Lee, L C

    2015-01-01

    A new method for the determination of the Alfven wave energy generated during magnetic reconnection is introduced and used to analyze the results from two-dimensional MHD simulations. It is found that the regions with strong Alfven wave perturbations almost coincide with that where both magnetic-field lines and flow-stream lines are bent, suggesting that this method is reliable for identifying Alfven waves. The magnetic energy during magnetic reconnection is mainly transformed into the thermal energy. The conversion rate to Alfven wave energy from the magnetic energy is strongly correlated to the magnetic reconnection rate. The maximum conversion rate at the time with the peak reconnection rate is found to be only about 4% for the cases with the plasma beta=0.01,0.1, and 1.0.

  12. Author's personal copy Wave energy resources along the Hawaiian Island chain

    E-Print Network [OSTI]

    Author's personal copy Wave energy resources along the Hawaiian Island chain Justin E. Stopa model Wave atlas Wave energy Wave power a b s t r a c t Hawaii's access to the ocean and remoteness from as nearshore wave energy resources in Hawaii. A global WAVEWATCH III (WW3) model forced by surface winds from

  13. Energy and Momentum of a Class of Rotating Gravitational Waves

    E-Print Network [OSTI]

    M. Sharif

    2001-02-09

    We calculate energy and momentum for a class of cylindrical rotating gravitational waves using Einstein and Papapetrou's prescriptions. It is shown that the results obtained are reduced to the special case of the cylindrical gravitational waves already available in the literature.

  14. Energy Content of Colliding Plane Waves using Approximate Noether Symmetries

    E-Print Network [OSTI]

    M. Sharif; Saira Waheed

    2011-09-19

    This paper is devoted to study the energy content of colliding plane waves using approximate Noether symmetries. For this purpose, we use approximate Lie symmetry method of Lagrangian for differential equations. We formulate the first-order perturbed Lagrangian for colliding plane electromagnetic and gravitational waves. It is shown that in both cases, there does not exist

  15. Wave Function Properties in a High Energy Process

    E-Print Network [OSTI]

    Arjun Berera

    1994-11-14

    A model example is given of how properties of the hadronic light-cone wave function are revealed in a particular high energy process. The meson wave function is derived in scalar quark QCD. We apply it to compute the form of the cross section for lossless diffractive jet-production, an upcoming possiblity at HERA.

  16. Department of Energy's Paducah Site Reaches Million-Hour Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KY - The U.S. Department of Energy's Paducah Site has reached a million hours of safe work toward completing cleanup objectives to reduce environmental risk. The LATA...

  17. Energy Facility Evaluation, Siting, Construction and Operation (New Hampshire)

    Broader source: Energy.gov [DOE]

    The statute establishes a procedure for the review, approval, monitoring, and enforcement of compliance in the planning, siting, construction, and operation of energy facilities, including...

  18. Washington Energy Facility Site Evalutation Council - Siting and Review

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park,

  19. FTCP Site Specific Information - Nuclear Energy Oak Ridge Site Office |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111, 2015Energy Nevada Field Office FTCP

  20. Danish Wave Energy Development Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation, searchDaimler Evonik JV JumpDanbioWave Energy

  1. California Wave Energy Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: EnergyCalendarCalhounWebpageProjectPrograms Jump to:WellWave

  2. Washington State Energy Facility Site Evaluation Council | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park,| OpenInformation Energy Facility Site

  3. Washington Energy Facility Site Evalutation Council - Generalized Siting

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park, Indiana:OpenIowa:NewTexas:WashingtonProcess

  4. Oregon Wave Energy Trust OWET | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open EnergyInformationSitingSystems (DEQRights

  5. Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /

    E-Print Network [OSTI]

    Chen, Tianjia

    2013-01-01

    with controlled motion. Power from sea waves, pages 381–399,SAN DIEGO Power Maximization in Wave-Energy Converters Usingfor wave energy con- verters with limited power takeoff

  6. Energy Transfer via Solar Wind Driven Ultra Low Frequency Waves in the Earth's Magnetosphere

    E-Print Network [OSTI]

    Hartinger, Michael David

    2012-01-01

    spectral density comparison Wave polarization and energythe plasmasphere on ULF wave energy transfer. We conclude inan important e?ect on ULF wave energy transfer in the Pc5

  7. On the configuration of arrays of floating wave energy converters 

    E-Print Network [OSTI]

    Child, Benjamin Frederick Martin

    2011-11-22

    In this thesis, certain issues relating to a number of wave energy absorbers operating in the same vicinity are investigated. Specifically, arrangements of the devices within such an array are sought, such that beneficial ...

  8. Internal wave energy radiated from a turbulent mixed layer

    SciTech Connect (OSTI)

    Munroe, James R.; Sutherland, Bruce R.

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  9. Wave energy attenuation and shoreline alteration characteristics of submerged breakwaters 

    E-Print Network [OSTI]

    Krafft, Katherine Margaret

    1993-01-01

    WAVE ENERGY ATTENUATION AND SHORELINE ALTERATION CHARACTERISTICS OF SUBMERGED BREAKWATERS A Thesis by KATHERINE MARGARET KRAFFT Submitted to the Office of Graduate Studies of Texas AIM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1993 Major Subject: Ocean Engineering WAVE ENERGY ATTENUATION AND SHORELINE ALTERATION CHARACTERISTICS OF SUBMERGED BREAKWATERS A Thesis by KATHERINE MARGARET KRAFFT Approved as to style and content by: John...

  10. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect (OSTI)

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  11. Siting Renewable Energy: Land Use and Regulatory Context

    E-Print Network [OSTI]

    Outka, Uma

    2010-01-01

    This article takes up the increasingly important land use question of siting for renewable energy. As concern over climate change grows, new policies are being crafted at all levels of government to support renewable energy as a way of reducing...

  12. Gauge Invariant Effective Stress-Energy Tensors for Gravitational Waves

    E-Print Network [OSTI]

    Paul R. Anderson

    1996-09-09

    It is shown that if a generalized definition of gauge invariance is used, gauge invariant effective stress-energy tensors for gravitational waves and other gravitational perturbations can be defined in a much larger variety of circumstances than has previously been possible. In particular it is no longer necessary to average the stress-energy tensor over a region of spacetime which is larger in scale than the wavelengths of the waves and it is no longer necessary to restrict attention to high frequency gravitational waves.

  13. Energy storage and generation from thermopower waves

    E-Print Network [OSTI]

    Abrahamson, Joel T. (Joel Theodore)

    2012-01-01

    The nonlinear coupling between an exothermic chemical reaction and a nanowire or nanotube with large axial heat conduction guides a self-propagating thermal wave along the nano-conduit. The thermal conduit accelerates the ...

  14. Energy Department's Portsmouth Site Recognized for Environmentally...

    Office of Environmental Management (EM)

    May 20, 2014 - 10:55am Addthis Pictured are members of the Portsmouth Site Sustainability Team, including: (Left to right) Joe Moore, Bob Anderson, Stephanie Puckett, Matt...

  15. Energy Citations Database (ECD) - Site Map

    Office of Scientific and Technical Information (OSTI)

    Site Map Home Basic Search Fielded Search Document Availability About ECD Help FAQ Contact Us Website Policies and Important Links Alerts Log On Alerts Registration Alerts Help...

  16. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect (OSTI)

    Hagerman, G.; Scott, G.

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources.

  17. UTILITY OF EXTRACTING CY PARTICLE ENERGY BY WAVES N.J. FISCH, M.C. HERRMANN

    E-Print Network [OSTI]

    UTILITY OF EXTRACTING CY PARTICLE ENERGY BY WAVES N.J. FISCH, M.C. HERRMANN Princeton Plasma by injecting waves that diffuse the a particles both in space and in energy, rather than just in energy [13 particle power by waves, and that these waves might then damp resonantly on the fast energy tail

  18. Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH College of Oceanic FE u p cgE is a fundamental quan- tity in internal wave energetics to identify energy sources, wave propagation, and energy sinks. Internal wave radiation transports energy from the boundaries

  19. Quantum Monte Carlo: Direct calculation of corrections to trial wave functions and their energies

    E-Print Network [OSTI]

    Anderson, James B.

    . The wave functions and energies for these systems are corrected to the fixed-node values desirable features of: good wave function in/better wave function out ... good energy in/better energy out wave function, and Eref is a reference energy. Making use of the difference 0 and defining another

  20. Control influence on the electromagnetic generator pre-design for a wave energy converter

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    461 1 Control influence on the electromagnetic generator pre-design for a wave energy converter M of an electromagnetic generator for wave energy recovery. We will start by describing the wave energy converter (WEC of the study problem. Keywords: optimization, control, design methodology, direct drive generator, wave energy

  1. The Force of a Tsunami on a Wave Energy Converter

    E-Print Network [OSTI]

    O'Brien, Laura; Renzi, Emiliano; Dutykh, Denys; Dias, Frédéric

    2012-01-01

    With an increasing emphasis on renewable energy resources, wave power technology is fast becoming a realistic solution. However, the recent tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed creating large destructive waves. The question posed here is whether a nearshore wave energy converter (WEC) could withstand the force of an incoming tsunami. The analytical 3D model of Renzi & Dias (2012) developed within the framework of a linear theory and applied to an array of fixed plates is used. The time derivative of the velocity potential allows the hydrodynamic force to be calculated.

  2. PHYSICAL REVIEW E 89, 023003 (2014) Energy flux measurement from the dissipated energy in capillary wave turbulence

    E-Print Network [OSTI]

    Falcon, Eric

    2014-01-01

    energy flux are in good agreement with wave turbulence theory. The Kolmogorov-Zakharov constant waves interact with each other, they can develop a regime of wave turbulence where the wave energyPHYSICAL REVIEW E 89, 023003 (2014) Energy flux measurement from the dissipated energy in capillary

  3. Multi-Site Energy Reduction Through Teamwork 

    E-Print Network [OSTI]

    Theising, T

    2008-01-01

    hundreds of Energy Conservation Opportunities (ECOs) to set priorities and create implementation schedules. Many of the ECOs were implemented with little or no cost to BASF. The final Energy Audit of 2004 was conducted in July and the Energy Team...

  4. SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves

    E-Print Network [OSTI]

    Pierce, Stephen

    SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M of coastline. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes

  5. APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves

    E-Print Network [OSTI]

    Pierce, Stephen

    APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M. KLYMAK2. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes important

  6. LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY CONVERTERS

    E-Print Network [OSTI]

    Haller, Merrick

    1 LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY of wave energy converters (WECs) on water waves through the analysis of extensive laboratory experiments absorption is a reasonable predictor of the effect of WECs on the far field. Keywords: wave- energy; spectral

  7. Nonequilibrium Statistics of a Reduced Model for Energy Transfer in Waves

    E-Print Network [OSTI]

    Tabak, Esteban G.

    Nonequilibrium Statistics of a Reduced Model for Energy Transfer in Waves R. E. LEE DEVILLE Courant, with the subsequent dynamics transferring the energy to longer scales. The main dissipation mechanism is wave breaking, which usually acts on much longer (gravity) waves that intermittently remove energy from the wave system

  8. ON THE SELF-AVERAGING OF WAVE ENERGY IN RANDOM GUILLAUME BAL

    E-Print Network [OSTI]

    Bal, Guillaume

    ON THE SELF-AVERAGING OF WAVE ENERGY IN RANDOM MEDIA GUILLAUME BAL Abstract. We consider the stabilization (self-averaging) and destabilization of the energy of waves propagating in random media transport equations for arbitrary statistical moments of the wave field is used to show that wave energy

  9. Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study

    E-Print Network [OSTI]

    Georgiou, Georgios

    Data bank Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year Article history: Received 30 July 2013 Accepted 25 March 2014 Available online Keywords: Wave energy Numerical atmospheric Wave modeling a b s t r a c t The main characteristics of wave energy potential over

  10. Zero Energy of Plane-Waves for ELKOs

    E-Print Network [OSTI]

    Luca Fabbri

    2011-02-23

    We consider the ELKO field in interaction through contorsion with its own spin density, and we investigate the form of the consequent autointeractions; to do so we take into account the high-density limit and find plane wave solutions: such plane waves give rise to contorsional autointeractions for which the Ricci metric curvature vanishes and therefore the energy density is equal to zero identically. Consequences are discussed.

  11. Technology application analyses at five Department of Energy Sites

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    The Hazardous Waste Remedial Actions Program (HAZWRAP), a division of Lockheed Martin Energy Systems, Inc., managing contractor for the Department of Energy (DOE) facilities in Oak Ridge, Tennessee, was tasked by the United States Air Force (USAF) through an Interagency Agreement between DOE and the USAF, to provide five Technology Application Analysis Reports to the USAF. These reports were to provide information about DOE sites that have volatile organic compounds contaminating soil or ground water and how the sites have been remediated. The sites were using either a pump-and-treat technology or an alternative to pump-and-treat. The USAF was looking at the DOE sites for lessons learned that could be applied to Department of Defense (DoD) problems in an effort to communicate throughout the government system. The five reports were part of a larger project undertaken by the USAF to look at over 30 sites. Many of the sites were DoD sites, but some were in the private sector. The five DOE projects selected to be reviewed came from three sites: the Savannah River Site (SRS), the Kansas City Site, and Lawrence Livermore National Laboratory (LLNL). SRS and LLNL provided two projects each. Both provided a standard pump-and-treat application as well as an innovative technology that is an alternative to pump-and-treat. The five reports on these sites have previously been published separately. This volume combines them to give the reader an overview of the whole project.

  12. Design and Control of a Floating Wave-Energy Converter Utilizing a Permanent Magnet Linear Generator

    E-Print Network [OSTI]

    Tom, Nathan Michael

    2013-01-01

    electrical generator technology for wave energy converters,”seen, clean technologies, such as ocean wave energy, presentwave energy point absorber,” Proceedings of the IFAC Conference on Control Methodologies and Technology

  13. Title of Document: LONGITUDINAL SPACE-CHARGE WAVES INDUCED BY ENERGY MODULATIONS

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Document: LONGITUDINAL SPACE-CHARGE WAVES INDUCED BY ENERGY MODULATIONS Brian L. Modulations in energy or density can induce space-charge waves at low energies which could be problematic at higher energies. This thesis is a study of longitudinal space-charge waves induced by energy modulations

  14. Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys Douglas A. Gemme1 are presented for numerical simulations and field experiments using point absorption ocean wave energy and experimental data. Index Terms ­ energy conversion, wave energy harvesting, linear generator, ocean energy

  15. MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    PETERSON SW

    2010-10-08

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1, 2009 for 7 wells in the 200-PO-1 OU and Gable Gap regions (see Figure 3 and Figure 4); and March 22, 2010 and April 19, 2010 for 17 wells in the 200 East, The initial scope of survey work was planned for Wells 299-EI8-1, 699-2-E14, 699-12-18, 699-16-51, 699-42-30, 699-53-55B, 699-54-18D, and 699-84-34B. Well 299-E18-1 could not be entered due to bent casing (prevented removal of the pump), wells 699-12-18 and 699-42-30 could not be safely reached by the logging truck, Well 699-16-51 was decommissioned prior to survey start, Well 699-53-55B did not have its pump pulled, and Wells 699-2-EI4, 699-54-18D, and 699-84-34B are artesian and capped with an igloo structure. Table 1 provides a list of wells that were surveyed and Figure 1 through Figure 5 show the well locations relative to the Hanford Site.

  16. Site Management Guide | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant toPower Wind Awards |SimulationSiteSite

  17. Haynes Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts:Ohio:WebsiteInformationHawthorneNewHayfield,Wave

  18. Potential of Development and Application of Wave Energy Conversion Technology in the Gulf of Mexico 

    E-Print Network [OSTI]

    Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

    2014-01-01

    This paper focuses on the potential and application of developing wave energy technology in the Gulf of Mexico (GOM). The conditions (weather, wave climate, activity of the oil industry, etc.) in the GOM are assessed and the attributes of wave...

  19. The study of waves is clearly an important subject in acoustics because sound energy is transmitted by waves traveling though air. Furthermore, it turns out that the

    E-Print Network [OSTI]

    Robertson, William

    Waves The study of waves is clearly an important subject in acoustics because sound energy energy without any net movement of mass. In other words the energy in the wave moves from point A to point B without moving any material from A to B. After transmission of wave energy the medium is left

  20. Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Jones, Craig

    2014-09-01

    The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

  1. On the tuning of a wave-energy driven oscillating-water-column seawater pump to polychromatic waves

    E-Print Network [OSTI]

    Godoy-Diana, Ramiro

    2007-01-01

    Performance of wave-energy devices of the oscillating water column (OWC) type is greatly enhanced when a resonant condition with the forcing waves is maintained. The natural frequency of such systems can in general be tuned to resonate with a given wave forcing frequency. In this paper we address the tuning of an OWC sea-water pump to polychromatic waves. We report results of wave tank experiments, which were conducted with a scale model of the pump. Also, a numerical solution for the pump equations, which were proven in previous work to successfully describe its behavior when driven by monochromatic waves, is tested with various polychromatic wave spectra. Results of the numerical model forced by the wave trains measured in the wave tank experiments are used to develop a tuning criterion for the sea-water pump.

  2. Study Pelamis system to capture energy of ocean wave

    E-Print Network [OSTI]

    Gobato, Ricardo; Fedrigo, Desire Francine Gobato

    2015-01-01

    Over the years, energy has become vital for humans, enabling us to comfort, leisure, mobility and other factors. The quest for cheap energy sources, renewable and clean has grown in recent years, mainly for the reduction of effects that comes degrading nature, allowing scientists and engineers to search for new technologies. Many energy sources have been researched for proper funding where some stand out for their ease of obtaining, by other low cost and others by being renewable. The main objective of this work is to study one of these energy sources - wave energy, whose capture is still in development. This energy comes from the waves of the sea and is 100% renewable and with minimal environmental impact when compared to hydro, nuclear, coal, thermal, etc. The system studied here is the Pelamis system.

  3. Portsmouth Site Sustainability Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EMS, Energy, Greenhouse Gases, High Performance Buildings, NEPA, Electronics Stewardship, Pollution Prevention, Chemical Management, Sustainability, Transportation, Climate Change...

  4. Hanford Site - 200-BP-5 | Department of Energy

    Office of Environmental Management (EM)

    BP-5 Hanford Site - 200-BP-5 July 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Hanford, WA Responsible...

  5. Hanford Site - 200-UP-1 | Department of Energy

    Office of Environmental Management (EM)

    UP-1 Hanford Site - 200-UP-1 July 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Hanford, WA Responsible...

  6. 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting...

  7. Numerical modeling of extreme rogue waves generated by directional energy focusing

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Numerical modeling of extreme rogue waves generated by directional energy focusing Christophe that contributes to the generation of extreme waves, also known as rogue waves, in the ocean. To simulate and analyze this phenomenon, we generate extreme waves in a 3D numerical wave tank (NWT), by specifying

  8. OTRC Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato,Nyack, - Mining andChapterOTRC Wave

  9. Clean Wave Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:New York:ClayBurnVita Jump to:Protection Tool forWave

  10. Portsmouth Site Sustainability Team | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartment of Energy Portsmouth

  11. Consent-Based Siting | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics »Application for Refund Application2017Center »Siting » Consent-Based

  12. TIDAL ENERGY SITE RESOURCE ASSESSMENT: TECHNICAL SPECIFICATIONS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Marine Renewable Energy Center, University of Washington, Seattle, WA 3 Civil and Environmental Engineering, Georgia Institute of Technology, USA 98195-2600, USA...

  13. INL Site Executable Plan for Energy and Transportation Fuels Management

    SciTech Connect (OSTI)

    Ernest L. Fossum

    2008-11-01

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  14. Liu UCD Phy9B 07 22 15-5. Energy in Wave Motion

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Liu UCD Phy9B 07 22 15-5. Energy in Wave Motion x txy FtxFy -= ),( ),( t txy x txy FtxvtxFtxP yy -== ),(),( ),(),(),( For any wave on a string, instantaneous rate of energy transfer 1 dimensional: wave on a string #12;Liu UCD Phy9B 07 23 Energy Transferred by Sinusoidal Wave )cos(),( tkxAtxy -= For a sinusoidal wave )(sin

  15. Shell-instability generated waves by low energy electrons on converging magnetic field lines

    E-Print Network [OSTI]

    California at Berkeley, University of

    Shell-instability generated waves by low energy electrons on converging magnetic field lines D that the shell-instability can generate electrostatic and electromagnetic wave modes: whistler waves, electron´cre´au (2006), Shell-instability generated waves by low energy electrons on converging magnetic field lines

  16. Siting handbook for small wind energy conversion systems

    SciTech Connect (OSTI)

    Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

    1980-03-01

    This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

  17. Physics 5B Winter 2009 Rate of Energy Transfer by Sinusoidal Waves on a String

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    , Vibrations and Waves (W.W. Norton and Company, New York, 1971). First, we compute the kinetic energyPhysics 5B Winter 2009 Rate of Energy Transfer by Sinusoidal Waves on a String Consider the kinetic energy and the potential energy of this string segment due to the passage of a traveling wave

  18. A Full-Wave Rectifier for Interfacing with Multi-Phase Piezoelectric Energy Harvesters*

    E-Print Network [OSTI]

    Hurst, Paul J.

    : TECHNOLOGY TRENDS: Energy Sources and Energy Harvesting Abstract A full-wave rectifier has been fabricatedA Full-Wave Rectifier for Interfacing with Multi-Phase Piezoelectric Energy Harvesters* N. J, AND HURST 1 A Full-Wave Rectifier for Interfacing with Multi-Phase Piezoelectric Energy Harvesters* N. J

  19. Physics 5B Winter 2009 Rate of Energy Transfer by Sinusoidal Waves on a String

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Physics 5B Winter 2009 Rate of Energy Transfer by Sinusoidal Waves on a String Consider the kinetic energy and the potential energy of this string segment due to the passage of a traveling wave, Vibrations and Waves (W.W. Norton and Company, New York, 1971). First, we compute the kinetic energy

  20. Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System

    E-Print Network [OSTI]

    Wood, Stephen L.

    Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System Mark, alternative energy system to convert the circular motion of ocean waves as they propagate through the sea and feasible alternative, renewable, electrical energy producing subsea system. Index Terms--ocean energy, wave

  1. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect (OSTI)

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  2. Energy conserving site design case study: Shenandoah, Georgia. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The case study examines the means by which energy conservation can be achieved at an aggregate community level by using proper planning and analytical techniques for a new town, Shenandoah, Georgia, located twenty-five miles southwest of Atlanta's Hartsfield International Airport. A potentially implementable energy conservation community plan is achieved by a study team examining the land use options, siting characteristics of each building type, alternate infrastructure plans, possible decentralized energy options, and central utility schemes to determine how community energy conservation can be achieved by use of pre-construction planning. The concept for the development of mixed land uses as a passively sited, energy conserving community is based on a plan (Level 1 Plan) that uses the natural site characteristics, maximizes on passive energy siting requirement, and allows flexibility for the changing needs of the developers. The Level 2 Plan is identical with Level 1 plan plus a series of decentraized systems that have been added to the residential units: the single-family detached, the apartments, and the townhouses. Level 3 Plan is similar to the Level 1 Plan except that higher density dwellings have been moved to areas adjacent to central site. The total energy savings for each plan relative to the conventional plan are indicated. (MCW)

  3. Wind Project Siting Tools | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPower IncHomesWind EnergyWindWind

  4. Electric Transmission Siting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,NewInformation at SantaTransmission Siting Jump

  5. Department of Energy's Tribal Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet HanfordDOEDanielDe novoEmergencyHanford Site Wide Programs

  6. Site Characterization Awards | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant toPower Wind Awards |SimulationSite

  7. Site Transition Guidance | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant toPower Wind AwardsDepartment ofDepartmentSite

  8. Site Specific Records Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideo »ServicesShale Gas R&D ShaleSignSite

  9. ON THE GENERATION OF FLUX-TUBE WAVES IN STELLAR CONVECTION ZONES. IV. LONGITUDINAL WAVE ENERGY SPECTRA AND FLUXES FOR STARS WITH

    E-Print Network [OSTI]

    Ulmschneider, Peter

    ON THE GENERATION OF FLUX-TUBE WAVES IN STELLAR CONVECTION ZONES. IV. LONGITUDINAL WAVE ENERGY are important only for cool stars with Teff generated wave energy decreases. The maximum wave energy flux generated in Population II stars is 7 Â 108 ergs cmÀ2 sÀ1, and it is practically

  10. On-Site Generation Simulation with EnergyPlus for Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

    2006-01-01

    L ABORATORY On-Site Generation Simulation with EnergyPlusemployer. On-Site Generation Simulation with EnergyPlus forin modeling distributed generation (DG), including DG with

  11. Transmission Siting and Permitting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyon Geothermal ProjectTransmark

  12. Nevada National Security Site | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartmentNaturalEnergy| Department ofSummaryNevada

  13. Manta Wings: Wave Energy Testing Floats to Puget Sound

    Broader source: Energy.gov [DOE]

    Columbia Power Technologies plans to test an intermediate-scale version of its wave energy converter device in Puget Sound later this year. The device, which is called Manta because its movements are similar to those of a manta stingray, sits like an iceberg on the water.

  14. Sandia Energy - Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    siting and device deployment. Sandia develops and compiles resource assessments for potential and existing wave energy converter test and deployment sites. We utilize consistent,...

  15. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    SciTech Connect (OSTI)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  16. An alternative method for calculating the energy of gravitational waves

    E-Print Network [OSTI]

    Miroslav Sukenik; Jozef Sima

    1999-09-21

    In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.

  17. Wind Waves and Sun | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPower IncHomesWindWind

  18. Quantification of the influence of directional sea state parameters over the performances of wave energy converters 

    E-Print Network [OSTI]

    Pascal, Remy Claude Rene

    2012-11-29

    Accurate predictions of the annual energy yield from wave energy converters are essential to the development of the wave industry. The current method based on power matrices uses only a small part of the data available ...

  19. Energy-momentum relation for solitary waves of nonlinear Dirac equations

    E-Print Network [OSTI]

    T. V. Dudnikova

    2014-04-28

    Solitary waves of nonlinear Dirac, Maxwell-Dirac and Klein-Gordon-Dirac equations are considered. We prove that the energy-momentum relation for solitary waves coincides with the Einstein energy-momentum relation for point particles.

  20. Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion Ralf Starzmann Fluid of harnessing the energy from ocean waves is the oscillating water column (OWC) device. The OWC converts

  1. Portsmouth Site Public Tour | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergy OnPeter||NEPA/3095 4:00PM to 6:00PM

  2. Energy Department's Portsmouth Site Recognized for Environmentally

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar PowerTribes to Develop Energy Resources

  3. EM Active Sites (large) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA, CO,DepartmentDepartment ofResourceDraft DOE

  4. 2015 Site Sustainability Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 of 8 2 of 8of Energy More than

  5. Agenda: INFRASTRUCTURE SITING | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord4manufacturing.energy.gov 3A

  6. Completed Sites Listing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22,FresnoSky Energy of OhioSynopsesseriesAs

  7. Hinsdale Wave Basin 1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: Energy Resources Jump to:Hilltop,Hinsdale County,1

  8. Hinsdale Wave Basin 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: Energy Resources Jump to:Hilltop,Hinsdale County,12

  9. Maximum gravitational-wave energy emissible in magnetar flares

    E-Print Network [OSTI]

    Alessandra Corsi; Benjamin J. Owen

    2011-02-16

    Recent searches of gravitational-wave (GW) data raise the question of what maximum GW energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (\\sim 10^{49} erg) predicted so far come from a model [K. Ioka, Mon. Not. Roy. Astron. Soc. 327, 639 (2001)] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10^{48}-10^{49} erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  10. Test Site Sweden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »TanklessResearchEnergy Test Methods StandingTestTest

  11. Legacy Management FUSRAP Sites | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTION REPORTLand andDr.Legacy Management FUSRAP

  12. Considered Sites Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOofforCompanyResults,Conserving Water,

  13. Active Sites Additional Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: DemonstrationProgramAcquisitionfor the OfficeActive

  14. Articles about Wind Siting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due DateOpportunity |MarketWind Program

  15. Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study

    E-Print Network [OSTI]

    Georgiou, Georgios

    that remains to be covered before wave energy science and technology reach the maturity level of its windData bank Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year Article history: Received 30 July 2013 Accepted 25 March 2014 Available online Keywords: Wave energy

  16. Wave Energy Machine Louise Butler, Bilal Demir, Caleb Lee, Joe Meiners, Christian Rodin

    E-Print Network [OSTI]

    van den Berg, Jur

    . Introduction Design Kinematic Model Testing Current wave energy technology harvests the vertical motion Efficiency: 33% - 48% · Efficiency of existing wave energy technology: approximately 60% Data sheetWave Energy Machine Louise Butler, Bilal Demir, Caleb Lee, Joe Meiners, Christian Rodin Advisor: Dr

  17. Loops of Energy Bands for Bloch Waves in Optical Lattices By Matt Coles and Dmitry Pelinovsky

    E-Print Network [OSTI]

    Pelinovsky, Dmitry

    Loops of Energy Bands for Bloch Waves in Optical Lattices By Matt Coles and Dmitry Pelinovsky We in this context. These bifurcations generate loops in the energy bands of the Bloch waves near the ends is the possibility of loops in the energy bands associated with the nonlinear Bloch waves. This possibility was first

  18. Surface current effects on the fetch-limited growth of wave energy Brian K. Haus1

    E-Print Network [OSTI]

    Miami, University of

    Surface current effects on the fetch-limited growth of wave energy Brian K. Haus1 Received 5 the fetch-limited growth of wind wave energy over a region with significant lateral shear of the current. Both the near-surface currents and wave energy and period were mapped over the highly sheared inshore

  19. Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish

    E-Print Network [OSTI]

    Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish Princeton Plasma Physics of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma extractable energy by waves so diffusing the plasma is a quantity of fundamental interest; it can be defined

  20. Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves

    E-Print Network [OSTI]

    Fringer, Oliver B.

    Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves S waves. Our results show that the contributions to the total energy flux from these additional terms as well as non- linearity. The partitioning of the incident internal wave energy over the course

  1. Cyclogenesis Simulation of Typhoon Prapiroon (2000) Associated with Rossby Wave Energy Dispersion*

    E-Print Network [OSTI]

    Li, Tim

    2000-01-01

    Cyclogenesis Simulation of Typhoon Prapiroon (2000) Associated with Rossby Wave Energy Dispersion (2000), in the western North Pacific, is simulated to understand the role of Rossby wave energy process is through the conventional barotropic Rossby wave energy dispersion, which enhances the low

  2. Analysis and Development of a Three Body Heaving Wave Energy Scott J. Beatty

    E-Print Network [OSTI]

    Victoria, University of

    Analysis and Development of a Three Body Heaving Wave Energy Converter by Scott J. Beatty BASc Body Heaving Wave Energy Converter by Scott J. Beatty BASc, University of British Columbia, 2003 A relative motion based heaving point absorber wave energy converter is being co- developed by researchers

  3. Tapping wave energy through Longuet-Higgins microseism effect , D. Lajoie2

    E-Print Network [OSTI]

    Boyer, Edmond

    Tapping wave energy through Longuet-Higgins microseism effect B. Molin1 , D. Lajoie2 , N. Jarry2 address the theoretical modeling of wave energy extraction with such a device, in the asymptotic case when´evel proposed that energy could be extracted from the waves with a heaving horizontal plate at the sea bottom

  4. Influence of control strategy on the global efficiency of a Direct Wave Energy Converter with

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Influence of control strategy on the global efficiency of a Direct Wave Energy Converter, France Abstract--The choice of control strategy for Direct Wave Energy Converters (DWEC) is often a simple loss model in order to design a better control strategy. Keywords--Wave energy conversion; Point

  5. Oak Ridge Site | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew2008Group,OAK RIDGE, Tenn.Use |Oak

  6. FORGE Site FOA | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22,673,list7.pdfFORD FORD FORD FORDHow to Get

  7. Paducah Site Historical Timeline | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS - WE NEED A CHANGE OFNovember 2015State

  8. The DOD Siting Clearinghouse | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs, BeforeActivitiesEnergy Tell(EAP)BNLBusinessesof THE AsThe

  9. Information Needs for Energy Mitigation and Siting

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to IndustrialStacks of paper Stacks of

  10. Chapter 3: Building Siting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk to 13.1 -Chapter 3 of the LANl

  11. 2016 Site Sustainability Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 of 8 2 of 8of| Department offor

  12. All Other Sites | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONYDepartmentand StaffAliciaManufacturing92)other

  13. Siting Methodologies for Hydrokinetics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant toPower WindDepartment of Energy

  14. Covered Sites/Populations | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June2012 |DepartmentRemarks Prepared034Worker

  15. Direct Drive Wave Energy Buoy – 33rd scale experiment

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

  16. Langlee Wave Power AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy Resources JumpColorado:New

  17. Site Sustainability Plan (SSP) 2010 | Department of Energy

    Energy Savers [EERE]

    Site Sustainability Plan (SSP) 2010 Site Sustainability Plan (SSP) 2010 Site Sustainability Plan (SSP) 2010 2010 More Documents & Publications 2015 Site Sustainability Plan Site...

  18. Wave equations for determining energy-level gaps of quantum systems

    E-Print Network [OSTI]

    Zeqian Chen

    2006-09-10

    An differential equation for wave functions is proposed, which is equivalent to Schr\\"{o}dinger's wave equation and can be used to determine energy-level gaps of quantum systems. Contrary to Schr\\"{o}dinger's wave equation, this equation is on `bipartite' wave functions. It is shown that those `bipartite' wave functions satisfy all the basic properties of Schr\\"{o}dinger's wave functions. Further, it is argued that `bipartite' wave functions can present a mathematical expression of wave-particle duality. This provides an alternative approach to the mathematical formalism of quantum mechanics.

  19. Wave Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensourceCentre Jump to: navigation, searchWind LLC

  20. C Wave Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEAT Jump to: navigation, searchLtd

  1. SeWave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbonOpenSchulthess Group JumpScreening Tools

  2. Wave Power Plant Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:Energy InformationWausau High SchoolInc Jump

  3. WaveCatcher Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:Energy InformationWausau High

  4. Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet

    E-Print Network [OSTI]

    Farrell, Brian F.

    Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II structures that dominate wave momentum and energy transport. When the interior of a typical midlatitude jet and energy at jet interior critical levels. Longer waves transport momentum and energy away from the jet

  5. Horizontal displacements contribution to tsunami wave energy balance

    E-Print Network [OSTI]

    Dutykh, Denys; Chubarov, Leonid; Shokin, Yuriy

    2010-01-01

    The main reason for the generation of tsunamis is the deformation of the bottom of the ocean caused by an underwater earthquake. Usually, only the vertical bottom motion is taken into accound while the horizontal displacements are neglected. In the present paper we study both the vertical and the horizontal bottom motion while we propose a novel methodology for reconstructing the bottom coseismic displacements field which is transmitted to the free surface using a new three-dimensional Weakly Nonlinear (WN) approach. We pay a special attention to the evolution of kinetic and potential energies of the resulting wave while the contribution of horizontal displacements into wave energy balance is also quantified. Approaches proposed in this study are illustrated on the July 17, 2006 Java tsunami.

  6. Abstract--Wave energy will have a key role in meeting re-newable energy targets en route to a low carbon economy. How-

    E-Print Network [OSTI]

    Harrison, Gareth

    1 Abstract--Wave energy will have a key role in meeting re- newable energy targets en route will impact on wave energy conversion. Where the resource is restricted there may be reductions in energy the sensitivity of wave energy production and econom- ics to changes in climate. Index Terms--Wave energy

  7. Paducah Site Interns Learn About EM Opportunities | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes havePUBLIC ADMINISTRATIONPaducah Site Interns

  8. Portsmouth DOE & Site Contractors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnershipSite Background » Portsmouth DOE &

  9. Portsmouth Site Specific Advisory Board | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnershipSite BackgroundMarch Portsmouth

  10. Cosmology with space-based gravitational-wave detectors --- dark energy and primordial gravitational waves ---

    E-Print Network [OSTI]

    Atsushi Nishizawa; Kent Yagi; Atsushi Taruya; Takahiro Tanaka

    2012-02-24

    Proposed space-based gravitational-wave (GW) detectors such as DECIGO and BBO will detect ~10^6 neutron-star (NS) binaries and determine the luminosity distances to the binaries with high precision. Combining the luminosity distances with cosmologically-induced phase corrections on the GWs, cosmological expansion out to high redshift can be measured without the redshift determinations of host galaxies by electromagnetic observation and be a unique probe for dark energy. On the other hand, such a NS-binary foreground should be subtracted to detect primordial GWs produced during inflation. Thus, the constraining power on dark energy and the detectability of the primordial gravitational waves strongly depend on the detector sensitivity and are in close relation with one another. In this paper, we investigate the constraints on the equation of state of dark energy with future space-based GW detectors with/without identifying the redshifts of host galaxies. We also study the sensitivity to the primordial GWs, properly dealing with the residual of the NS binary foreground. Based on the results, we discuss the detector sensitivity required to achieve the forementioned targeted study of cosmology.

  11. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  12. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  13. On the energy transported by exact plane gravitational-wave solutions

    E-Print Network [OSTI]

    Yuri N. Obukhov; J. G. Pereira; Guillermo F. Rubilar

    2009-09-24

    The energy and momentum transported by exact plane gravitational-wave solutions of Einstein equations are computed using the teleparallel equivalent formulation of Einstein's theory. It is shown that these waves transport neither energy nor momentum. A comparison with the usual linear plane gravitational-waves solution of the linearized Einstein equation is presented.

  14. Equal energy phase space trajectories in resonant wave interactions O. Yaakobia

    E-Print Network [OSTI]

    Friedland, Lazar

    Equal energy phase space trajectories in resonant wave interactions O. Yaakobia and L. Friedlandb interacting wave systems with nonlinear frequency/ wave vector shifts is discussed. The corresponding these parameters vary in time or space. It is shown that the oscillation periods of two equal energy trajectories

  15. Energy deposition by Alfven waves into the dayside auroral oval: Cluster and FAST observations

    E-Print Network [OSTI]

    Carlson, Charles W.

    Energy deposition by Alfve´n waves into the dayside auroral oval: Cluster and FAST observations C observations from the Cluster and FAST spacecraft showing the deposition of energy into the auroral ionosphere from broadband ULF waves in the cusp and low-latitude boundary layer. A comparison of the wave Poynting

  16. Internal wave energy radiated from a turbulent mixed layer James R. Munroe1, a)

    E-Print Network [OSTI]

    Sutherland, Bruce

    Internal wave energy radiated from a turbulent mixed layer James R. Munroe1, a) and Bruce R of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from

  17. Higher Energy States in the CO Dimer: Millimeter-Wave Spectra and Rovibrational Calculations

    E-Print Network [OSTI]

    Higher Energy States in the CO Dimer: Millimeter-Wave Spectra and Rovibrational Calculations Leonid millimeter-wave data yielded the precise location of 33 new energy levels of A+ symmetry and 20 levels of A extensive millimeter-wave measurements of the 12C16O dimer have been made, and more than 300 new spectral

  18. Documentation of Calculation Methodology, Input data, and Infrastructure for the Home Energy Saver Web Site

    E-Print Network [OSTI]

    2005-01-01

    of DOE-2 in the Home Energy Saver. Berkeley, CA: LawrenceInfrastructure for the Home Energy Saver Web Site MargaretDE- AC03-76SF00098. Home Energy Saver Web Site Documentation

  19. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    Gas-Fired Distributed Energy Resource Characterizations”,and J.L. Edwards, “Distributed Energy Resources CustomerN ATIONAL L ABORATORY Distributed Energy Resources On-Site

  20. Experimental studies of the hydrodynamic characteristics of a sloped wave energy device 

    E-Print Network [OSTI]

    Lin, Chia-Po

    2000-07-19

    Many wave energy convertors are designed to use either vertical (heave) or horizontal (surge) movements of waves. But the frequency response of small heaving buoys and oscillating water column devices shows that they are ...

  1. An evaluation of the potential of coastal wetlands for hurricane surge and wave energy reduction 

    E-Print Network [OSTI]

    Loder, Nicholas Mason

    2009-05-15

    potential, a segmented marsh may offer comparable surge protection to that of a continuous marsh. Wave heights are generally increased within the marsh due to the transmission of wave energy through marsh channels. Results presented in this thesis may assist...

  2. Asymptotic Stability and Completeness in the Energy Space for Nonlinear Schrödinger Equations with Small Solitary Waves

    E-Print Network [OSTI]

    Stephen Gustafson; Kenji Nakanishi; Tai-Peng Tsai

    2003-08-06

    In this paper we study a class of nonlinear Schr\\"odinger equations which admit families of small solitary wave solutions. We consider solutions which are small in the energy space $H^1$, and decompose them into solitary wave and dispersive wave components. The goal is to establish the asymptotic stability of the solitary wave and the asymptotic completeness of the dispersive wave. That is, we show that as $t \\to \\infty$, the solitary wave component converges to a fixed solitary wave, and the dispersive component converges to a solution of the free Schr\\"odinger equation.

  3. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys������� that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

  4. MHK Projects/Oregon Coastal Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf|MyetteNavitasOrcadian Wave

  5. MHK Technologies/WAVE ENERGY CONVERTER | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar <OMIS DTocardo <Cross flowOpenW2WAVE

  6. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  7. Wave Energy Conversion Overview and it's Renewable Energy Potential for the Oil and Gas Industry 

    E-Print Network [OSTI]

    Pastor, J.; Liu, Y.; Dou, Y.

    2014-01-01

    Ocean energy conversion has been of interest for many years. Recent developments such as concern over global warming have renewed interest in the topic. Part II provides an overview of the energy density found in ocean waves and how it is calculated...

  8. University of Iowa Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnited States: Energy ResourcesPark CommunityWindIowa Wave

  9. 5-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | Open Energy Information 55 et64ft Wave Flume

  10. 6-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | Open Energy Information 55ft Wave Flume

  11. MHK Technologies/Ocean Wave Air Piston | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar <OMI Combined Energy SystemTreaderWave Air

  12. Department of Energy Selects Recipients of GNEP Siting Grants | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryof Energy Eleven sites to be analyzed for potential

  13. Semiclassical wave functions and energy spectra in polygon billiards

    E-Print Network [OSTI]

    Stefan Giller

    2014-12-01

    A consistent scheme of semiclassical quantization in polygon billiards by wave function formalism is presented. It is argued that it is in the spirit of the semiclassical wave function formalism to make necessary rationalization of respective quantities accompanied the procedure of the semiclassical quantization in polygon billiards. Unfolding rational polygon billiards (RPB) into corresponding Riemann surfaces (RS) periodic structures of the latter are demonstrated with 2g independent periods on the respective multitori with g as their genuses. However it is the two dimensional real space of the real linear combinations of these periods which is used for quantizing RPB. A class of doubly rational polygon billiards (DRPB) is distinguished for which these real linear relations are rational and their semiclassical quantization by wave function formalism is presented. It is shown that semiclassical quantization of both the classical momenta and the energy spectra are determined completely by periodic structure of the corresponding RS. Each RS is then reduced to elementary polygon patterns (EPP) as its basic periodic elements. Each such EPP can be glued to a torus of genus g. Semiclassical wave functions (SWF) are then constructed on EPP. The SWF for DRPB appear to be exact. They satisfy the Dirichlet, the Neumannn or the mixed boundary conditions. Not every mixing is allowed however and a respective incompleteness of SWF is discussed. Dens families of DRPB are used for approximate semiclassical quantization of RPB. General rational polygons are quantized by approximating them by DRPB. An extension of the formalism to irrational polygons is described as well. The semiclassical approximations constructed in the paper are controlled by general criteria of the eigenvalue theory. A relation between the superscar solutions and SWF constructed in the paper is also discussed.

  14. Oregon Energy Facility Siting Council | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid DataInformation Land Conservation andSiting Council

  15. Stress-wave energy management through material anisotropy Alireza V. Amirkhizi, Aref Tehranian, Sia Nemat-Nasser

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Stress-wave energy management through material anisotropy Alireza V. Amirkhizi, Aref Tehranian, Sia that if this axis initially coincides with the stress-wave vector, then the energy of the plane waves would closely the required anisotropy, and to experimentally demonstrate the management of stress-wave energy in a desired

  16. THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER LAURA O'BRIEN, PAUL CHRISTODOULIDES, EMILIANO RENZI, DENYS DUTYKH,

    E-Print Network [OSTI]

    THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER LAURA O'BRIEN, PAUL CHRISTODOULIDES, EMILIANO waves. The question posed here is whether a nearshore wave energy converter (WEC) could withstand Acknowledgements 10 References 10 1. Introduction Wave energy devices are slowly becoming a reality. Various

  17. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect (OSTI)

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  18. Model-predicted distribution of wind-induced internal wave energy in the world's oceans

    E-Print Network [OSTI]

    Miami, University of

    Model-predicted distribution of wind-induced internal wave energy in the world's oceans Naoki 9 July 2008; published 30 September 2008. [1] The distribution of wind-induced internal wave energy-scaled kinetic energy are all consistent with the available observations in the regions of significant wind

  19. Efficiency analysis of a pneu-mechanical Wave Energy Converter : model of the device losses,

    E-Print Network [OSTI]

    Psaltis, Demetri

    ENAC/ Efficiency analysis of a pneu-mechanical Wave Energy Converter : model of the device losses. Van Herle 1 Mots Clés: Efficiency Analysis, Power Take Off, Renewable Energy, WEC, Wave Energy. 1 have been focused on the efficiency of the different technologies on a test rig and building

  20. Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersion of a Preexisting Typhoon. Part II: Numerical Simulations*

    E-Print Network [OSTI]

    Wang, Bin

    Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersion of a Preexisting Typhoon. Part (1987) and Fiorino and Els- berry (1989) showed that a cyclonic vortex experiences Rossby wave energy) ABSTRACT The cyclogenesis events associated with the tropical cyclone (TC) energy dispersion are simulated

  1. SWASH-BASED WAVE ENERGY REFLECTION ON NATURAL Rafael Almar1

    E-Print Network [OSTI]

    SWASH-BASED WAVE ENERGY REFLECTION ON NATURAL BEACHES Rafael Almar1 , Raimundo Ibaceta2 and the nature of reflected waves is crucial for various aspects of coastal science including energy balance others), have underlined the key role played by swash zone dynamics in controling the phase and energy

  2. Unravelling the influence of water depth and wave energy on the facies diversity of shelf carbonates

    E-Print Network [OSTI]

    Purkis, Sam

    Unravelling the influence of water depth and wave energy on the facies diversity of shelf their production is tied to light and wave energy, carbonate sediments are most effectively produced in shallow energy regime to be reliable indicators of facies type when considered in isolation. Consid- ered

  3. ENERGY EFFICIENT MILLIMETER WAVE RADIO LINK ESTABLISHMENT WITH SMART ARRAY ANTENNAS

    E-Print Network [OSTI]

    Baras, John S.

    1 ENERGY EFFICIENT MILLIMETER WAVE RADIO LINK ESTABLISHMENT WITH SMART ARRAY ANTENNAS Behnam of two millimeter wave transceiver nodes A and B. We assume that each node is equipped with a circular. INTRODUCTION Millimeter wave technology is becoming increasingly important in many military and commercial

  4. Electrostatic electron cyclotron waves generated by low-energy electron beams

    E-Print Network [OSTI]

    Scudder, Jack

    Electrostatic electron cyclotron waves generated by low-energy electron beams J. D. Menietti, O the role of electron beams with E ] 1 keV in the generation of these waves. Observed plasma parameters. D. Scudder, J. S. Pickett, and D. A. Gurnett, Electrostatic electron cyclotron waves generated

  5. Coda wave interferometry and the equilibration of energy in elastic media Roel Snieder

    E-Print Network [OSTI]

    Snieder, Roel

    Coda wave interferometry and the equilibration of energy in elastic media Roel Snieder Department of Geophysics and Center for Wave Phenomena, Colorado School of Mines, Golden, Colorado 80401 Received 14 May 2002; published 21 October 2002 Multiple-scattered waves usually are not useful for creating

  6. One-Way Wave Propagation Through Smoothly Varying Media Controlling the Energy Production at Home

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    One-Way Wave Propagation Through Smoothly Varying Media Controlling the Energy Production at Home, Citadel T100 As part of the application called migration or reflection seismic imaging, we model wave propagation through the earth, governed by the acoustic wave equation. Downward continuation is a technique

  7. Heteroclinic standing waves in defocussing DNLS equations -- Variational approach via energy minimization

    E-Print Network [OSTI]

    Michael Herrmann

    2010-02-08

    We study heteroclinic standing waves (dark solitons) in discrete nonlinear Schr\\"{o}dinger equations with defocussing nonlinearity. Our main result is a quite elementary existence proof for waves with monotone and odd profile, and relies on minimizing an appropriately defined energy functional. We also study the continuum limit and the numerical approximation of standing waves.

  8. Sandia Energy - WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The WEC-Sim project is funded by the U.S. Department of Energy's Wind and Water Power Technologies Office and the code development effort is a collaboration between the...

  9. Annual Site Environmental Reports (ASER) | Department of Energy

    Office of Environmental Management (EM)

    Environment Annual Site Environmental Reports (ASER) Annual Site Environmental Reports (ASER) Annual Site Environmental Reports (ASERs) are required by DOE O 231.1B. The ASERs...

  10. Annual Site Environmental Reports (ASER) | Department of Energy

    Office of Environmental Management (EM)

    Annual Site Environmental Reports (ASER) Annual Site Environmental Reports (ASER) Annual Site Environmental Reports (ASERs) are required by DOE O 231.1B. The ASERs provide...

  11. Gravitational wave energy spectrum of a parabolic encounter

    E-Print Network [OSTI]

    Christopher P. L. Berry; Jonathan R. Gair

    2010-11-18

    We derive an analytic expression for the energy spectrum of gravitational waves from a parabolic Keplerian binary by taking the limit of the Peters and Matthews spectrum for eccentric orbits. This demonstrates that the location of the peak of the energy spectrum depends primarily on the orbital periapse rather than the eccentricity. We compare this weak-field result to strong-field calculations and find it is reasonably accurate (~10%) provided that the azimuthal and radial orbital frequencies do not differ by more than ~10%. For equatorial orbits in the Kerr spacetime, this corresponds to periapse radii of rp > 20M. These results can be used to model radiation bursts from compact objects on highly eccentric orbits about massive black holes in the local Universe, which could be detected by LISA.

  12. Energy Department Selects New Paducah Site Lead | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar Power PlantEnergyLawrence Berkeley,

  13. New localized Superluminal solutions to the wave equations with finite total energies and arbitrary frequencies

    E-Print Network [OSTI]

    Michel Zamboni-Rached; Erasmo Recami; Hugo E. Harnandez-Figueroa

    2002-10-02

    By a generalized bidirectional decomposition method, we obtain many new Superluminal localized solutions to the wave equation (for the electromagnetic case, in particular) which are suitable for arbitrary frequency bands; various of them being endowed with finite total energy. We construct, among the others, an infinite family of generalizations of the so-called "X-shaped" waves. [PACS nos.: 03.50.De; 41.20;Jb; 83.50.Vr; 62.30.+d; 43.60.+d; 91.30.Fn; 04.30.Nk; 42.25.Bs; 46.40.Cd; 52.35.Lv. Keywords: Wave equations; Wave propagation; Localized beams; Superluminal waves; Bidirectional decomposition; Bessel beams; X-shaped waves; Microwaves; Optics; Special relativity; Acoustics; Seismology; Mechanical waves; Elastic waves; Gravitational waves; Elementary particle physics].

  14. Meteorological Observations for Renewable Energy Applications at Site 300

    SciTech Connect (OSTI)

    Wharton, S; Alai, M; Myers, K

    2011-10-26

    In early October 2010, two Laser and Detection Ranging (LIDAR) units (LIDAR-96 and LIDAR-97), a 3 m tall flux tower, and a 3 m tall meteorological tower were installed in the northern section of Site 300 (Figure 1) as a first step in development of a renewable energy testbed facility. This section of the SMS project is aimed at supporting that effort with continuous maintenance of atmospheric monitoring instruments capable of measuring vertical profiles of wind speed and wind direction at heights encountered by future wind power turbines. In addition, fluxes of energy are monitored to estimate atmospheric mixing and its effects on wind flow properties at turbine rotor disk heights. Together, these measurements are critical for providing an accurate wind resource characterization and for validating LLNL atmospheric prediction codes for future renewable energy projects at Site 300. Accurate, high-resolution meteorological measurements of wind flow in the planetary boundary layer (PBL) and surface-atmosphere energy exchange are required for understanding the properties and quality of available wind power at Site 300. Wind speeds at heights found in a typical wind turbine rotor disk ({approx} 40-140 m) are driven by the synergistic impacts of atmospheric stability, orography, and land-surface characteristics on the mean wind flow in the PBL and related turbulence structures. This section of the report details the maintenance and labor required in FY11 to optimize the meteorological instruments and ensure high accuracy of their measurements. A detailed look at the observations from FY11 is also presented. This portion of the project met the following milestones: Milestone 1: successful maintenance and data collection of LIDAR and flux tower instruments; Milestone 2: successful installation of solar power for the LIDAR units; and Milestone 3: successful implementation of remote data transmission for the LIDAR units.

  15. Ocean Wave Energy Company OWECO | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,Energy Information AreaCountyEnergy Company OWECO

  16. Ocean Wave Wind Energy Ltd OWWE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,Energy Information AreaCountyEnergy Company

  17. Energy Department Announces $10 million for Wave Energy Demonstration at

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ,LocalEfficiency |<Technologies | Department of

  18. Agricultural and Forest Meteorology 113 (2002) 223243 Energy balance closure at FLUXNET sites

    E-Print Network [OSTI]

    Goldstein, Allen

    2002-01-01

    Agricultural and Forest Meteorology 113 (2002) 223­243 Energy balance closure at FLUXNET sites Kell Abstract A comprehensive evaluation of energy balance closure is performed across 22 sites and 50 site ecosystems and climates. En- ergy balance closure was evaluated by statistical regression of turbulent energy

  19. Medium-induced jet evolution: wave turbulence and energy loss

    E-Print Network [OSTI]

    Leonard Fister; Edmond Iancu

    2014-09-06

    We study the gluon cascade generated via successive medium-induced branchings by an energetic parton propagating through a dense QCD medium. We focus on the high-energy regime where the energy $E$ of the leading particle is much larger than the characteristic medium scale $\\omega_c=\\hat q L^2/2$, with $\\hat q$ the jet quenching parameter and $L$ the distance travelled through the medium. In this regime the leading particle loses only a small fraction $\\sim\\alpha_s(\\omega_c/E)$ of its energy and can be treated as a steady source of radiation for gluons with energies $\\omega\\le\\omega_c$. For this effective problem with a source, we obtain exact analytic solutions for the gluon spectrum and the energy flux. The solutions exhibit wave turbulence: the basic physical process is a continuing fragmentation which is `quasi-democratic' (i.e. quasi-local in energy) and which provides an energy transfer from the source to the medium at a rate (the energy flux $\\mathcal{F}$) which is quasi-independent of $\\omega$. The locality of the branching process implies a spectrum of the Kolmogorov-Obukhov type, i.e. a power-law spectrum which is a fixed point of the branching process and whose strength is proportional to the energy flux: $D(\\omega)\\sim\\mathcal{F}/\\sqrt\\omega$ for $\\omega\\ll\\omega_c$. Via this turbulent flow, the gluon cascade loses towards the medium an energy $\\Delta E\\sim\\alpha_s^2\\omega_c$, which is independent of the initial energy $E$ of the leading particle and of the details of the thermalization mechanism at the low-energy end of the cascade. This energy is carried away by very soft gluons, which propagate at very large angles with respect to the jet axis. Our predictions for the value of $\\Delta E$ and for its angular distribution appear to agree quite well, qualitatively and even semi-quantitatively, with the phenomenology of di-jet asymmetry in nucleus-nucleus collisions at the LHC.

  20. Track 2: Sustainable Energy I. Renewable Energy: Wind and Wave

    E-Print Network [OSTI]

    of Poseidon's device.!!!! Cal-ePower Vertical-Axis Wind Turbine (VAWT) Produces High Power Densities Summer A: the oncoming air that drives the turbine also impedes the returning blades.!!!! Vertical-Axis Wind Turbine. Scobell, California Energy & Power!! Small wind turbines can provide power for individual home owners

  1. Energy infrastructure of the United States and projected siting needs: Scoping ideas, identifying issues and options. Draft report of the Department of Energy Working Group on Energy Facility Siting to the Secretary

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    A Department of Energy (DOE) Working Group on Energy Facility Siting, chaired by the Policy Office with membership from the major program and staff offices of the Department, reviewed data regarding energy service needs, infrastructure requirements, and constraints to siting. The Working Group found that the expeditious siting of energy facilities has important economic, energy, and environmental implications for key Administration priorities.

  2. Wave Energy Converter Extreme Conditions Modeling Workshop | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensourceCentre Jump to: navigation, search Name:

  3. PVMapper: A Tool for Energy Siting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - .Energy 5PV Validation andPVMapper: A

  4. NREL-Learning About Renewable Energy Site | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergyTexas:NGEN Partners LLCI Jump

  5. Idaho On-Site Wastewater Systems Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFB Agro|How toProof ofOn-Site

  6. Arizona Transmission Line Siting Committee | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line Siting Committee Jump to: navigation,

  7. Site Recycles Millions of Pounds of Metal | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant toPower Wind AwardsDepartment of EnergySite

  8. Oak Ridge Site Specific Advisory Board | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t787ORDER NO.ORSSABOUOOakServices »

  9. Voluntary Protection Program On-site Evaluations | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnableVisualization & ControlsforEnergy-On-site

  10. WETGen (Wave Energy Turbine GENerator) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village of Wellington,FL97-11 SEPA Rules Jump to:22WEWETGen

  11. Offshore Wave Energy Ltd OWEL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGE Energy Resources,Electric CooperativeLtd OWEL Jump

  12. SyncWave Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainabilitySynapsense Corporation Jump

  13. Wave Energy Technology New Zealand | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:Energy InformationWausau High School JumpNew

  14. Green Wave Energy Corp GWEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagmaIncentivesEnergy | OpenWind

  15. MHK Technologies/Wave Energy Conversion Activator WECA | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar <OMIS DTocardoInformation Energy

  16. Energy Department Launches Competition to Drive Innovations in Wave Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesy ofDepartment ofDepartment of EnergyCampaign|

  17. Sandia Energy - Sandia, NREL Release Wave Energy Converter Modeling and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompaniesMODE,Simulation Code: WEC-Sim

  18. Stress-wave energy management through material anisotropy Alireza V. Amirkhizi, Aref Tehranian, Sia Nemat-Nasser

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Stress-wave energy management through material anisotropy Alireza V. Amirkhizi, Aref Tehranian, Sia February 2010 Accepted 11 March 2010 Available online 27 March 2010 Stress-wave propagation in solids can that if this axis initially coincides with the stress-wave vector, then the energy of the plane waves would closely

  19. Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites

    SciTech Connect (OSTI)

    Dennis Castonguay

    2012-06-29

    Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

  20. SMOOTH TYPE II BLOW UP SOLUTIONS TO THE FOUR DIMENSIONAL ENERGY CRITICAL WAVE EQUATION

    E-Print Network [OSTI]

    Raphaël, Pierre

    SMOOTH TYPE II BLOW UP SOLUTIONS TO THE FOUR DIMENSIONAL ENERGY CRITICAL WAVE EQUATION MATTHIEU HILLAIRET AND PIERRE RAPHA¨EL Abstract. We exhibit C type II blow up solutions to the focusing energy critical wave equation in dimension N = 4. These solutions admit near blow up time a decomposiiton u(t, x

  1. Ion energy measurements in a Direct Wave-Drive Matthew S. Feldman

    E-Print Network [OSTI]

    Ion energy measurements in a Direct Wave-Drive Thruster Matthew S. Feldman and Edgar Y. Choueiri difference is a DWDT operates continuously to inject wave momentum, whereas PIT discharges its energy Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109, USA An experiment

  2. Version 2.0 Ground state wave function and energy of the lithium atom

    E-Print Network [OSTI]

    Pachucki, Krzysztof

    Version 2.0 Ground state wave function and energy of the lithium atom Mariusz Puchalski Abstract Highly accurate nonrelativistic ground­state wave function and energy of the lithium atom# 6 corrections has been obtained for few low lying states of helium only [2, 3], not for lithium nor

  3. Shock-Wave Attenuation and Energy-Dissipation Potential of Granular Materials

    E-Print Network [OSTI]

    Grujicic, Mica

    Shock-Wave Attenuation and Energy-Dissipation Potential of Granular Materials Mica Grujicic, B this approach, both compression shocks and decompression waves are treated as (stress, specific volume, particle velocity, mass-based internal energy density, temperature, and mass-based entropy density) propagating

  4. Electromagnetic Surface Wave Propagation Applicable to UltraHigh Energy Neutrino

    E-Print Network [OSTI]

    Electromagnetic Surface Wave Propagation Applicable to UltraHigh Energy Neutrino Detection Peter ultrahigh energy cosmic rays (UHECR), which would typically interact very close to the surface. Since of electromagnetic surface waves and their propagation is presented. The charged particle shower is modelled

  5. Local energy decay and Strichartz estimates for the wave equation with time-periodic

    E-Print Network [OSTI]

    Petkov, Vesselin

    Local energy decay and Strichartz estimates for the wave equation with time-periodic perturbations(z) = (U(T, 0) - z)-1 , (x) C 0 (Rn ), where U(t, s) is the propagator related to the wave equation) and T > 0 is the period. Assuming that R(z) has no poles z with |z| 1, we establish a local energy decay

  6. NevadaTestSiteCMP.pdf | Department of Energy

    Energy Savers [EERE]

    NevadaTestSiteCMP.pdf NevadaTestSiteCMP.pdf NevadaTestSiteCMP.pdf More Documents & Publications CMPforLANL.pdf Sample Project Execution Plan Microsoft Word - PEP-EM-4028.doc...

  7. Home Energy Saver Web Site Documentation Version 1.2 Documentation of Calculation Methodology, Input Data,

    E-Print Network [OSTI]

    Methodology, Input Data, and Infrastructure for the Home Energy Saver Web Site Margaret J. Pinckard, Richard E decisions about energy use in their homes. This report describes the underlying methods and data for estimating energy consumption. Using engineering models, the site estimates energy consumption for six major

  8. MHK Projects/Douglas County Wave Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPT Wave ParkDouglas County Wave Energy

  9. Ocean Engineering 34 (2007) 23742384 On the tuning of a wave-energy driven oscillating-water-column

    E-Print Network [OSTI]

    Godoy-Diana, Ramiro

    2007-01-01

    2006; accepted 15 May 2007 Available online 21 May 2007 Abstract Performance of wave-energy devices, 2003). An OWC wave energy device intended for seawater pumping, involving no generation of electricity

  10. Loss of purity by wave packet scattering at low energies

    E-Print Network [OSTI]

    Jia Wang; C. K. Law; M. -C. Chu

    2006-01-06

    We study the quantum entanglement produced by a head-on collision between two gaussian wave packets in three-dimensional space. By deriving the two-particle wave function modified by s-wave scattering amplitudes, we obtain an approximate analytic expression of the purity of an individual particle. The loss of purity provides an indicator of the degree of entanglement. In the case the wave packets are narrow in momentum space, we show that the loss of purity is solely controlled by the ratio of the scattering cross section to the transverse area of the wave packets.

  11. Measurement and Interpretation of Interaction of MeV Energy Protons with Lower Hybrid Waves in JET Plasmas

    E-Print Network [OSTI]

    Measurement and Interpretation of Interaction of MeV Energy Protons with Lower Hybrid Waves in JET Plasmas

  12. The unexpected role of D waves in low-energy neutral pion photoproduction

    E-Print Network [OSTI]

    C. Fernandez-Ramirez

    2009-12-21

    It has been commonly assumed that low-energy neutral pion photoproduction from the proton can be described accounting only for S and P waves, and that higher partial waves are irrelevant. We have found that this assumption is not correct and that the inclusion of D waves is necessary to obtain a reliable extraction of the $E_{0+}$ multipole from experimental data. This is due in large measure to the spontaneous breaking of chiral symmetry in QCD which leads to very small S-wave contributions. This makes the usual partial wave expansion less accurate and although D waves are small, their contribution is enhanced through the interference with P waves, which compromises the S-wave extraction from data if D waves are not taken into account. In our work we have used Heavy Baryon Chiral Perturbation Theory to one loop, and up to ${\\cal O}(q^4)$, to account for the S and P waves, while D waves are added in an almost model-independent way using standard Born terms and vector mesons. We also show that higher partial waves do not play an important role.

  13. Third-order Coulomb corrections to the S-wave Green function, energy levels and wave functions at the origin

    E-Print Network [OSTI]

    M. Beneke; Y. Kiyo; K. Schuller

    2007-05-30

    We obtain analytic expressions for the third-order corrections due to the strong interaction Coulomb potential to the S-wave Green function, energy levels and wave functions at the origin for arbitrary principal quantum number n. Together with the known non-Coulomb correction this results in the complete spectrum of S-states up to order alpha_s^5. The numerical impact of these corrections on the Upsilon spectrum and the top quark pair production cross section near threshold is estimated.

  14. Introduction Counterpropagating interactions Numerical methods Co-propagating interactions A result on energy transfer Solitary water wave interactions

    E-Print Network [OSTI]

    Craig, Walter

    on energy transfer Solitary water wave interactions Walter Craig Department of Mathematics & Statistics (energy loss) and S (amplitude change). Walter Craig McMaster University Solitary wave interactions #12 (energy loss) and S (amplitude change). Walter Craig McMaster University Solitary wave interactions #12

  15. Energy Transport by Nonlinear Internal Waves College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Energy Transport by Nonlinear Internal Waves J. N. MOUM College of Oceanic and Atmospheric Sciences in the bottom bound- ary layer. In the nonlinear internal waves that were observed, the kinetic energy. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear

  16. Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersion of a Preexisting Typhoon. Part I: Satellite Data Analyses*

    E-Print Network [OSTI]

    Li, Tim

    Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersion of a Preexisting Typhoon. Part with the Rossby wave energy dispersion of a preexisting TC. The wave trains are oriented in a northwest induced by tropical cyclone (TC) energy dispersion are revealed based on the Quick Scatterometer (Quik

  17. Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy Annette R. Grilli

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy.g., latching) of the SSLG, in order to further improve power generation. KEYWORDS : Wave energy systems networks), based on captur- ing renewable wave energy. To do so, we design and optimize a new type

  18. Abstract This article will begin by presenting two power take-off (PTO) technologies for the SEAREV wave energy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for the SEAREV wave energy converter (WEC) followed by the design methodology applied to electromagnetic with the SEAREV WEC before discussing the two conversion technologies intended to transform wave energy, including one featuring power leveling. Index Terms ­ wave energy conversion - electromagnetic generator

  19. Design Methodology for a SEAREV Wave Energy Marie Ruellan, Hamid BenAhmed, Bernard Multon, Christophe Josset, Aurelien Babarit,

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Design Methodology for a SEAREV Wave Energy Converter Marie Ruellan, Hamid BenAhmed, Bernard by presenting two power take-off (PTO) technologies for the SEAREV wave energy converter (WEC) followed technologies in- tended to transform wave energy into electricity. The types of systems are twofold

  20. A review of hydrodynamic investigations into arrays of ocean wave energy converters

    E-Print Network [OSTI]

    De Chowdhury, S; Sanchez, A Madrigal; Fleming, A; Winship, B; Illesinghe, S; Toffoli, A; Babanin, A; Penesis, I; Manasseh, R

    2015-01-01

    Theoretical, numerical and experimental studies on arrays of ocean wave energy converter are reviewed. The importance of extracting wave power via an array as opposed to individual wave-power machines has long been established. There is ongoing interest in implementing key technologies at commercial scale owing to the recent acceleration in demand for renewable energy. To date, several reviews have been published on the science and technology of harnessing ocean-wave power. However, there have been few reviews of the extensive literature on ocean wave-power arrays. Research into the hydrodynamic modelling of ocean wave-power arrays is analysed. Where ever possible, comparisons are drawn with physical scaled experiments. Some critical knowledge gaps have been found. Specific emphasis has been paid on understanding how the modelling and scaled experiments are likely to be complementary to each other.

  1. Resonant energy conversion of 3-minute intensity oscillations into Alfven waves in the solar atmosphere

    E-Print Network [OSTI]

    D. Kuridze; T. V. Zaqarashvili

    2007-03-19

    Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.

  2. Energy propagation by transverse waves in multiple flux tube systems using filling factors

    SciTech Connect (OSTI)

    Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.; Verth, G. E-mail: stief.gijsen@wis.kuleuven.be E-mail: g.verth@sheffield.ac.uk

    2014-11-01

    In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated by kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.

  3. Placing power linres : GIS helps site energy corridors.

    SciTech Connect (OSTI)

    Kuiper, J. A.; Cantwell, B.; Hlohowskyj, I.; Moore, H. R.

    2011-08-01

    Turn the lights on when you enter a room, then turn the lights off when you leave. Most of us repeat this sequence many times each day, and never give it another thought. But that seemingly simple light switch on the wall connects us to one of the most complex systems in the world: the electrical grid. Most of the United States is served by a highly reliable and adequate supply of electrical power, which is distributed through a grid of thousands of miles of electricity-transmission lines. However, as the electricity-supply infrastructure ages and consumer demand for electricity grows, the capacity to deliver electrical power hasn't kept pace with demand, and upgrading the electrical-transmission grid has become a more pressing need. From 1988-1998, demand for transmission grew by 30 percent while transmission grew by only 15 percent. From 1999-2009, demand grew by 20 percent and transmission by only 3 percent Despite a short-term decline related to the economic downturn and improved efficiency, U.S. energy consumption is expected to increase by 14 percent between 2008 and 2035. This growth will drive the need to develop viable routes for new transmission lines. Because transmission lines extend over large distances, they typically cross many federal, tribal, state, local and private land jurisdictions, each with a complex and varying set of siting issues and land-management practices. And as the existing grid needs improvement to meet growing demand, the U.S. is rapidly developing renewable energy sources, particularly solar and wind energy, often in areas far removed from existing electricity-transmission infrastructure and energy-consumption areas.

  4. Investigation of Nonequilibrium Internal Energy Excitation in Shock Waves by means of a Spectral-Lagrangian

    E-Print Network [OSTI]

    Investigation of Nonequilibrium Internal Energy Excitation in Shock Waves by means of a Spectral energy) to a multi energy level gas. The numerical method is based on the weak form of the collision to account for both elastic and inelastic collisions, the latter being responsible for internal energy

  5. 15.1 Preliminaries: Wave Motion and Light 15.2 Experimental Basis of Energy Quantization

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    #12;15.1 Preliminaries: Wave Motion and Light #12;#12;#12;15.2 Experimental Basis of Energy the radical concept of energy quantization to explain two of these results. #12;Blackbody Radiation · Every object emits energy through thermal radiation from its surface. · This energy is carried

  6. Data Center Energy Efficiency and Renewable Energy Site Assessment: Anderson Readiness Center; Salem, Oregon

    SciTech Connect (OSTI)

    Metzger, I.; Van Geet, O.

    2014-06-01

    This report summarizes the results from the data center energy efficiency and renewable energy site assessment conducted for the Oregon Army National Guard in Salem, Oregon. A team led by NREL conducted the assessment of the Anderson Readiness Center data centers March 18-20, 2014 as part of ongoing efforts to reduce energy use and incorporate renewable energy technologies where feasible. Although the data centers in this facility account for less than 5% of the total square footage, they are estimated to be responsible for 70% of the annual electricity consumption.

  7. Dissipation of Modified Entropic Gravitational Energy Through Gravitational Waves

    E-Print Network [OSTI]

    Clovis Jacinto de Matos

    2011-11-04

    The phenomenological nature of a new gravitational type interaction between two different bodies derived from Verlinde's entropic approach to gravitation in combination with Sorkin's definition of Universe's quantum information content, is investigated. Assuming that the energy stored in this entropic gravitational field is dissipated under the form of gravitational waves and that the Heisenberg principle holds for this system, one calculates a possible value for an absolute minimum time scale in nature $\\tau=15/16 \\frac{\\Lambda^{1/2}\\hbar G}{c^4}\\sim9.27\\times10^{-105}$ seconds, which is much smaller than the Planck time $t_{P}=(\\hbar G/c^5)^{1/2}\\sim 5.38\\times10^{-44}$ seconds. This appears together with an absolute possible maximum value for Newtonian gravitational forces generated by matter $F_g=32/30\\frac{c^7}{\\Lambda \\hbar G^2}\\sim 3.84\\times 10^{165}$ Newtons, which is much higher than the gravitational field between two Planck masses separated by the Planck length $F_{gP}=c^4/G\\sim1.21\\times10^{44}$ Newtons.

  8. February 5, 2013 10:35 9in x 6in Advances in Wave Turbulence b1517-ch02 2nd Reading Fluctuations of the Energy Flux in Wave Turbulence

    E-Print Network [OSTI]

    Falcon, Eric

    Fluctuations of the Energy Flux in Wave Turbulence S. Auma^itre , E. Falcon,§ and S. Fauve SPEC, DSM, CEA.falcon@univ-paris-diderot.fr The key governing parameter of wave turbulence is the energy flux that drives the waves and cascades of energy among different scales through the weak interaction between waves. It was understood first

  9. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    SciTech Connect (OSTI)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G. E-mail: Charles.Smith@unh.edu E-mail: Bernie.Vasquez@unh.edu E-mail: Neil.Murphy@jpl.nasa.gov

    2014-06-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  10. Siting Your Solar Water Heating System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Your Solar Water Heating System Siting Your Solar Water Heating System December 14, 2014 - 2:46pm Addthis Before you buy and install a solar water heating system, you need...

  11. Department of Energy Announces Two Year Pay Freeze on Site and...

    Broader source: Energy.gov (indexed) [DOE]

    federal workers, U.S. Energy Secretary Steven Chu today announced a decision to stop salary and bonus pool increases for site and facility management contractor employees, who...

  12. Waves

    E-Print Network [OSTI]

    LaCure, Mari Mae

    2010-04-29

    the surface of my drawings with a subtle vibration of energy. I work on thin paper that records and responds to my drawn marks by bending, stretching, and crinkling. The long fibers of the Mulberry paper bend with a strength and flexibility like... the fibers of the paper to swell and buckle. I use watercolor to hand print woodblocks, which has a similar effect on the paper with the added pressure of the printed impression. Particles of Mica illuminate the surface of the paper by reflecting light...

  13. V-Site Assembly Building and Gun Site | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | Department ofVPV-Site Assembly Building and Gun Site The V-Site

  14. Optimisation and comparison of integrated models of direct-drive linear machines for wave energy conversion 

    E-Print Network [OSTI]

    Crozier, Richard Carson

    2014-06-30

    Combined electrical and structural models of five types of permanent magnet linear electrical machines suitable for direct-drive power take-off on wave energy applications are presented. Electromagnetic models were ...

  15. Request for Information Regarding a Proposed Funding Opportunity for Administration of the Wave Energy Converter Prize

    Broader source: Energy.gov [DOE]

    This announcement is intended to serve as a Notice of Intent of the upcoming Funding Opportunity Announcement (FOA) regarding Administration of the Wave Energy Converter (WEC) Prize and Request for Information to solicit information regarding pote

  16. Request for Information Regarding a Proposed Funding Opportunity for Administration of the Wave Energy Converter Prize

    Broader source: Energy.gov [DOE]

    This announcement is intended to serve as a Notice of Intent of the upcoming Funding Opportunity Announcement (FOA) regarding Administration of the Wave Energy Converter (WEC) Prize and Request for Information.

  17. Effect of a nonlinear power take off on a wave energy converter 

    E-Print Network [OSTI]

    Bailey, Helen Louise

    2011-11-22

    This thesis is titled The influence of a nonlinear Power Take Off on a Wave Energy Converter. It looks at the effect that having a nonlinear Power Take Off (PTO) has on an inertial referenced, slack moored, point absorber, ...

  18. Novel millimeter wave sensor concepts for energy, environment, and national security

    E-Print Network [OSTI]

    Sundaram, S. K.

    Millimeter waves are ideally suited for sensing and diagnosing materials, devices, and processes that are broadly important to energy, environment, and national security. Thermal return reflection (TRR) techniques that ...

  19. Wave Energy Extraction from an Oscillating Water Column in a Truncated Circular Cylinder 

    E-Print Network [OSTI]

    Wang, Hao

    2013-07-19

    Oscillating Water Column (OWC) device is a relatively practical and convenient way that converts wave energy to a utilizable form, which is usually electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure...

  20. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean

    E-Print Network [OSTI]

    Nikurashin, Maxim

    A global estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean is presented. The estimate is based on a linear theory applied to bottom topography at O(1–10) km scales obtained ...

  1. MHK Projects/US Navy Wave Energy Technology WET Program at Marine...

    Open Energy Info (EERE)

    MHK ProjectsUS Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading...

  2. Siting solar energy development to minimize biological impacts

    E-Print Network [OSTI]

    Stoms, DM; Dashiell, SL; Davis, FW

    2013-01-01

    renewable energy development projects on species and habitats in areas designated for energy development [

  3. Energy Momentum Pseudo-Tensor of Relic Gravitational Wave in Expanding Universe

    E-Print Network [OSTI]

    Daiqin Su; Yang Zhang

    2012-04-04

    We study the energy-momentum pseudo-tensor of gravitational wave, and examine the one introduced by Landau-Lifshitz for a general gravitational field and the effective one recently used in literature. In short wavelength limit after Brill-Hartle average, both lead to the same gauge invariant stress tensor of gravitational wave. For relic gravitational waves in the expanding universe, we examine two forms of pressure, $p_{gw}$ and $\\mathcal{P}_{gw}$, and trace the origin of their difference to a coupling between gravitational waves and the background matter. The difference is shown to be negligibly small for most of cosmic expansion stages starting from inflation. We demonstrate that the wave equation is equivalent to the energy conservation equation using the pressure $\\mathcal{P}_{gw}$ that includes the mentioned coupling.

  4. Refraction of electromagnetic energy for wave packets incident on a negative-index medium is always negative

    E-Print Network [OSTI]

    Sridhar, Srinivas

    Refraction of electromagnetic energy for wave packets incident on a negative-index medium is always, including the model of Valanju et al., the energy and mo- mentum of the wave refract negatively. Since February 2004 We analyze refraction of electromagnetic wave packets on passing from an isotropic positive

  5. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect (OSTI)

    Paul T. Jacobson; George Hagerman; George Scott

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration�¢����s (NOAA�¢����s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  6. The Energy Resource Center: On-Site Technical Assistance and Training Programs for Texas School Districts 

    E-Print Network [OSTI]

    Roberts, M.; Sanders, M.

    1988-01-01

    in controlling a major operational expense -- the cost of energy -- through tailoring and implementing services to meet "real world" needs. On-site services available from the ERC range from basic training in analyzing utility bills, tracking energy consumption...

  7. Mapping and Assessment of the United States Ocean Wave Energy...

    Open Energy Info (EERE)

    have recovered by 5 cm when DSPR 30, but only by 1-2 cm when DSPR 10. Source: Smith et al. (2007). ... 2-14 Figure 2-9 Wave height reduction for a 90%...

  8. Complex Energy of Harmonic Oscillator under Non-Hermitian transformation of momentum with real wave function

    E-Print Network [OSTI]

    Biswanath Rath

    2015-05-19

    For the first time in the literature of Quantum Physics, we present complex energy eigenvalues of non-Hermitian Harmonic Oscillator $H=\\frac{(p+iLx)}^{2}}{2} + W^{2} \\frac{x^{2}}{2}$ with real wave function having positive frequency of vibration $(w)$ under some selective choice of $L$ and $W$ .Interestingly for the same values of $L$ and $W$, if the frequency of vibration $w$ in the real wave function is (some how) related as $w=L\\pmW$ or $w=W-L$ then the same oscillator can reflect either pure positive or negative energy eigenvalues.The real energy levels are in conformity with the perturbative calculation. PACS :03.65.Db;11.39.Er. Key words: Positive frequency, real wave function, complex energy, real positive energy,negative energy.

  9. 9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm

    E-Print Network [OSTI]

    Temple, Blake

    9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm login | register |home tv shows schedule to Dark Energy // Current Page 2 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy

  10. Dynamical Energy Analysis - determining wave energy distributions in complex vibro-acoustical structures

    E-Print Network [OSTI]

    Gregor Tanner

    2008-03-12

    We propose a new approach towards determining the distribution of mechanical and acoustic wave energy in complex built-up structures. The technique interpolates between standard Statistical Energy Analysis (SEA) and full ray tracing containing both these methods as limiting case. By writing the flow of ray trajectories in terms of linear phase space operators, it is suggested here to reformulate ray-tracing algorithms in terms of boundary operators containing only short ray segments. SEA can now be identified as a low resolution ray tracing algorithm and typical SEA assumptions can be quantified in terms of the properties of the ray dynamics. The new technique presented here enhances the range of applicability of standard SEA considerably by systematically incorporating dynamical correlations wherever necessary. Some of the inefficiencies inherent in typical ray tracing methods can be avoided using only a limited amount of the geometrical ray information. The new dynamical theory - Dynamical Energy Analysis (DEA) - thus provides a universal approach towards determining wave energy distributions in complex structures.

  11. Siting solar energy development to minimize biological impacts

    E-Print Network [OSTI]

    Stoms, DM; Dashiell, SL; Davis, FW

    2013-01-01

    J. Evaluation of renewable energy potential using a GISiclus2010b2 Renewable Energy Generation Potential on EPA andthe potential for meeting renewable energy objectives

  12. Savannah River Site - GSA Eastern | Department of Energy

    Energy Savers [EERE]

    RCRA, CERCLA, FFA Regulatory Position on Groundwater Use Same as Site? No Comments Four primary subunit sources removed, final actions TBD. Groundwater GPRA EI "Groundwater...

  13. On-Site Renewable Power Purchase Agreements for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility.

  14. Constraining the gravitational wave energy density of the Universe using Earth's ring

    E-Print Network [OSTI]

    Michael Coughlin; Jan Harms

    2014-06-04

    The search for gravitational waves is one of today's major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earth's free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earth's structure. Making use of our detailed understanding of Earth's normal modes, numerical models are employed for the first time to accurately calculate Earth's gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this article, we constrain the energy density of gravitational waves to values in the range 0.035 - 0.15 normalized by the critical energy density of the Universe at frequencies between 0.3mHz and 5mHz, using 10 years of data from the gravimeter network of the Global Geodynamics Project that continuously monitors Earth's oscillations. This work is the first step towards a systematic investigation of the sensitivity of gravimeter networks to gravitational waves. Further advance in gravimeter technology could improve sensitivity of these networks and possibly lead to gravitational-wave detection.

  15. The Black Sea Wave Energy: The Present State and the Twentieth century Changes

    E-Print Network [OSTI]

    Galabov, Vasko

    2015-01-01

    In this paper we present a study of the present state of the Black Sea wave energy. The studies of other authors are based on the use of input data from atmospheric reanalysis or a downscaling of such reanalysis. Instead of reanalysis data, we use input data from the operational limited area numerical weather prediction model ALADIN. We showed that the estimations of the Black Sea wave energy based on reanalyses deviate significantly from the real potential. We showed also that the highest values of the mean annual wave power flux is between 4.5 and 5.0 kW/m2 and the near shore areas with the highest wave energy potential are the southernmost Bulgarian coast and the coast of Turkey north of Istanbul. While we showed that the wind data from the reanalysis are not useful for the estimation of the actual wave energy potential, we claimed that the reanalysis data is useful to study the long term changes of the wave energy of the Black Sea. We used the 10m winds from the recent ERA-20C reanalysis, which covers the...

  16. Identifying two steps in the internal wave energy cascade

    E-Print Network [OSTI]

    Sun, Oliver Ming-Teh

    2010-01-01

    octave along each axis. Right) Energy transfer rate byoctave along each axis. Right) Energy transfer rate by?1 . Figure 3.9 (right) shows the integrated energy transfer

  17. EIS-0426: Site-Wide Environmental Impact Statement for Continued Operation of the Department of Energy / National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada

    Broader source: Energy.gov [DOE]

    This Site-Wide EIS evaluates the potential environmental impacts of proposed alternatives for continued management and operation of the Nevada National Security Site (NNSS) (formerly known as the Nevada Test Site) and other U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)-managed sites in Nevada.

  18. MHK Projects/Perth Wave Energy Project PWEP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos BayOyster 800 Project <Perth Wave Energy

  19. MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar <OMI Combined Energy SystemTreaderWave

  20. Wave Energy Prize Narrowed from 92 Teams to Top 20 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWave Energy Prize Narrowed from 92 Teams to

  1. Universal power law for the energy spectrum of breaking Riemann waves

    E-Print Network [OSTI]

    Dmitry Pelinovsky; Efim Pelinovsky; Elena Kartashova; Tatjana Talipova; Ayrat Giniyatullin

    2013-06-30

    The universal power law for the spectrum of one-dimensional breaking Riemann waves is justified for the simple wave equation. The spectrum of spatial amplitudes at the breaking time $t = t_b$ has an asymptotic decay of $k^{-4/3}$, with corresponding energy spectrum decaying as $k^{-8/3}$. This spectrum is formed by the singularity of the form $(x-x_b)^{1/3}$ in the wave shape at the breaking time. This result remains valid for arbitrary nonlinear wave speed. In addition, we demonstrate numerically that the universal power law is observed for long time in the range of small wave numbers if small dissipation or dispersion is accounted in the viscous Burgers or Korteweg-de Vries equations.

  2. Constraining the gravitational wave energy density of the Universe using Earth's ring

    E-Print Network [OSTI]

    Coughlin, Michael

    2014-01-01

    The search for gravitational waves is one of today's major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earth's free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earth's structure. Making use of our detailed understanding of Earth's normal modes, numerical models are employed for the first time to accurately calculate Earth's gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this article, we constrain the energy density o...

  3. Relations for a periodic array of flap-type wave energy converters

    E-Print Network [OSTI]

    Renzi, Emiliano

    2012-01-01

    This paper investigates the interaction of plane incident waves with a wave farm in the open ocean. The farm consists of a periodic array of large flap-type wave energy converters. A linear inviscid potential-flow model, already developed by the authors for a single flap in a channel, is considered. Asymptotic analysis of the wave field allows to obtain new expressions of the reflection, transmission and radiation coefficients of the system. It is shown that, unlike a line of heaving buoys, an array of flap-type converters is able to exploit resonance of the system transverse modes in order to attain high capture factor levels. Relations between the hydrodynamic coefficients are derived and applied for optimising the power output of the wave farm.

  4. MHK Technologies/GyroWaveGen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar < MHK TechnologiesCat WaveGyroWaveGen <

  5. MHK Technologies/Gyroscopic wave power generation system | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar < MHK TechnologiesCat WaveGyroWaveGen

  6. Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv JumpTechDsc JumpLabVelocity at Wave

  7. US Department of Energy wind turbine candidate site program: the regulatory process

    SciTech Connect (OSTI)

    Greene, M.R.; York, K.R.

    1982-06-01

    Sites selected in 1979 as tentative sites for installation of a demonstration MOD-2 turbine are emphasized. Selection as a candidate site in this program meant that the US Department of Energy (DOE) designated the site as eligible for a DOE-purchased and installed meteorological tower. The regulatory procedures involved in the siting and installation of these meteorological towers at the majority of the candidate sites are examined. An attempt is also made, in a preliminary fashion, to identify the legal and regulatory procedures that would be required to put up a turbine at each of these candidate sites. The information provided on each of these sites comes primarily from utility representatives, supplemented by conversations with state and local officials. The major findings are summarized on the following: federal requirements, state requirements, local requirements, land ownership, wind rights, and public attitudes.

  8. Siting solar energy development to minimize biological impacts

    E-Print Network [OSTI]

    Stoms, DM; Dashiell, SL; Davis, FW

    2013-01-01

    Its application for renewable energy is more recent,D.M. Stoms et al. / Renewable Energy 57 (2013) 289e298 ratedD.M. Stoms et al. / Renewable Energy 57 (2013) 289e298 Fig.

  9. Siting Your Solar Water Heating System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector....

  10. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    SciTech Connect (OSTI)

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  11. Internal wave instability: Wave-wave versus wave-induced mean flow interactions

    E-Print Network [OSTI]

    Sutherland, Bruce

    Internal wave instability: Wave-wave versus wave-induced mean flow interactions B. R. Sutherland fluid, vertically propagating internal gravity waves of moderately large amplitude can become unstable, energy from primary waves is transferred, for example, to waves with half frequency. Self

  12. Non-Hermitian quantum mechanics: Wave packet propagation on autoionizing potential energy surfaces

    E-Print Network [OSTI]

    Moiseyev, Nimrod

    Non-Hermitian quantum mechanics: Wave packet propagation on autoionizing potential energy surfaces Technion, Israel Institute of Technology, Haifa 32000, Israel S. Scheit and L. S. Cederbaum Theoretische. An illustrative numerical example is presented involving three potential energy surfaces. © 2004 American

  13. Numerical Simulations of a Wave Energy Conversion Device Used for Oceanographic Buoys 

    E-Print Network [OSTI]

    Lee, Yongseok

    2014-07-24

    to the buoy system due to vandalism, each being expensive propositions. In order to reduce the costs and utilize green energy, this thesis research investigates the use of incorporating a pendulum wave energy conversion (WEC) device as a permanent or semi...

  14. Energy Levels and Wave Functions of Vector Bosons in Homogeneous Magnetic Field

    E-Print Network [OSTI]

    K. Sogut; A. Havare; I. Acikgoz

    2001-10-24

    We aimed to obtain the energy levels of spin-1 particles moving in a constant magnetic field. The method used here is completely algebraic. In the process to obtain the energy levels the wave function is choosen in terms of Laguerre Polynomials.

  15. Robust energy transfer mechanism via precession resonance in nonlinear turbulent wave systems

    E-Print Network [OSTI]

    Miguel D. Bustamante; Brenda Quinn; Dan Lucas

    2014-04-30

    A robust energy transfer mechanism is found in nonlinear wave systems, which favours transfers towards modes interacting via triads with nonzero frequency mismatch, applicable in meteorology, nonlinear optics and plasma wave turbulence. We introduce the concepts of truly dynamical degrees of freedom and triad precession. Transfer efficiency is maximal when the triads' precession frequencies resonate with the system's nonlinear frequencies, leading to a collective state of synchronised triads with strong turbulent cascades at intermediate nonlinearity. Numerical simulations confirm analytical predictions.

  16. Identifying two steps in the internal wave energy cascade

    E-Print Network [OSTI]

    Sun, Oliver Ming-Teh

    2010-01-01

    M. Gregg. An estimate of tidal energy lost to turbulence atloss of low-mode tidal energy at 28.9. Geophysical ResearchSignificant dissipation of tidal energy in the deep ocean

  17. A DISTENSIBLETUBE WAVE ENERGY CONVERTER WITH A DISTRIBUTED POWERTAKEOFF R.C.T.Rainey, Atkins Ltd., Woodcote Grove, Epsom KT18 5BW, U.K. rod.rainey@atkinsglobal.com

    E-Print Network [OSTI]

    1 A DISTENSIBLETUBE WAVE ENERGY CONVERTER WITH A DISTRIBUTED POWERTAKEOFF R.C.T.Rainey, Atkins A distensibletube Wave Energy Converter (WEC) operates by converting the wave energy into "bulge waves interaction then occurs, and large bulge waves are generated, concentrating the wave energy

  18. VOLUME54, NUMBER9 PHYSICAL REVIEW LETTERS 4 MARCH1985 Conversion of Wave Energy to Magnetic Field Energy in a Plasma Torus

    E-Print Network [OSTI]

    Karney, Charles

    VOLUME54, NUMBER9 PHYSICAL REVIEW LETTERS 4 MARCH1985 Conversion of Wave Energy to Magnetic Field Energy in a Plasma Torus N. J. Fisch and C. F. F. Karney Plasma Physics Laboratory, Princeton University on the Princeton Large Torus (PLT)' have converted wave energy to poloidal field energy with the remarkable

  19. VOLUME54, NUMBER9 PHYSICAL REVIEW LETTERS 4 MARCH1985 Conversion of Wave Energy to Magnetic Field Energy in a Plasma Torus

    E-Print Network [OSTI]

    Karney, Charles

    VOLUME54, NUMBER9 PHYSICAL REVIEW LETTERS 4 MARCH1985 Conversion of Wave Energy to Magnetic Field on the Princeton Large Torus (PLT)' have converted wave energy to poloidal field energy with the remarkable Energy in a Plasma Torus N. J. Fisch and C. F. F. Karney Plasma Physics Laboratory, Princeton University

  20. Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189

    SciTech Connect (OSTI)

    Clayton, Christopher; Kothari, Vijendra; Starr, Ken; Gillespie, Joey; Widdop, Michael; none,

    2012-02-26

    The U.S. Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to address residual radiological contamination at sites where work was performed for the Manhattan Engineer District and U.S. Atomic Energy Commission. Initially, FUSRAP activities began with a records search for sites that had the potential to contain residual radiological contamination; 46 sites were identified that were eligible for and required remediation. Remedial action began in 1979. In 1997, Congress assigned responsibility for the remediation of FUSRAP sites to the U.S. Army Corps of Engineers (USACE). DOE retains responsibility for determining if sites are eligible for FUSRAP remediation and for providing long-term surveillance and maintenance (LTS&M) of remediated FUSRAP sites. DOE LTS&M activities are designed to ensure that FUSRAP sites remain protective of human health and the environment and to preserve knowledge regarding FUSRAP sites. Additional elements include eligibility determinations, transition of remediated sites from USACE to DOE, LTS&M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close coordination with USACE and regulators to ensure there is no loss of protectiveness when sites transition to DOE for LTS&M.

  1. V-Site Assembly Building and Gun Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 TimelineUtility-Scale SolarV-Site Assembly Building

  2. Modulational instability of two pairs of counter-propagating waves and energy exchange in two-component media

    E-Print Network [OSTI]

    Modulational instability of two pairs of counter-propagating waves and energy exchange in two-propagating waves in two-component media is considered within the framework of two generally nonintegrable coupled Sine-Gordon equations. We consider the dynamics of weakly nonlinear wave packets, and using

  3. Energy-Momentum and Angular Momentum Carried by Gravitational Waves in Extended New General Relativity

    E-Print Network [OSTI]

    Eisaku Sakane; Toshiharu Kawai

    2002-09-30

    In an extended, new form of general relativity, which is a teleparallel theory of gravity, we examine the energy-momentum and angular momentum carried by gravitational wave radiated from Newtonian point masses in a weak-field approximation. The resulting wave form is identical to the corresponding wave form in general relativity, which is consistent with previous results in teleparallel theory. The expression for the dynamical energy-momentum density is identical to that for the canonical energy-momentum density in general relativity up to leading order terms on the boundary of a large sphere including the gravitational source, and the loss of dynamical energy-momentum, which is the generator of \\emph{internal} translations, is the same as that of the canonical energy-momentum in general relativity. Under certain asymptotic conditions for a non-dynamical Higgs-type field $\\psi^{k}$, the loss of ``spin'' angular momentum, which is the generator of \\emph{internal} $SL(2,C)$ transformations, is the same as that of angular momentum in general relativity, and the losses of canonical energy-momentum and orbital angular momentum, which constitute the generator of Poincar\\'{e} \\emph{coordinate} transformations, are vanishing. The results indicate that our definitions of the dynamical energy-momentum and angular momentum densities in this extended new general relativity work well for gravitational wave radiations, and the extended new general relativity accounts for the Hulse-Taylor measurement of the pulsar PSR1913+16.

  4. In conventional accelerators, energy from RF electro-magnetic waves in vacuum is transformed into kinetic energy

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    into kinetic energy of particles driven by the electric field. In high-energy- physics colliders, some, they will equip scientists with powerful new capabilities for answering key questions. Those machines will also charges, called a plasma wave or laser wake, supports a strong longitudinal electric field (see figure 1

  5. Sites Pending Transfer to LM | Department of Energy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, South Dakota,You are here Home » Sites » Sites

  6. Site Programs & Cooperative Agreements: Hanford | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant toPower Wind Awards |SimulationSiteSiteHanford

  7. Sites Pending Transfer to LM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideo »ServicesShale Gas R&D ShaleSignSiteSites

  8. High Energy Photons, Neutrinos and Gravitational Waves from Gamma-Ray Bursts

    E-Print Network [OSTI]

    P. Meszaros; S. Kobayashi; S. Razzaque; B. Zhang

    2003-05-06

    Most of the current knowldege about GRB is based on electromagnetic observations at MeV and lower energies. Here we focus on some recent theoretical work on GRB, in particular the higher energy (GeV-TeV) photon emission, and two potentially important non-electromagnetic channels, the TeV and higher energy neutrino signals, and the gravitational wave signals expected from GRB.

  9. The detection of upwardly propagating waves channeling energy from the chromosphere to the low corona

    SciTech Connect (OSTI)

    Freij, N.; Nelson, C. J.; Mumford, S.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Scullion, E. M.; Wedemeyer, S., E-mail: n.freij@sheffield.ac.uk [Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029 Blindern, NO-0315 Oslo (Norway)

    2014-08-10

    There have been ubiquitous observations of wave-like motions in the solar atmosphere for decades. Recent improvements to space- and ground-based observatories have allowed the focus to shift to smaller magnetic structures on the solar surface. In this paper, high-resolution ground-based data taken using the Swedish 1 m Solar Telescope is combined with co-spatial and co-temporal data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) satellite to analyze running penumbral waves (RPWs). RPWs have always been thought to be radial wave propagation that occurs within sunspots. Recent research has suggested that they are in fact upwardly propagating field-aligned waves (UPWs). Here, RPWs within a solar pore are observed for the first time and are interpreted as UPWs due to the lack of a penumbra that is required to support RPWs. These UPWs are also observed co-spatially and co-temporally within several SDO/AIA elemental lines that sample the transition region and low corona. The observed UPWs are traveling at a horizontal velocity of around 17 ± 0.5 km s{sup –1} and a minimum vertical velocity of 42 ± 21 km s{sup –1}. The estimated energy of the waves is around 150 W m{sup –2}, which is on the lower bound required to heat the quiet-Sun corona. This is a new, yet unconsidered source of wave energy within the solar chromosphere and low corona.

  10. On-Site Diesel Generation- How You Can Reduce Your Energy Costs 

    E-Print Network [OSTI]

    Charles, D.

    1996-01-01

    Interruptible power rates, Utility special rate negotiations, and the emergence of a spot electrical power market all can lead to lower industrial energy costs. The installation of low cost on-site diesel powered generation, or the proposed...

  11. Spatial and temporal modulation of internal waves and thermohaline structure

    E-Print Network [OSTI]

    Cole, Sylvia T

    2010-01-01

    timescale, the internal wave energy cascade that concludes2 addresses the internal wave energy cascade and its spatialto as the internal wave energy cascade. Internal waves

  12. File:07HIBRenewableEnergyFacilitySitingProcessREFSP.pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1ORDExplorationInjectionPermit (1).pdfInformation HIBRenewableEnergyFacilitySitingProcessREFSP.pdf Jump

  13. Overview of Ocean Wave and Tidal Energy Lingchuan Mei

    E-Print Network [OSTI]

    Lavaei, Javad

    ) Avoiding the damage that may be caused by other energy tecnology: explosion and lethal radiation of nuclear

  14. Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy

    E-Print Network [OSTI]

    R. W. Robinett; L. C. Bassett

    2004-08-06

    Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90% of the kinetic energy can be localized (at least conceptually) in the `front half' of such Gaussian wave packets, and we visualize these effects.

  15. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    SciTech Connect (OSTI)

    Belles, Randy J.; Omitaomu, Olufemi A.

    2014-09-01

    Geographic information systems (GIS) technology was applied to analyze federal energy demand across the contiguous US. Several federal energy clusters were previously identified, including Hampton Roads, Virginia, which was subsequently studied in detail. This study provides an analysis of three additional diverse federal energy clusters. The analysis shows that there are potential sites in various federal energy clusters that could be evaluated further for placement of an integral pressurized-water reactor (iPWR) to support meeting federal clean energy goals.

  16. DeFrees Small Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa:Minnesota:DaylightingDeFrees Flume 1Small Wave

  17. MHK ISDB/Instruments/ACM-WAVE-PLUS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon:LowellMHK ISDB/Instruments/ACM-WAVE-PLUS < MHK ISDB Jump

  18. MHK Projects/Humboldt County Wave Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHK ProjectsHawaii < MHK Projects JumpWave

  19. Property:Maximum Wave Height(m) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv JumpTechDsc JumpLabVelocity at Wave

  20. Negative energy waves and MHD stability of rotating plasmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNature and Origin ofPriceperNationalenergy waves