Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH)  

E-Print Network [OSTI]

Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH) Alexandra DeVisser, NAVFAC-EXWC Brian June 10, 2013 #12;Wave Energy Test Site (WETS) Objective: Provide location for year-long in WETS? Year-round data collection in a wide range of wave conditions is possible. #12;4 Daily Wave Power

2

Wave Energy Resources Representative Sites Around the Hawaiian Islands  

E-Print Network [OSTI]

Wave Energy Resources for Representative Sites Around the Hawaiian Islands Prepared by: Luis A. Vega Ph.D October 11, 2010 #12;Wave Power Resources off the Hawaiian Islands October 11, 2010 1 Foreword This report provides wave energy resource information required to select coastal segments

3

Open Ocean Aquaculture & Wave Energy Site | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCoMaine:OmOnley,OntarioOpTICOpelen)

4

Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.  

SciTech Connect (OSTI)

This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

Dallman, Ann Renee; Neary, Vincent Sinclair

2014-10-01T23:59:59.000Z

5

The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices  

SciTech Connect (OSTI)

Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

2014-06-30T23:59:59.000Z

6

The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices  

SciTech Connect (OSTI)

Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

2013-09-30T23:59:59.000Z

7

Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement  

Broader source: Energy.gov [DOE]

On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

8

Cycloidal Wave Energy Converter  

SciTech Connect (OSTI)

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

9

Site Energy Reduction Program  

E-Print Network [OSTI]

DuPont’s Sabine River Works site is the largest energy consuming location within DuPont. In the year 2000, each production area was encouraged to reduce energy costs. By 2003 site energy consumption was down 16% on an absolute basis and 12% on a BTU...

Jagen, P. R.

2007-01-01T23:59:59.000Z

10

Site Energy Surveys  

E-Print Network [OSTI]

identified, screening is conducted to develop their economic attractiveness. This presentation reviews factors leading to the need for Site Energy Surveys, the objectives for conducting surveys, the approach utilized, considerations given to values...

Lockett, W., Jr.; Guide, J. J.

1981-01-01T23:59:59.000Z

11

Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter...  

Broader source: Energy.gov (indexed) [DOE]

Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter Atargis Energy (TRL 4 System) - Cycloidal Wave...

12

Performance Assessment of the Wave Dragon Wave Energy Converter  

E-Print Network [OSTI]

Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

Hansen, René Rydhof

13

Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperior Energy5-1 Chapter 5

14

Electrostatic-plasma-wave energy flux  

E-Print Network [OSTI]

would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of

Amendt, P.; Rostoker, N.

1984-01-01T23:59:59.000Z

15

California Small Hydropower and Ocean Wave Energy  

E-Print Network [OSTI]

California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy................................................................. 21 #12;ii List of Tables Table 1 California Small Hydropower And Ocean Wave Energy Resources Table 2

16

Direct Drive Wave Energy Buoy  

SciTech Connect (OSTI)

The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

17

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project...  

Broader source: Energy.gov (indexed) [DOE]

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave...

18

Wave refraction and wave energy on Cayo Arenas  

E-Print Network [OSTI]

WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...

Walsh, Donald Eugene

1962-01-01T23:59:59.000Z

19

Seminario de Matemtica Aplicada "Renowable wave energy  

E-Print Network [OSTI]

Abstract: Among the various renewable energy sources, ocean wave energy has been only recently investigaSeminario de Matemática Aplicada "Renowable wave energy: potencial and technical challenges will be at first to introduce the potential of wave energy, as a significant, and often neglected, contributor

Tradacete, Pedro

20

Wave Energy Resource Analysis for Use in Wave Energy Conversion  

E-Print Network [OSTI]

spectra for that given region from a selected deep-water calibration station. METHODOLOGY FOR ESTIMATING THE AVAILABLE WAVE ENERGY RESOURCE This section will describe the methodology for estimating the naturally available and technically recoverable... resource in a given region. In a recent study done by the EPRI, data was gathered from U.S. coastal waters for a 51- month Wavewatch III hindcast database that was developed specifically for the EPRI by NOAA’s National Centers for Environmental...

Pastor, J.; Liu, Y.; Dou, Y.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

22

Identifying two steps in the internal wave energy cascade  

E-Print Network [OSTI]

1.1.1 The internal wave energy cascade . . . . . . .? ? , which contain only wave energy trav- eling upward anddistinction is made between wave energy propagating upward

Sun, Oliver Ming-Teh

2010-01-01T23:59:59.000Z

23

Energy-conserving site design  

SciTech Connect (OSTI)

Information useful to landscape architects, architects, planners, engineers, students, and homeowners is presented. The concepts and examples needed to create more energy-efficient landscapes are described. The book is organized into five sections, including: an overview and history of energy-efficient design research; detailed information and new strategies on site analysis and planning; energy-efficient landscape design of clustered and single residences; alternative energy-conserving scenarios for the future; and appendices. The appendices contain such technical information as: lists of energy-conserving design options, formulas to calculate solar radiation and soil temperatures, tools for climatic analysis, and techniques for precision planting for solar control and access.

McPherson, E.G. (ed.)

1984-01-01T23:59:59.000Z

24

Washington Energy Facility Site Evalutation Council - Generalized...  

Open Energy Info (EERE)

Washington Energy Facility Site Evalutation Council - Generalized Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Chart: Washington Energy...

25

European Wave and Tidal Energy Conference  

Broader source: Energy.gov [DOE]

The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

26

Wave Energy Resource Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy WhileTankless Electric - v1.0.xlsxMarchPower1See linkWave

27

Cleanup Sites | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief Medical Officerof EnergyCleanup Sites Cleanup

28

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

SciTech Connect (OSTI)

Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

29

Arnold Schwarzenegger DEVELOPING WAVE ENERGY IN  

E-Print Network [OSTI]

-Related Environmental Research Neal Fishman Ocean Program Manager Mike Gravely Office Manager Drew Bohan Energy Systems Energy Commission, PIER Energy-Related Environmental Research Program & California Ocean ProtectionArnold Schwarzenegger Governor DEVELOPING WAVE ENERGY IN COASTAL CALIFORNIA: POTENTIAL SOCIO

30

NNSA Sites | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives InitiativesShippingHowTheMissionofNAICSNNSA Sites NNSA Sites

31

Portsmouth Site | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014 In replySite Portsmouth Site

32

Wind Wave Float | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(TRL 1 2 3 Component) Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project...

33

On Site Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCoMaine:Om Shakthi RenergiesOmro,Site

34

Completed Sites | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartment ofCompleted Sites Completed

35

Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu Wave Resources for Representative Sites Around the Hawaiian Islands  

E-Print Network [OSTI]

Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Wave Resources for Representative Sites Around the Hawaiian Islands Table of Contents Summary p2 Background: Wave Power Conversion p3 Licensing and Permitting p3 Challenges and Barriers p4 Wave Power Resources: Previous Work p5 Wave

36

Renewable Energy Wave Pumps | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge AndREII Jump to: navigation,Renewable EnergyWave

37

WEC up! Energy Department Announces Wave Energy Conversion Prize...  

Broader source: Energy.gov (indexed) [DOE]

Buren Township, Michigan for the development and execution of the Energy Department's Wave Energy Conversion (WEC) Prize Competition. The WEC Prize aims to attract innovative...

38

Application of wave generator theory to the development of a Wave Energy Converter  

E-Print Network [OSTI]

Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri approve the attached thesis Application of wave generator theory to the development of a Wave Energy Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri Principal

Wood, Stephen L.

39

On the Energy of Rotating Gravitational Waves  

E-Print Network [OSTI]

A class of solutions of the gravitational field equations describing vacuum spacetimes outside rotating cylindrical sources is presented. A subclass of these solutions corresponds to the exterior gravitational fields of rotating cylindrical systems that emit gravitational radiation. The properties of these rotating gravitational wave spacetimes are investigated. In particular, we discuss the energy density of these waves using the gravitational stress-energy tensor.

Bahram Mashhoon; James C. McClune; Enrique Chavez; Hernando Quevedo

1996-09-06T23:59:59.000Z

40

Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction Seismic Wave Propagation in Alluvial Basins  

E-Print Network [OSTI]

Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction 1 Seismic Wave of alluvial deposits have a major influence on seismic wave propagation and amplification. However influence seismic wave propagation near the free surface. In this paper, the influence of surface structures

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Wave spectral energy variability in the northeast Peter D. Bromirski  

E-Print Network [OSTI]

Wave spectral energy variability in the northeast Pacific Peter D. Bromirski Integrative January 2005; published 8 March 2005. [1] The dominant characteristics of wave energy variability] s wave spectral energy components are considered separately. Empirical orthogonal function (EOF) analyses

Bromirski, Peter D.

42

EA-1917: Wave Energy Test Facility Project, Newport, OR  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE.

43

Counting energy packets in the electromagnetic wave  

E-Print Network [OSTI]

We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.

Stefan Popescu; Bernhard Rothenstein

2007-05-18T23:59:59.000Z

44

The Effects of Wave Energy Converters on a Monochromatic Wave Climate  

E-Print Network [OSTI]

available from the National Oceanic and Atmospheric Administration (NOAA). Wave energy converters were converters as well as the availability of energy in the ocean. This study will examine the effects of a wave and mean wave period of wave energy fields. There is tremendous energy potential in the ocean. Solar energy

Fox-Kemper, Baylor

45

Proceedings of the Hydrokinetic and Wave Energy Technologies...  

Office of Environmental Management (EM)

Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and...

46

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

47

Binding Energy of dş Transition Metals to Alkenes By Wave...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy of dş Transition Metals to Alkenes By Wave Function Theory and Density Functional Theory. Binding Energy of dş Transition Metals to Alkenes By Wave Function Theory...

48

Oregon: Advancing Technology Readiness: Wave Energy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm...

49

Mapping and Assessment of the United States Ocean Wave Energy...  

Office of Environmental Management (EM)

States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and results of a rigorous assessment of...

50

Energy-momentum relation for solitary waves of relativistic wave equations  

E-Print Network [OSTI]

Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.

T. V. Dudnikova; A. I. Komech; H. Spohn

2005-08-23T23:59:59.000Z

51

New Perspectives on Wave Energy Converter Control   

E-Print Network [OSTI]

This work examines some of the fundamental problems behind the control of wave energy converters (WECs). Several new perspectives are presented to aid the understanding of the problem and the interpretation of the ...

Price, Alexandra A E

2009-01-01T23:59:59.000Z

52

Multi-Site Energy Reduction Through Teamwork  

E-Print Network [OSTI]

Multi-Site Energy Reduction Through Teamwork Thomas R. Theising Energy/Waste Management and Procurement Manager BASF Corporation Freeport, Texas ABSTRACT Energy Teams were established at seven locations in Tennessee, Texas... to the business. The completion of an energy audit will leave a laundry list of ideas to be considered. The energy management process, at the Site level, begins at this point. At BASF, we have found the most successful method of evaluating...

Tutterow, V.; Walters, T.

2006-01-01T23:59:59.000Z

53

Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.  

SciTech Connect (OSTI)

The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

Roberts, Jesse D.; Jones, Craig; Magalen, Jason

2014-09-01T23:59:59.000Z

54

Multi-Site Energy Reduction Through Teamwork  

E-Print Network [OSTI]

Energy Teams have been established at seven BASF locations to facilitate implementation of the findings from the 2003 and 2004 Energy Audits conducted at these Sites. These Teams were charged with implementation, progress tracking, and management...

Theising, T

2008-01-01T23:59:59.000Z

55

Wave Energy challenges and possibilities  

E-Print Network [OSTI]

into a reservoir, with low head turbines as power take off. Articulating tubes with hydraulic power take off. Point or fixed coastal installation. Air based Wells turbines as power take off. Over topping waves absorber, with either water pumps, linear generators or hydraulic power take off systems. Multi point

56

MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER ARNAUD ROUGIREL  

E-Print Network [OSTI]

for buoy-type ocean wave energy converter. The simplest model for this scheme is a non autonomous piecewise impact on the environment. In this respect, ocean waves provides a important source of renewable energy. Me- chanical devices that harvest energy stored in ocean waves are called wave energy converter (WEC

Paris-Sud XI, Université de

57

Soft Capacitors for Wave Energy Harvesting  

E-Print Network [OSTI]

Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.

Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jřrgen Jřrgensen; Guggi Kofod

2011-10-14T23:59:59.000Z

58

Wave equations with energy dependent potentials  

E-Print Network [OSTI]

We study wave equations with energy dependent potentials. Simple analytical models are found useful to illustrate difficulties encountered with the calculation and interpretation of observables. A formal analysis shows under which conditions such equations can be handled as evolution equation of quantum theory with an energy dependent potential. Once these conditions are met, such theory can be transformed into ordinary quantum theory.

J. Formanek; R. J. Lombard; J. Mares

2003-09-22T23:59:59.000Z

59

WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA  

E-Print Network [OSTI]

case, the electrons have negative wave energy for 2w ne w wave energy for 2w .w > 0 nl Hence, unstable waves with negative phase velocity,

Cary, John R.

2012-01-01T23:59:59.000Z

60

CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland  

E-Print Network [OSTI]

CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms gradient technologies. This paper is focused on Ocean Wave Energy Converters (OWECs) and the need

Haller, Merrick

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wave Energy Ecological Effects Workshop page 1 of 4 Ecological Effects of Wave Energy Development in the Pacific Northwest  

E-Print Network [OSTI]

Wave Energy Ecological Effects Workshop page 1 of 4 Ecological Effects of Wave Energy Development the capacity to harvest wave energy off its coast as a clean, renewable resource. An important part of moving this agenda forward must include understanding the potential effects of wave energy technology

Wright, Dawn Jeannine

62

Cleanup Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof EnergyAdvanced-30 QER Report:of Energy WastePete

63

Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project  

Broader source: Energy.gov [DOE]

Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

64

Elgen Wave | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soils and RocksElement Power Name:Elgen Wave

65

Energy-momentum Density of Gravitational Waves  

E-Print Network [OSTI]

In this paper, we elaborate the problem of energy-momentum in general relativity by energy-momentum prescriptions theory. Our aim is to calculate energy and momentum densities for the general form of gravitational waves. In this connection, we have extended the previous works by using the prescriptions of Bergmann and Tolman. It is shown that they are finite and reasonable. In addition, using Tolman prescription, exactly, leads to same results that have been obtained by Einstein and Papapetrou prescriptions.

Amir M. Abbassi; Saeed Mirshekari

2014-11-29T23:59:59.000Z

66

National Renewable Energy Laboratory 10 Year Site Plan FY 2007...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Renewable Energy Laboratory 10 Year Site Plan FY 2007 - FY 2018 National Renewable Energy Laboratory 10 Year Site Plan FY 2007 - FY 2018 National Renewable Energy...

67

LM Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson - ProjectUnlikeLegacy management | Alaska

68

Closure Sites | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean, EEREClosure Sites

69

Idaho Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy Media Contact Brad$440Idaho National

70

Hanford Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road mapFWorkersDepartment

71

Site Cleanup | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergy Data Access SilverSiouxCleanup

72

Paducah Site | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr. Steven Para9Environmental RemediationFuture

73

Green Ocean Wave Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands RenewableGreatwood,GreenFalls, Colorado:United

74

Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /  

E-Print Network [OSTI]

Power Maximization in Wave-Energy Converters Using Sampled-design optimization of wave energy converters con- sistingN. Sahinkaya. A review of wave energy converter technology.

Chen, Tianjia

2013-01-01T23:59:59.000Z

75

Anomalous electron-ion energy coupling in electron drift wave turbulence  

E-Print Network [OSTI]

annulus arises due to a wave energy flux differential acrossprincipal collisionless wave energy dissipation channel inOn the other hand, wave energy can be dissipated by ion

Zhao, Lei

76

Department of Energy Honors Hanford Site Contractor for Employee...  

Office of Environmental Management (EM)

Department of Energy Honors Hanford Site Contractor for Employee Involvement and Management Leadership in Safety and Health Department of Energy Honors Hanford Site Contractor for...

77

On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry  

E-Print Network [OSTI]

Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean waveOn the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry

Victoria, University of

78

Regional analysis of energy facility siting  

SciTech Connect (OSTI)

This paper has examined some of the regional environmental parameters of energy facility siting, with emphasis on air quality impacts. An example of a siting optimization study was presented, and it was shown how difficult it presently is to specify an environmental objective function that is universally applicable. The importance of regional background effects was discussed, and long-range transport models were used to analyze the relative importance of local and long-range impacts.

Lipfert, F W; Meier, P M; Kleinman, L I

1980-01-01T23:59:59.000Z

79

Savannah River Site | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENTSavannah River Site Savannah River Site

80

Ecological Effects of Wave Energy Development in the Pacific Northwest  

E-Print Network [OSTI]

Ecological Effects of Wave Energy Development in the Pacific Northwest A Scientific Workshop Technical Memorandum NMFS-F/SPO-92 #12;#12;Ecological Effects of Wave Energy Development in the Pacific Service; Justin Klure, Oregon Wave Energy Trust; Greg McMurray, Oregon Department of Land Conservation

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Peculiarities in the energy transfer by waves on strained strings  

E-Print Network [OSTI]

Peculiarities in the energy transfer by waves on strained strings Eugene I. Butikov St. Petersburg of elastic potential energy associated with waves in a stretched string is discussed. The influence of nonlinear coupling between transverse and longitudinal waves on the density of energy is investigated

Butikov, Eugene

82

Energy of tsunami waves generated by bottom motion  

E-Print Network [OSTI]

Energy of tsunami waves generated by bottom motion By Denys Dutykh, Fr´ed´eric Dias CMLA, ENS investigation on the energy of waves generated by bottom motion is performed here. We start with the full for the linearized water wave equations. Exchanges between potential and kinetic energies are clearly revealed

Boyer, Edmond

83

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network [OSTI]

E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

84

Wave Turbulence in Superfluid 4 Energy Cascades, Rogue Waves & Kinetic Phenomena  

E-Print Network [OSTI]

Outline Wave Turbulence in Superfluid 4 He: Energy Cascades, Rogue Waves & Kinetic Phenomena Conference, Chernogolovka, 3 August 2009 McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4 He #12;Outline Outline 1 Introduction Motivation 2 Modelling wave turbulence Need for models

Fominov, Yakov

85

Leancon Wave Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN)Lauderhill,5. ItLea Hill,Leake

86

Guidelines in Wave Energy Conversion System Design  

E-Print Network [OSTI]

absorber systems are used in arrays, where multiple devices are attached in series or parallel to capture more energy. Point absorbers can be used offshore in various depths of water. Submerged Pressure Differentials SPDs are completely submerged... that they can capture the most effective bending motion. Most attenuators are used near shore, but there are some designs that could be used further offshore. Attenuators need to be positioned parallel with the wave direction of travel in order to capture...

Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

2014-01-01T23:59:59.000Z

87

Evaluating Solar Energy Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010December 1,Goals

88

Siting Wind Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) | Open EnergySCRSipexSistem

89

Dartmouth Wave Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, searchIllinois: Energy Resources JumpDarrel Dammen

90

Carnegie Wave Energy Limited | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | OpenCarboPur84.3202194°Carnation, Washington:

91

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE’s support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy Technology—New Zealand (WET-NZ) device.

92

Regulation of Tidal and Wave Energy Projects (Maine)  

Broader source: Energy.gov [DOE]

State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements regulation by the Federal Energy Regulation...

93

Paducah Site Historical Timeline | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdf MoreEnergy JuneEnergyMajor DOETrafficThis site

94

Agenda: INFRASTRUCTURE SITING | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet,ProposedEnergySITING Agenda: INFRASTRUCTURE

95

FTCP Site Specific Information | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of Energy memoCityTheDepartmentKey FTCPApril 7, 2015Site

96

WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA  

E-Print Network [OSTI]

case, the electrons have negative wave energy for 2w ne w wave energy for 2w . > w > 0 nlw/k to the negative wave energy of the electrons. positive

Cary, John R.

2012-01-01T23:59:59.000Z

97

Energy Department Announces $10 Million for Full-Scale Wave Energy...  

Office of Environmental Management (EM)

10 Million for Full-Scale Wave Energy Device Testing Energy Department Announces 10 Million for Full-Scale Wave Energy Device Testing October 29, 2014 - 2:55pm Addthis The Energy...

98

Energy Department Announces $10 million for Wave Energy Demonstration...  

Energy Savers [EERE]

plans to test two WEC devices at depths of 60 and 80 meters at the open-water site offshore from Marine Corps Base Hawaii in Kaneohe Bay. These projects will enable the Energy...

99

Internal energy relaxation in shock wave structure  

SciTech Connect (OSTI)

The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

Josyula, Eswar, E-mail: Eswar.Josyula@us.af.mil; Suchyta, Casimir J. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)] [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Boyd, Iain D. [University of Michigan, Ann Arbor, Michigan 48109 (United States)] [University of Michigan, Ann Arbor, Michigan 48109 (United States); Vedula, Prakash [University of Oklahoma, Norman, Oklahoma 73019 (United States)] [University of Oklahoma, Norman, Oklahoma 73019 (United States)

2013-12-15T23:59:59.000Z

100

Energy Transfer via Solar Wind Driven Ultra Low Frequency Waves in the Earth's Magnetosphere  

E-Print Network [OSTI]

spectral density comparison Wave polarization and energywind to various sinks of wave energy in the magnetosphere.magnetosphere (where wave energy can exit the magnetosphere

Hartinger, Michael David

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Transfer via Solar Wind Driven Ultra Low Frequency Waves in the Earth's Magnetosphere  

E-Print Network [OSTI]

spectral density comparison Wave polarization and energywind to various sinks of wave energy in the magnetosphere.a source or sink of wave energy (Southwood et al. , 1969).

Hartinger, Michael David

2012-01-01T23:59:59.000Z

102

PASSIVE WIRELESS SURFACE ACOUSTIC WAVE SENSORS FOR MONITORING SEQUESTRATION SITES CO2 EMISSION  

SciTech Connect (OSTI)

University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/?. The overall effect of temperature on nanocomposite resistance was -1000ppm/?. The gas response of the nanocomposite was about 10% resistance increase under pure CO2. The sensor frequency change was around 300ppm for pure CO2. With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

2012-11-30T23:59:59.000Z

103

Research and Technology in Wave Energy for Electric Mobility  

E-Print Network [OSTI]

generated by ocean current and energy extraction through ocean thermal conversion (OTEC). For wave energy renewable energy in the oceans, the utilization of such power has been far from full or even effectiveResearch and Technology in Wave Energy for Electric Mobility Reza Ghorbani Assistant Professor

Frandsen, Jannette B.

104

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarListLiveFuels Inc JumpLoessEnergyLong-Wave

105

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to:County,1143807°,Hilltop,Hinsdale Wave Basin 1

106

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to:County,1143807°,Hilltop,Hinsdale Wave Basin 1

107

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...  

Energy Savers [EERE]

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear...

108

Shear wave seismic velocity profiling and depth to water table earthquake site  

E-Print Network [OSTI]

..................................................................................................... 6 Summary of seismic refraction/reflection methodsShear wave seismic velocity profiling and depth to water table ­ earthquake site response measurements for Valley County, Idaho Lee M. Liberty and Gabriel M. Gribler, Boise State University Center

Barrash, Warren

109

Savannah River Site | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENTSavannah River Site Savannah River

110

Reference Model 6 (RM6): Oscillating Wave Energy Converter.  

SciTech Connect (OSTI)

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

2014-10-01T23:59:59.000Z

111

Sandia National Laboratories: Sandia, NREL Release Wave Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for International Smart Grid Action Network 2014 Award of Excellence Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim On July 29, 2014, in...

112

Advancing Technology Readiness: Wave Energy Testing and Demonstration...  

Energy Savers [EERE]

proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Ocean Energy Projects Developing On and Off America's Shores Establishing a Testing Center...

113

Acceleration of low energy charged particles by gravitational waves  

E-Print Network [OSTI]

The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

G. Voyatzis; L. Vlahos; S. Ichtiaroglou; D. Papadopoulos

2005-12-07T23:59:59.000Z

114

Nevada Transmission Siting Information | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServicesNeuCo IncWork (Water Right)ActSiting

115

Site Management Guide | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergy Data Access SilverSiouxCleanupSite

116

Site Transition Plan Guidance | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergy DataPlan Guidance Site Transition

117

Paducah Site Historical Timeline | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRocky Mountain OTCAnnualEnd State VisionSite

118

Department of Energy's Tribal Program - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINLNuclear262About Us > Hanford Site Wide

119

Energy Citations Database (ECD) - Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecond stage ofDefects onServices »Site Map Home Basic

120

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

SciTech Connect (OSTI)

This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

Yu, Y.; Li, Y.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wave turbulence revisited: Where does the energy flow?  

E-Print Network [OSTI]

Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.

L. V. Abdurakhimov; I. A. Remizov; A. A. Levchenko; G. V. Kolmakov; Y. V. Lvov

2014-04-03T23:59:59.000Z

122

Fluctuations of energy flux in wave turbulence Eric Falcon,1  

E-Print Network [OSTI]

Fluctuations of energy flux in wave turbulence ´Eric Falcon,1 S´ebastien Auma^itre,2 Claudio Falc gravity and capillary wave turbulence in a statistically stationary regime displays fluctuations much interactions transfer kinetic energy toward small scales where viscous dissipation takes place

Falcon, Eric

123

Wave-Packet Revivals for Quantum Systems with Nondegenerate Energies  

E-Print Network [OSTI]

The revival structure of wave packets is examined for quantum systems having energies that depend on two nondegenerate quantum numbers. For such systems, the evolution of the wave packet is controlled by two classical periods and three revival times. These wave packets exhibit quantum beats in the initial motion as well as new types of long-term revivals. The issue of whether fractional revivals can form is addressed. We present an analytical proof showing that at certain times equal to rational fractions of the revival times the wave packet can reform as a sum of subsidiary waves and that both conventional and new types of fractional revivals can occur.

Robert Bluhm; Alan Kostelecky; Bogdan Tudose

1996-09-26T23:59:59.000Z

124

MHK Projects/Oregon Coastal Wave Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Projects JumpInformationWave Energy

125

MHK Projects/Santona Wave Energy Park | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Project CitySantona Wave Energy Park

126

MHK Technologies/Wave Energy Propulsion | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png Technology ProfileWave Energy

127

SyncWave Energy Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummersideJump to:JumpaSwinertonSyncWave Energy

128

Energy dissipation in wave propagation in general relativistic plasma  

E-Print Network [OSTI]

Based on a recent communication by the present authors the question of energy dissipation in magneto hydrodynamical waves in an inflating background in general relativity is examined. It is found that the expanding background introduces a sort of dragging force on the propagating wave such that unlike the Newtonnian case energy gets dissipated as it progresses. This loss in energy having no special relativistic analogue is, however, not mechanical in nature as in elastic wave. It is also found that the energy loss is model dependent and also depends on the number of dimensions.

Ajanta Das; S. Chatterjee

2009-11-03T23:59:59.000Z

129

Dark energy from quantum wave function collapse of dark matter  

E-Print Network [OSTI]

Dynamical wave function collapse models entail the continuous liberation of a specified rate of energy arising from the interaction of a fluctuating scalar field with the matter wave function. We consider the wave function collapse process for the constituents of dark matter in our universe. Beginning from a particular early era of the universe chosen from physical considerations, the rate of the associated energy liberation is integrated to yield the requisite magnitude of dark energy around the era of galaxy formation. Further, the equation of state for the liberated energy approaches $w \\to -1$ asymptotically, providing a mechanism to generate the present acceleration of the universe.

A. S. Majumdar; D. Home; S. Sinha

2009-09-03T23:59:59.000Z

130

NRC staff site characterization analysis of the Department of Energy`s Site Characterization Plan, Yucca Mountain Site, Nevada  

SciTech Connect (OSTI)

This Site Characterization Analysis (SCA) documents the NRC staff`s concerns resulting from its review of the US Department of Energy`s (DOE`s) Site Characterization Plan (SCP) for the Yucca Mountain site in southern Nevada, which is the candidate site selected for characterization as the nation`s first geologic repository for high-level radioactive waste. DOE`s SCP explains how DOE plans to obtain the information necessary to determine the suitability of the Yucca Mountain site for a repository. NRC`s specific objections related to the SCP, and major comments and recommendations on the various parts of DOE`s program, are presented in SCA Section 2, Director`s Comments and Recommendations. Section 3 contains summaries of the NRC staff`s concerns for each specific program, and Section 4 contains NRC staff point papers which set forth in greater detail particular staff concerns regarding DOE`s program. Appendix A presents NRC staff evaluations of those NRC staff Consultation Draft SCP concerns that NRC considers resolved on the basis of the SCP. This SCA fulfills NRC`s responsibilities with respect to DOE`s SCP as specified by the Nuclear Waste Policy Act (NWPA) and 10 CFR 60.18. 192 refs., 2 tabs.

NONE

1989-08-01T23:59:59.000Z

131

Wave EnergyFocusing in aThree-dimensional Numerical WaveTank C. Fochesato*, F. Dias**, S. Grilli***  

E-Print Network [OSTI]

Wave EnergyFocusing in aThree-dimensional Numerical WaveTank C. Fochesato*, F. Dias**, S. Grilli Department (University of Rhode Island), Narragansett, RI, U.S.A. ABSTRACT Directional wave energy focusing in space is one of the mechanisms that may contribute to the generation of a rogue wave in the ocean

Grilli, Stéphan T.

132

A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical Parameters  

E-Print Network [OSTI]

A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical of Mechanical Engineering) ABSTRACT Within a wave energy converter's operational bandwidth, device operation

Victoria, University of

133

Energy Dispersed Large Data Wave Maps in 2 + 1 Dimensions  

E-Print Network [OSTI]

of Finite S Norm Wave-Maps and Energy Dispersion 10.1renormalization of large energy wave maps. In: Journées “of Finite S Norm Wave-Maps and Energy Dispersion In this

Sterbenz, Jacob; Tataru, Daniel

2010-01-01T23:59:59.000Z

134

Summary of PIER-Funded Wave Energy Research  

E-Print Network [OSTI]

, Consultant--Ocean Energy Systems. The outcomes presented herein represent an aggregation of originalCALIFORNIA ENERGY COMMISSION Summary of PIER-Funded Wave Energy Research STAFFREPORT MARCH 2008 CEC-500-2007-083 Arnold Schwarzenegger, Governor #12; #12; CALIFORNIA ENERGY COMMISSION Mike Kane

135

ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES  

SciTech Connect (OSTI)

Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

2013-05-10T23:59:59.000Z

136

Energy Contents of Gravitational Waves in Teleparallel Gravity  

E-Print Network [OSTI]

The conserved quantities, that are, gravitational energy-momentum and its relevant quantities are investigated for cylindrical and spherical gravitational waves in the framework of teleparallel equivalent of General Relativity using the Hamiltonian approach. For both cylindrical and spherical gravitational waves, we obtain definite energy and constant momentum. The constant momentum shows consistency with the results available in General Relativity and teleparallel gravity. The angular momentum for cylindrical and spherical gravitational waves also turn out to be constant. Further, we evaluate their gravitational energy-momentum fluxes and gravitational pressure.

M. Sharif; Sumaira Taj

2009-10-02T23:59:59.000Z

137

Interaction of two walkers: Wave-mediated energy and force  

E-Print Network [OSTI]

A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a "walker." Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here, we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the "promenade modes" where two walkers are bound, and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.

Borghesi, Christian; Labousse, Matthieu; Eddi, Antonin; Fort, Emmanuel; Couder, Yves

2014-01-01T23:59:59.000Z

138

On-Site Renewable Power Purchase Agreements | Department of Energy  

Office of Environmental Management (EM)

On-site renewable power purchase agreements (PPAs) allow Federal agencies to fund on-site renewable energy projects with no up-front capital costs incurred. With a PPA, a developer...

139

Clean Cities Web Sites and Web Tools | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Web Sites and Web Tools Clean Cities Web Sites and Web Tools U.S. Department of Energy (DOE) Technical Assistance Project (TAP) for state and local officials Webinar presentation...

140

Energy and Momentum of a Class of Rotating Gravitational Waves  

E-Print Network [OSTI]

We calculate energy and momentum for a class of cylindrical rotating gravitational waves using Einstein and Papapetrou's prescriptions. It is shown that the results obtained are reduced to the special case of the cylindrical gravitational waves already available in the literature.

M. Sharif

2001-02-09T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Content of Colliding Plane Waves using Approximate Noether Symmetries  

E-Print Network [OSTI]

This paper is devoted to study the energy content of colliding plane waves using approximate Noether symmetries. For this purpose, we use approximate Lie symmetry method of Lagrangian for differential equations. We formulate the first-order perturbed Lagrangian for colliding plane electromagnetic and gravitational waves. It is shown that in both cases, there does not exist

M. Sharif; Saira Waheed

2011-09-19T23:59:59.000Z

142

Wave Function Properties in a High Energy Process  

E-Print Network [OSTI]

A model example is given of how properties of the hadronic light-cone wave function are revealed in a particular high energy process. The meson wave function is derived in scalar quark QCD. We apply it to compute the form of the cross section for lossless diffractive jet-production, an upcoming possiblity at HERA.

Arjun Berera

1994-11-14T23:59:59.000Z

143

Energy storage and generation from thermopower waves  

E-Print Network [OSTI]

The nonlinear coupling between an exothermic chemical reaction and a nanowire or nanotube with large axial heat conduction guides a self-propagating thermal wave along the nano-conduit. The thermal conduit accelerates the ...

Abrahamson, Joel T. (Joel Theodore)

2012-01-01T23:59:59.000Z

144

Sandia National Laboratories: Advanced Controls of Wave Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Facility Tool at SWiFT Makes Rotor Work More Efficient Advanced Controls of Wave Energy Converters May Increase Power Capture Up to 330% On January 21, 2014, in...

145

DOE Announces Webinars on the Wave Energy Converter Prize, the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Best of the Clean Cities Tools and Resources, and More DOE Announces Webinars on the Wave Energy Converter Prize, the Best of the Clean Cities Tools and Resources, and More March...

146

Sandia National Laboratories: WEC-Sim (Wave Energy Converter...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Y. Yu, "Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool," in Proceedings of OMAE 2014, San Francisco, CA, 2014. 2...

147

On the configuration of arrays of floating wave energy converters   

E-Print Network [OSTI]

In this thesis, certain issues relating to a number of wave energy absorbers operating in the same vicinity are investigated. Specifically, arrangements of the devices within such an array are sought, such that beneficial ...

Child, Benjamin Frederick Martin

2011-11-22T23:59:59.000Z

148

Internal wave energy radiated from a turbulent mixed layer  

SciTech Connect (OSTI)

We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

2014-09-15T23:59:59.000Z

149

The Energy Flux of Internal Gravity Waves in the Lower Solar Thomas Straus1  

E-Print Network [OSTI]

The Energy Flux of Internal Gravity Waves in the Lower Solar Atmosphere Thomas Straus1 , Bernhard waves as a key mediator of energy into the solar atmosphere. Subject headings: hydrodynamics ­ waves, can support and propagate gravity waves. On Earth these waves, which can transport energy and momentum

150

Author's personal copy Wave energy resources along the Hawaiian Island chain  

E-Print Network [OSTI]

model Wave atlas Wave energy Wave power a b s t r a c t Hawaii's access to the ocean and remoteness from in these activities are the wave energy resources and the research opportunities to understand the ocean environmentAuthor's personal copy Wave energy resources along the Hawaiian Island chain Justin E. Stopa

151

Energy Department Selects New Paducah Site Lead | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011 EMABDevelopmentDepartment ofPaducah SiteNew

152

NREL-Learning About Renewable Energy Site | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy, California:New York) Name:NRELEnergySite

153

Wave energy attenuation and shoreline alteration characteristics of submerged breakwaters  

E-Print Network [OSTI]

WAVE ENERGY ATTENUATION AND SHORELINE ALTERATION CHARACTERISTICS OF SUBMERGED BREAKWATERS A Thesis by KATHERINE MARGARET KRAFFT Submitted to the Office of Graduate Studies of Texas AIM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1993 Major Subject: Ocean Engineering WAVE ENERGY ATTENUATION AND SHORELINE ALTERATION CHARACTERISTICS OF SUBMERGED BREAKWATERS A Thesis by KATHERINE MARGARET KRAFFT Approved as to style and content by: John...

Krafft, Katherine Margaret

1993-01-01T23:59:59.000Z

154

How to Estimate Energy Lost to Gravitational Waves (revised)  

E-Print Network [OSTI]

The energy--momentum radiated in gravitational waves by an isolated source is given by a formula of Bondi. This formula is highly non--local: the energy--momentum is not given as the integral of a well--defined local density. It has therefore been unclear whether the Bondi formula can be used to get information from gravity--wave measurements. In this note, we obtain, from local knowledge of the radiation field, a lower bound on the Bondi flux.

Adam D. Helfer

1993-07-19T23:59:59.000Z

155

Overview of Ocean Wave and Tidal Energy Lingchuan Mei  

E-Print Network [OSTI]

resources such as solar and wind energy, waves and tides have the advantages of having much higher power stronger energy conversion devices lower in capital cost than for other renewable technologies and creating more job opportunities. For these major benefits the marine energy can provide us with, a great

Lavaei, Javad

156

Energy flux of timeharmonic waves in anisotropic dissipative media  

E-Print Network [OSTI]

Energy flux of time­harmonic waves in anisotropic dissipative media Vlastislav Ÿ Cerven 2, Czech Republic. E­mail vcerveny@seis.karlov.m#.cuni.cz Summary The energy flux of time to consider the average energy flux, which is real­valued and time­independent. An extension

Cerveny, Vlastislav

157

Energy Facility Evaluation, Siting, Construction and Operation (New Hampshire)  

Broader source: Energy.gov [DOE]

The statute establishes a procedure for the review, approval, monitoring, and enforcement of compliance in the planning, siting, construction, and operation of energy facilities, including...

158

Savannah River Site - D-Area Groundwater | Department of Energy  

Office of Environmental Management (EM)

- D-Area Groundwater Savannah River Site - D-Area Groundwater January 1, 2013 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report...

159

Office of Energy Policy and Systems Analysis Site Upgrade  

Broader source: Energy.gov [DOE]

Office of Energy Policy and Systems Analysis site is currently being upgraded to better serve on audience. Please check back shortly.

160

Gauge Invariant Effective Stress-Energy Tensors for Gravitational Waves  

E-Print Network [OSTI]

It is shown that if a generalized definition of gauge invariance is used, gauge invariant effective stress-energy tensors for gravitational waves and other gravitational perturbations can be defined in a much larger variety of circumstances than has previously been possible. In particular it is no longer necessary to average the stress-energy tensor over a region of spacetime which is larger in scale than the wavelengths of the waves and it is no longer necessary to restrict attention to high frequency gravitational waves.

Paul R. Anderson

1996-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

9/18/09 2:42 PM'Big Wave' Theory Offers Alternative to Dark Energy -Tech Support Forum Page 1 of 4http://www.techsupportforum.com/relaxation-room/offline/406161-big-wave-theory-offers-alternative-dark-energy.html  

E-Print Network [OSTI]

9/18/09 2:42 PM'Big Wave' Theory Offers Alternative to Dark Energy - Tech Support Forum Page 1 of 4http://www.techsupportforum.com/relaxation-room/offline/406161-big-wave-theory-offers-alternative-dark-energy' Theory Offers Alternative to Dark Energy User Name Remember Me? Password Log in Site Map Register Donate

Temple, Blake

162

Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites  

SciTech Connect (OSTI)

This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

2007-10-01T23:59:59.000Z

163

Siting Renewable Energy: Land Use and Regulatory Context  

E-Print Network [OSTI]

This article takes up the increasingly important land use question of siting for renewable energy. As concern over climate change grows, new policies are being crafted at all levels of government to support renewable energy as a way of reducing...

Outka, Uma

2010-01-01T23:59:59.000Z

164

Model Ordinance for Siting of Wind-Energy Systems  

Broader source: Energy.gov [DOE]

In 2009, the South Dakota Public Utilities Commission (PUC) created a [http://puc.sd.gov/commission/twg/WindEnergyOrdinance.pdf model ordinance] for siting wind-energy systems. This nine-page model...

165

PHYSICAL REVIEW E 89, 023003 (2014) Energy flux measurement from the dissipated energy in capillary wave turbulence  

E-Print Network [OSTI]

energy flux are in good agreement with wave turbulence theory. The Kolmogorov-Zakharov constant waves interact with each other, they can develop a regime of wave turbulence where the wave energyPHYSICAL REVIEW E 89, 023003 (2014) Energy flux measurement from the dissipated energy in capillary

Falcon, Eric

166

Quantum Monte Carlo: Direct calculation of corrections to trial wave functions and their energies  

E-Print Network [OSTI]

. The wave functions and energies for these systems are corrected to the fixed-node values desirable features of: good wave function in/better wave function out ... good energy in/better energy out wave function, and Eref is a reference energy. Making use of the difference 0 and defining another

Anderson, James B.

167

Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH  

E-Print Network [OSTI]

Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH College of Oceanic FE u p cgE is a fundamental quan- tity in internal wave energetics to identify energy sources, wave propagation, and energy sinks. Internal wave radiation transports energy from the boundaries

Kurapov, Alexander

168

SPECTRAL ENERGY METHODS AND THE STABILITY OF SHOCK WAVES  

E-Print Network [OSTI]

SPECTRAL ENERGY METHODS AND THE STABILITY OF SHOCK WAVES Jeffrey Humpherys Submitted to the faculty Robert Glassey, David Hoff, and Peter Sternberg for their good counsel and service. I am grateful use energy methods, extending the work of Goodman, Kawashima, Matsumura, and Nishihara, to prove

Humpherys, Jeffrey

169

QCD traveling waves at non-asymptotic energies  

E-Print Network [OSTI]

Using consistent truncations of the BFKL kernel, we derive analytical traveling-wave solutions of the Balitsky-Kovchegov saturation equation for both fixed and running coupling. A universal parametrization of the ``interior'' of the wave front is obtained and compares well with numerical simulations of the original Balitsky-Kovchegov equation, even at non-asymptotic energies. Using this universal parametrization, we find evidence for a traveling-wave pattern of the dipole amplitude determined from the gluon distribution extracted from deep inelastic scattering data.

C. Marquet; R. Peschanski; G. Soyez

2005-10-03T23:59:59.000Z

170

Zero Energy of Plane-Waves for ELKOs  

E-Print Network [OSTI]

We consider the ELKO field in interaction through contorsion with its own spin density, and we investigate the form of the consequent autointeractions; to do so we take into account the high-density limit and find plane wave solutions: such plane waves give rise to contorsional autointeractions for which the Ricci metric curvature vanishes and therefore the energy density is equal to zero identically. Consequences are discussed.

Luca Fabbri

2011-02-23T23:59:59.000Z

171

Nevada National Security Site | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy Second QuarterRate principlesNevada National

172

Site & Facility Restoration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment of EnergyAprilAShale Deactivation

173

Site Specific Records Schedules | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment of EnergyAprilAShale

174

Ten Year Site Plans | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAsWhatTheTed Donat -A Ten

175

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa|Wattner andWauseon,Dragon ApSSandyWave

176

Triton Sea Wave Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:Toyo AluminiumCity LightHills JumpSea Wave

177

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search|Sewaren,ShanghaiSheets Wave Basin Jump to:

178

Wind Waves and Sun | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County,Bay, OR) JumpPhoto from Alstom 2010,Waves and Sun

179

APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves  

E-Print Network [OSTI]

APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M. KLYMAK2. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes important

180

Nonequilibrium Statistics of a Reduced Model for Energy Transfer in Waves  

E-Print Network [OSTI]

Nonequilibrium Statistics of a Reduced Model for Energy Transfer in Waves R. E. LEE DEVILLE Courant, with the subsequent dynamics transferring the energy to longer scales. The main dissipation mechanism is wave breaking, which usually acts on much longer (gravity) waves that intermittently remove energy from the wave system

Milewski, Paul

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves  

E-Print Network [OSTI]

SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M of coastline. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes

182

ON THE SELF-AVERAGING OF WAVE ENERGY IN RANDOM GUILLAUME BAL  

E-Print Network [OSTI]

ON THE SELF-AVERAGING OF WAVE ENERGY IN RANDOM MEDIA GUILLAUME BAL Abstract. We consider the stabilization (self-averaging) and destabilization of the energy of waves propagating in random media transport equations for arbitrary statistical moments of the wave field is used to show that wave energy

Bal, Guillaume

183

LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY CONVERTERS  

E-Print Network [OSTI]

1 LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY of wave energy converters (WECs) on water waves through the analysis of extensive laboratory experiments absorption is a reasonable predictor of the effect of WECs on the far field. Keywords: wave- energy; spectral

Haller, Merrick

184

Wave Energy Machine Louise Butler, Bilal Demir, Caleb Lee, Joe Meiners, Christian Rodin  

E-Print Network [OSTI]

Wave Energy Machine Louise Butler, Bilal Demir, Caleb Lee, Joe Meiners, Christian Rodin Advisor: Dr. Introduction Design Kinematic Model Testing Current wave energy technology harvests the vertical motion. Project Statement: Design a wave energy machine that harnesses underwater wave motion and converts

Provancher, William

185

Information Needs for Energy Mitigation and Siting  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting Thomas F.Needs for Energy Mitigation

186

Oak Ridge Site | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor TechnologyOFFICE: I Oak Ridge,8 8 8 , , , 2 2 2 0 01 1Oak

187

Legacy Management Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -of Energy 1 ofDavid LearningDepartment of

188

START Program Project Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartmentEnergyFrequency |Solar WaterADepartmentFebruary 2,The

189

Technology application analyses at five Department of Energy Sites  

SciTech Connect (OSTI)

The Hazardous Waste Remedial Actions Program (HAZWRAP), a division of Lockheed Martin Energy Systems, Inc., managing contractor for the Department of Energy (DOE) facilities in Oak Ridge, Tennessee, was tasked by the United States Air Force (USAF) through an Interagency Agreement between DOE and the USAF, to provide five Technology Application Analysis Reports to the USAF. These reports were to provide information about DOE sites that have volatile organic compounds contaminating soil or ground water and how the sites have been remediated. The sites were using either a pump-and-treat technology or an alternative to pump-and-treat. The USAF was looking at the DOE sites for lessons learned that could be applied to Department of Defense (DoD) problems in an effort to communicate throughout the government system. The five reports were part of a larger project undertaken by the USAF to look at over 30 sites. Many of the sites were DoD sites, but some were in the private sector. The five DOE projects selected to be reviewed came from three sites: the Savannah River Site (SRS), the Kansas City Site, and Lawrence Livermore National Laboratory (LLNL). SRS and LLNL provided two projects each. Both provided a standard pump-and-treat application as well as an innovative technology that is an alternative to pump-and-treat. The five reports on these sites have previously been published separately. This volume combines them to give the reader an overview of the whole project.

NONE

1995-05-01T23:59:59.000Z

190

Title of Document: LONGITUDINAL SPACE-CHARGE WAVES INDUCED BY ENERGY MODULATIONS  

E-Print Network [OSTI]

ABSTRACT Title of Document: LONGITUDINAL SPACE-CHARGE WAVES INDUCED BY ENERGY MODULATIONS Brian L. Modulations in energy or density can induce space-charge waves at low energies which could be problematic at higher energies. This thesis is a study of longitudinal space-charge waves induced by energy modulations

Anlage, Steven

191

Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys  

E-Print Network [OSTI]

Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys Douglas A. Gemme1 are presented for numerical simulations and field experiments using point absorption ocean wave energy and experimental data. Index Terms ­ energy conversion, wave energy harvesting, linear generator, ocean energy

Grilli, Stéphan T.

192

Siting Methodologies for Hydrokinetics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and ResponseStaffServices Services TheShale GasSignSites

193

Portsmouth Site Public Tour | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015 7:00AM09Department of EnergyAprilJune

194

Considered Sites Overview | Department of Energy  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof Energy AMDCoal_Budget_Fact_Sheet.pdf More + + + + OCTOBERSites

195

Potential of Development and Application of Wave Energy Conversion Technology in the Gulf of Mexico  

E-Print Network [OSTI]

This paper focuses on the potential and application of developing wave energy technology in the Gulf of Mexico (GOM). The conditions (weather, wave climate, activity of the oil industry, etc.) in the GOM are assessed and the attributes of wave...

Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

2014-01-01T23:59:59.000Z

196

Chesapeake Bay Test Site | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic National Park | Open EnergyFacilityChesapeake Bay

197

Waste to Energy Power Production at DOE and DOD Sites  

E-Print Network [OSTI]

Waste to Energy Power Production at DOE and DOD Sites January 13, 2011 #12;Overview ­ Federal renewable ESPC Largest biomassoperation in Federal government #12;BiomassAvailability in U.S. Ameresco logo Agency Innovations DOE: Savannah River Site · BiomassHeat and Power USAF: Hill Air Force Base · Landfill

198

SITE OFFICE PERSPECTIVE | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the Gridwise Global Forum Round-Up fromORDERSITE OFFICE PERSPECTIVE SITE OFFICE

199

Electric Transmission Siting | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty,Portal,105.ElectricSiting Jump to:

200

Innovative On-site Integrated Energy System Tested World Renewable Energy Congress VIII  

E-Print Network [OSTI]

and institutional settings. Recycling Waste Heat--a Key to Improving the Efficiency of Energy Supply In an eraInnovative On-site Integrated Energy System Tested World Renewable Energy Congress VIII August 29-September 3, 2004 Denver, Colorado #12;Innovative On-site Integrated Energy System Tested Jeanette B. Berry

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

INL Site Executable Plan for Energy and Transportation Fuels Management  

SciTech Connect (OSTI)

It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

Ernest L. Fossum

2008-11-01T23:59:59.000Z

202

EM Active Sites (large) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement || Department of Energy EISA 4322014Center

203

Portsmouth Site Regulatory Agreements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015 7:00AM09Department of

204

SPR Storage Sites | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1 ThisApril 2,Quick Facts and

205

Test Site Sweden | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice -Template forTest MethodsDepartment

206

Covered Sites/Populations | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird Quarterinto PARS |CouncilCOVERAGE OFCovered

207

The DOD Siting Clearinghouse | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlowNation | Department of EnergyThe DOD

208

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska:Nutley,EnergyOHmOpenand FeesOTB USA

209

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridor |InformationNevada: EnergyHayden,A&M

210

Clean Wave Ventures | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:CleanCleanVita

211

Energy flux measurement from the dissipated energy in capillary wave turbulence Luc Deike, Michael Berhanu, and Eric Falcon  

E-Print Network [OSTI]

Energy flux measurement from the dissipated energy in capillary wave turbulence Luc Deike, Michael the dissipation is increased. The energy dissipated by capillary waves is also measured and found to increase with the frequency and the newly defined mean energy flux are in good agreement with wave turbulence theory

Paris-Sud XI, Université de

212

Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.  

SciTech Connect (OSTI)

The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

Roberts, Jesse D.; Chang, Grace; Jones, Craig

2014-09-01T23:59:59.000Z

213

Department of Energy Brookhaven Site Office  

E-Print Network [OSTI]

of Energy (DOE)/National Nuclear Security Administration (NNSA) wide approach on contractor domestic) After 30 days, DOE/NNSA's reimbursement of lodging/other subsidies will be limited by, and consistent with, the Federal Travel Regulations, DOE's Travel manual DOE M 552.1-1A, and any DOE or NNSA

Johnson, Peter D.

214

The study of waves is clearly an important subject in acoustics because sound energy is transmitted by waves traveling though air. Furthermore, it turns out that the  

E-Print Network [OSTI]

Waves The study of waves is clearly an important subject in acoustics because sound energy energy without any net movement of mass. In other words the energy in the wave moves from point A to point B without moving any material from A to B. After transmission of wave energy the medium is left

Robertson, William

215

An alternative method for calculating the energy of gravitational waves  

E-Print Network [OSTI]

In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.

Miroslav Sukenik; Jozef Sima

1999-09-21T23:59:59.000Z

216

Energy conserving site design case study: Shenandoah, Georgia. Final report  

SciTech Connect (OSTI)

The case study examines the means by which energy conservation can be achieved at an aggregate community level by using proper planning and analytical techniques for a new town, Shenandoah, Georgia, located twenty-five miles southwest of Atlanta's Hartsfield International Airport. A potentially implementable energy conservation community plan is achieved by a study team examining the land use options, siting characteristics of each building type, alternate infrastructure plans, possible decentralized energy options, and central utility schemes to determine how community energy conservation can be achieved by use of pre-construction planning. The concept for the development of mixed land uses as a passively sited, energy conserving community is based on a plan (Level 1 Plan) that uses the natural site characteristics, maximizes on passive energy siting requirement, and allows flexibility for the changing needs of the developers. The Level 2 Plan is identical with Level 1 plan plus a series of decentraized systems that have been added to the residential units: the single-family detached, the apartments, and the townhouses. Level 3 Plan is similar to the Level 1 Plan except that higher density dwellings have been moved to areas adjacent to central site. The total energy savings for each plan relative to the conventional plan are indicated. (MCW)

Not Available

1980-01-01T23:59:59.000Z

217

Physics 5B Winter 2009 Rate of Energy Transfer by Sinusoidal Waves on a String  

E-Print Network [OSTI]

, Vibrations and Waves (W.W. Norton and Company, New York, 1971). First, we compute the kinetic energyPhysics 5B Winter 2009 Rate of Energy Transfer by Sinusoidal Waves on a String Consider the kinetic energy and the potential energy of this string segment due to the passage of a traveling wave

California at Santa Cruz, University of

218

Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System  

E-Print Network [OSTI]

Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System Mark, alternative energy system to convert the circular motion of ocean waves as they propagate through the sea and feasible alternative, renewable, electrical energy producing subsea system. Index Terms--ocean energy, wave

Wood, Stephen L.

219

Liu UCD Phy9B 07 22 15-5. Energy in Wave Motion  

E-Print Network [OSTI]

Liu UCD Phy9B 07 22 15-5. Energy in Wave Motion x txy FtxFy -= ),( ),( t txy x txy FtxvtxFtxP yy -== ),(),( ),(),(),( For any wave on a string, instantaneous rate of energy transfer 1 dimensional: wave on a string #12;Liu UCD Phy9B 07 23 Energy Transferred by Sinusoidal Wave )cos(),( tkxAtxy -= For a sinusoidal wave )(sin

Yoo, S. J. Ben

220

Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project  

SciTech Connect (OSTI)

The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Considered Sites Overview | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking with

222

Site Characterization Awards | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergy Data Access SilverSioux

223

Site Transition Framework | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergy Data Access|DepartmentFramework

224

Site Transition Guidance | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergy Data

225

Siting Methodologies for Hydrokinetics | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergy DataPlan Guidance2011

226

Motor Wave Group | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate ZoneMontrose,Stanley CapitalNorthMoscow isMotleyVFDs

227

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri

228

Property:Wave Direction | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to:USGSMeanReservoirTemp Jump to: navigation,Volume

229

Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters  

E-Print Network [OSTI]

energy resource plan. An extremely abundant and promising source of energy exists in oceans of the following categories: wave energy, marine and tidal current energy, ocean thermal energy, energy fromPredictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters M.S. Lagoun1

Paris-Sud XI, Université de

230

Siting handbook for small wind energy conversion systems  

SciTech Connect (OSTI)

This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

1980-03-01T23:59:59.000Z

231

Active Sites Additional Information | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OF THE|PhysicalGuideAcquisition,forActive

232

Energy Department's Portsmouth Site Recognized for Environmentally  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011 EMABDevelopmentDepartmentResiliency

233

All Other Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) All Other Edi~ims Arc Obolete United

234

2015 Site Sustainability Plan | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker2014 HouseCoveredAirDepartment ofof EnergyEvents5

235

Paducah Site Management Plan | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRocky Mountain OTCAnnualEnd StateManagement Plan

236

Paducah Site Regulatory Documents | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRocky Mountain OTCAnnualEnd StateManagement

237

Paducah WDA Site Selection | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRocky Mountain OTCAnnualEndCERCLA Process

238

Portsmouth Site Description | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014 In reply referFuturePortsmouth

239

Paducah Site Description | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr. Steven Para9Environmental Remediation

240

Paducah Site Future Use | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr. Steven Para9Environmental RemediationFuture Use

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Completed Sites Listing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 InjectionDepartment ofFresnoEnergy ComplementaryCleanup

242

Department of Energy Idaho -Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The Desert Southwest RegionInside IDWeb Policies No

243

UMTRCA Sites Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy,UCOR Contract & FeeUESC Frequently

244

Langlee Wave Power AS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) Jump to:LamarJumpElectric Coop IncAS Jump to:

245

The Sandia Wave Reflector - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceThe Road toCatalysts:Sandia

246

Sandia National Laboratories: wave energy converter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Wind Farmoutputwater scarcitywave

247

Sandia National Laboratories: wave energy converters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Wind Farmoutputwater

248

20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...  

Broader source: Energy.gov (indexed) [DOE]

5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting...

249

Sites Pending Transfer to LM | Department of Energy  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home » Sites » Sites Pending Transfer to

250

Riding the Clean Energy Wave: New Projects Aim to Improve Water...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices April 16, 2014 - 1:56pm...

251

Wave-Energy Company Looks to Test Prototypes in Maine Waters...  

Broader source: Energy.gov (indexed) [DOE]

Wave-Energy Company Looks to Test Prototypes in Maine Waters Wave-Energy Company Looks to Test Prototypes in Maine Waters April 9, 2010 - 4:19pm Addthis Lindsay Gsell Resolute...

252

Quantification of the influence of directional sea state parameters over the performances of wave energy converters   

E-Print Network [OSTI]

Accurate predictions of the annual energy yield from wave energy converters are essential to the development of the wave industry. The current method based on power matrices uses only a small part of the data available ...

Pascal, Remy Claude Rene

2012-11-29T23:59:59.000Z

253

Energy-momentum relation for solitary waves of nonlinear Dirac equations  

E-Print Network [OSTI]

Solitary waves of nonlinear Dirac, Maxwell-Dirac and Klein-Gordon-Dirac equations are considered. We prove that the energy-momentum relation for solitary waves coincides with the Einstein energy-momentum relation for point particles.

T. V. Dudnikova

2014-04-28T23:59:59.000Z

254

Does a dynamical system lose energy by emitting gravitational waves?  

E-Print Network [OSTI]

We note that Eddington's radiation damping calculation of a spinning rod fails to account for the complete mass integral as given by Tolman. The missing stress contributions precisely cancel the standard rate given by the 'quadrupole formula'. This indicates that while the usual 'kinetic' term can properly account for dynamical changes in the source, the actual mass is conserved. Hence gravity waves are not carriers of energy in vacuum. This supports the hypothesis that energy including the gravitational contribution is confined to regions of non-vanishing energy-momentum tensor $T_{ik}$. PACS numbers: 04.20.Cv, 04.30.-w

F. I. Cooperstock

1999-09-30T23:59:59.000Z

255

Direct Drive Wave Energy Buoy – 33rd scale experiment  

SciTech Connect (OSTI)

Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

256

Sites Pending Transfer to LM | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment of EnergyAprilAShaleSites Pending

257

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) sites to identify thefishery resources at potential OTEC sites. At this time, thethermal energy conversion (OTEC) program; preoperational

Ryan, Constance J.

2013-01-01T23:59:59.000Z

258

On-Site Generation Simulation with EnergyPlus for Commercial Buildings  

E-Print Network [OSTI]

L ABORATORY On-Site Generation Simulation with EnergyPlusemployer. On-Site Generation Simulation with EnergyPlus forin modeling distributed generation (DG), including DG with

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-01-01T23:59:59.000Z

259

Optimization of quantum Monte Carlo wave functions using analytical energy derivatives  

E-Print Network [OSTI]

Optimization of quantum Monte Carlo wave functions using analytical energy derivatives Xi Lin of the local energy, H^ / .5 If the wave function were the exact ground eigenstate, the local energy would November 1999 An algorithm is proposed to optimize quantum Monte Carlo QMC wave functions based on Newton

Lin, Xi

260

Analysis and Development of a Three Body Heaving Wave Energy Scott J. Beatty  

E-Print Network [OSTI]

Analysis and Development of a Three Body Heaving Wave Energy Converter by Scott J. Beatty BASc Body Heaving Wave Energy Converter by Scott J. Beatty BASc, University of British Columbia, 2003 A relative motion based heaving point absorber wave energy converter is being co- developed by researchers

Victoria, University of

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves  

E-Print Network [OSTI]

Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves S waves. Our results show that the contributions to the total energy flux from these additional terms as well as non- linearity. The partitioning of the incident internal wave energy over the course

Fringer, Oliver B.

262

Surface current effects on the fetch-limited growth of wave energy Brian K. Haus1  

E-Print Network [OSTI]

Surface current effects on the fetch-limited growth of wave energy Brian K. Haus1 Received 5 the fetch-limited growth of wind wave energy over a region with significant lateral shear of the current. Both the near-surface currents and wave energy and period were mapped over the highly sheared inshore

Miami, University of

263

Numerical modeling of extreme rogue waves generated by directional energy focusing  

E-Print Network [OSTI]

Numerical modeling of extreme rogue waves generated by directional energy focusing Christophe angle of directional energy focusing. We find that an over- turning rogue wave can have different are characterized by their brief occurrence in space and time, resulting from a local focusing of wave energy

Grilli, Stéphan T.

264

Loops of Energy Bands for Bloch Waves in Optical Lattices By Matt Coles and Dmitry Pelinovsky  

E-Print Network [OSTI]

Loops of Energy Bands for Bloch Waves in Optical Lattices By Matt Coles and Dmitry Pelinovsky We the energy bands for Bloch waves in optically trapped Bose­Einstein condensates. The comparison between in this context. These bifurcations generate loops in the energy bands of the Bloch waves near the ends

Pelinovsky, Dmitry

265

File:UtahEnergyForumSiting.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to:Siting.pdf Jump to: navigation, search File

266

MHK Technologies/Wave Energy Seawater Transmission WEST | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png Technology ProfileWave

267

L-Shaped Flume Wave Basin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute of TechnologyL-Shaped Flume Wave

268

Novel control of a permanent magnet linear generator for ocean wave energy applications.  

E-Print Network [OSTI]

??Wave energy conversion devices are a rapidly growing interest worldwide for the potential to harness a sustainable and renewable energy source. Due to the oscillatory… (more)

VanderMeulen, Aaron H.

2007-01-01T23:59:59.000Z

269

EM Recovery Act Lessons Learned (Sites) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirementsDraft Environmental ImpactEM Active Sites (large)of Energy

270

Sandia National Laboratories: Wave Energy Resource Characterization at US  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinks Water Power

271

Abstract--Wave energy will have a key role in meeting re-newable energy targets en route to a low carbon economy. How-  

E-Print Network [OSTI]

1 Abstract--Wave energy will have a key role in meeting re- newable energy targets en route will impact on wave energy conversion. Where the resource is restricted there may be reductions in energy the sensitivity of wave energy production and econom- ics to changes in climate. Index Terms--Wave energy

Harrison, Gareth

272

Wave equations for determining energy-level gaps of quantum systems  

E-Print Network [OSTI]

An differential equation for wave functions is proposed, which is equivalent to Schr\\"{o}dinger's wave equation and can be used to determine energy-level gaps of quantum systems. Contrary to Schr\\"{o}dinger's wave equation, this equation is on `bipartite' wave functions. It is shown that those `bipartite' wave functions satisfy all the basic properties of Schr\\"{o}dinger's wave functions. Further, it is argued that `bipartite' wave functions can present a mathematical expression of wave-particle duality. This provides an alternative approach to the mathematical formalism of quantum mechanics.

Zeqian Chen

2006-09-10T23:59:59.000Z

273

A Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter  

E-Print Network [OSTI]

's excessive energy demand. An extremely abundant and promising source of energy exists in oceans. Currently be included in one of the following categories: wave energy, marine and tidal current energy, ocean thermalA Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter in Irregular

Brest, Université de

274

Site Sustainability Plan (SSP) 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2 Site Sustainability Plan (SSP) 2012 Site Sustainability Plan (SSP) 2012 2012 More Documents & Publications Site Sustainability Plan (SSP) 2013 2014 Site Sustainability Plan Site...

275

A high-frequency gravitational-wave burst search with LIGO's Hanford site  

E-Print Network [OSTI]

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a network of long-arm interferometers designed to directly measure gravitational-wave strain. Direct observation of gravitational waves would provide a test ...

Villadsen, Jacqueline Rose

2009-01-01T23:59:59.000Z

276

A high-frequency gravitational-wave burst search with LIGO's Hanford site .  

E-Print Network [OSTI]

??The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a network of long-arm interferometers designed to directly measure gravitational-wave strain. Direct observation of gravitational waves would provide… (more)

Villadsen, Jacqueline Rose

2009-01-01T23:59:59.000Z

277

WEC up! Energy Department Announces Wave Energy Conversion Prize  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear

278

Energy Department Announces $10 million for Wave Energy Demonstration at  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 & 6, 2012 MEETING OFCalifornia Concentrating Solar Power

279

Track 2: Sustainable Energy I. Renewable Energy: Wind and Wave  

E-Print Network [OSTI]

. Pulse uses an oscillating hydrofoil for energy capture: horizontal wing-shaped blades move up and down in the water column, much like a whale's tail. This oscillating motion is converted to electricity through

280

Oregon Wave Energy Trust OWET | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: EnergyOpenBarterVirginia.Land orFacilitiesOregonOSUWave

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet  

E-Print Network [OSTI]

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II structures that dominate wave momentum and energy transport. When the interior of a typical midlatitude jet and energy at jet interior critical levels. Longer waves transport momentum and energy away from the jet

Farrell, Brian F.

282

Wave Energy Conversion Overview and it's Renewable Energy Potential for the Oil and Gas Industry  

E-Print Network [OSTI]

Ocean energy conversion has been of interest for many years. Recent developments such as concern over global warming have renewed interest in the topic. Part II provides an overview of the energy density found in ocean waves and how it is calculated...

Pastor, J.; Liu, Y.; Dou, Y.

2014-01-01T23:59:59.000Z

283

ccsd00001869, Multi-ion-species e ects on magnetosonic waves and energy  

E-Print Network [OSTI]

ccsd­00001869, version 1 ­ 22 Oct 2004 Multi-ion-species e#11;ects on magnetosonic waves and energy, wave damping, energy transport 1. Introduction The presence of multiple ion species introduces many Magnetosonic waves propagating perpendicular to an external magnetic #12;eld are studied with attention

284

Internal wave energy radiated from a turbulent mixed layer James R. Munroe1, a)  

E-Print Network [OSTI]

Internal wave energy radiated from a turbulent mixed layer James R. Munroe1, a) and Bruce R of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from

Sutherland, Bruce

285

Higher Energy States in the CO Dimer: Millimeter-Wave Spectra and Rovibrational Calculations  

E-Print Network [OSTI]

Higher Energy States in the CO Dimer: Millimeter-Wave Spectra and Rovibrational Calculations Leonid millimeter-wave data yielded the precise location of 33 new energy levels of A+ symmetry and 20 levels of A extensive millimeter-wave measurements of the 12C16O dimer have been made, and more than 300 new spectral

286

Equal energy phase space trajectories in resonant wave interactions O. Yaakobia  

E-Print Network [OSTI]

Equal energy phase space trajectories in resonant wave interactions O. Yaakobia and L. Friedlandb interacting wave systems with nonlinear frequency/ wave vector shifts is discussed. The corresponding these parameters vary in time or space. It is shown that the oscillation periods of two equal energy trajectories

Friedland, Lazar

287

Energy deposition by Alfven waves into the dayside auroral oval: Cluster and FAST observations  

E-Print Network [OSTI]

Energy deposition by Alfve´n waves into the dayside auroral oval: Cluster and FAST observations C observations from the Cluster and FAST spacecraft showing the deposition of energy into the auroral ionosphere from broadband ULF waves in the cusp and low-latitude boundary layer. A comparison of the wave Poynting

California at Berkeley, University of

288

Nonlinear shear wave interaction at a frictional interface: Energy dissipation and generation of harmonics  

E-Print Network [OSTI]

Nonlinear shear wave interaction at a frictional interface: Energy dissipation and generation solids, brought into frictional contact by remote normal compression. A shear wave, either time har the partition of energy resulting from a time harmonic obliquely incident plane SH wave reflected and refracted

Norris, Andrew

289

On the energy transported by exact plane gravitational-wave solutions  

E-Print Network [OSTI]

The energy and momentum transported by exact plane gravitational-wave solutions of Einstein equations are computed using the teleparallel equivalent formulation of Einstein's theory. It is shown that these waves transport neither energy nor momentum. A comparison with the usual linear plane gravitational-waves solution of the linearized Einstein equation is presented.

Yuri N. Obukhov; J. G. Pereira; Guillermo F. Rubilar

2009-09-24T23:59:59.000Z

290

Electrostatic electron cyclotron waves generated by low-energy electron beams  

E-Print Network [OSTI]

Electrostatic electron cyclotron waves generated by low-energy electron beams J. D. Menietti, O the role of electron beams with E ] 1 keV in the generation of these waves. Observed plasma parameters these waves are an indicator of the presence of low-energy electron beams and a cold electron component (E ] 0

Santolik, Ondrej

291

MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE  

SciTech Connect (OSTI)

Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1, 2009 for 7 wells in the 200-PO-1 OU and Gable Gap regions (see Figure 3 and Figure 4); and March 22, 2010 and April 19, 2010 for 17 wells in the 200 East, The initial scope of survey work was planned for Wells 299-EI8-1, 699-2-E14, 699-12-18, 699-16-51, 699-42-30, 699-53-55B, 699-54-18D, and 699-84-34B. Well 299-E18-1 could not be entered due to bent casing (prevented removal of the pump), wells 699-12-18 and 699-42-30 could not be safely reached by the logging truck, Well 699-16-51 was decommissioned prior to survey start, Well 699-53-55B did not have its pump pulled, and Wells 699-2-EI4, 699-54-18D, and 699-84-34B are artesian and capped with an igloo structure. Table 1 provides a list of wells that were surveyed and Figure 1 through Figure 5 show the well locations relative to the Hanford Site.

PETERSON SW

2010-10-08T23:59:59.000Z

292

2010 Annual Site Environmental Report (ASER) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley Responsible DOEQA: NAPlan 2006Department of 2010 Annual Site

293

3D Site Response using NLSSI | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmission |4MembershipQUARTERLY1, in:31,000003D Site

294

An evaluation of the potential of coastal wetlands for hurricane surge and wave energy reduction  

E-Print Network [OSTI]

potential, a segmented marsh may offer comparable surge protection to that of a continuous marsh. Wave heights are generally increased within the marsh due to the transmission of wave energy through marsh channels. Results presented in this thesis may assist...

Loder, Nicholas Mason

2009-05-15T23:59:59.000Z

295

Experimental studies of the hydrodynamic characteristics of a sloped wave energy device   

E-Print Network [OSTI]

Many wave energy convertors are designed to use either vertical (heave) or horizontal (surge) movements of waves. But the frequency response of small heaving buoys and oscillating water column devices shows that they are ...

Lin, Chia-Po

2000-07-19T23:59:59.000Z

296

Ocean Wave Energy Company OWECO | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLCWashington:

297

Ocean Wave Wind Energy Ltd OWWE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLCWashington:OWWE

298

California Wave Energy Partners LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: CrystallineOpenPermit

299

Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.  

SciTech Connect (OSTI)

A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

2014-09-01T23:59:59.000Z

300

Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.  

SciTech Connect (OSTI)

A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect (OSTI)

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

302

Asymptotic Stability and Completeness in the Energy Space for Nonlinear Schrödinger Equations with Small Solitary Waves  

E-Print Network [OSTI]

In this paper we study a class of nonlinear Schr\\"odinger equations which admit families of small solitary wave solutions. We consider solutions which are small in the energy space $H^1$, and decompose them into solitary wave and dispersive wave components. The goal is to establish the asymptotic stability of the solitary wave and the asymptotic completeness of the dispersive wave. That is, we show that as $t \\to \\infty$, the solitary wave component converges to a fixed solitary wave, and the dispersive component converges to a solution of the free Schr\\"odinger equation.

Stephen Gustafson; Kenji Nakanishi; Tai-Peng Tsai

2003-08-06T23:59:59.000Z

303

Site Sustainability Plan (SSP) 2013 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sustainability Plan (SSP) 2013 Site Sustainability Plan (SSP) 2013 Site Sustainability Plan (SSP) 2013 2013 Site Sustainability Plan More Documents & Publications Site...

304

Site Sustainability Plan (SSP) 2010 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0 Site Sustainability Plan (SSP) 2010 Site Sustainability Plan (SSP) 2010 2010 More Documents & Publications Site Sustainability Plan (SSP) 2012 Site Sustainability Plan (SSP) 2013...

305

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics ContentHydropower, Wave

306

Negative energy waves and MHD stability of rotating plasmas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007 (nextNauruNeenergy waves and MHD

307

BlueWave Capital LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE ISJumpSphere Corp JumpBlueWave Capital LLC

308

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network [OSTI]

proposed Ocean Thermal Energy Conversion (OTEC) sites toassessment: ocean thermal energy conversion (OTEC) program;operation of Ocean Thermal Energy Conversion (OTEC) power

Ryan, Constance J.

2013-01-01T23:59:59.000Z

309

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network [OSTI]

assessment: ocean thermal energy conversion (OTEC) program;proposed Ocean Thermal Energy Conversion (OTEC) sites tooperation of Ocean Thermal Energy Conversion (OTEC) power

Ryan, Constance J.

2013-01-01T23:59:59.000Z

310

Energy flux of Alfven waves in weakly ionized plasma  

E-Print Network [OSTI]

The overshooting convective motions in the solar photosphere are frequently proposed as the source for the excitation of Alfv\\'en waves. However, the photosphere is a) very weakly ionized, and, b) the dynamics of the plasma particles in this region is heavily influenced by the plasma-neutral collisions. The purpose of this work is to check the consequences of these two facts on the above scenario and their effects on the electromagnetic waves. It is shown that the ions and electrons in the photosphere are both un-magnetized; their collision frequency with neutrals is much larger than the gyro-frequency. This implies that eventual Alfv\\'en-type electromagnetic perturbations must involve the neutrals as well. This has the following serious consequences: i) in the presence of perturbations, the whole fluid (plasma + neutrals) moves; ii) the Alfv\\'en velocity includes the total (plasma + neutrals) density and is thus considerably smaller compared to the collision-less case; iii) the perturbed velocity of a unit volume, which now includes both plasma and neutrals, becomes much smaller compared to the ideal (collision-less) case; and iv) the corresponding wave energy flux for the given parameters becomes much smaller compared to the ideal case.

J. Vranjes; S. Poedts; B. P. Pandey; B. De Pontieu

2008-05-29T23:59:59.000Z

311

U.S. Departments of Energy and Interior Announce Site for Solar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. Departments of Energy and Interior Announce Site for Solar Energy Demonstration Projects in the Nevada Desert U.S. Departments of Energy and Interior Announce Site for Solar...

312

Requirements for Renewable Energy on Federal Sites | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReply Comments ofDepartmentDepartmentRequirements for

313

European Wave and Tidal Energy Conference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energy Environmental RestorationErik HyrkasMarketsSeeking

314

Green Wave Energy Corp GWEC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place: Golden, COIndianaLondon,Wind FarmEnergy Corp GWEC

315

Semiclassical wave functions and energy spectra in polygon billiards  

E-Print Network [OSTI]

A consistent scheme of semiclassical quantization in polygon billiards by wave function formalism is presented. It is argued that it is in the spirit of the semiclassical wave function formalism to make necessary rationalization of respective quantities accompanied the procedure of the semiclassical quantization in polygon billiards. Unfolding rational polygon billiards (RPB) into corresponding Riemann surfaces (RS) periodic structures of the latter are demonstrated with 2g independent periods on the respective multitori with g as their genuses. However it is the two dimensional real space of the real linear combinations of these periods which is used for quantizing RPB. A class of doubly rational polygon billiards (DRPB) is distinguished for which these real linear relations are rational and their semiclassical quantization by wave function formalism is presented. It is shown that semiclassical quantization of both the classical momenta and the energy spectra are determined completely by periodic structure of the corresponding RS. Each RS is then reduced to elementary polygon patterns (EPP) as its basic periodic elements. Each such EPP can be glued to a torus of genus g. Semiclassical wave functions (SWF) are then constructed on EPP. The SWF for DRPB appear to be exact. They satisfy the Dirichlet, the Neumannn or the mixed boundary conditions. Not every mixing is allowed however and a respective incompleteness of SWF is discussed. Dens families of DRPB are used for approximate semiclassical quantization of RPB. General rational polygons are quantized by approximating them by DRPB. An extension of the formalism to irrational polygons is described as well. The semiclassical approximations constructed in the paper are controlled by general criteria of the eigenvalue theory. A relation between the superscar solutions and SWF constructed in the paper is also discussed.

Stefan Giller

2014-12-01T23:59:59.000Z

316

Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter  

SciTech Connect (OSTI)

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

2015-01-01T23:59:59.000Z

317

Site Transition Process Upon Cleanup Completion | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergy DataPlan Guidance Site

318

Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays  

SciTech Connect (OSTI)

This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed BuoysĂ?Â?Ă?Â?Ă?Â?Ă?Âť that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

2013-01-26T23:59:59.000Z

319

Variational theory for site resolved protein folding free energy surfaces  

E-Print Network [OSTI]

We present a microscopic variational theory for the free energy surface of a fast folding protein that allows folding kinetics to be resolved to the residue level using Debye-Waller factors as local order parameters. We apply the method to lambda-repressor and compare with site directed mutagenesis experiments. The formation of native structure and the free energy profile along the folding route are shown to be well described by the capillarity approximation but with some fine structure due to local folding topology.

John J. Portman; Shoji Takada; Peter G. Wolynes

1999-01-18T23:59:59.000Z

320

Hanford Site - 200-UP-1 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanfordUP-1 Hanford Site -

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hanford Site - 200-ZP-1 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanfordUP-1 Hanford Site

322

Sea ice floes dissipate the energy of steep ocean waves  

E-Print Network [OSTI]

Wave attenuation by ice floes is an important parameter for modelling the Arctic Oceans. At present, attenuation coefficients are extracted from linear models as a function of the incident wave period and floe thickness. Recent explorations in the Antarctic Mixed Ice Zone (MIZ) revealed a further dependence on wave amplitude, suggesting that nonlinear contributions are non-negligible. An experimental model for wave attenuation by a single ice floe in a wave flume is here presented. Observations are compared with linear predictions based on wave scattering. Results indicate that linear models perform well under the effect of gently sloping waves. For more energetic wave fields, however, transmitted wave height is normally over predicted. Deviations from linearity appear to be related to an enhancement of wave dissipation induced by unaccounted wave-ice interaction processes, including the floe over wash.

Toffoli, Alessandro; Meylan, Michael H; Cavaliere, Claudio; Alberello, Alberto; Elsnab, John; Monty, Jason P

2015-01-01T23:59:59.000Z

323

Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish  

E-Print Network [OSTI]

Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish Princeton Plasma Physics, the "Gardner free energy." Here, the plasma is rearranged incompressibly in the six- dimensional phase space of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma

324

Shell-instability generated waves by low energy electrons on converging magnetic field lines  

E-Print Network [OSTI]

Shell-instability generated waves by low energy electrons on converging magnetic field lines D of observations of such shell type distributions having positive slope in velocity space at low energies, about 10´cre´au (2006), Shell-instability generated waves by low energy electrons on converging magnetic field lines

California at Berkeley, University of

325

Model-predicted distribution of wind-induced internal wave energy in the world's oceans  

E-Print Network [OSTI]

Model-predicted distribution of wind-induced internal wave energy in the world's oceans Naoki 9 July 2008; published 30 September 2008. [1] The distribution of wind-induced internal wave energy-scaled kinetic energy are all consistent with the available observations in the regions of significant wind

Miami, University of

326

Non-existence of Global Energy-Minimisers in Stokes Wave Problems  

E-Print Network [OSTI]

Non-existence of Global Energy-Minimisers in Stokes Wave Problems J. F. Toland Abstract Recently it was shown that a wave profile which minimises total energy, elastic plus hydrodynamic, subject theories of existence. The purpose here is to show that, without surface energy, global minimisers do

327

Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography  

SciTech Connect (OSTI)

In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

2012-01-10T23:59:59.000Z

328

1. We can hear around corners, but we cannot see around corners. The reason is that a) Sound waves carry more energy than do light waves  

E-Print Network [OSTI]

1. We can hear around corners, but we cannot see around corners. The reason is that a) Sound waves carry more energy than do light waves b) The frequency of sound is much greater than that of light c) The wavelength of sound is much greater than that of light d) Sound waves are longitudinal, while light waves

Coleman, Piers

329

Investigating the impact of wave energy in the electric power system - A case study of southern Sweden.  

E-Print Network [OSTI]

??The aim of this thesis has been to investigate the impact of wave energy in the electric power system of southern Sweden. How does wave… (more)

von Sydow, Tyra

2014-01-01T23:59:59.000Z

330

Table 1c. Off-Site Produced Energy (Site Energy)For Selected Industries,  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 272Production331998, and

331

Heteroclinic standing waves in defocussing DNLS equations -- Variational approach via energy minimization  

E-Print Network [OSTI]

We study heteroclinic standing waves (dark solitons) in discrete nonlinear Schr\\"{o}dinger equations with defocussing nonlinearity. Our main result is a quite elementary existence proof for waves with monotone and odd profile, and relies on minimizing an appropriately defined energy functional. We also study the continuum limit and the numerical approximation of standing waves.

Michael Herrmann

2010-02-08T23:59:59.000Z

332

Coda wave interferometry and the equilibration of energy in elastic media Roel Snieder  

E-Print Network [OSTI]

Coda wave interferometry and the equilibration of energy in elastic media Roel Snieder Department of Geophysics and Center for Wave Phenomena, Colorado School of Mines, Golden, Colorado 80401 Received 14 May 2002; published 21 October 2002 Multiple-scattered waves usually are not useful for creating

Snieder, Roel

333

One-Way Wave Propagation Through Smoothly Varying Media Controlling the Energy Production at Home  

E-Print Network [OSTI]

One-Way Wave Propagation Through Smoothly Varying Media Controlling the Energy Production at Home propagation through the earth, governed by the acoustic wave equation. Downward continuation is a technique, Citadel T100 As part of the application called migration or reflection seismic imaging, we model wave

Al Hanbali, Ahmad

334

Stress-wave energy management through material anisotropy Alireza V. Amirkhizi, Aref Tehranian, Sia Nemat-Nasser  

E-Print Network [OSTI]

Stress-wave energy management through material anisotropy Alireza V. Amirkhizi, Aref Tehranian, Sia that if this axis initially coincides with the stress-wave vector, then the energy of the plane waves would closely the required anisotropy, and to experimentally demonstrate the management of stress-wave energy in a desired

Nemat-Nasser, Sia

335

How upgoing and downgoing energy fluxes contribute to the establishment of lamb waves in an immersed elastic  

E-Print Network [OSTI]

How upgoing and downgoing energy fluxes contribute to the establishment of lamb waves inhomogeneous waves does not transfer energy through the plate. Thus, nonstandard upgoing and downgoing waves pair "angle of incidence/frequency": the quasi-energy brought by the incident harmonic plane wave

Boyer, Edmond

336

THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER LAURA O'BRIEN, PAUL CHRISTODOULIDES, EMILIANO RENZI, DENYS DUTYKH,  

E-Print Network [OSTI]

THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER LAURA O'BRIEN, PAUL CHRISTODOULIDES, EMILIANO in the open ocean but as the wave approaches the shore its energy is com­ pressed creating large destructive waves. The question posed here is whether a nearshore wave energy converter (WEC) could withstand

337

THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER LAURA O'BRIEN, PAUL CHRISTODOULIDES, EMILIANO RENZI, DENYS DUTYKH,  

E-Print Network [OSTI]

THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER LAURA O'BRIEN, PAUL CHRISTODOULIDES, EMILIANO in the open ocean but as the wave approaches the shore its energy is com- pressed creating large destructive waves. The question posed here is whether a nearshore wave energy converter (WEC) could withstand

Boyer, Edmond

338

Meteorological Observations for Renewable Energy Applications at Site 300  

SciTech Connect (OSTI)

In early October 2010, two Laser and Detection Ranging (LIDAR) units (LIDAR-96 and LIDAR-97), a 3 m tall flux tower, and a 3 m tall meteorological tower were installed in the northern section of Site 300 (Figure 1) as a first step in development of a renewable energy testbed facility. This section of the SMS project is aimed at supporting that effort with continuous maintenance of atmospheric monitoring instruments capable of measuring vertical profiles of wind speed and wind direction at heights encountered by future wind power turbines. In addition, fluxes of energy are monitored to estimate atmospheric mixing and its effects on wind flow properties at turbine rotor disk heights. Together, these measurements are critical for providing an accurate wind resource characterization and for validating LLNL atmospheric prediction codes for future renewable energy projects at Site 300. Accurate, high-resolution meteorological measurements of wind flow in the planetary boundary layer (PBL) and surface-atmosphere energy exchange are required for understanding the properties and quality of available wind power at Site 300. Wind speeds at heights found in a typical wind turbine rotor disk ({approx} 40-140 m) are driven by the synergistic impacts of atmospheric stability, orography, and land-surface characteristics on the mean wind flow in the PBL and related turbulence structures. This section of the report details the maintenance and labor required in FY11 to optimize the meteorological instruments and ensure high accuracy of their measurements. A detailed look at the observations from FY11 is also presented. This portion of the project met the following milestones: Milestone 1: successful maintenance and data collection of LIDAR and flux tower instruments; Milestone 2: successful installation of solar power for the LIDAR units; and Milestone 3: successful implementation of remote data transmission for the LIDAR units.

Wharton, S; Alai, M; Myers, K

2011-10-26T23:59:59.000Z

339

Annual Site Environmental Reports (ASER) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Annual Site Environmental Reports (ASER) Annual Site Environmental Reports (ASER) Annual Site Environmental Reports (ASERs) are required by DOE O 231.1B. The ASERs provide...

340

Hanford Site Worker Eligibility Tool | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Site Worker Eligibility Tool Hanford Site Worker Eligibility Tool May 16, 2013 Presenter: Ted Giltz, Volpentest HAMMER Federal Training Center Topics Covered: The Hanford Site...

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Paducah Annual Site Environmental Reports | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRocky Mountain OTCAnnual Site Environmental

342

Portsmouth DOE & Site Contractors | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014 In reply refer to:Site Background »

343

Paducah DOE and Site Contractors | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr. Steven Para9 Revision:PaducahSite Background »

344

Major Facility Siting Program - Circular 2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain:&Maitland, Florida:°Siting

345

Solar Site Screening Decision Tree | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliabilityDepartment of Energy to

346

Protocol, Site Leads - May 2011 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment of Energy 0 DOEProtocol forSite Leads - May 2011

347

Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites  

SciTech Connect (OSTI)

Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

Dennis Castonguay

2012-06-29T23:59:59.000Z

348

Energy infrastructure of the United States and projected siting needs: Scoping ideas, identifying issues and options. Draft report of the Department of Energy Working Group on Energy Facility Siting to the Secretary  

SciTech Connect (OSTI)

A Department of Energy (DOE) Working Group on Energy Facility Siting, chaired by the Policy Office with membership from the major program and staff offices of the Department, reviewed data regarding energy service needs, infrastructure requirements, and constraints to siting. The Working Group found that the expeditious siting of energy facilities has important economic, energy, and environmental implications for key Administration priorities.

Not Available

1993-12-01T23:59:59.000Z

349

Environmental siting suitability analysis for commercial scale ocean renewable energy| A southeast Florida case study.  

E-Print Network [OSTI]

?? This thesis aims to facilitate the siting and implementation of Florida Atlantic University Southeast National Marine Renewable Energy Center (FAU SNMREC) ocean current energy… (more)

Mulcan, Amanda

2015-01-01T23:59:59.000Z

350

Waves  

E-Print Network [OSTI]

Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...

LaCure, Mari Mae

2010-04-29T23:59:59.000Z

351

Loss of purity by wave packet scattering at low energies  

E-Print Network [OSTI]

We study the quantum entanglement produced by a head-on collision between two gaussian wave packets in three-dimensional space. By deriving the two-particle wave function modified by s-wave scattering amplitudes, we obtain an approximate analytic expression of the purity of an individual particle. The loss of purity provides an indicator of the degree of entanglement. In the case the wave packets are narrow in momentum space, we show that the loss of purity is solely controlled by the ratio of the scattering cross section to the transverse area of the wave packets.

Jia Wang; C. K. Law; M. -C. Chu

2006-01-06T23:59:59.000Z

352

Oversight Reports - Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 22, 2013 Independent Activity Report, Savannah River Site - March 2013 Oversight Scheduling an Operational Awareness at the Savannah River Site HIAR-SRS-2013-03-25...

353

Data Center Energy Efficiency and Renewable Energy Site Assessment: Anderson Readiness Center; Salem, Oregon  

SciTech Connect (OSTI)

This report summarizes the results from the data center energy efficiency and renewable energy site assessment conducted for the Oregon Army National Guard in Salem, Oregon. A team led by NREL conducted the assessment of the Anderson Readiness Center data centers March 18-20, 2014 as part of ongoing efforts to reduce energy use and incorporate renewable energy technologies where feasible. Although the data centers in this facility account for less than 5% of the total square footage, they are estimated to be responsible for 70% of the annual electricity consumption.

Metzger, I.; Van Geet, O.

2014-06-01T23:59:59.000Z

354

Home Energy Saver Web Site Documentation Version 1.2 Documentation of Calculation Methodology, Input Data,  

E-Print Network [OSTI]

for estimating energy consumption. Using engineering models, the site estimates energy consumption for six major of the house and energy consuming appliances. Outputs include energy consumption (by fuel and end use), energy-related emissions (carbon dioxide), energy bills (total and by fuel and end use), and energy saving recommendations

355

Wave Power: Destroyer of Rocks; Creator of Clean Energy  

Broader source: Energy.gov [DOE]

Presentation covers the topic of wave power at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

356

Manta Wings: Wave Energy Testing Floats to Puget Sound | Department...  

Broader source: Energy.gov (indexed) [DOE]

approximately 11 feet tall. "Puget Sound has the appropriate scale waves for these test models. It's mimicking a real ocean environment," says Reenst Lesemann, VP of Business...

357

9/18/09 2:09 PM'Big Wave' Theory Offers Alternative to Dark Energy -Physical Science Page 1 of 3http://scienceblips.dailyradar.com/story/big_wave_theory_offers_alternative_to_dark_energy/  

E-Print Network [OSTI]

9/18/09 2:09 PM'Big Wave' Theory Offers Alternative to Dark Energy - Physical Science Page 1 of 3http://scienceblips.dailyradar.com/story/big_wave_theory_offers_alternative_to_dark_energy/ Gadget.com - 30 days ago 'Big Wave' Theory Offers Alternative to Dark Energy -- Mathematicians have proposed

Temple, Blake

358

The unexpected role of D waves in low-energy neutral pion photoproduction  

E-Print Network [OSTI]

It has been commonly assumed that low-energy neutral pion photoproduction from the proton can be described accounting only for S and P waves, and that higher partial waves are irrelevant. We have found that this assumption is not correct and that the inclusion of D waves is necessary to obtain a reliable extraction of the $E_{0+}$ multipole from experimental data. This is due in large measure to the spontaneous breaking of chiral symmetry in QCD which leads to very small S-wave contributions. This makes the usual partial wave expansion less accurate and although D waves are small, their contribution is enhanced through the interference with P waves, which compromises the S-wave extraction from data if D waves are not taken into account. In our work we have used Heavy Baryon Chiral Perturbation Theory to one loop, and up to ${\\cal O}(q^4)$, to account for the S and P waves, while D waves are added in an almost model-independent way using standard Born terms and vector mesons. We also show that higher partial waves do not play an important role.

C. Fernandez-Ramirez

2009-12-21T23:59:59.000Z

359

Dissipation of Modified Entropic Gravitational Energy Through Gravitational Waves  

E-Print Network [OSTI]

The phenomenological nature of a new gravitational type interaction between two different bodies derived from Verlinde's entropic approach to gravitation in combination with Sorkin's definition of Universe's quantum information content, is investigated. Assuming that the energy stored in this entropic gravitational field is dissipated under the form of gravitational waves and that the Heisenberg principle holds for this system, one calculates a possible value for an absolute minimum time scale in nature $\\tau=15/16 \\frac{\\Lambda^{1/2}\\hbar G}{c^4}\\sim9.27\\times10^{-105}$ seconds, which is much smaller than the Planck time $t_{P}=(\\hbar G/c^5)^{1/2}\\sim 5.38\\times10^{-44}$ seconds. This appears together with an absolute possible maximum value for Newtonian gravitational forces generated by matter $F_g=32/30\\frac{c^7}{\\Lambda \\hbar G^2}\\sim 3.84\\times 10^{165}$ Newtons, which is much higher than the gravitational field between two Planck masses separated by the Planck length $F_{gP}=c^4/G\\sim1.21\\times10^{44}$ Newtons.

Clovis Jacinto de Matos

2011-11-04T23:59:59.000Z

360

Placing power linres : GIS helps site energy corridors.  

SciTech Connect (OSTI)

Turn the lights on when you enter a room, then turn the lights off when you leave. Most of us repeat this sequence many times each day, and never give it another thought. But that seemingly simple light switch on the wall connects us to one of the most complex systems in the world: the electrical grid. Most of the United States is served by a highly reliable and adequate supply of electrical power, which is distributed through a grid of thousands of miles of electricity-transmission lines. However, as the electricity-supply infrastructure ages and consumer demand for electricity grows, the capacity to deliver electrical power hasn't kept pace with demand, and upgrading the electrical-transmission grid has become a more pressing need. From 1988-1998, demand for transmission grew by 30 percent while transmission grew by only 15 percent. From 1999-2009, demand grew by 20 percent and transmission by only 3 percent Despite a short-term decline related to the economic downturn and improved efficiency, U.S. energy consumption is expected to increase by 14 percent between 2008 and 2035. This growth will drive the need to develop viable routes for new transmission lines. Because transmission lines extend over large distances, they typically cross many federal, tribal, state, local and private land jurisdictions, each with a complex and varying set of siting issues and land-management practices. And as the existing grid needs improvement to meet growing demand, the U.S. is rapidly developing renewable energy sources, particularly solar and wind energy, often in areas far removed from existing electricity-transmission infrastructure and energy-consumption areas.

Kuiper, J. A.; Cantwell, B.; Hlohowskyj, I.; Moore, H. R. (Environmental Science Division)

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Resonant energy conversion of 3-minute intensity oscillations into Alfven waves in the solar atmosphere  

E-Print Network [OSTI]

Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.

D. Kuridze; T. V. Zaqarashvili

2007-03-19T23:59:59.000Z

362

Agricultural and Forest Meteorology 113 (2002) 223243 Energy balance closure at FLUXNET sites  

E-Print Network [OSTI]

Agricultural and Forest Meteorology 113 (2002) 223­243 Energy balance closure at FLUXNET sites Kell, USA p Department of Forest Science and Resources, University of Tuscia, 1-01100 Viterbo, Italy q Abstract A comprehensive evaluation of energy balance closure is performed across 22 sites and 50 site

Cohen, Ronald C.

363

15.1 Preliminaries: Wave Motion and Light 15.2 Experimental Basis of Energy Quantization  

E-Print Network [OSTI]

#12;15.1 Preliminaries: Wave Motion and Light #12;#12;#12;15.2 Experimental Basis of Energy the radical concept of energy quantization to explain two of these results. #12;Blackbody Radiation · Every object emits energy through thermal radiation from its surface. · This energy is carried

Ihee, Hyotcherl

364

Third-order Coulomb corrections to the S-wave Green function, energy levels and wave functions at the origin  

E-Print Network [OSTI]

We obtain analytic expressions for the third-order corrections due to the strong interaction Coulomb potential to the S-wave Green function, energy levels and wave functions at the origin for arbitrary principal quantum number n. Together with the known non-Coulomb correction this results in the complete spectrum of S-states up to order alpha_s^5. The numerical impact of these corrections on the Upsilon spectrum and the top quark pair production cross section near threshold is estimated.

M. Beneke; Y. Kiyo; K. Schuller

2007-05-30T23:59:59.000Z

365

Energy Transport by Nonlinear Internal Waves College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon  

E-Print Network [OSTI]

Energy Transport by Nonlinear Internal Waves J. N. MOUM College of Oceanic and Atmospheric Sciences in the bottom bound- ary layer. In the nonlinear internal waves that were observed, the kinetic energy. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear

Kurapov, Alexander

366

Introduction Counterpropagating interactions Numerical methods Co-propagating interactions A result on energy transfer Solitary water wave interactions  

E-Print Network [OSTI]

on energy transfer Solitary water wave interactions Walter Craig Department of Mathematics & Statistics (energy loss) and S (amplitude change). Walter Craig McMaster University Solitary wave interactions #12 (energy loss) and S (amplitude change). Walter Craig McMaster University Solitary wave interactions #12

Craig, Walter

367

Design Methodology for a SEAREV Wave Energy Marie Ruellan, Hamid BenAhmed, Bernard Multon, Christophe Josset, Aurelien Babarit,  

E-Print Network [OSTI]

1 Design Methodology for a SEAREV Wave Energy Converter Marie Ruellan, Hamid BenAhmed, Bernard by presenting two power take-off (PTO) technologies for the SEAREV wave energy converter (WEC) followed technologies in- tended to transform wave energy into electricity. The types of systems are twofold

Boyer, Edmond

368

Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational Energy Agency |AwardJohnson, Steve5,ShiprockPaducahSiteSiteUNITED

369

Dynamical Energy Analysis - determining wave energy distributions in complex vibro-acoustical structures  

E-Print Network [OSTI]

We propose a new approach towards determining the distribution of mechanical and acoustic wave energy in complex built-up structures. The technique interpolates between standard Statistical Energy Analysis (SEA) and full ray tracing containing both these methods as limiting case. By writing the flow of ray trajectories in terms of linear phase space operators, it is suggested here to reformulate ray-tracing algorithms in terms of boundary operators containing only short ray segments. SEA can now be identified as a low resolution ray tracing algorithm and typical SEA assumptions can be quantified in terms of the properties of the ray dynamics. The new technique presented here enhances the range of applicability of standard SEA considerably by systematically incorporating dynamical correlations wherever necessary. Some of the inefficiencies inherent in typical ray tracing methods can be avoided using only a limited amount of the geometrical ray information. The new dynamical theory - Dynamical Energy Analysis (DEA) - thus provides a universal approach towards determining wave energy distributions in complex structures.

Gregor Tanner

2008-03-12T23:59:59.000Z

370

The EERE Web Site Has a New Look! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The EERE Web Site Has a New Look The EERE Web Site Has a New Look March 8, 2010 - 10:58am Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory The...

371

Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion  

E-Print Network [OSTI]

Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion Ralf Starzmann Fluid the water wave motion into a bi-directional air flow, which in turn drives an air turbine. The Wells turbine the environmental impact of an in situ Wells turbine in more detail requires an in depth understanding

Frandsen, Jannette B.

372

Wave run-up on a high-energy dissipative beach Peter Ruggiero  

E-Print Network [OSTI]

Wave run-up on a high-energy dissipative beach Peter Ruggiero Coastal and Marine Geology Program, U in foreshore beach morphology, wave run-up data collected along the central Oregon coast during February 1996 stand in contrast to run-up data currently available in the literature. During a single data run lasting

373

Demolishing Decay at the Hanford Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Demolishing Decay at the Hanford Site Demolishing Decay at the Hanford Site February 22, 2011 - 5:44pm Addthis The stacks and support structures of the 284 West Power House at the...

374

The U.S. Department of Energy's Brookhaven Site Office  

E-Print Network [OSTI]

, and · the federal stewardship of the site and institution. Long Island Solar Farm #12;6 Office of Science U

Homes, Christopher C.

375

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

have recovered by 5 cm when DSPR 30, but only by 1-2 cm when DSPR 10. Source: Smith et al. (2007). ... 2-14 Figure 2-9 Wave height reduction for a 90%...

376

Optimisation and comparison of integrated models of direct-drive linear machines for wave energy conversion   

E-Print Network [OSTI]

Combined electrical and structural models of five types of permanent magnet linear electrical machines suitable for direct-drive power take-off on wave energy applications are presented. Electromagnetic models were ...

Crozier, Richard Carson

2014-06-30T23:59:59.000Z

377

Wave Energy Extraction from an Oscillating Water Column in a Truncated Circular Cylinder  

E-Print Network [OSTI]

Oscillating Water Column (OWC) device is a relatively practical and convenient way that converts wave energy to a utilizable form, which is usually electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure...

Wang, Hao

2013-07-19T23:59:59.000Z

378

Novel millimeter wave sensor concepts for energy, environment, and national security  

E-Print Network [OSTI]

Millimeter waves are ideally suited for sensing and diagnosing materials, devices, and processes that are broadly important to energy, environment, and national security. Thermal return reflection (TRR) techniques that ...

Sundaram, S. K.

379

Request for Information Regarding a Proposed Funding Opportunity for Administration of the Wave Energy Converter Prize  

Broader source: Energy.gov [DOE]

This announcement is intended to serve as a Notice of Intent of the upcoming Funding Opportunity Announcement (FOA) regarding Administration of the Wave Energy Converter (WEC) Prize and Request for Information.

380

Request for Information Regarding a Proposed Funding Opportunity for Administration of the Wave Energy Converter Prize  

Broader source: Energy.gov [DOE]

This announcement is intended to serve as a Notice of Intent of the upcoming Funding Opportunity Announcement (FOA) regarding Administration of the Wave Energy Converter (WEC) Prize and Request for Information to solicit information regarding pote

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Effect of a nonlinear power take off on a wave energy converter   

E-Print Network [OSTI]

This thesis is titled The influence of a nonlinear Power Take Off on a Wave Energy Converter. It looks at the effect that having a nonlinear Power Take Off (PTO) has on an inertial referenced, slack moored, point absorber, ...

Bailey, Helen Louise

2011-11-22T23:59:59.000Z

382

UTILITY OF EXTRACTING CY PARTICLE ENERGY BY WAVES N.J. FISCH, M.C. HERRMANN  

E-Print Network [OSTI]

UTILITY OF EXTRACTING CY PARTICLE ENERGY BY WAVES N.J. FISCH, M.C. HERRMANN Princeton Plasma. The utility of extracting CY particle power, and then diverting this power to fast fuel ions, is investigated

383

Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean  

E-Print Network [OSTI]

A global estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean is presented. The estimate is based on a linear theory applied to bottom topography at O(1–10) km scales obtained ...

Nikurashin, Maxim

384

THEORY OF GRAVITY "ENERGY-WAVE": THE ORIGIN Rodolfo Sergio Gonzlez Castro  

E-Print Network [OSTI]

THEORY OF GRAVITY "ENERGY-WAVE": THE ORIGIN Rodolfo Sergio González Castro Research Institute the gravitational acceleration with the gravitational wavelength corresponding to the "gravitational energy" density), derive an equation of the Energy-Momentum of Einstein suppressing this constant, and further I set

Paris-Sud XI, Université de

385

Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media  

E-Print Network [OSTI]

Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation property and accuracy. Compatible high order energy conserving time integrators are also proposed. The optimal error estimates and the energy conserving property are proved for the semi-discrete methods. Our

Shu, Chi-Wang

386

Energy conserving local discontinuous Galerkin methods for wave propagation Yulong Xing1  

E-Print Network [OSTI]

Energy conserving local discontinuous Galerkin methods for wave propagation problems Yulong Xing1 of applications. The energy conserving property is one of the guiding principles for numerical algorithms estimates, superconvergence toward a particular projection of the exact solution, and the energy conserving

Shu, Chi-Wang

387

Energy Momentum Pseudo-Tensor of Relic Gravitational Wave in Expanding Universe  

E-Print Network [OSTI]

We study the energy-momentum pseudo-tensor of gravitational wave, and examine the one introduced by Landau-Lifshitz for a general gravitational field and the effective one recently used in literature. In short wavelength limit after Brill-Hartle average, both lead to the same gauge invariant stress tensor of gravitational wave. For relic gravitational waves in the expanding universe, we examine two forms of pressure, $p_{gw}$ and $\\mathcal{P}_{gw}$, and trace the origin of their difference to a coupling between gravitational waves and the background matter. The difference is shown to be negligibly small for most of cosmic expansion stages starting from inflation. We demonstrate that the wave equation is equivalent to the energy conservation equation using the pressure $\\mathcal{P}_{gw}$ that includes the mentioned coupling.

Daiqin Su; Yang Zhang

2012-04-04T23:59:59.000Z

388

Mapping and Assessment of the United States Ocean Wave Energy Resource  

SciTech Connect (OSTI)

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration�¢����s (NOAA�¢����s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

Paul T. Jacobson; George Hagerman; George Scott

2011-12-01T23:59:59.000Z

389

February 5, 2013 10:35 9in x 6in Advances in Wave Turbulence b1517-ch02 2nd Reading Fluctuations of the Energy Flux in Wave Turbulence  

E-Print Network [OSTI]

Fluctuations of the Energy Flux in Wave Turbulence S. Auma^itre , E. Falcon,§ and S. Fauve SPEC, DSM, CEA.falcon@univ-paris-diderot.fr The key governing parameter of wave turbulence is the energy flux that drives the waves and cascades of energy among different scales through the weak interaction between waves. It was understood first

Falcon, Eric

390

ccsd-00001869,version1-22Oct2004 Multi-ion-species effects on magnetosonic waves and energy  

E-Print Network [OSTI]

ccsd-00001869,version1-22Oct2004 Multi-ion-species effects on magnetosonic waves and energy, wave damping, energy transport 1. Introduction The presence of multiple ion species introduces many Magnetosonic waves propagating perpendicular to an external magnetic field are studied with attention

Paris-Sud XI, Université de

391

Enforcement Documents - Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the Savannah River Site (EA-2000-08) June 7, 2000 Enforcement Letter, Savannah River Ecology Laboratory - June 7, 2000 Issued to Savannah River Ecology Laboratory related to...

392

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm  

E-Print Network [OSTI]

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm login | register |home tv shows schedule to Dark Energy // Current Page 2 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy

Temple, Blake

393

2007 Survey of Energy Resources World Energy Council 2007 Wave Energy COUNTRY NOTES  

E-Print Network [OSTI]

. International Bodies A number of important international bodies have been involved in ocean energy, including as the European Ocean Energy Association, which has been formed by all stakeholders in ocean energy (both within and outside Europe). Its aim is: to strengthen the development of the markets and technology for ocean energy

394

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network [OSTI]

to potential Ocean Thermal Energy Conversion (OTEC) sites inThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:

Commins, M.L.

2010-01-01T23:59:59.000Z

395

Lessons learned -- a comparison of the proposed on-site waste management facilities at the various Department of Energy sites  

SciTech Connect (OSTI)

The Department of Energy Sites (DOE) are faced with the challenge of managing several categories of waste generated from past or future cleanup activities, such as 11(e)2 byproduct material, low-level radioactive (LL), low-level radioactive mixed (LLM), transuranic (TRU), high level radioactive (HL), and hazardous waste (HW). DOE must ensure safe and efficient management of these wastes while complying with all applicable federal and state laws. Proposed waste management strategies for the EM-40 Environmental Restoration (ER) program at these sites indicate that on-site disposal is becoming a viable option. For purposes of this paper, on-site disposal cells managed by the EM-40 program at Hanford, Weldon Spring, Fernald Environmental Management Project (FEMP) and Rocky Flats were compared. Programmatic aspects and design features were evaluated to determine what comparisons can be made, and to identify benefits lessons learned that may be applicable to other sites. Based on comparative analysis, it can be concluded that the DOE EM-40 disposal cells are very unique. Stakeholders played a major role in the decision to locate the various DOE on-site disposal facilities. The disposal cells will be used to manage 11(e)2 by-product materials, LL, LLM, and/or HLW. The analysis further suggests that the design criteria are comparable. Lessons learned relative to the public involvement activities at Weldon Spring, and the design approach at Hanford should be considered when planning future on-site disposal facilities at DOE sites. Further, a detailed analysis of progress made at Hanford should be evaluated for application at sites such as Rocky Flats that are currently planning on-site disposal facilities.

Ciocco, J. [Dept. of Energy, Germantown, MD (United States); Singh, D. [Booz Allen and Hamilton, Germantown, MD (United States); Survochak, S. [DOE RFETS, Golden, CO (United States); Elo, M. [Burns and Roe, Germantown, MD (United States)

1996-12-31T23:59:59.000Z

396

Constraining the gravitational wave energy density of the Universe using Earth's ring  

E-Print Network [OSTI]

The search for gravitational waves is one of today's major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earth's free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earth's structure. Making use of our detailed understanding of Earth's normal modes, numerical models are employed for the first time to accurately calculate Earth's gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this article, we constrain the energy density of gravitational waves to values in the range 0.035 - 0.15 normalized by the critical energy density of the Universe at frequencies between 0.3mHz and 5mHz, using 10 years of data from the gravimeter network of the Global Geodynamics Project that continuously monitors Earth's oscillations. This work is the first step towards a systematic investigation of the sensitivity of gravimeter networks to gravitational waves. Further advance in gravimeter technology could improve sensitivity of these networks and possibly lead to gravitational-wave detection.

Michael Coughlin; Jan Harms

2014-06-04T23:59:59.000Z

397

Surface Wave Enhanced Turbulence as an important source energy  

E-Print Network [OSTI]

) Pulling by wind stress & surface waves 9/15/2006 4 Heating Cooling Heating Cooling CoolingHeating . . Wind) Surface heating/cooling cannot maintain THC observed in the oceans. Sandstrom Theorem and the new debate 3 balance in the oceans Geostrophic Currents Ekman Drift Freshwater Flux 0.05 KE GPE Mean State Geothermal

398

A novel linear generator for wave energy applications.  

E-Print Network [OSTI]

??With the increasing effort to identify alternative methods of energy generation, extraction of ocean energy has gathered a large interest. Research and industry have begun… (more)

Ernst, Steven George

2009-01-01T23:59:59.000Z

399

On-Site Renewable Power Purchase Agreements for Renewable Energy Projects  

Broader source: Energy.gov [DOE]

An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility.

400

In conventional accelerators, energy from RF electro-magnetic waves in vacuum is transformed into kinetic energy  

E-Print Network [OSTI]

In conventional accelerators, energy from RF electro- magnetic waves in vacuum is transformed for accelerating and storing countercirculating beams of 7-TeV protons, has a stored beam energy exceeding 300 MJ. Accelerator-based light sources rely on the fact that when beams of GeV electrons interact with magnetic

Geddes, Cameron Guy Robinson

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SITE  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1%AU62 &REFHRYO-@-Y? ALTERNATE

402

Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint  

SciTech Connect (OSTI)

During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

Li, Y.; Yu, Y. H.

2012-05-01T23:59:59.000Z

403

Partial-wave analysis for elastic p{sup 13}C scattering at astrophysical energies  

SciTech Connect (OSTI)

A standard partial-wave analysis was performed on the basis of known measurements of differential cross sections for elastic p{sup 13}C scattering at energies in the range 250-750 keV. This analysis revealed that, in the energy range being considered, it is sufficient to take into account the {sup 3}S{sub 1} wave alone. A potential for the triplet {sup 3}S{sub 1}-wave state of the p{sup 13}C system in the region of the J{sup p}T = 1{sup -1} resonance at 0.55 MeV was constructed on the basis of the phase shifts obtained from the aforementioned partial-wave analysis.

Dubovichenko, S. B., E-mail: dubovichenko@mail.ru [V.G. Fessenkov Astrophysical Institute (Kazakhstan)

2012-03-15T23:59:59.000Z

404

Energy Levels and Wave Functions of Vector Bosons in Homogeneous Magnetic Field  

E-Print Network [OSTI]

We aimed to obtain the energy levels of spin-1 particles moving in a constant magnetic field. The method used here is completely algebraic. In the process to obtain the energy levels the wave function is choosen in terms of Laguerre Polynomials.

K. Sogut; A. Havare; I. Acikgoz

2001-10-24T23:59:59.000Z

405

Department of Energy – Office of Science Pacific Northwest Site Office Environmental Monitoring Plan for the DOE-SC PNNL Site  

SciTech Connect (OSTI)

The Pacific Northwest Site Office (PNSO) manages the contract for operations at the U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site in Richland, Washington. Radiological operations at the DOE-SC PNNL Site expanded in 2010 with the completion of facilities at the Physical Sciences Facility. As a result of the expanded radiological work at the site, the Washington State Department of Health (WDOH) has required that offsite environmental surveillance be conducted as part of the PNNL Site Radioactive Air Emissions License. The environmental monitoring and surveillance requirements of various orders, regulations, and guidance documents consider emission levels and subsequent risk of negative human and environmental impacts. This Environmental Monitoring Plan (EMP) describes air surveillance activities at the DOE-SC PNNL Site. The determination of offsite environmental surveillance needs evolved out of a Data Quality Objectives process (Barnett et al. 2010) and Implementation Plan (Snyder et al. 2010). The entire EMP is a compilation of several documents, which include the Main Document (this text), Attachment 1: Sampling and Analysis Plan, Attachment 2: Data Management Plan, and Attachment 3: Dose Assessment Guidance.

Snyder, Sandra F.; Meier, Kirsten M.; Barnett, J. M.; Bisping, Lynn E.; Poston, Ted M.; Rhoads, Kathleen

2011-12-21T23:59:59.000Z

406

Department of Energy Honors Hanford Site Contractor for Employee  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. Department of Energy |Energy |Energy'sNEPAFutureGen

407

New Wave Power Project In Oregon | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment of Energy Vehicle FuelGRIDWave

408

9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy  

E-Print Network [OSTI]

9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy show profanity settings Digg is a place Offers Alternative to Dark Energy space.com -- Mathematicians have proposed an alternative explanation

Temple, Blake

409

Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster  

E-Print Network [OSTI]

Size-consistent wave functions for nondynamical correlation energy: The valence active space 6 July 1998; accepted 15 September 1998 The nondynamical correlation energy may be defined correlation energy, as defined above, involves computational complexity that grows exponentially

Krylov, Anna I.

410

Robust energy transfer mechanism via precession resonance in nonlinear turbulent wave systems  

E-Print Network [OSTI]

A robust energy transfer mechanism is found in nonlinear wave systems, which favours transfers towards modes interacting via triads with nonzero frequency mismatch, applicable in meteorology, nonlinear optics and plasma wave turbulence. We introduce the concepts of truly dynamical degrees of freedom and triad precession. Transfer efficiency is maximal when the triads' precession frequencies resonate with the system's nonlinear frequencies, leading to a collective state of synchronised triads with strong turbulent cascades at intermediate nonlinearity. Numerical simulations confirm analytical predictions.

Miguel D. Bustamante; Brenda Quinn; Dan Lucas

2014-04-30T23:59:59.000Z

411

Energy-Momentum and Angular Momentum Carried by Gravitational Waves in Extended New General Relativity  

E-Print Network [OSTI]

In an extended, new form of general relativity, which is a teleparallel theory of gravity, we examine the energy-momentum and angular momentum carried by gravitational wave radiated from Newtonian point masses in a weak-field approximation. The resulting wave form is identical to the corresponding wave form in general relativity, which is consistent with previous results in teleparallel theory. The expression for the dynamical energy-momentum density is identical to that for the canonical energy-momentum density in general relativity up to leading order terms on the boundary of a large sphere including the gravitational source, and the loss of dynamical energy-momentum, which is the generator of \\emph{internal} translations, is the same as that of the canonical energy-momentum in general relativity. Under certain asymptotic conditions for a non-dynamical Higgs-type field $\\psi^{k}$, the loss of ``spin'' angular momentum, which is the generator of \\emph{internal} $SL(2,C)$ transformations, is the same as that of angular momentum in general relativity, and the losses of canonical energy-momentum and orbital angular momentum, which constitute the generator of Poincar\\'{e} \\emph{coordinate} transformations, are vanishing. The results indicate that our definitions of the dynamical energy-momentum and angular momentum densities in this extended new general relativity work well for gravitational wave radiations, and the extended new general relativity accounts for the Hulse-Taylor measurement of the pulsar PSR1913+16.

Eisaku Sakane; Toshiharu Kawai

2002-09-30T23:59:59.000Z

412

NevadaTestSiteCMP.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy Second QuarterRate

413

Trinity Site - World's First Nuclear Explosion | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergyThe sun risesTheTrent TuckerDOE

414

File:08HIABulkTransmissionSiting.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf Jump to: navigation,HIABulkTransmissionSiting.pdf Jump to: navigation,

415

File:08TXATransmissionSiting.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf Jump to:TXATransmissionSiting.pdf Jump to: navigation, search File File

416

File:Utah Trans Siting.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to:Siting.pdf Jump to: navigation, search File File

417

General series solution for finite square-well energy levels for use in wave-packet studies  

E-Print Network [OSTI]

General series solution for finite square-well energy levels for use in wave-packet studies David L a particle is prepared in a spatially localized wave packet instead of in an energy eigenstate, it initially Received 23 July 1999; accepted 11 January 2000 We develop a series solution for the bound-state energy

Stroud Jr., Carlos R.

418

Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation  

E-Print Network [OSTI]

Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave) Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave pulse cleaning over a wide range of input energies (from 0.1 to >10 mJ) and is successfully qualified

419

MHK Technologies/GyroWaveGen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWEC <EPAMGreen Flagship <GyroWaveGen

420

MHK Technologies/Wave Power Desalination | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png Technology ProfileWaveDesalination

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MHK Technologies/WaveMaster | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png TechnologyRoller <WaveMaster

422

MHK Technologies/WaveStar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png TechnologyRollerWaveStar < MHK

423

MHK Technologies/WaveSurfer | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png TechnologyRollerWaveStar <

424

MHK Technologies/WaveTork | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png TechnologyRollerWaveStar

425

MHK Technologies/bioWave | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemill < MHKYOGbioWave < MHK

426

MHK Technologies/hyWave | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemill < MHKYOGbioWave

427

MHL 2D Wind/Wave | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemill < MHKYOGbioWaveMHL 2D

428

10-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest Home Jweers's"Ghost"0-ft Wave

429

SyncWaveSystems Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummersideJump to:JumpaSwinertonSyncWave

430

6-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive Jump to:Species |2008 |44Biosolids6-ft Wave

431

US Department of Energy wind turbine candidate site program: the regulatory process  

SciTech Connect (OSTI)

Sites selected in 1979 as tentative sites for installation of a demonstration MOD-2 turbine are emphasized. Selection as a candidate site in this program meant that the US Department of Energy (DOE) designated the site as eligible for a DOE-purchased and installed meteorological tower. The regulatory procedures involved in the siting and installation of these meteorological towers at the majority of the candidate sites are examined. An attempt is also made, in a preliminary fashion, to identify the legal and regulatory procedures that would be required to put up a turbine at each of these candidate sites. The information provided on each of these sites comes primarily from utility representatives, supplemented by conversations with state and local officials. The major findings are summarized on the following: federal requirements, state requirements, local requirements, land ownership, wind rights, and public attitudes.

Greene, M.R.; York, K.R.

1982-06-01T23:59:59.000Z

432

Stress wave propagationin the site 12 hydraulic/explosive fracturing experiment  

SciTech Connect (OSTI)

The Site 12 experiment was a heavily instrumented field event performed to examine the hydraulic/explosive fracturing concept for preparing an underground oil shale bed for true in situ processing. One of the key phases of this fracturing concept is the blasting operation which involves the insertion and detonation of slurry explosive in a pre-formed system of hydrofractures. To obtain a sound understanding of the nature of the blasting operations, a rather extensive array of stress gages, accelerometers, and time-of-arrival gages was installed in the rock mass in the vacinity of the explosive to monitor the dynamic events initiated by the detonation. These gages provided considerable amounts of information which were useful in evaluating overall results of the experiment. Details of the gage array, of the data, of analysis methods, and of the results and conclusions are considered in the report.

Boade, R. R.; Reed, R. P.

1980-05-01T23:59:59.000Z

433

Modulational instability of two pairs of counter-propagating waves and energy exchange in two-component media  

E-Print Network [OSTI]

Modulational instability of two pairs of counter-propagating waves and energy exchange in two-propagating waves in two-component media is considered within the framework of two generally nonintegrable coupled Sine-Gordon equations. We consider the dynamics of weakly nonlinear wave packets, and using

434

High Energy Photons, Neutrinos and Gravitational Waves from Gamma-Ray Bursts  

E-Print Network [OSTI]

Most of the current knowldege about GRB is based on electromagnetic observations at MeV and lower energies. Here we focus on some recent theoretical work on GRB, in particular the higher energy (GeV-TeV) photon emission, and two potentially important non-electromagnetic channels, the TeV and higher energy neutrino signals, and the gravitational wave signals expected from GRB.

P. Meszaros; S. Kobayashi; S. Razzaque; B. Zhang

2003-05-06T23:59:59.000Z

435

Sites I Thought About Last Wednesday | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2, 2010 - 11:08am Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory Last Wednesday, like so many others likely did, I found myself watching President...

436

Savannah River Site - Central Shops GW OU | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartmentRestrictionsExample Sheet) |4, 2011 Dr.

437

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network [OSTI]

9437 GOTEC-02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARYto potential Ocean Thermal Energy Conversion (OTEC) sites inThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:

Commins, M.L.

2010-01-01T23:59:59.000Z

438

Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy  

E-Print Network [OSTI]

Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90% of the kinetic energy can be localized (at least conceptually) in the `front half' of such Gaussian wave packets, and we visualize these effects.

R. W. Robinett; L. C. Bassett

2004-08-06T23:59:59.000Z

439

Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to address residual radiological contamination at sites where work was performed for the Manhattan Engineer District and U.S. Atomic Energy Commission. Initially, FUSRAP activities began with a records search for sites that had the potential to contain residual radiological contamination; 46 sites were identified that were eligible for and required remediation. Remedial action began in 1979. In 1997, Congress assigned responsibility for the remediation of FUSRAP sites to the U.S. Army Corps of Engineers (USACE). DOE retains responsibility for determining if sites are eligible for FUSRAP remediation and for providing long-term surveillance and maintenance (LTS&M) of remediated FUSRAP sites. DOE LTS&M activities are designed to ensure that FUSRAP sites remain protective of human health and the environment and to preserve knowledge regarding FUSRAP sites. Additional elements include eligibility determinations, transition of remediated sites from USACE to DOE, LTS&M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close coordination with USACE and regulators to ensure there is no loss of protectiveness when sites transition to DOE for LTS&M.

Clayton, Christopher [U.S. Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado; Gillespie, Joey [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado; Widdop, Michael [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado; none,

2012-02-26T23:59:59.000Z

440

Characteristics of transuranic waste at Department of Energy sites  

SciTech Connect (OSTI)

This document reports data and information on TRU waste from all DOE generating and storage sites. The geographical location of the sites is shown graphically. There are four major sections in this document. The first three cover the TRU waste groups known as Newly Generated, Stored, and Buried Wastes. Subsections are included under Newly Generated and Stored on contact-handled and remote-handled waste. These classifications of waste are defined, and the current or expected totals of each are given. Figure 1.3 shows the total amount of Buried and Stored TRU waste. Preparation of this document began in 1981, and most of the data are as of December 31, 1980. In a few cases data were reported to December 31, 1981, and these have been noted. The projections in the Newly Generated section were made, for the most part, at the end of 1981.

Jensen, R.T.; Wilkinson, F.J. III

1983-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, AND PUBLICATIONS  

E-Print Network [OSTI]

INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, and Buildings Systems Integration Center National Renewable Energy Laboratory 8 July 2009 SOLAR SYSTEM POTENTIAL/calculators/PVWATTS/version1/ http://rredc.nrel.gov/solar/calculators/PVWATTS/version2/ Estimates the electrical energy

442

Commissioning & Optimization of On-Site Renewable Energy Systems  

E-Print Network [OSTI]

to the documents provided. At this point, the system is energized in steps to verify the electrical design. This procedure starts at the solar modules and works its way to the inverter and finally to the interconnection with the building electrical... specification Measurements within specifications Make corrections Inverter Insure Voc is the same as in the DC disconnect switch Measurements within specifications Make corrections Inverter Energize (AC and DC disconnects closed) Final on site...

Gardner, J.C.

2011-01-01T23:59:59.000Z

443

AWEA Wind Project Siting Seminar 2015 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015 InformationA BRIEF HISTORYTOProject Siting Seminar

444

2012 Annual Site Environmental Report (ASER) | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE) |theDepartment2 Annual Site

445

File:07TXAEnergyFacilitySiting.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf Jump to: navigation, search File File historysource History

446

Community Wind Handbook/Understand Preliminary Siting | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan,InformationInformation Siting < Community

447

RAPID/Geothermal/Site Considerations | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPID Regulatory and Permitting< RAPID‎ |UtahSite Considerations

448

RAPID/Geothermal/Transmission Siting & Interconnection | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPID Regulatory and Permitting< RAPID‎ |UtahSite

449

O.A.R. 345-015 - Energy Facility Siting Council Site Certification  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska:Nutley, NewEnergy Information 45

450

A DISTENSIBLETUBE WAVE ENERGY CONVERTER WITH A DISTRIBUTED POWERTAKEOFF R.C.T.Rainey, Atkins Ltd., Woodcote Grove, Epsom KT18 5BW, U.K. rod.rainey@atkinsglobal.com  

E-Print Network [OSTI]

1 A DISTENSIBLETUBE WAVE ENERGY CONVERTER WITH A DISTRIBUTED POWERTAKEOFF R.C.T.Rainey, Atkins A distensibletube Wave Energy Converter (WEC) operates by converting the wave energy into "bulge waves interaction then occurs, and large bulge waves are generated, concentrating the wave energy

451

Wave  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 WaterFebruary 18, 20141 Summer 2001

452

EIS-0426: Site-Wide Environmental Impact Statement for Continued Operation of the Department of Energy / National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada  

Broader source: Energy.gov [DOE]

This Site-Wide EIS evaluates the potential environmental impacts of proposed alternatives for continued management and operation of the Nevada National Security Site (NNSS) (formerly known as the Nevada Test Site) and other U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)-managed sites in Nevada.

453

Groundwater Contamination and Treatment at Department of Energy Sites |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National Accelerator Laboratory in Illinois |

454

Piketon Site Partnering Agreement 2011 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera STAT.PaulThe 2014 NationalWePicturePiketon

455

Voluntary Protection Program On-site Evaluations | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReportVictor Kane AboutforVoluntary Protection

456

Revegetation of the Rocky Flats Site | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirementsEnergyJ u lReturn onRevegetation of

457

Guidelines for Applicants for Energy Facility Site Certificates | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., It isOpen EnergyEnergy Information

458

Access Handbook - Conducting Health Studies at Department of Energy Sites  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAbout the BetterHDBK-1209-2012 DOE HANDBOOK Access

459

Terms and Conditions for Site Transition | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice -Template for aofof Energy

460

Title I Disposal Sites Annual Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th , 2007Timothy RunyonTitle I Disposal

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE Annual Site Environmental Reports (ASER) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of Energy 2010 Federalup to $7

462

LM Releases Update of Site Management Guide | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson - ProjectUnlikeLegacy management |

463

Small Businesses Helping Drive Economy: Clean Energy, Clean Sites  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S. DepartmentCommitmentGovernment PurchaseDoes your small1 Small

464

LIQUEFACTION EVALUATIONS AT DOE SITES | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy Invitation toDepartment ofofD C 20585LIQUEFACTION

465

USCG Multi-Site UESC in Florida | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energyof Energy8,NovemberUS Tier12009 DOEofUSCG

466

Advancing Technology Readiness: Wave Energy Testing and Demonstration |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, AprilEdwardDepartment

467

Navy Catching Waves in Hawaii | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational ScienceEnergy -Energy2014 AnnualNavy

468

Siting and constructing very deep monitoring wells on the US Department of Energy`s Nevada Test Site  

SciTech Connect (OSTI)

Many aspects of the Nevada Test Site`s (NTS) hydrogeologic setting restrict the use of traditional methods for the siting and construction of ground-water characterization and monitoring wells. The size of the NTS precludes establishing high-density networks of characterization wells, as are typically used at smaller sites. The geologic complexity and variability of the NTS requires that the wells be criticality situated. The hydrogeologic complexity requires that each well provide access to many aquifers. Depths to ground water on the NTS require the construction of wells averaging approximately 1000 meters in depth. Wells meeting these criteria are uncommon in the ground-water industry, therefore techniques used by petroleum engineers are being employed to solve certain siting-, design- and installation-related problems. To date, one focus has been on developing completion strings that facilitate routine and efficient ground-water sampling from multiple intervals in a single well. The method currently advocated employs a new design of sliding side door sleeve that is actuated by an electrically operated hydraulic shifting tool. Stemming of the wells is being accomplished with standard materials (cement based grouts and sands); however, new stemming methods are being developed, to accommodate the greater depths, to minimize pH-related problems caused by the use of cements, to enhance the integrity of the inter-zone seals, and to improve the representativeness of radionuclide analyses performed on ground-water samples. Bench-scale experiments have been used to investigate the properties of more than a dozen epoxy-aggregate grout mixtures -- materials that are commonly used in underwater sealing applications.

Cullen, J J; Jacobson, R L; Russell, C E

1991-12-31T23:59:59.000Z

469

Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint  

SciTech Connect (OSTI)

This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

2014-03-01T23:59:59.000Z

470

Single-wavenumber Representation of Nonlinear Energy Spectrum in Elastic-Wave Turbulence of {F}öppl-von {K}ármán Equation: Energy Decomposition Analysis and Energy Budget  

E-Print Network [OSTI]

A single-wavenumber representation of nonlinear energy spectrum, i.e., stretching energy spectrum is found in elastic-wave turbulence governed by the F\\"oppl-von K\\'arm\\'an (FvK) equation. The representation enables energy decomposition analysis in the wavenumber space, and analytical expressions of detailed energy budget in the nonlinear interactions are obtained for the first time in wave turbulence systems. We numerically solved the FvK equation and observed the following facts. Kinetic and bending energies are comparable with each other at large wavenumbers as the weak turbulence theory suggests. On the other hand, the stretching energy is larger than the bending energy at small wavenumbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode $a_{\\bm{k}}$ and its companion mode $a_{-\\bm{k}}$ is observed at the small wavenumbers. Energy transfer shows that the energy is input into the wave field through stretching-energy transfer at the small wavenumbers, and dissipated through the quartic part of kinetic-energy transfer at the large wavenumbers. A total-energy flux consistent with the energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

Naoto Yokoyama; Masanori Takaoka

2014-12-09T23:59:59.000Z

471

Solar Energy Research Institute Validation Test House Site Handbook  

SciTech Connect (OSTI)

The Validation Test House at the Solar Energy Research Institute in Golden, Colorado, is being used to collect performance data for analysis/design tool validation as part of the DOE Passive Solar Class A Performance Evaluation Program.

Burch, J.; Wortman, D.; Judkoff, R.; Hunn, B.

1985-05-01T23:59:59.000Z

472

Microsoft Word - Energy Department Selects New Paducah Site Lead  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 www.pppo.energy.gov NEWS MEDIA CONTACT: FOR IMMEDIATE RELEASE Brad Mitzelfelt (859) 219-4035 brad.mitzelfelt@lex.doe.gov...

473

Modelling and geometry optimisation of wave energy converters  

E-Print Network [OSTI]

Electrical Hydraulic piston Water turbine Electrical generator Hydraulic motor Air turbine PneumaticHydraulic/rotation Hydraulic Mechanical rotation Electrical Hydraulic piston Water turbine Electrical generator Hydraulic motor Air turbine PneumaticHydraulic Mechanical system #12;Several energy conversion alternatives

Nřrvĺg, Kjetil

474

9/18/09 2:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 6http://www.mastersconnection.com/index.php/articles/452-wave  

E-Print Network [OSTI]

9/18/09 2:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 6http;9/18/09 2:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 2 of 6http:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 4 of 6http

Temple, Blake

475

On-Site Diesel Generation- How You Can Reduce Your Energy Costs  

E-Print Network [OSTI]

Interruptible power rates, Utility special rate negotiations, and the emergence of a spot electrical power market all can lead to lower industrial energy costs. The installation of low cost on-site diesel powered generation, or the proposed...

Charles, D.

476

The Role of Energy and a New Approach to Gravitational Waves in General Relativity  

E-Print Network [OSTI]

The energy localization hypothesis of the author that energy is localized in non-vanishing regions of the energy-momentum tensor implies that gravitational waves do not carry energy in vacuum. If substantiated, this has significant implications for current research. Support for the hypothesis is provided by a re-examination of Eddington's classic calculation of energy loss by a spinning rod. It is emphasized that Eddington did not monitor the entire Tolman energy integral, concentrating solely upon the change of the 'kinetic' part of the energy . The 'quadrupole formula' is thus seen to measure the kinetic energy change. When the derivative of the missing stress-trace integral is computed, it is seen to cancel the Eddington term and hence the energy of the rod is conserved, in support of the localization hypothesis. The issue of initial and final states is addressed.

F. I. Cooperstock

1999-04-19T23:59:59.000Z

477

Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOffice Jump to:

478

Paducah Site Hosts Governor's Scholars Visit | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava,Pacific NorthwestFebruarySite Hosts

479

2013 ANNUAL SITE ENVIRONMENTAL REPORT (ASER) | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE)2012 NuclearDepartment of3 ANNUAL SITE

480

FTCP Site Specific Information - NNSA Headquarters | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstruction Management14,2Department ofHeadquarters FTCP Site

Note: This page contains sample records for the topic "wave energy sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The energy of high frequency waves in the low solar Chromosphere  

E-Print Network [OSTI]

High frequency acoustic waves have been suggested as a source of mechanical heating in the chromosphere. In this work the radial component of waves in the frequency interval 22mHz to 1mHz are investigated. Observations were performed using 2D spectroscopy in the spectral lines of Fe I 543.45nm and Fe I 543.29nm at the Vacuum Tower Telescope, Tenerife, Spain. Speckle reconstruction has been applied to the observations. We have used Fourier and wavelet techniques to identify oscillatory power. The energy flux is estimated assuming that all observed oscillations are acoustics running waves. We find that the estimated energy flux is not sufficient to cover the chromospheric radiative losses.

Aleksandra Andic

2007-03-28T23:59:59.000Z

482

An energy absorbing far-field boundary condition for the elastic wave equation  

SciTech Connect (OSTI)

The authors present an energy absorbing non-reflecting boundary condition of Clayton-Engquist type for the elastic wave equation together with a discretization which is stable for any ratio of compressional to shear wave speed. They prove stability for a second order accurate finite-difference discretization of the elastic wave equation in three space dimensions together with a discretization of the proposed non-reflecting boundary condition. The stability proof is based on a discrete energy estimate and is valid for heterogeneous materials. The proof includes all six boundaries of the computational domain where special discretizations are needed at the edges and corners. The stability proof holds also when a free surface boundary condition is imposed on some sides of the computational domain.

Petersson, N A; Sjogreen, B

2008-07-15T23:59:59.000Z

483

MAGNETOACOUSTIC WAVE ENERGY FROM NUMERICAL SIMULATIONS OF AN OBSERVED SUNSPOT UMBRA  

SciTech Connect (OSTI)

We aim at reproducing the height dependence of sunspot wave signatures obtained from spectropolarimetric observations through three-dimensional MHD numerical simulations. A magnetostatic sunspot model based on the properties of the observed sunspot is constructed and perturbed at the photosphere, introducing the fluctuations measured with the Si I {lambda}10827 line. The results of the simulations are compared with the oscillations observed simultaneously at different heights from the He I {lambda}10830 line, the Ca II H core, and the Fe I blends in the wings of the Ca II H line. The simulations show a remarkable agreement with the observations. They reproduce the velocity maps and power spectra at the formation heights of the observed lines, as well as the phase and amplification spectra between several pairs of lines. We find that the stronger shocks at the chromosphere are accompanied with a delay between the observed signal and the simulated one at the corresponding height, indicating that shocks shift the formation height of the chromospheric lines to higher layers. Since the simulated wave propagation matches very well the properties of the observed one, we are able to use the numerical calculations to quantify the energy contribution of the magnetoacoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is too low to balance the chromospheric radiative losses. The energy contained at the formation height of the lowermost Si I {lambda}10827 line in the form of slow magnetoacoustic waves is already insufficient to heat the higher layers, and the acoustic energy which reaches the chromosphere is around 3-9 times lower than the required amount of energy. The contribution of the magnetic energy is even lower.

Felipe, T.; Khomenko, E.; Collados, M., E-mail: tobias@iac.es [Instituto de Astrofisica de Canarias, 38205, C/Via Lactea, s/n, La Laguna, Tenerife (Spain)

2011-07-01T23:59:59.000Z

484

EM Highlights Idaho Site's 2014 Accomplishments | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement || Department ofFront row,EnergyAdvanced

485

Implementing Solar Projects on Federal Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy MediaRequirementstoDepartmentGuideThis

486

On-Site Renewable Power Purchase Agreements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy SecondEfficiencyGuide, July 29,Program Challenges,anSystems

487

On-Site and Bulk Hydrogen Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy SecondEfficiencyGuide, July 29,Program

488

Hanford Site - 100-BC-5 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanford Single HanfordBC-5

489

Hanford Site - 100-FR-3 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanford Single

490

Hanford Site - 100-HR-3-D | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanford SingleD Hanford

491

Hanford Site - 100-HR-3-H | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanford SingleD HanfordH

492

Hanford Site - 100-KR-4 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanford SingleD

493

Hanford Site - 100-NR-2 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanford SingleDNR-2

494

Hanford Site - 200-BP-5 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanford SingleDNR-2BP-5

495

Hanford Site - 200-PO-1 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanford

496

Hanford Site - 300-FF-3 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanfordUP-1 Hanford

497

Planning for Solar Projects on Federal Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015 7:00AM to 10:30AM EDT|photovoltaic system.

498

Preparation Helps Paducah Site Weather Tornado | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,- EA-1999-07Disposition Project Volumecooling

499

Savannah River Site Achieves Waste Transfer First | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1Sandra L. BurrellSarai

500

Contractor Fee Payments - Savannah River Site Office | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird Quarter Overall Contract andOakSavannah River