Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MHK Projects/Santona Wave Energy Park | Open Energy Information  

Open Energy Info (EERE)

Santona Wave Energy Park Santona Wave Energy Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4421,"lon":-3.45319,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

2

MHK Projects/Reedsport OPT Wave Park | Open Energy Information  

Open Energy Info (EERE)

Reedsport OPT Wave Park Reedsport OPT Wave Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.798,"lon":-124.22,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

3

MHK Projects/Centreville OPT Wave Energy Park | Open Energy Information  

Open Energy Info (EERE)

Centreville OPT Wave Energy Park Centreville OPT Wave Energy Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5761,"lon":-124.264,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

4

Green Energy Parks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Energy Parks Steve Butterworth National Park Service 60 National Parks 2007 30,000 MWH $3,700,000 6,400,000 GSF 139 MWH Green 495 MWH RE 2 Green Energy Parks PARTNERSHIP Department of Interior - National Park Service Department of Energy - Office of Energy Efficiency and Renewable Energy Partnership established by  Established by Interagency MOU  Signed September 2007  Guided by interagency task force co-chaired by DOI/NPS and DOE/FEMP 3 Green Energy Parks GOALS  Serve as proving ground for emerging green energy technologies  Meet or exceed EPACT 2005 and E.O. 13423 Federal energy management mandates 4 Green Energy Parks Drivers  Improve the energy efficiency of facilities and vehicle fleets in advance of the NPS 2016

5

MHK Projects/Coos Bay OPT Wave Park | Open Energy Information  

Open Energy Info (EERE)

Coos Bay OPT Wave Park Coos Bay OPT Wave Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3664,"lon":-124.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

6

MHK Projects/Reedsport OPT Wave Park Expanded Project | Open Energy  

Open Energy Info (EERE)

Reedsport OPT Wave Park Expanded Project Reedsport OPT Wave Park Expanded Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.798,"lon":-124.24,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

7

Green Energy Parks Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Parks Program Energy Parks Program Terry Brennan NPS Green Energy Parks Coordinator Federal Utility Partnership Working Group Meeting April 15 th , 2008 Overview  Energy Consumption in the NPS  Green Energy Parks Program  Questions and Discussion NPS Energy Consumption NPS Assets by Type and Region - The NPS is comprised of 391 units encompassing more than 8 million acres-with tens of thousands of assets within seven regions - 2,000 4,000 6,000 8,000 10,000 12,000 14,000 Intermountain 13,793 (24%) Pacific West 12,450 (21%) Southeast 10,877 (19%) Northeast 9,036 (16%) Midwest 6,351 (11%) National Capital 3,708 (6%) Alaska 1,745 (3%) Count of Assets All Other Paved/Unpaved Roads Wastewater System Water System Campgrounds Trails Housing Buildings - - - - NPS Inventory Summary

8

Energy SmartPARKS Retrofitting Parks, Landmarks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy SmartPARKS Retrofitting Parks, Landmarks Energy SmartPARKS Retrofitting Parks, Landmarks Energy SmartPARKS Retrofitting Parks, Landmarks March 19, 2010 - 3:45pm Addthis Joshua DeLung Energy SmartPARKS is a program formed through collaboration between the U.S. Departments of Energy and the Interior to help the National Park Service make America's parks and landmarks more energy-efficient. Several examples are already in place, including one just down the street from Energy's Washington, D.C., home - that example is the prominent Washington Monument, towering up 555 feet from the heart of our nation's capital. An advanced new lighting system for the Washington Monument greatly improves the monument's lighting, and it also decreases the energy used to light the obelisk while increasing security in the area. Through the

9

Handicapped Parking Guidance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handicapped Parking Guidance Handicapped Parking Guidance U.S. Department of Energy Headquarters Handicapped Parking Procedures It is the policy of the Department of Energy (DOE)...

10

Report: EM Energy Park Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Energy Park Initiative EM Energy Park Initiative September 30, 2009 Submitted by the EMAB Energy Park Initiative Subcommittee Background: The Energy Park Initiative (EPI) aims to convert the Office of Environmental Management's (EM) liabilities - its contaminated sites, facilities, and materials - into reusable assets focused on providing solutions to critical national energy and environmental issues. These assets include the sites' natural resources, infrastructure, institutional controls, and human and economic capital. The EPI is a high priority for EMAB since the initiative is still in the formative planning and implementation phases. The EPI Subcommittee members are Paul Dabbar (lead), James Ajello, Lessie Price, and Robert Thompson. Recommendations:

11

Renewable Energy Parks Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Parks Webinar Renewable Energy Parks Webinar Renewable Energy Parks Webinar March 19, 2013 1:00PM MDT Webinar This free DOE webinar on "Community Renewable Energy Success Stories: Renewable Energy Parks," will take place on Tuesday, March 19, from 1:00 p.m. to 2:15 p.m. Mountain Daylight Time. The webinar will highlight how the city of Ellensburg, Washington, and the Town of Hempstead, New York, created renewable energy parks in their areas by integrating multiple renewable energy technologies. Ellensburg's Renewable Energy Park In 2006, Ellensburg, Washington, built the first community solar project in the United States. Then, as part of the Pacific Northwest Smart Grid Demonstration Project, the city expanded the original solar installation and added a variety of small wind systems and a MET tower. At the

12

Wind Park Solutions Arcadia | Open Energy Information  

Open Energy Info (EERE)

Arcadia Jump to: navigation, search Name Wind Park Solutions Arcadia Place Big Sandy, Montana Sector Wind energy Product JV between Wind Park Solutions America and Arcadia...

13

Federal Energy Management Program: National Park Service - Yellowstone  

NLE Websites -- All DOE Office Websites (Extended Search)

National Park National Park Service - Yellowstone National Park, Wyoming to someone by E-mail Share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Facebook Tweet about Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Twitter Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Google Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Delicious Rank Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Digg Find More places to share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on

14

Energy Department and National Park Service Announce Clean Cities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks Energy Department and National Park Service Announce Clean Cities Partnership to Drive...

15

Low-Energy Parking Structure Design (Brochure)  

Science Conference Proceedings (OSTI)

This guide provides design teams with best practices for parking structure energy efficiency in the form of goals for each design aspect that affects energy use.

Not Available

2013-01-01T23:59:59.000Z

16

Wave Energy  

Energy.gov (U.S. Department of Energy (DOE))

Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.)

17

Handicapped Parking Procedures (HQ) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handicapped Parking Procedures (HQ) Handicapped Parking Procedures (HQ) Handicapped Parking Procedures (HQ) It is the policy of the Department of Energy (DOE) that its parking facility be operated in a manner responsive to the needs of the Department, and for the maximum benefit of its employees. Individuals with temporary or permanent mobility impairment who, because of their condition, have a need to request a handicapped parking permit for the Forrestal or Germantown facilities, should use the following procedures: Complete a Parking Application Complete the Permit Application form DOE F 1400.12. In instances when the Parking Management personnel can visually assess an applicant's mobility impairment (i.e. use of crutches, walker, etc.), a temporary parking permit may be granted. At the time of application, the

18

Iowa Stored Energy Park | Open Energy Information  

Open Energy Info (EERE)

Stored Energy Park Stored Energy Park Jump to: navigation, search Name Iowa Stored Energy Park Place Ankeny, Iowa Zip 50021 Sector Wind energy Product Iowa Stored Energy Park is planning a 268MW wind project that would store its power as compressed air in deep underground geological formations, which could later be heated and used to drive turbines to generate electricity. Coordinates 41.73184°, -93.605264° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.73184,"lon":-93.605264,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

19

Federal Energy Management Program: National Park Service - Chickasaw,  

NLE Websites -- All DOE Office Websites (Extended Search)

National Park National Park Service - Chickasaw, Oklahoma to someone by E-mail Share Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Facebook Tweet about Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Twitter Bookmark Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Google Bookmark Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Delicious Rank Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Digg Find More places to share Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

20

Federal Energy Management Program: National Park Service - San Miguel  

NLE Websites -- All DOE Office Websites (Extended Search)

National Park National Park Service - San Miguel Island, California to someone by E-mail Share Federal Energy Management Program: National Park Service - San Miguel Island, California on Facebook Tweet about Federal Energy Management Program: National Park Service - San Miguel Island, California on Twitter Bookmark Federal Energy Management Program: National Park Service - San Miguel Island, California on Google Bookmark Federal Energy Management Program: National Park Service - San Miguel Island, California on Delicious Rank Federal Energy Management Program: National Park Service - San Miguel Island, California on Digg Find More places to share Federal Energy Management Program: National Park Service - San Miguel Island, California on AddThis.com... Energy-Efficient Products

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Landscaping and Parking Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landscaping and Parking Renovations Landscaping and Parking Renovations Landscaping and Parking Renovations October 16, 2013 - 4:54pm Addthis Renewable Energy Options for Site and Parking Renovations Geothermal Heat Pumps (GHP) Photovoltaics (PV) Solar Water Heating Renovations to Federal facility landscaping and parking areas can provide opportunities for several renewable energy options, including geothermal heat pumps (GHP), solar water heating, photovoltaics (PV), and energy efficiency technologies. Site Landscape If any ground is going to be disturbed during renovation, the potential for laying the underground portion of a GHP system should be considered at the same time. Sometimes referred to as ground source heat pumps or Geoexchange systems, GHP systems leverage the constant temperature of the earth for

22

Lighting Energy Efficiency in Parking Campaign  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Energy Efficiency in Parking Lighting Energy Efficiency in Parking (LEEP) Campaign Linda Sandahl Pacific Northwest National Laboratory linda.sandahl@pnnl.gov (503) 417-7554 April 2, 2013 LEEP Campaign 2 | Building Technologies Office eere.energy.gov Purpose & Objectives: Problem Statement While new lighting technologies such as LEDs have the potential for energy savings of 75%, or more when paired with controls, there are both technology and market-related challenges. Technology Challenges

23

Lighting Energy Efficiency in Parking Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Energy Efficiency in Parking Lighting Energy Efficiency in Parking (LEEP) Campaign Linda Sandahl Pacific Northwest National Laboratory linda.sandahl@pnnl.gov (503) 417-7554 April 2, 2013 LEEP Campaign 2 | Building Technologies Office eere.energy.gov Purpose & Objectives: Problem Statement While new lighting technologies such as LEDs have the potential for energy savings of 75%, or more when paired with controls, there are both technology and market-related challenges. Technology Challenges

24

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

25

Parks, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Parks, Arizona: Energy Resources Parks, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2605664°, -111.9487743° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2605664,"lon":-111.9487743,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Genesis Park | Open Energy Information  

Open Energy Info (EERE)

Genesis Park LP Genesis Park LP Name Genesis Park LP Address 2131 San Felipe Place Houston, Texas Zip 77019 Region Texas Area Product Private equity firm. Year founded 2000 Phone number (713) 521-1980 Website http://www.genesis-park.com/ Coordinates 29.74873°, -95.412815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.74873,"lon":-95.412815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Criterion Wind Park | Open Energy Information  

Open Energy Info (EERE)

Criterion Wind Park Criterion Wind Park Jump to: navigation, search Name Criterion Wind Park Facility Criterion Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Constellation Energy Developer Constellation Energy Energy Purchaser Old Dominion Location Garrett County MD Coordinates 39.317075°, -79.377451° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.317075,"lon":-79.377451,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

Forbes Park Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Forbes Park Wind Farm Facility Forbes Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Forbes Park Developer Boreal Renewable Energy Energy Purchaser Forbes Park Location Chelsea MA Coordinates 42.3917638°, -71.0328284° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3917638,"lon":-71.0328284,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Oregon Trail Wind Park | Open Energy Information  

Open Energy Info (EERE)

Wind Park Wind Park Jump to: navigation, search Name Oregon Trail Wind Park Facility Oregon Trail Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power / Reunion Power Location Twin Falls County ID Coordinates 42.927683°, -114.919252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.927683,"lon":-114.919252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Tuana Gulch Wind Park | Open Energy Information  

Open Energy Info (EERE)

Tuana Gulch Wind Park Tuana Gulch Wind Park Jump to: navigation, search Name Tuana Gulch Wind Park Facility Tuana Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.89°, -114.98° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.89,"lon":-114.98,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Milner Dam Wind Park | Open Energy Information  

Open Energy Info (EERE)

Milner Dam Wind Park Milner Dam Wind Park Jump to: navigation, search Name Milner Dam Wind Park Facility Milner Dam Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.495962°, -114.021106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.495962,"lon":-114.021106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Sigel Wind Park | Open Energy Information  

Open Energy Info (EERE)

Sigel Wind Park Sigel Wind Park Jump to: navigation, search Name Sigel Wind Park Facility Sigel Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Detroit Edison Developer Detroit Edison Energy Purchaser Detroit Edison Location Harbor Beach MI Coordinates 43.8549985°, -82.7925216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8549985,"lon":-82.7925216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Thousand Springs Wind Park | Open Energy Information  

Open Energy Info (EERE)

Park Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.7452°, -114.828° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7452,"lon":-114.828,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Noble Altona Wind Park | Open Energy Information  

Open Energy Info (EERE)

Noble Altona Wind Park Noble Altona Wind Park Jump to: navigation, search Name Noble Altona Wind Park Facility Noble Altona Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Noble Environmental Power Developer Noble Environmental Power Location Clinton County NY Coordinates 44.831383°, -73.664024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.831383,"lon":-73.664024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Green Park, Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Park, Missouri: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

36

Driving the National Parks Forward | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving the National Parks Forward Driving the National Parks Forward Driving the National Parks Forward June 19, 2012 - 4:02pm Addthis Propane shuttle buses used to transport visitors at Mammoth Cave National Park. | Photo courtesy of the National Parks Service. Propane shuttle buses used to transport visitors at Mammoth Cave National Park. | Photo courtesy of the National Parks Service. Shannon Brescher Shea Communications Manager, Clean Cities Program What does this project do? The Energy Department is partnering with the National Park Service to increase alternative fuel use of vehicle fleets at national parks around the country. Describing America's National Parks, historian Wallace Stegnar once said they were "the best idea we ever had." But like any good idea, the parks are constantly adapting to meet the needs of the present. Clean Cities,

37

Golden Valley Wind Park | Open Energy Information  

Open Energy Info (EERE)

Golden Valley Wind Park Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.379924°, -113.876892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.379924,"lon":-113.876892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Minden Wind Park | Open Energy Information  

Open Energy Info (EERE)

Minden Wind Park Minden Wind Park Facility Minden Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Detroit Edison Developer Detroit Edison Energy Purchaser Detroit Edison Location Minden City MI Coordinates 43.637272°, -82.78022° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.637272,"lon":-82.78022,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

March 19, 2013 Webinar: Renewable Energy Parks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 19, 2013 Webinar: Renewable Energy Parks March 19, 2013 Webinar: Renewable Energy Parks March 19, 2013 Webinar: Renewable Energy Parks This webinar was held March 19, 2013, and provided information on how two cities in Washington and New York integrated multiple renewable energy technologies to create renewable energy parks in their areas. Download the presentations below, watch the webinar (WMV 217 MB), or view the text version. Find more CommRE webinars. Ellensburg's Renewable Energy Park In 2006, Ellensburg, Washington, built the first community solar project in the United States. Then, as part of the Pacific Northwest Smart Grid Demonstration Project, the city expanded the original solar installation and added a variety of small wind systems and a MET tower. At the conclusion of the project the city hopes to show the benefits of

40

Women @ Energy: Hye-Sook Park | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hye-Sook Park Hye-Sook Park Women @ Energy: Hye-Sook Park March 12, 2013 - 1:17pm Addthis Dr. Hye-Sook Park has developed experimental techniques in plasma physics, materials science, nuclear physics, and astrophysics that have significantly enriched fundamental science, applied science, and national security science. Dr. Hye-Sook Park has developed experimental techniques in plasma physics, materials science, nuclear physics, and astrophysics that have significantly enriched fundamental science, applied science, and national security science. Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Dr. Hye-Sook Park has developed experimental techniques in plasma physics, materials science, nuclear physics, and astrophysics that have

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Microsoft PowerPoint - Gilbertson.EnergyParksInitiative.042909  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Parks Energy Parks Initiative Initiative " " Leveraging Assets to Increase the Taxpayer Leveraging Assets to Increase the Taxpayer ' ' s Return on Investment s Return on Investment " " April 29, 2009 2 Office of Environmental Management (EM) Economic Stimulus EM footprint reduction, small site completions, and additional investment opportunities Jobs created Lifecycle cost reduced Environment protected Footprint reduced Large tracts of land and infrastructure available Energy Parks * Clean, Diverse Energy Sources *Energy security *Establish long- term site mission *Sustainable jobs Footprint Reduction & Energy Parks Footprint Reduction & Energy Parks 3 * Focusing on "shovel ready, boots on the ground" projects contributing to footprint reduction and small site completions

42

Parke Panda Corporation aka Parke Industries | Open Energy Information  

Open Energy Info (EERE)

Panda Corporation aka Parke Industries Panda Corporation aka Parke Industries Jump to: navigation, search Name Parke Panda Corporation (aka Parke Industries) Place Glendora, California Zip 91740 Product A licensed, bonded, and fully insured C-10 design/build contractor. Coordinates 39.83977°, -75.074694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.83977,"lon":-75.074694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Fossil Gulch Wind Park | Open Energy Information  

Open Energy Info (EERE)

Fossil Gulch Wind Park Fossil Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Development Group/United Materials Developer Exergy Development Group/United Materials Energy Purchaser Idaho Power Location Northwest of Hagerman ID Coordinates 42.814261°, -114.996665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.814261,"lon":-114.996665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Office for UMore Park Academic Initiatives-Summer Research 2010 UMore Park and Energy  

E-Print Network (OSTI)

effective. · A Home Energy Rating System must be used on the improvements to determine cost effective nessOffice for UMore Park Academic Initiatives- Summer Research 2010 UMore Park and Energy Efficient Incentives...............20 Financial Incentives for Home owners.............21-30 Homeowner Energy Saving

Netoff, Theoden

45

City of Winter Park Energy Conservation Rebate Program (Florida) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Winter Park Energy Conservation Rebate Program (Florida) City of Winter Park Energy Conservation Rebate Program (Florida) City of Winter Park Energy Conservation Rebate Program (Florida) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Solar Water Heating Program Info State Florida Program Type Local Rebate Program Rebate Amount Varies based upon technology and eligible sector The City of Winter Park is now offering rebates to Winter Park electric residential and commercial customers for implementing energy conservation measures. Residential customers can qualify for rebates on duct repair, attic

46

Federal Energy Management Program: Outdoor Solid State Parking...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Structures Case Studies Resources Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Outdoor Solid State Parking Lot and Structure...

47

Notus Falmouth Technology Park | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Notus Falmouth Technology Park Jump to: navigation, search Name Notus Falmouth Technology Park Facility Notus Falmouth Technology Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Notus Clean Energy Developer Notus Clean Energy Location East Falmouth MA Coordinates 41.605949°, -70.620722° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.605949,"lon":-70.620722,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Park County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming. Its FIPS County Code is 029. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Registered Energy Companies in Park County, Wyoming Nacel...

49

Renewable Energy at Channel Islands National Park; Federal Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

scuba diving, bird watching, and fishing. And now they'll also enjoy the benefits of renewable energy systems. The park is located off the coast of southern California and...

50

Area Science Park | Open Energy Information  

Open Energy Info (EERE)

Area Science Park Jump to: navigation, search Name Area Science Park Place Italy Sector Services Product General Financial & Legal Services ( Government Public sector )...

51

Solar Parks of Extremadura | Open Energy Information  

Open Energy Info (EERE)

Parks of Extremadura Jump to: navigation, search Name Solar Parks of Extremadura Place Spain Sector Solar Product A joint venture by Spanish Solar company Econenergias and Deutsche...

52

Agro Business Park | Open Energy Information  

Open Energy Info (EERE)

Business Park Jump to: navigation, search Name Agro Business Park Place Denmark Sector Services Product General Financial & Legal Services ( Government Public sector ) References...

53

Energy Department and National Park Service Announce Clean Cities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Park Service Announce Clean Cities National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks Energy Department and National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks June 19, 2012 - 11:05am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitments to reducing America's reliance on imported oil and protecting our nation's air and water, the U.S. Energy Department and the National Park Service today announced that five national parks around the country will deploy fuel efficient and alternative fuel vehicles as part of an expanded partnership, helping to protect some of America's most prized natural environments. "Through the Clean Cities partnership, the Energy Department and the

54

Wave Energy | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Wave Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleWaveEnergy&oldid267203" Category: Articles with outstanding TODO tasks...

55

Community Renewable Energy Success Stories Webinar: Renewable Energy Parks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Renewable Energy Parks (text version) Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version) Below is the text version of the webinar titled "Renewable Energy Parks," originally presented on March 19, 2013. Operator: The broadcast is now starting. All attendees are in Listen Only mode. Sarah Busche: Good afternoon, everyone, and welcome to today's webinar. It is sponsored by the U.S. Department of Energy (DOE) . Sorry. We're moving some slides around. We'll go right back to the front one there. Thanks, Devin. This is Sarah Busche and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory. We'll give folks a few more minutes to call in and log on, but while we do this Devin is going to run

56

Microsoft Word - G0421-ReedsportWavePark-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2011 7, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum John Schaad Customer Service Engineering - TPC-ALVEY Proposed Action: Reedsport OPT Wave Park Generation Integration (G0421) Budget Information: Work Order # 246379, Task # 03 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7: "Acquisition, installation, operation, and removal of communication systems..." B4.6: "Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area..." Location: Douglas County, Oregon Proposed by: Douglas Electric Cooperative (DEC), Bonneville Power Administration (BPA) Description of the Proposed Action: Ocean Power Technologies, Inc. (OPT) has requested to

57

New Industrial Park Energy Supply for Economical Energy Conservation  

E-Print Network (OSTI)

The new industrial park energy supply (NIPES) concept is an attractive approach for providing a stable, long-term domestic energy source for industrial plants at reasonable cost and reasonable financial risk. The NIPES concept consists of a system of energy supply stations and steam transmission lines that supply process heat and electricity to multiple users in an industrial park(s) setting. The energy supply stations grow along with the industrial park(s) as new industries are attracted by a reliable, reasonably priced energy source. This paper describes the generic NIPES concept and summarizes the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. The economics of the specific NIPES system is compared to that of individual user-owned coal-fired facilities for new industrial plants and of individual user-owned oil-fired facilities for existing industrial plants. The results indicate substantial savings associated with the NIPES system for both new and existing users and/or a potential for high return on investment by third-party investors.

Scott, D.; Marda, R. S.; Hodson, J. S.; Williams, M.

1982-01-01T23:59:59.000Z

58

Wave Energy  

E-Print Network (OSTI)

Promoting the sustainable supply and use of energy for the greatest benefit of all. Publication details The compilation of the Survey of Energy Resources 2001 is the work of the editors and, while all reasonable endeavours have been used to ensure the accuracy of the data, neither the editors nor the World Energy Council can accept responsibility for any errors.

The World; Energy Council; Wb Lt; K. Yokobori (japan; A. W. Clarke (united Kingdom; J. A. Trinnaman (united Kingdom; Nuclear Energy; N. Alazard-toux; B. Bensad; W. Youngquist

2001-01-01T23:59:59.000Z

59

Wave Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

turn, rotates a turbine. Specially built seagoing vessels can also capture the energy of offshore waves. These floating platforms create electricity by funneling waves through...

60

Florham Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florham Park, New Jersey: Energy Resources Florham Park, New Jersey: Energy Resources (Redirected from Florham Park, NJ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.787878°, -74.3882072° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.787878,"lon":-74.3882072,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Walmart Sees the Light for Parking Lots | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots November 1, 2011 - 1:03pm Addthis This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart. This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart.

62

Walmart Sees the Light for Parking Lots | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots November 1, 2011 - 1:03pm Addthis This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart. This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart.

63

Parke County REMC - Energy Efficient Equipment Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parke County REMC - Energy Efficient Equipment Rebate Program Parke County REMC - Energy Efficient Equipment Rebate Program Parke County REMC - Energy Efficient Equipment Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pump: 1 per home or business Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Water Heater: $50 - $150 Refrigerator/Freezer Recycling: $35 Air-Source/Dual Fuel Heat Pump: $150 - $500 Geothermal Heat Pump: $800 Provider Parke County REMC Parke County REMC offers rebates to commercial and residential customers for purchasing and installing qualifying energy efficient water heaters, air-source heat pumps, dual fuel heat pumps, and geothermal heat pumps.

64

'Neighborhood in a park' harnesses the sun | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Neighborhood in a park' harnesses the sun 'Neighborhood in a park' harnesses the sun 'Neighborhood in a park' harnesses the sun November 10, 2010 - 11:13am Addthis Lorelei Laird Writer, Energy Empowers The Minneapolis neighborhood of Bryn Mawr is already a "green" neighborhood in a sense. Called a "neighborhood within a park," the diverse, middle-class enclave borders on four parks, including the city's 759-acre flagship Theodore Wirth Park. Over the summer, however, the Bryn Mawr Neighborhood Association (BMNA) launched a program intended to add more metaphorical greenness. Through its Bryn Mawr Solar Program, it's granting $1,000 to $3,000 to residents and businesses installing solar photovoltaic panels or hot water heaters. Andrew Kraling, a co-representative for his area of the neighborhood, said

65

National Park Service | Open Energy Information  

Open Energy Info (EERE)

Park Service Park Service Jump to: navigation, search Logo: National Park Service Name National Park Service Address 1849 C Street NW Place Washington, District of Columbia Zip 20240 Year founded 1916 Website http://www.nps.gov/index.htm Coordinates 38.8936749°, -77.0425236° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8936749,"lon":-77.0425236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

ISC-Reducing Congestion through Smart Parking Management | Open Energy  

Open Energy Info (EERE)

ISC-Reducing Congestion through Smart Parking Management ISC-Reducing Congestion through Smart Parking Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: ISC-Reducing Congestion through Smart Parking Management Agency/Company /Organization: Institute for Sustainable Communities (ISC) Sector: Climate, Energy Focus Area: Transportation Resource Type: Case studies/examples, Lessons learned/best practices Website: www.iscvt.org/resources/documents/san_francisco_sfpark.pdf Locality: San Francisco, California Cost: Free Language: English ISC-Reducing Congestion through Smart Parking Management Screenshot References: Reducing Congestion through Smart Parking Management[1] "The transit study concluded that congestion is a primary factor reducing the reliability and speed of onroad transit, which in turn is exacerbated

67

Normandy Park, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Normandy Park, Washington: Energy Resources Normandy Park, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4362103°, -122.3406799° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.4362103,"lon":-122.3406799,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Gulivoire Park, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gulivoire Park, Indiana: Energy Resources Gulivoire Park, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6133812°, -86.2452839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6133812,"lon":-86.2452839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Biscayne Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Biscayne Park, Florida: Energy Resources Biscayne Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8825951°, -80.1806025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8825951,"lon":-80.1806025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Woodbourne-Hyde Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woodbourne-Hyde Park, Ohio: Energy Resources Woodbourne-Hyde Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.665533°, -84.1698908° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.665533,"lon":-84.1698908,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

71

Roxborough Park, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Roxborough Park, Colorado: Energy Resources Roxborough Park, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.4738776°, -105.0852642° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4738776,"lon":-105.0852642,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

72

Schiller Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Illinois: Energy Resources Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9558637°, -87.8708965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9558637,"lon":-87.8708965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

73

Frazier Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Frazier Park, California: Energy Resources Frazier Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8227556°, -118.9448219° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8227556,"lon":-118.9448219,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

Clearbrook Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clearbrook Park, New Jersey: Energy Resources Clearbrook Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.309831°, -74.4645962° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.309831,"lon":-74.4645962,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

Gresham Park, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gresham Park, Georgia: Energy Resources Gresham Park, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7034405°, -84.3143682° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7034405,"lon":-84.3143682,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Hazel Park, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Michigan: Energy Resources Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4625362°, -83.1040912° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4625362,"lon":-83.1040912,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Cascade-Chipita Park, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cascade-Chipita Park, Colorado: Energy Resources Cascade-Chipita Park, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9498727°, -105.0031457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9498727,"lon":-105.0031457,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Minerva Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Minerva Park, Ohio: Energy Resources Minerva Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0764526°, -82.9437921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0764526,"lon":-82.9437921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

Maplewood Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maplewood Park, Ohio: Energy Resources Maplewood Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1356133°, -80.5845173° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1356133,"lon":-80.5845173,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

80

Belvedere Park, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Belvedere Park, Georgia: Energy Resources Belvedere Park, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4606984°, -84.9040969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.4606984,"lon":-84.9040969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Merrionette Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Merrionette Park, Illinois: Energy Resources Merrionette Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6842004°, -87.7003277° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6842004,"lon":-87.7003277,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Kendall Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, New Jersey: Energy Resources Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4209391°, -74.560711° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4209391,"lon":-74.560711,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Lake Forest Park, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Washington: Energy Resources Park, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.7567644°, -122.2809602° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.7567644,"lon":-122.2809602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Indian Head Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Head Park, Illinois: Energy Resources Head Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7703092°, -87.9022808° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7703092,"lon":-87.9022808,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

Comstock Park, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Comstock Park, Michigan: Energy Resources Comstock Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0386368°, -85.6700332° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0386368,"lon":-85.6700332,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

St. Louis Park, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Minnesota: Energy Resources Park, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9482979°, -93.3480051° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9482979,"lon":-93.3480051,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

Highland Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, New Jersey: Energy Resources Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8887243°, -75.1079525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8887243,"lon":-75.1079525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

Severna Park, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Severna Park, Maryland: Energy Resources Severna Park, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.070388°, -76.5452409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.070388,"lon":-76.5452409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Loveland Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Loveland Park, Ohio: Energy Resources Loveland Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.299781°, -84.2632706° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.299781,"lon":-84.2632706,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Terrace Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Terrace Park, Ohio: Energy Resources Terrace Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1592269°, -84.3071602° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1592269,"lon":-84.3071602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Mangonia Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mangonia Park, Florida: Energy Resources Mangonia Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.760341°, -80.0736529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.760341,"lon":-80.0736529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

View Park-Windsor Hills, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

Park-Windsor Hills, California: Energy Resources Park-Windsor Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9929545°, -118.3491169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9929545,"lon":-118.3491169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

93

Roeland Park, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Roeland Park, Kansas: Energy Resources Roeland Park, Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0375053°, -94.6321795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0375053,"lon":-94.6321795,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Ingalls Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ingalls Park, Illinois: Energy Resources Ingalls Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5213°, -88.033882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5213,"lon":-88.033882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Cliffside Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cliffside Park, New Jersey: Energy Resources Cliffside Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8214894°, -73.9876388° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8214894,"lon":-73.9876388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Plantation Mobile Home Park, Florida: Energy Resources | Open Energy  

Open Energy Info (EERE)

Plantation Mobile Home Park, Florida: Energy Resources Plantation Mobile Home Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.702392°, -80.132515° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.702392,"lon":-80.132515,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

La Grange Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grange Park, Illinois: Energy Resources Grange Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8347535°, -87.861726° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8347535,"lon":-87.861726,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Munds Park, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Munds Park, Arizona: Energy Resources Munds Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.945574°, -111.6401551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.945574,"lon":-111.6401551,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Oakland Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Florida: Energy Resources Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1723065°, -80.1319893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.1723065,"lon":-80.1319893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Brook Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brook Park, Ohio: Energy Resources Brook Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3983838°, -81.8045788° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3983838,"lon":-81.8045788,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Palisades Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Palisades Park, New Jersey: Energy Resources Palisades Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8481556°, -73.997639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8481556,"lon":-73.997639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

Harrington Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harrington Park, New Jersey: Energy Resources Harrington Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.9837089°, -73.9798601° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9837089,"lon":-73.9798601,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Baldwin Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, California: Energy Resources Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0852868°, -117.9608978° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0852868,"lon":-117.9608978,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Lincoln Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, New Jersey: Energy Resources Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.742064°, -74.2440299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.742064,"lon":-74.2440299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Woodlawn Park, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woodlawn Park, Oklahoma: Energy Resources Woodlawn Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5114455°, -97.6500419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5114455,"lon":-97.6500419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Gloria Glens Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glens Park, Ohio: Energy Resources Glens Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0583883°, -81.8979171° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0583883,"lon":-81.8979171,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Menlo Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Menlo Park, California: Energy Resources Menlo Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4538274°, -122.1821871° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4538274,"lon":-122.1821871,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Laurel Park, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Laurel Park, North Carolina: Energy Resources Laurel Park, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1245734°, -81.6809391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.1245734,"lon":-81.6809391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Deer Park, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, New York: Energy Resources Park, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7617653°, -73.3292857° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7617653,"lon":-73.3292857,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Fern Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fern Park, Florida: Energy Resources Fern Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6491649°, -81.3511796° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.6491649,"lon":-81.3511796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Overland Park, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Overland Park, Kansas: Energy Resources Overland Park, Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9822282°, -94.6707917° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9822282,"lon":-94.6707917,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Ridgefield Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ridgefield Park, New Jersey: Energy Resources Ridgefield Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8570442°, -74.0215285° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8570442,"lon":-74.0215285,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Tangelo Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tangelo Park, Florida: Energy Resources Tangelo Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.4558386°, -81.4459047° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.4558386,"lon":-81.4459047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Richton Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Richton Park, Illinois: Energy Resources Richton Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.484479°, -87.7033787° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.484479,"lon":-87.7033787,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Sherwood Park, Alberta: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Alberta: Energy Resources Park, Alberta: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 6146279 Coordinates 53.51684°, -113.3187° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.51684,"lon":-113.3187,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Riverton-Boulevard Park, Washington: Energy Resources | Open Energy  

Open Energy Info (EERE)

Riverton-Boulevard Park, Washington: Energy Resources Riverton-Boulevard Park, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5033976°, -122.3094913° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5033976,"lon":-122.3094913,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Takoma Park, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Takoma Park, Maryland: Energy Resources Takoma Park, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9778882°, -77.0074765° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9778882,"lon":-77.0074765,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Nicoma Park, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nicoma Park, Oklahoma: Energy Resources Nicoma Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4911731°, -97.3230893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.4911731,"lon":-97.3230893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Azalea Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Azalea Park, Florida: Energy Resources Azalea Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5411128°, -81.3006237° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5411128,"lon":-81.3006237,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Alondra Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alondra Park, California: Energy Resources Alondra Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8894595°, -118.3309073° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8894595,"lon":-118.3309073,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Sunland Park, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sunland Park, New Mexico: Energy Resources Sunland Park, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.796496°, -106.5799891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.796496,"lon":-106.5799891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Tinley Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tinley Park, Illinois: Energy Resources Tinley Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5733669°, -87.7844944° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5733669,"lon":-87.7844944,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Oak Park, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Michigan: Energy Resources Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4594803°, -83.1827051° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4594803,"lon":-83.1827051,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Village Park, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Hawaii: Energy Resources Park, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3930017°, -158.0253941° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3930017,"lon":-158.0253941,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Hawaiian Electric Company, Inc. Photovoltaic Energy Park Master Development Planning  

Science Conference Proceedings (OSTI)

This document describes a Master Development Plan to develop, construct, and operate a photovoltaic energy park (PVEP). The central feature of the park would be a large-scale solar power plant with up to 3.0 MW (peak) capacity of single axis tracking and fixed systems. The park would be developed in phases using multiple 100 kilowatt (peak) solar power systems. The plant would utilize proven PV technology commonly available at the time of the construction. In addition, space has been set aside for resear...

2004-02-20T23:59:59.000Z

126

Actes JFPC 2012 Optimal Allocation of Renewable Energy Parks  

E-Print Network (OSTI)

Actes JFPC 2012 Optimal Allocation of Renewable Energy Parks: A Two-stage Optimization Model-economical study of renewable energy on the other hand, investigates gradual implantation of Renewable Energy (RE of energy demand, available resources, anticipated renewable engineering cost re- ductions [13]. However

Paris-Sud XI, Université de

127

Mountain Parks Electric, Inc | Open Energy Information  

Open Energy Info (EERE)

Parks Electric, Inc Parks Electric, Inc Jump to: navigation, search Name Mountain Parks Electric, Inc Place Colorado Utility Id 13050 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial: Large Power Peak-Shaving Rate (Primary Service) Commercial Commercial: Large Power Peak-Shaving Rate (Secondary Service) Commercial Commercial: Large Power Rate Commercial Commercial: Small Power Rate Commercial General Service (Residential): Time-of-Use Rate Rate A Residential General Service (Residential): Time-of-Use Rate, Rate B Residential

128

Mid-Atlantic Wind Park | Open Energy Information  

Open Energy Info (EERE)

Park Park Jump to: navigation, search Name Mid-Atlantic Wind Park Facility Mid-Atlantic Wind Park Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer NRG Bluewater Wind Location Offshore from Rehoboth Beach DE Coordinates 38.633333°, -74.775° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.633333,"lon":-74.775,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

University Park Community Solar LLC | Open Energy Information  

Open Energy Info (EERE)

Park Community Solar LLC Park Community Solar LLC Jump to: navigation, search Name University Park Community Solar LLC Address 4313 Tuckerman St. Place University Park, Maryland Zip 20782 Sector Renewable Energy, Solar Product Solar generated electricity Year founded 2010 Website http://www.universityparksolar Coordinates 38.9674819°, -76.941939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9674819,"lon":-76.941939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Manhattan Project National Historical Park | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Project National Historical Park Manhattan Project National Historical Park Manhattan Project National Historical Park The Department, as the direct descendent of the Manhattan Engineer District, owns and manages the Federal properties at most of the major Manhattan Project sites, including Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, New Mexico. For over a decade, the Department, in cooperation with other Federal agencies, state and local governments, and other stakeholders, has pursued the possibility of including its most significant Manhattan Project properties within a Manhattan Project National Historical Park. A panel of distinguished historic preservation experts convened in 2001 by the Advisory Council on Historic Preservation at the request of the Department of Energy recommended that the "ultimate goal" for

131

Euro Solar Parks Inc | Open Energy Information  

Open Energy Info (EERE)

Euro Solar Parks Inc Euro Solar Parks Inc Place Ho-ho-Kus, New Jersey Zip 7423 Sector Solar Product New Jersey-based solar developer focused on development of projects in Europe, specifically Greece, and South America. Coordinates 40.998625°, -74.109279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.998625,"lon":-74.109279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Park Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Park Electric Coop Inc Park Electric Coop Inc Place Montana Utility Id 14500 Utility Location Yes Ownership C NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Light - 100 watt HPS Lighting Outdoor Light - 200 watt HPS Lighting Residential - Large Residential Residential - Net-Metered - Base #1 Residential Residential - Net-Metered - Base #2 Residential Residential - Net-Metered - Base #3 Residential Residential - Small Residential Seasonal Power Service - Pumps Industrial Seasonal Rate Residential

133

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

134

Estes Park Light and Power Department - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estes Park Light and Power Department - Commercial and Industrial Estes Park Light and Power Department - Commercial and Industrial Energy Efficiency Rebate Program Estes Park Light and Power Department - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Manufacturing Other Construction Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate $50,000 per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Custom Energy Incentive: $0.10 per annual kWh saved Demand Incentive: $500 per kW saved during Summer Peak Period Cooling Efficiency Room AC: $50 - $110/ton, plus $3.50 - $5.00 for each 0.1 above minimum

135

National Park Service - Chickasaw, Oklahoma | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chickasaw, Oklahoma Chickasaw, Oklahoma National Park Service - Chickasaw, Oklahoma October 7, 2013 - 9:56am Addthis Photo of Comfort Station at the Chickasaw National Recreation Area The Chickasaw National Recreation Area is located 100 miles south of Oklahoma City, Oklahoma, on the Lake of the Arbuckles. To save taxpayers' money and minimize adverse impacts on the environment, the National Park Service (NPS) recently incorporated solar energy into the design of three new comfort stations. The decision to use solar water heating at the site was the result of a collaborative effort between the National Renewable Energy Laboratory (NREL) Federal Energy Management Program (FEMP) and Solar Process Heat Program in support of NPS. Chickasaw visitors wanted hot showers, and park personnel wanted an alternative to conventional water heaters. The facility

136

Park County, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Montana. Its FIPS County Code is 067. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Places in Park County, Montana Clyde Park, Montana Cooke...

137

Texas Parks and Wildlife Department | Open Energy Information  

Open Energy Info (EERE)

Parks and Wildlife Department Jump to: navigation, search Logo: Texas Parks and Wildlife Department Name Texas Parks and Wildlife Department Address 4200 Smith School Rd Place...

138

Cycloidal Wave Energy Converter  

SciTech Connect

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

139

Town of Estes Park, Colorado (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Estes Park, Colorado (Utility Company) Estes Park, Colorado (Utility Company) Jump to: navigation, search Name Town of Estes Park Place Colorado Utility Id 5997 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE COMMERCIAL Commercial LARGE COMMERICIAL TIME OF DAY Commercial MUNICIPAL RATE Commercial OUTDOOR AREA LIGHTING Lighting RENEWABLE ENERGY CHARGE Commercial RESIDENTIAL Residential RESIDENTIAL DEMAND Residential RESIDENTIAL ENERGY BASIC TIME-OF-DAY Residential

140

McKinley Wind Park | Open Energy Information  

Open Energy Info (EERE)

McKinley Wind Park McKinley Wind Park Facility McKinley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Detroit Edison Developer Detroit Edison Energy Purchaser Detroit Edison Location Pigeon MI Coordinates 43.87277698°, -83.26126099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.87277698,"lon":-83.26126099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Denver Federal Center Solar Park | Open Energy Information  

Open Energy Info (EERE)

Center Solar Park Center Solar Park Jump to: navigation, search Name Denver Federal Center Solar Park Facility Denver Federal Center Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser Xcel Energy Address West 6th Ave & Kipling Street Location Lakewood, Colorado Zip 80225 Coordinates 39.7247982353°, -105.118432045° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7247982353,"lon":-105.118432045,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Moving Toward Zero Energy Homes: Armory Park del Sol, Tucson, Arizona (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet describes the energy efficient and solar energy features of the Armory Park del Sol Zero Energy Home, participant in the Zero Energy Homes initiative.

Not Available

2003-12-01T23:59:59.000Z

143

Eden Park Illumination | Open Energy Information  

Open Energy Info (EERE)

Illumination Illumination Jump to: navigation, search Name Eden Park Illumination Place Champaign, Illinois Zip 61821 Product Illinois-based startup focused on the commercialisation and development of highly efficient microplasma lighting. Coordinates 40.1142°, -88.243499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1142,"lon":-88.243499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Nancy Sutley and Todd Park | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nancy Sutley and Todd Park About Us Nancy Sutley and Todd Park Most Recent Green Button Momentum June...

145

Highlands-Baywood Park, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Highlands-Baywood Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.5243879°, -122.3475948° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5243879,"lon":-122.3475948,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Galena Park, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Galena Park, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.7335616°, -95.2302123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7335616,"lon":-95.2302123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Humboldt Industrial Park Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Humboldt Industrial Park Wind Farm Facility Humboldt Industrial Park Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Pennsylvania Wind Energy Developer Energy Unlimited Energy Purchaser Community Energy Location Hazleton PA Coordinates 40.9507°, -75.9735° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9507,"lon":-75.9735,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Green Ocean Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Ocean Wave Energy Jump to: navigation, search Name Green Ocean Wave Energy Sector Marine and Hydrokinetic Website http:http:www.greenoceanwa Region United States LinkedIn...

149

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

niche markets. Once built, they have low operation and maintenance costs because their fuel-seawater-is free. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov...

150

Human Energy Budget Modeling in Urban Parks in Toronto and Applications to Emergency Heat Stress Preparedness  

Science Conference Proceedings (OSTI)

The current study tests applications of the Comfort Formula (COMFA) energy budget model by assessing the moderating effects of urban parks in contrast to streets, and it also looks at the influence of park types (open or treed). Exploration ...

Jennifer K. Vanos; Jon S. Warland; Terry J. Gillespie; Graham A. Slater; Robert D. Brown; Natasha A. Kenny

2012-09-01T23:59:59.000Z

151

Wave Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Energy Basics Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, and Australia as well as the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it is feasible that wave energy could produce 40-70 kilowatts (kW) per 3.3 feet (1 meter) of western coastline. Wave Energy Technologies

152

National Park Service - Lake Powell, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Powell, Utah Lake Powell, Utah National Park Service - Lake Powell, Utah October 7, 2013 - 9:58am Addthis Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the cost to the National Park Service (NPS) for transporting each fuel delivery is considerable. Consequently, the installation of a photovoltaic (PV) system presented many advantages. This is the largest PV system the NPS has installed with 115 kilowatts of energy being produced. A 59% improvement in energy efficiency has been

153

Federal Energy Management Program: Boatwright Maintenance Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

111,566 sq ft, and has an energy baseline of 62.2 KBtusq ft. It's highlights include spray foam roof with R-13 rating, air-source heat pumps for office spaces, and...

154

Utah State Parks and Recreation | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Utah State Parks and Recreation Jump to: navigation, search Name Utah State Parks and...

155

Partial Design of a Multi-Energy Park at Clarkson University: Simulating the Electrical Performance of the Multi-Energy Park  

Science Conference Proceedings (OSTI)

Clarkson University -- an independent technological university in Potsdam, New York -- is the proposed site of a multi-energy park, which would be powered mostly by two Wartsila 2.5-MVA generators using reciprocating internal combustion engines. This report documents electrical interconnection and analytical modeling studies performed to determine the electrical characteristics of the proposed Clarkson multi-energy park.

2003-12-31T23:59:59.000Z

156

Park County RE2 Wind Project | Open Energy Information  

Open Energy Info (EERE)

County RE2 Wind Project County RE2 Wind Project Jump to: navigation, search Name Park County RE2 Wind Project Facility Park County RE2 Sector Wind energy Facility Type Community Wind Location CO Number of Units 1 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 110683 References Wind Powering America[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

157

Energy-Goal-Based Building Procurement: Achieving 90% Energy Savings in a Parking Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Goal-Based Building Procurement: Achieving 90% Energy Savings in a Parking Structure Commercial Building Energy Alliance Shanti Pless, NREL Jennifer Scheib, NREL Phil Macey AIA Phil Macey, AIA August 8 2012 August 8, 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Overview * Campus background * Parking structure o Obj jectives o Determining the energy goal o Design solution o Design solution o Energy performance * Discussion about innovation and replication * Discussion about innovation and replication * Resources for replication 2 NREL Campus Background NREL Campus Background NREL Campus Background * Pre-2007 construction:

158

Wave Star Energy | Open Energy Information  

Open Energy Info (EERE)

Star Energy Star Energy Jump to: navigation, search Name Wave Star Energy Place Denmark Zip DK-2920 Product Denmark-based private wave device developer. References Wave Star Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Wave Star Energy 1 10 Scale Model Test This company is involved in the following MHK Technologies: C5 WaveStar This article is a stub. You can help OpenEI by expanding it. Wave Star Energy is a company located in Denmark . References ↑ "Wave Star Energy" Retrieved from "http://en.openei.org/w/index.php?title=Wave_Star_Energy&oldid=678928" Categories: Clean Energy Organizations

159

Orange County Great Park Welcomes U.S. Department of Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACT: MARCUS GINNATY 949-724-6574 Orange County Great Park Welcomes U.S. Department of Energy Solar Decathlon 2013 Collegiate Teams * Representatives from 20 collegiate teams...

160

Wave Energy Centre | Open Energy Information  

Open Energy Info (EERE)

search Name Wave Energy Centre Address Wave Energy Centre Av Manuela da Maia 36 R C Dto Place Lisboa Zip 1000-201 Sector Marine and Hydrokinetic Phone number (+351) 21...

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Reducing Congestion through Smart Parking Management | Open Energy  

Open Energy Info (EERE)

Reducing Congestion through Smart Parking Management Reducing Congestion through Smart Parking Management Jump to: navigation, search Tool Summary Name: Reducing Congestion through Smart Parking Management Agency/Company /Organization: Institute for Sustainable Communities Focus Area: Standards - Incentives - Policies - Regulations Topics: Best Practices Resource Type: Reports, Journal Articles, & Tools Website: www.iscvt.org/resources/documents/san_francisco_sfpark.pdf SFpark is a new project being implemented with federal Urban Partnership Program funds. It combines innovative technologies and strategies to redistribute the demand for parking in real-time. Goals include making parking easier, reducing congestion (by reducing circling and double parking), improving bus speed and reliability, and transferring lessons learned to other cities.

162

Energy Loss by Breaking waves  

Science Conference Proceedings (OSTI)

Observations of the frequency of wind wave breaking in deep water are combined with laboratory estimates of the rate of energy loss a from single breaking wave to infer the net rate of energy transfer to the mixed layer from breaking waves, as a ...

S. A. Thorpe

1993-11-01T23:59:59.000Z

163

Solarmarkt Solar Sued Park GmbH | Open Energy Information  

Open Energy Info (EERE)

Park GmbH Place Memmingen, Bavaria, Germany Zip 87700 Sector Solar Product Bavaria-based solar PV system installer. References Solarmarkt Solar Sued Park GmbH1 LinkedIn...

164

Ocean Tidal and Wave Energy  

Science Conference Proceedings (OSTI)

First published in 2000, the annual Renewable Energy Technical Assessment Guide (TAG-RE) provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. This excerpt from the 2005 TAG-RE addresses ocean tidal and wave energy conversion technologies, which offer promise for converting the significant energy potential available in ocean tidal currents and waves to electricity in the future.

2005-12-19T23:59:59.000Z

165

Parking Infrastructure and the Environment  

E-Print Network (OSTI)

A B O U T how parking infrastructure affects energy demand,the extensive parking infrastructure, including the costs ofdata on parking infrastructure. For example, consider the

Chester, Mikhail; Horvath, Aprad; Madanat, Samer

2011-01-01T23:59:59.000Z

166

THE ENERGY CAMPUS The University of Houston is developing the Energy Research Park (ERP) on 74 acres adjacent to  

E-Print Network (OSTI)

THE ENERGY CAMPUS The University of Houston is developing the Energy Research Park (ERP) on 74 acres adjacent to I-45 as a unique campus dedicated to energy research and education. Public partnerships on one site. ENERGY TO MARKET The park's first corporate partner, SuperPower Inc., is working

Bittner, Eric R.

167

LEDs and Specification for Parking Lots Lighten Energy Load | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEDs and Specification for Parking Lots Lighten Energy Load LEDs and Specification for Parking Lots Lighten Energy Load LEDs and Specification for Parking Lots Lighten Energy Load March 5, 2013 - 11:17am Addthis At its Supercenter in Leavenworth, Kansas—the first site to implement the LED Site Lighting Specification—Walmart anticipates energy savings of over 125,000 kWh per year and a 30% reduction in maintenance costs. In addition to parking lot lights, LED bollard lights illuminate the pedestrian walkway. Credit: Walmart At its Supercenter in Leavenworth, Kansas-the first site to implement the LED Site Lighting Specification-Walmart anticipates energy savings of over 125,000 kWh per year and a 30% reduction in maintenance costs. In addition to parking lot lights, LED bollard lights illuminate the

168

The Effect of Wave Breaking on the Wave Energy Spectrum  

Science Conference Proceedings (OSTI)

The effect of wave breaking on the wave energy spectral shape is examined. The Stokes wave-breaking criterion is first extended to random waves and a breaking wave model is established in which the elevation of breaking waves is expressed in ...

C. C. Tung; N. E. Huang

1987-08-01T23:59:59.000Z

169

BioEnergie Park Soesetal GmbH | Open Energy Information  

Open Energy Info (EERE)

BioEnergie Park Soesetal GmbH BioEnergie Park Soesetal GmbH Jump to: navigation, search Name BioEnergie-Park Soesetal GmbH Place Osterode, Lower Saxony, Germany Zip 37520 Sector Biomass Product Lower Saxony-based biomass project developer. Coordinates 53.695599°, 19.973301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.695599,"lon":19.973301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

National Parks Clean Up with Alternative Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Parks Clean Up with Alternative Fuels National Parks Clean Up with Alternative Fuels National Parks Clean Up with Alternative Fuels March 1, 2011 - 11:38am Addthis Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Dennis A. Smith Director, National Clean Cities What does this mean for me? Pristine National Parks Less of your tax dollars spent on fuel Blue skies, pristine mountain vistas, endless open space and ... choking fumes from motor vehicles? Even though the latter clearly doesn't belong

171

Carnegie Wave Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Carnegie Wave Energy Limited Carnegie Wave Energy Limited Jump to: navigation, search Name Carnegie Wave Energy Limited Address 1 124 Stirling Highway Place North Fremantle Zip 6159 Sector Marine and Hydrokinetic Year founded 1993 Number of employees 25 Website http://www.carnegiewave.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: CETO La Reunion CETO3 Garden Island Perth Wave Energy Project PWEP This company is involved in the following MHK Technologies: CETO Wave Energy Technology This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Carnegie_Wave_Energy_Limited&oldid=678263

172

National Parks Clean Up with Alternative Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Up with Alternative Fuels Clean Up with Alternative Fuels National Parks Clean Up with Alternative Fuels March 1, 2011 - 11:38am Addthis Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Dennis A. Smith Director, National Clean Cities What does this mean for me? Pristine National Parks Less of your tax dollars spent on fuel Blue skies, pristine mountain vistas, endless open space and ... choking fumes from motor vehicles? Even though the latter clearly doesn't belong in our National Parks, maintaining their air quality has become a real

173

Free-Wave Energy Dissipation in Experimental Breaking Waves  

Science Conference Proceedings (OSTI)

Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using an energy focusing technique. Surface elevation measurements of each transient wave ...

Eustorgio Meza; Jun Zhang; Richard J. Seymour

2000-09-01T23:59:59.000Z

174

Montana Fish, Wildlife & Parks | Open Energy Information  

Open Energy Info (EERE)

Fish, Wildlife & Parks Fish, Wildlife & Parks Jump to: navigation, search Logo: Montana Fish, Wildlife & Parks Name Montana Fish, Wildlife & Parks Address 1420 East 6th Ave, PO Box 200701 Place Helena, Montana Zip 59620-0701 Phone number 406-444-2535 Website http://fwp.mt.gov/doingBusines Coordinates 46.586864°, -112.01525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.586864,"lon":-112.01525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Mojave Solar Park Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Park Solar Power Plant Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power Developer Solel Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lassen Volcanic National Park Geothermal Area Lassen Volcanic National Park Geothermal Area (Redirected from Lassen Volcanic National Park Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lassen Volcanic National Park Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

177

Oregon Parks and Recreation Department | Open Energy Information  

Open Energy Info (EERE)

Recreation Department Name Oregon Parks and Recreation Department Address 725 Summer St., N.E. Suite C Place Salem, OR Zip 97301 Phone number 503-986-0707 Website http:...

178

Energy Department and National Park Service Announce Clean Cities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities to deploy an all-electric vehicle (EV), a plug-in hybrid EV, and 12 propane lawn mowers. The park also plans to install three EV chargers, two of which will be...

179

wave energy | OpenEI  

Open Energy Info (EERE)

99 99 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281099 Varnish cache server wave energy Dataset Summary Description Source The Wave Energy Resource Assessment project is a joint venture between NREL, EPRI, and Virginia Tech. EPRI is the prime contractor, Virginia Tech is responsible for development of the models and estimating the wave resource, and NREL serves as an independent validator and also develops the final GIS-based display of the data. Source National Renewable Energy Laboratory (NREL) Date Released September 27th, 2011 (3 years ago) Date Updated October 20th, 2011 (3 years ago) Keywords EPRI GIS NREL Puerto Rico shapefile United States Virginia Tech wave energy

180

Wave Energy Extraction from buoys  

E-Print Network (OSTI)

Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

Garnaud, Xavier

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fairview Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ohio: Energy Resources Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4414366°, -81.8643039° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4414366,"lon":-81.8643039,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

Valley Park, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oklahoma: Energy Resources Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.2928744°, -95.737483° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.2928744,"lon":-95.737483,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Maywood Park, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oregon: Energy Resources Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5528965°, -122.5603714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5528965,"lon":-122.5603714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Manassas Park County, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Virginia: Energy Resources County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.7733495°, -77.4386429° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.7733495,"lon":-77.4386429,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Roosevelt Park, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Michigan: Energy Resources Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.1964038°, -86.2722804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1964038,"lon":-86.2722804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Warren Park, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Indiana: Energy Resources Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7819866°, -86.0502615° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7819866,"lon":-86.0502615,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Park Forest, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Illinois: Energy Resources Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4914236°, -87.6744891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4914236,"lon":-87.6744891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

South Park, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4221501°, -110.793261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4221501,"lon":-110.793261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

City of Lake Park, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Park, Minnesota (Utility Company) Park, Minnesota (Utility Company) Jump to: navigation, search Name Lake Park City of Place Minnesota Utility Id 10609 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL CONTROLLED A/C CREDIT Commercial COMMERCIAL DUAL FUEL AND STORAGE HEATING Commercial COMMERCIAL SERVICE RATE Commercial COMMERCIAL WATER HEATER CREDIT Commercial PRIVATE YARD LIGHTS Lighting RESIDENTIAL CONTROLLED A/C CREDIT Residential RESIDENTIAL DUAL FUEL AND STORAGE HEATING Residential RESIDENTIAL SERVICE RATE Residential

190

SolarPark Engineering Co Ltd | Open Energy Information  

Open Energy Info (EERE)

SolarPark Engineering Co Ltd SolarPark Engineering Co Ltd Jump to: navigation, search Name SolarPark Engineering Co Ltd Place Bucheon, Gyeonggi-do, Korea (Republic) Sector Solar Product Korean solar project developer, currently building a 15MW PV plant in Gochang County. Coordinates 37.500069°, 126.792229° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.500069,"lon":126.792229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Oversight Reports - East Tennessee Technology Park | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Tennessee Technology Park East Tennessee Technology Park Oversight Reports - East Tennessee Technology Park December 30, 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Facility - December 2013 Review of the Fire Protection Program and Fire Protection Systems at the Transuranic Waste Processing Center September 20, 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Center, September 2013 Review of Management of Safety Systems at the Oak Ridge Transuranic Waste Processing Center and Associated Feedback and Improvement Processes June 24, 2013 Independent Oversight Review, URS CH2M Oak Ridge - June 2013 Review of Oak Ridge Environmental Management Radiological Controls Activity Level Implementation August 25, 2011 Independent Activity Report, Oak Ridge Office - June 2011

192

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lassen Volcanic National Park Geothermal Area Lassen Volcanic National Park Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lassen Volcanic National Park Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

193

Village of Hyde Park, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hyde Park, Vermont (Utility Company) Hyde Park, Vermont (Utility Company) Jump to: navigation, search Name Hyde Park Village of Place Vermont Service Territory Vermont Website www.hydeparkvt.com/watera Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 9144 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric (AE) Residential General Service (GS) Commercial Large General Service Industrial Residential (RS) Residential Security Lights - Ded. Pole Lighting

194

Climate Leadership in Parks (CLIP) | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Climate Leadership in Parks (CLIP) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Leadership in Parks (CLIP) Agency/Company /Organization: National Park Service Phase: Determine Baseline, "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property.

195

Parke County Rural E M C | Open Energy Information  

Open Energy Info (EERE)

Parke County Rural E M C Parke County Rural E M C Jump to: navigation, search Name Parke County Rural E M C Place Indiana Utility Id 14471 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RATE SCHEDULE C (Rate 3 and 4) Commercial RATE SCHEDULE LG-OP (Rate 5) Commercial Rate Rider DG (Rate 11) Distributed Generation Rider Option 1 Commercial Rate Rider DG (Rate 11) Distributed Generation Rider Option 2 Commercial Rate Rider P (Rate 66) Prepaid Service Commercial Rate Rider RE(RATE 66) Residential

196

Wave Energy Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name Wave Energy Technologies Inc Address 270 Sandy Cove Rd Place Ketch Harbour Zip B3V 1K9 Sector Marine and Hydrokinetic Website http:...

197

Direct Drive Wave Energy Buoy  

SciTech Connect

The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

198

East Lake-Orient Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Orient Park, Florida: Energy Resources Orient Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.9829532°, -82.3777335° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9829532,"lon":-82.3777335,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place Sun Prairie, Wisconsin Zip 53590 Sector Services, Wind energy Product Wisconsin-based wind developer and construction services provider. References Wave Wind...

200

A Geothermal District-Heating System and Alternative Energy Research Park  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description With prior support from the Department of Energy (GRED III Program), New Mexico Institute of Mining and Technology (NM Tech) has established that this resource likely has sufficient permeability (3000 Darcies) and temperatures (80-112 oC) to develop a campus-wide district heating system.

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Green Wave Energy Corp GWEC | Open Energy Information  

Open Energy Info (EERE)

Green Wave Energy Corp GWEC Jump to: navigation, search Name Green Wave Energy Corp GWEC Sector Marine and Hydrokinetic Website http:http:greenwaveenergyc Region United States...

202

California Wave Energy Partners LLC | Open Energy Information  

Open Energy Info (EERE)

California Wave Energy Partners LLC Jump to: navigation, search Name California Wave Energy Partners LLC Address 1590 Reed Road Place Pennington Zip 8534 Sector Marine and...

203

City of Park River, North Dakota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Park River Park River Place North Dakota Utility Id 14474 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Multi-Dwelling Commercial Commercial All Electric Commercial Commercial Off-Peak Commercial Commercial- Single Phase Commercial Commercial- Three Phase Commercial Heat Pump Residential Industrial >125,000 kWh/yr Industrial Residential Residential Residential Off Peak Residential Residential- All Electric Residential Average Rates Residential: $0.0858/kWh Commercial: $0.0905/kWh

204

City of College Park, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

College Park College Park Place Georgia Utility Id 3939 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CITY FLAT RATE Commercial GENERAL SERVICE NON-DEMAND Commercial LARGE GENERAL SERVICE Commercial MEDIUM GENERAL SERVICE Commercial RESIDENTIAL Residential SECURITY LIGHTING SERVICE HPS 100 W Lighting SECURITY LIGHTING SERVICE, HPS 250 Lighting SECURITY LIGHTING SERVICE, HPS 400 Lighting

205

College Industrial Park : An Innovative Approach to Energy Conservation Through the Use of Geothermal Energy.  

DOE Green Energy (OSTI)

Geothermal effluent from the Oregon Institute of Technology campus and Merle West Medical Center has been discharged to an open drainage ditch adjacent to the City's College Industrial Park since 1964. Over the past few years there has been increasing concern for conservation and preservation of the geothermal aquifers in Klamath Falls, Oregon. An effective way of improving the energy utilization is to cascade the approximately 130/sup 0/F effluent for heating buildings in the industrial park and disposal of the effluent in an existing injection well. An aquifer stress test was performed using the 1500 foot well in the industrial park. Based on the specific capacity, data indicate that the well is capable of accepting an injection rate of at least 700 gpm of the thermal effluent. A plume of degraded water will develop down-gradient of the well. However, the plume is expected to bypass nearby water supply wells and will have no impact on OIT and MWMC space heating wells.

Oregon Institute of Technology (Klamath Falls, Or.). Geo-Heat Center; William E. Nork, Inc.

1986-11-18T23:59:59.000Z

206

Riding the Waves: Harnessing Ocean Wave Energy through ...  

Science Conference Proceedings (OSTI)

... The opportunities for ocean wave power to become a new, reliable and clean source of renewable energy will be discussed, as well as activities of ...

2012-04-04T23:59:59.000Z

207

Mesoscale Energy Spectra of Moist Baroclinic Waves  

Science Conference Proceedings (OSTI)

The role of moist processes in the development of the mesoscale kinetic energy spectrum is investigated with numerical simulations of idealized moist baroclinic waves. Dry baroclinic waves yield upper-tropospheric kinetic energy spectra that ...

Michael L. Waite; Chris Snyder

2013-04-01T23:59:59.000Z

208

Parking Savings Through LED Project for Iowa City | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parking Savings Through LED Project for Iowa City Parking Savings Through LED Project for Iowa City Parking Savings Through LED Project for Iowa City July 15, 2010 - 1:15pm Addthis Joshua DeLung What does this project do? Iowa City combines State Energy Program grant and rebate from utility. City to save $66,000 annually with energy efficient LED lights in parking garages. Project will reduce energy usage by 1.4 million kWh annually. Iowa City's $1.2 million LED project is expected to save the city about $5,000 each month from changing out old, metal halide light fixtures for LED lights. The cost of the project was partially covered by a $419,000 grant from the U.S. Department of Energy's State Energy Program and a $45,000 rebate from MidAmerican Energy, the local utility company. Brightening the future The LEDs being installed in Iowa City use less energy than normal light

209

Renewable Energy at Channel Islands National Park; Federal Energy Management Program: Technical Assistance, Case Study (Fact sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Visitors to Channel Islands National Visitors to Channel Islands National Park enjoy hiking, snorkeling, scuba diving, bird watching, and fishing. And now they'll also enjoy the benefits of renewable energy systems. The park is located off the coast of southern California and comprises Anacapa, Santa Barbara, Santa Cruz, San Miguel, and Santa Rosa Islands, and the surrounding mile of ocean. It has 249,353 acres (100,910 hectares) that teem with terrestrial and marine life. The park boasts more than 2000 species of land flora and fauna (145 of which are unique to the area), and is on a migration lane for gray, blue, and humpback whales. The National Park Service (NPS) pro- tects the pristine resources at Channel Islands by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources

210

Wave Power: Destroyer of Rocks; Creator of Clean Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E E PG&E Wave Energy Wave Energy Federal Utility Partnership Federal Utility Partnership Working Group Meeting Working Group Meeting Wave Energy Wave Energy Development Development Ontario, CA Ontario, CA November 18 November 18- -19, 200 19, 2009 9 Donald G. Price Donald G. Price Senior Consulting Scientist, PG&E Senior Consulting Scientist, PG&E Wave Power Overview Wave Power Overview * * What is Wave Power? What is Wave Power? o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean waves that is converted into electricity by various means. waves that is converted into electricity by various means. o o It is a clean, renewable energy resource capable of being utilized

211

Borough of Park Ridge, New Jersey (Utility Company) | Open Energy  

Open Energy Info (EERE)

Jersey (Utility Company) Jersey (Utility Company) Jump to: navigation, search Name Borough of Park Ridge Place New Jersey Utility Id 14472 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dusk to Dawn Floodlight Service MV 1000W Lighting Dusk to Dawn Floodlight Service HPS 100W Lighting Dusk to Dawn Floodlight Service HPS 150W Lighting Dusk to Dawn Floodlight Service HPS 175W Lighting Dusk to Dawn Floodlight Service HPS 250W Lighting Dusk to Dawn Floodlight Service HPS 360W Lighting Dusk to Dawn Floodlight Service HPS 400W Lighting

212

Replacement of Lighting Fixtures with LED Energy Efficient Lights at the Parking Facility, Milwaukee, Wisconsin  

Science Conference Proceedings (OSTI)

The Forest County Potawatomi Community (FCPC or Tribe) owns a six-story parking facility adjacent to its Potawatomi Bingo Casino (the Casino) in Milwaukee, Wisconsin, as well as a valet parking facility under the Casino (collectively, the Parking Facility). The Parking Facility contained 205-watt metal halide-type lights that, for security reasons, operated 24 hours per day, 7 days per week. Starting on August 30, 2010, the Tribe replaced these fixtures with 1,760 state-of-the-art, energy efficient 55-Watt LED lights. This project resulted in an immediate average reduction in monthly peak demand of 238 kW over the fourth quarter of 2010. The average reduction in monthly peak demand from October 1 through December 31, 2010 translates into a forecast annual electrical energy reduction of approximately 1,995,000 kWh or 47.3% of the pre-project demand. This project was technically effective, economically feasible, and beneficial to the public not only in terms of long term energy efficiency and associated emissions reductions, but also in the short-term jobs provided for the S.E. Wisconsin region. The project was implemented, from approval by U.S. Department of Energy (DOE) to completion, in less than 6 months. The project utilized off-the-shelf proven technologies that were fabricated locally and installed by local trade contractors.

David Brien

2012-06-21T23:59:59.000Z

213

MHK Technologies/The Crestwing Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

Crestwing Wave Energy Converter Crestwing Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Crestwing Wave Energy Converter.jpg Technology Profile Primary Organization Waveenergyfyn Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The connected pontoons swing around the hinge when the top of the waves passes under the floats The pontoons relative motion is converted into usable energy through a linear PTO system The pontoons are pushed upwards from the below passing wave and again dragged down by the same passing wave Complex hydrodynamic conditions occur under the pontoons when the wave formation pushes the unit up and down simultaneously The energy from waves can be divided into fifty percent potential energy and fifty percent kinetic energy Crestwing absorbs both the potential energy as the kinetic energy which is the back ground for the high efficiency

214

Energy Transmission by Barotropic Rossby Waves Revisited  

Science Conference Proceedings (OSTI)

This article presents a semianalytic method to investigate the properties of energy transmission across bottom topography by barotropic Rossby waves. The method is first used to revisit the analytical estimates derived from wave-matching ...

R. P. Matano; E. D. Palma

2005-11-01T23:59:59.000Z

215

Federal Energy Management Program: National Park Service - Lake...  

NLE Websites -- All DOE Office Websites (Extended Search)

many advantages. This is the largest PV system the NPS has installed with 115 kilowatts of energy being produced. A 59% improvement in energy efficiency has been realized...

216

Korea Institute of Energy Research Seong-Ryong Park  

E-Print Network (OSTI)

.9 % of total amount of imports Energy imports ( vs total imports) Oil Imports ((Mil bbl) 0.1 Bil USD 1,217 1 material Geo thermal Heat pump (Korea) (EU) RenewableNew Renewable EnergyNew Heat source · 3 New energy, 8 Renewable energy · Heat Pump is NOT included. '02 '05'04 '06 '90 '02 '04 '05 '06 '07 '08 Primary Energy 93

Oak Ridge National Laboratory

217

Millimeter Wave Sensors for Clean Energy  

Science Conference Proceedings (OSTI)

Millimeter wave sensor data on refractory used for clean coal gasification will also be presented. Future applications in the area of clean energy will be...

218

Two Elk Energy Park Carbon Site Characterization Project  

NLE Websites -- All DOE Office Websites (Extended Search)

technologies offer the potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic...

219

Clean Cities National Parks Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Projects and State Memos DOE Recovery Field Projects and State Memos Advanced Vehicle Technologies Awardees Advanced Vehicle Technologies Awardees Department of Energy...

220

Leisure Village West-Pine Lake Park, New Jersey: Energy Resources | Open  

Open Energy Info (EERE)

West-Pine Lake Park, New Jersey: Energy Resources West-Pine Lake Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0046518°, -74.2707509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0046518,"lon":-74.2707509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Evaluation of the Low-Energy Design Process and Energy Performance of the Zion National Park Visitor Center: Preprint  

SciTech Connect

Paper discusses NREL's role in the participation of the design process of the Zion National Park Visitor Center Complex and the results documented from monitoring the energy performance of the building for several years. Paper includes PV system and Trombe wall description and lessons learned in the design, construction, and commissioning of the building.

Long, N.; Torcellini, P.; Pless, S.; Judkoff, R.

2005-10-01T23:59:59.000Z

222

Sonnen Solar Park GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

search Name Sonnen Solar Park GmbH & Co KG Place Germany Sector Solar Product 1.75MW solar PV park in Bavaria, developed by Voltwerk. References Sonnen Solar Park GmbH & Co...

223

Pahoa geothermal industrial park. Engineering and economic analysis for direct applications of geothermal energy in an industrial park at Pahoa, Hawaii  

DOE Green Energy (OSTI)

This engineering and economic study evaluated the potential for developing a geothermal industrial park in the Puna District near Pahoa on the Island of Hawaii. Direct heat industrial applications were analyzed from a marketing, engineering, economic, environmental, and sociological standpoint to determine the most viable industries for the park. An extensive literature search produced 31 existing processes currently using geothermal heat. An additional list was compiled indicating industrial processes that require heat that could be provided by geothermal energy. From this information, 17 possible processes were selected for consideration. Careful scrutiny and analysis of these 17 processes revealed three that justified detailed economic workups. The three processes chosen for detailed analysis were: an ethanol plant using bagasse and wood as feedstock; a cattle feed mill using sugar cane leaf trash as feedstock; and a papaya processing facility providing both fresh and processed fruit. In addition, a research facility to assess and develop other processes was treated as a concept. Consideration was given to the impediments to development, the engineering process requirements and the governmental support for each process. The study describes the geothermal well site chosen, the pipeline to transmit the hydrothermal fluid, and the infrastructure required for the industrial park. A conceptual development plan for the ethanol plant, the feedmill and the papaya processing facility was prepared. The study concluded that a direct heat industrial park in Pahoa, Hawaii, involves considerable risks.

Moreau, J.W.

1980-12-01T23:59:59.000Z

224

Microsoft PowerPoint - Gilbertson - Energy Park Initiative Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiative "Leveraging Assets to increase the Taxpayer's Return on Investment" September 30, 2009 September 30, 2009 Mark A. Gilbertson Deputy Assistant Secretary for Engineering & Technology 2 Energy, Environment & the Economy "So we have a choice to make. We can remain one of the world's leading importers of foreign oil, or we can make the investments that would allow us to become the world's leading exporter of renewable energy. We can let climate change continue to go unchecked, or we can help stop it. We can let the jobs of tomorrow be created abroad, or we can create those jobs right here in America and lay the foundation for lasting prosperity." - President Obama, March 19, 2009 3 Energy, Environment & the Economy * Investing in the Clean Energy Jobs of the Future

225

Energy Department and National Park Service Announce Clean Cities...  

NLE Websites -- All DOE Office Websites (Extended Search)

a new name, a new structure, and a newly-revitalized mission as the nations lead nuclear energy research laboratory, notes DOE-Idaho Manager Rick Provencher in his forward...

226

The Effects of Wave Energy Converters on a Monochromatic Wave Climate  

E-Print Network (OSTI)

in wave energy converters as a possible means of providing renewable energy, the effects of a wave energy The interest in renewable energies is currently increasing due to the reported rise in global temperature is that of wave energy. The research is multifaceted and includes research on the efficiency of wave energy

Fox-Kemper, Baylor

227

NREL: Sustainable NREL - Parking Garage  

NLE Websites -- All DOE Office Websites (Extended Search)

Parking Garage Parking Garage A photo of a grey, five-story, above-ground parking garage. Solar panels are seen installed on the roof of the structure. NREL's multi-story parking garage. NREL's parking garage proves that large garages can be designed and built sustainably-at no additional cost. And although parking garages don't qualify for the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) certification, NREL designed the parking garage to LEED Platinum standards to maximize energy savings and environmental stewardship. The structure is expected to perform 90% better than a standard garage built just to code. Fast Facts Cost: $14,172 per parking space Cost is typically $15,500 to $24,500 per parking space Square Feet: 578,320 Parking Spaces: 1,800

228

High Technology and Biotechnology Customers and Distributed Energy Resources: Can Energy Parks and Other Distributed Energy Resource s Services Meet Their Needs?  

Science Conference Proceedings (OSTI)

How to attract customers in the growth sectors of the economy? That's a question nearly all utilities face. This report examines how two sectors -- high technology and biotechnology (HBT) -- view energy, specifically distributed energy resources (DER) and the concept of energy parks.

2004-01-30T23:59:59.000Z

229

Energy-momentum relation for solitary waves of relativistic wave equations  

E-Print Network (OSTI)

Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.

T. V. Dudnikova; A. I. Komech; H. Spohn

2005-08-23T23:59:59.000Z

230

Direct Simulation of Internal Wave Energy Transfer  

Science Conference Proceedings (OSTI)

A three-dimensional nonhydrostatic numerical model is used to calculate nonlinear energy transfers within decaying GarrettMunk internal wavefields. Inviscid wave interactions are calculated over horizontal scales from about 1 to 80 km and for ...

Kraig B. Winters; Eric A. DAsaro

1997-09-01T23:59:59.000Z

231

Energy Dispersion in African Easterly Waves  

Science Conference Proceedings (OSTI)

The existence of an upstream (eastward) group velocity for African easterly waves (AEWs) is shown based on single-point lag regressions using gridded reanalysis data from 1990 to 2010. The eastward energy dispersion is consistent with the ...

Michael Diaz; Anantha Aiyyer

2013-01-01T23:59:59.000Z

232

Can dark energy be gravitational waves?  

E-Print Network (OSTI)

The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons) of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

Biermann, Peter L

2013-01-01T23:59:59.000Z

233

MHK Technologies/Tunneled Wave Energy Converter TWEC | Open Energy  

Open Energy Info (EERE)

Tunneled Wave Energy Converter TWEC Tunneled Wave Energy Converter TWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tunneled Wave Energy Converter TWEC.jpg Technology Profile Primary Organization SeWave Ltd Project(s) where this technology is utilized *MHK Projects/TWEC Project Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tunneled Wave Energy Converter TWEC utilizes the OWC principle through its use of a proposed bored out tunnel within a cliff side of the Faroe Islands Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage

234

MHK Technologies/WEGA wave energy gravitational absorber | Open Energy  

Open Energy Info (EERE)

WEGA wave energy gravitational absorber WEGA wave energy gravitational absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WEGA wave energy gravitational absorber.jpg Technology Profile Primary Organization Sea for Life Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The WEGA device is an articulated suspended body semi submerged attached to a mount structure that oscillates in an elliptical orbit with the passage of the waves The movement of the body drives an hydraulic cylinder which pushes high pressure fluid through an accumulator and an hydraulic motor driving the generator that produces energy The articulated body attaches to the mount structure through a rotary head which allows it to adapt to the direction wave propagation Multiple devices can be placed on a single mount structure according to the size and place of the structure

235

Ocean Wave Wind Energy Ltd OWWE | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ltd OWWE Jump to: navigation, search Name Ocean Wave Wind Energy Ltd OWWE Sector Marine and Hydrokinetic Website http:www.owwe.net Region Norway LinkedIn Connections...

236

Soft Capacitors for Wave Energy Harvesting  

E-Print Network (OSTI)

Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.

Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jrgen Jrgensen; Guggi Kofod

2011-04-21T23:59:59.000Z

237

Wind Energy Input to the Surface Waves  

Science Conference Proceedings (OSTI)

Wind energy input into the ocean is primarily produced through surface waves. The total rate of this energy source, integrated over the World Ocean, is estimated at 60 TW, based on empirical formulas and results from a numerical model of surface ...

Wei Wang; Rui Xin Huang

2004-05-01T23:59:59.000Z

238

CAPTURING THE POWER OF NATURE Iowa Stored Energy Park DOE Peer Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Peer Review Fairmont Hotel Washington, DC September 29, 2008 Kent Holst, Development Director Iowa Stored Energy Park Funding: Congressional Ear-mark CAPTURING THE POWER OF NATURE Today's Presentation Past Present Future Funding CAPTURING THE POWER OF NATURE c CAPTURING THE POWER OF NATURE Iowa's municipal utilities saw this. 1. Economic feasibility studies. 2. Geologic research. 3. Computer modeling. CAPTURING THE POWER OF NATURE Will ISEP make money? 1. Missouri River Energy Services. 2. Southern Minnesota Municipal Power Agency. CAPTURING THE POWER OF NATURE Next steps: 1. Drill two test wells. 2. Pump tests, water & air. 3. Refine computer modeling. CAPTURING THE POWER OF NATURE Funding 1. Municipal utilities -$1.15 million. 2. DOE - $6 million. 3. Iowa Power Fund - $3.2 million.

239

MHK Technologies/The DEXAWAVE wave energy converter | Open Energy  

Open Energy Info (EERE)

DEXAWAVE wave energy converter DEXAWAVE wave energy converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The DEXAWAVE wave energy converter.jpg Technology Profile Primary Organization Dexawave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The DEXAWAVE wave energy converter has a simple construction It consists of two rigid pontoons hinged together using a patented hinge The one pontoon can pivot relative to the other There is a hydraulic power take off system on top of the converter generating up to 250 kW Technology Dimensions Technology Nameplate Capacity (MW) 25 Device Testing Scale Test *At present our 1 to 5 scale model is working the waters outside the Danish port of Hanstholm collecting valuable data about the waves and currents that are constantly pounding the structure

240

MHK Technologies/Wave Energy Conversion Activator WECA | Open Energy  

Open Energy Info (EERE)

Activator WECA Activator WECA < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus Informatics Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The full scale WECA design is ideally fabricated with steel so as to be suitable for mounting on the run up wall of breakwaters or other rigid or floating structures The oscillating wave surge converter absorbs most of the energy of the impacting waves and turn it into compressed air which is subsequently converted into electric power or other forms of energy The device utilizes the Critical Momentum Wedge principle where the water rushing into the device resembles a virtual Wedge of kinetic energy

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Internal WaveWave Interactions. Part II: Spectral Energy Transfer and Turbulence Production  

Science Conference Proceedings (OSTI)

The spectral transfer of internal wave energy toward high vertical wavenumber kz and turbulence production ? is examined by ray tracing small-scale test waves in a canonical Garrett and Munk background wave field. Unlike previous ray-tracing ...

Haili Sun; Eric Kunze

1999-11-01T23:59:59.000Z

242

MHK Technologies/DEXA Wave Converter | Open Energy Information  

Open Energy Info (EERE)

Wave Technology Type Click here Attenuator Technology Description The wave energy conversion is similar to other devices There is no data publicly available currently on the...

243

MHK Technologies/OCEANTEC Wave Energy Converter | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Converter Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCEANTEC Wave Energy Converter.jpg Technology Profile Primary Organization OCEANTEC Energias Marinas S L Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description OCEANTEC Marine Energy Company Ltd owned by Iberdrola and TECNALIA is developing a sensor for wave energy technology type Spanish attenuator Floating body oscillates due to wave excitation in its main DOF pitch Mooring system allows the body to weathervane so that it is faced to the predominant wave propagation direction Main advantage capture system completely encapsulated free of contact with sea water A flywheel continuously spins under the action of an electric motor Z The pitching motion of the WEC caused by wave action is transformed into an alternating precession in the longitudinal hull axis X A coupling device transforms this precession into an unidirectional rotation of higher frequency that is used to feed a conventional electric generator

244

UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATES OF AMERICA STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION Reedsport OPT Wave Park, LLC Project No. 12713-002 Oregon NOTICE OF AVAILABILITY OF ENVIRONMENTAL ASSESSMENT (December 3, 2010) In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission or FERC's) regulations, 18 CFR Part 380 (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed Reedsport OPT Wave Park, LLC's application for license for the Reedsport OPT Wave Park Project

245

On the Energy Input from Wind to Surface Waves  

Science Conference Proceedings (OSTI)

A basic model relating the energy dissipation in the ocean mixed layer to the energy input into the surface wave field is combined with recent measurements of turbulent kinetic energy dissipation to determine the average phase speed of the waves ...

J. R. Gemmrich; T. D. Mudge; V. D. Polonichko

1994-11-01T23:59:59.000Z

246

List of Wave Energy Incentives | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Incentives Wave Energy Incentives Jump to: navigation, search The following contains the list of 652 Wave Energy Incentives. CSV (rows 1-500) CSV (rows 501-652) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government

247

MHK Technologies/Wave Energy Propulsion | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Propulsion.jpg Technology Profile Primary Organization Kneider Innovations Technology Resource Click here Wave Technology Type Click here Attenuator Technology Description The device concept is a converter of the vertical potential energy moving wave to push the boat on horizontal kinetic motion Optimum Marine/Riverline Conditions The device is compliant for boat navigating on sea and oceans or lakes when water levels are changing cyclicly waves Technology Dimensions Device Testing Date Submitted 18:32.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Wave_Energy_Propulsion&oldid=681483"

248

MHK Technologies/Seatricity wave energy converter | Open Energy Information  

Open Energy Info (EERE)

Seatricity wave energy converter Seatricity wave energy converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Seatricity wave energy converter.jpg Technology Profile Primary Organization Seatricity Project(s) where this technology is utilized *MHK Projects/Seatricity Antigua *MHK Projects/Seatricity Orkney Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description In the simplest terms, a float travels up and down with the waves and operates a pump to pressurise sea water which is piped ashore. Many individual pumps are connected together to produce substantial amounts of pressurized water. Once ashore the pressurized sea water is used to drive a standard hydroelectric turbine to produce electricity.

249

WaveCatcher Inc | Open Energy Information  

Open Energy Info (EERE)

WaveCatcher Inc WaveCatcher Inc Jump to: navigation, search Name WaveCatcher Inc Address 2307 Robincrest Ln Sector Marine and Hydrokinetic Year founded 2006 Phone number 1-847-764-9106 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=WaveCatcher_Inc&oldid=678511" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863326429 Varnish cache server

250

Join The Conversation: Apps for Energy Twitter Q&A with U.S. CTO Todd Park  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Join The Conversation: Apps for Energy Twitter Q&A with U.S. CTO Join The Conversation: Apps for Energy Twitter Q&A with U.S. CTO Todd Park Join The Conversation: Apps for Energy Twitter Q&A with U.S. CTO Todd Park April 16, 2012 - 9:15am Q&A Submit your Apps for Energy Twitter Q&A questions for U.S. CTO Todd Park Ask Us Addthis Join our Apps for Energy Twitter Q&A Today (@ENERGY) at 2 PM EDT by following the hashtag #appsforenergy. Join our Apps for Energy Twitter Q&A Today (@ENERGY) at 2 PM EDT by following the hashtag #appsforenergy. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? Join us for a live Twitter Q&A (@Energy) this Tuesday, April 17, at 2 PM EDT Submit questions now using hashtag #appsforenergy Have questions about Apps for Energy? Want to know more about government

251

Energy Dissipation of Unsteady Wave Breaking on Currents  

Science Conference Proceedings (OSTI)

Energy dissipation for unsteady deep-water breaking in wave groups on following and opposing currents, including partial wave-blocking conditions, was investigated by detailed laboratory measurements. A range of focusing wave conditions, ...

Aifeng Yao; Chin H. Wu

2004-10-01T23:59:59.000Z

252

Kinetic Energy Transfer between Internal Gravity Waves and Turbulence  

Science Conference Proceedings (OSTI)

We describe a reliable method for distinguishing the mean, wave and turbulence fields when internal waves with changing amplitude perturb the turbulent boundary layer. By integrating the component wave and turbulence kinetic energy budgets ...

J. J. Finnigan

1988-02-01T23:59:59.000Z

253

MHK Technologies/CETO Wave Energy Technology | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Technology Wave Energy Technology < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage CETO Wave Energy Technology.png Technology Profile Primary Organization Carnegie Wave Energy Limited Project(s) where this technology is utilized *MHK Projects/CETO La Reunion *MHK Projects/CETO3 Garden Island *MHK Projects/Perth Wave Energy Project PWEP Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The CETO system distinguishes itself from other wave energy devices by operating out of sight and being anchored to the ocean floor. Each CETO unit consists of a pump unit moored to the ocean floor and connected to a submerged Buoyant Actuator via a tether. The Buoyant Actuator moves in an orbital motion, in harmony with the wave, capturing the power of the passing waves. The Buoyant Actuator is connected to a tether (marine rope) that creates a vertical upward force which actuates the seabed mounted piston pump. This force pressurises fluid in the CETO system. The high pressure fluid is then sent ashore via a subsea pipeline. Onshore the fluid passes through a standard hydroelectric turbine to generate zero-emission electricity and/or through a reverse osmosis plant to directly create zero-emission desalinated water (replacing greenhouse gas emitting electrically driven pumps usually required for such plants). The fluid is then re-circulated at low-pressure to the CETO units offshore creating a closed-loop system. The generation capacity of CETO projects is scalable. To increase the project capacity additional units can be added offshore and connected back to a larger power house onshore.

254

MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy  

Open Energy Info (EERE)

Wind Wave pumps and turbins Wind Wave pumps and turbins < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid wave Wind Wave pumps and turbins.jpg Technology Profile Primary Organization Ocean Wave Wind Energy Ltd OWWE Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 2Wave1Wind The hybrid wave power rig uses two wave converting technologies in addition to wind mills The main system is a pneumatic float in the category of overtopping as Wave Dragon In addition the pneumatic float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005

255

Open Ocean Aquaculture & Wave Energy Site | Open Energy Information  

Open Energy Info (EERE)

Aquaculture & Wave Energy Site Aquaculture & Wave Energy Site Jump to: navigation, search Basic Specifications Facility Name Open Ocean Aquaculture & Wave Energy Site Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Depth(m) 52.0 Cost(per day) Contact POC Special Physical Features The Offshore Mooring System is placed in 52m water depth with a subsurface attachment grid at 20m. The entire mooring system covers 36 acres of bottom. There are four 'bays' into which devices can be attached. Each bay is approximately 130m on a side. There is a database with ~10 years of wave data and other environmental parameters available. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes

256

Before the House Subcommittee on National Parks Committee on...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parks Committee on Energy and Commerce Before the House Subcommittee on National Parks Committee on Energy and Commerce Testimony of Ingrid Kolb, Director Office of Management...

257

Estimating Internal Wave Energy Fluxes in the Ocean  

Science Conference Proceedings (OSTI)

Energy flux is a fundamental quantity for understanding internal wave generation, propagation, and dissipation. In this paper, the estimation of internal wave energy fluxes u?p? from ocean observations that may be sparse in either time or depth ...

Jonathan D. Nash; Matthew H. Alford; Eric Kunze

2005-10-01T23:59:59.000Z

258

MHK Technologies/Wave Energy Seawater Transmission WEST | Open Energy  

Open Energy Info (EERE)

Wave Energy Seawater Transmission WEST Wave Energy Seawater Transmission WEST < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Seawater Transmission WEST.jpg Technology Profile Primary Organization Atmocean Inc Project(s) where this technology is utilized *MHK Projects/WEST Testing Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description Atmocean WEST efficiently captures wave energy by deploying many inexpensive devices across large ocean regions. By using hydraulic transmission, WEST avoids the high cost of seafloor power lines, generating electricity onshore to achieve higher reliability at lower cost. When WEST is combined with Bright Energy Storage Technologies seafloor compressed air energy storage (CAES) system, the two enable base load renewable power (eliminating the need for backup fossil-fuel power) at a projected levelized cost of electricity (LCOE) of $.08/kWh to $.12/kWh.

259

Siting GNEP at the Savannah River Site: Using Legacy and Infrastructure in a Commercial Energy Park Concept  

SciTech Connect

The Savannah River Site (SRS) was proposed as one of eleven potential sites to be included in the U.S. Department of Energy Programmatic Environmental Impact Statement (PEIS) for the Global Nuclear Energy Partnership (GNEP) program. The approach to meet siting and infrastructure requirements for possible GNEP facilities at the SRS focused on available infrastructure including land, cooling water systems, high voltage power supplies, existing heavy haul roadways, existing analytical capabilities, and existing waste handling capabilities. Additional siting criteria and existing SRS capabilities and conditions were developed to locate the GNEP within a commercial Energy Park contained within, but separate from, the SRS. Included as part of, or corollary to, existing infrastructure at the SRS was the availability of a nuclear trained workforce living within the area. The SRS consists of approximately 803 square kilometers (310 square miles) in the Upper Atlantic Coastal Plain of South Carolina bordering along the Savannah River. Historic production reactors, processing, and laboratory facilities are currently being decommissioned and destroyed while new facilities such as the MOX facility are being built. Existing legacy infrastructure, beneficial to the potential GNEP facilities, continues to exist and operate. The SRS has a long history of processing, reprocessing and in the disposition of nuclear fuels and byproducts continuing through today with HCanyon as the only DOE facility currently capable of uranium reprocessing. Because of ongoing operations and maintenance of historic systems, SRS has existing infrastructure immediately available for GNEP facilities in or near the proposed Energy Park. The Energy Park location was chosen to achieve maximum use of this legacy infrastructure. In summary: Requirements for potential or conceivable GNEP facilities can be met using the existing facilities and infrastructure of the SRS. A potential commercially operated Energy Park located within the existing boundaries of the SRS can use existing site infrastructure to lessen the overall construction costs and decrease the start up time for our national GNEP program. (authors)

Wyatt, D. [URS, Washington Division/Safety Management Solutions, Aiken, SC (United States); Chaput, E. [Aiken-Edgefield Economic Development Partnership, Aiken, SC (United States); Hoffman, D. [URS, Washington Division/Safety Management Solutions, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

260

MHK Technologies/WaveStar | Open Energy Information  

Open Energy Info (EERE)

WaveStar WaveStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveStar.jpg Technology Profile Primary Organization Wave Star Energy Project(s) where this technology is utilized *MHK Projects/Wave Star Energy 1 10 Scale Model Test Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Star machine does not form a barrier against the waves - with a view to harnessing all their energy - but instead cuts in at right angles to the direction of the wave. In this way, the waves run through the length of the machine and the energy is utilized in a continuous process, which produces a smooth output. On each side of the oblong Wave Star machine, there are a number of hemisphere-shaped floats, which are half submerged in the water. When a wave rolls in, the floats are pressed up - one after the other - until the wave subsides. Each float is positioned at the end of an arm and pumps energy by the vertical movement of the waves up and down. Every time a float is raised or lowered, a piston presses oil into the machine's common transmission system. The pressure drives a hydraulic motor, which drives a generator, which produces electricity. As the machine is several wave lengths long, the floats will work continuously to harness the energy and produce a smooth output.

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EERE News: Energy Department Invests $16 Million to Develop Wave...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Invests 16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 Image of machinery to generate energy using tides. As part of the Obama Administration's...

262

Research Park Notes, Issue 21  

NLE Websites -- All DOE Office Websites (Extended Search)

from individuals from the Department of Energy, Oak Ridge National Laboratory, BWXT-Y12, Bechtel Jacobs, TVA, Great Smoky Mountains National Park, Oak Ridge Associated...

263

Research Park Notes, Issue 19  

NLE Websites -- All DOE Office Websites (Extended Search)

Pat Parr. PARK RESEARCH AND USERS Reservation Data for Carbon Sequestration and Energy Crop Production - Holly Gibbs (Postmasters Research Associate in the Environmental Sciences...

264

Won Young Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Won Park Won Park Won Young Park International Energy Studies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R2002 Berkeley CA 94720 Office Location: 90-2144 (510) 495-2252 WYPark@lbl.gov Won Young Park is a senior research associate at Lawrence Berkeley National Laboratory (LBNL). He is working on technical analysis for televisions, computer monitors, and lighting for the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative. In the studies, he assesses energy savings potential in efficiency improvement options, evaluates cost effectiveness of key technologies, and provides technical information and recommendations for policies and programs designed to accelerate the adoption of efficient technologies. He also supports a Korea project that

265

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network (OSTI)

of offshore wave power to provide efficient, reliable, cost-effective, and environmentally friendly electrical definition study in CY 2004. This study will produce system designs for wave energy conversion device power plants, performance estimate and economic assessments for one site ­ wave energy conversion device per

266

Energy Conservation in Coastal-Trapped Wave Calculations  

Science Conference Proceedings (OSTI)

A consideration of energy conservation for coastal-trapped waves shows that, for a slowly varying medium, the normalization of the wave modes is not arbitrary. Errors related to incorrect normalization are demonstrated for a simple analytic ...

K. H. Brink

1989-07-01T23:59:59.000Z

267

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

Hinsdale Wave Basin 1 Hinsdale Wave Basin 1 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 1 Overseeing Organization Oregon State University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 104.0 Beam(m) 3.7 Depth(m) 4.6 Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 1.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 12' by 12' concrete slabs anchored to flume walls

268

Sang-Jae Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Sang-Jae Park Sang-Jae Park Electrochemical Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 70R0108B Berkeley CA 94720 Office Location: 70-0128 (510) 495-8161 SangJaePark@lbl.gov Sang-Jae Park is a Postdoctoral Researcher at Environmental Energy Technology Division in Lawrence Berkeley National Laboratory. He received his BS and MS degrees in Chemical Engineering from Seoul National University and his PhD degree in Chemistry from University of Pennsylvania in the study of conducting polymers. In the graduate works, he studied a novel class of amphiphilic conducting block-copolymers composed of a widely studied conjugated polymer. His current research in LBNL is focused on the development of conductive polymer binders for lithium ion batteries. By

269

Ocean Wave Energy Company OWECO | Open Energy Information  

Open Energy Info (EERE)

Energy Company OWECO Energy Company OWECO Jump to: navigation, search Name Ocean Wave Energy Company (OWECO) Place Bristol, Rhode Island Sector Ocean Product Wave energy device developer. The company has patented the OWEC Ocean Wave Energy Converter®., a device consisting of a submerged array, suspended at depths permitting full reciprocation of buoys and respective driveshafts. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

Wave Basin 2 Wave Basin 2 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 2 Overseeing Organization Oregon State University Hydrodynamics Length(m) 48.8 Beam(m) 26.5 Depth(m) 2.1 Water Type Freshwater Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Both Simulated Beach Yes Description of Beach Built to client specifications, currently rigid concrete over gravel fill

271

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Sheets Wave Basin Sheets Wave Basin Jump to: navigation, search Basic Specifications Facility Name Sheets Wave Basin Overseeing Organization University of Rhode Island Hydrodynamic Testing Facility Type Wave Basin Length(m) 30.0 Beam(m) 3.6 Depth(m) 1.8 Cost(per day) $750(+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.0 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 10 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Pre-programmed for regular and irregular waves, but wavemaker is capable of any input motion. Wave Direction Uni-Directional

272

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin Length(m) 38.1 Beam(m) 22.9 Depth(m) 1.5 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 3.3 Maximum Wave Length(m) 10.7 Wave Period Range(s) 3.3 Current Velocity Range(m/s) 0.2 Programmable Wavemaking Yes Wavemaking Description Directional, irregular, any spectrum, cnoidal or solitary wave Wave Direction Both Simulated Beach Yes Description of Beach Stone Channel/Tunnel/Flume Channel/Tunnel/Flume None

273

MHK Technologies/Magnetohydrodynamic MHD Wave Energy Converter MWEC | Open  

Open Energy Info (EERE)

Magnetohydrodynamic MHD Wave Energy Converter MWEC Magnetohydrodynamic MHD Wave Energy Converter MWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Magnetohydrodynamic MHD Wave Energy Converter MWEC.jpg Technology Profile Primary Organization Scientific Applications Research Associates Inc SARA Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Magnetohydrodynamic MHD Wave Energy Converter couples the up down motion of heave based systems A shaft transfers wave motion to the MHD generator which is deep underwater The shaft forces the conducting fluid through a set of powerful permanent magnets creating a low voltage high current electrical energy An electrical inverter converts the electrical energy to commercial quality 60 Hz AC power

274

Available Technologies: Green Wave: Energy-Efficient HPC ...  

A Berkeley Lab team led by John Shalf and David Donofrio developed Green Wave, a energy-efficient computing platform that can perform critical Reverse Time Migration ...

275

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

Resource This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed...

276

Traveling Wave Thermoacoustic-Piezoelectric Energy Harvester: Theory and Experiment.  

E-Print Network (OSTI)

??This thesis presents a theoretical and experimental investigation of a piezoelec- tric energy harvester coupled to a traveling wave thermoacoustic engine (TWTAE). By simplifying the (more)

Roshwalb, Andrew Zvi

2011-01-01T23:59:59.000Z

277

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Alden Wave Basin Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Wave Basin Length(m) 33.5 Beam(m) 21.3 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 1.0 Maximum Wave Length(m) 1.8 Wave Period Range(s) 1.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Period adjustable electronically, height adjustable mechanically Wave Direction Both Simulated Beach Yes Description of Beach Designed as needed using commercially available sand/sediment

278

MHK Projects/Oregon Coastal Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Coastal Wave Energy Coastal Wave Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5146,"lon":-123.913,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

279

MHK Technologies/bioWave | Open Energy Information  

Open Energy Info (EERE)

bioWave bioWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage BioWave.jpg Technology Profile Primary Organization BioPower Systems Pty Ltd Project(s) where this technology is utilized *MHK Projects/bioWAVE Pilot Plant Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description TThe bioWAVE is based on the swaying motion of sea plants in the presence of ocean waves. The hydrodynamic interaction of the buoyant blades with the oscillating flow field is designed for maximum energy absorption. Mooring Configuration Gravity base Optimum Marine/Riverline Conditions 30 to 50M depth 20kW m wave climate or greater

280

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

SciTech Connect

This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

Yu, Y.; Li, Y.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

SciTech Connect

Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The projects scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industrys development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industrys development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

282

Motor Wave Group | Open Energy Information  

Open Energy Info (EERE)

Wave Group Jump to: navigation, search Name Motor Wave Group Place Hong Kong Sector Marine and Hydrokinetic Website http:www.motorwavegroup.com Region China LinkedIn Connections...

283

Kinetic Wave Power | Open Energy Information  

Open Energy Info (EERE)

Kinetic Wave Power Jump to: navigation, search Name Kinetic Wave Power Address 2861 N Tupelo St Place Midland Zip 48642 Sector Marine and Hydrokinetic Phone number 989-839-9757...

284

Wind Waves and Sun | Open Energy Information  

Open Energy Info (EERE)

Waves and Sun Jump to: navigation, search Name Wind Waves and Sun Sector Marine and Hydrokinetic Website http:www.windwavesandsun.com Region United States LinkedIn Connections...

285

Enhancement of particle-wave energy exchange by resonance sweeping  

SciTech Connect

It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation.

Berk, H.L.; Breizman, B.N.

1995-10-01T23:59:59.000Z

286

MHK Technologies/PowerBuoy | Open Energy Information  

Open Energy Info (EERE)

PowerBuoy PowerBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PowerBuoy.jpg Technology Profile Primary Organization Oregon Wave Energy Partners LLC Project(s) where this technology is utilized *MHK Projects/Coos Bay OPT Wave Park *MHK Projects/Cornwall Wave Hub *MHK Projects/Griffin Project *MHK Projects/NJBPU 1 5 MW Demonstration Program *MHK Projects/Orkney *MHK Projects/Reedsport OPT Wave Park *MHK Projects/Reedsport OPT Wave Park Expanded Project *MHK Projects/Santona Wave Energy Park *MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 9: Commercial-Scale Production / Application

287

Turbine speed control for an ocean wave energy conversion system  

Science Conference Proceedings (OSTI)

In this work, a hydraulic turbine speed governor is proposed in view of its application in an isolated electric generation system based on an ocean wave energy converter (WEC). The proposed strategy is based on cascade closed-loop control combined with ... Keywords: Pelton turbine, cascade control, feedforward control, ocean wave energy, speed governor

Paula B. Garcia-Rosa; Jos Paulo V. S. Cunha; Fernando Lizarralde

2009-06-01T23:59:59.000Z

288

MHK Technologies/C Wave | Open Energy Information  

Open Energy Info (EERE)

Wave Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage C Wave.jpg Technology Profile Primary Organization C Wave Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The C Wave device uses two neutrally buoyant walls approximately half a wave length apart so that while one is moving forward the other is moving back The device works at a broad bandwidth around this half wavelength spacing However to improve annualized energy yield still further a third wall at an unequal spacing can be added in order to extract energy from different wavelengths Technology Dimensions

289

MHK Technologies/Wave Dragon | Open Energy Information  

Open Energy Info (EERE)

Dragon Dragon < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Dragon.jpg Technology Profile Primary Organization Wave Dragon ApS Project(s) where this technology is utilized *MHK Projects/Wave Dragon Nissum Bredning Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The Wave Dragon is a floating wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp. Behind the ramp there is a large reservoir where the water that runs up the ramp is collected and temporarily stored. The water leaves the reservoir through hydro turbines that utilize the head between the level of the reservoir and the sea level.

290

MHK Technologies/MotorWave | Open Energy Information  

Open Energy Info (EERE)

MotorWave MotorWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MotorWave.jpg Technology Profile Primary Organization Motor Wave Group Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The MotorWave device is composed of about 70 float modules with each float measuring about 4 m3 Each MotorWave is designed to pump water ashore for onshore applications or energy production Technology Dimensions Device Testing Date Submitted 45:49.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/MotorWave&oldid=681609

291

Oregon Wave Energy Trust OWET | Open Energy Information  

Open Energy Info (EERE)

Trust OWET Trust OWET Jump to: navigation, search Name Oregon Wave Energy Trust (OWET) Place Portland, Oregon Zip 97207 Product String representation "The Oregon Wave ... rgy generation." is too long. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

OTRC Wave Basin OTRC Wave Basin Jump to: navigation, search Basic Specifications Facility Name OTRC Wave Basin Overseeing Organization Texas A&M (OTRC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 45.7 Beam(m) 30.5 Depth(m) 5.8 Water Type Freshwater Cost(per day) $300/hour (excluding labor) Special Physical Features 4.6m wide x 9.1m long x 16.8m deep pit with adjustable depth floor in test area Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.6 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 25 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.6 Programmable Wavemaking Yes Wavemaking Description GEDAP 3D wave generation software, 48 hinged flap wave generator

293

New Wave Power Project In Oregon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Power Project In Oregon Wave Power Project In Oregon New Wave Power Project In Oregon June 17, 2011 - 3:12pm Addthis Mike Reed Water Power Program Manager, Water Power Program What does this project do? Promises to add tremendous value to the wave energy industry, reinforcing utility-scale viability, collecting ground-breaking environmental impact data and exploring avenues for cost reduction. Has issued localized manufacturing contracts for the PB150 to several Oregon companies. If you've ever been surfing, or gone swimming in choppy water, you've experienced first-hand the striking power of waves. In fact, further offshore, wave activity becomes even more powerful, making it an excellent resource for generating clean, renewable energy. That's exactly what the Department of Energy and its partner Ocean Power Technologies (OPT) are

294

SeWave | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » SeWave Jump to: navigation, search Name SeWave Place Denmark Zip FO-110 Product Denmark-based 50:50 JV between UK's Wavegen and Faroese electricity company SEV to to design and build a tunnelled demonstration wave power plant in the Faroes Islands. References SeWave[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeWave is a company located in Denmark . References ↑ "SeWave"

295

Property:Wave Direction | Open Energy Information  

Open Energy Info (EERE)

Direction Direction Jump to: navigation, search Property Name Wave Direction Property Type String Pages using the property "Wave Direction" Showing 25 pages using this property. (previous 25) (next 25) A Alden Small Flume + Uni-Directional + Alden Wave Basin + Both + C Carderock Maneuvering & Seakeeping Basin + Both + Carderock Tow Tank 2 + Uni-Directional + Carderock Tow Tank 3 + Uni-Directional + Chase Tow Tank + Uni-Directional + Coastal Harbors Modeling Facility + Uni-Directional + Coastal Inlet Model Facility + Uni-Directional + Coastal Structures Modeling Complex + Both + D Davidson Laboratory Tow Tank + Uni-Directional + DeFrees Large Wave Basin + Uni-Directional + DeFrees Small Wave Basin + Uni-Directional + H Haynes Wave Basin + Both +

296

MHK Technologies/WavePlane | Open Energy Information  

Open Energy Info (EERE)

WavePlane WavePlane < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WavePlane.jpg Technology Profile Primary Organization WavePlane A S Project(s) where this technology is utilized *MHK Projects/WavePlane Prototype 1 Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The WavePlane is a V-shaped design, which is anchored with the head up against the incoming waves. Below the waterline the device is fitted with an artificial beach, which is designed to improve the capture of wave energy. The WavePlane is symmetrical in its construction. Each side captures the water from the waves of various heights. The device splits the oncoming waves with a series of intakes, known as lamellas, which guide the captured water into a 'flywheel tube.' The fast moving vortex that is formed then forces the water across two turbines, which are located at the ends of the two 'V-shaped legs'. Finally the water is discharged back into the ocean.

297

Zion National Park Visitor Center: Significant Energy Savings Achieved through a Whole-Building Design Process: Preprint  

DOE Green Energy (OSTI)

The National Park Service (NPS) applied a whole-building design process developed at the National Renewable Energy Laboratory (NREL) to create a building that performs more than 70% better than a comparable code-compliant building at no additional construction cost. This whole-building design process involves a committed design team, including the energy consultant, in the earliest conceptual design phase and continues through building commissioning. The design team for this project included the architect, engineer, energy consultant, landscape architect, owner, operator, and others who could influence the building design and operation. Extensive whole-building energy and lighting computer simulations were conducted throughout the process, which included the integration of energy efficient and renewable energy technologies into the building. The design team, inspired by natural cooling within the canyon, developed simple solutions to create an extremely energy efficient building. The se strategies included natural ventilation cooling, cooltowers for evaporative cooling without distribution fans, daylighting, massive building materials, Trombe walls and direct solar gains for heating, engineered window overhangs for solar load control, a building automation system to maintain comfort and control the energy-efficient lighting system, and a roof-mounted photovoltaic system to offset building electrical loads and ensure a power supply during the frequent utility grid outages.

Torcellini, P.; Judkoff, R.; Hayter, S.

2002-07-01T23:59:59.000Z

298

MHK Technologies/Wave Water Pump WWP | Open Energy Information  

Open Energy Info (EERE)

Pump WWP Pump WWP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Water Pump WWP.gif Technology Profile Primary Organization Renewable Energy Wave Pumps Technology Resource Click here Wave Technology Description The Water Wave Pump WWP is a point absorber that uses a submerged water pump to lift a small quantity of water to a higher head collect it in a piping network and feed it to a hydro turbine to produce power Mooring Configuration Gravity base installed at the sea bed Optimum Marine/Riverline Conditions The REWP can pump water to a hgih head fro waves ranging between 1 2 meters to waves in excess of 4 meters high It self adjusts to varyilng sea levels and wave hights It resists storms safe to navigation as red floats are clearly seen during the day and red flashing lights during the night It does not disturb marine life or shore line scenic view

299

MHK Technologies/Wave Rotor | Open Energy Information  

Open Energy Info (EERE)

Rotor Rotor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rotor.jpg Technology Profile Primary Organization Ecofys Subsidiary of Econcern Project(s) where this technology is utilized *MHK Projects/C Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Rotor uses a combined Darrieus-Wells rotor, which is contained on the same vertical axis of rotation. These are respectively omni- and bi-directional rotors that can operate in currents of changing directions. The Wave Rotor is mounted on a platform to allow for the capture of wave energy from circulating water particles created by local currents. Since it uses two types of rotor on a single axis of rotation it is able to convert not only tidal currents, but also waves into electricity.

300

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES  

SciTech Connect

Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

2013-05-10T23:59:59.000Z

302

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

303

Energy of tsunami waves generated by bottom motion  

E-Print Network (OSTI)

generation models. Theoretical and Computational Fluid Dynamics, 21:245­269, 2007. Z. Kowalik, W. Knight, TEnergy of tsunami waves generated by bottom motion By Denys Dutykh, Fr´ed´eric Dias CMLA, ENS investigation on the energy of waves generated by bottom motion is performed here. We start with the full

Paris-Sud XI, Université de

304

Momentum and Energy Transfer in Wind Generation of Waves  

Science Conference Proceedings (OSTI)

Complete expressions for wind momentum and energy transfer to wind-generated waves are derived based on a boundary-layer integral method. The airflow and wave measurements as made by Wu et al. (1977, 1979) are used to provide a first-order ...

Chin-Tsau Hsu; Hong-Ye Wu; En-Yun Hsu; Robert L. Street

1982-09-01T23:59:59.000Z

305

MHK Technologies/Oceanlinx Mark 3 Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

Oceanlinx Mark 3 Wave Energy Converter Oceanlinx Mark 3 Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oceanlinx Mark 3 Wave Energy Converter.jpg Technology Profile Primary Organization Oceanlinx Project(s) where this technology is utilized *MHK Projects/GPP Namibia *MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project *MHK Projects/Hawaii *MHK Projects/Oceanlinx Maui *MHK Projects/Port Kembla *MHK Projects/Portland Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Oceanlinx Mark 3 Wave Energy Converter is a floating multi Oscilating Water Chamber Wave Energy Converter. The airflow generated by the OWC passes through a patented Denniss Auld turbine which converts the bidirectional airflow of the OWC to a unidirectional rotation of the axial flow turbine which in turn drives a generator.

306

Energy Department Invests $16 Million to Harness Wave and Tidal Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Harness Wave and Tidal 6 Million to Harness Wave and Tidal Energy Energy Department Invests $16 Million to Harness Wave and Tidal Energy August 29, 2013 - 2:35pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United States and responsible development of this clean, renewable energy

307

Energy Department Invests $16 Million to Develop Wave and Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Develop Wave and Tidal 6 Million to Develop Wave and Tidal Energy Technologies Energy Department Invests $16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 - 12:00pm Addthis Image of machinery to generate energy using tides. As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United

308

Energy storage and generation from thermopower waves  

E-Print Network (OSTI)

The nonlinear coupling between an exothermic chemical reaction and a nanowire or nanotube with large axial heat conduction guides a self-propagating thermal wave along the nano-conduit. The thermal conduit accelerates the ...

Abrahamson, Joel T. (Joel Theodore)

2012-01-01T23:59:59.000Z

309

Energy Transport by Nonlinear Internal Waves  

Science Conference Proceedings (OSTI)

Winter stratification on Oregons continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture ...

J. N. Moum; J. M. Klymak; J. D. Nash; A. Perlin; W. D. Smyth

2007-07-01T23:59:59.000Z

310

MHK Technologies/Wave Roller | Open Energy Information  

Open Energy Info (EERE)

Roller Roller < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Roller.jpg Technology Profile Primary Organization AW Energy Project(s) where this technology is utilized *MHK Projects/Peniche Portugal *MHK Projects/AW Energy EMEC Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description A WaveRoller device is a plate anchored on the sea bottom by its lower part. The back and forth movement of surge moves the plate, and the kinetic energy produced is collected by a piston pump. This energy can be converted to electricity by a closed hydraulic system in combination with a hydraulic motor/generator system. Upgrade to No3 is more powerful hyraulic componets.

311

MITIGATION ACTION PLAN FOR THE OREGON STATE UNIVERSITY WAVE ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 | P a g e MITIGATION ACTION PLAN FOR THE OREGON STATE UNIVERSITY WAVE ENERGY TEST PROJECT ENVIRONMENTAL ASSESSMENT AUGUST 15, 2012 PREPARED TO ACCOMPANY DOEEA 1917 U.S....

312

Spectral Energy Dissipation due to Surface Wave Breaking  

Science Conference Proceedings (OSTI)

A semiempirical determination of the spectral dependence of the energy dissipation due to surface wave breaking is presented and then used to propose a model for the spectral dependence of the breaking strength parameter b, defined in the O. M. ...

Leonel Romero; W. Kendall Melville; Jessica M. Kleiss

2012-09-01T23:59:59.000Z

313

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box...

314

Energy Flux and Wavelet Diagnostics of Secondary Mountain Waves  

Science Conference Proceedings (OSTI)

In recent years, aircraft data from mountain waves have been primarily analyzed using velocity and temperature power spectrum and momentum flux estimation. Herein it is argued that energy flux wavelets (i.e., pressurevelocity wavelet cross-...

Bryan K. Woods; Ronald B. Smith

2010-11-01T23:59:59.000Z

315

Estimates of Kinetic Energy Dissipation under Breaking Waves  

Science Conference Proceedings (OSTI)

The dissipation of kinetic energy at the surface of natural water bodies has important consequences for many Physical and biochemical processes including wave dynamics, gas transfer, mixing of nutrients and pollutants, and photosynthetic ...

E.A. Terray; M.A. Donelan; Y.C. Agrawal; W.M. Drennan; K.K. Kahma; A.J. Williams; P.A. Hwang; S.A. Kitaigorodskii

1996-05-01T23:59:59.000Z

316

Presented at the 14th ANS Topical Meeting on the Technology of Fusion Energy, Park City Utah, October 15-19, 2000  

E-Print Network (OSTI)

Presented at the 14th ANS Topical Meeting on the Technology of Fusion Energy, Park City Utah is based on the high operating temperature capabilities and the high atomic weight of tungsten. Higher operating temperatures improve thermal efficiencies of the power cycle and the higher atomic weight ensures

California at Los Angeles, University of

317

MHK Technologies/Neptune Triton Wave | Open Energy Information  

Open Energy Info (EERE)

Triton Wave Triton Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Triton Wave.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Triton operates in the near-shore and consists of an axi-asymmetrical buoy attached to an A-frame piled into the sea bed. The axi-asymmetrical buoy is designed to generate a counter-phase upstream wave and a much reduced downstream wave, which maximizes capture from the wave and improves overall efficiency. In order to tune the buoy to the incident wave regime, the mass can be controlled by pumping sea water into and out of the hollow cavity inside the buoy. Power take-off is achieved via a piston and hydraulic arrangement.

318

MHK Technologies/WaveSurfer | Open Energy Information  

Open Energy Info (EERE)

WaveSurfer WaveSurfer < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveSurfer.jpg Technology Profile Primary Organization Green Energy Industries Inc Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description WaveSurfer s main power conversion and generation systems are either semi submerged protected by the floating pontoons or completely submerged at the depth of around 8 m 27 ft Mooring Configuration 3 point slack Technology Dimensions Device Testing Date Submitted 26:36.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/WaveSurfer&oldid=681708

319

MHK Technologies/Green Cat Wave Turbine | Open Energy Information  

Open Energy Info (EERE)

Wave Turbine Wave Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Green Cat Wave Turbine.jpg Technology Profile Primary Organization Green Cat Renewables Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Green Cat Wave Turbine employs an extremely novel yet simple mechanical coupling to drive a multi pole Direct Drive generator Recent advances in permanent magnet materials and power electronic converters have opened up this extremely straightforward conversion route Unlike a number of devices currently being investigated this configuration enables maximum energy capture from both vertical and horizontal sea motions swell and surge respectively

320

MHK Technologies/Multi Absorbing Wave Energy Converter MAWEC | Open Energy  

Open Energy Info (EERE)

Absorbing Wave Energy Converter MAWEC Absorbing Wave Energy Converter MAWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Multi Absorbing Wave Energy Converter MAWEC.jpg Technology Profile Primary Organization Leancon Wave Energy Project(s) where this technology is utilized *MHK Projects/Leancon Real Sea Test Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description MAWEC is an OWC wave energy converter that works differently from other OWCs in that it concurrently utilizes pressure and suck. This gives the wanted effect that the vertical force on the WEC is zero when the WEC stretches over more than one wave length. The device is V-shaped and oriented perpendicular to wave direction. The device consists of a number of vertical air tubes, and when a wave passes, air is pushed into a pressure channel that sucks air out of the suck channel. During one wave period each tube (120 in total) goes through a sequence where air is first pushed into a pressure channel when the wave is rising and is later sucked from the pressure channel when the wave is falling. In this situation there is constant pressure in the pressure channel and the air flow through the turbines is constant.

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MHK Technologies/Archimedes Wave Swing | Open Energy Information  

Open Energy Info (EERE)

Archimedes Wave Swing Archimedes Wave Swing < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Archimedes Wave Swing.jpg Technology Profile Primary Organization AWS Ocean Energy formerly Oceanergia Project(s) where this technology is utilized *MHK Projects/AWS II *MHK Projects/Portugal Pre Commercial Pilot Project Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The AWS wave energy converter is a cylindrical chamber moored to the seabed. Passing waves move an air-filled upper casing against a lower fixed cylinder, with up and down movement being converted into electricity. As a wave crest approaches, the water pressure on the top of the cylinder increases, and the upper part or 'floater' compresses the gas within the cylinder to balance the pressures. The reverse happens as the wave trough passes and the cylinder expands. The relative movement between the floater and the lower part or silo is converted to electricity by means of a hydraulic system and motor-generator set.

322

MHK Technologies/Floating wave Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Floating Wave Powered Generator is an attenuator that uses three pontoons that pivot on rigid arms as the wave passes driving gears that turn a generator Technology Dimensions Device Testing Date Submitted 45:12.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Floating_wave_Generator&oldid=681577"

323

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

324

MHK Technologies/Wave Rider | Open Energy Information  

Open Energy Info (EERE)

Rider Rider < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rider.jpg Technology Profile Primary Organization Seavolt Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The company s Wave Rider system uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity Electricity is generated via small turbines powered by hydraulic circuits which captures the energy of the wave and converts it into high pressure hydraulic fluid flow spinning the turbines to generate electricity Technology Dimensions Device Testing Date Submitted 19:42.1 << Return to the MHK database homepage

325

Navy Catching Waves in Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii June 2, 2010 - 11:56am Addthis This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. To a casual observer, the buoy off the shore of Marine Corps Base Hawaii (MCBH) might look like nothing more than a bright yellow spot in a blue ocean. But this isn't an ordinary buoy - it's a small electrical generator, creating renewable electricity as it bobs up and down on the waves. It's also a test project by the U.S. Navy to see whether a wider

326

Wave Dragon ApS | Open Energy Information  

Open Energy Info (EERE)

Dragon ApS Dragon ApS Jump to: navigation, search Name Wave Dragon ApS Place Copenhagen, Denmark Zip DK-2200 Country Albania Product Wave energy converter development company. Has patented the Wave Dragon, an offshore floating slack moored wave energy converter. Coordinates 55.6760968°, 12.5683371° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.6760968,"lon":12.5683371,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Clean Wave Ventures | Open Energy Information  

Open Energy Info (EERE)

Clean Wave Ventures Clean Wave Ventures Place Indianapolis, Indiana Zip 46204 Product Midwest-based venture capital firm specializing in high growth Clean Technology investments Coordinates 39.76691°, -86.149964° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.76691,"lon":-86.149964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Cogeneration for industrial and mixed-use parks. Volume 3. A guide for park developers, owners, and tenants. Final report  

SciTech Connect

Using cogeneration in mixed-use and industrial parks can cut energy costs ad smooth out peak load demands - benefits for servicing utilities and park owners and tenants. The two handbooks developed by this project can help utilities identify existing or planned parks as potential cogeneration sites as well as help developers and park owners evaluate the advantages of cogeneration. The second handbook (volume 3) describes the benefits of cogeneration for park developers, owners, and tenants.

Schiller, S.R.; Minicucci, D.D.; Tamaro, R.F.

1986-05-01T23:59:59.000Z

329

MHK Technologies/Syphon Wave Generator | Open Energy Information  

Open Energy Info (EERE)

Syphon Wave Generator Syphon Wave Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Syphon Wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Syphon Wave Generator is composed of a horizontal pipe containing a propeller driven generator mounted above the highest normal wave at high tide and two or more vertical pipes at least one at each end of the horizontal pipe Each vertical pipe must extend below the water surface at all times and have openings below the surface All the air must be removed from the pipe thus filling the unit completely with water When the crest of a wave reaches the first vertical pipe the water level will be higher at that pipe than at the second vertical pipe This causes water to flow up the first pipe and through the horizontal pipe thus turning the propeller and generator to produce electricity and then down the second vertical pipe due to the siphon effect When the crest of the wave moves to the second vertical pipe the water level is higher there than at the first pipe This will cause the water to flow up the second pipe and through the system in the opposite direction again prod

330

MHK Technologies/Indian Wave Energy Device IWAVE | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Device IWAVE Wave Energy Device IWAVE < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Indian Wave Energy Device IWAVE.jpg Technology Profile Primary Organization Nualgi Nanobiotech Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description It is a floating device tethered with chains to piles driven to ocean bottom The wave action raises the heavy partially buoyant piston that drives the overhead crankshaft by half turn The receding wave drops the piston completing the balance half turn One revolution is obtained for every wave Using gear box and generator the current is produced continuously

331

Total instantaneous energy transport in polychromatic fluid gravity waves at finite depth  

Science Conference Proceedings (OSTI)

The total instantaneous energy transport can be found for polychromatic waves when using the deep water approximation. Expanding this theory to waves in waters of finite depth

J. Engstrm; J. Isberg; M. Eriksson; M. Leijon

2012-01-01T23:59:59.000Z

332

Local full-wave energy in nonuniform plasmas  

SciTech Connect

The subject of local wave energy in plasmas is treated via quasilinear theory from the dual perspectives of the action-angle formalism and gyrokinetics analysis. This work presents an extension to all orders in the gyroradius of the self-consistent wave-propagation/quasilinear-absorption problem using gyrokinetics. Questions of when and under what conditions local energy should be of definite sign are best answered using the action-angle formalism. An important result is that the ''dielectric operators'' of the linearized wave equation and of the local energy are not the same, a fact which is obscured when the eikonal or WKB assumption is invoked. Even though the two dielectrics are very different in character (one operates linearly on electric field for the plasma current, the other operates quadratically for the energy), it is demonstrated that they are nevertheless related by a simple mathematical statement. This study was originally motivated by concern and lively discussion over the questions of local energy for rf-heating of plasmas, where in certain instances, full-wave effects such as refraction, strong absorption, and mode conversion are of primary importance. Fundamentally, the rf-absorption must equate with the energy moment of the quasilinear term to achieve a correct energy balance. This fact governs the derivation (as opposed to postulation) of the local absorption. The troublesome ''kinetic flux'' may then be chosen (it is not unique) to satisfy a wave-energy balance relation with the Poynting flux and local absorption. It is shown that at least one such choice reduces asymptotically to the Stix form away from nonuniformities, thereby demonstrating energy conservation to all orders in Larmor radius. 25 refs.

Smithe, D.N.

1988-10-01T23:59:59.000Z

333

MHK Technologies/GyroWaveGen | Open Energy Information  

Open Energy Info (EERE)

GyroWaveGen GyroWaveGen < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage GyroWaveGen.jpg Technology Profile Primary Organization Paradyme Systems Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A gyro wave energy transducer is mounted on the buoyant body for translating the pendulum like motions of the buoyant body into rotational motion The gyro wave energy transducer includes a gimbal comprised of first and second frames with the first frame being pivotally mounted to the second frame and the second frame being pivotally mounted to the buoyant body A gyroscope is mounted to the first frame for rotation about an axis perpendicular to the axes of rotation of the first and second frames A motor generator is coupled to the gyroscope for maintaining a controlled rotational velocity for the gyroscope Transferring members are associated with one of the first and second frames for transferring torque of one of the first and second frames to the gyroscope about an axis that is perpendicular to that of the gyroscope which results in rotation of the other of the first and second frames An electrical generator is responsive to the relative rotational movement of the first and se

334

Arnold Schwarzenegger DEVELOPING WAVE ENERGY IN  

E-Print Network (OSTI)

Commission EMEC European Marine Energy Test Centre EPRI Electric Power Research Institute FERC Federal Energy penetration at times while maintaining voltage stability of the grid [1]. Autonomous grids with wind, penetration was allowed to reach 60% and showed no adverse effects on system stability. This level

335

Energy Transfer from High-Shear, Low-Frequency Internal Waves to High-Frequency Waves near Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

Evidence is presented for the transfer of energy from low-frequency inertialdiurnal internal waves to high-frequency waves in the band between 6 cpd and the buoyancy frequency. This transfer links the most energetic waves in the spectrum, those ...

Oliver M. Sun; Robert Pinkel

2012-09-01T23:59:59.000Z

336

The environmental interactions of tidal and wave energy generation devices  

Science Conference Proceedings (OSTI)

Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

2012-01-15T23:59:59.000Z

337

Use of superconductive technology for energy storage and power transmission for large power systems: power parks  

DOE Green Energy (OSTI)

A general review and technology assessment of superconducting magnets for energy storage and superconducting cables for power transmission are presented. It is concluded that the technology is now available for applying superconductivity in the power industry. (TFD)

Keller, W.E.

1977-01-01T23:59:59.000Z

338

BlueWave Capital LLC | Open Energy Information  

Open Energy Info (EERE)

BlueWave Capital LLC BlueWave Capital LLC Jump to: navigation, search Name BlueWave Capital LLC Place Boston, Massachusetts Sector Renewable Energy Product Knowledge-based investment firm focused on early- and expansion-stage environmental and renewable energy-related operating companies. Coordinates 42.358635°, -71.056699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358635,"lon":-71.056699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Comments on Estimates of Kinetic Energy Dissipation under Breaking Waves  

Science Conference Proceedings (OSTI)

It is noted that the results of recent experiments on the enhancement of turbulent kinetic energy (TKE) dissipation below surface waves can be stated as follows. TKE dissipation is enhanced by a factor 15Hws/z at depths 0.5Hws < z < 20Hws with ...

Gerrit Burgers

1997-10-01T23:59:59.000Z

340

Spectral Energy Balance of Breaking Waves within the Surf Zone  

Science Conference Proceedings (OSTI)

The spectral energy balance of ocean surface waves breaking on a natural beach is examined with field observations from a cross-shore array of pressure sensors deployed between the shoreline and the outer edge of the surf zone near Duck, North ...

T. H. C. Herbers; N. R. Russnogle; Steve Elgar

2000-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

MHK Technologies/Wave Treader fixed | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies/Wave Treader fixed MHK Technologies/Wave Treader fixed < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Treader fixed.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Wave Treader concept utilises the arms and sponsons from Ocean Treader and instead of reacting against a floating Spar Buoy, will react through an Interface Structure onto the Foundation of an Offshore Wind Turbine. Between the Arms and the Interface Structure hydraulic cylinders are mounted and as the wave passes the machine first the forward Sponson will lift and fall and then the aft Sponson will lift and fall each stroking their hydraulic cylinder in turn. This pressurises hydraulic fluid which is then smoothed by hydraulic accumulators before driving a hydraulic motor which in turn drives an electricity generator. The electricity is then exported through the cable shared with the Wind Turbine.

342

An alternative method for calculating the energy of gravitational waves  

E-Print Network (OSTI)

In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.

Miroslav Sukenik; Jozef Sima

1999-09-21T23:59:59.000Z

343

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 4, January 9, 2001 Welcome to Research Park Notes Look for tidbits of information on...

344

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 3, December 19, 2000 Welcome to Research Park Notes Look for tidbits of information...

345

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 7, February 20, 2001 Welcome to Research Park Notes Look for tidbits of information...

346

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 9, March 20, 2001 Welcome to Research Park Notes Look for tidbits of information on...

347

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 5, January 23, 2001 Welcome to Research Park Notes Look for tidbits of information on...

348

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

DOE Green Energy (OSTI)

(3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

349

Clean Cities National Parks Initiative  

Energy.gov (U.S. Department of Energy (DOE))

Clean Cities partners with the National Park Service (NPS) through the Clean Cities National Parks Initiative to support transportation projects that educate park visitors on the benefits of...

350

MHK Technologies/Ocean Wave Air Piston | Open Energy Information  

Open Energy Info (EERE)

Piston Piston < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OWAP captures power by continually raising or lowering a float which in turn raises or lowers one side of a lever arm about a stationary pivot point This therby raises or lowers a piston which is attached to the opposite side of the lever arm through a cylinder which in turn causes large volumes of air to move This air is funneled through drive turbines to produce power Mooring Configuration Monopile or platfrom

351

MHK Technologies/Uppsala Seabased AB Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

AB Wave Energy Converter AB Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Seabased AB Wave Energy Converter.jpg Technology Profile Primary Organization Uppsala University Division for Electricity Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The system consists of a linear permanent magnet synchronous generator located on the sea floor The generator is connected directly via a line to a buoy on the surface There are no intermediate energy conversion steps thus the generator motion is the same as the buoy motion Several generators 3 today are connected to a marine substation where the voltage is converted to grid frequency transformed to higher voltage and transmitted to shore All electrical cables throughout the system are fixed i e there are no motions that subject the cables to bending moments

352

Regulation of Tidal and Wave Energy Projects (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal and Wave Energy Projects (Maine) Tidal and Wave Energy Projects (Maine) Regulation of Tidal and Wave Energy Projects (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements

353

MOTORWEEK YELLOWSTONE NATIONAL PARK  

NLE Websites -- All DOE Office Websites (Extended Search)

MOTORWEEK MOTORWEEK YELLOWSTONE NATIONAL PARK JOHN DAVIS: Some of America's most precious treasures are our national parks. And the U.S. park service understands that keeping the parks pristine, while also allowing easy access by vacationers is a huge challenge. So, setting the pace on making the drive through the parks greener is not just a goal, it's a passion. JOHN DAVIS: The National Parks Service is entrusted with preserving and showcasing America's natural wonders and historical landmarks, maintaining 392 national parks covering million acres of land and water in all parts of the country, and plays host to more than 275 million visitors every year. No other place on earth has as much natural diversity and spectacular scenery in one accessible place than America's first national park, Yellowstone, so it's no surprise this

354

Amusement Park Physics!  

NLE Websites -- All DOE Office Websites (Extended Search)

Amusement Park Physics If you have an idea for a great field trip, please click our Ideas page Amusement Park Physics, or Physics Day, is a program which seeks to teach students...

355

AirIceOcean Momentum Exchange. Part 1:Energy Transfer between Waves and Ice Floes  

Science Conference Proceedings (OSTI)

The energy exchange between ocean surface waves and ice floes in the marginal ice zone (MIZ) involves the scattering and attenuation of wave energy and the excitation of oscillation modes of the ice floes, as open ocean waves propagate into the ...

W. Perrie; Y. Hu

1996-09-01T23:59:59.000Z

356

Independent Oversight Inspection, East Tennessee Technology Park...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

programs at the U.S. Department of Energy (DOE) East Tennessee Technology Park (ETTP) site in April and May 2003. The inspection was performed as a joint effort by the OA...

357

UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reedsport OPT Wave Park, LLC Project No. 12713-002 Reedsport OPT Wave Park, LLC Project No. 12713-002 Oregon NOTICE OF AVAILABILITY OF ENVIRONMENTAL ASSESSMENT (December 3, 2010) In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission or FERC's) regulations, 18 CFR Part 380 (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed Reedsport OPT Wave Park, LLC's application for license for the Reedsport OPT Wave Park Project (FERC Project No. 12713-002), which would be located in Oregon State territorial waters about 2.5 nautical miles off the coast near Reedsport, in Douglas County, Oregon. Staff prepared an environmental assessment (EA), which analyzes the potential environmental effects of licensing the project and concludes that licensing the project,

358

Global Patterns of Low-Mode Internal-Wave Propagation. Part I: Energy and Energy Flux  

Science Conference Proceedings (OSTI)

Extending an earlier attempt to understand long-range propagation of the global internal-wave field, the energy E and horizontal energy flux F are computed for the two gravest baroclinic modes at 80 historical moorings around the globe. With ...

Matthew H. Alford; Zhongxiang Zhao

2007-07-01T23:59:59.000Z

359

Manta Wings: Wave Energy Testing Floats to Puget Sound | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manta Wings: Wave Energy Testing Floats to Puget Sound Manta Wings: Wave Energy Testing Floats to Puget Sound Manta Wings: Wave Energy Testing Floats to Puget Sound August 6, 2010 - 11:27am Addthis The 1:15 scale prototype being lowered into the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory | Photo courtesy of Columbia Power The 1:15 scale prototype being lowered into the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory | Photo courtesy of Columbia Power Lindsay Gsell Columbia Power Technologies plans to test an intermediate-scale version of its wave energy converter device in Puget Sound later this year. After the successful control tests, the company will move testing to open water in Puget Sound this fall. Columbia will test the intermediate 1:7

360

A Cascade-Type Global Energy Conversion Diagram Based on WaveMean Flow Interactions  

Science Conference Proceedings (OSTI)

A cascade-type energy conversion diagram is proposed for the purpose of diagnosing the atmospheric general circulation based on wavemean flow interactions. Mass-weighted isentropic zonal means facilitate the expression of nongeostrophic wave ...

Sachiyo Uno; Toshiki Iwasaki

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Calculating Energy Flux in Internal Solitary Waves with an Application to Reflectance  

Science Conference Proceedings (OSTI)

The energetics of internal solitary waves (ISWs) in continuous, quasi-two-layer stratifications are explored using fully nonlinear, nonhydrostatic numerical simulations. The kinetic energy of an internal solitary wave is always greater than the ...

Kevin G. Lamb; Van T. Nguyen

2009-03-01T23:59:59.000Z

362

Energy Flux and Generation of Diurnal Shelf Waves along Vancouver Island  

Science Conference Proceedings (OSTI)

Recent observations along the west coast of Vancouver Island reveal among diurnal-period currents due to a tidally driven continental shelf wave superimposed upon a Kelvin wave. The energy flux of this system is investigated here. It is shown ...

William R. Crawford

1984-10-01T23:59:59.000Z

363

Ocean Wave Energy-Driven Desalination Systems for Off-grid Coastal Communities in Developing Countries  

Science Conference Proceedings (OSTI)

Resolute Marine Energy, Inc. (RME) is based in Boston, MA and is developing ocean wave energy converters (WECs) to benefit remote off-grid communities in developing nations. Our two WEC technologies are based on the heaving and surging motion of a buoy ... Keywords: ocean wave energy, renewable energy, desalination, water, coastal communities

Eshwan Ramudu

2011-10-01T23:59:59.000Z

364

Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy Information  

Open Energy Info (EERE)

Wave Height(m) at Wave Period(s) Wave Height(m) at Wave Period(s) Jump to: navigation, search Property Name Maximum Wave Height(m) at Wave Period(s) Property Type String Pages using the property "Maximum Wave Height(m) at Wave Period(s)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 10.0 + 10-ft Wave Flume Facility + 10.0 + 11-ft Wave Flume Facility + 10.0 + 2 2-ft Flume Facility + 10.0 + 3 3-ft Wave Flume Facility + 10.0 + 5 5-ft Wave Flume Facility + 10.0 + 6 6-ft Wave Flume Facility + 10.0 + A Alden Large Flume + 0.0 + Alden Wave Basin + 1.0 + C Chase Tow Tank + 3.1 + Coastal Harbors Modeling Facility + 2.3 + Coastal Inlet Model Facility + 2.3 + D Davidson Laboratory Tow Tank + 4.0 + DeFrees Large Wave Basin + 3.0 + DeFrees Small Wave Basin + 3.0 +

365

DeFrees Large Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Large Wave Basin Large Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Large Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 32.0 Beam(m) 0.6 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 64 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled 4m hydraulic wave paddle stroke allows a series of solitary waves to be generated; arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes

366

MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy Information  

Open Energy Info (EERE)

Converter OWEC Converter OWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Energy Converter OWEC.jpg Technology Profile Primary Organization Ocean Wave Energy Company Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Neutrally suspended and positively buoyant modules are quick connected into open frame networks Submerged portions are stabilized by variable ballast buoyancy chambers and optional damper sheets situated at a relatively calm depth Frame members carry shaft components of linear rotary converters associated with large point absorber buoys Both directions of reciprocal wave motion i e vertical and horizontal motion directly drive components of counter rotating electrical generators Compared to standard generators wherein one is associated with upstroke and another of smaller proportion with downstroke this configuration increases relative speed with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following buoys Electrical conductors are series connected and further quick connected with those of other modules via upper frame members Through implementation of rep

367

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

368

PARTICLE ENERGY SPECTRA AT TRAVELING INTERPLANETARY SHOCK WAVES  

Science Conference Proceedings (OSTI)

We have searched for evidence of significant shock acceleration of He ions of {approx}1-10 MeV amu{sup -1} in situ at 258 interplanetary traveling shock waves observed by the Wind spacecraft. We find that the probability of observing significant acceleration, and the particle intensity observed, depends strongly upon the shock speed and less strongly upon the shock compression ratio. For most of the 39 fast shocks with significant acceleration, the observed spectral index agrees with either that calculated from the shock compression ratio or with the spectral index of the upstream background, when the latter spectrum is harder, as expected from diffusive shock theory. In many events the spectra are observed to roll downward at higher energies, as expected from Ellison-Ramaty and from Lee shock-acceleration theories. The dearth of acceleration at {approx}85% of the shocks is explained by (1) a low shock speed, (2) a low shock compression ratio, and (3) a low value of the shock-normal angle with the magnetic field, which may cause the energy spectra that roll downward at energies below our observational threshold. Quasi-parallel shock waves are rarely able to produce measurable acceleration at 1 AU. The dependence of intensity on shock speed, seen here at local shocks, mirrors the dependence found previously for the peak intensities in large solar energetic-particle events upon speeds of the associated coronal mass ejections which drive the shocks.

Reames, Donald V., E-mail: dvreames@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

2012-09-20T23:59:59.000Z

369

Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays  

SciTech Connect

This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys??????? that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

2013-01-26T23:59:59.000Z

370

Evaluation of design ventilation requirements for enclosed parking facilities  

SciTech Connect

This paper proposes a new design approach to determine the ventilation requirements for enclosed parking garages. The design approach accounts for various factors that affect the indoor air quality within a parking facility, including the average CO emission rate, the average travel time, the number of cars, and the acceptable CO level within the parking garage. This paper first describes the results of a parametric analysis based on the design method that was developed. Then the design method is presented to explain how the ventilation flow rate can be determined for any enclosed parking facility. Finally, some suggestions are proposed to save fan energy for ventilating parking garages using demand ventilation control strategies.

Ayari, A.; Krarti, M.

2000-07-01T23:59:59.000Z

371

MHK Technologies/Sea wave Slot cone Generator SSG | Open Energy Information  

Open Energy Info (EERE)

Sea wave Slot cone Generator SSG Sea wave Slot cone Generator SSG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sea wave Slot cone Generator SSG.jpg Technology Profile Primary Organization Wave Energy AS Project(s) where this technology is utilized *MHK Projects/Wave Energy AS Project 1 Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Sea Wave Slot-Cone Generator (SSG) is based on the overtopping principle. It utilizes a total of three reservoirs stacked on top of one other (referred to as a 'multi-stage water turbine') in which the potential energy of the incoming wave will be stored. The water captured in the reservoirs will then run through the multi-stage turbine for highly efficient electricity production.

372

DeFrees Small Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Small Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 15.0 Beam(m) 0.8 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 30 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled hydraulic paddle, arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 1:10 sloping glass with dissipative horsehair covering if needed

373

Launching the Next Wave of Clean Fossil Energy Innovation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launching the Next Wave of Clean Fossil Energy Innovation Launching the Next Wave of Clean Fossil Energy Innovation Launching the Next Wave of Clean Fossil Energy Innovation December 12, 2013 - 1:15pm Addthis The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced fossil energy solicitation. | Photo courtesy of the National Energy Technology Laboratory. The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced

374

Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish  

E-Print Network (OSTI)

Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish Princeton Plasma Physics, the "Gardner free energy." Here, the plasma is rearranged incompressibly in the six- dimensional phase space of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma

375

Model-predicted distribution of wind-induced internal wave energy in the world's oceans  

E-Print Network (OSTI)

Model-predicted distribution of wind-induced internal wave energy in the world's oceans Naoki 9 July 2008; published 30 September 2008. [1] The distribution of wind-induced internal wave energy-scaled kinetic energy are all consistent with the available observations in the regions of significant wind

Miami, University of

376

Preserving DOE's Research Parks  

NLE Websites -- All DOE Office Websites (Extended Search)

listed species on its re- search site. The Arid Lands Ecological Reserve at the Hanford Research Park contains the only sizable remaining fragment of shrub-steppe in...

377

Todd Park | OpenEI Community  

Open Energy Info (EERE)

04 04 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235304 Varnish cache server Todd Park Home Graham7781's picture Submitted by Graham7781(2002) Super contributor 9 October, 2012 - 12:49 Tim O'reilly interviews Todd Park OpenEI Tim O'reilly Todd Park Check out theTim O'Reilly interview of Todd Park, US Chief Technology Officer, on his innovation agenda and his tips for creating a culture of innovation inside the United States Government. Syndicate content 429 Throttled (bot load)

378

Property:Maximum Wave Height(m) | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Maximum Wave Height(m) Jump to: navigation, search Property Name Maximum Wave Height(m) Property Type String Pages using the property "Maximum Wave Height(m)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 0.2 + 10-ft Wave Flume Facility + 0.5 + 11-ft Wave Flume Facility + 0.4 + 2 2-ft Flume Facility + 0.6 + 3 3-ft Wave Flume Facility + 0.2 + 5 5-ft Wave Flume Facility + 0.5 + 6 6-ft Wave Flume Facility + 0.4 + A Alden Large Flume + 0.0 + Alden Small Flume + 0.2 + Alden Wave Basin + 0.3 + B Breakwater Research Facility + 0.0 + C Carderock Maneuvering & Seakeeping Basin + 0.6 + Carderock Tow Tank 2 + 0.6 + Carderock Tow Tank 3 + 0.6 +

379

On the Steady-State Energy Balance of Short Gravity Wave Systems  

Science Conference Proceedings (OSTI)

Steady-state energy balances of short gravity wave systems generated in a wave tank with and without airflow have been measured and compared with the predictions of perturbation theory. Wind-wave spectra were found to fit a JONSWAP form to a good ...

William J. Plant

1980-09-01T23:59:59.000Z

380

Spectral Estimates of Gravity Wave Energy and Momentum Fluxes. Part III: Gravity Wave-Tidal Interactions  

Science Conference Proceedings (OSTI)

An application of the gravity wave parameterization scheme developed in the companion papers by Fritts and VanZandt and Fritts and Lu to the mutual interaction of gravity waves and tidal motions is presented. The results suggest that interaction ...

Wentong Lu; David C. Fritts

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Spectral Distribution of Energy Dissipation of Wind-Generated Waves due to Dominant Wave Breaking  

Science Conference Proceedings (OSTI)

This paper considers an experimental attempt to estimate the spectral distribution of the dissipation due to breaking of dominant waves. A field wave record with an approximately 50% dominant-breaking rate was analyzed. Segments of the record, ...

Ian R. Young; Alexander V. Babanin

2006-03-01T23:59:59.000Z

382

Jackson Park Hospital Green Building Medical Center  

Science Conference Proceedings (OSTI)

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicagoâ??s recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work.

William Dorsey; Nelson Vasquez

2010-03-01T23:59:59.000Z

383

MHK Technologies/WaveBlanket PolymerMembrane | Open Energy Information  

Open Energy Info (EERE)

WaveBlanket PolymerMembrane WaveBlanket PolymerMembrane < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveBlanket PolymerMembrane.jpg Technology Profile Primary Organization Wind Waves and Sun Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description WaveBlanket could be called the accordion of the sea Poetically speaking It is simply a bellows played upon by the swells of the ocean WaveBlanket is a flexible polymer membrane which uses air pressure rather than steel to achieve its lateral strength and as a result produces about 1000 times more energy per unit of mass than rigid green energy designs

384

Direct Drive Wave Energy Buoy Intermediate scale experiment  

SciTech Connect

Columbia Power Technologies deployed a scaled prototype wave energy converter (WEC) in the Puget Sound in February 2011. Other than a brief period (10 days) in which the WEC was removed for repair, it was in the water from Feb. 15, 2011 until Mar. 21, 2012. The SeaRay, as this WEC is known, consists of three rigid bodies which are constrained to move in a total of eight degrees of freedom (DOF). The SeaRay is kept on station with a spread, three-point mooring system. This prototype WEC is heavily instrumented, including but not limited to torque transducers and encoders reporting generator torque applied to and relative pitch of the floats, an inertial measurement unit (IMU) reporting translational acceleration and rotational position of the spar/nacelle, a GPS sensor reporting position, load cells reporting mooring loads at the WEC connection points and a number of strain gauges embedded in the fiberglass reinforced plastic (FRP) hull. Additionally, wave and current data are collected using an Acoustic Wave And Current Profiler (AWAC), allowing performance and design data to be correlated to environmental input conditions. This data quality controlled, processed and analyzed is used to characterize the metocean conditions (i.e. sea states). The WEC response will be correlated to the metocean conditions. These results will primarily be used to validate numerical models. The validated numerical models will be used optimize the commercial scale WEC and inform the design process. This document details the SeaRay experiment, including the quality control, processing and subsequent analysis of the data. Furthermore, the methodology and the results of numerical model validation will be described.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

385

Premium Power Industrial Park Design  

Science Conference Proceedings (OSTI)

This report is intended to provide insights on the consideration, design, and implementation of power quality (PQ) parks -- business parks where superb electric power quality, reliability, and availability (QRA) are optimized for the businesses within the park.

2002-02-14T23:59:59.000Z

386

Free Parking or Free Markets  

E-Print Network (OSTI)

chalice, providing ample free parking while hiding the manyShoup. 2011. The High Cost of Free Parking, revised edition,Free Parking or Free Markets DONALD SHOUP It is no doubt

Shoup, Donald

2011-01-01T23:59:59.000Z

387

Wave-Energy Company Looks to Test Prototypes in Maine Waters | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave-Energy Company Looks to Test Prototypes in Maine Waters Wave-Energy Company Looks to Test Prototypes in Maine Waters Wave-Energy Company Looks to Test Prototypes in Maine Waters April 9, 2010 - 4:19pm Addthis Lindsay Gsell Resolute Marine Energy - a Boston-based, wave-energy technology company - hopes to test ocean wave energy conversion prototypes in Maine sometime in the summer of 2011. The company has already completed two of the three testing stages, the first using computer simulation and the second with reduced-scale prototypes in a controlled environment. Now, the company is ready to take the technology offshore to begin ocean testing. Its eyes are set on the waters of its Northern neighbor, Maine. Maine is an ideal location for Resolute Marine Energy to conduct testing for a few reasons, said CEO and President Bill Staby. Working in Maine

388

L-Shaped Flume Wave Basin | Open Energy Information  

Open Energy Info (EERE)

L-Shaped Flume Wave Basin L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 76.2 Beam(m) 15.2 Depth(m) 1.8 Water Type Freshwater Special Physical Features Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control sys

389

A New Perspective on the Excitation of Low-Tropospheric Mixed RossbyGravity Waves in Association with Energy Dispersion  

Science Conference Proceedings (OSTI)

This study investigates the synoptic-scale equatorial response to Rossby wave energy dispersion associated with off-equatorial wave activity sources and proposes a new mechanism for triggering low-level mixed Rossbygravity (MRG) waves. A case ...

Guanghua Chen; Chi-Yung Tam

2012-04-01T23:59:59.000Z

390

Research Park Notes, Issue 20  

NLE Websites -- All DOE Office Websites (Extended Search)

0, September 4, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of...

391

Research Park Notes, Issue 14  

NLE Websites -- All DOE Office Websites (Extended Search)

4, May 29, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

392

Research Park Notes, Issue 17  

NLE Websites -- All DOE Office Websites (Extended Search)

7, July 24, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

393

Research Park Notes, Issue 16  

NLE Websites -- All DOE Office Websites (Extended Search)

6, July 10, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

394

Research Park Notes, Issue 22  

NLE Websites -- All DOE Office Websites (Extended Search)

2, October 2, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of...

395

Research Park Notes, Issue 25  

NLE Websites -- All DOE Office Websites (Extended Search)

5, November 13, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of...

396

Research Park Notes, Issue 15  

NLE Websites -- All DOE Office Websites (Extended Search)

5, June 12, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

397

Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Specturm. Part II: Parameterizations of the Nonlinear Energy Transfer for Application in Wave Models  

Science Conference Proceedings (OSTI)

Four different parameterizations of the nonlinear energy transfer Snl in a surface wave spectrum are in investigated. Two parameterizations are based on a relatively small number of parameters and are useful primarily for application in ...

S. Hasselmann; K. Hasselmann; J. H. Allender; T. P. Barnett

1985-11-01T23:59:59.000Z

398

MHK Technologies/The WaveCatcher System | Open Energy Information  

Open Energy Info (EERE)

System System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The WaveCatcher System.png Technology Profile Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description System captures a wave stores the energy in a large holder containment device resulting in a large potential energy reservoir then that energy is transformed into mechanical kinetic energy in such a way that it is output in a constant output 60 hertz in other words it takes the large pulsed energy of a wave captures the wave and transforms the wave into a constant energy output Technology Dimensions Device Testing Date Submitted 30:33.7 << Return to the MHK database homepage

399

Sundance, Skiing and Solar: Park City to Install New PV System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System October 25, 2010 - 10:49am Addthis Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this project do? 80-panel solar energy system to be installed at Park City's Marsac Building. Recovery Act-funded system to generate up to 15% of the building's

400

Optimal numerical realization of the energy balance equation for wind wave models  

Science Conference Proceedings (OSTI)

The optimal numerical realization of the energy balance equation in wind wave models is proposed. The scheme is separated into two parts: the numerical source term integration and the energy propagation numerical realization. The first one is based on ...

Igor V. Lavrenov

2003-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

On the Potential Energy of Baroclinic Rossby Waves in the North Pacific  

Science Conference Proceedings (OSTI)

Estimates of baroclinic Rossby wave potential energy spectra for various parts of the North Pacific were calculated from published material containing information about this energy in many different formats, definitions and units. The ...

Lorenz Magaard

1983-01-01T23:59:59.000Z

402

National Parks Move Transportation Forward in America's Great Outdoors |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parks Move Transportation Forward in America's Great Parks Move Transportation Forward in America's Great Outdoors National Parks Move Transportation Forward in America's Great Outdoors March 28, 2013 - 3:00pm Addthis Together, the five newest National Parks Initiative projects will save the equivalent of nearly 10,000 gallons of gasoline and 71 tons of greenhouse gas emissions per year. | Infographic by Sarah Gerrity, Energy Department. Together, the five newest National Parks Initiative projects will save the equivalent of nearly 10,000 gallons of gasoline and 71 tons of greenhouse gas emissions per year. | Infographic by Sarah Gerrity, Energy Department. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? The five new National Parks Initiative projects will save the

403

EA-1917: Wave Energy Test Facility Project, Newport, OR | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Wave Energy Test Facility Project, Newport, OR 17: Wave Energy Test Facility Project, Newport, OR EA-1917: Wave Energy Test Facility Project, Newport, OR SUMMARY This EA evaluates the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2012 EA-1917: Mitigation Action Plan

404

EA-1917: Wave Energy Test Facility Project, Newport, OR | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Wave Energy Test Facility Project, Newport, OR 17: Wave Energy Test Facility Project, Newport, OR EA-1917: Wave Energy Test Facility Project, Newport, OR SUMMARY This EA evaluates the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2012 EA-1917: Mitigation Action Plan

405

Property:Wave Period Range(s) | Open Energy Information  

Open Energy Info (EERE)

Wave Period Range(s) Wave Period Range(s) Jump to: navigation, search Property Name Wave Period Range(s) Property Type String Pages using the property "Wave Period Range(s)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 10.0 + 10-ft Wave Flume Facility + 0.0 + 11-ft Wave Flume Facility + 10.0 + 2 2-ft Flume Facility + 10.0 + 3 3-ft Wave Flume Facility + 10.0 + 5 5-ft Wave Flume Facility + 10.0 + 6 6-ft Wave Flume Facility + 10.0 + A Alden Large Flume + 2.1 + Alden Small Flume + 0.0 + Alden Wave Basin + 1.0 + B Breakwater Research Facility + 0.0 + C Carderock Maneuvering & Seakeeping Basin + 0.0 + Carderock Tow Tank 2 + 0.0 + Carderock Tow Tank 3 + 0.0 + Chase Tow Tank + 3.1 + Coastal Harbors Modeling Facility + 2.3 +

406

Property:Maximum Wave Length(m) | Open Energy Information  

Open Energy Info (EERE)

Wave Length(m) Wave Length(m) Jump to: navigation, search Property Name Maximum Wave Length(m) Property Type String Pages using the property "Maximum Wave Length(m)" Showing 18 pages using this property. A Alden Small Flume + Variable + Alden Wave Basin + 1.8 + C Carderock Maneuvering & Seakeeping Basin + 12.2 + Carderock Tow Tank 2 + 12.2 + Carderock Tow Tank 3 + 12.2 + D Davidson Laboratory Tow Tank + 15.2 + DeFrees Large Wave Basin + 64 + DeFrees Small Wave Basin + 30 + H Haynes Wave Basin + 10.7 + L Lakefront Tow Tank + 22 + M MIT Tow Tank + 4.6 + O OTRC Wave Basin + 25 + Ohmsett Tow Tank + 18 + R Richmond Field Station Tow Tank + 2 + S SAFL Channel + 6.6 + Sandia Lake Facility + 4.57 + Sheets Wave Basin + 10 + Ship Towing Tank + 6 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Maximum_Wave_Length(m)&oldid=597351

407

5-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

5-ft Wave Flume Facility 5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 63.4 Beam(m) 1.5 Depth(m) 1.5 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe

408

1.5-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

-ft Wave Flume Facility -ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 1.5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 45.1 Beam(m) 0.5 Depth(m) 0.9 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

409

11-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

ft Wave Flume Facility ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 77.4 Beam(m) 3.4 Depth(m) 1.8 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities Yes Control and Data Acquisition Description Automated data acquisition and control system Cameras None

410

MHL 2D Wind/Wave | Open Energy Information  

Open Energy Info (EERE)

MHL 2D Wind/Wave MHL 2D Wind/Wave Jump to: navigation, search Basic Specifications Facility Name MHL 2D Wind/Wave Overseeing Organization University of Michigan Hydrodynamics Hydrodynamic Testing Facility Type Tunnel Length(m) 35.1 Beam(m) 0.7 Depth(m) 1.2 Cost(per day) $2000 (+ Labor/Materials) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular and irregular wave spectrum Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Removable beach Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities Yes Wind Velocity Range(m/s) 20.4

411

3-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

3-ft Wave Flume Facility 3-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 45.1 Beam(m) 0.9 Depth(m) 0.9 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe

412

10-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

ft Wave Flume Facility ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 10-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 63.4 Beam(m) 3.0 Depth(m) 1.5 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

413

6-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

Wave Flume Facility Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 6-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 105.2 Beam(m) 1.8 Depth(m) 1.8 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

414

University of Iowa Wave Basin | Open Energy Information  

Open Energy Info (EERE)

University of Iowa Wave Basin University of Iowa Wave Basin Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Wave Basin Length(m) 40.0 Beam(m) 20.0 Depth(m) 3.0 Cost(per day) Contact POC Special Physical Features Towed 3DPIV; contactless motion tracking; free surface measurement mappingv Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.5 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Fully programmable for regular or irregular waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Trusses overlaid with lattice and matting Channel/Tunnel/Flume

415

MHK Projects/Douglas County Wave Energy Project | Open Energy Information  

Open Energy Info (EERE)

Douglas County Wave Energy Project Douglas County Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6825,"lon":-124.187,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

416

MHK Projects/Perth Wave Energy Project PWEP | Open Energy Information  

Open Energy Info (EERE)

Perth Wave Energy Project PWEP Perth Wave Energy Project PWEP < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-32.2509,"lon":115.651,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

417

MHK Projects/Coos County Offshore Wave Energy Power Plant | Open Energy  

Open Energy Info (EERE)

Coos County Offshore Wave Energy Power Plant Coos County Offshore Wave Energy Power Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0238,"lon":-124.519,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

418

MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project | Open Energy  

Open Energy Info (EERE)

Greenwave Rhode Island Ocean Wave Energy Project Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4501,"lon":-71.4495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

419

FORSYTHFORSYTH FOREST PARKFOREST PARK  

E-Print Network (OSTI)

Bryan Hall(195), Jolley Hall(129), Cyclotron Bldg.(113), McMillen Lab Bldg.(196), Power Plant/House(142 Garage 28 Parking lot #40, just south of Plant Growth Greenhouse Life Sciences Bldg.(243), Plant Growth

Doering, Tamara

420

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet  

E-Print Network (OSTI)

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet NIKOLAOS A. BAKAS AND BRIAN F. FARRELL Harvard University Interaction between the midlatitude jet and gravity waves is examined, focusing on the nonnormality

Farrell, Brian F.

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MHK Technologies/Wave Catcher | Open Energy Information  

Open Energy Info (EERE)

Wave Catcher.png Wave Catcher.png Technology Profile Primary Organization Offshore Islands Ltd Technology Resource Click here Current Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Wave Catcher can be orientated to take advantage of the most numerous prevailing waves to generate power It is a long surface buoy cylinder that is lifted by each passing wave As the cylinder is lifted it pulls on its anchor lines which in turn pulls on a support pulley This support pulley turns the generator s rotor and flywheel The generator s flywheel keeps the rotor turning until the next wave lifts up the cylinder and the anchor line once again turns the pulley The cylinder will also be lifted by waves from all directions As a result the anchor cables at each end of the buoy may either pull together or at slightly different times The gears the pulleys the rotor and flywheel are turned when the anchor cable s tension is high The uni direction pulley s re coil spring re winds the anchor cable back around the pulley when the buoy moves down with the trough of the wave and the anchor cable tension is low The wave generator can be in a surface buoy or mounted sub

422

MHK Technologies/Wave Power Desalination | Open Energy Information  

Open Energy Info (EERE)

Desalination < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Power Desalination.gif Technology Profile Primary Organization Delbuoy...

423

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Biomass and Biofuels Hydropower, Wave and Tidal Industrial ... raw materials suggests the need for elimination of these materials from electric motors ...

424

Forrestal Garage Parking Procedures, Revised August 12, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updated August 12, 2010 Updated August 12, 2010 FORRESTAL FACILITY PARKING PROCEDURES The Forrestal Facility Parking Guide was created to define policies and procedures governing the assignment, use, and management of parking spaces controlled by the Department of Energy (DOE) in the Forrestal Facility. This guide applies to DOE Federal employees, including National Nuclear Security Administration (NNSA) Federal employees, parking at DOE Headquarters in the Forrestal Building. Requirements General. It is the policy of DOE that its parking facility be operated in a manner responsive to the needs of the Department, and for the maximum benefit of its employees. The following rules apply: a) The Office of Administration must centrally manage all Forrestal parking facilities

425

Resonant energy conversion of 3-minute intensity oscillations into Alfven waves in the solar atmosphere  

E-Print Network (OSTI)

Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.

D. Kuridze; T. V. Zaqarashvili

2007-03-19T23:59:59.000Z

426

MHK Technologies/Under Bottom Wave Generator | Open Energy Information  

Open Energy Info (EERE)

Under Bottom Wave Generator Under Bottom Wave Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Under Bottom Wave Generator.jpg Technology Profile Primary Organization Glen Edward Cook Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Water will flow up into the pipe from the down stroke and out of the pipe back into the ocean on the up stroke Waves rolling by will push water into the pipe This will mock the ocean swell A propellar is mounted inside the lower portion of the pipe the upward and downward flow of water will spin the propellar in both direcitons The propellar is connected to a generator

427

MHK Technologies/hyWave | Open Energy Information  

Open Energy Info (EERE)

hyWave hyWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HyWave.png Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Project(s) where this technology is utilized *MHK Projects/Mutriku *MHK Projects/Wavegen Technology Resource Click here Wave Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The hyWave device rests directly on the seabed and is designed to operate in the near-shore environment in a nominal mean water depth of 15m. Optimum performance will be achieved when driven by a long ocean swell. The pneumatic power of the oscillating water column (OWC) is converted to electricity by a Wells generator and specially designed induction generators.

428

Mapping and Assessment of the United States Ocean Wave Energy Resource |  

Open Energy Info (EERE)

450 450 Varnish cache server Mapping and Assessment of the United States Ocean Wave Energy Resource Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices.

429

NREL GIS Data: Wave Energy Assessment for the United States and Puerto Rico  

Open Energy Info (EERE)

Wave Energy Assessment for the United States and Puerto Rico Wave Energy Assessment for the United States and Puerto Rico Dataset Summary Description Source The Wave Energy Resource Assessment project is a joint venture between NREL, EPRI, and Virginia Tech. EPRI is the prime contractor, Virginia Tech is responsible for development of the models and estimating the wave resource, and NREL serves as an independent validator and also develops the final GIS-based display of the data. Geographic Range US coastline, including AK, HI and Puerto Rico, out to 50 nautical miles. Grid Properties Grids are derived from WaveWatch III grids. Near the coast of the lower 48 and HI, grids are squares, 4 minutes by 4 minutes (15 per degree). For the Alaska grids AK and BS, the grid is 4 minutes of latitude by 8 minutes of longitude (15 per deg by 7.5 per deg).

430

Oak Ridge National Environmental Research Park -- Parknotes  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Publications Oak Ridge National Environmental Research Park Research Park Notes Research Park Notes was an informal mechanism, developed by Pat Parr, the Oak Ridge...

431

Energy Flux from Traveling Hurricanes to the Oceanic Internal Wave Field  

Science Conference Proceedings (OSTI)

The generation of long interval waves by traveling hurricanes on an f plane is studied within the context of linear theory. The emphasis of the present work is on the interval wave power, that is, the fraction of the energy input from the ...

Johan Nilsson

1995-04-01T23:59:59.000Z

432

MHK Technologies/SyncWave Power Resonator | Open Energy Information  

Open Energy Info (EERE)

Power Resonator Power Resonator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SyncWave Power Resonator.jpg Technology Profile Primary Organization Marinus Power Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The SyncWave Power Resonator makes power by capturing the motion differential due to the phase lag between the two concentric float structures the Float and the Spar each having a very different resonance characteristic in waves The power generated from this phase lag is maximized under varying ocean wave conditions via a proprietary variable inertia tuning system SWELS located inside the central Spar Power is captured by an hydraulic power take off which drives a variable speed generator Power outputs conditioned by modern power electronics from several SyncWave Units in a wave farm will be collected and converted to in farm power in a sea bed mounted collector hub then transmitted ashore by subsea cable for interconnection to a shoreside load

433

MHK Technologies/WaveMaster | Open Energy Information  

Open Energy Info (EERE)

WaveMaster WaveMaster < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveMaster.jpg Technology Profile Primary Organization Ocean Wavemaster Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The WaveMaster device consists of two pressure chambers connected via a number of turbines The device is located under the waters surface so that it is covered at all times The upper surface of each chamber is an active surface covered with one way valves that control the flow of water through the device The valves on the high pressure chamber allow water to flow into the chamber provided the external pressure is higher than the internal pressure in the chamber This situation typically occurs under wave crests If the external pressure is less than the internal pressure the valves remain closed and water does not flow in Similarly the valves on the low pressure chamber will only allow water to flow out of the chamber if the internal pressure is higher than the external pressure This situation typically occurs under wave troughs If the internal pressure is less than the external pressure the valves remain closed and there is no flow of water

434

Dynamical Energy Analysis - determining wave energy distributions in complex vibro-acoustical structures  

E-Print Network (OSTI)

We propose a new approach towards determining the distribution of mechanical and acoustic wave energy in complex built-up structures. The technique interpolates between standard Statistical Energy Analysis (SEA) and full ray tracing containing both these methods as limiting case. By writing the flow of ray trajectories in terms of linear phase space operators, it is suggested here to reformulate ray-tracing algorithms in terms of boundary operators containing only short ray segments. SEA can now be identified as a low resolution ray tracing algorithm and typical SEA assumptions can be quantified in terms of the properties of the ray dynamics. The new technique presented here enhances the range of applicability of standard SEA considerably by systematically incorporating dynamical correlations wherever necessary. Some of the inefficiencies inherent in typical ray tracing methods can be avoided using only a limited amount of the geometrical ray information. The new dynamical theory - Dynamical Energy Analysis (DEA) - thus provides a universal approach towards determining wave energy distributions in complex structures.

Gregor Tanner

2008-03-12T23:59:59.000Z

435

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary Results of a RANS Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions Y. Yu and Y. Li Presented at the 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19 - 24, 2011 Conference Paper NREL/CP-5000-50967 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

436

Ocean Energy Projects Developing On and Off America's Shores | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean Power Technologies. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean

437

Ocean Energy Projects Developing On and Off America's Shores | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean Power Technologies. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean

438

National Park Service - Yellowstone National Park, Wyoming | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone National Park, Wyoming Yellowstone National Park, Wyoming National Park Service - Yellowstone National Park, Wyoming October 7, 2013 - 10:15am Addthis Photo of Photovoltaic System at Lamar Buffalo Ranch in Yellowstone National Park Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes. Since the ranch is located in the northeast corner of the park it is quite isolated from the commercial power grid, and power has been traditionally supplied by propane generators. The generators are now only a backup system

439

Current-Induced Modulation of the Ocean Wave Spectrum and the Role of Nonlinear Energy Transfer  

Science Conference Proceedings (OSTI)

Numerical simulations were performed to investigate current-induced modulation of the spectral and statistical properties of ocean waves advected by idealized and realistic current fields. In particular, the role of nonlinear energy transfer ...

Hitoshi Tamura; Takuji Waseda; Yasumasa Miyazawa; Kosei Komatsu

2008-12-01T23:59:59.000Z

440

Effective gravitational wave stress-energy tensor in alternative theories of gravity  

E-Print Network (OSTI)

The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by ...

Stein, Leo Chaim

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Enhanced Energy Dissipation by Parasitic Capillaries on Short GravityCapillary Waves  

Science Conference Proceedings (OSTI)

The increased energy dissipation caused by the formation of parasitic capillary wavelets on moderately short, steep gravitycapillary waves is studied numerically. This study focuses on understanding the mechanism leading to dissipation ...

Wu-ting Tsai; Li-ping Hung

2010-11-01T23:59:59.000Z

442

Energy Deposition and Turbulent Dissipation Owing to Gravity Waves in the Mesosphere  

Science Conference Proceedings (OSTI)

An attempt is made to define the thermodynamics of internal gravity waves breaking in the middle atmosphere on the basis of the energy conservation law for finite fluid volumes. Consistent with established turbulence theory, this method ...

Erich Becker; Gerhard Schmitz

2002-01-01T23:59:59.000Z

443

Observations of the Directional Distribution of Ocean-Wave Energy in Fetch-Limited Conditions  

Science Conference Proceedings (OSTI)

Directional energy distributions of wind-generated waves were observed with a relatively high directional resolution in fairly homogeneous and stationary wind fields in fetch-limited conditions using stereophotography of the sea surface. In a ...

L. H. Holthuijsen

1983-02-01T23:59:59.000Z

444

Energy Transmission by Barotropic Rossby Waves across Large-Scale Topography  

Science Conference Proceedings (OSTI)

An analytical study investigates the energy transmission by free, barotropic, linear Rossby waves across a large scale bottom topography when topographic and beta-effects have the same order of magnitude. In open ocean regions which are not ...

Bernard Barnier

1984-02-01T23:59:59.000Z

445

Observation of Wave Energy Evolution in Coastal Areas Using HF Radar  

Science Conference Proceedings (OSTI)

The capability of phased-array HF radar systems to sample the spatial distribution of wave energy is investigated in different storm scenarios and coastal configurations. First, a formulation introduced by D. E. Barrick to extract significant ...

Rafael J. Ramos; Hans C. Graber; Brian K. Haus

2009-09-01T23:59:59.000Z

446

Back to the Future - Waves of Rising Energy Use in Data Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

90-3122 In the last 20 years we have observed three waves of concern about energy consumption of Data Centers and of activities for more efficient solutions: 1985-1995, fast...

447

On the Calculation of Available Potential Energy in Internal Wave Fields  

Science Conference Proceedings (OSTI)

A comparison of three common formulations for calculating the available potential energy (APE) in internal wave fields is presented. The formulations are the perturbation APE (APE1), the exact local APE (APE2), and its approximation for linear ...

Dujuan Kang; Oliver Fringer

2010-11-01T23:59:59.000Z

448

Hydrodynamic Optimisation of point wave-energy converter using laboratory experiments.  

E-Print Network (OSTI)

??Investment in renewable energy technology, such as wave power, is increasingly seen as a beneficial and economically-viable alternative to existing fossil-based power plants. New Zealand (more)

Kelly, Scott John

449

Novel millimeter wave sensor concepts for energy, environment, and national security  

E-Print Network (OSTI)

Millimeter waves are ideally suited for sensing and diagnosing materials, devices, and processes that are broadly important to energy, environment, and national security. Thermal return reflection (TRR) techniques that ...

Sundaram, S. K.

450

The Energy Source for the Coastal-Trapped Waves in the Australian Coastal Experiment Region  

Science Conference Proceedings (OSTI)

The sea level on the southern Australian coast is examined for the source of the coastal-trapped wave energy observed during the Australian Coastal Experiment. Sea level, adjusted for atmospheric pressure, and atmospheric pressure are observed to ...

John A. Church; Howard J. Freeland

1987-03-01T23:59:59.000Z

451

Inspection of Forrestal parking permit allocation and assignments  

Science Conference Proceedings (OSTI)

The purpose of this inspection was to review the process cr allocating and assigning parking permits at the Forrestal building. Specifically, we sought to determine the roles and responsibilities of Department of Energy (DOE) officials involved in the administration of the Forrestal parking permit process during the period June 1, 1991 to February 1, 1992. We also sought to determine if the allocation and assignment of Forrestal building parking spaces was implemented in accordance with Federal and DOE requirements. For our review, we interviewed the Headquarters officials involved in the administration of the parking permit allocation and assignment process. We also reviewed parking permit files and associated documentation for the period June 1, 1991 through February 1, 1992. In addition, we conducted a limited sampling of parking permits that were revoked during July and August 1991 to assess if they were processed in compliance with applicable regulations. We found no evidence that the actions by the Special Assistant to the Secretary (White House Liaison) and the other members of the parking committee regarding the issuance and revocation of parking permits were for any reason other than a desire to ensure that only individuals having a legitimate basis for a parking permit were issued a permit. However, we found that decisions by the parking committee regarding revocation of permits and appeals of revocation decisions were not always documented, nor were there written guidelines or procedures to govern the activities of the committee. In our view, the lack of written guidelines and procedures resulted in the use of invalidated personal knowledge by the parking committee in making decisions involving the revocation of parking permits and led to inconsistencies in the notification of individuals about the associated appeal process.

Not Available

1992-12-16T23:59:59.000Z

452

MHK Technologies/Electric Generating Wave Pipe | Open Energy Information  

Open Energy Info (EERE)

Generating Wave Pipe Generating Wave Pipe < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Generating Wave Pipe.jpg Technology Profile Primary Organization Able Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The EGWAP incorporates a specially designed environmentally sound hollow noncorroding pipe also known as a tube or container whose total height is from the ocean floor to above the highest wave peak The pipe is anchored securely beneath the ocean floor When the water level in the pipe rises due to wave action a float rises and a counterweight descends This action will empower a main drive gear and other gearings to turn a generator to produce electricity The mechanism also insures that either up or down movement of the float will turn the generator drive gear in the same direction Electrical output of the generator is fed into a transmission cable

453

Localized energy estimates for wave equations on high dimensional Schwarzschild space-times  

E-Print Network (OSTI)

The localized energy estimate for the wave equation is known to be a fairly robust measure of dispersion. Recent analogs on the $(1+3)$-dimensional Schwarzschild space-time have played a key role in a number of subsequent results, including a proof of Price's law. In this article, we explore similar localized energy estimates for wave equations on $(1+n)$-dimensional hyperspherical Schwarzschild space-times.

Laul, Parul

2010-01-01T23:59:59.000Z

454

Wind-Wave Nonlinearity Observed at the Sea Floor. Part I: Forced-Wave Energy  

Science Conference Proceedings (OSTI)

This is Part 1 of a study of nonlinear effects on natural wind waves. Array measurements of pressure at the sea floor and middepth, collected 30 km offshore in 13-m depth, are compared to an existing theory for weakly nonlinear surface gravity ...

T. H. C. Herbers; R. T. Guza

1991-12-01T23:59:59.000Z

455

On Energy Flux and Group Velocity of Waves in Baroclinic Flows  

Science Conference Proceedings (OSTI)

A modified energy flux is defined by adding a nondivergent term that involves ? to the traditional energy flux. The resultant flux, when normalized by the total eddy energy, is exactly equal to the group velocity of Rossby waves on a ? plane with ...

Edmund K. M. Chang; Isidoro Orlanski

1994-12-01T23:59:59.000Z

456

Independent Oversight Inspection, East Tennessee Technology Park - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Tennessee Technology Park - East Tennessee Technology Park - November 2008 Independent Oversight Inspection, East Tennessee Technology Park - November 2008 November 2008 Inspection of Environment, Safety, and Health Programs at the East Tennessee Technology Park The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), inspected environment, safety, and health (ES&H) programs at the DOE East Tennessee Technology Park (ETTP) during August through September 2008. HSS reports directly to the Office of the Secretary of Energy, and the ES&H inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. The inspection was performed concurrently with an inspection of emergency management at the Oak Ridge National Laboratory,

457

Independent Oversight Inspection, East Tennessee Technology Park, Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Inspection, East Tennessee Technology Park, Oversight Inspection, East Tennessee Technology Park, Summary Report - May 2003 Independent Oversight Inspection, East Tennessee Technology Park, Summary Report - May 2003 May 2003 Inspection of Environment, Safety, and Health and Emergency Management at the Oak Ridge Operations Office and East Tennessee Technology Park The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) and emergency management programs at the U.S. Department of Energy (DOE) East Tennessee Technology Park (ETTP) site in April and May 2003. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management

458

Mapping and Assessment of the United States Ocean Wave Energy Resource  

SciTech Connect

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration?¢????s (NOAA?¢????s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

Paul T. Jacobson; George Hagerman; George Scott

2011-12-01T23:59:59.000Z

459

MIDDLE PARK Conservation Action Plan  

E-Print Network (OSTI)

MIDDLE PARK Conservation Action Plan 2011 Update Plant Species of Focus: Kremmling milkvetch Conservation Initiative Workshop dates: June 26, 2008 and July 6, 2010 Report date: August 25, 2011 Middle Park................................................................................................................... 6 A. Conservation Targets

460

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm  

E-Print Network (OSTI)

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm login | register |home tv shows schedule to Dark Energy // Current Page 2 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy

Temple, Blake

Note: This page contains sample records for the topic "wave energy park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

An electron energy loss spectrometer designed for studies of electronic energy losses and spin waves in the large momentum regime  

Science Conference Proceedings (OSTI)

Based on 143 deg. electrostatic deflectors we have realized a new spectrometer for electron energy loss spectroscopy which is particularly suitable for studies on surface spin waves and other low energy electronic energy losses. Contrary to previous designs high resolution is maintained even for diffuse inelastic scattering due to a specific management of the angular aberrations in combination with an angle aperture. The performance of the instrument is demonstrated with high resolution energy loss spectra of surface spin waves on a cobalt film deposited on the Cu(100) surface.

Ibach, H. [Peter Gruenberg Institut PGI-3, Forschungszentrum Juelich, 52425 Juelich (Germany); Juelich Aachen Research Alliance - Fundamentals of Future Information Technologies (JARA-FIT), 52425 Juelich (Germany); Rajeswari, J.; Schneider, C. M. [Peter Gruenberg Institut PGI-6, Forschungszentrum Juelich, 52425 Juelich (Germany); Juelich Aachen Research Alliance - Fundamentals of Future Information Technologies (JARA-FIT), 52425 Juelich (Germany)

2011-12-15T23:59:59.000Z

462

Recommendations for Improving LEED Transportation and Parking Credits  

E-Print Network (OSTI)

Buildings can be located, designed and managed to optimize transportation and parking efficiency. This paper describes ways to improve LEED (Leadership in Energy and Environmental Design) transportation and parking credits. Typical LEED programs reduce building energy consumption 20-60%. Cost effective mobility and parking management programs often provide similar motor vehicle trip and parking generation reductions, resulting in large economic, social and environmental benefits. However, the current LEED rating system overlooks some of the most effective mobility and parking management strategies. It encourages practitioners to choose strategies based on their ease of implementation rather than effectiveness. As a result, the current LEED rating system is unlikely to implement mobility and parking management as much as optimal. This paper recommends a different approach which defines performance targets needed to achieve LEED categories (silver, gold, platinum). Developers would establish mobility and parking management plans that indicate how targets will be met, how performance will be evaluated, and what additional strategies will be deployed if needed to achieve targets. This optimizes mobility and parking management programs, and responds to changing demands. However, it is unnecessary to wait for a major reform to improve and expand LEED transportation credits; new credits proposed in this paper could be quickly incorporated into the existing LEED rating system.

Todd Litman; Todd Alex; Er Litman

2011-01-01T23:59:59.000Z

463

Definition: Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Long-Wave Infrared Jump to: navigation, search Dictionary.png Long-