National Library of Energy BETA

Sample records for wave energy ocean

  1. Green Ocean Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Energy Jump to: navigation, search Name: Green Ocean Wave Energy Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  2. Ocean Wave Energy Company OWECO | Open Energy Information

    Open Energy Info (EERE)

    Energy Company OWECO Jump to: navigation, search Name: Ocean Wave Energy Company (OWECO) Place: Bristol, Rhode Island Sector: Ocean Product: Wave energy device developer. The...

  3. Ocean floor mounting of wave energy converters

    DOE Patents [OSTI]

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  4. MHK Technologies/Ocean Wave Air Piston | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator...

  5. Open Ocean Aquaculture & Wave Energy Site | Open Energy Information

    Open Energy Info (EERE)

    Aquaculture & Wave Energy Site Jump to: navigation, search Basic Specifications Facility Name Open Ocean Aquaculture & Wave Energy Site Overseeing Organization University of New...

  6. Mapping and Assessment of the United States Ocean Wave Energy...

    Broader source: Energy.gov (indexed) [DOE]

    analysis and results of a rigorous assessment of the United States ocean wave energy resource. Mapping and Assessment of the United States Ocean Wave Energy Resource More Documents...

  7. Ocean Wave Wind Energy Ltd OWWE | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Ltd OWWE Jump to: navigation, search Name: Ocean Wave Wind Energy Ltd OWWE Region: Norway Sector: Marine and Hydrokinetic Website: www.owwe.net This company is listed...

  8. MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project...

    Open Energy Info (EERE)

    Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":...

  9. MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy...

    Open Energy Info (EERE)

    with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following...

  10. Mapping and Assessment of the United States Ocean Wave Energy Resource |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mapping and Assessment of the United States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and results of a rigorous assessment of the United States ocean wave energy resource. PDF icon Mapping and Assessment of the United States Ocean Wave Energy Resource More Documents & Publications Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

  11. Capturing the Motion of the Ocean: Wave Energy Explained | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Capturing the Motion of the Ocean: Wave Energy Explained Capturing the Motion of the Ocean: Wave Energy Explained July 6, 2015 - 11:44am Addthis Energy Department-supported "Azura" wave energy converter is installed at a U.S. Navy test site in Hawaii. | Photo courtesy of Northwest Energy Innovations. Energy Department-supported "Azura" wave energy converter is installed at a U.S. Navy test site in Hawaii. | Photo courtesy of Northwest Energy Innovations. Matt

  12. Pelamis Wave Power Ocean Power Delivery Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sector: Ocean Product: Scotland-based company specialising in the use of ocean power for electricity generation via its Pelamis convertor, which has been demonstrated up to 750kW....

  13. Mapping and Assessment of the United States Ocean Wave Energy Resource

    Broader source: Energy.gov (indexed) [DOE]

    TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box 10412 Palo Alto, CA 94303-0813 USA 800.313.3774 650.855.2121 askepri@epri.com 1024637 www.epri.com Final Report, December 2011 Mapping and Assessment of the United States Ocean Wave Energy Resource DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN

  14. Ninth Annual Ocean Renewable Energy Conference

    Broader source: Energy.gov [DOE]

    The future of clean, renewable ocean wave energy will be discussed in depth at the 2014 Ocean Renewable Energy Conference.

  15. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect (OSTI)

    Hagerman, G.; Scott, G.

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources.

  16. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    SciTech Connect (OSTI)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  17. Ocean energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71% of the earth's surface, they collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy's (DOE) Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy cost-effectively and in a way that does not harm the environment. The program seeks to develop ocean energy technology to a point where industry can accurately assess whether the technology is a viable energy conversion alternative, or supplement, to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the OET Program is concentrating on research that advances the OTEC technology. The program also continues to monitor and study developments in wave energy, ocean current, and salinity gradient concepts; but it is not actively developing these technologies now. 13 figs.

  18. Ocean Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind

  19. Ocean Motion International LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Saulsbury, Tennessee Zip: 38067 Sector: Ocean Product: Marine energy technology firm developing ocean wave powered generators. Coordinates: 35.052242,...

  20. Ocean current wave interaction study

    SciTech Connect (OSTI)

    Hayes, J.G.

    1980-09-20

    A numerical model has been developed to incorporate refraction of ocean surface gravity waves by major ocean currents. The model is initialized with directional wave spectra and verified with aircraft synthetic aperture radar X band spectra, laser profilometer spectra, and pitch and roll buoy data. Data collected during the Marineland test experiment are used as surface truth observations for the wave-current study. Evidence of Gulf Stream refraction and trapping of surface waves as well as caustics in the current is shown and modeled assuming a nonuniform Gulf Stream distribution. Frequency and directional resolution of the wave spectral distribution and the current refraction patterns illustrates the need for further study of ocean current-wave interaction in wave refraction studies.

  1. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    206 Unlimited Release Printed September 2014 Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data Ann R. Dallman, Vincent S. Neary Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security

  2. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect (OSTI)

    Paul T. Jacobson; George Hagerman; George Scott

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration?¢????s (NOAA?¢????s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  3. Ocean energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71{percent} of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost-effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the US Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW{sub e}. Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the US Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.

  4. Wave Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean » Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of

  5. Green Ocean Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Green Ocean Energy Place: Aberdeen, Scotland, United Kingdom Zip: AB10 1UP Product: Aberdeen, UK-based private developer of wave device....

  6. ocean energy technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers ocean energy technologies HomeTag:ocean ...

  7. Ocean Energy Technology Overview

    SciTech Connect (OSTI)

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  8. Ocean Energy Projects Developing On and Off America's Shores | Department

    Energy Savers [EERE]

    of Energy Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East

  9. European Wave and Tidal Energy Conference

    Broader source: Energy.gov [DOE]

    The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

  10. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  11. Energy Department Announces $10 million for Wave Energy Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    million to test prototypes designed to generate clean, renewable electricity from ocean waves and help diversify America's energy portfolio. The Energy Department-supported...

  12. Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Jump to: navigation, search Contents 1 Description 2 History 3 Technology 4 Current and Possible Wave Farms 5 Pros and Cons Description Wave energy (or wave power) is...

  13. Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Jump to: navigation, search Name: Ocean Energy Ltd Address: 3 Casement Square Place: Cobh Region: Ireland Sector: Marine and Hydrokinetic Phone Number:...

  14. EERE Success Story-Establishing a Testing Center for Ocean Energy...

    Office of Environmental Management (EM)

    NNMREC offers a full range of capabilities to support wave and tidal energy development for the United States. Ocean energy, generated from waves, tides, and currents, can be ...

  15. Energy Department Launches Competition to Drive Innovations in Wave Energy

    Office of Environmental Management (EM)

    | Department of Energy Competition to Drive Innovations in Wave Energy Energy Department Launches Competition to Drive Innovations in Wave Energy April 27, 2015 - 2:13pm Addthis The Energy Department today announced the opening of the registration period for the Wave Energy Prize competition that aims to double the state-of-the-art performance of wave energy conversion (WEC) devices over the next two years. By accelerating the development of WEC devices that capture more energy from ocean

  16. Ocean energy technologies: The state of the art: Final report

    SciTech Connect (OSTI)

    Carmichael, A.D.; Adams, E.E.; Glucksman, M.A.

    1986-11-01

    A state-of-the-art study of ocean energy technologies has been conducted to evaluate their potential use for the generation of electrical power. The more developed technologies are tidal energy, ocean thermal energy conversion (OTEC), and wave energy. In addition there has been a demonstration of a small ocean current turbine, and proposals have been made for salinity gradient devices and ocean wind turbines. Energy costs were estimated for representative base case systems for tidal, OTEC, and wave energy projects. The tidal energy scheme was predicted to have the lowest energy costs.

  17. Ocean Flow Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Ocean Flow Energy Place: United Kingdom Zip: NE29 6NL Product: Tidal energy device developer. References: Ocean Flow Energy1 This article...

  18. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and In-Stream Hydrokinetic Power | Department of Energy Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Office presentation icon 16_life_revision_previsic_update.ppt More Documents & Publications 2014 Water Power Program

  19. Energy Department Releases New Energy 101 Video on Ocean Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and

  20. Direct Drive Wave Energy Buoy

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  1. International Conference on Ocean Energy

    Broader source: Energy.gov [DOE]

    Join the Energy Department in Edinburgh, Scotland from February 23–25th for the International Conference on Ocean Energy (ICOE) conference.

  2. Ocean Energy Program Overview, Fiscal years 1990--1991

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71% of the earth's surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy's (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans' waves, currents, and thermal and salinity gradients.

  3. Open Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Edit with form History Open Ocean Energy Ltd Jump to: navigation, search Name: Open Ocean Energy Ltd Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  4. MHK Technologies/OceanStar | Open Energy Information

    Open Energy Info (EERE)

    energy efficient process to smooth out the pulse characteristics common to wave energy in order to be electrical grid friendly The OceanStars high level of scalability is...

  5. Ocean energy program summary: Volume 1, Overview: Fiscal year 1988

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    Past studies conducted by the US Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to US energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. The program also continues to monitor and study developments in wave energy, ocean current and salinity gradient concepts, but it is not actively developing these technologies at the present time. 8 figs.

  6. Vertical dispersion of inertial waves in the upper ocean

    SciTech Connect (OSTI)

    Rubenstein, D.M.

    1983-05-20

    A linear model of the vertical dispersion of near-inertial waves is developed. A porosity distribution near the bottom of the computational domain minimizes bottom reflections and simulates an ocean of the infinite depth. The model is used to show that the vertical dispersion of near-inertial waves in the upper ocean may, under certain conditions, contribute significanlty to the observed rapid decay of inertial oscillations in the surface layer. The kinetic energy of inertial oscillations at mid-latitudes decays with an e folding time scale of 10 days or less, when the parameter lambda(km)/N(cph)d(m) is less than or of the order of unity, where lambda is the wavelength of the wind-generated near-inertial waves, N is the Vaeisaelae frequency in the upper pycnocline, and d is the surface layer thickness. At the top of the pycnocline the model predicts a velocity maximum, which develops as energy propagates downward, out of the surface layer. However, when the upper pycnocline is sufficiently peaked, a resonant frequency interference effect is predicted. This effect modulates the dissipation of surface layer inertial oscillations, and their magnitude after a storm need not decay monotonically. We also make qualitative comparisons with deep-ocean current meter observations taken during the Mixed Layer Experiment (MILE) and with shallow water (105 m) observations taken in the Baltic Sea.

  7. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  8. Wave Star Energy | Open Energy Information

    Open Energy Info (EERE)

    Star Energy Jump to: navigation, search Name: Wave Star Energy Place: Denmark Zip: DK-2920 Product: Denmark-based private wave device developer. References: Wave Star Energy1...

  9. Design and Analysis for a Floating Oscillating Surge Wave Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... has, therefore, established a reference model (RM) project to benchmark a set of different MHK technologies, including wave, tidal current, river current, and ocean current energy. ...

  10. Riding the Clean Energy Wave: New Projects Aim to Improve Water...

    Broader source: Energy.gov (indexed) [DOE]

    the energy of the ocean's waves, tides, and currents and convert it into electricity. ... data on how deployed systems interact with wildlife and the surrounding ocean environment. ...

  11. Energy Department Announces $10 million for Wave Energy Demonstration at Navy’s Hawaii Test Site

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $10 million to test prototypes designed to generate clean, renewable electricity from ocean waves and help diversify America’s energy portfolio.

  12. Energy Department Announces $10 Million for Full-Scale Wave Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Ocean Energy USA and Northwest Energy Innovations will test their innovative wave energy conversion (WEC) devices for one year in new deep water test berths at the Navy's Wave ...

  13. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Broader source: Energy.gov (indexed) [DOE]

    Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the world's ocean thermal ...

  14. Characterization of U.S. Wave Energy Converter Test Sites: A...

    Office of Environmental Management (EM)

    Characterization of U.S. Wave Energy Converter Test Sites: A Catalogue of Met-Ocean Data Characterization of U.S. Wave Energy Converter Test Sites: A Catalogue of Met-Ocean Data ...

  15. Ocean Thermal | Open Energy Information

    Open Energy Info (EERE)

    the ability to produce 10000 TWh per year, which is greater than other types of ocean energy such as tides, marine currents and salinity gradient. OTEC functions best when...

  16. Ocean Renewable Energy Conference X

    Broader source: Energy.gov [DOE]

    The 10th annual Ocean Renewable Energy Conference provides attendees a forum to share new ideas and concepts, opportunity to learn from leading-edge practitioners and policy-makers, information...

  17. Ocean Energy Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Basics Ocean Energy Resource Basics August 16, 2013 - 4:34pm Addthis Although the potential for ocean energy technologies is believed to be very large, no comprehensive studies have been conducted to date to determine an accurate resource assessment for the United States. To address this problem, the U.S. Department of Energy announced in 2008 that it would fund several resource-assessment projects for advanced water power. Addthis Related Articles Glossary of Energy-Related

  18. Cycloidal Wave Energy Converter

    SciTech Connect (OSTI)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

  19. Dartmouth Wave Energy Searaser | Open Energy Information

    Open Energy Info (EERE)

    Energy Searaser Jump to: navigation, search Name: Dartmouth Wave Energy (Searaser) Place: United Kingdom Product: British firm developing the wave energy converter, Searaser....

  20. Scott Wilson Oceans | Open Energy Information

    Open Energy Info (EERE)

    Wilson Oceans Jump to: navigation, search Name: Scott Wilson Oceans Place: Chesterfield, United Kingdom Zip: S30 1JF Sector: Wind energy Product: Specialist in the engineering of...

  1. Ocean energy conversion systems annual research report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  2. Revamped Simulation Tool to Power Up Wave Energy Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Revamped Simulation Tool to Power Up Wave Energy Development Revamped Simulation Tool to Power Up Wave Energy Development May 21, 2015 - 2:40pm Addthis Revamped Simulation Tool to Power Up Wave Energy Development Alison LaBonte Marine and Hydrokinetic Technology Manager When engineers want to model new technologies, there's often nothing better than simulation tools. Designing technologies to harness energy from ocean waves is especially complex because engineers have to build them

  3. NREL-Ocean Energy Thermal Conversion | Open Energy Information

    Open Energy Info (EERE)

    Energy Laboratory Sector: Energy Topics: Resource assessment Website: www.nrel.govotec NREL-Ocean Energy Thermal Conversion Screenshot References: OTEC1 Logo: NREL-Ocean...

  4. Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |

    Energy Savers [EERE]

    Department of Energy into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database

  5. EERE Success Story-Mapping the Potential of U.S. Ocean Energy...

    Office of Environmental Management (EM)

    a series of resource assessments showing the technically recoverable potential energy available in the nation's waves, tidal and river currents, and ocean thermal gradients. ...

  6. EERE Success Story—Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii

    Office of Energy Efficiency and Renewable Energy (EERE)

    With support from the Energy Department and the U.S. Navy, a prototype wave energy device has advanced successfully from initial concept to grid-connected, open-ocean pilot testing. The device,...

  7. Ocean Energy Institute | Open Energy Information

    Open Energy Info (EERE)

    think tank established to accelerate offshore wind technology development that hopes to build a 5GW wind project off the coast of Maine. References: Ocean Energy Institute1 This...

  8. Ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Lockerby, R.W.

    1981-01-01

    Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)

  9. Euro Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Jump to: navigation, search Name: Euro Wave Energy Region: Norway Sector: Marine and Hydrokinetic Website: www.eurowaveenergy.com This company is listed in the Marine...

  10. Leancon Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Leancon Wave Energy Jump to: navigation, search Name: Leancon Wave Energy Address: Alpedalsvej 37 Place: Kolding Zip: 6000 Region: Denmark Sector: Marine and Hydrokinetic Phone...

  11. Ocean Renewable Energy Coalition OREC | Open Energy Information

    Open Energy Info (EERE)

    Energy Coalition OREC Jump to: navigation, search Name: Ocean Renewable Energy Coalition (OREC) Place: Potomac, Maryland Zip: 20859 Sector: Ocean Product: US trade association...

  12. Practical Ocean Energy Management Systems Inc POEMS | Open Energy...

    Open Energy Info (EERE)

    Ocean Energy Management Systems Inc POEMS Jump to: navigation, search Name: Practical Ocean Energy Management Systems Inc (POEMS) Place: San Diego, California Zip: 92138 Sector:...

  13. Mapping the Potential of U.S. Ocean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential of U.S. Ocean Energy Mapping the Potential of U.S. Ocean Energy November 6, 2013 - 12:00am Addthis In September 2013, EERE completed a series of resource assessments showing the technically recoverable potential energy available in the nation's waves, tidal and river currents, and ocean thermal gradients. These resource assessments are pivotal to understanding water power's potential and making these resources available to contribute to the United States' total annual electricity

  14. Characterization of U.S. Wave Energy Converter Test Sites: A Catalogue of

    Office of Environmental Management (EM)

    Met-Ocean Data | Department of Energy Characterization of U.S. Wave Energy Converter Test Sites: A Catalogue of Met-Ocean Data Characterization of U.S. Wave Energy Converter Test Sites: A Catalogue of Met-Ocean Data This report presents met-ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites. Its purpose is to enable the comparison of wave resource characteristics among sites as well as the selection of test sites that are

  15. Ocean Energy Program Overview, Fiscal years 1990--1991. Programs in utility technologies

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The oceans are the world`s largest solar energy collector and storage system. Covering 71% of the earth`s surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy`s (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans` waves, currents, and thermal and salinity gradients.

  16. MHK Technologies/Ocean Energy Rig | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The Ocean...

  17. Next Wave Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Next Wave Energy Inc Place: Denver,CO, Colorado Zip: 80202 Sector: Renewable Energy Product: NextWave Energy was a consulting firm focused...

  18. Navy Catching Waves in Hawaii | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii June 2, 2010 - 11:56am Addthis This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. To a casual observer,

  19. Catching a Wave: Innovative Wave Energy Device Surfs for Power...

    Office of Environmental Management (EM)

    Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii July 29, 2015 - 12:00pm Addthis...

  20. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, ...

  1. Wave Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    Centre Jump to: navigation, search Name: Wave Energy Centre Address: Wave Energy Centre Av Manuela da Maia 36 R C Dto Place: Lisboa Zip: 1000-201 Region: Portugal Sector: Marine...

  2. Sandia Energy - WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC-Sim (Wave Energy Converter SIMulator) Home Stationary Power Energy Conversion Efficiency Water Power WEC-Sim (Wave Energy Converter SIMulator) WEC-Sim (Wave Energy Converter...

  3. Ocean Thermal Extractable Energy Visualization: Final Technical Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the world's ocean thermal resources. PDF icon Ocean Thermal Extractable Energy Visualization More Documents & Publications OTEC resource assessment NELHA Creates the 'Green Energy

  4. Makai Ocean Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Southern CA Area Sector: Marine and Hydrokinetic, Ocean, Renewable Energy Product: OTEC Number of Employees: 28 Year Founded: 1973 Phone Number: 808.259.8871 Website:...

  5. Ocean Electric Power | Open Energy Information

    Open Energy Info (EERE)

    Ocean Electric Power Place: United Kingdom Sector: Renewable Energy Product: UK-based offshore project developer. The firm is actively engaged in the development of offshore...

  6. Ocean Renewable Power Company | Open Energy Information

    Open Energy Info (EERE)

    LLC was founded in 2004 for the purpose of generating reliable, competitive, emission-free electricity from the energy resources of the oceans. Coordinates: 45.511795,...

  7. ocean energy | OpenEI Community

    Open Energy Info (EERE)

    ocean energy Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine...

  8. Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  9. Ocean Navitas | Open Energy Information

    Open Energy Info (EERE)

    Condry. Website: www.oceannavitas.com References: Ocean Navitas&127;UNIQ75db538f85b32404-ref-000014E2-QINU&127; This article is a stub. You can help OpenEI by expanding it. Ocean...

  10. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am Addthis In preparation for a full-scale bay/ocean demonstration and with EERE support, Columbia Power Technologies, Inc. (CPT) deployed an intermediate-scale wave energy converter to demonstrate and validate its direct drive wave energy Buoy technology, which extracts energy from passing waves.

  11. MHK Technologies/Ocean Treader floating | Open Energy Information

    Open Energy Info (EERE)

    homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK ProjectsDevelopment of Ocean...

  12. Ocean energy systems. Quarterly report, January-March 1983

    SciTech Connect (OSTI)

    Not Available

    1983-03-30

    Progress is reported on the development of Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual and preliminary design activity of industry teams that are designing a shelf-mounted offshore OTEC pilot plant that could deliver power to Oahu, Hawaii. In addition, a program is underway to evaluate and test the Pneumatic Wave-Energy Conversion System (PWECS), an ocean-energy device consisting of a turbine that is air-driven as a result of wave action in a chamber. This Quarterly Report summarizes the work on the various tasks as of 31 March 1983.

  13. WETGen (Wave Energy Turbine GENerator) | Open Energy Information

    Open Energy Info (EERE)

    WETGen (Wave Energy Turbine GENerator) Jump to: navigation, search Logo: WETGen (Wave Energy Turbine GENerator) Name WETGen (Wave Energy Turbine GENerator) Place Coos Bay, Oregon...

  14. Ocean Thermal Energy Conversion: An overview

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  15. Wave energy and intertidal productivity

    SciTech Connect (OSTI)

    Leigh, E.G. Jr.; Paine, R.T.; Quinn, J.F.; Suchanek, T.H.

    1987-03-01

    In the northern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 x 10/sup 8/ J, per m/sup 2/ in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms harness wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organism, and protect intertidal residents by knocking away their enemies or preventing them from feeding.

  16. Energy Department Announces $10 Million for Full-Scale Wave Energy Device

    Broader source: Energy.gov (indexed) [DOE]

    Testing | Department of Energy Energy Department, in coordination with the Navy, today announced funding for two companies that will continue to advance marine and hydrokinetic (MHK) technology as a viable source for America's clean energy future. Ocean Energy USA and Northwest Energy Innovations will test their innovative wave energy conversion (WEC) devices for one year in new deep water test berths at the Navy's Wave Energy Test Site (WETS) off the waters of Marine Corps Base Hawaii. MHK

  17. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer.

  18. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United...

  19. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Production Potential from Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline ...

  20. Wave Energy Research, Testing and Demonstration Center

    SciTech Connect (OSTI)

    Batten, Belinda

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar environmental considerations. While the non-grid connected testing facility provides an option for WEC developers to prove their technology in a fully-energetic wave environment, the absence of grid connection is somewhat of a limitation. To prove that their technology is commercially viable, developers seek a multi-year grid connected testing option. To address this need, NNMREC is developing a companion grid connected test facility in Newport, Oregon, where small arrays of WECs can be tested as well.

  1. Oregon Wave Energy Trust OWET | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Trust OWET Jump to: navigation, search Name: Oregon Wave Energy Trust (OWET) Place: Portland, Oregon Zip: 97207 Product: String representation "The Oregon Wave ... rgy...

  2. MHK Technologies/Ocean | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage Ocean.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK ProjectsAlaska 35 *MHK...

  3. Environmental impacts of ocean thermal energy conversion

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    Ocean thermal energy conversion (OTEC) is a promising technology for production of energy and usable by-products from solar-generated temperature gradients in the world's oceans. Although considered benign compared to alternative forms of energy generation, deployment of OTEC plants will result in interactions with marine, terrestrial, and atmospheric environments and in socioeconomic interactions with surrounding areas. The Ocean Energy Technology Program of the Department of Energy has funded research to improve the understanding of these interactions. No insurmountable environmental obstacle to OTEC deployment has been uncovered. This document contains a summary of that research for entrepreneurs, utility engineers, and others interested in pursuing OTEC's potential. In addition, it provides a guide to permits, regulations, and licenses applicable to construction of an OTEC plant.

  4. MHK Projects/Development of Ocean Treader | Open Energy Information

    Open Energy Info (EERE)

    Wave Treader fixed *MHK TechnologiesOcean Treader floating Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  5. Ocean energy systems. Quarterly report, October-December 1982

    SciTech Connect (OSTI)

    Not Available

    1982-12-01

    Research progress is reported on developing Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual design activity of the two industry teams that are designing offshore OTEC pilot plants that could deliver power to Oahu, Hawaii. In addition, a program is underway in which tests of a different kind of ocean-energy device, a turbine that is air-driven as a result of wave action in a chamber, are being planned. This Quarterly Report summarizes the work on the various tasks as of 31 December 1982.

  6. Assessment of Energy Production Potential from Ocean Currents...

    Broader source: Energy.gov (indexed) [DOE]

    of ocean currents in the United States and the database created with that data. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline...

  7. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Report summarizing the results of ...

  8. Wave Energy Resource Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wave Energy Resource Assessment Office presentation icon 52_wave_resource_assessment_epri_jacobson.ppt More Documents & Publications OTEC resource assessment OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) Whitestone Power & Communications (TRL 1 2 3 System) - Whitestone Poncelet RISEC Project

  9. Wave Energy AS | Open Energy Information

    Open Energy Info (EERE)

    AS Jump to: navigation, search Name: Wave Energy AS Address: Opstadveien 11C Place: Aalgaard Zip: 4330 Region: Norway Sector: Marine and Hydrokinetic Phone Number: (+47) 51 6109 30...

  10. Wave Energy Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Technologies Inc Jump to: navigation, search Name: Wave Energy Technologies Inc Address: 270 Sandy Cove Rd Place: Ketch Harbour Zip: B3V 1K9 Region: Canada Sector: Marine and...

  11. AWS Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zip: IV17 1SN Product: Inverness-based company established to commercialise the Archimedes Wave Swing. Coordinates: 48.55324, -110.689764 Show Map Loading map......

  12. Federal Ocean Energy Technology: Program summary for fiscal year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    The Department of Energy's (DOE) Ocean Energy Technology (OET) Program is looking for cost-effective ways to harness ocean energy to help power tomorrow's world. Federally sponsored researchers are studying methods to transform the solar heat stored in the ocean's surface waters into electricity as well as new ways to convert wave energy into mechanical energy or electricity. This report provides a summary of research completed during FY 1986. Four major research areas are addressed in the work covered by this report: Thermodynamic Research and Analysis addresses the process and system analyses which provide the underlying understanding of physical effects which constitute the energy conversion processes, Experimental Verification and Testing provides confirmation of the analytical projections and empirical relationships, Materials and Structural Research addresses special materials compatibility issues related to operation in the sea. Much of its focus is on concepts for the system CWP which is a major technology cost driver, and Oceanographic, Environmental, and Geotechnical Research addresss those unique design requirements imposed by construction in steep slope coastal areas.

  13. Wave Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    Wave Wind LLC Jump to: navigation, search Name: Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and...

  14. MHK Technologies/Indian Wave Energy Device IWAVE | Open Energy...

    Open Energy Info (EERE)

    Indian Wave Energy Device IWAVE < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Indian Wave Energy Device IWAVE.jpg Technology Profile Primary...

  15. Green Wave Energy Corp GWEC | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Corp GWEC Jump to: navigation, search Name: Green Wave Energy Corp GWEC Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in...

  16. California Wave Energy Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Partners LLC Jump to: navigation, search Name: California Wave Energy Partners LLC Address: 1590 Reed Road Place: Pennington Zip: 8534 Region: United States Sector:...

  17. Danish Wave Energy Development Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Development Ltd Jump to: navigation, search Name: Danish Wave Energy Development Ltd Place: Gentofte, Denmark Zip: 2820 Product: Original developer and now holding...

  18. MHK Technologies/The Crestwing Wave Energy Converter | Open Energy...

    Open Energy Info (EERE)

    Crestwing Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Crestwing Wave Energy Converter.jpg Technology Profile...

  19. Preliminary Wave Energy Converters Extreme Load Analysis: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preliminary Wave Energy Converters Extreme Load Analysis Preprint Y-H. Yu, J. Van Rij, and M. Lawson National Renewable Energy Laboratory R. Coe Sandia National Laboratories To be presented at the 34 th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2015) St. John's, Newfoundland, Canada May 31-June 5, 2015 Conference Paper NREL/CP-5000-63677 March 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC

  20. Assessment of Energy Production Potential from Ocean Currents along the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Coastline | Department of Energy Energy Production Potential from Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Report summarizing the results of seven years of numerical model simulations of ocean currents in the United States and the database created with that data. PDF icon energy_production_ocean_currents_us.pdf More Documents & Publications Assessment of Energy Production

  1. Ocean current resource assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean current resource assessment Ocean current resource assessment Ocean current resource assessment Office presentation icon 45oceanresourcegtrchaas.ppt More Documents & ...

  2. Finavera Renewables Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Address: 595 Burrard Street Suite 3113 Three Bentall Centre PO Box 49071 Place: Vancouver Zip: V7X 1G4 Region: Canada Sector: Marine and Hydrokinetic...

  3. OCEANS'13 MTS/IEEE SAN DIEGO, SEPTEMBER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... They benefit from converting energy into usable power from highly dense energy resources, includ- ing: river, tidal and ocean currents, and ocean waves. In this paper, a simple ...

  4. Wave Energy Converter Effects on Nearshore Wave Propagation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Converter Effects on Nearshore Wave Propagation Jesse Roberts 1 , Grace Chang *2 , Craig Jones *3 Sandia National Laboratories 1515 Eubank SE, Albuquerque, NM 87123 USA 1...

  5. List of Wave Energy Incentives | Open Energy Information

    Open Energy Info (EERE)

    Coal with CCS Concentrating Solar Power Energy Storage Fuel Cells Geothermal Electric Natural Gas Nuclear Tidal Energy Wave Energy Wind energy BiomassBiogas Hydroelectric...

  6. Assessment of Energy Production Potential from Ocean Currents along the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Coastline | Department of Energy Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Report summarizing the results of seven years of numerical model simulations of ocean currents in the United States and the database created with that data. PDF icon Assessment of Energy Production Potential from Ocean Currents along the United States Coastline More Documents & Publications

  7. Energy Department Announces $10 Million for Full-Scale Wave Energy Device Testing

    Broader source: Energy.gov [DOE]

    The Energy Department, in coordination with the Navy, today announced funding for two companies to test their innovative wave energy conversion devices in new deep water test berths off the waters of the Navy’s Marine Corps Base Hawaii. Ocean Energy USA will leverage lessons learned from previous quarter-scale test deployments that have led to design improvements for a full-scale deployment of their Ocean Energy Buoy. Northwest Energy Innovations will build and test a full-scale model of its Azura device.

  8. Sandia Energy - High-Fidelity Hydrostructural Analysis of Ocean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrostructural Analysis of Ocean Renewable Power Company's (ORPC's) TidGen Turbine Home Renewable Energy Energy Water Power Partnership News News & Events Computational...

  9. MHK Technologies/WAVE ENERGY CONVERTER | Open Energy Information

    Open Energy Info (EERE)

    WAVE ENERGY CONVERTER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Wave Technology Type...

  10. Ocean thermal energy conversion: report to congress - fiscal year 1982

    SciTech Connect (OSTI)

    Not Available

    1983-03-31

    National Oceanic and Atmospheric Administration (NOAA) activities related to ocean thermal energy conversion (OTEC) during fiscal year 1982 are described. The agency focus has been in the areas of providing ocean engineering and technical assistance to the Department of Energy (DOE), in streamlining the administration of the Federal OTEC licensing system, and in environmental assistance.

  11. Hawaii Oceanic Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Oceanic Technology Inc Jump to: navigation, search Name: Hawaii Oceanic Technology Inc Region: United States Sector: Marine and Hydrokinetic Website: www.hioceanictech.com This...

  12. Ocean thermal energy conversion: a review

    SciTech Connect (OSTI)

    Yuen, P.C.

    1981-10-01

    The OTEC principle is discussed along with general system and cycle types, specific OTEC designs, OTEC applications, and the ocean thermal resource. The historic development of OTEC is briefly reviewed, and the status of French, Japanese, EUROCEAN, and US programs is assessed. US efforts are detailed and DOE's strategy outlined with OTEC-1 and Mini-OTEC information. Power system components of the more technically advanced closed-cycle OTEC concept are discussed. These include: heat exchangers, corrosion and biofouling countermeasures, working fluids, ammonia power systems, and on-platform seawater systems. Several open-cycle features are also discussed. A critical review is presented of the ocean engineering aspects of OTEC power systems. Major subsystems such as platform, cold water pipe, mooring system, dynamic positioning system, power transmission cable system are assessed for their relationships with the ocean environment and with each other. Nine available studies of OTEC costs are reviewed. Tentative comparisons are made between OTEC and traditional fuel costs, and OTEC products and markets are considered. Possible environmental and social effects of OTEC development are discussed. International, national, and local laws regulating OTEC plants and OTEC energy products are reviewed. Tax incentives, attitudes of the utilities, and additional legislative needs are considered. (LEW)

  13. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  14. Sandia Energy - Advanced Controls of Wave Energy Converters May...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Controls of Wave Energy Converters May Increase Power Capture Up to 330% Home Renewable Energy Energy Water Power Partnership News News & Events Computational Modeling &...

  15. Wave energy absorber mountable on wave-facing structure

    SciTech Connect (OSTI)

    Kondo, H.

    1983-09-13

    A wave energy absorber comprising a caisson mountable on the seaside surface of an existing breakwater or coastal embankment, which caisson has a water chamber with an open side and a rear wall facing the open side. The distance from the open side to the rear wall is longer than one quarter of a wavelength L /SUB c/ in the water chamber so as to generate a standing wave in the water chamber with a node of the standing wave at a distance L /SUB c/ /4 from the rear wall toward the open side. A wave power turbine impeller is pivotally supported in the caisson at the node position, the impeller rotating in only one direction, whereby wave energy is absorbed by the impeller for further conversion into electric or thermal energy. The caisson itself can also be utilized as a breakwater or an embankment.

  16. Simulation of asteroid impact on ocean surfaces, subsequent wave generation and the effect on US shorelines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.; Dennison, Deborah S.; Dearborn, David S.; Antoun, Tarabay H.

    2015-05-19

    As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface aremore » conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.« less

  17. Simulation of asteroid impact on ocean surfaces, subsequent wave generation and the effect on US shorelines

    SciTech Connect (OSTI)

    Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.; Dennison, Deborah S.; Dearborn, David S.; Antoun, Tarabay H.

    2015-05-19

    As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface are conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.

  18. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect (OSTI)

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  19. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  20. Ocean thermal energy conversion: Perspective and status

    SciTech Connect (OSTI)

    Thomas, A.; Hillis, D.L.

    1990-01-01

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully be George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250--400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore-based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed-cycle concept. Cost-effective heat-exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat-transfer augmentation techniques were identified, which promised a reduction on heat-exchanger size and cost. Fresh water was produced by an OTEC open-cycle flash evaporator, using the heat energy in the seawater itself. The current R D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open-cycle process. The 10 MW shore-based, closed-cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power -- both valuable commodities on many tropical islands. The open-cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources. 7 refs.

  1. Controller for a wave energy converter

    DOE Patents [OSTI]

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  2. Ocean Thermal Extractable Energy Visualization: Final Technical Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approved for public release; distribution is unlimited OCEAN THERMAL EXTRACTABLE ENERGY VISUALIZATION Award # DE-EE0002664 October 28, 2012 Final Technical Report Prepared by Lockheed Martin Mission Systems & Sensors (MS2) DE-EE0002664 Ocean Thermal Energy Resource Assessment Final Draft i 10/28/2012 Project Title: Ocean Thermal Extractable Energy Visualization Recipient: Lockheed Martin Corporation Award #: DE-0002664 Working Partners Project Lead: Matthew Ascari - Lockheed Martin

  3. WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Wave Energy Converter SIMulator) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  4. Elgen Wave | Open Energy Information

    Open Energy Info (EERE)

    Elgen Wave Jump to: navigation, search Name: Elgen Wave Region: United States Sector: Marine and Hydrokinetic Website: www.elgenwave.com This company is listed in the Marine and...

  5. Ocean Thermal Energy Conversion Act of 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A legislative proposal to develop ocean thermal energy conversion (OTEC) facilities for power generation was the subject of hearings held on April 10 and May 1, 1980. Following the test of S. 2492 are the statements of 20 witnesses and additional materials submitted for consideration. The need for a large-scale demonstration of OTEC and the need for a Federal regulatory, siting, and financial-assistance framework are the major commercialization issues. S. 2492 provides one-stop licensing by treating the facilities as vessels and making them eligible for loan guarantees. The bill complements S. 1430, which deals with the demonstration program. OTEC development in Hawaii has progressed to a second pilot project. (DCK)

  6. MHK Projects/Orcadian Wave Farm | Open Energy Information

    Open Energy Info (EERE)

    Deployed 4 Main Overseeing Organization Pelamis Wave Power formerly Ocean Power Delivery Project Technology *MHK TechnologiesPelamis Project Licensing Environmental...

  7. Wave Energy Converter System Requirements and Performance Metrics

    Broader source: Energy.gov [DOE]

    The Energy Department and Wave Energy Scotland are holding a joint workshop on wave energy converter (WEC) system requirements and performance metrics on Friday, February 26.

  8. Riding the Clean Energy Wave: New Projects Aim to Improve Water Power

    Broader source: Energy.gov (indexed) [DOE]

    Devices | Department of Energy Watch the Energy 101 video above to find out how hydrokinetic technologies can harness the energy of the ocean's waves, tides, and currents and convert it into electricity. Ryan Sun Chee Fore Marine and Hydrokinetic Technology Manager With up to 1,400 terawatt hours of potential power generation per year, our nation's waves and tides represent vast, untapped resources that could provide clean, renewable electricity to millions of homes and businesses throughout

  9. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Basin Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaveBasin&oldid596392" Feedback Contact needs updating Image needs updating Reference...

  10. Sandia Energy - Dedication of University of Maine's W2 Ocean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program will be the first to use the W2 facility in their public prize challenge-the Wave Energy Prize. W2 will act as one of five facilities producing 150th scaled wave...

  11. WEC up! Energy Department Announces Wave Energy Conversion Prize Administrator

    Broader source: Energy.gov [DOE]

    The Water Power Program today awarded $6.5 million to a Prize Administration Team for the development and execution of the Energy Department’s Wave Energy Conversion (WEC) Prize Competition. The WEC Prize will continue to advance marine and hydrokinetic (MHK) technology as a viable source for America’s clean energy future, in part by providing an opportunity for developers to test their innovative wave energy conversion (WEC) devices in a wave generating basin.

  12. WEC-Sim (Wave Energy Converter - SIMulator)

    Energy Science and Technology Software Center (OSTI)

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-sourcemore » code to model WECs.« less

  13. WEC-Sim (Wave Energy Converter - SIMulator)

    SciTech Connect (OSTI)

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-source code to model WECs.

  14. Energy Extraction from a Slider-Crank Wave Energy under Irregular Wave Conditions: Preprint

    SciTech Connect (OSTI)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-08-24

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  15. Development of Feedforward Control Strategies for Wave Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wave and Tidal Find More Like This Return to Search Development of Feedforward Control Strategies for Wave Energy Conversion Technologies National Renewable Energy...

  16. MHK Technologies/Magnetohydrodynamic MHD Wave Energy Converter...

    Open Energy Info (EERE)

    Magnetohydrodynamic MHD Wave Energy Converter MWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Magnetohydrodynamic MHD Wave Energy...

  17. Ocean County, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Jersey Manahawkin, New Jersey Mantoloking, New Jersey Mystic Island, New Jersey New Egypt, New Jersey North Beach Haven, New Jersey Ocean Acres, New Jersey Ocean Gate, New...

  18. MHK Technologies/OCEANTEC Wave Energy Converter | Open Energy...

    Open Energy Info (EERE)

    Energy Converter.jpg Technology Profile Primary Organization OCEANTEC Energias Marinas S L Technology Resource Click here Wave Technology Type Click here Attenuator Technology...

  19. Sandia Energy - Wave-Energy/-Device Modeling: Developing A 1...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the power-conversion chains (PCCs) of resonant wave-energy converter (WEC) devices. The numerical models employed in these studies are, however, idealized to varying...

  20. MHK Projects/Santona Wave Energy Park | Open Energy Information

    Open Energy Info (EERE)

    Santona Wave Energy Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"RO...

  1. Oregon Wave Energy Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Partners LLC Jump to: navigation, search Name: Oregon Wave Energy Partners LLC Address: 1590 Reed Road Place: Pennington Zip: 8534 Region: United States Sector: Marine and...

  2. MHK Technologies/Wave Energy Propulsion | Open Energy Information

    Open Energy Info (EERE)

    MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Propulsion.jpg Technology Profile Primary Organization Kneider Innovations...

  3. Wave Energy Technology New Zealand | Open Energy Information

    Open Energy Info (EERE)

    Zealand Jump to: navigation, search Name: Wave Energy Technology New Zealand Address: PO Box 25456 Panama St Place: Wellington Zip: 6146 Region: New Zealand Sector: Marine and...

  4. Ocean energy resources: the impact of OTEC

    SciTech Connect (OSTI)

    Ditmars, J.D.

    1980-01-01

    The status of OTEC technological development is summarized with emphasis on the potential impacts of OTEC power production on the ocean environment, including implications for impacts to climate. (MHR)

  5. Ocean thermal energy at the Johns Hopkins University Applied Physics Laboratory, quarterly report. Report for Jan-Mar 82

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The following are included: Ocean thermal energy conversion (OTEC)--OTEC pilot plant conceptual design review; OTEC methanol; review of electrolyzer development programs and requirements; financial and legal considerations in OTEC implementation; potential navy sites for GEOTEC systems; hybrid geothermal-OTEC power plants: single-cycle performance estimates; and supervision of testing of pneumatic wave energy conversion system.

  6. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    SciTech Connect (OSTI)

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  7. Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii July 29, 2015 - 12:00pm Addthis The Azura device sits 30m out from the Wave Energy Test Site (WETS) in Oahu. The Azura device sits 30m out from the Wave Energy Test Site (WETS) in Oahu. With support from the Energy Department and the U.S. Navy, a prototype wave energy device has advanced successfully from initial concept to

  8. Energy 101: Marine & Hydrokinetic Energy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine and hydrokinetic energy technologies to capture energy from waves and currents. ... Energy Department Releases New Energy 101 Video on Ocean Power Riding the Clean Energy ...

  9. MHK Technologies/WaveStar | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage WaveStar.jpg Technology Profile Primary Organization Wave Star Energy Project(s) where this technology is utilized *MHK ProjectsWave Star Energy 1...

  10. Renewable Energy Wave Pumps | Open Energy Information

    Open Energy Info (EERE)

    Technology Database. This company is involved in the following MHK Technologies: Wave Water Pump WWP This article is a stub. You can help OpenEI by expanding it. Retrieved from...

  11. Ocean Prospect Ltd | Open Energy Information

    Open Energy Info (EERE)

    the Pelamis wave power device, and intends to commercialise it in the UK and Australia. Coordinates: 42.55678, -88.050449 Show Map Loading map... "minzoom":false,"map...

  12. Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; Burlacu, Relu

    2015-04-20

    We investigate source locations of P-wave microseisms within a narrow frequency band (0.67–1.33 Hz) that is significantly higher than the classic microseism band (~0.05–0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement withmore » previous observations in the double-frequency (DF) microseism band (~0.1–0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.« less

  13. BlueWave Capital LLC | Open Energy Information

    Open Energy Info (EERE)

    BlueWave Capital LLC Jump to: navigation, search Name: BlueWave Capital LLC Place: Boston, Massachusetts Sector: Renewable Energy Product: Knowledge-based investment firm focused...

  14. MHK Technologies/DEXA Wave Converter | Open Energy Information

    Open Energy Info (EERE)

    Click here Wave Technology Type Click here Attenuator Technology Description The wave energy conversion is similar to other devices There is no data publicly available...

  15. Wave Dragon ApS | Open Energy Information

    Open Energy Info (EERE)

    Denmark Country: Denmark Zip: DK-2200 Sector: Marine and Hydrokinetic Product: Wave energy converter development company. Has patented the Wave Dragon, an offshore floating...

  16. MHK Technologies/Floating wave Generator | Open Energy Information

    Open Energy Info (EERE)

    homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator...

  17. MHK Technologies/WaveSurfer | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage WaveSurfer.jpg Technology Profile Primary Organization Green Energy Industries Inc Technology Resource Click here Wave Technology Type Click here...

  18. Apparatus for utilizing the energy of wave swells and waves

    SciTech Connect (OSTI)

    Dubois, Y.; Dubois, F.Y.

    1983-07-05

    The invention involves a device for utilizing the energy from sea swells and waves. The device is characterized by the combination of: (a) a vessel adapted to follow the regular undulations of sea swells at a place of anchorage, and constructed in a manner to face the swells so as to pitch and not to roll while anchored; (b) air cylinders disposed at least at one extremity of the vessel to moderate more or less the amplitude of the pitching; (c) watertight compartments containing a liquid; (d) prime movers, such as continuously powered turbines, located in the path of the liquid and suited to harness energy from the liquid as it moves so as to supply mechanical energy to at least one rotatable shaft; and (e) liquid deflectors located at the extremities of each water-tight compartment.

  19. Proceedings of the ocean energy information dissemination workshop, December 1979

    SciTech Connect (OSTI)

    Petty, D.

    1980-04-01

    The workshop was held to discuss the status of marketing ocean energy information and to develop an understanding of information needs and how to satisfy them. Presentations were made by the Solar Energy Research Institute (SERI) staff and media consultants about the effective use of audio-visual and print products, the mass media, and audience needs. Industry and government representatives reported on current efforts in each of their communication programs and outlined future plans. Four target audiences (DOE contractors, researchers, influencers, and general public) were discussed with respect to developing priorities for projects to enhance the commercialization of ocean energy technology.

  20. Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project

    Broader source: Energy.gov [DOE]

    Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

  1. Wave Energy Simulation Team Carries Home International Award | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Wave Energy Simulation Team Carries Home International Award Wave Energy Simulation Team Carries Home International Award July 15, 2015 - 1:52pm Addthis Wave Energy Simulation Team Carries Home International Award Alison LaBonte Marine and Hydrokinetic Technology Manager In order to harness the power of waves to generate electricity, engineers must be able to predict how large floating devices will perform in a dynamic environment-that is, in the water among waves. A team sponsored

  2. Making Wave Power Efficient and Affordable | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave Power Efficient and Affordable Making Wave Power Efficient and Affordable April 10, 2013 - 12:00am Addthis Partnering with Colorado Springs' Atargis Energy, EERE is supporting efforts to design and test wave energy conver-sion devices that can survive significant storms and deliver cost-competitive electricity-two issues that face wave energy conversion devices under development. Atargis is currently testing its Cycloidal Wave Energy Converter design at the Texas A&M Offshore Technology

  3. Advancing Technology Readiness: Wave Energy Testing and Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology Readiness: Wave Energy Testing and Demonstration Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest Energy Innovations, in partnership with the Northwest National Marine Renewable Energy Center (NNMREC), verified the functionality of the Wave Energy Technology - New Zealand (WET-NZ) device through wave tank testing and controlled open-sea deployment of a 1:2 scale device off the coast of Oregon. This

  4. EERE Success Story-Advancing Technology Readiness: Wave Energy Testing

    Office of Environmental Management (EM)

    and Demonstration | Department of Energy Technology Readiness: Wave Energy Testing and Demonstration EERE Success Story-Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest Energy Innovations, in partnership with the Northwest National Marine Renewable Energy Center (NNMREC), verified the functionality of the Wave Energy Technology - New Zealand (WET-NZ) device through wave tank testing and controlled open-sea deployment of a 1:2

  5. Direct Drive Wave Energy Buoy

    SciTech Connect (OSTI)

    Rhinefrank, Ken

    2011-11-02

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progress and results for this project which will be used to inform the utility-scale design process, improve cost estimates, accurately forecast energy production and to observe system operation and survivability.

  6. SyncWave Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: SyncWave Energy Inc Address: 1422 Collins Rd PO Box 459 Place: Pemberton Zip: V0N 2L0 Region: Canada Sector: Marine and Hydrokinetic Phone...

  7. Establishing a Testing Center for Ocean Energy Technologies in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNMREC offers a full range of capabilities to support wave and tidal energy development ... UW plans to deploy and test tidal turbines in Puget Sound, which provides a useful natural ...

  8. EERE Success Story-Catching a Wave: Innovative Wave Energy Device...

    Broader source: Energy.gov (indexed) [DOE]

    The Azura device sits 30m out from the Wave Energy Test Site (WETS) in Oahu. The Azura device sits 30m out from the Wave Energy Test Site (WETS) in Oahu. With support from the ...

  9. Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays

    SciTech Connect (OSTI)

    Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; Burlacu, Relu

    2015-04-20

    We investigate source locations of P-wave microseisms within a narrow frequency band (0.671.33 Hz) that is significantly higher than the classic microseism band (~0.050.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement with previous observations in the double-frequency (DF) microseism band (~0.10.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.

  10. DOE Announces Webinars on the Wave Energy Converter Prize, the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Wave Energy Converter Prize, the Best of the Clean Cities Tools and Resources, and More DOE Announces Webinars on the Wave Energy Converter Prize, the Best of the Clean Cities...

  11. Quantitative evaluation of ocean thermal energy conversion (OTEC): executive briefing

    SciTech Connect (OSTI)

    Gritton, E.C.; Pei, R.Y.; Hess, R.W.

    1980-08-01

    Documentation is provided of a briefing summarizing the results of an independent quantitative evaluation of Ocean Thermal Energy Conversion (OTEC) for central station applications. The study concentrated on a central station power plant located in the Gulf of Mexico and delivering power to the mainland United States. The evaluation of OTEC is based on three important issues: resource availability, technical feasibility, and cost.

  12. MHK Projects/Makai Ocean Energy Research Center | Open Energy...

    Open Energy Info (EERE)

    Project Details Makai Ocean Engineering has designed, owns, and operates a closed-cycle OTEC system in Kailua-Kona Hawaii. True deep cold seawater is drawn from a depth of about...

  13. Haynes Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin...

  14. MHK Projects/Humboldt County Wave Project | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Project Technology *MHK TechnologiesAquaBuoy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  15. Research and development on ocean thermal energy conversion in Japan

    SciTech Connect (OSTI)

    Uehara, H.

    1982-08-01

    The study of Ocean Thermal Energy Conversion (OTEC) in Japan has been conducted under the leadership of a team of the ''Sunshine Project'', a national new energy development project promoted by the Ministry of International Trade and Industries (MITI) since 1974. At present, two experimental OTEC power plants -Nauru's OTEC plant and Imari's OTEC plant are operating. In this paper, the review of research and development activity of these two OTEC plants in Japan is made.

  16. Lockheed Testing the Waters for Ocean Thermal Energy System | Department of

    Energy Savers [EERE]

    Energy Lockheed Testing the Waters for Ocean Thermal Energy System Lockheed Testing the Waters for Ocean Thermal Energy System May 27, 2010 - 11:46am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs A floating platform, simple turbine and tropical oceans could be the key to producing 30 percent or more of the total energy the world consumes today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin

  17. Indian National Institute of Ocean Technology | Open Energy Informatio...

    Open Energy Info (EERE)

    of Ocean Technology Jump to: navigation, search Name: Indian National Institute of Ocean Technology Place: Chennai, Tamil Nadu, India Sector: Ocean Product: Research institute...

  18. Proceedings of the Hydrokinetic and Wave Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Before the House Science and Technology Subcommittee on Energy and Environment Water Power Program: ...

  19. Ocean Thermal Energy Conversion Program Management Plan

    SciTech Connect (OSTI)

    Combs, R E

    1980-01-01

    The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

  20. AWS Ocean Energy formerly Oceanergia | Open Energy Information

    Open Energy Info (EERE)

    Commercial Pilot Project This company is involved in the following MHK Technologies: Archimedes Wave Swing This article is a stub. You can help OpenEI by expanding it. Retrieved...

  1. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    SciTech Connect (OSTI)

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  2. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  3. Ocean thermal energy. Quarterly report, January-March 1982

    SciTech Connect (OSTI)

    Not Available

    1982-03-30

    This quarterly report summarizes work of the following tasks as of March 31, 1982: OTEC pilot plant conceptual design review; OTEC methanol; review of electrolyzer development programs and requirements; financial and legal considerations in OTEC implementation; potential Navy sites for GEOTEC systems; hybrid geothermal-OTEC power plants: single-cycle performance estimates; and supervision of testing of pneumatic wave energy conversion system.

  4. Ocean energy systems. Quarterly report, July-September 1982

    SciTech Connect (OSTI)

    Not Available

    1982-09-30

    This quarterly report summarizes work on the following tasks as of September 30, 1982: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) financial and legal considerations in OTEC implementation; (4) GEOTEC resource exploration at Adak, Alaska, and Lualualei, Hawaii; (5) preliminary GEOTEC plant cost estimates; and (6) supervision of testing of pneumatic wave energy conversion system.

  5. Ocean thermal energy. Quarterly report, April-June 1982

    SciTech Connect (OSTI)

    Not Available

    1982-06-30

    This quarterly report includes summaries of the following tasks: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) management decision requirements for OTEC construction; (4) hybrid geothermal - OTEC (GEOTEC) power plant performance estimates; and (5) supervision of testing of pneumatic wave energy conversion system.

  6. MHK Technologies/Oceanlinx Mark 3 Wave Energy Converter | Open...

    Open Energy Info (EERE)

    Wave Energy Project *MHK ProjectsHawaii *MHK ProjectsOceanlinx Maui *MHK ProjectsPort Kembla *MHK ProjectsPortland Technology Resource Click here Wave Technology Type Click...

  7. WavePlane International AS | Open Energy Information

    Open Energy Info (EERE)

    International AS Place: Gentofte, Denmark Zip: 2820 Product: Company working with a wave energy device called the 'WavePlane' Coordinates: 55.75069, 12.55007 Show Map Loading...

  8. C Wave Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: C-Wave Ltd Place: England, United Kingdom Zip: SO17 1BJ Product: C-Wave is developing an innovative wave power technology using a unique...

  9. Wind Waves and Sun | Open Energy Information

    Open Energy Info (EERE)

    Wind Waves and Sun Jump to: navigation, search Name: Wind Waves and Sun Region: United States Sector: Marine and Hydrokinetic Website: www.windwavesandsun.com This company is...

  10. Clean Wave Ventures | Open Energy Information

    Open Energy Info (EERE)

    Wave Ventures Jump to: navigation, search Name: Clean Wave Ventures Place: Indianapolis, Indiana Zip: 46204 Product: Midwest-based venture capital firm specializing in high growth...

  11. Kinetic Wave Power | Open Energy Information

    Open Energy Info (EERE)

    Wave Power Jump to: navigation, search Name: Kinetic Wave Power Address: 2861 N Tupelo St Place: Midland Zip: 48642 Region: United States Sector: Marine and Hydrokinetic Phone...

  12. Triton Sea Wave Technologies | Open Energy Information

    Open Energy Info (EERE)

    Triton Sea Wave Technologies Jump to: navigation, search Name: Triton Sea Wave Technologies Address: 22 A Thrakis Zip: 15669 Region: Greece Sector: Marine and Hydrokinetic Year...

  13. Motor Wave Group | Open Energy Information

    Open Energy Info (EERE)

    Wave Group Jump to: navigation, search Name: Motor Wave Group Place: Hong Kong Region: China Sector: Marine and Hydrokinetic Website: www.motorwavegroup.com This company is listed...

  14. MHK Projects/Ocean Energy Galway Bay IE | Open Energy Information

    Open Energy Info (EERE)

    at the Irish Marine Institute-run test site in the waters off Galway, Ireland. Ocean Energy conducted a 2006-2007 winter sea trial on its 28 ton OEBuoy prototype at the Irish...

  15. Aqua Magnetics Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 32937 Sector: Ocean Product: Manufactures patented system that converts ocean wave energy into electric power. References: Aqua-Magnetics Inc1 This article is a stub. You...

  16. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    SciTech Connect (OSTI)

    2006-03-01

    Renewable energy technologies offer the promise of non-polluting alternatives to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. Two emerging categories of renewable energy technologies, hydrokinetic and wave energy conversion devices, offer ways to tap the energy of moving water without impoundment (dams) or diversion required by many conventional hydroelectric facilities. These technologies include devices designed for deployment in natural streams, tidal estuaries, ocean currents, and constructed waterways, as well as devices designed to capture the energy of ocean waves. On October 26-28, 2005, 54 representatives from government, non-governmental organizations, and private business met to (1) identify the varieties of hydrokinetic energy and wave technology devices, their stages of development, and the projected cost to bring each to market; (2) identify where these technologies can best operate; (3) identify the potential environmental issues associated with these technologies and possible mitigation measures; (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. These workshop proceedings include detailed summaries of the 24 presentations made and the discussions that followed.

  17. Grays Harbor Ocean Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Energy, Wind energy Product: Grays Harbor has started a demonstration project for offshore windwave renewable power generation in Washington State and has applied for up...

  18. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    SciTech Connect (OSTI)

    Haas, Kevin A.

    2013-10-03

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States.

  19. Current practices and new technology in ocean engineering

    SciTech Connect (OSTI)

    McGuinness, T.; Shih, H.H.

    1986-01-01

    This book presents the papers given at a conference on wave power and marine engineering. Topics considered at the conference included remote sensing, ocean current measurement, air and spaceborne instrumentation, marine dynamics, real-time measurements, telemetry systems, seafloor measurement, computer-based data acquisition, materials and devices for underwater work systems, ocean system design analysis and reliability, ocean structure fatigue life prediction, underwater life support systems, sensor design, ocean thermal energy conversion, and wave energy converters.

  20. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  1. MHK Technologies/THOR Ocean Current Turbine | Open Energy Information

    Open Energy Info (EERE)

    THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary...

  2. Voith Hydro Ocean Current Technologies | Open Energy Information

    Open Energy Info (EERE)

    Ocean Current Technologies Jump to: navigation, search Name: Voith Hydro Ocean Current Technologies Place: Germany Sector: Hydro Product: Germany-based JV between Voith Hydro and...

  3. MHK Technologies/Wave Rotor | Open Energy Information

    Open Energy Info (EERE)

    Project(s) where this technology is utilized *MHK ProjectsC Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level...

  4. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments The article reviews the results of that workshop, focusing on potential effects on ...

  5. MHK Technologies/Wave Rider | Open Energy Information

    Open Energy Info (EERE)

    into electricity Electricity is generated via small turbines powered by hydraulic circuits which captures the energy of the wave and converts it into high pressure hydraulic...

  6. MHK Technologies/Float Wave Electric Power Station | Open Energy...

    Open Energy Info (EERE)

    space thus securing the best condition for effective wave energy taking off The experimental laboratory study of scaled FWEPS models has shown that the mechanical actuator...

  7. MHK Technologies/Wave Energy Conversion Activator WECA | Open...

    Open Energy Info (EERE)

    MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus...

  8. Mapping and Assessment of the United States Ocean Wave Energy...

    Open Energy Info (EERE)

    Download Full Report URL: http:en.openei.orgdatasetsdataset6b40f428-2af0-40b3-8a53-0c32c7e35973resource9bfc4b34-78a1-4da9-8928-48a1f72ee8e8downloadmappingandassessmentofth...

  9. Mapping and Assessment of the United States Ocean Wave Energy...

    Open Energy Info (EERE)

    Source http:my.epri.comportalserver.pt?Productid000000000001024637 Author EPRI Catalog OpenEI Origination Date 2011-12-05T00:00:00 Required Software Sectors Water...

  10. Mapping and Assessment of the United States Ocean Wave Energy...

    Open Energy Info (EERE)

    station in deep water, beyond shelf edge; green indicates station on shelf, with red number indicating local alignment of depth contours in immediate vicinity of station,...

  11. Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles

    SciTech Connect (OSTI)

    Green, H.J. ); Guenther, P.R. )

    1990-09-01

    This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

  12. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1988-02-01

    In this lecture an overview of the heat and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems, are briefly discussed.

  13. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1987-03-01

    In this lecture an overview of the heat- and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open- and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems are briefly discussed.

  14. Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC-Sim NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  15. Experimental testing of wave energy converter (WEC) controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing of wave energy converter (WEC) controls - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  16. Rene Wave Ltd | Open Energy Information

    Open Energy Info (EERE)

    Rene Wave Ltd Jump to: navigation, search Name: Rene Wave Ltd Address: 85 Emmett Ave Suite 2508 Place: Toronto Zip: M6M 5A2 Region: Canada Sector: Marine and Hydrokinetic Phone...

  17. Property:Wave Direction | Open Energy Information

    Open Energy Info (EERE)

    Wave Basin + Uni-Directional + Lakefront Tow Tank + Uni-Directional + Los Angeles and Long Beach Harbors Model + Uni-Directional + M MHL 2D WindWave + Uni-Directional + MHL...

  18. Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions

    SciTech Connect (OSTI)

    Yu, Y.; Li, Y.

    2011-10-01

    This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

  19. Model studies of oscillating water column wave-energy device

    SciTech Connect (OSTI)

    Koola, P.M.; Ravindran, M.; Narayana, P.A.A.

    1995-04-01

    A harbor oscillating water column wave-energy device has been selected for the Indian pilot wave-energy program. The site has a water depth of about 12 m and an average annual wave-power potential of 13 kW/m. Such sites are attractive locations for fishing breakwaters. Due to the relatively low power potential, these oscillating water column devices arc intended to be modules of a multifunctional breakwater. The present paper highlights the results of the scale-model experiments carried out on a prototype wave-energy caisson.

  20. Enhancement of particle-wave energy exchange by resonance sweeping

    SciTech Connect (OSTI)

    Berk, H.L.; Breizman, B.N.

    1995-10-01

    It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation.

  1. Enhancement of particle-wave energy exchange by resonance sweeping

    SciTech Connect (OSTI)

    Berk, H.L.; Breizman, B.N.

    1996-01-01

    When the resonance condition of the particle-wave interaction is varied adiabatically, the particles trapped in a wave are found to form phase space holes or clumps that enhance the particle-wave energy exchange. This mechanism can cause increased saturation levels of instabilities and even allow the free energy associated with instability to be tapped in a system in which background dissipation suppresses linear instability.

  2. MHK Technologies/WaveBlanket PolymerMembrane | Open Energy Information

    Open Energy Info (EERE)

    Description WaveBlanket could be called the accordion of the sea Poetically speaking It is simply a bellows played upon by the swells of the ocean WaveBlanket is a...

  3. Outer Banks Ocean Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Sector: Wind energy Product: Privately-held company that plans to develop a 200-600MW offshore wind farm in federal lease blocks near North Carolina's barrier islands, known as...

  4. Renewable energy from the ocean - a guide to OTEC

    SciTech Connect (OSTI)

    Avery, W.H.; Wu, C.

    1994-01-01

    An enormous renewable energy resource exists in the tropical oceans. The authors of this book state that this resource could be exploited to produce a large fraction of the world's energy needs in the form of methanol or ammonia and that any associated deleterious environmental effects would be minimal. Careful analyses of potential problems, detailed designs of OTEC plant ships, and consideration of costs occupy most of the book. Part of it is devoted to some limited practical experience. With the knowledge set forth a 40-MWe seagoing pilot plant could be constructed. Cost would be about $200 million in 1990 dollars. Construction could be relatively rapid, since most of the components would be commercially available. The authors provide extensive evidence that with experience costs of OTEC would be substantially reduced and that ultimately production of methanol and ammonia by OTEC could be made cost-competitive.

  5. MHK technologies include current energy conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e.g., hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. ...

  6. Open cycle ocean thermal energy conversion system structure

    DOE Patents [OSTI]

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

  7. Energy Department Invests $16 Million to Harness Wave and Tidal Energy |

    Office of Environmental Management (EM)

    Department of Energy 6 Million to Harness Wave and Tidal Energy Energy Department Invests $16 Million to Harness Wave and Tidal Energy August 29, 2013 - 2:35pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides and currents.

  8. Hydropower, Wave and Tidal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower, Wave and Tidal » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Marketing Summaries (13) Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories

  9. TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Karsenti, Eric [EMBL Heidelberg

    2013-03-01

    Eric Karsenti of EMBL delivers the closing keynote on "TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  10. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Wave Tank Test for Reference Model 3 Floating- Point Absorber Wave Energy Converter Project Y.-H. Yu, M. Lawson, and Y. Li National Renewable Energy Laboratory M. Previsic and J. Epler Re Vision Consulting J. Lou Oregon State University Technical Report NREL/TP-5000-62951 January 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no

  11. SeWave | Open Energy Information

    Open Energy Info (EERE)

    50:50 JV between UK's Wavegen and Faroese electricity company SEV to to design and build a tunnelled demonstration wave power plant in the Faroes Islands. References:...

  12. Wave Power Plant Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Wave Power Plant Inc Address: 2563 Granite Park Dr Place: Lincoln Zip: 95648 Region: United States Sector: Marine and Hydrokinetic Phone...

  13. DE-EE0000319 Final Technical Report [National Open-ocean Energy Laboratory

    SciTech Connect (OSTI)

    Skemp, Susan

    2013-12-29

    Under the authorization provided by Section 634 of the Energy Independence and Security Act of 2007 (P.L. 110-140), in 2009 FAU was awarded U.S. Congressionally Directed Program (CDP) funding through the U.S. Department of Energy (DOE) to investigate and develop technologies to harness the energy of the Florida Current as a source of clean, renewable, base-load power for Florida and the U.S. A second CDP award in 2010 provided additional funding in order to enhance and extend FAU’s activities. These two CDPs in 2009 and 2010 were combined into a single DOE grant, DE-EE0000319, and are the subject of this report. Subsequently, in July 2010 funding was made available under a separate contract, DE-EE0004200. Under that funding, DOE’s Wind and Water Power Program designated FAU’s state of Florida marine renewable energy (MRE) center as the Southeast National Marine Renewable Energy Center (SNMREC). This report discusses SNMREC activities funded by the DE-EE0000319 grant, but will make reference, as appropriate, to activities that require further investigation under the follow-on grant. The concept of extracting energy from the motions of the oceans has a long history. However, implementation on large scales of the technologies to effect renewable energy recovery from waves, tides, and open-ocean currents is relatively recent. DOE’s establishment of SNMREC recognizes a significant potential for ocean current energy recovery associated with the (relatively) high-speed Florida Current, the reach of the Gulf Stream System flowing through the Straits of Florida, between the Florida Peninsula and the Bahamas Archipelago. The proximity of the very large electrical load center of southeast Florida’s metropolitan area to the resource itself makes this potential all the more attractive. As attractive as this potential energy source is, it is not without its challenges. Although the technology is conceptually simple, its design and implementation in a commercially-viable fashion presents a variety of challenges. Beyond the technology itself (and, especially, the effects on the technology of the harsh oceanic environment), it is important to consider the possible environmental impacts of commercial-scale implementation of oceanic energy extraction. Further, because such implementation represents a completely new undertaking, the human resources required do not exist, so education and training programs are critical to eventual success. This project, establishing a national open-ocean energy laboratory, was designed to address each of these three challenges in a flexible framework allowing for adaptive management as the project proceeded. In particular:  the technology challenge, including resource assessment, evolved during the project to recognize and address the need for a national testing facility in the ocean for small-scale prototype MRE systems developed by industry;  the environmental challenge became formalized and expanded during the permitting process for such a testing facility; and  the human resources/societal challenges, both in terms of the need for education and training and in terms of public acceptance of MRE, stimulated a robust outreach program far beyond that originally envisioned at SNMREC. While all of these activities at SNMREC are ongoing, a number of significant milestones (in addition to the contributions listed in the appendices) were achieved under the auspices of this award. These include:  Planning and site selection for the first-phase test facility, offshore of Dania Beach, FL, including some equipment for the facility, submission of an Interim Policy Lease Application to the U.S. Department of Interior’s Bureau of Ocean Energy Management (BOEM), and completion of an Environmental Assessment by BOEM and a positive Consistency Determination by the State of Florida;  Measurements using acoustic profilers of the current structure and variability in the vicinity of the site under a variety of weather conditions, seasons and time durations;  Design and implementation of instrumentation for the first phase of the offshore testing facility, the wet- and top-side data acquisition systems, and shore-based analysis systems;  Implementation of a laboratory-scale dynamometer system to test generators of up to 25 kW capacity using real-world (simulated) forcing;  Completion of 24 months of (airborne) marine vertebrate surveys and associated analysis of sea turtle offshore activity, marine mammal vocalization research, and ocean current turbine hydrodynamic noise characterization;  Development of a secondary-school (nominally grade 10) curriculum about hydrokinetic MRE, “Energy from the Oceans: The New Renewable”, and training of over 200 high-school teachers in its use and in how to educate their colleagues in application of the material in the classroom;  Presentations to over 50 interested civic groups in the region on various aspects of MRE in SE Florida  A series of public lectures to over 600 residents of south Florida to provide broader education on MRE.  Development of an interactive kiosk for installation in local science museums. These, and other accomplishments detailed in this report contribute to a comprehensive ongoing program at the SNMREC to support the affordable, responsible, and achievable commercialization of MRE. Many of the tasks of this award are continued or will be verified with follow-on funding DE-EE0004200, and its goal: the installation of the world’s first offshore ocean current turbine testing and validation capability.

  14. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect (OSTI)

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  15. Analysis of the Clean Energy Standard Act of 2012

    Gasoline and Diesel Fuel Update (EIA)

    ... 21 ''(7) RENEWABLE ENERGY.-The term 'renew- 22 able energy' means solar, wind, ocean, current, wave, 23 tidal, or geothermal energy. 24 ''(c) CLEAN ENERGY REQUIREMENT.- 25 ...

  16. 2007 Federal Energy Management Program (FEMP) Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ocean Energy includes but is not limited to electric energy from tidal, wave, current, and ocean thermal energy conversion (OTEC). 2.2.9 Hydropower For the purpose of the EPACT ...

  17. Development of Feedforward Control Strategies for Wave Energy Conversion Technologies

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2015-12-29

      The future of wave energy will depend on developing a new generation of wave energy converters (WECs) that maximize energy extraction and mitigate critical loads while reducing costs. Today’s WECs are relatively inefficient compared to their theoretical upper limit and lack the ability to concurrently maximize power capture and minimize structural loads.  The majority of existing WECs consist of fixed geometrical bodies relying predominantly on control of the power...

  18. New Wave Power Project In Oregon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave Power Project In Oregon New Wave Power Project In Oregon June 17, 2011 - 3:12pm Addthis Michael Reed Michael Reed Director, Technical and Project Management Division What does this project do? Promises to add tremendous value to the wave energy industry, reinforcing utility-scale viability, collecting ground-breaking environmental impact data and exploring avenues for cost reduction. Has issued localized manufacturing contracts for the PB150 to several Oregon companies. If you've ever been

  19. Demonstration of the Recent Additions in Modeling Capabilities for the WEC-Sim Wave Energy Converter Design Tool: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration of the Recent Additions in Modeling Capabilities for the WEC-Sim Wave Energy Converter Design Tool Preprint N. Tom, M. Lawson, and Y-H. Yu National Renewable Energy Laboratory To be presented at the 34 th International Conference on Ocean, Offshore, and Arctic Engineering (OMAE 2015) St. John's, Newfoundland, Canada May 31-June 5, 2015 Conference Paper NREL/CP-5000-63528 March 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable

  20. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    SciTech Connect (OSTI)

    Goossens, M.; Van Doorsselaere, T.; Soler, R.; Verth, G.

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  1. Wave Energy Prize Narrowed from 92 Teams to Top 20 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave Energy Prize Narrowed from 92 Teams to Top 20 Wave Energy Prize Narrowed from 92 Teams to Top 20 August 14, 2015 - 2:16pm Addthis Wave Energy Prize Narrowed from 92 Teams to...

  2. Waterborne noise due to ocean thermal energy conversion plants

    SciTech Connect (OSTI)

    Janota, C.P.; Thompson, D.E.

    1983-07-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the seawater pumps is expected to dominate in the frequency range 10 Hz to 1 kHz. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  3. Establishing a Testing Center for Ocean Energy Technologies in the Pacific

    Office of Environmental Management (EM)

    Northwest | Department of Energy Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest April 9, 2013 - 12:00am Addthis The University of Washington (UW) and Oregon State University (OSU) have partnered with EERE to develop the Northwest National Marine Renewable Energy Center (NNMREC), as one of three National Marine Renewable Energy Centers. NNMREC offers a full range of

  4. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect (OSTI)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial scale plant. It is important to understand that the purpose of this study was to establish baseline scenarios based on basic device data that was provided to use by the manufacturer for illustrative purposes only.

  5. Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint

    SciTech Connect (OSTI)

    Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

    2012-04-01

    The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

  6. MHK Technologies/Lever Operated Pivoting Float | Open Energy...

    Open Energy Info (EERE)

    Swell Fuel Technology Resource Click here Wave Technology Description Ocean wave energy converter buoys in a farm They are also called a point absorber Technology...

  7. Ocean thermal energy conversion: Historical highlights, status, and forecast

    SciTech Connect (OSTI)

    Dugger, G.L.; Avery, W.H.; Francis, E.J.; Richards, D.

    1983-07-01

    In 1881, d'Arsonval conceived the closed-Rankine-cycle ocean thermal energy conversion (OTEC) system in which a working fluid is vaporized by heat exchange with cold water drawn from a 700-1200 m depth. In 1930, Claude demonstrated an open-cycle process in Cuba. Surface water was flash-vaporized at 3 kPa to drive a turbine directly (no secondary working fluid) and then was condensed by direct contact with water drawn from a 700-m depth through a 1.6m-diam, 1.75-km-long cold-water pipe (CWP). From a delta T of 14/sup 0/C his undersized turbine generated 22 kW. In 1956 a French team designed a 3.5-MW (net) open-cycle plant for installation off Abidjan on the Ivory Coast of Africa and demonstrated the necessary CWP deployment. The at-sea demonstrations by Mini-OTEC and OTEC-1 and other recent advances in OTEC technology summarized herein represent great progress. All of the types of plants proposed for the DOE's PON program may be worthy of development; certainly work on a grazing plant is needed. Our estimates indicate that the U.S. goals established by Public Law 96-310 leading to 10 GW of OTEC power and energy product equivalents by 1999 are achievable, provided that adequate federal financial incentives are retained to assure the building of the first few plants.

  8. MHK Technologies/MotorWave | Open Energy Information

    Open Energy Info (EERE)

    about 70 float modules with each float measuring about 4 m3 Each MotorWave is designed to pump water ashore for onshore applications or energy production Technology Dimensions...

  9. Internal wave energy radiated from a turbulent mixed layer

    SciTech Connect (OSTI)

    Munroe, James R.; Sutherland, Bruce R.

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%3% of the turbulent kinetic energy density of the turbulent layer.

  10. Sensitivity of a Wave Energy Converter Dynamics Model to Nonlinear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface in- tegral based method. NOMENCLATURE WEC Wave energy converter. T3R2 "Three-translation, two-rotation" WEC studied here. PCC Power-conversion-chain. PMT...

  11. Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...powertechnologiesinchart.ppt More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power Technologies (TRL 7 8 System) - Reedsport ...

  12. MHK Technologies/Ocean Current Linear Turbine | Open Energy Informatio...

    Open Energy Info (EERE)

    Current Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary...

  13. List of Ocean Thermal Incentives | Open Energy Information

    Open Energy Info (EERE)

    Cells Fuel Cells using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydrogen Landfill Gas Methanol Ocean Thermal Photovoltaics Renewable Fuels Small Hydroelectric...

  14. Wave Energy Prize Narrowed from 92 Teams to Top 20 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave Energy Prize Narrowed from 92 Teams to Top 20 Wave Energy Prize Narrowed from 92 Teams to Top 20 August 14, 2015 - 2:16pm Addthis Wave Energy Prize Narrowed from 92 Teams to Top 20 Alison LaBonte Marine and Hydrokinetic Technology Manager After an unprecedented 92 teams registered to compete in the Energy Department-funded Wave Energy Prize, today we announced the top 20 teams. These teams all passed through Technology Gate 1: providing a thorough technical submission detailing their device

  15. WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ... in Proceedings of EWTEC 2015, Nantes, France, 2015. News December, 2015 - Oregon ...

  16. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect (OSTI)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  17. Production of desalinated water using ocean thermal energy

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.

    1991-01-01

    This paper describes an Ocean Thermal Energy Conversion (OTEC) desalination plant that consists of a multistage flash evaporator (MSF), a closed-cycle OTEC power plant, and an appropriate seawater system depending if the desalination plant is land based or floating. OTEC desalination plants of this type are preferred because the production of desalinated water far exceeds that obtained from other OTEC plant types employing the same size seawater system. The focus of the paper is on the multistage flash evaporator. The similarities and differences between conventional MSF and OTEC multistage flash evaporators (OTEC-MSF) are first described. Then the details of the OTEC-MSF evaporator design are discussed and preliminary correlations are recommended for the three major elements: the flash chamber, the moisture removal device, and the condenser. Recent advances such as enhanced condenser tubes, condensers of the compact type, and corrugated-plate moisture separators are introduced into the design. Comparisons of the water production capability, evaporator shell volume, and material cost are then presented for state-of-the-art and the new design concepts. 20 refs., 11 figs., 5 tabs.

  18. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  19. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  20. Energy Department Announces Finalists Vying for $2.25 Million Wave Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prize | Department of Energy Finalists Vying for $2.25 Million Wave Energy Prize Energy Department Announces Finalists Vying for $2.25 Million Wave Energy Prize March 1, 2016 - 11:50am Addthis The U.S. Department of Energy (DOE) announced today the nine teams chosen as finalists in the Wave Energy Prize, which hail from California, Maine, North Carolina, Oregon, Rhode Island, and Washington. The Prize is a 20-month design-build-test competition that aims to double the energy captured from

  1. Energy 101: Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    2013-04-29

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  2. Energy 101: Marine and Hydrokinetic Energy

    ScienceCinema (OSTI)

    None

    2014-06-26

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  3. MHK Projects/Centreville OPT Wave Energy Park | Open Energy Informatio...

    Open Energy Info (EERE)

    1 Main Overseeing Organization California Wave Energy Partners LLC Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  4. MHK Projects/Wave Energy AS Project 1 | Open Energy Information

    Open Energy Info (EERE)

    Project Installed Capacity (MW) 0 Device Nameplate Capacity (MW) Concept implemented in breakwater structures capacity will depend on local wave energy and length of breakwater...

  5. MHK Technologies/IPS OWEC Buoy | Open Energy Information

    Open Energy Info (EERE)

    electricity from ocean waves at a cost competitive with fossil fuel generated power Cluster of buoys gives energy and act as wave breaker Off shore wave energy converters and...

  6. Sandia Energy - SNL-SWAN Beta Code Development: Frequency-Dependent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental effects created by changes in wave climates associated with the deployment of various sizes and configurations of wave farms in the ocean. Energy spectra at...

  7. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  8. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    SciTech Connect (OSTI)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  9. Oceanlinx | Open Energy Information

    Open Energy Info (EERE)

    GPP Namibia Greenwave Rhode Island Ocean Wave Energy Project Hawaii Oceanlinx Maui Port Kembla Portland This company is involved in the following MHK Technologies: Denniss...

  10. State Grant Program | Open Energy Information

    Open Energy Info (EERE)

    Solar Thermal Electric Photovoltaics Landfill Gas Wind Biomass Geothermal Electric Hydrogen Tidal Energy Wave Energy Ocean Thermal Fuel Cells using Renewable Fuels No...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tidal, Wave, Ocean Thermal, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Alternative Energy and Energy Conservation Patent Exemption (Corporate)...

  12. Energy Department Accepting Small Business Grant Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of MHK Devices," the Energy Department seeks applications for innovative monitoring systems optimized for use in tidal, current, wave, andor ocean thermal energy converters. ...

  13. Dynamic breakwater and wave energy recovery and conversion system

    SciTech Connect (OSTI)

    Boros, L.J.

    1983-05-24

    A dynamic breakwater system includes at least one and preferably a plurality of dynamic breakwater assemblies, each of which includes a baffle wall member which is pivotally mounted in a body of water about an axis which extends substantially transverse to the direction of wave motion and so that a lower portion thereof is submerged below the water surface while an upper portion thereof extends above the water surface, each baffle wall member being biased such that it has a tendency to move in a direction opposite to the direction of wave motion and wherein apparatus for damping the movement of the baffle wall member when the same moves in the direction of wave motion under the force of waves impinging thereon are provided. Apparatus is provided for recovering at least a portion of the energy imparted to the baffle wall member by the waves impinging thereon and for converting the same to useful energy and generally comprises a fluid circuit supported on a stationary platform assembly and a device operatively interconnecting the baffle wall member and fluid circuit for elevating the pressure of the fluid circulating therein in response to movement of the baffle wall member caused by the waves impinging thereon.

  14. EA-1917: Wave Energy Test Facility Project, Newport, OR

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE.

  15. MHK Technologies/The DEXAWAVE wave energy converter | Open Energy...

    Open Energy Info (EERE)

    Scale Test *At present our 1 to 5 scale model is working the waters outside the Danish port of Hanstholm collecting valuable data about the waves and currents that are constantly...

  16. MHK Technologies/Seatricity wave energy converter | Open Energy...

    Open Energy Info (EERE)

    In the simplest terms, a float travels up and down with the waves and operates a pump to pressurise sea water which is piped ashore. Many individual pumps are connected...

  17. The environmental interactions of tidal and wave energy generation devices

    SciTech Connect (OSTI)

    Frid, Chris; Andonegi, Eider; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-15

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  18. Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy...

    Open Energy Info (EERE)

    at Wave Period(s) Jump to: navigation, search Property Name Maximum Wave Height(m) at Wave Period(s) Property Type String Pages using the property "Maximum Wave Height(m) at Wave...

  19. MHK Technologies/C Wave | Open Energy Information

    Open Energy Info (EERE)

    homepage C Wave.jpg Technology Profile Primary Organization C Wave Technology Resource Click here Wave Technology Type Click here Attenuator Technology Description The C Wave...

  20. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT Aleutian Pribilof Islands Association, Inc. U.S. Department of Energy, Renewable Energy Development and Deployment in Indian Country: DE-EE0005624.000 Bruce Wright, Principal Investigator 2 CONTENTS Executive Summary ........................................................................................................................ 3 Project

  1. Ocean Thermal Energy Conversion moored pipe/mobile platform design study

    SciTech Connect (OSTI)

    Bullock, H.O.; McNatt, T.R.; Ross, J.M.; Stambaugh, K.A.; Watts, J.L.

    1982-07-30

    The Ocean Thermal Energy Conversion (OTEC) Moored Pipe/Mobile Platform (MP-Squared) Design Study was carried out to investigate an innovative approach to the moored floating OTEC plant. In the past, a number of concepts have been examined by NOAA for floating OTEC plants. These concepts have considered various configurations for platforms, cold water pipes and mooring systems. In most cases the cold water pipe (CWP) was permanently attached to the platform and the platform was permanently moored on station. Even though CWP concepts incorporating articulated joints or flexible pipes were used, the CWP stresses induced by platform motion were frequently excessive and beyond the design limits of the CWP. This was especially true in the survival (100-year storm) case. It may be feasible that the concept of a permanently moored CWP attached through a flexible transition CWP to the platform could reduce the degree of technical risk by de-coupling the CWP from the motions of the platform. In addition, if the platform is capable of disconnecting from the CWP during survival conditions, even less technical risk may be inherent in the OTEC system. The MP-Squared Design Study was an engineering evaluation of the concepts described above. The effort has been carried through to the conceptual design level, and culminated in model tests in an experimental wave basin.

  2. Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Jones, Craig

    2014-09-01

    The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

  3. Wave forces on an array of oscillating water column type free standing wave energy caissons

    SciTech Connect (OSTI)

    Neelamani, S.; Thiruvenkatasamy, K.

    1995-12-31

    The wave induced in-line forces on a 1:50 scale model of an array of Multi resonant Oscillating Water Column (MOWC) type free standing wave energy caisson were experimentally investigated. A range of hydrodynamic parameters with different damping of oscillating water column (OWC) chamber and various center to center spacings between the caissons were used. In general, the force on the MOWC caisson array is two times that of a vertical wall, for maximum damping of OWC chamber. Reduction of damping of the OWC air chamber reduces the force on the array of caissons. With reduced damping, forces on OWC array can even be smaller than that the ones on a vertical wall. For smaller center to center (C/C) spacing between the caissons with respect to its harbor width, OWC array acts like a perforated breakwater, attracting smaller wave forces and for higher C/C spacing, it behaves like a vertical wall.

  4. Manta Wings: Wave Energy Testing Floats to Puget Sound

    Broader source: Energy.gov [DOE]

    Columbia Power Technologies plans to test an intermediate-scale version of its wave energy converter device in Puget Sound later this year. The device, which is called Manta because its movements are similar to those of a manta stingray, sits like an iceberg on the water.

  5. Implementing Nonlinear Buoyancy and Excitation Forces in the WEC-Sim Wave Energy Converter Modeling Tool: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementing Nonlinear Buoyancy and Excitation Forces in the WEC-Sim Wave Energy Converter Modeling Tool Preprint M. Lawson and Y-H. Yu National Renewable Energy Laboratory A. Nelessen Georgia Tech K. Ruehl and C. Michelen Sandia National Laboratories To be presented at the 33 rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2014) San Francisco, CA June 8-13, 2014 Conference Paper NREL/CP-5000-61529 May 2014 NOTICE The submitted manuscript has been offered by an

  6. Energy Department Announces $22 Million for Marine Energy Demonstratio...

    Office of Environmental Management (EM)

    electricity from waves, tides, and currents and to improve environmental monitoring ... thus increasing sustainable electricity generation from ocean and river energy resources. ...

  7. An assessment of research and development leadership in ocean energy technologies

    SciTech Connect (OSTI)

    Bruch, V.L.

    1994-04-01

    Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing.

  8. Direct Drive Wave Energy Buoy 33rd scale experiment

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Powers Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

  9. List of Ceiling Fan Incentives | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Electric Ground Source Heat Pumps Municipal Solid Waste CHPCogeneration Hydrogen Small Hydroelectric Tidal Energy Wave Energy Ocean Thermal Renewable Fuels...

  10. Sandia Energy - DOE-Sponsored Reference Model Project Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

  11. Energy Department Announces $8 Million to Develop Advanced Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In the United States, waves, tides, and ocean currents represent a largely untapped renewable energy resource that could provide clean, affordable energy to homes and businesses ...

  12. National Clean Energy Business Plan Competition: OptiBit Wins...

    Office of Environmental Management (EM)

    two times lower latency, and 95% less energy use than the current copper-based technology. ... Technologies presented included a solution to convert ocean wave energy into electricity ...

  13. Annual Report on Federal Government Energy Management and Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Section 203(b) of EPACT 2005 defines the term ''renewable energy'' to mean electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, ...

  14. Sandia Energy - Sandia-NREL Wave Energy Converter (WEC)-Sim Developmen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Sandia-NREL Wave Energy Converter (WEC)-Sim Development Meeting Kelley Ruehl and Sam Kanner (both in Sandia's Water Power Technologies Dept.) hosted a three-day meeting...

  15. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  16. MHK Projects/Grays Harbor Ocean Energy and Coastal Protection...

    Open Energy Info (EERE)

    Energy Company LLC Project Technology *MHK TechnologiesTitan Platform Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  17. Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling - Depth...

    Open Energy Info (EERE)

    Author National Renewable Energy Laboratory Maintainer Nicholas Langle bureaucode 019:20 Catalog DOE harvestobjectid 3ba3acfd-d54a-4a3d-a971-1cf4ac97fcb0 harvestsourceid...

  18. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop October 26-28, 2005 Washington, D.C. Sponsored by: U.S. Department of Energy OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY Wind and Hydropower Technologies Program March 24, 2006 To access this document and presentations made at the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop visit: http://hydropower.inl.gov/hydrokinetic_wave/ The production of

  19. A low-cost float method of harnessing wave energy

    SciTech Connect (OSTI)

    George, M.P.

    1983-12-01

    The author proposes in this paper a low-cost and simple method of harnessing wave energy that should enable coastal regions to be self-sufficient in electric power. The method is eminently applicable to India and such developing countries, being simple and involving a small capital investment. The method was evolved after study of the Indian West Coast fronting the Arabian Sea, and can harness about 50% of the wave energy. A log of wood about 5 metres long and 50 cm. in diameter, having a specific gravity of 0.8 to 0.9, is made to float parallel to the beach and about 50 metres away from it. Its movement is restricted to the vertical plane by means of poles. Two roller chains are attached to the ends of the log which pass over two sprocket free-wheels. When the log is lifted with the crest of the wave, the roller chain moves over the free-wheel. When the trough of the wave reaches the log, its weight is applied to the sprocket wheels through the roller chains. Each sprocket wheel rotates and the rotation is multiplied with a gear wheel. The torque from the high speed spindle of the gear is applied to a small alternating current generator. The AC output from the generator is rectified and used either for charging a battery bank, or connected to the lighting system, or supplied to electrolytic tank for producing hydrogen and other chemicals at the site. A chain of such systems along the coast can supply enough power to light the fishermen's hamlets stretching along the coast.

  20. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect (OSTI)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  1. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    SciTech Connect (OSTI)

    Haas, Kevin

    2013-09-15

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power estimates from the Stommel model and to help determine the size and capacity of arrays necessary to extract the maximum theoretical power, further estimates of the available power based on the distribution of the kinetic power density in the undisturbed flow was completed. This used estimates of the device spacing and scaling to sum up the total power that the devices would produce. The analysis has shown that considering extraction over a region comprised of the Florida Current portion of the Gulf Stream system, the average power dissipated ranges between 4-6 GW with a mean around 5.1 GW. This corresponds to an average of approximately 45 TWh/yr. However, if the extraction area comprises the entire portion of the Gulf Stream within 200 miles of the US coastline from Florida to North Carolina, the average power dissipated becomes 18.6 GW or 163 TWh/yr. A web based GIS interface, http://www.oceancurrentpower.gatech.edu/, was developed for dissemination of the data. The website includes GIS layers of monthly and yearly mean ocean current velocity and power density for ocean currents along the entire coastline of the United States, as well as joint and marginal probability histograms for current velocities at a horizontal resolution of 4-7 km with 10-25 bins over depth. Various tools are provided for viewing, identifying, filtering and downloading the data.

  2. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  3. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Heat Pumps, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small) Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Landfill Gas, Tidal, Wave, Ocean Thermal, Geothermal Direct-Use Local Option- Property Tax Exemption for Renewable Energy Systems Beginning in October 2013, a municipality may...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Tidal, Wave, Ocean Thermal, Other EE, Wind (Small), Anaerobic Digestion Energy Efficiency...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Geothermal Heat Pumps, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small) Alternative Energy Portfolio Standard Eligible...

  8. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    I renewable energy resources include solar, wind, new sustainable biomass, landfill gas, fuel cells (using renewable or non-renewable fuels), ocean thermal power, wave or tidal...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells using Non-Renewable Fuels, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Geothermal Direct-Use, Fuel Cells using Renewable Fuels Renewable Energy...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wave, Ocean Thermal, Wind (Small), Geothermal Direct-Use, Fuel Cells using Renewable Fuels Alternative Energy Portfolio Standard Eligible technologies Eligibility:...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tidal, Wave, Ocean Thermal, CustomOthers pending approval, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Alternative Energy Portfolio Standard Eligible...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Sustainable Energy Trust Fund The SETF is financed...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Gas, Tidal, Wave, Ocean Thermal, Wind (Small) Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and industrial systems (meeting the same...

  15. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All), Biomass, Hydroelectric, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Fuel Cells using Renewable Fuels Rhode Island Renewable Energy Fund (RIREF)...

  17. Energy Department Announces $10.5 Million for Next-Generation...

    Broader source: Energy.gov (indexed) [DOE]

    will address the challenges that the ocean environment poses for MHK energy systems, ... To learn more about how MHK devices capture energy from waves, tides and currents, view ...

  18. Energy Department Awards $10.5 Million for Next-Generation Marine...

    Broader source: Energy.gov (indexed) [DOE]

    untapped renewable energy in waves, tidal, ocean, and river currents that could provide clean, affordable energy to homes and businesses across the country's coastal regions. ...

  19. Energy Department Awards $7.4 Million to Develop Advanced Components...

    Broader source: Energy.gov (indexed) [DOE]

    Waves, tides, and ocean currents represent a largely untapped renewable energy resource that could provide clean, affordable energy to U.S. homes and businesses across the country. ...

  20. DOE to Invest $18 Million in Small Business Clean Energy Innovation...

    Office of Environmental Management (EM)

    ... Projects will focus on advances in hydropower systems or subsystems, as well as new approaches to wave and current energy technologies and ocean thermal energy conversion systems. ...

  1. Ocean thermal energy conversion: environmental effects assessment program plan, 1981-85. [Monograph

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The Ocean Thermal Energy Conversion (OTEC) Act of 1980 calls for a legal regime to encourage commercial OTEC while protecting the oceanic and coastal environments. The Act also requires a generic plan for assessing the environmental effects of OTEC development. The plan outlined in this report establishes a priority list of nine environmental effects and a research strategy for reducing uncertainties, with an emphasis on large-scale and long-term ecosystem implications and on the impacts of multiple facilities. 70 references, 4 figures, 4 tables. (DCK)

  2. Ocean thermal energy conversion report to congress: fiscal year 1981. public law 96-320

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    After a section on the background of Ocean Thermal Energy Conversion, which deals with the national interest and the nature of the industry, this report discusses OTEC technology, the legal regime, environmental considerations and the international impact and future of OTEC. At the current time no amendments to the ACT are recommended. NOAA is analyzing several areas in which technical amendments would clarify the original intent of the Act. The most significant of these relates to the specific requirements for issuance of OTEC licenses for facilities that are located partly on land and partly in ocean waters.

  3. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  4. Property:Wave Period Range(s) | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:Wave Period Range(s) Jump to: navigation, search Property Name Wave Period Range(s) Property Type String Pages using the property "Wave...

  5. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect (OSTI)

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  6. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

  7. L-Shaped Flume Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers...

  8. 3-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 3-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC)...

  9. 5-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC)...

  10. 1.5-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    .5-ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 1.5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers...

  11. DeFrees Small Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Current Velocity Range(ms) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled hydraulic paddle, arbitrary wave shape possible Wave Direction...

  12. Launching the Next Wave of Clean Fossil Energy Innovation | Department of

    Office of Environmental Management (EM)

    Energy the Next Wave of Clean Fossil Energy Innovation Launching the Next Wave of Clean Fossil Energy Innovation December 12, 2013 - 1:15pm Addthis The National Energy Technology Laboratory's <a href="http://energy.gov/articles/potential-path-emissions-free-fossil-energy">chemical looping reactor</a>. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced fossil energy solicitation. |

  13. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai’i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  14. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  15. WET-NZ Multi-Mode Wave Energy Converter Advancement Project

    SciTech Connect (OSTI)

    Klure, Justin

    2011-11-01

    Presentation from the 2011 Water Peer Review in which the principal investigator discussed the next steps to verify a multi-mode functionality of the WET-NZ device. This included overview of the approaches taken to perform wave tank testing, open ocean deployment, synthesis and analysis.

  16. DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from ...

  17. MHK Technologies/The WaveCatcher System | Open Energy Information

    Open Energy Info (EERE)

    Profile Technology Type Click here Attenuator Technology Description System captures a wave stores the energy in a large holder containment device resulting in a large potential...

  18. MHK Projects/Coos County Offshore Wave Energy Power Plant | Open...

    Open Energy Info (EERE)

    Coos County Offshore Wave Energy Power Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"goo...

  19. MHK Projects/US Navy Wave Energy Technology WET Program at Marine...

    Open Energy Info (EERE)

    US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map......

  20. MHK Projects/Portugal Pre Commercial Pilot Project | Open Energy...

    Open Energy Info (EERE)

    AWS Ocean Energy formerly Oceanergia Project Technology *MHK TechnologiesArchimedes Wave Swing Project Licensing Environmental Monitoring and Mitigation Efforts See...

  1. Department of Energy Awards $37 Million for Marine and Hydrokinetic...

    Broader source: Energy.gov (indexed) [DOE]

    The nation's ocean waves, tides, currents, thermal gradients, and free-flowing rivers represent a promising energy source located close to centers of electricity demand. The ...

  2. Annual Report on Federal Government Energy Management and Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal), geothermal, municipal solid waste, or new hydroelectric ...

  3. MHK Technologies/eelGrass | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization AeroVironment Inc Technology Resource Click here Wave Technology Description AV has developed an innovative device for harnessing the ocean s energy...

  4. Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funded to Model Power Pods for Utility-Scale Wave-Energy Converter - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  5. SyncWaveSystems Inc | Open Energy Information

    Open Energy Info (EERE)

    SyncWaveSystems Inc Jump to: navigation, search Name: SyncWaveSystems Inc Region: Canada Sector: Marine and Hydrokinetic Website: www.syncwavesystems.com This company is listed in...

  6. MHK Technologies/Wave Catcher | Open Energy Information

    Open Energy Info (EERE)

    keeps the rotor turning until the next wave lifts up the cylinder and the anchor line once again turns the pulley The cylinder will also be lifted by waves from all directions As...

  7. MHK Technologies/SyncWave Power Resonator | Open Energy Information

    Open Energy Info (EERE)

    power take off which drives a variable speed generator Power outputs conditioned by modern power electronics from several SyncWave Units in a wave farm will be collected and...

  8. MHK Technologies/WavePlane | Open Energy Information

    Open Energy Info (EERE)

    Early Stage Development & Design & Engineering Technology Description The WavePlane is a V-shaped design, which is anchored with the head up against the incoming waves. Below the...

  9. Property:Maximum Wave Length(m) | Open Energy Information

    Open Energy Info (EERE)

    Length(m) Jump to: navigation, search Property Name Maximum Wave Length(m) Property Type String Pages using the property "Maximum Wave Length(m)" Showing 18 pages using this...

  10. Property:Maximum Wave Height(m) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Property Name Maximum Wave Height(m) Property Type String Pages using the property "Maximum Wave Height(m)" Showing 25 pages using this property....

  11. DeFrees Large Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Current Velocity Range(ms) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled 4m hydraulic wave paddle stroke allows a series of solitary waves to be...

  12. Feasibility of Tital and Ocean Current Energy in False Pass, Aleutian Islands, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monty Worthington Director of Project Development - Alaska Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (DE-EE0005624.000) Presented to DOE Tribal Energy Program Review March 25, 2014 Denver, Colorado 2 False Pass is a remote community at the beginning of the Aleutian Chain * Electricity is provided by diesel generators owned and maintained by the community * Cost of Power in the community ranges from $0.36 - $0.42 False Pass Alaska * The City's load

  13. Feasibility of Tital and Ocean Current Energy in False Pass, Aleutian Islands, Alaska

    Office of Environmental Management (EM)

    Monty Worthington Director of Project Development - Alaska Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (DE-EE0005624.000) Presented to DOE Tribal Energy Program Review March 25, 2014 Denver, Colorado 2 False Pass is a remote community at the beginning of the Aleutian Chain * Electricity is provided by diesel generators owned and maintained by the community * Cost of Power in the community ranges from $0.36 - $0.42 False Pass Alaska * The City's load

  14. Ocean Viruses: Tiny entities with Global Impacts ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Sullivan, Matthew B [University of Arizona

    2013-01-15

    Matt Sullivan from the University of Arizona on "Ocean Viruses: Tiny Entities with Global Impacts" at the 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif.

  15. Ocean Viruses: Tiny entities with Global Impacts ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Sullivan, Matthew B [University of Arizona] [University of Arizona

    2012-03-22

    Matt Sullivan from the University of Arizona on "Ocean Viruses: Tiny Entities with Global Impacts" at the 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif.

  16. Ocean Thermal Energy Conversion Project: OTEC support services. Monthly technical status report, October 1-31, 1980

    SciTech Connect (OSTI)

    1980-11-14

    The objective of this project is to provide technical engineering and management support services for the Ocean Thermal Energy Conversion (OTEC) program of the Division of Ocean Energy Systems, DOE. The principal contributions made are outlined for the following tasks: (1) Survey, analysis and recommendation concerning program performance; (2) Program technical monitoring; (3) Technical assessments; (4) OTEC system integration; (5) Environment and siting considerations; and (6) Transmission subsystem considerations.

  17. Status of Wave and Tidal Power Technologies for the United States

    SciTech Connect (OSTI)

    Musial, W.

    2008-08-01

    This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

  18. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry Preprint Nathan Tom, Michael Lawson, Yi-Hsiang Yu, and Alan Wright National Renewable Energy Laboratory To be presented at the European Wave and Tidal Energy Conference Nantes, France September 6-11, 2015 Conference Paper NREL/CP-5000-64545 September 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US

  19. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    SciTech Connect (OSTI)

    Heydt, G.T. . School of Electrical Engineering)

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation. The process is not new--and its history is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory--Hawaii (NELH). The NELH work is summarized in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  20. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Hart, Philip R.

    2011-09-27

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics device design projects to scale up the current Ocean Power Technology PowerBuoy from 150kW to 500kW.

  1. MHK Projects/WavePlane Prototype 1 | Open Energy Information

    Open Energy Info (EERE)

    WavePlane Prototype 1 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADM...

  2. MHK Projects/Cornwall Wave Hub | Open Energy Information

    Open Energy Info (EERE)

    Technology *MHK TechnologiesPowerBuoy Project Timeline and Milestones *7152009 Commitment agreement signed for Wave Hub *7302010 Cable installation commences *7302011...

  3. Category:Long-Wave Infrared | Open Energy Information

    Open Energy Info (EERE)

    Infrared Retrieved from "http:en.openei.orgwindex.php?titleCategory:Long-WaveInfrared&oldid794161" Feedback Contact needs updating Image needs updating Reference...

  4. MHK Technologies/Multi Absorbing Wave Energy Converter MAWEC...

    Open Energy Info (EERE)

    Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description MAWEC...

  5. MHK Technologies/Neptune Triton Wave | Open Energy Information

    Open Energy Info (EERE)

    Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description The...

  6. 10-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe Data Generation Capability Real-Time No Test Services Test Services Yes Past Pertinent...

  7. MHK Technologies/Uppsala Seabased AB Wave Energy Converter |...

    Open Energy Info (EERE)

    Technology Profile Primary Organization Uppsala University Division for Electricity Technology Resource Click here Wave Technology Description The system consists of a...

  8. Advancing Technology Readiness: Wave Energy Testing and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE is leading the effort to prove functionality, evaluate technical and economic viability, and generate cost, performance, and reliability data for a variety of wave, tidal, and ...

  9. MHK Technologies/Wave Dragon | Open Energy Information

    Open Energy Info (EERE)

    Click here Overtopping Device Technology Readiness Level Click here TRL 78: Open Water System Testing & Demonstration & Operation Technology Description The Wave Dragon is a...

  10. MHK Projects/Brough Head Wave Farm | Open Energy Information

    Open Energy Info (EERE)

    homepage Retrieved from "http:en.openei.orgwindex.php?titleMHKProjectsBroughHeadWaveFarm&oldid680140" Feedback Contact needs updating Image needs updating Reference...

  11. Edinburgh University aka Wave Power Group | Open Energy Information

    Open Energy Info (EERE)

    Name: Edinburgh University aka Wave Power Group Address: School of Engineering and Electronics The King s Buildings Mayfield Road Place: Edinburgh Zip: EH9 3JL Region: United...

  12. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect (OSTI)

    Mekhiche, Mike; Downie, Bruce

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy� to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  13. WET-NZ Multi-Mode Wave Energy Converter Advancement Project

    SciTech Connect (OSTI)

    Kopf, Steven

    2013-10-15

    The overall objective of the project was to verify the ocean wavelength functionality of the WET-NZ through targeted hydrodynamic testing at wave tank scale and controlled open sea deployment of a 1/2 scale (1:2) experimental device. This objective was accomplished through a series of tasks designed to achieve four specific goals: Wave Tank Testing to Characterize Hydrodynamic Characteristics;  Open-Sea Testing of a New 1:2 Scale Experimental Model;  Synthesis and Analysis to Demonstrate and Confirm TRL5/6 Status;  Market Impact & Competitor Analysis, Business Plan and Commercialization Strategy.

  14. Definitional mission: Ocean Thermal Energy Conversion, Republic of the Marshall Islands. Export trade information

    SciTech Connect (OSTI)

    Dean, S.R.; Ross, J.M.

    1990-09-01

    The objective of the study was to determine the commercial viability of an Ocean Thermal Energy Conversion (OTEC) electric power plant at the Majuro Atoll in the Marshall Islands. It was concluded that various technology improvements and economic factors have converged to present a feasible opportunity. United States industrial and research organizations are technically capable of developing a commercial OTEC industry for domestic and export markets. It is estimated that 100% of OTEC equipment and services could be supplied by United States firms. However, Japan has aggressively pursued OTEC development with an apparent goal of dominating the export market.

  15. Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PowerBuoy Project | Department of Energy Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project Office presentation icon 04_pb50_ocean_power_technologies_inc_hart.ppt More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power

  16. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT

    SciTech Connect (OSTI)

    Wright, Bruce Albert

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  17. Energy Department Announces $7.25 Million for Projects to Advance...

    Office of Environmental Management (EM)

    Marine and hydrokinetic (MHK) technologies convert the energy of waves, tides, rivers, and ocean currents into electricity that can be used by homes and businesses, especially in ...

  18. Energy propagation by transverse waves in multiple flux tube systems using filling factors

    SciTech Connect (OSTI)

    Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.; Verth, G. E-mail: stief.gijsen@wis.kuleuven.be E-mail: g.verth@sheffield.ac.uk

    2014-11-01

    In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvn waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated by kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvn waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvn waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.

  19. Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012

    SciTech Connect (OSTI)

    Ascari, Matthew B.; Hanson, Howard P.; Rauchenstein, Lynn; Van Zwieten, James; Bharathan, Desikan; Heimiller, Donna; Langle, Nicholas; Scott, George N.; Potemra, James; Nagurny, N. John; Jansen, Eugene

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today's state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources. The OTEEV project leverages existing NREL renewable energy GIS technologies and integrates extractable energy estimated from quality-controlled data and projected optimal achievable energy conversion rates. Input data are synthesized from a broad range of existing in-situ measurements and ground-truthed numerical models with temporal and spatial resolutions sufficient to reflect the local resource. Energy production rates are calculated for regions based on conversion rates estimated for current technology, local energy density of the resource, and sustainable resource extraction. Plant spacing and maximum production rates are then estimated based on a default plant size and transmission mechanisms. The resulting data are organized, displayed, and accessed using a multi-layered GIS mapping tool, http://maps.nrel.gov/mhk_atlas with a user-friendly graphical user interface.

  20. MHK Technologies/IVEC Floating Wave Power Plant | Open Energy...

    Open Energy Info (EERE)

    Resource Click here Wave Technology Description FWP design is based on an array of linked OWC s or chambers Similar to the cylinders of a combustion engine each FWP chamber has...

  1. MHK Technologies/Wave Water Pump WWP | Open Energy Information

    Open Energy Info (EERE)

    adjusts to varyilng sea levels and wave hights It resists storms safe to navigation as red floats are clearly seen during the day and red flashing lights during the night It does...

  2. PerpetuWave Power Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: PerpetuWave Power Pty Ltd Region: Canada Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  3. Characterization of U.S. Wave Energy Converter (WEC) Test Sites...

    Open Energy Info (EERE)

    | Sign Up Search Page Edit History Characterization of U.S. Wave Energy Converter (WEC) Test Sites Jump to: navigation, search This is the second edition of the catalogue of U.S....

  4. Request for Information Regarding a Proposed Funding Opportunity for Administration of the Wave Energy Converter Prize

    Broader source: Energy.gov [DOE]

    This announcement is intended to serve as a Notice of Intent of the upcoming Funding Opportunity Announcement (FOA) regarding Administration of the Wave Energy Converter (WEC) Prize and Request for Information to solicit information regarding pote

  5. Request for Information Regarding a Proposed Funding Opportunity for Administration of the Wave Energy Converter Prize

    Broader source: Energy.gov [DOE]

    This announcement is intended to serve as a Notice of Intent of the upcoming Funding Opportunity Announcement (FOA) regarding Administration of the Wave Energy Converter (WEC) Prize and Request for Information.

  6. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    SciTech Connect (OSTI)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G. E-mail: Charles.Smith@unh.edu E-mail: Bernie.Vasquez@unh.edu E-mail: Neil.Murphy@jpl.nasa.gov

    2014-06-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  7. Potential impact of ocean thermal energy conversion (OTEC) on fisheries. Technical report

    SciTech Connect (OSTI)

    Myers, E.P.; Hoss, D.E.; Matsumoto, W.M.; Peters, D.S.; Seki, M.P.

    1986-06-01

    The commercial development of ocean thermal energy conversion (OTEC) operations will involve some environmental perturbations for which there is no precedent experience. The pumping of very large volumes of warm surface water and cold deep water and its subsequent discharge will result in the impingement, entrainment, and redistribution of biota. Additional stresses to biota will be caused by biocide usage and temperature depressions. However, the artificial upwelling of nutrients associated with the pumping of cold deep water, and the artificial reef created by an OTEC plant may have positive effects on the local environment. Although more detailed information is needed to assess the net effect of an OTEC operation on fisheries, certain assumptions and calculations are made, supporting the conclusion that the potential risk to fisheries is not signnificant enough to deter the early development of OTEC. It will be necessary to monitor a commercial-scale plant in order to remove many of the remaining uncertainties.

  8. MHK Technologies/Wave Energy Seawater Transmission WEST | Open...

    Open Energy Info (EERE)

    to achieve higher reliability at lower cost. When WEST is combined with Bright Energy Storage Technologies seafloor compressed air energy storage (CAES) system, the two enable...

  9. MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy...

    Open Energy Info (EERE)

    that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity Mooring Configuration The most...

  10. Waterborne noise due to ocean thermal energy conversion plants. Technical memo

    SciTech Connect (OSTI)

    Janota, C.P.; Thompson, D.E.

    1982-06-17

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the sea-water pumps is expected to dominate in the frequency range 10 Hz to 1 kHZ. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  11. Partial-wave analysis for elastic p{sup 13}C scattering at astrophysical energies

    SciTech Connect (OSTI)

    Dubovichenko, S. B.

    2012-03-15

    A standard partial-wave analysis was performed on the basis of known measurements of differential cross sections for elastic p{sup 13}C scattering at energies in the range 250-750 keV. This analysis revealed that, in the energy range being considered, it is sufficient to take into account the {sup 3}S{sub 1} wave alone. A potential for the triplet {sup 3}S{sub 1}-wave state of the p{sup 13}C system in the region of the J{sup p}T = 1{sup -1} resonance at 0.55 MeV was constructed on the basis of the phase shifts obtained from the aforementioned partial-wave analysis.

  12. Innovative turbine concepts for open-cycle OTEC (ocean thermal energy conversion)

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This report summarizes the results of preliminary studies conducted to identify and evaluate three innovative concepts for an open-cycle ocean thermal energy conversion (OTEC) steam turbine that could significantly reduce the cost of OTEC electrical power plants. The three concepts are (1) a crossflow turbine, (2) a vertical-axis, axial-flow turbine, and (3) a double-flow, radial-inflow turbine with mixed-flow blading. In all cases, the innovation involves the use of lightweight, composite plastic blading and a physical geometry that facilitates efficient fluid flow to and from the other major system components and reduces the structural requirements for both the turbine or the system vacuum enclosure, or both. The performance, mechanical design, and cost of each of the concepts are developed to varying degrees but in sufficient detail to show that the potential exists for cost reductions to the goals established in the US Department of Energy's planning documents. Specifically, results showed that an axial turbine operating with 33% higher steam throughput and 7% lower efficiency than the most efficient configuration provides the most cost-effective open-cycle OTEC system. The vacuum enclosure can be significantly modified to reduce costs by establishing better interfaces with the system. 33 refs., 26 figs., 11 tabs.

  13. Renewables in Alaska Native Villages: Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding: Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, AK Bruce Wright, APIA Monty Worthington, ORPC Wright, B. A., J. W. Short, T. J. Weingartner and P. J. Anderson. 2000. The Gulf of Alaska.. Pp 373-384 in Sheppard, C. R. C., ed., Seas at the Millennium: An Environmental, Evaluation Volume I Regional Chapters: Europe, The Americas and Wes Africa. Pergammon Press, Elsevier, Amsterdam. Aleutian Pribilof Islands Regional Energy Summit April 24-25, 2010 Anchorage,

  14. MHK Projects/Ocean Navitas NaREC | Open Energy Information

    Open Energy Info (EERE)

    Number of Devices Deployed 1 Main Overseeing Organization Ocean Navitas Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  15. MHK Projects/Gulf of Mexico Ocean test | Open Energy Information

    Open Energy Info (EERE)

    Gulf of Mexico Ocean test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  16. MHK ISDB/Instruments/TRDI Ocean Observer ADCP | Open Energy Informatio...

    Open Energy Info (EERE)

    TRDI Ocean Observer ADCP < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help...

  17. A review and critique of the socioeconomic impact assessment for the Kahe Point Ocean Thermal Energy Conversion (OTEC) facility

    SciTech Connect (OSTI)

    Bowen, R; Gopalakrishnan, C; Samples, K

    1988-01-01

    This report addresses the adequacy of Ocean Thermal Corporation's socioeconomic impact assessment of its 40-MWe closed-cycle ocean thermal energy conversion (OTEC) pilot plant proposed for Kahe Point, Oahu, Hawaii. The socioeconomic impacts identified as relevant to the plant were assessed in detail, including potential economic-demographic, public-service and fiscal, ocean-use, aesthetic, cultural, and energy impacts. The economic-demographic impact assessment does not estimate the full extent of population and income changes or second-order effects associated with the plant. There is no subjective assessment of perceptions on the part of local communities concerning probable changes in land values, housing, and population. Anticipated public-service and fiscal impacts are found to be relatively unimportant; however, the measurement of the impact of the plant on tax revenues needs improvement. The assessment does not sufficiently consider the objective and subjective assessment of ocean-use, aesthetic, and cultural impacts, which are of major significance to the local communities. The quantification of physical impacts, perceptions of impacts, and potential mitigation measures is inadequate. The energy impacts need to be updated to reflect the recent declines in oil prices and price projections. An assessment of low-probability, high-risk occurrences may be necessary. 12 refs., 3 tabs.

  18. Energy 101: Marine and Hydrokinetic Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Description See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Topic Water Text Version Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy

  19. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Funding for this work was provided by the DOE Office of Energy Efficiency and Renewable ... 4 Figure 6. 100-year contour for NDBC buoy 46212 ...

  20. MHK Technologies/bioWave | Open Energy Information

    Open Energy Info (EERE)

    of the buoyant blades with the oscillating flow field is designed for maximum energy absorption. Mooring Configuration Gravity base Optimum MarineRiverline Conditions 30 to 50M...

  1. MHK Technologies/WEGA wave energy gravitational absorber | Open...

    Open Energy Info (EERE)

    cylinder which pushes high pressure fluid through an accumulator and an hydraulic motor driving the generator that produces energy The articulated body attaches to the mount...

  2. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    SciTech Connect (OSTI)

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan

    2015-09-09

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.

  3. High-Frequency Matrix Converter with Square Wave Input - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Solar Photovoltaic Solar Photovoltaic Geothermal Geothermal Energy Storage Energy Storage Electricity Transmission Electricity Transmission Find More Like This Return to Search High-Frequency Matrix Converter with Square Wave Input DOE Grant Recipients Contact GRANT About This Technology Publications: PDF Document Publication 8995159.pdf (1,648 KB) Technology Marketing Summary As the use of renewable energy sources increase, there is an increasing need for power converters capable of

  4. Seawater test results of open-cycle ocean thermal energy conversion (OC-OTEC) components

    SciTech Connect (OSTI)

    Zangrando, F.; Bharathan, D.; Link, H. ); Panchal, C.B. )

    1994-01-01

    Key components of open-cycle ocean thermal energy conversion systems--the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages--have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 m[sup 3]/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  5. Open-cycle ocean thermal energy conversion surface-condenser design analysis and computer program

    SciTech Connect (OSTI)

    Panchal, C.B.; Rabas, T.J.

    1991-05-01

    This report documents a computer program for designing a surface condenser that condenses low-pressure steam in an ocean thermal energy conversion (OTEC) power plant. The primary emphasis is on the open-cycle (OC) OTEC power system, although the same condenser design can be used for conventional and hybrid cycles because of their highly similar operating conditions. In an OC-OTEC system, the pressure level is very low (deep vacuums), temperature differences are small, and the inlet noncondensable gas concentrations are high. Because current condenser designs, such as the shell-and-tube, are not adequate for such conditions, a plate-fin configuration is selected. This design can be implemented in aluminum, which makes it very cost-effective when compared with other state-of-the-art vacuum steam condenser designs. Support for selecting a plate-fin heat exchanger for OC-OTEC steam condensation can be found in the sizing (geometric details) and rating (heat transfer and pressure drop) calculations presented. These calculations are then used in a computer program to obtain all the necessary thermal performance details for developing design specifications for a plate-fin steam condenser. 20 refs., 5 figs., 5 tabs.

  6. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion

    SciTech Connect (OSTI)

    Pesaran, A.A. )

    1992-11-01

    This paper presents the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions. Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving the predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7 percent to 60 percent of the dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 35 to 9 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20 percent to 60 percent. The data also indicated that at typical OC-OTEC evaporator pressures, when flash evaporation in the evaporator occurred, 75 percent to 95 percent of the dissolved oxygen was desorbed overall from the warm seawater. The results were used to find the impact of a single-stage predeaeration scheme on the power to remove noncondensable gases in an OC-OTEC plant.

  7. The detection of upwardly propagating waves channeling energy from the chromosphere to the low corona

    SciTech Connect (OSTI)

    Freij, N.; Nelson, C. J.; Mumford, S.; Erdlyi, R.; Scullion, E. M.; Wedemeyer, S.

    2014-08-10

    There have been ubiquitous observations of wave-like motions in the solar atmosphere for decades. Recent improvements to space- and ground-based observatories have allowed the focus to shift to smaller magnetic structures on the solar surface. In this paper, high-resolution ground-based data taken using the Swedish 1 m Solar Telescope is combined with co-spatial and co-temporal data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) satellite to analyze running penumbral waves (RPWs). RPWs have always been thought to be radial wave propagation that occurs within sunspots. Recent research has suggested that they are in fact upwardly propagating field-aligned waves (UPWs). Here, RPWs within a solar pore are observed for the first time and are interpreted as UPWs due to the lack of a penumbra that is required to support RPWs. These UPWs are also observed co-spatially and co-temporally within several SDO/AIA elemental lines that sample the transition region and low corona. The observed UPWs are traveling at a horizontal velocity of around 17 0.5 km s{sup 1} and a minimum vertical velocity of 42 21 km s{sup 1}. The estimated energy of the waves is around 150 W m{sup 2}, which is on the lower bound required to heat the quiet-Sun corona. This is a new, yet unconsidered source of wave energy within the solar chromosphere and low corona.

  8. EERE Success Story-Advancing Technology Readiness: Wave Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 6, 2014 - 1:23pm Addthis Northwest Energy Innovations, in partnership with the ... testing and controlled open-sea deployment of a 1:2 scale device off the coast of Oregon. ...

  9. Environmental Risk Evaluation System An Approach to Ranking Risk of Ocean Energy Development on Coastal and Estuarine Environments

    SciTech Connect (OSTI)

    Copping, Andrea E.; Hanna, Luke A.; Van Cleve, Frances B.; Blake, Kara M.; Anderson, Richard M.

    2015-01-01

    Deployment and operation of ocean energy devices does not represent the first foray into industrialization of the oceans; shipping, nearshore development, waste disposal, subsea mining, oil and gas extraction, and large-scale commercial fishing all coexist in various states of equilibrium with the marine environment. In most cases these industries were developed without a clear understanding of the likely outcomes of large-scale development. In virtually every country where the harvest of ocean energy is emerging, regulators and stakeholders require that the industry examine potential effects of devices, minimize the footprint of effects, and provide management measures that either avoid the impacts or mitigate to further reduce the residual impacts. The ERES analysis is based on scenarios that are consistent with sequences of events that lead to adverse impacts, distinguishing between episodic, intermittent, and chronic risks. In the context of ocean energy development, an episodic scenario might involve the exceedingly rare but potentially devastating event of an oil spill from vessels caused by the presence of the device, while vulnerable receptors are present; understanding the risk of such a scenario involves determining the probability of the occurrence by examining factors such as the petroleum content of ocean energy devices, the vessel traffic volume and the proximity of shipping lanes to the ocean energy devices, the reliability of the control measures to avoid an episodic event, and the likely presence of seabirds, marine mammals, or fish that may be affected by oil. In contrast, chronic risk scenarios involve events or circumstances that are continuous, so that risk characterization involves assessing only the severity of the consequences. An example of a chronic risk scenario might be the toxicity to marine organisms due to low-level chemical releases from anti-biofouling paints and coatings that may be used on devices, and the effect that the level of toxicity may have on marine flora and fauna. Between these two extremes are intermittent events, such as encounters between fish and rotating tidal turbine blades that will occur only when fish are present and the tidal device is turning. A key feature of understanding risk is describing the uncertainty associated with the occurrence of an episodic, intermittent, or chronic event, as well as the uncertainty of the resulting consequences.

  10. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    SciTech Connect (OSTI)

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  11. Identification of types of businesses with potential interest in operating and/or exporting ocean thermal energy conversion (OTEC) plants

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    This study describes the characteristics of three selected Ocean Thermal Energy Conversion (OTEC)-based lines of business, examines other lines of business and identifies those with similar characteristics, and indicates the types of businesses/corporations that could be expected to have potential interest in operating and/or exporting OTEC plants. An OTEC line of business model is developed to assist companies in making an internal corporate assessment as to whether OTEC should be in their business plan.

  12. On a flap-type wave energy converter at the coastline

    SciTech Connect (OSTI)

    Kuroi, M.

    1984-01-01

    Both pneumatic and floating type converters have been proposed for extracting wave energy, but the flap type has the following advantages: (1) It is simple in principle, (2) compact, and (3) the construction cost is low compared with other methods, if the device is installed in the existing breakwater.

  13. Energy from garbage loses promise as wave of future

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    A front-page article in The Wall Street Journal (June 16, 1988) reports on the rising troubles of waste-to-energy projects. The garbage crisis has promoted the construction of 73 waste-to-energy plants around the country, with hundreds more planned at a combined cost of more than $18 billion, writes Bill Richards. Critics profess to feel an eerie sense of deja vu in the trend toward burning. In the 1990s, they say, this could become for municipalities what the nuclear plant building binge was to electric utilities in the 1970s. It plunged many into an economic and environmental swamp in which a few are still mired, their huge cost over-runs unrecoverable from customers, their shareholder dividends shrunken or ended.

  14. Investigation of Wave Energy Converter Effects on the Nearshore Environment: A Month-Long Study in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool, SNL - SWAN, was used to perform model simulations for hourly initial wave conditio ns measured during the month of October 2009. The model was run with an array of 50 wave energy converters (WECs) and compared with model runs without WECs. Maximum changes in H s were found in the lee of the WEC array along the angles of incident wave dire ction and minimal changes were found along the western side of the model domain due to wave shadowing by land. The largest wave height reductions occurred during observed typhoon conditions and resulted in 14% decreases in H s along the Santa Cruz shoreline . Shoreline reductions in H s were 5% during s outh swell wave conditions and negligible during average monthly wave conditions.

  15. Collisionless inter-species energy transfer and turbulent heating in drift wave turbulence

    SciTech Connect (OSTI)

    Zhao, L.; Diamond, P. H.

    2012-08-15

    We reconsider the classic problems of calculating 'turbulent heating' and collisionless inter-species transfer of energy in drift wave turbulence. These issues are of interest for low collisionality, electron heated plasmas, such as ITER, where collisionless energy transfer from electrons to ions is likely to be significant. From the wave Poynting theorem at steady state, a volume integral over an annulus r{sub 1}=-S{sub r}|{sub r{sub 1}{sup r{sub 2}}}{ne}0. Here S{sub r} is the wave energy density flux in the radial direction. Thus, a wave energy flux differential across an annular region indeed gives rise to a net heating, in contrast to previous predictions. This heating is related to the Reynolds work by the zonal flow, since S{sub r} is directly linked to the zonal flow drive. In addition to net heating, there is inter-species heat transfer. For collisionless electron drift waves, the total turbulent energy source for collisionless heat transfer is due to quasilinear electron cooling. Subsequent quasilinear ion heating occurs through linear ion Landau damping. In addition, perpendicular heating via ion polarization currents contributes to ion heating. Since at steady state, Reynolds work of the turbulence on the zonal flow must balance zonal flow frictional damping ({approx}{nu}{sub ii}{sup 2}{approx}|(e{phi}(tilde sign)/T)|{sup 4}), it is no surprise that zonal flow friction appears as an important channel for ion heating. This process of energy transfer via zonal flow has not previously been accounted for in analyses of energy transfer. As an application, we compare the rate of turbulent energy transfer in a low collisionality plasma with the rate of the energy transfer by collisions. The result shows that the collisionless turbulent energy transfer is a significant energy coupling process for ITER plasma.

  16. Amber Waves of...Switchgrass? How about Sorghum? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amber Waves of...Switchgrass? How about Sorghum? Amber Waves of...Switchgrass? How about Sorghum? October 28, 2011 - 5:09pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this mean for me? For many counties, the expanding market for energy products made from biomass is a potential source of economic growth. Is your county one of them? As the fall harvest comes to an end in Marshall County, Kansas, farmers are already planning what crops

  17. The wave energy flux of high frequency diffracting beams in complex geometrical optics

    SciTech Connect (OSTI)

    Maj, Omar; Poli, Emanuele; Mariani, Alberto; Farina, Daniela

    2013-04-15

    We consider the construction of asymptotic solutions of Maxwell's equations for a diffracting wave beam in the high frequency limit and address the description of the wave energy flux transported by the beam. With this aim, the complex eikonal method is applied. That is a generalization of the standard geometrical optics method in which the phase function is assumed to be complex valued, with the non-negative imaginary part accounting for the finite width of the beam cross section. In this framework, we propose an argument which simplifies significantly the analysis of the transport equation for the wave field amplitude and allows us to derive the wave energy flux. The theoretical analysis is illustrated numerically for the case of electron cyclotron beams in tokamak plasmas by using the GRAY code [D. Farina, Fusion Sci. Technol. 52, 154 (2007)], which is based upon the complex eikonal theory. The results are compared to those of the paraxial beam tracing code TORBEAM [E. Poli et al., Comput. Phys. Commun. 136, 90 (2001)], which provides an independent calculation of the energy flow.

  18. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

    2014-06-30

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  19. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    SciTech Connect (OSTI)

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  20. Assessment of U.S. Energy Wave Resources: Cooperative Research and Development Final Report, CRADA Number CRD-09-328

    SciTech Connect (OSTI)

    Scott, G.

    2012-06-01

    In terms of extractable wave energy resource for our preliminary assessment, the EPRI/National Renewable Energy Laboratory (NREL) assumed that 15% of the available resource could be extracted based on societal constraints of a 30% coverage of the coastline with a 50% efficient wave energy absorbing device. EPRI recognizes that much work needs to be done to better define the extractable resource and we have outlined a comprehensive approach to doing this in our proposed scope of work, along with specific steps for refining our estimate of the available wave energy resources.

  1. Optical models from low-energy s-, p- and d-wave cross sections

    SciTech Connect (OSTI)

    Johnson, C.H.

    1984-01-01

    From transmission measurements with good resolution at low energies one can obtain data on the optical model potential (OMP) for individual partical waves by first making a multilevel analysis to isolate the partial waves and then averaging for comparison to the OMP. For each J..pi.. the averaging yields two quantities which are related to the amplitude and phase of the OMP scattering function or, alternatively, to the volume integrals of the real and imaginary potentials. Historically, the experimental average have been represented by the s- and p-wave strength functions, S/sub 0/ and S/sub 1/, and the s-wave scattering radius R'. To make full use of data from modern time-of-flight facilities such as ORELA it is necessary to re-examine the averaging procedure in order to extend it upward both in energy and neutron l-value. This averaging is discussed and applied to data on /sup 30/Si, /sup 32/S, /sup 34/S, /sup 40/Ca, /sup 60/Ni, /sup 86/Kr and /sup 208/Pb. The resulting OMP shows a systematic real potential with some indication of a parity dependence. The imaginary potential shows considerable fluctuations indicating the importance of nuclear structure at neutron eneries below 1 MeV. A coupled channel OMP is also discussed for some of the nulei. 19 references.

  2. Far-field model of the regional influence of effluent plumes from ocean thermal energy conversion (OTEC) plants

    SciTech Connect (OSTI)

    Wang, D.P.

    1985-07-01

    Ocean thermal energy conversion (OTEC) plants discharge large volumes of cold water into the upper ocean. A three-dimensional, limited-area model was developed to investigate the regional influence of the far-field effluent plume created by the negatively buoyant discharge. The model was applied to discharges from a 40-MW/sub e/ OTEC plant into coastal waters characterized by various ambient ocean conditions. A typical ambient temperature structure and nutrient distribution, as well as the behavior of the effluent plume itself, were strongly modified by the discharge-induced circulation. Although temperature perturbations in the plume were small, upward entrainment of nutrients from below the thermocline was significant. The regional influence of discharges from an 80-MW/sub e/ OTEC plant, the interactions between the discharges from two adjacent 40-MW/sub e/ OTEC plants, and the effects of coastal boundary and bottom discharge were examined with respect to the regional influence of a 40-MW/sub e/ OTEC plant located in deep water off a coast (base case).

  3. EERE Success Story—Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest

    Broader source: Energy.gov [DOE]

    The University of Washington is researching tidal energy to maximize the energy extracted and understand potential marine ecosystem impacts.

  4. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  5. MHK Projects/Perth Wave Energy Project PWEP | Open Energy Information

    Open Energy Info (EERE)

    through the Australia Centre for Renewable Energy's (ACRE) Emerging Renewables Program (ERP), and the Western Australian State Government through the Low Emissions Energy...

  6. Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

  7. Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect (OSTI)

    Ruehl, K.; Michelen, C.; Kanner, S.; Lawson, M.; Yu, Y. H.

    2014-03-01

    To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests.

  8. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and...

  9. Mobile Ocean Test Berth Support: Cooperative Research and Development Final Report, CRADA Number CRD-10-413

    SciTech Connect (OSTI)

    LiVecchi, Albert

    2015-12-01

    The Northwest National Marine Renewable Energy Center (NNMREC), headquartered at the Oregon State University, is establishing the capabilities to test prototype wave energy conversion devices in the ocean. This CRADA will leverage the technical expertise and resources at NREL in the wind industry and in ocean engineering to support and enhance the development of the NNMREC Mobile Ocean Test Berth (MOTB). This CRADA will provide direct support to NNMREC by providing design evaluation and review of the MOTB, developing effective protocols for testing of the MOTB and wave energy conversion devices in the ocean, assisting in the specification of appropriate instrumentation and data acquisition packages, and providing guidance on obtaining and maintaining A2LA (American Association for Laboratory Accreditation) accreditation.

  10. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  11. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    2012-11-01

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  12. Development of a demonstration power plant by ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Ito, F.; Takazawa, K.; Terayama, T.

    1984-01-01

    At the opening ceremony, the system was praised by leading figures invited from the Oceanic non-oil-producing countries. The power generation test of the OTEC demonstration plant was completed with many new records attained. As engineers who have participated in this project, the authors believe that they have gained confidence in their ability to construct a first-stage commercial OTEC plant of the built-on-land type, though admitting that there still remain some points to be improved. Subjects requiring further study are improvements of material and installation methods enabling the use of water intake piping with larger diameters, further improvement of heat transfer performance at the seawater side (tube inside) of the heat transfer tubes, etc. Since the commercialization of an OTEC system depends mainly on the economical level of the system, cost reduction in the manufacture of equipment and construction is also required.

  13. Memorandum of Understanding On Weather-Dependent and Oceanic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources...

  14. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  15. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect (OSTI)

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-04-20

    WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.

  16. MHK Projects/Wave Star Energy 1 10 Scale Model Test | Open Energy...

    Open Energy Info (EERE)

    Star Energy 1 10 Scale Model Test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  17. ARM - Oceans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListOceans Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oceans Water vapor in the air eventually condenses and falls as rain, snow, sleet, or hail. Water that falls on land collects in rivers which carry it back to the ocean. The return of water to the ocean may be slowed when water

  18. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

    2013-09-30

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  19. Coupling Ocean Thermal Energy Conversion technology (OTEC) with nuclear power plants

    SciTech Connect (OSTI)

    Goldstein, M.K.; Rezachek, D.; Chen, C.S.

    1981-01-01

    The prospects of utilizing an OTEC Related Bottoming Cycle to recover waste heat generated by a large nuclear (or fossil) power plant are examined. With such improvements, OTEC can become a major energy contributor. 12 refs.

  20. Marine & Hydrokinetic Technologies | Department of Energy

    Office of Environmental Management (EM)

    & Hydrokinetic Technologies Marine & Hydrokinetic Technologies This fact sheet describes the U.S. Department of Energy's Wind and Water Power Program efforts to develop advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. PDF icon mhk_factsheet.pdf More Documents & Publications Marine and Hydrokinetic Technologies Fact Sheet Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program

  1. Partial-wave analysis of elastic {sup 4}He{sup 4}He scattering in the energy range 40-50 MeV

    SciTech Connect (OSTI)

    Dubovichenko, S. B.

    2008-01-15

    A partial-wave analysis of elastic {sup 4}He{sup 4}He scattering is performed in the energy range 40-50 MeV.

  2. Heat transfer in ocean thermal energy conversion (OTEC) systems. Proceedings of the wanter mnnual Meeting, Chicago, IL, November 16-21, 1980

    SciTech Connect (OSTI)

    Owens, W.L.

    1980-01-01

    Among the topics discussed are: condensation heat transfer on long vertical, axially ridged tubes tests of the Applied Physics Laboratory of Johns Hopkins University (APL/JHU) folded-tube, Ocean Thermal Energy Conversion (OTEC) heat exchanger the design of a 1.0-MW OTEC heat exchanger for ocean testing and convective vaporization and condensation in serrated-fin channels. Also considered are: heat tranfer studies of an improved heat transfer monitor for OTEC an analysis of the mist lift process for mist flow, open-cycle OTEC the heat transfer characteristics of working fluids for OTEC and a comparison of major OTEC power system characteristics.

  3. Sandia Energy Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication in Ocean Engineering http:energy.sandia.govpublication-in-ocean-engineering http:energy.sandia.govpublication-in-ocean-engineeringcomments Tue, 22 Dec 2015...

  4. Microsoft Word - NNMREC-OSU-WaveTechEA_06252012_CLEAN.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Scoping Letter Public Notices NOTICE OF SCOPING The U.S. Department of Energy (DOE) is requesting public input on the scope of environmental issues and alternatives to be addressed in the: Environmental Assessment Mobile Ocean Energy Test Berth Project Northwest National Marine Renewable Energy Center/OSU Newport, Oregon Northwest National Marine Renewable Energy Center at Oregon State University is pro- posing to use funding from DOE to construct and operate a wave energy test

  5. Preface to Special Topic: Marine Renewable Energy

    SciTech Connect (OSTI)

    Pinto, F. T.; Iglesias, G.; Santos, P. R.; Deng, Zhiqun

    2015-12-30

    Marine renewable energy (MRE) is generates from waves, currents, tides, and thermal resources in the ocean. MRE has been identified as a potential commercial-scale source of renewable energy. This special topic presents a compilation of works selected from the 3rd IAHR Europe Congress, held in Porto, Portugal, in 2014. It covers different subjects relevant to MRE, including resource assessment, marine energy sector policies, energy source comparisons based on levelized cost, proof-of-concept and new-technology development for wave and tidal energy exploitation, and assessment of possible inference between wave energy converters (WEC).

  6. Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail electron distribution

    SciTech Connect (OSTI)

    Younsi, Smain; Tribeche, Mouloud

    2008-07-15

    Large amplitude as well as weakly nonlinear dust acoustic waves in a mixed nonthermal high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from Boltzmann distribution on the large amplitude dust acoustic soliton are then considered. The dust charge variation leads to an additional enlargement of the dust acoustic soliton, which is more pronounced as the electrons evolve far away from Maxwell-Boltzmann distribution. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. The results complement and provide new insights into our previously published results on this problem [K. Aoutou, M. Tribeche, and T. H. Zerguini, Phys. Plasmas 15, 013702 (2008)].

  7. First production of potable water by OTEC (ocean thermal energy conversion) and its potential applications

    SciTech Connect (OSTI)

    Thomas, A.; Hillis, D.L.

    1988-01-01

    An experiment--the Heat and Mass Transfer Scoping Test Apparatus--was built to obtain design data for a larger test that will assess the technical feasibility of the open-cycle OTEC process. (The closed-cycle concept was successfully demonstrated in 1979.) The DOE-funded project is a joint effort between Argonne National Laboratory (ANL) and the Solar Energy Research Institute (SERI). The apparatus was erected at the Natural Energy Laboratory of Hawaii and became operational in the summer of 1987. It is used by both ANL and SERI to conduct open-cycle OTEC experiments. After initial debugging, it produced 350 gallons per hour of potable water having a salinity of 86 ppM, one-fifth that of local tap water available at the test site. 6 refs., 6 figs.

  8. Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion

    SciTech Connect (OSTI)

    Schmidt, Michael W; Ivanic, Joseph; Ruedenberg, Klaus

    2014-05-28

    An analysis based on the variation principle shows that in the molecules H2 +, H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.

  9. Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions

    SciTech Connect (OSTI)

    Deta, U. A.; Suparmi,; Cari,; Husein, A. S.; Yuliani, H.; Khaled, I. K. A.; Luqman, H.; Supriyanto

    2014-09-30

    The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ? 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectra of system.

  10. Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles

    SciTech Connect (OSTI)

    1981-12-22

    Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

  11. Technology Development Plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes: Final subcontract report

    SciTech Connect (OSTI)

    Valent, P.J.; Riggins, M.

    1989-04-01

    This report provides an overview of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high-quality sediment samples for laboratory dynamic testing, and to perform deep-penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor-resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35/degree/ and in water depths to 1300 m. 74 refs., 19 figs., 6 tabs.

  12. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    SciTech Connect (OSTI)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A; Panchal, C B

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  13. Study to develop an inspection, maintenance, and repair plan for OTEC (Ocean Thermal Energy Conversion) modular experiment plants. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    The inspection, maintenance and repair (IM and R) of the Ocean Thermal Energy Conversion (OTEC) Modular Experiment Plant (Pilot Plant) have been studied in two phases: Task I and Task II. Task I phase developed IM and R identification forms, identified requirements for routine and post casualty IM and R, and categorized and outlined potential procedures to perform IM and R activities. The efforts of the Task II phase have been directed to meet the following objectives: to provide feedback to the OTEC marine systems designs to assure that such designs reflect appropriate consideration of IM and R methods and unit costs, resulting in designs with reduced life cycle costs; to include technical information concerning OTEC IM and R possibilities to NOAA/DOE; to outline a basis in which the anticipated IM and R contributions to life cycle costs can be developed for any specific OTEC plant design; to identify IM and R methods within the state-of-the-art in the offshore industry; to determine the application of potential IM and R procedures for the commercial operation of OTEC 10/40 Pilot Plant(s); and input into the US government formulation of statutory and regulatory IM and R requirements for OTEC plants.

  14. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions

    SciTech Connect (OSTI)

    Pesaran, A.A.

    1989-12-01

    This paper reports the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC). Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving a predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7% to 60% of dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 9 to 35 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20% to 60%. The dependence of oxygen desorption with flow rate could not be determined. The data also indicated that at typical OC-OTEC evaporator pressures when flashing occurred, 75% to 95% of dissolved oxygen was desorbed overall from the warm seawater. The uncertainty in results is larger than one would desire. These uncertainties are attributed to the uncertainties and difficulties in the dissolved oxygen measurements. Methods to improve the measurements for future gas desorption studies for warm surface and cold deep seawater under OC-OTEC conditions are recommended. 14 refs., 5 figs., 2 tabs.

  15. Ocean thermal energy conversion gas desorption studies. Volume 1. Design of experiments. [Open-cycle power systems

    SciTech Connect (OSTI)

    Golshani, A.; Chen, F.C.

    1980-10-01

    Seawater deaeration is a process affecting almost all proposed Ocean Thermal Energy Conversion (OTEC) open-cycle power systems. If the noncondensable dissolved air is not removed from a power system, it will accumulate in thecondenser, reduce the effectiveness of condensation, and result in deterioration of system performance. A gas desorption study is being conducted at Oak Ridge National Laboratory (ORNL) with the goal of mitigating these effects; this study is designed to investigate the vacuum deaeration process for low-temperature OTEC conditions where conventional steam stripping deaeration may not be applicable. The first in a series describing the ORNL studies, this report (1) considers the design of experiments and discusses theories of gas desorption, (2) reviews previous relevant studies, (3) describes the design of a gas desorption test loop, and (4) presents the test plan for achieving program objectives. Results of the first series of verification tests and the uncertainties encountered are also discussed. A packed column was employed in these verification tests and test data generally behaved as in previous similar studies. Results expressed as the height of transfer unit (HTU) can be correlated with the liquid flow rate by HTU = 4.93L/sup 0/ /sup 25/. End effects were appreciable for the vacuum deaeration system, and a correlation of them to applied vacuum pressure was derived.

  16. Memorandum of Understanding On Weather-Dependent and Oceanic Renewable

    Office of Environmental Management (EM)

    Energy Resources | Department of Energy On Weather-Dependent and Oceanic Renewable Energy Resources Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources between the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy and the U.S. Department of Commerce, National Oceanic and Atmospheric Administration. PDF icon MOU_DOE_Commerce.pdf More Documents

  17. Ocean Power (4 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Areas of the country that have an available coastline but are limited in other renewable resources can use the oceans to produce energy. We are familiar with the large hydroelectric dams that dot our nation, creating large reservoirs and flooding millions of acres of land. By turning to the restless seas we can find a source of energy that is not affected by clouds and the scarcity of wind. By using ocean power we can increase our need for power without having to deplete our existing non-renewable resources.

  18. A method for EIA scoping of wave energy converters-based on classification of the used technology

    SciTech Connect (OSTI)

    Margheritini, Lucia; Hansen, Anne Merrild; Frigaard, Peter

    2012-01-15

    During the first decade of the 21st Century the World faces spread concern for global warming caused by rise of green house gasses produced mainly by combustion of fossil fuels. Under this latest spin all renewable energies run parallel in order to achieve sustainable development. Among them wave energy has an unequivocal potential and technology is ready to enter the market and contribute to the renewable energy sector. Yet, frameworks and regulations for wave energy development are not fully ready, experiencing a setback caused by lack of understanding of the interaction of the technologies and marine environment, lack of coordination from the competent Authorities regulating device deployment and conflicts of maritime areas utilization. The EIA within the consent process is central in the realization of full scale devices and often is the meeting point for technology, politics and public. This paper presents the development of a classification of wave energy converters that is based on the different impact the technologies are expected to have on the environment. This innovative classification can be used in order to simplify the scoping process for developers and authorities.

  19. MHK ISDB/Sensors/Wave and Tide Sensor 5218 | Open Energy Information

    Open Energy Info (EERE)

    MHK ISDBSensorsWave and Tide Sensor 5218 < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company...

  20. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool Preprint N. Tom, M. Lawson, and Y.-H. Yu National Renewable Energy Laboratory To be presented at the International Offshore and Polar Engineering Conference (ISOPE 2015) Kona, Hawaii June 21-26, 2015 Conference Paper NREL/CP-5000-63905 April 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government

  1. Flexible ocean upwelling pipe

    DOE Patents [OSTI]

    Person, Abraham (Los Alamitos, CA)

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  2. Ocean | Open Energy Information

    Open Energy Info (EERE)

    needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Categories: Articles with outstanding TODO tasks Sectors...

  3. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    DOE Patents [OSTI]

    Sher, Mark H. (Los Altos, CA); Macklin, John J. (Stanford, CA); Harris, Stephen E. (Palo Alto, CA)

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  4. Live Webinar on the Funding Opportunity for Administration of the Wave Energy Converter Prize

    Broader source: Energy.gov [DOE]

    The Water Power Program is seeking a Prize Administrator with expertise in prize competitions to collaborate with DOE, technical experts, and a wave tank testing facility in developing and...

  5. Measurements of gas sorption from seawater and the influence of gas release on open-cycle ocean thermal energy conversion (OC-OTEC) system performance

    SciTech Connect (OSTI)

    Penney, T.R.; Althof, J.A.

    1985-06-01

    The technical community has questioned the validity and cost-effectiveness of open-cycle ocean thermal energy conversion (OC-OTEC) systems because of the unknown effect of noncondensable gas on heat exchanger performance and the power needed to run vacuum equipment to remove this gas. To date, studies of seawater gas desorption have not been prototypical for system level analysis. This study gives preliminary gas desorption data on a vertical spout, direct contact evaporator and multiple condenser geometries. Results indicate that dissolved gas can be substantially removed before the seawater enters the heat exchange process, reducing the uncertainty and effect of inert gas on heat exchanger performance.

  6. Theoretical and experimental study of the intermediate field dynamics of ocean thermal energy conversion plants. Progress report 1978-1979

    SciTech Connect (OSTI)

    Jirka, G.H.; Jones, J.M.; Sargent, F.E.

    1980-03-01

    Results are described of a two-year research effort which has been conducted with the following objectives: (1) investigate analytically and experimentally the intermediate field spreading in a steady ocean current; (2) investigate analytically and experimentally the transient intermediate field spreading in a stagnant ocean; (3) compare the results with other available data on buoyancy driven currents in stratified surroundings, including the concurrent experimental program at MIT Parsons Laboratory; and (4) use the results in the formulation of preliminary siting guidelines for multiple OTEC plant interactions. The theoretical background for the intermediate field spreading is given including both steady-state and transient results. The experiments performed in the Stratified Flow Modeling Basin at Cornell University are described, and the data are compared to the theoretical results and to available experimental data from other sources. The application of the intermediate field results to the OTEC design problem is discussed. Typical intermediate field behavior is predicted for different plant sizes (100 MW/sub e/ and 1 MW/sub e/), designs and ambient ocean conditions. (WHK)

  7. Hawaii Ocean Science and Technology Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers Hawaii Ocean Science and Technology Park ...

  8. Oceans '86 conference record

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    These five volumes represent the proceedings of the Oceans '86 Conference Washington, DC, 23-25 September 1986. Volume 1 includes papers on Underwater Photography and Sensing; Marine Recreation; Diving; CTACTS (Charleston Tactical Aircrew Combat Training System); Offshore and Coastal Structures; Underwater Welding, Burning and Cutting; Advances in Ocean Mapping; Ocean Energy; Biofouling and Corrosion; Moorings, Cables and Connections; Marine Minerals; Remote Sensing and Satellites; and Acoustics Analysis. Volume 2 covers Data Base Management; Modeling and Simulation; Ocean Current Simulation; Instrumentation; Artificial Reefs and Fisheries; US Status and Trends; Education and Technology Transfer; Economic Potential and Coastal Zone Management; and Water Quality. Volume 3 includes papers on National and Regional Monitoring Strategies; New Techniques and Strategies for Monitoring; Indicator Parameters/Organisms; Historical Data; Crystal Cube for Coastal and Estuarine Degradation; and the Monitoring Gap. Volume 4 covers the Organotin Symposium - Chemistry; Toxicity Studies; and Environmental Monitoring and Modeling. Volume 5 includes papers on Advances in Oceanography; Applied Oceanography; Unmanned Vehicles and ROV's; Manned Vehicles; and Oceanographic Ships.

  9. Physical Mechanisms for the Maintenance of GCM-Simulated Madden-Julian Oscillation over the Indian Ocean and Pacific

    SciTech Connect (OSTI)

    Deng, Liping; Wu, Xiaoqing

    2011-05-05

    The kinetic energy budget is conducted to analyze the physical processes responsible for the improved Madden-Julian Oscillation (MJO) simulated by the Iowa State University general circulation models (ISUGCM). The modified deep convection scheme that includes the revised convection closure, convection trigger condition and convective momentum transport (CMT) enhances the equatorial (10oS-10oN) MJO-related perturbation kinetic energy (PKE) in the upper troposphere and leads to more robust and coherent eastward propagating MJO signal. In the MJO source region-the Indian Ocean (45oE-120oE), the upper-tropospheric MJO PKE is maintained by the vertical convergence of wave energy flux and the barotropic conversion through the horizontal shear of mean flow. In the convectively active region-the western Pacific (120oE-180o), the upper-tropospheric MJO PKE is supported by the convergence of horizontal and vertical wave energy fluxes. Over the central-eastern Pacific (180o-120oW), where convection is suppressed, the upper-tropospheric MJO PKE is mainly due to the horizontal convergence of wave energy flux. The deep convection trigger condition produces stronger convective heating which enhances the perturbation available potential energy (PAPE) production and the upward wave energy fluxes, and leads to the increased MJO PKE over the Indian Ocean and western Pacific. The trigger condition also enhances the MJO PKE over the central-eastern Pacific through the increased convergence of meridional wave energy flux from the subtropical latitudes of both hemispheres. The revised convection closure affects the response of mean zonal wind shear to the convective heating over the Indian Ocean and leads to the enhanced upper-tropospheric MJO PKE through the barotropic conversion. The stronger eastward wave energy flux due to the increase of convective heating over the Indian Ocean and western Pacific by the revised closure is favorable to the eastward propagation of MJO and the convergence of horizontal wave energy flux over the central-eastern Pacific. The convection-induced momentum tendency tends to decelerate the upper-tropospheric wind which results in a negative work to the PKE budget in the upper troposphere. However, the convection momentum tendency accelerates the westerly wind below 800 hPa over the western Pacific, which is partially responsible for the improved MJO simulation.

  10. In-Vessel Torsional Ultrasonic Wave-Based Level Measurement System - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search In-Vessel Torsional Ultrasonic Wave-Based Level Measurement System Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary At Three Mile Island in 1979, a partial meltdown of the core was caused by a sudden, undetected loss of reactor coolant water. In the past, a reactor's high temperature and pressure environment has complicated the implementation of level

  11. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    SciTech Connect (OSTI)

    PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

    2012-09-29

    This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton (< 2 um) such as prochlorococccus, nanoplankton (2-20 um), and microplankton (> 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the average pico-phytoplankton biomass. This perturbation exhibits a meandering horizontal plume trajectory and spatial extent, but remains similar in magnitude (generally 1-2 mgC/m3). The diatom perturbations become more noticeable after three weeks of the simulation period, when the nearshore diatom population trends towards a greater concentration of 1 to 3 mgC/m3 . Relative to the background concentrations, this increased response is a fraction of the ambient, with perturbations remaining within fluctuations of the existing system. The perturbations were quantified by post-processing each time-step of model simulations without OTEC plants, with identical simulations that included OTEC plumes. Without this post processing, the 10-25% perturbations were obscured by the larger dynamic variations naturally caused by ocean circulation.

  12. National Oceanic and Atmospheric Administration, Honolulu, Hawaii |

    Office of Environmental Management (EM)

    Department of Energy Oceanic and Atmospheric Administration, Honolulu, Hawaii National Oceanic and Atmospheric Administration, Honolulu, Hawaii Photo of a Staff Residence at the Pacific Tsunami Warning Center in Hawaii The staff residences at the Pacific Tsunami Warning Center in Hawaii now have solar water heating systems funded by the Federal Energy Management Program (FEMP). The Center is part of the Department of Commerce's National Oceanic and Atmospheric Administration (DOC-NOAA). New

  13. Wave-Energy Company Looks to Test Prototypes in Maine Waters

    Broader source: Energy.gov [DOE]

    The state has been working to position itself in the alternative energy market, and selection would create local jobs.

  14. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  15. Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices

    Broader source: Energy.gov [DOE]

    The Energy Department announces two projects as part of a larger effort to deploy innovative technologies for clean, domestic power generation from water power resources.

  16. 40-MW(e) OTEC (Ocean Thermal Energy Conversion) plant at Kahe Point, Oahu, Hawaii: a case study of potential biological impacts. Technical memo

    SciTech Connect (OSTI)

    Harrison, J.T.

    1987-02-01

    Construction and operation of an Ocean Thermal Energy Conversion (OTEC) facility will affect marine, terrestrial, and atmospheric environments. The nature and degree of OTEC environmental impacts have been subjects of numerous studies and reports. The proposed 40-MWe OTEC plant at Kahe Point, Oahu, Hawaii has been the focus of much of the work. The first section provides a summary of pertinent design features of the proposed plant, including standard operating parameters. Next, salient elements of the biological oceanography in the region of the proposed development are summarized. The following sections discuss expected impacts of construction and operation of the plant, and finally, significant aspects of modeling studies conducted in support of the Kahe OTEC plant development are presented.

  17. Demonstration of the Recent Additions in Modeling Capabilities for the WEC-Sim Wave Energy Converter Design Tool: Preprint

    SciTech Connect (OSTI)

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-03-01

    WEC-Sim is a mid-fidelity numerical tool for modeling wave energy conversion (WEC) devices. The code uses the MATLAB SimMechanics package to solve the multi-body dynamics and models the wave interactions using hydrodynamic coefficients derived from frequency domain boundary element methods. In this paper, the new modeling features introduced in the latest release of WEC-Sim will be presented. The first feature discussed is the conversion of the fluid memory kernel to a state-space approximation that provides significant gains in computational speed. The benefit of the state-space calculation becomes even greater after the hydrodynamic body-to-body coefficients are introduced as the number of interactions increases exponentially with the number of floating bodies. The final feature discussed is the capability toadd Morison elements to provide additional hydrodynamic damping and inertia. This is generally used as a tuning feature, because performance is highly dependent on the chosen coefficients. In this paper, a review of the hydrodynamic theory for each of the features is provided and successful implementation is verified using test cases.

  18. Turbines in the ocean

    SciTech Connect (OSTI)

    Smith, F.G.W.; Charlier, R.H.

    1981-09-01

    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  19. Energy exchange between electromagnetic waves on the director diffraction grating in planar waveguide with nematic layer

    SciTech Connect (OSTI)

    Ledney, M. F. Tarnavskyy, A. S.

    2013-09-15

    The energy exchange between two coupled TE modes on the diffraction grating of the director in a planar waveguide containing a nematic liquid crystal layer is calculated. The diffraction grating is induced by an external electric field in the nematic layer with periodic anchoring energy at the waveguide surface. The intensity of the signal mode at the output of the nematic layer is calculated as a function of the amplitude and period of the anchoring-energy modulation, the nematic layer sizes, and the electric-field strength. The cases of modes with the same and opposite directions are considered. Analytical expressions for the maximum intensities of the signal mode are derived. In both cases the maximum intensity of the signal mode increases with an increase in the electric-field strength.

  20. Short-Term Energy Outlook Supplement: U.S. LNG Imports - The Next Wave

    Reports and Publications (EIA)

    2007-01-01

    This report was prepared by the Energy Information Administration (EIA), in response to a September 27, 2006, request from Senators Bingaman, Landrieu, Murkowski, Specter, Salazar, and Lugar. The Senators requested that EIA assess the impacts of a proposal that would regulate emissions of greenhouse gases (GHGs) through an allowance cap-and-trade system.