National Library of Energy BETA

Sample records for wave energy conversion

  1. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on ...

  2. WEC up! Energy Department Announces Wave Energy Conversion Prize Administrator

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Water Power Program today awarded $6.5 million to a Prize Administration Team for the development and execution of the Energy Department’s Wave Energy Conversion (WEC) Prize Competition. The WEC Prize will continue to advance marine and hydrokinetic (MHK) technology as a viable source for America’s clean energy future, in part by providing an opportunity for developers to test their innovative wave energy conversion (WEC) devices in a wave generating basin.

  3. MHK Technologies/Wave Energy Conversion Activator WECA | Open...

    Open Energy Info (EERE)

    MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus...

  4. Development of Feedforward Control Strategies for Wave Energy Conversion Technologies

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2015-12-29

      The future of wave energy will depend on developing a new generation of wave energy converters (WECs) that maximize energy extraction and mitigate critical loads while reducing costs. Today’s WECs are relatively inefficient compared to their theoretical upper limit and lack the ability to concurrently maximize power capture and minimize structural loads.  The majority of existing WECs consist of fixed geometrical bodies relying predominantly on control of the power...

  5. Dynamic breakwater and wave energy recovery and conversion system

    SciTech Connect (OSTI)

    Boros, L.J.

    1983-05-24

    A dynamic breakwater system includes at least one and preferably a plurality of dynamic breakwater assemblies, each of which includes a baffle wall member which is pivotally mounted in a body of water about an axis which extends substantially transverse to the direction of wave motion and so that a lower portion thereof is submerged below the water surface while an upper portion thereof extends above the water surface, each baffle wall member being biased such that it has a tendency to move in a direction opposite to the direction of wave motion and wherein apparatus for damping the movement of the baffle wall member when the same moves in the direction of wave motion under the force of waves impinging thereon are provided. Apparatus is provided for recovering at least a portion of the energy imparted to the baffle wall member by the waves impinging thereon and for converting the same to useful energy and generally comprises a fluid circuit supported on a stationary platform assembly and a device operatively interconnecting the baffle wall member and fluid circuit for elevating the pressure of the fluid circulating therein in response to movement of the baffle wall member caused by the waves impinging thereon.

  6. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy� technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  7. Recirculation in multiple wave conversions

    SciTech Connect (OSTI)

    Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

    2008-07-30

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  8. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    SciTech Connect (OSTI)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  9. Sandia Energy - WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC-Sim (Wave Energy Converter SIMulator) Home Stationary Power Energy Conversion Efficiency Water Power WEC-Sim (Wave Energy Converter SIMulator) WEC-Sim (Wave Energy Converter...

  10. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    SciTech Connect (OSTI)

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  11. ocean wave energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wave energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  12. Webinar Recording Available: Advanced Wave Energy Converters...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar Recording Available: Advanced Wave Energy Converters (WEC) Dynamics and Controls - ... Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ...

  13. MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy...

    Open Energy Info (EERE)

    with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following...

  14. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  15. Lower Hybrid to Whistler Wave Conversion

    SciTech Connect (OSTI)

    Winske, Dan

    2012-07-16

    In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

  16. Conversion of borehole Stoneley waves to channel waves in coal

    SciTech Connect (OSTI)

    Johnson, P.A.; Albright, J.N.

    1987-01-01

    Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.

  17. advanced wave energy control design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wave energy control design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  18. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  19. Energy conversion system

    DOE Patents [OSTI]

    Murphy, Lawrence M.

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  20. Energy conversion system

    DOE Patents [OSTI]

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  1. Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Jump to: navigation, search Contents 1 Description 2 History 3 Technology 4 Current and Possible Wave Farms 5 Pros and Cons Description Wave energy (or wave power) is...

  2. Sandia National Laboratories Uses Its Wave Energy Converter ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uses Its Wave Energy Converter (WEC) to Harness the Motion of the Ocean - Sandia Energy ... Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ...

  3. WEC-Sim (Wave Energy Converter SIMulator) Code Development and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Wave Energy Converter SIMulator) Code Development and Training Class - Sandia Energy ... Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ...

  4. Sandia, NREL Release Wave Energy Converter Modeling and Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim - Sandia Energy ... Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ...

  5. Wave Energy Scotland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Industry outreach: DOE and Wave Energy Scotland co-sponsored WEC technology workshop News, Partnership, Renewable Energy, Water Power, Workshops Industry outreach: DOE and Wave ...

  6. MHK Technologies/DEXA Wave Converter | Open Energy Information

    Open Energy Info (EERE)

    Click here Wave Technology Type Click here Attenuator Technology Description The wave energy conversion is similar to other devices There is no data publicly available...

  7. Industry outreach: DOE and Wave Energy Scotland co-sponsored...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry outreach: DOE and Wave Energy Scotland co-sponsored WEC technology workshop - ... Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ...

  8. Conversion Factsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion Factsheet Conversion Factsheet To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today's vehicles and infrastructure. conversion_factsheet.pdf (286.98 KB) More Documents & Publications 2013 Peer Review Presnentations-Plenaries Thermochemical

  9. WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Social Twitter Google + Vimeo Newsletter Signup SlideShare WEC-Sim (Wave Energy Converter SIMulator) HomeStationary PowerEnergy Conversion EfficiencyWater PowerTechnology ...

  10. Direct Drive Wave Energy Buoy

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  11. Energy Conversion Devices | Open Energy Information

    Open Energy Info (EERE)

    Type Test & Evaluation Partner Partnering Center within NREL National Center for Photovoltaics Partnership Year 2003 Energy Conversion Devices is a company located in Rochester...

  12. Energy Conversion Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blog Energy Blog RSS August 29, 2016 Energy Secretary Ernest Moniz takes a slap shot at Boston College's Conte Forum to promote green sports arenas. | Photo by Simon Edelman, Energy Department. Game On: DOE Initiative Supports Leadership in Sports Venues DOE and its partners released the Survey on Energy and Water Efficiency of Stadiums and Arenas for sports venue owners and operators regarding their facilities' energy and water usage. August 29, 2016 The World's Largest 3D Printed Object Oak

  13. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  14. Proceedings of the Hydrokinetic and Wave Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Before the House Science and Technology Subcommittee on Energy and Environment Water Power Program: ...

  15. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  16. wave energy converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  17. Wave Star Energy | Open Energy Information

    Open Energy Info (EERE)

    Star Energy Jump to: navigation, search Name: Wave Star Energy Place: Denmark Zip: DK-2920 Product: Denmark-based private wave device developer. References: Wave Star Energy1...

  18. wave energy converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  19. wave energy devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    devices - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  20. wave energy plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  1. wave energy testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  2. Ocean energy conversion systems annual research report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  3. wave energy industry research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry research - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  4. Ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Lockerby, R.W.

    1981-01-01

    Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)

  5. Energy Department Announces $10 Million for Full-Scale Wave Energy...

    Energy Savers [EERE]

    Ocean Energy USA and Northwest Energy Innovations will test their innovative wave energy conversion (WEC) devices for one year in new deep water test berths at the Navy's Wave ...

  6. Global Waste to Energy Conversion Company GWECC | Open Energy...

    Open Energy Info (EERE)

    Waste to Energy Conversion Company GWECC Jump to: navigation, search Name: Global Waste to Energy Conversion Company (GWECC) Place: Washington, DC Product: GWECC is a global...

  7. SCE Societe de Conversion d Energie | Open Energy Information

    Open Energy Info (EERE)

    Societe de Conversion d Energie Jump to: navigation, search Name: SCE Societe de Conversion d'Energie Place: Reunion Island, France Product: PV project developer on Reunion Island,...

  8. Energy Conversion, an Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Letter .................. 2 Research ............................. 3 Seminar Series ................. 11 Awards .............................. 12 S p r I N g 2 0 1 1 Intermediate Band Solar Energy Conversion in ZnTe:O and ZnTe/ZnSe Affordable photovoltaic solar cells are highly desirable for achieving a sustainable and renewable energy source. In order for solar energy to become cost-competitive with fossil fuels, technological breakthroughs are needed to both improve solar cell

  9. Dartmouth Wave Energy Searaser | Open Energy Information

    Open Energy Info (EERE)

    Energy Searaser Jump to: navigation, search Name: Dartmouth Wave Energy (Searaser) Place: United Kingdom Product: British firm developing the wave energy converter, Searaser....

  10. Cycloidal Wave Energy Converter

    SciTech Connect (OSTI)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  11. Biochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion Biochemical Conversion This area focuses on the research, development and demonstration of biological processes that convert biomass to biofuels, chemicals, and power. Biochemical processes also complement thermochemical conversion by providing residual materials for further processing. Biochemical conversion will advance in the future by enhancing fuel yields in integrated biorefineries which combine conversion types with heat and power efficiencies to produce fuel and products.

  12. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC) Website

    Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events ...

  13. "Approaches to Ultrahigh Efficiency Solar Energy Conversion"...

    Office of Science (SC) Website

    "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News ...

  14. Wave energy absorber mountable on wave-facing structure

    SciTech Connect (OSTI)

    Kondo, H.

    1983-09-13

    A wave energy absorber comprising a caisson mountable on the seaside surface of an existing breakwater or coastal embankment, which caisson has a water chamber with an open side and a rear wall facing the open side. The distance from the open side to the rear wall is longer than one quarter of a wavelength L /SUB c/ in the water chamber so as to generate a standing wave in the water chamber with a node of the standing wave at a distance L /SUB c/ /4 from the rear wall toward the open side. A wave power turbine impeller is pivotally supported in the caisson at the node position, the impeller rotating in only one direction, whereby wave energy is absorbed by the impeller for further conversion into electric or thermal energy. The caisson itself can also be utilized as a breakwater or an embankment.

  15. Novel Energy Conversion Equipment for Low Temperatures Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment ...

  16. Advanced Wave Energy Converters (WEC) Dynamics and Controls Webinar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wave Energy Converters (WEC) Dynamics and Controls Webinar: June 6, 2016 at 2:00 p.m. EDT ... Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ...

  17. Biomass conversion processes for energy and fuels

    SciTech Connect (OSTI)

    Sofer, S.S.; Zaborsky, O.R.

    1981-01-01

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  18. Euro Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Jump to: navigation, search Name: Euro Wave Energy Region: Norway Sector: Marine and Hydrokinetic Website: www.eurowaveenergy.com This company is listed in the Marine...

  19. Leancon Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Leancon Wave Energy Jump to: navigation, search Name: Leancon Wave Energy Address: Alpedalsvej 37 Place: Kolding Zip: 6000 Region: Denmark Sector: Marine and Hydrokinetic Phone...

  20. Green Ocean Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Energy Jump to: navigation, search Name: Green Ocean Wave Energy Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  1. Wave Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean » Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of

  2. Clustering of cycloidal wave energy converters

    DOE Patents [OSTI]

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  3. Energy Extraction from a Slider-Crank Wave Energy under Irregular Wave Conditions: Preprint

    SciTech Connect (OSTI)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-08-24

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  4. Energy Extraction from a Slider-Crank Wave Energy Converter under Irregular Wave Conditions

    SciTech Connect (OSTI)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-10-19

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  5. Center on Nanostructuring for Efficient Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is to engineer catalysts with atomic scale precision for two key electrochemical energy conversion reactions for water splitting, namely, water oxidation (oxygen evolution),...

  6. BETO Conversion Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO Conversion Program BETO Conversion Program Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing BETO Conversion Program Bryna Berendzen, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy berendzen_biomass_2014.pdf (1010.99 KB) More Documents & Publications Opportunities for Biomass-Based Fuels and Products in a Refinery 2013 Peer Review Presentations-Bio-oil 2013 Peer Review

  7. Thermochemical Conversion | Department of Energy

    Energy Savers [EERE]

    The Bioenergy Technologies Office conducts research on heat-, pressure-, and catalyst-based conversion of various biomass feedstocks to biofuels, chemicals, and power. These ...

  8. NREL-Ocean Energy Thermal Conversion | Open Energy Information

    Open Energy Info (EERE)

    Energy Laboratory Sector: Energy Topics: Resource assessment Website: www.nrel.govotec NREL-Ocean Energy Thermal Conversion Screenshot References: OTEC1 Logo: NREL-Ocean...

  9. Wave Energy Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave Energy Resource Assessment Wave Energy Resource Assessment Wave Energy Resource Assessment 52_wave_resource_assessment_epri_jacobson.ppt (308.5 KB) More Documents & Publications OTEC resource assessment OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) Whitestone Power & Communications (TRL 1 2 3 System) - Whitestone Poncelet RISEC Project

  10. Advanced energy conversion methods for cold fusion

    SciTech Connect (OSTI)

    Prelas, M.A. )

    1989-09-01

    If cold fusion is verified, then the next important question deals with how it can be used to produce energy. Several direct energy conversion concepts for use with cold fusion are discussed.

  11. Next Wave Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Next Wave Energy Inc Place: Denver,CO, Colorado Zip: 80202 Sector: Renewable Energy Product: NextWave Energy was a consulting firm focused...

  12. Alternative energy conversion demonstration laboratory at U. S. Naval Academy

    SciTech Connect (OSTI)

    Wu, C.

    1983-12-01

    This paper describes an alternative energy conversion demonstration laboratory which supplements classroom theory in a senior engineering elective course in energy conversion in the Department of Mechanical Engineering at the U.S. Naval Academy. Oil, nuclear energy, and other conventional sources of power have been the dominant sources for industrial society and the U.S. Navy, and will continue to be so for the foreseeable future. There are other possibilities, however, including wind power, solar power, ocean thermal power and tidal power. A need for alternative sources of energy for the Navy was recognized at the time of the Arab oil embargo in 1973, and an academic program in alternative energy has been developed to help satisfy that need. Specific demonstrations included in this paper are as follows: Mechanical modeling of the depletion of energy reserve, Computer graphic simulation of energy consumption and energy resource exhaust, Wind model, Thermax helius rotor wind machine, Solar breeze - an electric sailboat project, Vertical axis wind turbine, Helicopter, airplane propeller and windmill models test in wind tunnel, Ocean Thermal Energy Conversion Device Demonstration, Pneumatic Wave Energy Conversion Device Demonstration, Chemical Energy Storage Device Demonstration, Solar Energy Demonstration.

  13. Challenges and Opportunities in Thermoelectric Energy Conversion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Berkeley Laboratory 2004_deer_majumdar.pdf (1.3 MB) More Documents & Publications High performance Zintl phase TE materials with embedded nanoparticles High performance Zintl phase TE materials with embedded nanoparticles Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI

  14. Diagnostic applications of millimeter waves in coal conversion systems

    SciTech Connect (OSTI)

    Gopalsami, N.; Raptis, A.C.

    1985-01-01

    The feasibility of millimeter-wave (MMW) techniques is discussed for in-situ diagnostics of particulate-laden multiphase streams in coal conversion and combustion systems. The techniques investigated include MMW spectroscopy for determination of molecular species and gas-phase temperature, MMW radiometry for particle temperature measurement, and MMW scattering for particle characterization. The theoretical feasibility of each technique is presented together with the applicable range of measurement/system parameters. 3 refs.

  15. Energy conversion & storage program. 1994 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  16. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  17. Catching a Wave: Innovative Wave Energy Device Surfs for Power...

    Office of Environmental Management (EM)

    Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii July 29, 2015 - 12:00pm Addthis...

  18. Wave Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    Centre Jump to: navigation, search Name: Wave Energy Centre Address: Wave Energy Centre Av Manuela da Maia 36 R C Dto Place: Lisboa Zip: 1000-201 Region: Portugal Sector: Marine...

  19. Start Your Energy Conversion Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Start 2015 with an #EnergyResolution to Save Money and Energy All Year Long Start 2015 with an #EnergyResolution to Save Money and Energy All Year Long January 19, 2015 - 9:52am Addthis Create an #EnergyResolution to share how you plan to save money and energy in the New Year. | Graphic courtesy of Joelynn Schroeder, National Renewable Energy Laboratory Create an #EnergyResolution to share how you plan to save money and energy in the New Year. | Graphic courtesy of

  20. Sensitivity of a Wave Energy Converter Dynamics Model to Nonlinear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface in- tegral based method. NOMENCLATURE WEC Wave energy converter. T3R2 "Three-translation, two-rotation" WEC studied here. PCC Power-conversion-chain. PMT...

  1. Hybrid staging of geothermal energy conversion process

    SciTech Connect (OSTI)

    Steidel, R.F. Jr.

    1984-05-07

    Progress in the demonstration of the feasibility of hybrid staging in geothermal energy conversion is described, particularly processes involving the Lysholm engine. The performance limitations of the Lysholm engine were studied. (MHR)

  2. Utilizing Nature's Designs for Solar Energy Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations: 

  3. Successful testing of Sandia Labs' Wave Energy Converter (WEC) system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Successful testing of Sandia Labs' Wave Energy Converter (WEC) system - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy

  4. Experimental testing of wave energy converter (WEC) controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing of wave energy converter (WEC) controls - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [download flyer] watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on New Approaches to Full Spectrum Solar Energy Conversion.

  6. Engineering Nanocrystals for Energy Conversion and Storage, and...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Engineering Nanocrystals for Energy Conversion and Storage, and Sensors Citation Details In-Document Search Title: Engineering Nanocrystals for Energy Conversion and ...

  7. MHK Technologies/Mobil Stabilized Energy Conversion Platform...

    Open Energy Info (EERE)

    Mobil Stabilized Energy Conversion Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Mobil Stabilized Energy Conversion Platform.jpg...

  8. University of Delaware Institute of Energy Conversion | Open...

    Open Energy Info (EERE)

    Institute of Energy Conversion Jump to: navigation, search Name: University of Delaware Institute of Energy Conversion Place: Delaware Product: String representation "University...

  9. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop ...

  10. Pin stack array for thermoacoustic energy conversion (Patent...

    Office of Scientific and Technical Information (OSTI)

    Pin stack array for thermoacoustic energy conversion Title: Pin stack array for thermoacoustic energy conversion A thermoacoustic stack for connecting two heat exchangers in a ...

  11. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Conversion for Efficient Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery ...

  12. Webinar Recording Available: Advanced Wave Energy Converters (WEC) Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Controls Webinar Recording Available: Advanced Wave Energy Converters (WEC) Dynamics and Controls - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  13. Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC-Sim NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  14. Advanced Wave Energy Converters (WEC) Dynamics and Controls Webinar: June

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2016 at 2:00 p.m. EDT Wave Energy Converters (WEC) Dynamics and Controls Webinar: June 6, 2016 at 2:00 p.m. EDT - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering

  15. Sandia National Laboratories Uses Its Wave Energy Converter (WEC) to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harness the Motion of the Ocean Uses Its Wave Energy Converter (WEC) to Harness the Motion of the Ocean - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  16. WETGen (Wave Energy Turbine GENerator) | Open Energy Information

    Open Energy Info (EERE)

    WETGen (Wave Energy Turbine GENerator) Jump to: navigation, search Logo: WETGen (Wave Energy Turbine GENerator) Name WETGen (Wave Energy Turbine GENerator) Place Coos Bay, Oregon...

  17. Synchronous generator wind energy conversion control system

    SciTech Connect (OSTI)

    Medeiros, A.L.R.; Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J.

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  18. Harnessing Energy from Ocean Waves

    SciTech Connect (OSTI)

    Lehmann, Marcus

    2015-05-06

    Berkeley Lab scientist Marcus Lehmann, a member of the Lab's Cyclotron Road cohort, discusses his research on harnessing energy from ocean waves.

  19. Conversion Technologies | Department of Energy

    Energy Savers [EERE]

    Reserve | Department of Energy Contracts Awarded for Acquisition of Crude Oil for the Strategic Petroleum Reserve Contracts Awarded for Acquisition of Crude Oil for the Strategic Petroleum Reserve January 16, 2009 - 9:36am Addthis Royalty-In-Kind and Direct Purchases Will Add 16.8 Million Barrels to SPR by January 2010 WASHINGTON, DC - The U.S. Department of Energy (DOE) has awarded contracts to purchase10,683,000 barrels of crude oil at a cost of $553 million for the Department's Strategic

  20. Linear mode conversion of Langmuir/z-mode waves to radiation: Scalings of conversion efficiencies and propagation angles with temperature and magnetic field orientation

    SciTech Connect (OSTI)

    Schleyer, F.; Cairns, Iver H.; Kim, E.-H.

    2013-03-15

    Linear mode conversion (LMC) is the linear transfer of energy from one wave mode to another in an inhomogeneous plasma. It is relevant to laboratory plasmas and multiple solar system radio emissions, such as continuum radiation from planetary magnetospheres and type II and III radio bursts from the solar corona and solar wind. This paper simulates LMC of waves defined by warm, magnetized fluid theory, specifically the conversion of Langmuir/z-mode waves to electromagnetic (EM) radiation. The primary focus is the calculation of the energy and power conversion efficiencies for LMC as functions of the angle of incidence {theta} of the Langmuir/z-mode wave, temperature {beta}=T{sub e}/m{sub e}c{sup 2}, adiabatic index {gamma}, and orientation angle {phi} between the ambient density gradient {nabla}N{sub 0} and ambient magnetic field B{sub 0} in a warm, unmagnetized plasma. The ratio of these efficiencies is found to agree well as a function of {theta}, {gamma}, and {beta} with an analytical relation that depends on the group speeds of the Langmuir/z and EM wave modes. The results demonstrate that the energy conversion efficiency {epsilon} is strongly dependent on {gamma}{beta}, {phi} and {theta}, with {epsilon}{proportional_to}({gamma}{beta}){sup 1/2} and {theta}{proportional_to}({gamma}{beta}){sup 1/2}. The power conversion efficiency {epsilon}{sub p}, on the other hand, is independent of {gamma}{beta} but does vary significantly with {theta} and {phi}. The efficiencies are shown to be maximum for approximately perpendicular density gradients ({phi} Almost-Equal-To 90 Degree-Sign ) and minimal for parallel orientation ({phi}=0 Degree-Sign ) and both the energy and power conversion efficiencies peak at the same {theta}.

  1. Energy conversion & storage program. 1995 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  2. Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado. novel_energy_conversion_equipment_low_peer2013.pdf (582.04 KB) More Documents & Publications Novel Energy Conversion Equipment for Low Temperature Geothermal Resources

  3. Wave energy and intertidal productivity

    SciTech Connect (OSTI)

    Leigh, E.G. Jr.; Paine, R.T.; Quinn, J.F.; Suchanek, T.H.

    1987-03-01

    In the northern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 x 10/sup 8/ J, per m/sup 2/ in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms harness wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organism, and protect intertidal residents by knocking away their enemies or preventing them from feeding.

  4. Oregon Wave Energy Trust OWET | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Trust OWET Jump to: navigation, search Name: Oregon Wave Energy Trust (OWET) Place: Portland, Oregon Zip: 97207 Product: String representation "The Oregon Wave ... rgy...

  5. Conversion and Resource Evaluation Ltd CARE | Open Energy Information

    Open Energy Info (EERE)

    is an independent company providing specialist technical and economic services in the bio-energy and waste conversion sector. References: Conversion and Resource Evaluation Ltd...

  6. Ocean Thermal Energy Conversion: An overview

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on Approaches to Ultrahigh Efficiency Solar Energy Conversion. The LMI-EFRC is made up of world leaders creating new optical materials and innovative photonic designs that engineer and control light-material interactions, with the goal of achieving ultrahigh efficiency solar cells. This webinar will feature presentations and an

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on Approaches to Ultrahigh Efficiency Solar Energy Conversion. The LMI-EFRC is made up of world leaders creating new optical materials and innovative photonic designs that engineer and control light-material interactions, with the goal of

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [watch recorded event online] [download flyer] watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on New Approaches to Full

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Refractive Index Design via Porous Etched Si as part of RG-3 research efforts (Chris Gladden, LBNL) The Scientific Vision of the "Light-Material Interactions in Energy Conversion Energy Frontier Research Center" (LMI-EFRC) is to tailor the morphology, complex dielectric structure, and electronic properties of matter so as to sculpt the flow of sunlight and heat, enabling light conversion to electrical and chemical energy with unprecedented efficiency. The

  11. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 2016 2015 2014 2013 2012 2011 2010 Lectures & Tutorials Authorship Tools Publications 2016 image A Path Upward: New Upconversion Schemes for Improving Photovoltaics (Roadmap on Optical Energy Conversion) D. M. Wu, M. D. Wisser, A. Salleo, , and J. Dionne J. Opt. 18 073004 (2016) DOI: 10.1088/2040-8978/18/7/073004 image Harnessing the Coldness of the Universe by Radiative Cooling to Improve Energy Efficiency and Generation (Roadmap on Optical Energy Conversion) A.

  12. Novel Nuclear Powered Photocatalytic Energy Conversion

    SciTech Connect (OSTI)

    White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

    2005-08-29

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  13. Atlantic Biomass Conversions Inc | Open Energy Information

    Open Energy Info (EERE)

    Biomass Conversions Inc Jump to: navigation, search Name: Atlantic Biomass Conversions Inc Place: Frederick, Maryland Sector: Biomass Product: Atlantic Biomass Conversions is...

  14. Advanced Conversion Roadmap Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Conversion Roadmap Workshop Advanced Conversion Roadmap Workshop DOE introduction slides to the Advanced Conversion Roadmap Workshop webinar. ctabwebinardoe.pdf (1.47 ...

  15. Light-Material Interactions in Energy Conversion - Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    one-day workshop focused on new materials and processes for overcoming the Shockley-Queisser limit of solar energy conversion efficiency. event website download flyer 05.23.12...

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Approaches to ultrahigh efficiency solar energy conversion webinar watch now The recorded presentations and panel discussion are now available for online viewing. Sign up is now closed

  17. Novel Energy Conversion Equipment for Low Temperature Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop equipment that generates electricity from low temperature geothermal resources at a cost at least 20% below that of the currently available technology. low_kohler_energy_conversion.pdf (218.32 KB) More Documents & Publications Novel Energy Conversion Equipment for Low Temperatures Geothermal

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Lectures from the LMI-EFRC "Fundamental Challenges in Solar Energy Conversion" Workshop, July 7, 2010, Caltech Harry Atwater Introduction to the Workshop on Fundamental Challenges in Solar Energy Conversion Harry A. Atwater, Caltech Eli Yablonovitch Fundamental Limits to Light Absorption and Efficiency in Photovoltaics Eli Yablonovitch, University of California, Berkeley Richard Swanson Efficiency Limits and Cost Challenges in Photovoltaics Richard Swanson,

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Scientific Grand Challenge LMI researchers brainstorm spectrum splitting, Annual Meeting November 2011 The LMI-EFRC is dedicated to expanding the scientific knowledge base for fundamentally photonic principles and mechanisms in solar energy conversion. An important set of requirements of photonic materials for solar energy conversion are related to the characteristics of the sun as a light source - it is a broadband and unpolarized light source, and the achievable

  20. Ocean Wave Energy Company OWECO | Open Energy Information

    Open Energy Info (EERE)

    Energy Company OWECO Jump to: navigation, search Name: Ocean Wave Energy Company (OWECO) Place: Bristol, Rhode Island Sector: Ocean Product: Wave energy device developer. The...

  1. Environmental impacts of ocean thermal energy conversion

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    Ocean thermal energy conversion (OTEC) is a promising technology for production of energy and usable by-products from solar-generated temperature gradients in the world's oceans. Although considered benign compared to alternative forms of energy generation, deployment of OTEC plants will result in interactions with marine, terrestrial, and atmospheric environments and in socioeconomic interactions with surrounding areas. The Ocean Energy Technology Program of the Department of Energy has funded research to improve the understanding of these interactions. No insurmountable environmental obstacle to OTEC deployment has been uncovered. This document contains a summary of that research for entrepreneurs, utility engineers, and others interested in pursuing OTEC's potential. In addition, it provides a guide to permits, regulations, and licenses applicable to construction of an OTEC plant.

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Contact Secretary of Energy Steven Chu visits Caltech labs For more information or questions about the Light-Material Interactions in Energy Conversion Energy Frontier Research Center, please email lmi-efrc@caltech.edu or call LMI Administrator Tiffany Kimoto at 626-395-1566.

  3. Next-Generation Thermionic Solar Energy Conversion

    Broader source: Energy.gov [DOE]

    This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

  4. Oriented Nanostructures for Energy Conversion and Storage

    SciTech Connect (OSTI)

    Liu, Jun; Cao, Guozhong H.; Yang, Zhenguo; Wang, Donghai; DuBois, Daniel L.; Zhou, Xiao Dong; Graff, Gordon L.; Pederson, Larry R.; Zhang, Jiguang

    2008-08-28

    Recently the role of nanostructured materials in addressing the challenges in energy and natural resources has attracted wide attention. In particular, oriented nanostructures have demonstrated promising properties for energy harvesting, conversion and storage. The purpose of the paper is to review the synthesis and application of oriented nanostructures in a few key areas of energy technologies, namely photovoltaics, batteries, supercapacitors and thermoelectrics. Although the applications differ from field to field, one of the fundamental challenges is to improve the generation and transport of electrons and ions. We will first briefly review the several major approaches to attain oriented nanostructured films that are applicable for energy applications. We will then discuss how such controlled nanostructures can be used in photovoltaics, batteries, capacitors, thermoelectrics, and other unconventional ways of energy conversion. We will highlight the role of high surface area to maximize the surface activity, and the importance of optimum dimension and architecture, controlled pore channels and alignment of the nanocrystalline phase to optimize the electrons and ion transport. Finally, the paper will discuss the challenges in attaining integrated architectures to achieve the desired performance. Brief background information will be provided for the relevant technologies, but the emphasis is focused mainly on the nanoeffects of mostly inorganic based materials and devices.

  5. Biofuel Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived

  6. Wave Energy AS | Open Energy Information

    Open Energy Info (EERE)

    AS Jump to: navigation, search Name: Wave Energy AS Address: Opstadveien 11C Place: Aalgaard Zip: 4330 Region: Norway Sector: Marine and Hydrokinetic Phone Number: (+47) 51 6109 30...

  7. Wave Energy Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Technologies Inc Jump to: navigation, search Name: Wave Energy Technologies Inc Address: 270 Sandy Cove Rd Place: Ketch Harbour Zip: B3V 1K9 Region: Canada Sector: Marine and...

  8. Solar Thermoelectric Energy Conversion | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Technologies for Native America November 20, 2003 Sandra Begay-Campbell Principal Member of the Technical Staff Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. Helping our nation secure a peaceful and free world through technology. Where is Sandia National Labs? * New Mexico * California * Nevada * Hawaii * Texas We address the surety (safety, security &

  9. Nanoscale Materials and Architectures for Energy Conversion

    SciTech Connect (OSTI)

    Grulke, Eric A.; Sunkara, Mahendra K.

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells, solar fuels, and thermionic energy conversion.

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 2: Solar Spectrum Control and Conversion RG Leader: John Rogers Affiliated PIs: Paul Alivisatos, Harry Atwater, Paul Braun, Mark Brongersma, Jennifer Dionne, Shanhui Fan, Ralph Nuzzo, Eli Yablonovitch, and Xiang Zhang Downshifting luminescent concentrator with micro solar cells (J. Rogers & R. Nuzzo, UIUC) The most substantial near-term opportunity for increase in solar energy conversion efficiency is via exploitation of the full solar spectrum. As first discussed by

  11. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Program Hotel & Travel Presentations Event Photos Accelerating the Development of Earth-Abundant Thin-Film Photovoltaics Millikan Board Room [map] California Institute of Technology Pasadena, CA The Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center (EFRC), the Resnick Sustainability Institute, and the Quantum Energy and Sustainable Solar Technologies (QESST) Energy Research Center (ERC) are offering a two-day workshop on Accelerating

  12. MODE CONVERSION BETWEEN DIFFERENT RADIAL ORDERS FOR SOLAR ACOUSTIC WAVES SCATTERED BY SUNSPOTS

    SciTech Connect (OSTI)

    Zhao, Hui; Chou, Dean-Yi

    2013-11-20

    We study the mode conversion between different radial orders for solar acoustic waves interacting with sunspots. Solar acoustic waves are modified in the presence of sunspots. The modification in the wave can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave inside and around the sunspot. The wavefunction of the acoustic wave on the solar surface is computed from the cross-correlation function. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We use the incident waves of radial order n = 0-5 to measure the scattered wavefunctions from n to another radial order n' for NOAAs 11084 and 11092. The strength of scattered waves decreases rapidly with |?n|, where ?n ? n' n. The scattered waves of ?n = 1 are visible for n ? 1, and significant for n ? 2. For the scattered wave of ?n = 2, only few cases are visible. None of the scattered waves of ?n = 3 are visible. The properties of scattered waves for ?n = 0 and ?n ? 0 are different. The scattered wave amplitude relative to the incident wave amplitude decreases with n for ?n = 0, while it increases with n for ?n ? 0. The scattered wave amplitudes of ?n = 0 are greater for the larger sunspot, while those of ?n ? 0 are insensitive to the sunspot size.

  13. Conversation with Paul Brown | Open Energy Information

    Open Energy Info (EERE)

    Conversation with Paul Brown Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal Communication: Conversation with Paul Brown Author Paul Brown Recipient...

  14. Energy conversion device with improved seal

    DOE Patents [OSTI]

    Miller, Gerald R.; Virkar, Anil V.

    1980-01-01

    An energy conversion device comprising an improved sealing member adapted to seal a cation-permeable casing to the remainder of the device. The sealing member comprises a metal substrate which (i) bears a nonconductive and corrosion resistant coating on the major surface to which said casing is sealed, and (ii) is corrugated so as to render it flexible, thereby allowing said member to move relative to said casing without cracking the seal therebetween. Corrugations may be circumferential, radial, or both radial and circumferential so as to form dimples. The corrugated member may be in form of a bellows or in a substantially flat form, such as a disc.

  15. Carbon aerogel electrodes for direct energy conversion

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA)

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  16. Carbon aerogel electrodes for direct energy conversion

    DOE Patents [OSTI]

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1997-02-11

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

  17. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Jay Kohler Eric Minor Johnson Controls, Inc. Geothermal Energy Production from Low Temperature Resources ...

  18. Most Viewed Documents - Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final ... with IPST, now at Cargill. Inc) (2008) Energy Saving Potentials and Air Quality ...

  19. Wave Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    Wave Wind LLC Jump to: navigation, search Name: Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and...

  20. MHK Technologies/Indian Wave Energy Device IWAVE | Open Energy...

    Open Energy Info (EERE)

    Indian Wave Energy Device IWAVE < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Indian Wave Energy Device IWAVE.jpg Technology Profile Primary...

  1. California Wave Energy Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Partners LLC Jump to: navigation, search Name: California Wave Energy Partners LLC Address: 1590 Reed Road Place: Pennington Zip: 8534 Region: United States Sector:...

  2. Danish Wave Energy Development Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Development Ltd Jump to: navigation, search Name: Danish Wave Energy Development Ltd Place: Gentofte, Denmark Zip: 2820 Product: Original developer and now holding...

  3. MHK Technologies/The Crestwing Wave Energy Converter | Open Energy...

    Open Energy Info (EERE)

    Crestwing Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Crestwing Wave Energy Converter.jpg Technology Profile...

  4. Green Wave Energy Corp GWEC | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Corp GWEC Jump to: navigation, search Name: Green Wave Energy Corp GWEC Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in...

  5. Open Ocean Aquaculture & Wave Energy Site | Open Energy Information

    Open Energy Info (EERE)

    Aquaculture & Wave Energy Site Jump to: navigation, search Basic Specifications Facility Name Open Ocean Aquaculture & Wave Energy Site Overseeing Organization University of New...

  6. Biochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Conversion Technologies » Biochemical Conversion » Biochemical Conversion - Biorefinery Integration Biochemical Conversion - Biorefinery Integration One of the essential elements in the economical and efficient production of cellulosic biofuels is the development of biorefineries. Similar in concept to traditional petroleum refineries, biorefineries convert various types of biomass feedstock into marketable chemicals, fuels, and products. By taking advantage of

  7. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  8. Thermochemical Conversion Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion » Thermochemical Conversion Related Links Thermochemical Conversion Related Links Further reading about current Bioenergy Technologies Office R&D in the Thermochemical Platform can be found in this website's Information Resources section. Some key publications are: Biomass Conversion: From Feedstocks to Final Products (July 2016) Thermochemical Conversion 2009 Peer Review Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and

  9. Inventing a New Way to Capture the Energy of Waves (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's ocean energy research team's efforts to develop more robust and cost-effective wave energy converters have yielded a record of invention titled, "Wave Energy Conversion Devices with Actuated Geometry." Key Result This innovative wave device features a wave converter with controlled geometry that increases energy capture and prevents large waves from overloading the generator. The invention's control system actuates flaps that open and close depending on wave conditions.

  10. Technology assessment of wind energy conversion systems

    SciTech Connect (OSTI)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  11. Ocean Thermal Energy Conversion Act of 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A legislative proposal to develop ocean thermal energy conversion (OTEC) facilities for power generation was the subject of hearings held on April 10 and May 1, 1980. Following the test of S. 2492 are the statements of 20 witnesses and additional materials submitted for consideration. The need for a large-scale demonstration of OTEC and the need for a Federal regulatory, siting, and financial-assistance framework are the major commercialization issues. S. 2492 provides one-stop licensing by treating the facilities as vessels and making them eligible for loan guarantees. The bill complements S. 1430, which deals with the demonstration program. OTEC development in Hawaii has progressed to a second pilot project. (DCK)

  12. Processing and Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Processing and Conversion Processing and Conversion The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts and biopower. The diversity of the biomass resource requires the development of multiple conversion technologies that can efficiently deal with the broad range of feedstock materials, as well as their physical and

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Program Schedule Abstract Submission Hotel & Travel Register Event Photos Redefining the Limits of Photovoltaic Efficiency Sunday, July 29, 2012 California Institute of Technology Hameetman Auditorium at the Cahill Center [map] 8:30 am - 5:30 pm Co-organized by the Resnick Sustainability Institute and the Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center this one-day workshop brings together leaders from industry, academia and

  14. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Lectures & Tutorials Lectures from the LMI-EFRC "New Approaches to Full Spectrum Solar Energy Conversion" Webinar, September 3, 2015, Caltech Harry A. Atwater Quantum Dot Luminescent Concentrators Paul Alivisatos, Lawrence Berkeley National Laboratory John Rogers Control of Thermal Radiation Using Photonic Structures for Energy Applications Shanhui Fan, Stanford University Eli Yablonovitch Printing Functional Materials Jennifer Lewis, Harvard lmi logo Panel

  15. Wave Energy Converter Effects on Nearshore Wave Propagation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Converter Effects on Nearshore Wave Propagation Jesse Roberts 1 , Grace Chang *2 , Craig Jones *3 Sandia National Laboratories 1515 Eubank SE, Albuquerque, NM 87123 USA 1...

  16. List of Wave Energy Incentives | Open Energy Information

    Open Energy Info (EERE)

    Coal with CCS Concentrating Solar Power Energy Storage Fuel Cells Geothermal Electric Natural Gas Nuclear Tidal Energy Wave Energy Wind energy BiomassBiogas Hydroelectric...

  17. Ocean thermal energy conversion: Perspective and status

    SciTech Connect (OSTI)

    Thomas, A.; Hillis, D.L.

    1990-01-01

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully be George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250--400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore-based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed-cycle concept. Cost-effective heat-exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat-transfer augmentation techniques were identified, which promised a reduction on heat-exchanger size and cost. Fresh water was produced by an OTEC open-cycle flash evaporator, using the heat energy in the seawater itself. The current R D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open-cycle process. The 10 MW shore-based, closed-cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power -- both valuable commodities on many tropical islands. The open-cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources. 7 refs.

  18. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Discusses ...

  19. Symposium on the Physical Chemistry of Solar Energy Conversion...

    Office of Scientific and Technical Information (OSTI)

    for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) ...

  20. Symposium on the Physical Chemistry of Solar Energy Conversion...

    Office of Scientific and Technical Information (OSTI)

    Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013 Citation Details In-Document Search Title: Symposium on ...

  1. September 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    September 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process ... 2010 Toyota Prius Hybrid Synergy Drive System Burress, Timothy A ORNL; Campbell, ...

  2. March 2014 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    March 2014 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process ... 2007 Toyota Camry Hybrid Syneregy Drive System Burress, T.A.; Coomer, C.L.; Campbell, ...

  3. Most Viewed Documents for Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    Most Viewed Documents for Energy Storage, Conversion, and Utilization: December 2014 Process ... 2007 Toyota Camry Hybrid Syneregy Drive System Burress, T.A.; Coomer, C.L.; Campbell, ...

  4. June 2014 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    June 2014 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process ... 2004 Toyota Prius Hybrid Electric Drive System Staunton, R.H.; Ayers, C.W.; Chiasson, ...

  5. March 2015 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    March 2015 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process ... 2007 Toyota Camry Hybrid Syneregy Drive System Burress, T.A.; Coomer, C.L.; Campbell, ...

  6. Most Viewed Documents for Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    Most Viewed Documents for Energy Storage, Conversion, and Utilization: September 2014 Process ... 2007 Toyota Camry Hybrid Syneregy Drive System Burress, T.A.; Coomer, C.L.; Campbell, ...

  7. Directors - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green was a member of the decadal study on Condensed Matter and Materials Physics ... particularly for functional coatings, sensors and energy conversion applications. ...

  8. Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion

    SciTech Connect (OSTI)

    LIN, SHAWN-YU; FLEMING, JAMES G.; MORENO, JOSEPH A.

    2003-03-01

    Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.

  9. 2009 Biochemical Conversion Platform Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 Biochemical Conversion Platform Review Report 2009 Biochemical Conversion Platform Review Report This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program's Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado. obp_biochem_conversion_platform_review_2009.pdf (4.32 MB) More Documents & Publications 2009

  10. Plasma-Hydrocarbon conversion - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrocarbon conversion Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Plasma-Hydrocarbon Conversion process enables conversion of heavy hydrocarbons, such as heavy crude oil and hydrocarbon gases like natural gas, into lighter hydrocarbon materials (e.g. synthetic light oil). Description It can convert hydrocarbon gases to liquid fuels/chemicals. The dielectric barrier discharge plasma process that adds carbon and hydrogen simultaneously to heavy

  11. European Wave and Tidal Energy Conference

    Broader source: Energy.gov [DOE]

    The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

  12. Direct Drive Wave Energy Buoy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Drive Wave Energy Buoy 15direcolumbiapowerrhinefrank.ppt (1.58 MB) More Documents & Publications Wave Tank WEC Array Analysis Ocean Power Technologies (TRL 7 8 System) - ...

  13. MHK Technologies/WAVE ENERGY CONVERTER | Open Energy Information

    Open Energy Info (EERE)

    WAVE ENERGY CONVERTER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Wave Technology Type...

  14. Biochemical Conversion Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion 2009 Peer Review Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model For more publications, see the Bioenergy Publication Library

  15. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [download flyer] Recordings of the presentations and panel discussions are available here for online viewing. Detailed abstracts for the presentations can be found here. Paul Alivisatos Quantum Dot Luminescent Concentrators Paul Alivisatos, Lawrence Berkeley National Laboratory Shanhui Fan Control of Thermal

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) On Sunday, July 29, 2012, the Resnick Sustainability Institute and the LMI-EFRC at Caltech co-organized a one-day workshop on Redefining the Limits of Photovoltaic Efficiency. Leaders from industry, academia and government gathered together and discussed new technologies for redefining the limits of solar energy conversion efficiency. The program featured invited talks, a poster session, and topically-focused breakout sessions in the afternoon. Invited speakers included

  17. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 1: New Light Management Mechanisms RG Leader: Eli Yablonovitch Affiliated PIs: Harry Atwater, Paul Braun, Mark Brongersma, Jennifer Dionne, Shanhui Fan, Andrei Faraon, John Rogers, and Xiang Zhang image Large-area nanostructured plasmonic solar cells in amorphous silicon (H. Atwater, Caltech & P. Alivisatos, LBNL The RG1 team is establishing light management principles that challenge historical scientific ideas about solar energy conversion efficiency limits. RG1 is a

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Get Involved The LMI-EFRC is a synergistic, engaged team of researchers devoted to light management for solar energy conversion. If you are interested in learning more about the LMI-EFRC and opportunities to get involved, please contact lmi-efrc@caltech.edu. Former governor Arnold Schwarzenegger and Austrian Chancellor Werner Faymann visit Caltech. Hollywood film director James Cameron visits Caltech

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Events image Perovskite Solar Cells: Towards New Materials and New Applications Nripan Mathews, Nanyang Technological University, Singapore November 3, 2014, 11:15 am 101 Guggenheim Lab, Lees-Kubota Hall 2013 workshop Approaches to Ultrahight Efficiency Solar Energy Conversion We are excited to offer this FREE public webinar featuring presentations and an interactive panel discussion with LMI-EFRC photovoltaic experts! March 7, 2013, 8:30-10:30 am PST Hameetman Auditorium,

  20. Utilizing Nature's Designs for Solar Energy Conversion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utilizing Nature's Designs for Solar Energy Conversion Utilizing Nature's Designs for Solar Energy Conversion Presentation by Lisa Utschig, Argonne National Laboratory, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. bio_h2_workshop_utschig.pdf (1.24 MB) More Documents & Publications 2013 Biological Hydrogen Production Workshop Summary Report Basic Research Needs for Solar Energy

  1. Sandia Energy - Advanced Controls of Wave Energy Converters May...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Controls of Wave Energy Converters May Increase Power Capture Up to 330% Home Renewable Energy Energy Water Power Partnership News News & Events Computational Modeling &...

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) UIUC Workshop Acknowledgements To be included as an LMI-EFRC publication, paper acknowledgements must be carefully worded. Please use the following as a guideline in preparing the "Acknowledgements" section in your manuscripts that include the LMI-EFRC as a source of support. For work solely funded by the LMI-EFRC At minimum, please use this wording: "This work was supported by the DOE 'Light-Material Interactions in Energy Conversion' Energy Frontier

  3. WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  4. Solar to Chemical Energy Conversion with Photocatalytic Heterostructur...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar to Chemical Energy Conversion with Photocatalytic Heterostructures made of Earth Abundant Materials Cu2ZnSnS4 (CZTS) is one of the most promising materials for solar energy...

  5. Sandia-NREL Wave Energy Converter (WEC)-Sim Development Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Wave Energy Converter (WEC)-Sim Development Meeting - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  6. Thermochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Biorefinery Integration Thermochemical Conversion - Biorefinery Integration Fuels Synthesis Fuels can be produced from bio-oils using processes similar to those found in a petroleum refinery, including hydrotreating and hydrocracking to create green gasoline, an alternative to alcohol-based ethanol fuels. Some types of bio-oils can even be fully integrated into petroleum refining stream and infrastructure. The conversion of biomass derived syngas to products is typically an exothermic process,

  7. Thermochemical Conversion Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes Thermochemical Conversion Processes Gasification In gasification conversion, lignocellulosic feedstocks such as wood and forest products are broken down to synthesis gas, primarily carbon monoxide and hydrogen, using heat. The feedstock is then partially oxidized, or reformed with a gasifying agent (air, oxygen, or steam), which produces synthesis gas (syngas). The makeup of syngas will vary due to the different types of feedstocks, their moisture content, the type of gasifier used,

  8. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  9. Enhanced Conversion of Thermal Electron Bernstein Waves to the Extraordinary Electromagnetic Mode on the National Spherical Torus Experiment (NSTX)

    SciTech Connect (OSTI)

    G. Taylor; P.C. Efthimion; B. Jones; B.P. LeBlanc; J.R. Wilson; J.B. Wilgen; G.L. Bell; T.S. Bigelow; R. Maingi; D.A. Rasmussen; R.W. Harvey; A.P. Smirnov; F. Paoletti; S.A. Sabbagh

    2002-10-15

    A four-fold increase in the conversion of thermal electron-Bernstein waves (EBW) to the extraordinary mode (X-mode) was measured when the density scale length (L subscript ''n'') was progressively shortened by a local Boron nitride limiter in the scrape-off of an ohmically heated National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng, et al., Proceedings 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The maximum conversion efficiency approached 50% when L subscript ''n'' was reduced to 0.7 cm, in agreement with theoretical predictions that used locally measured L subscript ''n''. Calculations indicate that it is possible to establish L subscript ''n'' < 0.3 cm with a local limiter, a value predicted to attain approximately 100% EBW conversion to the X-mode in support of proposed EBW heating and current drive scenarios.

  10. Sandia Publishes Five Reports on the Environmental Effects of Wave-Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Converters Publishes Five Reports on the Environmental Effects of Wave-Energy Converters - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  11. WEC-Sim (Wave Energy Converter SIMulator) Code Development and Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Class (Wave Energy Converter SIMulator) Code Development and Training Class - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  12. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    SciTech Connect (OSTI)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-06-09

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for ? ? (?L)1/3(?c/?) somewhat less than 1, contrary to previous ideas. Only o mode is produced for ? and somewhat greater than 1.5. Here ?c is the (angular) electron cyclotron frequency, ? the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as ? increases. (4) As ? increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as ? increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 70%. (7) The interference effect and the disappearance of the x mode at ? somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for solar and

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 3 LMI-EFRC Team Meeting March 7-8, 2013 California Institute of Technology Pasadena, CA [map] Our 2013 Annual Meeting will be at Caltech on Thursday-Friday, March 7-8, 2013. This year, we will kick off the meeting with our first-ever free public webinar on Approaches to Ultrahigh Efficiency Solar Energy Conversion featuring presentations and a panel discussion with some of our expert faculty investigators. The remainder of the meeting will be devoted primarily to student-

  14. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Fall Meeting September 3-4, 2015 California Institute of Technology Pasadena, CA [map] Our 2015 LMI-EFRC Fall Meeting will be at Caltech on Thursday-Friday, September 3-4, 2015. Our meeting this year will start with a public webinar on New Approaches to Full Spectrum Solar Energy Conversion featuring some of our LMI experts. This meeting will gather the PIs, students, and postdocs from the five institutions (Caltech, Harvard, LBL, Stanford, and UIUC) for a combination of

  15. Evaluation of Thermal to Electrical Energy Conversion of High Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite-Based Thermoelectric Modules | Department of Energy Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Discusses progress toward the fabrication of a skutterudite-based TE module and provides module performance data under operating conditions similar to those for automotive applications deer11_salvador.pdf (2.68

  16. Project Profile: Next-Generation Thermionic Solar Energy Conversion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Generation Thermionic Solar Energy Conversion Project Profile: Next-Generation Thermionic Solar Energy Conversion Stanford/SLAC logo -- This project is inactive -- Stanford University and the SLAC National Accelerator Laboratory, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is designing and testing an innovative high-temperature power cycle for CSP systems that does not require any mechanical equipment, resulting

  17. Mode conversion and absorption of fast waves at high ion cyclotron harmonics in inhomogeneous magnetic fields

    SciTech Connect (OSTI)

    Cho, Suwon; Kwak, Jong-Gu

    2014-04-15

    The propagation and absorption of high harmonic fast waves is of interest for non-inductive current drives in fusion experiments. The fast wave can be coupled with the ion Bernstein wave that propagates in the high magnetic field side of an ion cyclotron harmonic resonance layer. This coupling and the absorption are analyzed using the hot plasma dispersion relation and a wave equation that was converted from an approximate dispersion relation for the case where λ{sub i}=k{sub ⊥}{sup 2}ρ{sub i}{sup 2}/2≳1 (where k{sub ⊥} is the perpendicular wave number and ρ{sub i} is the ion Larmor radius). It is found that both reflection and conversion may occur near the harmonic resonance layer but that they decrease rapidly, giving rise to a sharp increase in the absorption as the parallel wave number increases.

  18. DUF6 Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » PPPO Cleanup Projects - Portsmouth, Paducah, & DUF6 » DUF6 Conversion DUF6 Conversion DUF6 Facility at the Paducah Site DUF6 Facility at the Paducah Site DUF6 Facility at the Portsmouth Site DUF6 Facility at the Portsmouth Site There are more than 63,000 cylinders filled with DUF6 stored in cylinder yards at the Paducah and Portsmouth Sites. There are more than 63,000 cylinders filled with DUF6 stored in cylinder yards at the Paducah and Portsmouth Sites. DUF6 cylinder

  19. Controller for a wave energy converter

    SciTech Connect (OSTI)

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  20. Ocean floor mounting of wave energy converters

    DOE Patents [OSTI]

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  1. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Dziendziel, Randolph J.; DePoy, David Moore; Baldasaro, Paul Francis

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  2. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Dziendziel, Randolph J.; Baldasaro, Paul F.; DePoy, David M.

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  3. January 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information January 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Energy Technology Perspectives 2012: Executive Summary [Portuguese version] NONE Energy indicators for electricity production : comparing technologies and the nature of the indicators Energy Payback Ratio (EPR), Net Energy Ratio (NER) and Cumulative Energy Demand (CED). [Oestfoldforskning AS] Raadal, Hanne Lerche [Ostfold

  4. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    SciTech Connect (OSTI)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  5. Energy Department Announces $10 million for Wave Energy Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    million to test prototypes designed to generate clean, renewable electricity from ocean waves and help diversify America's energy portfolio. The Energy Department-supported...

  6. Linear mode conversion of Langmuir/z-mode waves to radiation in plasmas with various magnetic field strength

    SciTech Connect (OSTI)

    Kim, Eun-Hwa; Johnson, Jay R.; Cairns, Iver H.

    2013-12-15

    Linear mode conversion of Langmuir/z waves to electromagnetic radiation near the plasma and upper hybrid frequency in the presence of density gradients is potentially relevant to type II and III solar radio bursts, ionospheric radar experiments, pulsars, and continuum radiation for planetary magnetospheres. Here, we study mode conversion in warm, magnetized plasmas using a numerical electron fluid simulation code when the density gradient has a wide range of angle, δ, to the ambient magnetic field, B{sub 0}, for a range of incident Langmuir/z wavevectors. Our results include: (1) Left-handed polarized ordinary (oL) and right-handed polarized extraordinary (xR) mode waves are produced in various ranges of δ for Ω{sub 0} = (ωL/c){sup 1/3}(ω{sub ce}/ω) < 1.5, where ω{sub ce} is the (angular) electron cyclotron frequency, ω is the angular wave frequency, L is the length scale of the (linear) density gradient, and c is the speed of light; (2) the xR mode is produced most strongly in the range, 40° < δ < 60°, for intermediately magnetized plasmas with Ω{sub 0} = 1.0 and 1.5, while it is produced over a wider range, 0° ≤ δ ≤ 90°, for weakly magnetized plasmas with Ω{sub 0} = 0.1 and 0.7; (3) the maximum total conversion efficiencies for wave power from the Langmuir/z mode to radiation are of order 50%–99% and the corresponding energy conversion efficiencies are 5%–14% (depending on the adiabatic index γ and β = T{sub e}/m{sub e}c{sup 2}, where T{sub e} is the electron temperature and m{sub e} is the electron) for various Ω{sub 0}; (4) the mode conversion window becomes wider as Ω{sub 0} and δ increase. Hence, the results in this paper confirm that linear mode conversion under these conditions can explain the weak total circular polarization of interplanetary type II and III solar radio bursts because a strong xR mode can be generated via linear mode conversion near δ ∼ 45°.

  7. Highly coherent red-shifted dispersive wave generation around 1.3 μm for efficient wavelength conversion

    SciTech Connect (OSTI)

    Li, Xia; Bi, Wanjun; Chen, Wei; Xue, Tianfeng; Hu, Lili; Liao, Meisong; Gao, Weiqing

    2015-03-14

    This research investigates the mechanism of the optical dispersive wave (DW) and proposes a scheme that can realize an efficient wavelength conversion. In an elaborately designed photonic crystal fiber, a readily available ytterbium laser operating at ∼1 μm can be transferred to the valuable 1.3 μm wavelength range. A low-order soliton is produced to concentrate the energy of the DW into the target wavelength range and improve the degree of coherence. The input chirp is demonstrated to be a factor that enhances the wavelength conversion efficiency. With a positive initial chirp, 76.6% of the pump energy in the fiber can be transferred into a spectral range between 1.24 and 1.4 μm. With the use of a grating compressor, it is possible to compress the generated coherent DW of several picoseconds into less than 90 fs.

  8. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    SciTech Connect (OSTI)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  9. Elgen Wave | Open Energy Information

    Open Energy Info (EERE)

    Elgen Wave Jump to: navigation, search Name: Elgen Wave Region: United States Sector: Marine and Hydrokinetic Website: www.elgenwave.com This company is listed in the Marine and...

  10. Mitochondrial complex I - energy conversion by a giant proton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitochondrial complex I - energy conversion by a giant proton pump Wednesday, November 4, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Volker Zickermann, Goethe...

  11. Energy Conversion and Thermal Efficiency Sales Tax Exemption

    Office of Energy Efficiency and Renewable Energy (EERE)

    Qualifying energy conversion facilities are those that are used for the primary purpose of converting natural gas or fuel oil to an alternate fuel or power source excluding propane, butane, napht...

  12. Energy conversion device with support member having pore channels

    DOE Patents [OSTI]

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  13. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the Inorganic PV thrust, we develop nanostructured materials architectures for solar energy conversion by engineering absorption and transport properties not available in the bulk. In particular, we aim to exploit unique quantum effects at the nanoscale which are promising for the realization of new paradigms in solar energy conversion such as intermediate band or hot carrier solar cells. Thrust Leaders: Prof. Rachel Goldman (MSE)&nbspand Prof. Jamie Phillips (EECS) Recent Publications -

  14. Global particle simulation of lower hybrid wave propagation and mode conversion in tokamaks

    SciTech Connect (OSTI)

    Bao, J.; Lin, Z.; Kuley, A.

    2015-12-10

    Particle-in-cell simulation of lower hybrid (LH) waves in core plasmas is presented with a realistic electron-to-ion mass ratio in toroidal geometry. Due to the fact that LH waves mainly interact with electrons to drive the current, ion dynamic is described by cold fluid equations for simplicity, while electron dynamic is described by drift kinetic equations. This model could be considered as a new method to study LH waves in tokamak plasmas, which has advantages in nonlinear simulations. The mode conversion between slow and fast waves is observed in the simulation when the accessibility condition is not satisfied, which is consistent with the theory. The poloidal spectrum upshift and broadening effects are observed during LH wave propagation in the toroidal geometry.

  15. Wave Energy Converter System Requirements and Performance Metrics

    Broader source: Energy.gov [DOE]

    The Energy Department and Wave Energy Scotland are holding a joint workshop on wave energy converter (WEC) system requirements and performance metrics on Friday, February 26.

  16. MHK Technologies/Ocean Wave Air Piston | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator...

  17. Irregular Wave Energy Extraction Analysis for a Slider Crank WEC Power Take-Off System

    SciTech Connect (OSTI)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard

    2015-09-02

    Slider crank Wave Energy Converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this WEC has been done under regular sinusoidal wave conditions, and a suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and the control methodology is modified to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but still a reasonable amount of energy can be extracted.

  18. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion PDF icon chen.pdf More ...

  19. Energy Conversion and Storage Program: 1992 Annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  20. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Basin Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaveBasin&oldid596392" Feedback Contact needs updating Image needs updating Reference...

  1. One dimensional full wave analysis of slow-to-fast mode conversion in lower hybrid frequencies

    SciTech Connect (OSTI)

    Jia, Guo-Zhang; Gao, Zhe

    2014-12-15

    The linear conversion from the slow wave to the fast wave in the lower hybrid range of frequencies is analyzed numerically by using the set of field equations describing waves in a cold plane-stratified plasma. The equations are solved as a two-point boundary value problem, where the polarizations of each mode are set consistently in the boundary conditions. The scattering coefficients and the field patterns are obtained for various density profiles. It is shown that, for large density scale length, the results agree well with the traditional cognitions. In contrast, the reflected component and the probable transmitted-converted component from the conversion region, which are neglected in the usual calculations, become significant when the scale length is smaller than the wavelength of the mode. The inclusion of these new components will improve the accuracy of the simulated propagation and deposition for the injected rf power when the conversion process is involved within a sharp-varying density profile. Meanwhile, the accessibility of the incident slow wave for the low frequency case is also affected by the scale length of the density profile.

  2. Pin stack array for thermoacoustic energy conversion

    DOE Patents [OSTI]

    Keolian, Robert M.; Swift, Gregory W.

    1995-01-01

    A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.

  3. Advisors | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advisors Robert Armstrong Director, MIT Energy Initiative Visit Website George W. Crabtree Senior Scientist, Argonne National Laboratory Argonne Distinguished Fellow Visit Website ...

  4. Department of Energy Cites BWXT Conversion Services, LLC for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BWXT Conversion Services, LLC for Worker Safety and Health Program Violations July 13, 2016 - 4:43pm NEWS MEDIA CONTACT  202-586-4940  DOENews@hq.doe.gov WASHINGTON - The U.S. Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to BWXT Conversion Services, LLC (BWCS) for violations of DOE worker safety and health requirements. DOE's enforcement program holds contractors accountable for meeting regulatory requirements and maintaining a safe and healthy

  5. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center

    Broader source: Energy.gov (indexed) [DOE]

    (S3TEC ) | Department of Energy Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion chen.pdf (2.01 MB) More Documents & Publications Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion DOE Office of Basic Sciences: An Overview of Basic Research Activities on Thermoelectrics

  6. Currency Conversion and Energy Projections: Some Questions and Answers

    U.S. Energy Information Administration (EIA) Indexed Site

    Currency Conversion and Energy Projections: Some Questions and Answers Vipin Arora November 2015 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES November 2015 Vipin Arora | U.S. Energy Information

  7. Center on Nanostructuring for Efficient Energy Conversion - Outside

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inquiries Contact Us Outside Inquiries If you have a specific question regarding CNEEC or the work it does, please contact Elizabeth Mattson at emattson(at)stanford.edu. Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences Stanford Home | Engineering Home | CNEEC Home | Contact Us © 1997-2015 Stanford University. All Rights Reserved. CNEEC Research

  8. Center on Nanostructuring for Efficient Energy Conversion - Team & Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slideshow Staff Team & Research Slideshow Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences Stanford Home | Engineering Home | CNEEC Home | Contact Us © 1997-2015 Stanford University. All Rights Reserved. CNEEC Research Faculty Directors & PI's Partners Team & Research Slideshow

  9. Ocean thermal energy conversion: report to congress - fiscal year 1982

    SciTech Connect (OSTI)

    Not Available

    1983-03-31

    National Oceanic and Atmospheric Administration (NOAA) activities related to ocean thermal energy conversion (OTEC) during fiscal year 1982 are described. The agency focus has been in the areas of providing ocean engineering and technical assistance to the Department of Energy (DOE), in streamlining the administration of the Federal OTEC licensing system, and in environmental assistance.

  10. Staff | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff and Contractors Staff and Contractors Watch the video above to hear a message from Secretary Moniz, highlighting the FY 2016 budget request for the Department of Energy and his appreciation for the vital mission and dedicated employees of the Department. As referenced in the video, employees are encouraged to visit the Department's website to view the full FY 2016 budget presentation, which proposes approximately $30 billion to support nuclear security, clean energy, environmental cleanup,

  11. WEC up! Energy Department Announces Wave Energy Conversion Prize...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 24, 2014 - 5:48pm Addthis The Water Power Program ... Inc. by providing engineering and technical expertise ... 240 feet wide, and 20 feet deep, and has 216 ...

  12. WEC-Sim (Wave Energy Converter - SIMulator)

    SciTech Connect (OSTI)

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-source code to model WECs.

  13. WEC-Sim (Wave Energy Converter - SIMulator)

    Energy Science and Technology Software Center (OSTI)

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-sourcemore » code to model WECs.« less

  14. Direct Energy Conversion Nano-hybrid Fuel

    SciTech Connect (OSTI)

    Popa-Simil, Liviu

    2008-07-01

    Most of the exothermic nuclear reactions transfer the mass defect or binding and surplus energy into kinetic energy of the resulting particles. These particles are traveling through material lattices, interacting by ionization and nuclear collisions. Placing an assembly of conductive-insulating layers in the path of such radiation, the ionization energy is transformed into charge accumulation by polarization. The result is a super-capacitor charged by the moving particles and discharged electrically. Another more promising solution is to use bi-material nanoparticles organized such as to act like a serial connection and add the voltage. A spherical symmetry fission products source coated in several nano-layers is desired for such structures. The system may operate as dry or liquid-immersed battery, removing the fission products from the fissile material. There is a tremendous advantage over the current heat flow based thermal stabilization system allowing a power density up to 1000 times higher. (author)

  15. MHK Projects/Santona Wave Energy Park | Open Energy Information

    Open Energy Info (EERE)

    Santona Wave Energy Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"RO...

  16. Oregon Wave Energy Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Partners LLC Jump to: navigation, search Name: Oregon Wave Energy Partners LLC Address: 1590 Reed Road Place: Pennington Zip: 8534 Region: United States Sector: Marine and...

  17. MHK Technologies/Wave Energy Propulsion | Open Energy Information

    Open Energy Info (EERE)

    MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Propulsion.jpg Technology Profile Primary Organization Kneider Innovations...

  18. Wave Energy Technology New Zealand | Open Energy Information

    Open Energy Info (EERE)

    Zealand Jump to: navigation, search Name: Wave Energy Technology New Zealand Address: PO Box 25456 Panama St Place: Wellington Zip: 6146 Region: New Zealand Sector: Marine and...

  19. MHK Technologies/OCEANTEC Wave Energy Converter | Open Energy...

    Open Energy Info (EERE)

    Energy Converter.jpg Technology Profile Primary Organization OCEANTEC Energias Marinas S L Technology Resource Click here Wave Technology Type Click here Attenuator Technology...

  20. Energy Conversion and Storage Program. 1990 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  1. MHK Technologies/Magnetohydrodynamic MHD Wave Energy Converter...

    Open Energy Info (EERE)

    Magnetohydrodynamic MHD Wave Energy Converter MWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Magnetohydrodynamic MHD Wave Energy...

  2. Mapping and Assessment of the United States Ocean Wave Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mapping and Assessment of the United States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and ...

  3. A unified site evaluation system for wind energy conversion

    SciTech Connect (OSTI)

    Biro, G.G.

    1980-12-01

    The described evaluation system includes all field and office engineering work needed for proper site selections and for writing the environmental impact statement. Meteorological measurements with collapsible towers trucked to the site, the needed instrumentation, and data transmission with satellite telemetry for storing the meteorological data on a magnetic tape for direct input into the computer are described. A computer program WESES was developed to calculate the energy output of WECSs using the meteorological data on the magnetic tapes. A test site analysis using 7 years of wind velocity measurements is performed, and two 500-kW power wind energy conversion systems have been evaluated. The calculational results give the hourly fluctuations of energy output for any day of the measurements, which also can be used for comparing with load demands. It also calculates and shows in graphs the daily and monthly cumulative energy outputs and compares the energy outputs of different wind energy conversion systems for any desired time period.

  4. Thermoelectrics | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermoelectrics One of the central themes of S3TEC is to develop more efficient thermoelectric materials to directly convert heat into electricity via the Seebeck effect, or provide cooling via the Peltier effect. Their ability to harvest waste heat and deliver cooling power through solid-state devices without moving parts makes them important candidates of sustainable energy technologies in the future. Despite the benefits, the current bottleneck of thermoelectric technology is its relatively

  5. News - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archives Events/News Archives 1st Annual CSTEC External Workshop: August 4, 2010 2nd Annual CSTEC External Workshop: May 3, 2011 3rd Annual CSTEC External Workshop: October 2, 2012 DOE to establish Energy Frontier Research Center in solar energy at U-M CSTEC investigators co-chair ICEL2010 Forcing mismatched elements together could yield better solar cells Recycling waste heat into energy: Researchers take a step toward more efficient conversion Multi-EFRC Collaborative Effort on TE in

  6. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Thermoelectric thrust of CSTEC focuses on fundamental transport processes that govern solid state energy conversion, i.e., how the charge and energy flow through the atomic lattice or an array of assembled molecules. The CSTEC team tackles the challenges of thermoelectricity comprehensively by studying transport phenomena from a multi-dimensional perspective that spans charge and energy transport in molecular junctions, conduction processes in two-dimensional films, and the role the

  7. Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program 2013 Peer Review Novel Energy Conversion Equipment for Low Temperature Geothermal Resources April 22, 2013 This presentation does not contain any proprietary 1 | US DOE Geothermal Program confidential, or otherwise restricted information. Public Service of Colorado Ponnequin Wind Farm Jay Kohler Frank Baumgardt Johnson Controls, Inc. Geothermal Energy Production from Low Temperature Resources eere.energy.gov Overview Timeline: This project was awarded on April 30, 2010. Manufacturing of

  8. June 2014 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information June 2014 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 337 Seventh Edition Fuel Cell Handbook NETL (2004) 118 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 76 Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

  9. March 2014 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information March 2014 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 291 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 85 Seventh Edition Fuel Cell Handbook NETL (2004) 68 Separation of heavy metals: Removal from industrial wastewaters and

  10. March 2015 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information March 2015 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 1019 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 229 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005)