Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

2

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network (OSTI)

of offshore wave power to provide efficient, reliable, cost-effective, and environmentally friendly electrical definition study in CY 2004. This study will produce system designs for wave energy conversion device power plants, performance estimate and economic assessments for one site ­ wave energy conversion device per

3

MHK Technologies/Wave Energy Conversion Activator WECA | Open Energy  

Open Energy Info (EERE)

Activator WECA Activator WECA < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus Informatics Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The full scale WECA design is ideally fabricated with steel so as to be suitable for mounting on the run up wall of breakwaters or other rigid or floating structures The oscillating wave surge converter absorbs most of the energy of the impacting waves and turn it into compressed air which is subsequently converted into electric power or other forms of energy The device utilizes the Critical Momentum Wedge principle where the water rushing into the device resembles a virtual Wedge of kinetic energy

4

A Cascade-Type Global Energy Conversion Diagram Based on Wave–Mean Flow Interactions  

Science Conference Proceedings (OSTI)

A cascade-type energy conversion diagram is proposed for the purpose of diagnosing the atmospheric general circulation based on wave–mean flow interactions. Mass-weighted isentropic zonal means facilitate the expression of nongeostrophic wave ...

Sachiyo Uno; Toshiki Iwasaki

2006-12-01T23:59:59.000Z

5

Turbine speed control for an ocean wave energy conversion system  

Science Conference Proceedings (OSTI)

In this work, a hydraulic turbine speed governor is proposed in view of its application in an isolated electric generation system based on an ocean wave energy converter (WEC). The proposed strategy is based on cascade closed-loop control combined with ... Keywords: Pelton turbine, cascade control, feedforward control, ocean wave energy, speed governor

Paula B. Garcia-Rosa; José Paulo V. S. Cunha; Fernando Lizarralde

2009-06-01T23:59:59.000Z

6

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

7

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

8

Iterated multidimensional wave conversion  

Science Conference Proceedings (OSTI)

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

9

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

10

ENERGY CONVERSION Spring 2011  

E-Print Network (OSTI)

in this course: Week 1: Review Week 2: Entropy and exergy Week 3: Power cycles, Otto and Diesel Week 4 resources including: wind, wave energy conversion devices, and fuel cell technologies Week12: Introduction will work in groups as assigned. Experiment: Diesel Engine Assessment: Projects 20% Lab Reports

Bahrami, Majid

11

Resonant energy conversion of 3-minute intensity oscillations into Alfven waves in the solar atmosphere  

E-Print Network (OSTI)

Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.

D. Kuridze; T. V. Zaqarashvili

2007-03-19T23:59:59.000Z

12

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

13

Wave Energy  

Energy.gov (U.S. Department of Energy (DOE))

Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.)

14

Novel design and implementation of a permanent magnet linear tubular generator for ocean wave energy conversion.  

E-Print Network (OSTI)

??The world’s energy consumption is growing at an alarming rate and the need for renewable energy is apparent now more than ever. Estimates have shown… (more)

[No author

2007-01-01T23:59:59.000Z

15

Lower Hybrid to Whistler Wave Conversion  

Science Conference Proceedings (OSTI)

In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

Winske, Dan [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

16

Ocean Tidal and Wave Energy  

Science Conference Proceedings (OSTI)

First published in 2000, the annual Renewable Energy Technical Assessment Guide (TAG-RE) provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. This excerpt from the 2005 TAG-RE addresses ocean tidal and wave energy conversion technologies, which offer promise for converting the significant energy potential available in ocean tidal currents and waves to electricity in the future.

2005-12-19T23:59:59.000Z

17

Helical rays in two-dimensional resonant wave conversion  

E-Print Network (OSTI)

2] D.G. Swanson, Theory of Mode Conversion and Tunneling inin two-dimensional resonant wave conversion Allan N. KaufmanThe process of resonant wave conversion (often called linear

Kaufman, Allan N.; Tracy, Eugene R.; Brizard, Alain J.

2004-01-01T23:59:59.000Z

18

Direct energy conversion systems  

SciTech Connect

The potential importance of direct energy conversion to the long-term development of fusion power is discussed with stress on the possibility of alleviating waste heat problems. This is envisioned to be crucial for any central power station in the 21st century. Two approaches to direct conversion, i.e., direct collection and magnetic expansion, are reviewed. While other techniques may be possible, none have received sufficient study to allow evaluation. It is stressed that, due to the intimate connection between the type of fusion fuel, the confinement scheme, direct conversion, and the coupling technique, all four element must be optimized simultaneously for high overall efficiency.

Miley, G.H.

1978-01-01T23:59:59.000Z

19

Photovoltaic Energy Conversion  

E-Print Network (OSTI)

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Buy Solar Energy Stocks? Make Photovoltaics your Profession! #12;Challenges Make solar cells more and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth #12;Take Advantage of Solar Megatrend

Glashausser, Charles

20

Ocean Thermal Energy Conversion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Ocean Thermal Energy Conversion August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in...

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Conversion A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when...

22

Conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents, For your convenience, you may convert energies online below. Or display factors as: ...

23

Session: Energy Conversion  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

24

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

25

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

26

Model Energy Conversion Efficiency of Biological Systems  

Science Conference Proceedings (OSTI)

MML Researchers Model Energy Conversion Efficiency of Biological Systems. Novel, highly efficient energy conversion ...

2013-03-15T23:59:59.000Z

27

Solar energy conversion.  

SciTech Connect

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

28

Unconditional conversion between quantum particles and waves  

E-Print Network (OSTI)

Wave-particle duality is a basic notion of quantum mechanics, which has largely contributed to many debates on the foundations of quantum theory. Besides this fundamental aspect of the wave-particle nature of quantum systems, recently, it turned out that, in order to construct more advanced and efficient protocols in quantum communication and information processing, it is also beneficial to combine continuous-wave and discrete-particle features in a so-called hybrid fashion. However, in traditional, quantum optical complementarity tests, monitoring the light waves would still happen in an effectively particle-like fashion, detecting the fields click by click. Similarly, close-to-classical, wave-like coherent states, as readily available from standard laser sources, or other Gaussian states generated through nonlinear optical interactions, have been so far experimentally converted into non-classical quantum superpositions of distinct waves only in a conditional fashion. Here we experimentally demonstrate the deterministic conversion of a single-photon state into a quantum superposition of two weak coherent states with opposite phases - a Schrodinger kitten state - and back. Conceptually different from all previous experiments, as being fully reversible, this can be interpreted as a quantum gate, connecting the complementary regimes of particle-like and wave-like light fields in a unitary fashion, like in a quantum computation. Such an unconditional conversion is achieved by means of a squeezing operation, demonstrating a fundamental feature of any quantum system: particle-like and wave-like properties can be reversibly altered, with no need for filtering out either through detection.

Yoshichika Miwa; Jun-ichi Yoshikawa; Noriaki Iwata; Mamoru Endo; Petr Marek; Radim Filip; Peter van Loock; Akira Furusawa

2012-09-13T23:59:59.000Z

29

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

30

Energy Conversion/Fuel Cells  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Sponsorship, MS&T Organization.

31

MHK Technologies/DEXA Wave Converter | Open Energy Information  

Open Energy Info (EERE)

Wave Technology Type Click here Attenuator Technology Description The wave energy conversion is similar to other devices There is no data publicly available currently on the...

32

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

33

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network (OSTI)

notably energy conversion. As research continues in thisnanowires for energy conversion. Chemical Reviews, 2010.for solar energy conversion. Physical Review Letters, 2004.

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

34

MHK Technologies/Mobil Stabilized Energy Conversion Platform | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Mobil Stabilized Energy Conversion Platform MHK Technologies/Mobil Stabilized Energy Conversion Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Mobil Stabilized Energy Conversion Platform.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Stabilized Energy Conversion Platform SECOP consists of submersible hulls supporting a raised work platform containing a number of AMI s reciprocating electric generators Technology Dimensions Device Testing Date Submitted 34:44.5 << Return to the MHK database homepage Retrieved from

35

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

36

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

37

Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light  

SciTech Connect

It is revealed that the generation of a coherent wave by frequency conversion of incoherent waves is a characteristic feature of three-wave interaction in a nonlinear medium when angular dispersion of input waves is properly chosen. In this case the combining action of the pairs of spectral components of incoherent waves may result in the cumulative driving of a single plane monochromatic wave in up-conversion and down-conversion processes. As a fundamental result we point out an enhancement of the spectral radiance of the generated wave in comparison with incoherent waves.

Piskarskas, A.; Pyragaite, V.; Stabinis, A. [Department of Quantum Electronics, Vilnius University, Sauletekio Avenue 9, Building 3, LT-10222 Vilnius (Lithuania)

2010-11-15T23:59:59.000Z

38

Wave Energy | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Wave Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleWaveEnergy&oldid267203" Category: Articles with outstanding TODO tasks...

39

Basis of conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Basis of conversion factors for energy equivalents Conversion factors for energy equivalents are derived from the following relations: ...

40

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents Return to online conversions. Next page of energy equivalents. Definition of uncertainty ...

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from the EERE Bioenergy Technologies Office. Thermochemical Conversion Processes Heat energy and chemical catalysts can be used to break down biomass into intermediate compounds...

42

MHK Technologies/Direct Energy Conversion Method DECM | Open Energy  

Open Energy Info (EERE)

Conversion Method DECM Conversion Method DECM < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Energy Conversion Method DECM.jpg Technology Profile Primary Organization Trident Energy Ltd Project(s) where this technology is utilized *MHK Projects/TE4 Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Description The Direct Energy Conversion Method DECM device has four major components 1 linear generators that convert straight line mechanical motion directly into electricity 2 floats placed in the sea to capture wave energy through a rising and falling action which drives linear generators resulting in the immediate generation of electricity 3 a sea platform used to support the floats and generators and 4 a conventional anchoring system to moor the rig

43

Wave Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

turn, rotates a turbine. Specially built seagoing vessels can also capture the energy of offshore waves. These floating platforms create electricity by funneling waves through...

44

Hydrothermal Energy Conversion Technology  

SciTech Connect

The goal of the Hydrothermal Program is to develop concepts which allow better utilization of geothermal energy to reduce the life-cycle cost of producing electricity from liquid-dominated, hydrothermal resources. Research in the program is currently ongoing in three areas: (1) Heat Cycle Research, which is looking at methods to increase binary plant efficiencies; (2) Materials Development, which is developing materials for use in geothermal associated environments; and (3) Advanced Brine Chemistry, with work taking place in both the brine chemistry modeling area and waste disposal area. The presentations during this session reviewed the accomplishments and activities taking place in the hydrothermal energy conversion program. Lawrence Kukacka, Brookhaven National Laboratory, discussed advancements being made to develop materials for use in geothermal applications. This research has identified a large number of potential materials for use in applications from pipe liners that inhibit scale buildup and reduce corrosion to elastomers for downhole use. Carl J. Bliem, Idaho National Engineering Laboratory, discussed preparations currently underway to conduct field investigations of the condensation behavior of supersaturated turbine expansions. The research will evaluate whether the projected 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Eugene T. Premuzic, Brookhaven National Laboratory, discussed advancements being made using biotechnology for treatment of geothermal residual waste; the various process options were discussed in terms of biotreatment variables. A treatment scenario and potential disposal costs were presented. John H. Weare, University of California, San Diego, discussed the present capabilities of the brine chemistry model he has developed for geothermal applications and the information it can provide a user. This model is available to industry. The accomplishments from the research projects presented in this session have been many. It is hoped that these accomplishments can be integrated into industrial geothermal power plant sites to assist in realizing the goal of reducing the cost of energy produced from the geothermal resource.

Robertson, David W.; LaSala, Raymond J.

1992-03-24T23:59:59.000Z

45

Direct Drive Wave Energy Buoy  

SciTech Connect

The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

46

Wave Energy  

E-Print Network (OSTI)

Promoting the sustainable supply and use of energy for the greatest benefit of all. Publication details The compilation of the Survey of Energy Resources 2001 is the work of the editors and, while all reasonable endeavours have been used to ensure the accuracy of the data, neither the editors nor the World Energy Council can accept responsibility for any errors.

The World; Energy Council; Wb Lt; K. Yokobori (japan; A. W. Clarke (united Kingdom; J. A. Trinnaman (united Kingdom; Nuclear Energy; N. Alazard-toux; B. Bensaïd; W. Youngquist

2001-01-01T23:59:59.000Z

47

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion to someone by E-mail Share Vehicle Technologies Office: Solid State Energy Conversion on Facebook Tweet about Vehicle Technologies Office: Solid State Energy...

48

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Nanoporous Thermal-to-Electrical Energy Conversion System (hand, the indirect energy conversion systems tend to beIn a direct energy conversion system, heat can be converted

Lim, Hyuck

2011-01-01T23:59:59.000Z

49

NREL-Ocean Energy Thermal Conversion | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Thermal Conversion Jump to: navigation, search Logo: NREL-Ocean Energy Thermal Conversion Name NREL-Ocean Energy Thermal Conversion AgencyCompany Organization...

50

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

DOE-EPA Working Group on Ocean TherUial Energy Conversion,Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversion

Sands, M.Dale

2013-01-01T23:59:59.000Z

51

Converse, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Converse, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

52

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Energy Conversion The Solid State Energy Conversion R&D activity is focused on developing advanced thermoelectric technologies for utilizing engine waste heat by...

53

Nanostructures for Energy Conversion  

Science Conference Proceedings (OSTI)

... These nanoelectrochemical energy systems hold particular promise for enabling ... photoelectrochemical cells for solar hydrogen production, fuel cells ...

2012-07-10T23:59:59.000Z

54

Ocean energy conversion systems annual research report  

DOE Green Energy (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

55

Energy Conversion – Photovoltaic, Concentrating Solar Power, and ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and  ...

56

Energy Conversion and Storage Program  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

57

Solar energy conversion.  

SciTech Connect

The Sun provides Earth with a staggering amount of energy - enough to power the great oceanic and atmospheric currents, the cycle of evaporation and condensation that brings fresh water inland and drives river flow, and the typhoons, hurricanes, and tornadoes that so easily destroy the natural and built landscape. The San Francisco earthquake of 1906, with magnitude 7.8, released an estimated 10{sup 17} joules of energy, the amount the Sun delivers to Earth in one second. Earth's ultimate recoverable resource of oil, estimated at 3 trillion barrels, contains 1.7 x 10{sup 22} joules of energy, which the Sun supplies to Earth in 1.5 days. The amount of energy humans use annually, about 4.6 x 10{sup 20} joules, is delivered to Earth by the Sun in one hour. The enormous power that the Sun continuously delivers to Earth, 1.2 x 10{sup 5} terawatts, dwarfs every other energy source, renewable or nonrenewable. It dramatically exceeds the rate at which human civilization produces and uses energy, currently about 13 TW.

Crabtree, G. W.; Lewis, N. S.; Materials Science Division; Cal Tech

2007-03-01T23:59:59.000Z

58

Conversion Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Plan Conversion Plan This template is used to document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation...

59

Energy Storage, Transport, and Conversion in CNST  

Science Conference Proceedings (OSTI)

Energy Storage, Transport, and Conversion in CNST. Nanotribology ... Theory and Modeling of Materials for Renewable Energy. Nanostructures ...

2013-05-02T23:59:59.000Z

60

Conversion Spacetime in Energy  

E-Print Network (OSTI)

English: This article is a small part of a larger one that has been called TOP (Theory Of Potentials) and in which is shown broadly as energy can be obtained in various ways. Although what Nature does sometimes not be imitated, or at least as effectively. But it describes as it does. Appendices are also included in this article in order to understand certain details that without them you would understand, and the description of them is an experiment (in Appendix C) which dilates the period of an oscillator, causing decrease in frequency simply applying a voltage in the vicinity, and which coincides well with the theory. Spanish: Este artículo es una pequeña porción de otro más grande que se ha dado en denominar TOP (Theory Of Potentials), y en el cual se demuestra ampliamente como se puede obtener energía de diversas maneras. Aunque lo que la naturaleza hace, a veces no se puede imitar, o al menos con tanta eficacia. Pero en él se describe como lo hace. Se incluyen además los Apéndices de dicho artículo, a fin de entender ciertos pormenores que sin ellos no se comprenderían, y en ellos está la descripción de un experimento

Florentino Muñiz Ania

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Biofuel Conversion Processes Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biofuel Conversion Processes The conversion of...

62

Cycloidal Wave Energy Converter  

SciTech Connect

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

63

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENTOcean Thermal Energy Conversion Draft Programmatic Environ-Ocean Thermal Energy Conversion. U.S. DOE Assistant Secre-

Sands, M.Dale

2013-01-01T23:59:59.000Z

64

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Thermal Energy Conversion Conference. Ocean Systems Branch,Thermal Energy Conversion Conference. Ocean Systems Branch,thermal energy conversion, June 18, 1979. Ocean Systems

Sands, M. D.

2011-01-01T23:59:59.000Z

65

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

66

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

67

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

68

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Previous page of energy equivalents. Definition of uncertainty notation eg, 123(45) | Basis of conversion factors for energy equivalents. Top. ...

69

Green Ocean Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Ocean Wave Energy Jump to: navigation, search Name Green Ocean Wave Energy Sector Marine and Hydrokinetic Website http:http:www.greenoceanwa Region United States LinkedIn...

70

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

niche markets. Once built, they have low operation and maintenance costs because their fuel-seawater-is free. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov...

71

Wave Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Energy Basics Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, and Australia as well as the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it is feasible that wave energy could produce 40-70 kilowatts (kW) per 3.3 feet (1 meter) of western coastline. Wave Energy Technologies

72

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

of Novel Energy Conversion and Storage Systems By Andrewof Novel Energy Conversion and Storage Systems by Andrew

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

73

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

74

Assessment of ocean thermal energy conversion  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

75

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

energy conversion systems ..on thermal energy conversion systems As energy demandsefficient energy conversion in power systems," in Thermal

Ho, Tony

2012-01-01T23:59:59.000Z

76

Wave Star Energy | Open Energy Information  

Open Energy Info (EERE)

Star Energy Star Energy Jump to: navigation, search Name Wave Star Energy Place Denmark Zip DK-2920 Product Denmark-based private wave device developer. References Wave Star Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Wave Star Energy 1 10 Scale Model Test This company is involved in the following MHK Technologies: C5 WaveStar This article is a stub. You can help OpenEI by expanding it. Wave Star Energy is a company located in Denmark . References ↑ "Wave Star Energy" Retrieved from "http://en.openei.org/w/index.php?title=Wave_Star_Energy&oldid=678928" Categories: Clean Energy Organizations

77

Global Waste to Energy Conversion Company GWECC | Open Energy Information  

Open Energy Info (EERE)

Waste to Energy Conversion Company GWECC Waste to Energy Conversion Company GWECC Jump to: navigation, search Name Global Waste to Energy Conversion Company (GWECC) Place Washington, DC Product GWECC is a global alternative energy company headquartered in Washington DC, USA. References Global Waste to Energy Conversion Company (GWECC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Waste to Energy Conversion Company (GWECC) is a company located in Washington, DC . References ↑ "Global Waste to Energy Conversion Company (GWECC)" Retrieved from "http://en.openei.org/w/index.php?title=Global_Waste_to_Energy_Conversion_Company_GWECC&oldid=345924" Categories: Clean Energy Organizations

78

Wave Energy Centre | Open Energy Information  

Open Energy Info (EERE)

search Name Wave Energy Centre Address Wave Energy Centre Av Manuela da Maia 36 R C Dto Place Lisboa Zip 1000-201 Sector Marine and Hydrokinetic Phone number (+351) 21...

79

Energy Loss by Breaking waves  

Science Conference Proceedings (OSTI)

Observations of the frequency of wind wave breaking in deep water are combined with laboratory estimates of the rate of energy loss a from single breaking wave to infer the net rate of energy transfer to the mixed layer from breaking waves, as a ...

S. A. Thorpe

1993-11-01T23:59:59.000Z

80

Advanced Energy Conversion LLC AEC | Open Energy Information  

Open Energy Info (EERE)

Energy Conversion LLC (AEC) Place New York Zip 12020 Product R&D company focused on power electronics, motion control systems and embedded control. References Advanced Energy...

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Utilizing Nature's Designs for Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Nature's Designs for Solar Energy Conversion Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations:  Large solvent, molecular dependencies  Diffusion  Lifetimes  Uncontrolled back-reactions  Most PS contain noble metals  Organic solvent/high proton

82

Energy Conversion & Storage Program, 1993 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1994-06-01T23:59:59.000Z

83

Energy conversion & storage program. 1994 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1995-04-01T23:59:59.000Z

84

Hybrid staging of geothermal energy conversion process  

DOE Green Energy (OSTI)

Progress in the demonstration of the feasibility of hybrid staging in geothermal energy conversion is described, particularly processes involving the Lysholm engine. The performance limitations of the Lysholm engine were studied. (MHR)

Steidel, R.F. Jr.

1984-05-07T23:59:59.000Z

85

Energy Conversion | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion Group Energy Conversion Group The Energy Conversion Group offers advanced technical solutions to achieve reduced fossil fuel use in geothermal power and building energy applications. Focus is on advanced materials, biofuel end use, combustion and system concepts. We seek to continuously improve the capabilities of relevant research tools being applied in collaborative initiatives to achieving these goals. Capabilities The group conducts research in a number of energy-related areas. These include advanced materials for geothermal energy, applications of biofuels and alternative fuels, efficiency in heating/cooling equipment, advanced oil burner development and particulate emissions for wood boilers. Advanced Materials for Geothermal Energy Supercritical carbon dioxide has properties midway between a gas and a

86

University of Delaware Institute of Energy Conversion | Open...  

Open Energy Info (EERE)

Energy Conversion Jump to: navigation, search Name University of Delaware Institute of Energy Conversion Place Delaware Product String representation "University rese ... dium tin...

87

North Dakota Energy Conversion and Transmission Facility Siting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility...

88

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

89

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

90

Energy Conversion Devices Inc aka ECD Ovonics | Open Energy Information  

Open Energy Info (EERE)

Conversion Devices Inc aka ECD Ovonics Conversion Devices Inc aka ECD Ovonics Jump to: navigation, search Name Energy Conversion Devices Inc (aka ECD Ovonics) Place Rochester Hills, Michigan Zip 48309 Sector Solar Product Michigan-based materials developer and holding company for thin-film silicon PV manufacturer United Solar Ovonics. References Energy Conversion Devices Inc (aka ECD Ovonics)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Energy Conversion Devices Inc (aka ECD Ovonics) is a company located in Rochester Hills, Michigan . References ↑ "Energy Conversion Devices Inc (aka ECD Ovonics)" Retrieved from "http://en.openei.org/w/index.php?title=Energy_Conversion_Devices_Inc_aka_ECD_Ovonics&oldid=34484

91

The Effect of Wave Breaking on the Wave Energy Spectrum  

Science Conference Proceedings (OSTI)

The effect of wave breaking on the wave energy spectral shape is examined. The Stokes wave-breaking criterion is first extended to random waves and a breaking wave model is established in which the elevation of breaking waves is expressed in ...

C. C. Tung; N. E. Huang

1987-08-01T23:59:59.000Z

92

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

93

Semiconductor Metrology for Energy Conversion  

Science Conference Proceedings (OSTI)

... lasers, LEDs, photodetectors, and high-efficiency solar cells critical to optical communication, display, data storage, and energy conservation and ...

2012-08-21T23:59:59.000Z

94

Carnegie Wave Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Carnegie Wave Energy Limited Carnegie Wave Energy Limited Jump to: navigation, search Name Carnegie Wave Energy Limited Address 1 124 Stirling Highway Place North Fremantle Zip 6159 Sector Marine and Hydrokinetic Year founded 1993 Number of employees 25 Website http://www.carnegiewave.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: CETO La Reunion CETO3 Garden Island Perth Wave Energy Project PWEP This company is involved in the following MHK Technologies: CETO Wave Energy Technology This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Carnegie_Wave_Energy_Limited&oldid=678263

95

Electrochemical Energy Storage and Conversion  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Design and Discovery of Novel Energy Materials: Stephan Lany1; 1NREL ... determine and characterise the state of an electrochemical system, ...

96

Free-Wave Energy Dissipation in Experimental Breaking Waves  

Science Conference Proceedings (OSTI)

Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using an energy focusing technique. Surface elevation measurements of each transient wave ...

Eustorgio Meza; Jun Zhang; Richard J. Seymour

2000-09-01T23:59:59.000Z

97

Energy conversion & storage program. 1995 annual report  

DOE Green Energy (OSTI)

The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

Cairns, E.J.

1996-06-01T23:59:59.000Z

98

Electro-mechanical energy conversion system having a permanent ...  

Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

99

US energy conversion and use characteristics  

SciTech Connect

The long-range goal of the Energy Conversion and Utilization Technology (ECUT) Program is to enhance energy productivity in all energy-use sectors by supporting research on improved efficiency and fuel switching capability in the conversion and utilization of energy. Regardless of the deficiencies of current information, a summary of the best available energy-use information is needed now to support current ECUT program planning. This document is the initial draft of this type of summary and serves as a data book that will present current and periodically updated descriptions of the following aspects of energy use: gross US energy consumption in each major energy-use sector; energy consumption by fuel type in each sector; energy efficiency of major equipment/processes; and inventories, replacement rates, and use patterns for major energy-using capital stocks. These data will help the ECUT program staff perform two vital planning functions: determine areas in which research to improve energy productivity might provide significant energy savings or fuel switching and estimate the actual effect that specific research projects may have on energy productivity and conservation. Descriptions of the data sources and examples of the uses of the different types of data are provided in Section 2. The energy-use information is presented in the last four sections; Section 3 contains general, national consumption data; and Sections 4 through 6 contain residential/commercial, industrial, and transportation consumption data, respectively. (MCW)

Imhoff, C.H.; Liberman, A.; Ashton, W.B.

1982-02-01T23:59:59.000Z

100

The Conversion of Waste to Energy  

E-Print Network (OSTI)

Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining the facilities. Each application requires a careful approach tailored to the installation, but some general design and economic principles do exist. Several waste to energy projects will be discussed to illustrate these principles.

John, T.; Cheek, L.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

On the Energy Conversion during Geostrophic Adjustment  

Science Conference Proceedings (OSTI)

It is found that for a continuously stratified fluid which remains so during the geostrophic adjustment, the energy conversion ratio ? (??KE/?PE) is ½, in contrast to the value of ? for a two-layer fluid. Since the two-layer fluid is an ...

Hsien Wang Ou

1986-12-01T23:59:59.000Z

102

DIRECT ENERGY CONVERSION DEVICES. A Literature Search  

SciTech Connect

A bibliography comprising 208 unclassified references is presented on nuclear direct energy conversion devices. Major emphasis is placed on auxiliary power devices suitable for use in satellites including reports on nuclear batteries, thermoelectric cells, thermionic conversron and aspects of the SNAP program. (J.R.D.)

Raleigh, H.D. comp.

1961-03-01T23:59:59.000Z

103

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary1978. 'Open cycle thermal energy converS1on. A preliminary

Sands, M. D.

2011-01-01T23:59:59.000Z

104

wave energy | OpenEI  

Open Energy Info (EERE)

99 99 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281099 Varnish cache server wave energy Dataset Summary Description Source The Wave Energy Resource Assessment project is a joint venture between NREL, EPRI, and Virginia Tech. EPRI is the prime contractor, Virginia Tech is responsible for development of the models and estimating the wave resource, and NREL serves as an independent validator and also develops the final GIS-based display of the data. Source National Renewable Energy Laboratory (NREL) Date Released September 27th, 2011 (3 years ago) Date Updated October 20th, 2011 (3 years ago) Keywords EPRI GIS NREL Puerto Rico shapefile United States Virginia Tech wave energy

105

Wave Energy Extraction from buoys  

E-Print Network (OSTI)

Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

Garnaud, Xavier

2009-01-01T23:59:59.000Z

106

Wind Energy Conversion Systems (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Conversion Systems (Minnesota) Wind Energy Conversion Systems (Minnesota) Wind Energy Conversion Systems (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Wind Buying & Making Electricity Program Info State Minnesota Program Type Siting and Permitting This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion systems. The statute

107

Ocean Thermal Energy Conversion: An overview  

DOE Green Energy (OSTI)

Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

Not Available

1989-11-01T23:59:59.000Z

108

Novel Nuclear Powered Photocatalytic Energy Conversion  

DOE Green Energy (OSTI)

The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

2005-08-29T23:59:59.000Z

109

January 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

January 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Energy Technology Perspectives 2012: Executive Summary Portuguese version NONE Energy...

110

Excitation and conversion of electromagnetic waves in pulsar magnetospheres  

E-Print Network (OSTI)

We demonstrate that nonlinear decay of obliquely propagating Langmuir waves into Langmuir and Alfven waves (L --> L'+A) is possible in a one-dimensional, highly relativistic, streaming, pair plasma. Such a plasma may be in the magnetospheres of pulsars. It is shown that the characteristic frequency of generated Alfven waves is much less than the frequency of Langmuir waves and may be consistent with the observational data on the radio emission of pulsars.

G. Gogoberidze; G. Z. Machabeli; V. V. Usov

2007-02-07T23:59:59.000Z

111

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for the commercialization of ocean thermal energy conversionR. E. Hathaway. Open cycle ocean thermal energy conversion.of sewage effluent in an ocean current. Inst. of Tech. ,

Sands, M. D.

2011-01-01T23:59:59.000Z

112

Wave Energy Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name Wave Energy Technologies Inc Address 270 Sandy Cove Rd Place Ketch Harbour Zip B3V 1K9 Sector Marine and Hydrokinetic Website http:...

113

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place Sun Prairie, Wisconsin Zip 53590 Sector Services, Wind energy Product Wisconsin-based wind developer and construction services provider. References Wave Wind...

114

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques  

E-Print Network (OSTI)

Biointerfaces, and Renewable Energy Conversion bychemistry) and develop renewable energy based processes.biointerfaces, and renewable energy conversion chemistry. In

Somorjai, G.A.

2010-01-01T23:59:59.000Z

115

Green Wave Energy Corp GWEC | Open Energy Information  

Open Energy Info (EERE)

Green Wave Energy Corp GWEC Jump to: navigation, search Name Green Wave Energy Corp GWEC Sector Marine and Hydrokinetic Website http:http:greenwaveenergyc Region United States...

116

California Wave Energy Partners LLC | Open Energy Information  

Open Energy Info (EERE)

California Wave Energy Partners LLC Jump to: navigation, search Name California Wave Energy Partners LLC Address 1590 Reed Road Place Pennington Zip 8534 Sector Marine and...

117

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) sites to identify thethermal energy conversion (OTEC) program; preoperationalOCEAN THERHAL _ENERGY _CONVERSION(OTEC) --:siTE IN PUERTO

Ryan, Constance J.

2013-01-01T23:59:59.000Z

118

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

a working molecular solar energy conversion system where noEnergy Storage and Conversion System ..74Thermal (MOST) Energy Storage and Conversion System In this

Coso, Dusan

2013-01-01T23:59:59.000Z

119

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy...

120

Advanced Materials for Energy Conversion II TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

This Table of Contents is from Advanced Materials for Energy Conversion II ... Energy Crisis – Fact or Fiction? [pp. .... W.-M. Chien, A. Price and D. Chandra.

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Kinetic Alfven Waves at the Magnetopause--Mode Conversion, Transport and Formation of LLBL  

DOE Green Energy (OSTI)

At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity [Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D {approx} 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 > 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity [Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D {approx} 10{sup 9}m{sup 2}/s) can occur. Moreover, if the wave amplitude is sufficiently large (B{sub wave}/B{sub 0} > 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.

Jay R. Johnson; C.Z. Cheng

2002-05-31T23:59:59.000Z

122

Hybrid staging of geothermal energy conversion processes  

SciTech Connect

A hybrid system consists of two or more energy conversion processes. This study examines the use of three energy conversion machines in hybrid systems: the conventional single-phase turbine, and the two-phase expanders known as the Lysholm engine and the radial outflow reaction turbine. Two hybrid systems are presented. The first is a two-stage, single-flash system with the Lysholm engine as the first stage, and a separator and conventional turbine as the second stage. The second system adds a radial outflow reaction turbine to recover a part of the energy rejected in the second stage. A theoretical specific power of 41.3 kW.s/lb is predicted for the two-stage, single-flash hybrid system. The addition of the radial outflow rotary turbine increases performance to 44.8 kW.s/lb. Both are superior to the double-flash system, with a specific power of 37.8 kW.s/lb. In addition, the hybrid system offers operating flexibility.

Steidel, R.F.

1978-09-01T23:59:59.000Z

123

Energy conversion device with improved seal  

DOE Patents (OSTI)

An energy conversion device comprising an improved sealing member adapted to seal a cation-permeable casing to the remainder of the device. The sealing member comprises a metal substrate which (i) bears a nonconductive and corrosion resistant coating on the major surface to which said casing is sealed, and (ii) is corrugated so as to render it flexible, thereby allowing said member to move relative to said casing without cracking the seal therebetween. Corrugations may be circumferential, radial, or both radial and circumferential so as to form dimples. The corrugated member may be in form of a bellows or in a substantially flat form, such as a disc.

Miller, Gerald R. (Salt Lake City, UT); Virkar, Anil V. (Midvale, UT)

1980-01-01T23:59:59.000Z

124

Carbon aerogel electrodes for direct energy conversion  

DOE Patents (OSTI)

A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA)

1997-01-01T23:59:59.000Z

125

Carbon aerogel electrodes for direct energy conversion  

DOE Patents (OSTI)

A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

1997-02-11T23:59:59.000Z

126

Riding the Waves: Harnessing Ocean Wave Energy through ...  

Science Conference Proceedings (OSTI)

... The opportunities for ocean wave power to become a new, reliable and clean source of renewable energy will be discussed, as well as activities of ...

2012-04-04T23:59:59.000Z

127

MHK Technologies/WaveSurfer | Open Energy Information  

Open Energy Info (EERE)

WaveSurfer WaveSurfer < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveSurfer.jpg Technology Profile Primary Organization Green Energy Industries Inc Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description WaveSurfer s main power conversion and generation systems are either semi submerged protected by the floating pontoons or completely submerged at the depth of around 8 m 27 ft Mooring Configuration 3 point slack Technology Dimensions Device Testing Date Submitted 26:36.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/WaveSurfer&oldid=681708

128

MHK Technologies/Green Cat Wave Turbine | Open Energy Information  

Open Energy Info (EERE)

Wave Turbine Wave Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Green Cat Wave Turbine.jpg Technology Profile Primary Organization Green Cat Renewables Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Green Cat Wave Turbine employs an extremely novel yet simple mechanical coupling to drive a multi pole Direct Drive generator Recent advances in permanent magnet materials and power electronic converters have opened up this extremely straightforward conversion route Unlike a number of devices currently being investigated this configuration enables maximum energy capture from both vertical and horizontal sea motions swell and surge respectively

129

Energy transfer processes in solar energy conversion  

DOE Green Energy (OSTI)

By combining picosecond optical experiments and detailed statistical mechanics theory we continue to increase our understanding of the complex interplay of structure and dynamics in important energy transfer situations. A number of different types of problems will be focused on experimentally and theoretically. They are excitation transport among chromophores attached to finite size polymer coils; excitation transport among chromophores in monolayers, bilayers, and finite and infinite stacks of layers; excitation transport in large vesicle systems; and photoinduced electron transfer in glasses and liquids, focusing particularly on the back transfer of the electron from the photogenerated radical anion to the radical cation. 33 refs., 13 figs.

Fayer, M.D.

1986-11-01T23:59:59.000Z

130

Mode conversation losses in overmolded millimeter wave transmission lines  

E-Print Network (OSTI)

Millimeter wave transmission lines are integral components for many important applications like nuclear fusion and NMR spectroscopy. In low loss corrugated transmission lines propagating the HE,1 mode with a high waveguide ...

Tax, David S. (David Samuel)

2008-01-01T23:59:59.000Z

131

Mesoscale Energy Spectra of Moist Baroclinic Waves  

Science Conference Proceedings (OSTI)

The role of moist processes in the development of the mesoscale kinetic energy spectrum is investigated with numerical simulations of idealized moist baroclinic waves. Dry baroclinic waves yield upper-tropospheric kinetic energy spectra that ...

Michael L. Waite; Chris Snyder

2013-04-01T23:59:59.000Z

132

Sustainable Energy Science and Engineering Center Solar Thermal Conversion  

E-Print Network (OSTI)

Sustainable Energy Science and Engineering Center Solar Thermal Conversion Major Functions: · Solar #12;Sustainable Energy Science and Engineering Center Solar Thermal Conversion Solar energy a surface is heated by a certain flux of incident solar energy is determined by the balance of incident

Krothapalli, Anjaneyulu

133

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large, M.Sc. Candidate University of Hawaii at Manoa Department of Oceanography Hawaii Natural Energy

Hawai'i at Manoa, University of

134

On the conversion of rest energy in horizon energy  

E-Print Network (OSTI)

It is shown that the Verlinde formula for the entropy variation of a holographic screen is a consequence of the conversion of the particle energy in horizon energy. The special role played by the particular displacement $\\Delta x = c^{2}/a$ is emphasized, $a$ being the particle acceleration. Using the Heisenberg Principle we show that the energy on the causal horizon (viewed as a holographic screen) of an inertial observer is proportional to its radius, as for a black hole.

Hristu Culetu

2010-05-10T23:59:59.000Z

135

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

and Techniques,” Energy Conversion and Management, 39 (11),Applications,” Energy Conversion and Management, 45 , pp.2011, “Low-grade Heat Conversion into Power Using Organic

Coso, Dusan

2013-01-01T23:59:59.000Z

136

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network (OSTI)

Thermal Energy Conversion (OTEC) Program PreoperationalOcean Thermal Energy Conversion (OTEC), U.S. Department ofOregon State University. Conversion Power Plants. Corvallis,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

137

Wave Power: Destroyer of Rocks; Creator of Clean Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E E PG&E Wave Energy Wave Energy Federal Utility Partnership Federal Utility Partnership Working Group Meeting Working Group Meeting Wave Energy Wave Energy Development Development Ontario, CA Ontario, CA November 18 November 18- -19, 200 19, 2009 9 Donald G. Price Donald G. Price Senior Consulting Scientist, PG&E Senior Consulting Scientist, PG&E Wave Power Overview Wave Power Overview * * What is Wave Power? What is Wave Power? o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean waves that is converted into electricity by various means. waves that is converted into electricity by various means. o o It is a clean, renewable energy resource capable of being utilized

138

Compact harsh environment energy conversion systems  

E-Print Network (OSTI)

The quest for energy is leading the industry into drilling deeper wells. Typically, a temperature gradient of 1°C/150 ft can be expected, with bottom hole temperatures reaching beyond 200°C in many areas of the world. Moreover, the increased recovery benefits and cost reductions possible with the use of horizontal and multilateral wells has triggered a need for higher power energy conversion systems in bottom hole assemblies, such as rotary steerable tools and downhole tractors. The concepts developed throughout this work address some of these new needs. This research investigated improvements, novel solutions and considerations that will lead to significant advantages in terms of reliability, extended temperature operation, increased power capability and reduced size and cost of compact harsh environment energy conversion systems. Improvements to both the electromechanical subsystem and the power electronic subsystem are introduced. Air gap viscous losses were shown to a have a significant effect on the optimal design of submersible PM (permanent magnet) machines, and a design procedure to account for this loss component in the design was developed. The application of a dual winding exterior rotor PM machine in a downhole environment enabled a significant increase in the application’s torque capability, provided protection against generator winding over voltage, and reduced parts count. Comprehensive switching device qualification, testing, and simulation lead to a simple failure mitigation technique for the operation of the most suitable devices at elevated temperature. A flying capacitor multilevel inverter was then successfully constructed and temperature tested. A novel motor drive concept suited for elevated temperature oil filled environment applications concluded the research.

Ahmed, Shehab

2007-05-01T23:59:59.000Z

139

Energy Conversion and Transmission Facilities (South Dakota) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Public Utilities Commission This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain transmission facilities, and

140

Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Water Heating Maximum Rebate None Program Info State Ohio Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Ohio Department of Taxation Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed, constructed, or installed after December 31, 1974. Qualifying energy conversion facilities are those that are used for the

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

142

Modeling and analysis of energy conversion systems  

DOE Green Energy (OSTI)

An investigation was conducted to assess the need for and the feasibility of developing a computer code that could model thermodynamic systems and predict the performance of energy conversion systems. To assess the market need for this code, representatives of a few industrial organizations were contacted, including manufacturers, system and component designers, and research personnel. Researchers and small manufacturers, designers, and installers were very interested in the possibility of using the proposed code. However, large companies were satisfied with the existing codes that they have developed for their own use. Also, a survey was conduced of available codes that could be used or possibly modified for the desired purpose. The codes were evaluated with respect to a list of desirable features, which was prepared as a result of the survey. A few publicly available codes were found that might be suitable. The development, verification, and maintenance of such a code would require a substantial, ongoing effort. 21 refs.

Den Braven, K.R. (Idaho Univ., Moscow, ID (USA). Dept. of Mechanical Engineering); Stanger, S. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-10-01T23:59:59.000Z

143

Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona  

SciTech Connect

Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for ? ? (?L)1/3(?c/?) somewhat less than 1, contrary to previous ideas. Only o mode is produced for ? and somewhat greater than 1.5. Here ?c is the (angular) electron cyclotron frequency, ? the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as ? increases. (4) As ? increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as ? increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 ? 70%. (7) The interference effect and the disappearance of the x mode at ? somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for solar and interplanetary radio bursts. It is therefore possible that linear mode conversion under these conditions might explain the weak total circular polarizations of type II and III solar radio bursts.

Eun-Hwa Kim, Iver H. Cairns, and Peter A. Robinson

2008-06-09T23:59:59.000Z

144

Will lecture on: Understanding and Controlling Solar Energy Conversion  

E-Print Network (OSTI)

Will lecture on: Understanding and Controlling Solar Energy Conversion: The relationship between, and their relationship to their ability to harvest solar energy in the form of electricity. In particular, morphology low carbon electricity (solar and thermal energy conversion, off-shore wind, biofuels, nuclear

Rimon, Elon

145

Power conversion from environmentally scavenged energy sources.  

DOE Green Energy (OSTI)

As the power requirements for modern electronics continue to decrease, many devices which were once dependent on wired power are now being implemented as portable devices operating from self-contained power sources. The most prominent source of portable power is the electrochemical battery, which converts chemical energy into electricity. However, long lasting batteries require large amounts of space for chemical storage, and inevitably require replacement when the chemical reaction no longer takes place. There are many transducers and scavenging energy sources (SES) that are able to exploit their environment to generate low levels of electrical power over a long-term time period, including photovoltaic cells, thermoelectric generators, thermionic generators, and kinetic/piezoelectric power generators. This generated power is sustainable as long as specific environmental conditions exist and also does not require the large volume of a long lifetime battery. In addition to the required voltage generation, stable power conversion requires excess energy to be efficiently stored in an ultracapacitor or similar device and monitoring control algorithms to be implemented, while computer modeling and simulation can be used to complement experimental testing. However, building an efficient and stable power source scavenged from a varying input source is challenging.

Druxman, Lee Daniel

2007-09-01T23:59:59.000Z

146

NETL: Third Annual Solid State Energy Conversion Alliance (SECA...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Conference Proceedings Third Annual Solid State Energy Conversion Alliance (SECA) Workshop March 21-22, 2002 Table of Contents Disclaimer Papers and Presentations Disclaimer This...

147

Liquid Metal MHD Energy Conversion in Fusion Reactors  

Science Conference Proceedings (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

L. Blumenau; H. Branover; A. El-Boher; E Spero; S. Sukoriansky; G. Talmage; E. Greenspan

148

In-Situ MHD Energy Conversion for Fusion  

Science Conference Proceedings (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

R. B. Campbell; M. A. Hoffman; B. G. Logan

149

A Study of Conversion Reactions Using Electron Energy Loss  

Science Conference Proceedings (OSTI)

In this study, conversion mechanism in NiO was studied using high resolution transmission electron microscopy and electron energy loss spectroscopy (EELS).

150

Method for conversion of beta-hydroxy carbonyl compounds - Energy ...  

Conversion products find use, e.g., ... United States Patent ... as operator of Pacific Northwest National Laboratory under U.S. Department of Energy Contract DE ...

151

September 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

September 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III...

152

Chromium Alloys for More Efficient Fossil Energy Conversion ...  

Science Conference Proceedings (OSTI)

Abstract Scope, In order to improve efficiency and reduce environmental emissions in fossil energy conversion systems, new technologies such as oxy- fuel gas ...

153

Most Viewed Documents - Energy Storage, Conversion, and Utilization...  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002)...

154

Photovoltaic Cell Conversion Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Efficiency Basics Conversion Efficiency Basics Photovoltaic Cell Conversion Efficiency Basics August 20, 2013 - 2:58pm Addthis The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with more traditional sources of energy. Factors Affecting Conversion Efficiency Much of the energy from sunlight reaching a PV cell is lost before it can be converted into electricity. But certain characteristics of solar cell materials also limit a cell's efficiency to convert the sunlight it receives. Wavelength of Light Light is composed of photons-or packets of energy-that range in

155

MHK Technologies/The Crestwing Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

Crestwing Wave Energy Converter Crestwing Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Crestwing Wave Energy Converter.jpg Technology Profile Primary Organization Waveenergyfyn Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The connected pontoons swing around the hinge when the top of the waves passes under the floats The pontoons relative motion is converted into usable energy through a linear PTO system The pontoons are pushed upwards from the below passing wave and again dragged down by the same passing wave Complex hydrodynamic conditions occur under the pontoons when the wave formation pushes the unit up and down simultaneously The energy from waves can be divided into fifty percent potential energy and fifty percent kinetic energy Crestwing absorbs both the potential energy as the kinetic energy which is the back ground for the high efficiency

156

Energy Transmission by Barotropic Rossby Waves Revisited  

Science Conference Proceedings (OSTI)

This article presents a semianalytic method to investigate the properties of energy transmission across bottom topography by barotropic Rossby waves. The method is first used to revisit the analytical estimates derived from wave-matching ...

R. P. Matano; E. D. Palma

2005-11-01T23:59:59.000Z

157

Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion  

DOE Green Energy (OSTI)

Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.

LIN, SHAWN-YU; FLEMING, JAMES G.; MORENO, JOSEPH A.

2003-03-01T23:59:59.000Z

158

Share of Conversion Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In the early to mid 1980’s, Atlantic Basin refiners rapidly expanded their conversion capacity as a consequence of the belief that world crude production would get ...

159

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

160

Converse County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Converse County, Wyoming: Energy Resources Converse County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0489425°, -105.4068079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0489425,"lon":-105.4068079,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Theoretical investigation of solar energy conversion and water oxidation catalysis  

E-Print Network (OSTI)

Solar energy conversion and water oxidation catalysis are two great scientific and engineering challenges that will play pivotal roles in a future sustainable energy economy. In this work, I apply electronic structure ...

Wang, Lee-Ping

2011-01-01T23:59:59.000Z

162

Solid State Energy Conversion Alliance (SECA) Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Publications NETL Publications 2001 Conference Proceedings Solid State Energy Conversion Alliance (SECA) Workshop March 29-30, 2001 Table of Contents Disclaimer Papers and Presentations Plenary Session Selected Presentations on Current DOE Work Supporting SECA Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

163

Introduction to electric energy conversion systems for geothermal energy resources  

SciTech Connect

The types of geothermal energy conversion systems in use are classified as follows: direct, dry steam; separated steam; single-flash steam; double-flash steam; multi-flash steam; brine/Freon binary cycle; and brine/isobutane binary cycle. The thermodynamics of each of these is discussed with reference to simplified flow diagrams. Typical existing power plants are identified for each type of system. (MHR)

DiPippo, R.

1978-06-01T23:59:59.000Z

164

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

SciTech Connect

Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

165

Direct Energy Conversion for Fast Reactors  

DOE Green Energy (OSTI)

Thermoelectric generators (TEG) are a well-established technology for compact low power output long-life applications. Solid state TEGs are the technology of choice for many space missions and have also been used in remote earth-based applications. Since TEGs have no moving parts and can be hermetically sealed, there is the potential for nuclear reactor power systems using TEGs to be safe, reliable and resistant to proliferation. Such power units would be constructed in a manner that would provide decades of maintenance-free operation, thereby minimizing the possibility of compromising the system during routine maintenance operations. It should be possible to construct an efficient direct energy conversion cascade from an appropriate combination of solid-state thermoelectric generators, with each stage in the cascade optimized for a particular range of temperature. Performance of cascaded thermoelectric devices could be further enhanced by exploitation of compositionally graded p-n couples, as well as radial elements to maximize utilization of the heat flux. The Jet Propulsion Laboratory in Pasadena has recently reported segmented unicouples that operate between 300 and 975 K and have conversion efficiencies of 15 percent [Caillat, 2000]. TEGs are used in nuclear-fueled power sources for space exploration, in power sources for the military, and in electrical generators on diesel engines. Second, there is a wide variety of TE materials applicable to a broad range of temperatures. New materials may lead to new TEG designs with improved thermoelectric properties (i.e. ZT approaching 3) and significantly higher efficiencies than in designs using currently available materials. Computational materials science (CMS) has made sufficient progress and there is promise for using these techniques to reduce the time and cost requirements to develop such new TE material combinations. Recent advances in CMS, coupled with increased computational power afforded by the Accelerated Strategic Computing Initiative (ASCI), should improve the speed and decrease the cost of developing new TEGs. The system concept to be evaluated is shown in Figure 1. Liquid metal is used to transport heat away from the nuclear heat source and to the TEG. Air or liquid (water or a liquid metal) is used to transport heat away from the cold side of the TEG. Typical reactor coolants include sodium or eutectic mixtures of lead-bismuth. These are coolants that have been used to cool fast neutron reactors. Heat from the liquid metal coolant is rejected through the thermal electric materials, thereby producing electrical power directly. The temperature gradient could extend from as high as 1300 K to 300 K, although fast reactor structural materials (including those used to clad the fuel) currently used limit the high temperature to about 825K.

Brown, N.; Cooper, J.; Vogt, D.; Chapline, G.; Turchi, P.; Barbee Jr., T.; Farmer, J.

2000-07-01T23:59:59.000Z

166

Millimeter Wave Sensors for Clean Energy  

Science Conference Proceedings (OSTI)

Millimeter wave sensor data on refractory used for clean coal gasification will also be presented. Future applications in the area of clean energy will be ...

167

Atlantic Biomass Conversions Inc | Open Energy Information  

Open Energy Info (EERE)

Conversions Inc Conversions Inc Jump to: navigation, search Name Atlantic Biomass Conversions Inc Place Frederick, Maryland Sector Biomass Product Atlantic Biomass Conversions is working on a system and a genetically modified bacteria to convert sugar beet pulp waste into methanol. Coordinates 45.836395°, -98.507249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.836395,"lon":-98.507249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Energy Conversion Materials Through Chemical Synthesis Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Materials Through Chemical Synthesis Route Speaker(s): Lionel Vayssieres Date: April 27, 2004 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Samuel Mao The...

169

Open cycle ocean thermal energy conversion system  

DOE Patents (OSTI)

An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

Wittig, J. Michael (West Goshen, PA)

1980-01-01T23:59:59.000Z

170

Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

Dziendziel, Randolph J. (Middle Grove, NY); Baldasaro, Paul F. (Clifton Park, NY); DePoy, David M. (Clifton Park, NY)

2010-09-07T23:59:59.000Z

171

Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

Dziendziel, Randolph J. (Middle Grove, NY); DePoy, David Moore (Clifton Park, NY); Baldasaro, Paul Francis (Clifton Park, NY)

2007-01-23T23:59:59.000Z

172

MHK Technologies/Uppsala Seabased AB Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

AB Wave Energy Converter AB Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Seabased AB Wave Energy Converter.jpg Technology Profile Primary Organization Uppsala University Division for Electricity Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The system consists of a linear permanent magnet synchronous generator located on the sea floor The generator is connected directly via a line to a buoy on the surface There are no intermediate energy conversion steps thus the generator motion is the same as the buoy motion Several generators 3 today are connected to a marine substation where the voltage is converted to grid frequency transformed to higher voltage and transmitted to shore All electrical cables throughout the system are fixed i e there are no motions that subject the cables to bending moments

173

North Dakota Energy Conversion and Transmission Facility Siting Act (North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Energy Conversion and Transmission Facility Siting Act Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Line Extension Analysis

174

Sustainable Energy Science and Engineering Center Solar Thermal Conversion  

E-Print Network (OSTI)

Sustainable Energy Science and Engineering Center Solar Thermal Conversion Major Functions: · Solar Center Collection The temperature to which a surface is heated by a certain flux of incident solar energy - 1914 Between 1880 and 1910, there were 48 articles on solar energy as a world energy source

Krothapalli, Anjaneyulu

175

The Effects of Wave Energy Converters on a Monochromatic Wave Climate  

E-Print Network (OSTI)

in wave energy converters as a possible means of providing renewable energy, the effects of a wave energy The interest in renewable energies is currently increasing due to the reported rise in global temperature is that of wave energy. The research is multifaceted and includes research on the efficiency of wave energy

Fox-Kemper, Baylor

176

DIEGO FAZI Mailing address: Solar Energy Conversion Group Chemical Sciences & Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

DIEGO FAZI DIEGO FAZI Mailing address: Solar Energy Conversion Group Chemical Sciences & Engineering Division Bldg 200, Room E105 Argonne National Laboratory 9700 South Cass Ave. Argonne IL 60439-4831 E-mail addresses: dfazi@anl.gov Office Number: 630-252-5796 Fax: 630-252-9289 Personal Pages: http://faculty.wcas.northwestern.edu/diego-fazi/ http://www.fazid.org Research Interests Diego Fazi comes from a theoretical Physics background and he performed research in gravitational-wave astronomy within the project LIGO from 2005 to 2012. In October 2012 Dr. Fazi joined the CSE division at Argonne as a postdoctoral appointee in the Solar Conversion

177

Ris Energy Report 2 Bioenergy conversion  

E-Print Network (OSTI)

Electricity production by SOFC fuel cells is one road to obtain a high efficiency in electricity production. In order to meet this demand in a sustainable way, gasifica- tion and SOFC fuel cell conversion systems gasfication gas has the potential to be used directly in SOFC cells or alternatively steam- reformed

178

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

179

STATEMENT OF CONSIDERATIONS REQUEST BY ENERGY CONVERSION DEVICES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH 630 252 2779 TO AGCP-HQ P.0204 * * STATEMENT OF CONSIDERATIONS REQUEST BY ENERGY CONVERSION DEVICES, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER...

180

Organic Membranes for Energy Conversion and "Green" Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Membranes for Energy Conversion and "Green" Manufacturing Speaker(s): John Kerr Date: January 17, 2002 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Cynthia...

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Neutral beam based on positive ions with direct energy conversion  

DOE Green Energy (OSTI)

Positive ions can make efficient neutral beams when direct energy conversion is incorporated at energies up to 150 keV for D/sup 0/, 225 keV for T/sup 0/ and 300 keV for /sup 3/He/sup 0/. Above these energies the efficiency is low (<50%) and falling rapidly, requiring other means for making neutral beams such as negative ions. The virtues of /sup 3/He/sup 0/ beams as a heater are discussed. The role of direct conversion is discussed and the various conversion concepts and the experimental data base are reviewed. The development problems facing direct conversion are: space charge handling, secondary and primary electron suppression, and the fractional energy ions. The next step in the development of efficient neutral beams based on positive ions is argued to be a developmental beam which integrates an advanced ion source with a neutralizer, cryopump, direct converter, heat removal system, and power conditioning system.

Moir, R.W.; Barr, W.L.; Blum, A.S.; Hamilton, G.W.

1977-12-01T23:59:59.000Z

182

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

cycle ocean thermal difference power plant. M.S. Thesis,ocean thermal energy conversion power plants. M.S. Thesis.comments on the thermal effects of power plants on fish eggs

Sands, M. D.

2011-01-01T23:59:59.000Z

183

A New Earth-Abundant Semiconductor for Solar Energy Conversion  

Science Conference Proceedings (OSTI)

Presentation Title, G2, ZnSnN2: A New Earth-Abundant Semiconductor for Solar Energy Conversion. Author(s), Lise Lahourcade, Naomi C Coronel, Harry A ...

184

WIND ENERGY POWER CONVERSION SYSTEM REDUCING GEARBOX STRESS ...  

A wind energy power conversion system includes a gearbox, a generator, an AC to DC power converter, a DC link, and a DC to AC power converter, and at least one ...

185

Mode conversion between Alfven wave eigenmodes in axially inhomogeneous two-ion-species plasmas  

DOE Green Energy (OSTI)

The uniform cylindrical plasma model of Litwin and Hershkowitz (Phys. Fluids {bold 30}, 1323 (1987)) is shown to predict mode conversion between the lowest radial order {ital m}=+1 fast magnetosonic surface and slow ion-cyclotron global eigenmodes of the Alfven wave at the light-ion species Alfven resonance of a cold two-ion plasma. A hydrogen ({ital h})--deuterium ({ital d}) plasma is examined in experiments. The fast mode is efficiently excited by a rotating field antenna array at {omega}{similar to}{Omega}{sub {ital h}} in the central cell of the Phaedrus-B tandem mirror (Phys. Rev. Lett. {bold 51}, 1955(1983)). Radially scanned magnetic probes observe the propagating eigenmode wave fields within a shallow central cell magnetic gradient in which the conversion zone is axially localized according to {ital n}{sub {ital d}}/{ital n}{sub {ital h}}. A low radial-order slow ion-cyclotron mode, observed in the vicinity of the conversion zone, gives evidence for the predicted mode conversion.

Roberts, D.R.; Hershkowitz, N.; Tataronis, J.A. (Department of Nuclear Engineering Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (USA))

1990-04-01T23:59:59.000Z

186

Energy conversion device with support member having pore channels  

DOE Patents (OSTI)

Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

2014-01-07T23:59:59.000Z

187

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

188

Energy Conversion Materials Through Chemical Synthesis Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Materials Through Chemical Synthesis Route Conversion Materials Through Chemical Synthesis Route Speaker(s): Lionel Vayssieres Date: April 27, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Samuel Mao The ability to design anisotropic nanoparticles with tailored aspect ratio and to order them into large 3-D arrays is an important challenge that scientists have to face to create functionalized nanomaterials. Our approach to control the size and shape of nanoparticles as well as the overall texture of nanoparticulate thin films is to tune their direct aqueous hydrolysis-condensation growth onto substrates by monitoring the interfacial thermodynamics of nanocrystals as well as their kinetics of heteronucleation. Growing materials at very low interfacial tension, i.e. at thermodynamically stable conditions, allows the experimental control of

189

Local full-wave energy in nonuniform plasmas  

SciTech Connect

The subject of local wave energy in plasmas is treated via quasilinear theory from the dual perspectives of the action-angle formalism and gyrokinetics analysis. This work presents an extension to all orders in the gyroradius of the self-consistent wave-propagation/quasilinear-absorption problem using gyrokinetics. Questions of when and under what conditions local energy should be of definite sign are best answered using the action-angle formalism. An important result is that the ''dielectric operators'' of the linearized wave equation and of the local energy are not the same, a fact which is obscured when the eikonal or WKB assumption is invoked. Even though the two dielectrics are very different in character (one operates linearly on electric field for the plasma current, the other operates quadratically for the energy), it is demonstrated that they are nevertheless related by a simple mathematical statement. This study was originally motivated by concern and lively discussion over the questions of local energy for rf-heating of plasmas, where in certain instances, full-wave effects such as refraction, strong absorption, and mode conversion are of primary importance. Fundamentally, the rf-absorption must equate with the energy moment of the quasilinear term to achieve a correct energy balance. This fact governs the derivation (as opposed to postulation) of the local absorption. The troublesome ''kinetic flux'' may then be chosen (it is not unique) to satisfy a wave-energy balance relation with the Poynting flux and local absorption. It is shown that at least one such choice reduces asymptotically to the Stix form away from nonuniformities, thereby demonstrating energy conservation to all orders in Larmor radius. 25 refs.

Smithe, D.N.

1988-10-01T23:59:59.000Z

190

Wave-Energy Company Looks to Test Prototypes in Maine Waters | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave-Energy Company Looks to Test Prototypes in Maine Waters Wave-Energy Company Looks to Test Prototypes in Maine Waters Wave-Energy Company Looks to Test Prototypes in Maine Waters April 9, 2010 - 4:19pm Addthis Lindsay Gsell Resolute Marine Energy - a Boston-based, wave-energy technology company - hopes to test ocean wave energy conversion prototypes in Maine sometime in the summer of 2011. The company has already completed two of the three testing stages, the first using computer simulation and the second with reduced-scale prototypes in a controlled environment. Now, the company is ready to take the technology offshore to begin ocean testing. Its eyes are set on the waters of its Northern neighbor, Maine. Maine is an ideal location for Resolute Marine Energy to conduct testing for a few reasons, said CEO and President Bill Staby. Working in Maine

191

Energy Conversion Facilities Property Tax Exemption (Ohio) |...  

Open Energy Info (EERE)

Biomass, Municipal Solid Waste, CHPCogeneration Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount 100% exemption...

192

Energy Conversion Facilities Corporate Tax Exemption (Ohio) ...  

Open Energy Info (EERE)

Biomass, Municipal Solid Waste, CHPCogeneration Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount 100% Exemption...

193

Multi-objective design and optimization of district energy systems including polygeneration energy conversion technologies.  

E-Print Network (OSTI)

??In the present context of finding ways to decrease CO2 emissions linked with human activity, district energy systems including polygeneration energy conversion technologies are likely… (more)

Weber, Céline Isabelle

2008-01-01T23:59:59.000Z

194

Energy-momentum relation for solitary waves of relativistic wave equations  

E-Print Network (OSTI)

Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.

T. V. Dudnikova; A. I. Komech; H. Spohn

2005-08-23T23:59:59.000Z

195

Portfolio Manager Technical Reference: Thermal Conversion Factors | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conversion Factors Thermal Conversion Factors Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

196

Energy Conversion and Storage Program: 1992 Annual report  

Science Conference Proceedings (OSTI)

This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

Cairns, E.J.

1993-06-01T23:59:59.000Z

197

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense New Ventures #12;What is OTEC? OTEC B fiOTEC Benefits: Large Renewable Energy Source 3-5 Terawatts Water Temperature Delta 2 A New Clean Renewable 24/7 Energy Source #12;Ocean Thermal Energy Conversion

198

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

199

Piezoelectric coupling in energy-harvesting fluttering flexible plates : linear stability analysis and conversion efficiency  

E-Print Network (OSTI)

This paper investigates the energy harvested from the flutter of a plate in an axial flow by making use of piezoelectric materials. The equations for fully-coupled linear dynamics of the fluid-solid and electrical systems are derived. The continuous limit is then considered, when the characteristic length of the plate's deformations is large compared to the piezoelectric patches' length. The linear stability analysis of the coupled system is addressed from both a local and global point of view. Piezoelectric energy harvesting adds rigidity and damping on the motion of the flexible plate, and destabilization by dissipation is observed for negative energy waves propagating in the medium. This result is confirmed in the global analysis of fluttering modes of a finite-length plate. It is finally observed that waves or modes destabilized by piezoelectric coupling maximize the energy conversion efficiency.

Doare, Olivier

2011-01-01T23:59:59.000Z

200

Direct Simulation of Internal Wave Energy Transfer  

Science Conference Proceedings (OSTI)

A three-dimensional nonhydrostatic numerical model is used to calculate nonlinear energy transfers within decaying Garrett–Munk internal wavefields. Inviscid wave interactions are calculated over horizontal scales from about 1 to 80 km and for ...

Kraig B. Winters; Eric A. D’Asaro

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Dispersion in African Easterly Waves  

Science Conference Proceedings (OSTI)

The existence of an upstream (eastward) group velocity for African easterly waves (AEWs) is shown based on single-point lag regressions using gridded reanalysis data from 1990 to 2010. The eastward energy dispersion is consistent with the ...

Michael Diaz; Anantha Aiyyer

2013-01-01T23:59:59.000Z

202

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description Using mass-produced chiller equipment for "reverse refrigeration" to generate electricity: This approach allows Johnson Controls to take advantage of the economies of scale and manufacturing experience gained from current products while minimizing performance risks. Process efficiencies will be increased over the current state of the art in two ways: better working fluids and improved cycle heat management.

203

Biomimetic approach to solar energy conversion: artificial photosynthesis  

DOE Green Energy (OSTI)

Results of efforts to devise apparatus and systems for using solar energy for chemical purposes by methods that mimic those used by photosynthetic organisms are reported. Sufficient progress has been made in the understanding of plant photosynthesis to make artificial photosynthesis a reasonable goal. Artificial photoreaction centers, the apparatus used by photosynthetic organisms for light energy conversion to chemical oxidizing and reducing capacity, have been made in the laboratory. The synthetic reaction centers mimic with remarkable fidelity the properties of their in vivo prototypes. Some of the formidable problems that must still be solved and the future prospects for biomimetic devices for solar energy conversion are discussed.

Katz, J.J.

1978-01-01T23:59:59.000Z

204

Standard Terminology Relating to Photovoltaic Solar Energy Conversion  

E-Print Network (OSTI)

1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

American Society for Testing and Materials. Philadelphia

2005-01-01T23:59:59.000Z

205

Optimization of Oxygen Purity for Coal Conversion Energy Reduction  

E-Print Network (OSTI)

The conversion of coal into gaseous and liquid fuels and chemical feedstock will require large quantities of oxygen. This oxygen will be produced in large multi-train air separation plants which will consume about 350 kilowatt hours of energy for each ton of coal processed. Thus, the oxygen plants in a commercial coal conversion facility may require 150 megawatts. Design of the oxygen plants will require close attention to energy consumption. Many coal conversion processes can accept oxygen at less than the historical 99.5% purity with significant savings in energy and cost. The air separation process is reviewed with emphasis on optimum oxygen purity. An energy reduction of 8.4% can be achieved when oxygen purity is reduced from 99.5% to 95%. Oxygen is a major tonnage chemical which is also highly energy intensive. The current United States capacity of about 80 thousand tons per day places it in the top five of basic chemicals, and its energy requirement of 350 to 450 kilowatt hours per ton makes it a major energy consumer. The growing synfuels industry -- conversion of coal into hydrocarbon fuels and chemical feed-stocks -- will greatly increase the production of oxygen and presents major opportunities for energy conservation.

Baker, C. R.; Pike, R. A.

1982-01-01T23:59:59.000Z

206

SEAWOLF - Energy Innovation Portal  

Market Sheet (760 KB) Technology Marketing Summary SEAWOLF ... Offshore Wind Energy; Wave Energy Conversion Anchors and Foundations; Coastal Sediment Analysis;

207

Pin stack array for thermoacoustic energy conversion  

DOE Patents (OSTI)

A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.

Keolian, Robert M. (Monterey, CA); Swift, Gregory W. (Santa Fe, NM)

1995-01-01T23:59:59.000Z

208

Energy Conversion Devices Fuel Cell Electrocatalyst Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell(tm) Texaco Ovonic Fuel Cell Company, LLC non-precious metal catalysts regenerative braking energy absorption capability wide temperature range instant...

209

Biomass energy conversion workshop for industrial executives  

DOE Green Energy (OSTI)

The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

None

1979-01-01T23:59:59.000Z

210

Energy Conversion, Storage, and Transport Programs and ...  

Science Conference Proceedings (OSTI)

... The Society of Automotive Engineers International (SAE) has proposed a ... hydrogen storage material satisfies the Department of Energy (DoE) goal ...

2010-05-24T23:59:59.000Z

211

Can dark energy be gravitational waves?  

E-Print Network (OSTI)

The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons) of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

Biermann, Peter L

2013-01-01T23:59:59.000Z

212

Energy Conversion, Mixing Energy, and Neutral Surfaces with a Nonlinear Equation of State  

E-Print Network (OSTI)

Energy Conversion, Mixing Energy, and Neutral Surfaces with a Nonlinear Equation of State JONAS energy, it is generally assumed that it does not produce a restoring buoyancy force. However, it is here effect) such a neutral displacement is accompanied by a conversion between internal energy E

Nycander, Jonas

213

Electrostatic Conversion for Vibration Energy Harvesting  

E-Print Network (OSTI)

This chapter focuses on vibration energy harvesting using electrostatic converters. It synthesizes the various works carried out on electrostatic devices, from concepts, models and up to prototypes, and covers both standard (electret-free) and electret-based electrostatic vibration energy harvesters (VEH).

Boisseau, S; Seddik, B Ahmed

2012-01-01T23:59:59.000Z

214

Energy Conversion and Storage Program. 1990 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

215

MHK Technologies/Tunneled Wave Energy Converter TWEC | Open Energy  

Open Energy Info (EERE)

Tunneled Wave Energy Converter TWEC Tunneled Wave Energy Converter TWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tunneled Wave Energy Converter TWEC.jpg Technology Profile Primary Organization SeWave Ltd Project(s) where this technology is utilized *MHK Projects/TWEC Project Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tunneled Wave Energy Converter TWEC utilizes the OWC principle through its use of a proposed bored out tunnel within a cliff side of the Faroe Islands Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage

216

MHK Technologies/WEGA wave energy gravitational absorber | Open Energy  

Open Energy Info (EERE)

WEGA wave energy gravitational absorber WEGA wave energy gravitational absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WEGA wave energy gravitational absorber.jpg Technology Profile Primary Organization Sea for Life Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The WEGA device is an articulated suspended body semi submerged attached to a mount structure that oscillates in an elliptical orbit with the passage of the waves The movement of the body drives an hydraulic cylinder which pushes high pressure fluid through an accumulator and an hydraulic motor driving the generator that produces energy The articulated body attaches to the mount structure through a rotary head which allows it to adapt to the direction wave propagation Multiple devices can be placed on a single mount structure according to the size and place of the structure

217

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network (OSTI)

demand due to emerging economies like China, India, and Brazil. Coal and natural gas resources 7296 O. It seems sensible toconsider OTEC as one of the renewable energy technologies of the future. Introduction

218

Nanostructured Functional Materials for Energy Conversion and ...  

Science Conference Proceedings (OSTI)

... V: Clean Coal-, Hydrogen Based-Technologies, Fuel Cells, and Materials for Energy Storage ... Deployment of New High Temperature Alloys for Power Generation Systems ... Materials Metrology for a Hydrogen Distribution Infrastructure.

219

Polymer Based Nanocomposites for Solar Energy Conversion  

DOE Green Energy (OSTI)

Organic semiconductor-based photovoltaic devices offer the promise of low cost photovoltaic technology that can be manufactured via large-scale, roll-to-roll printing techniques. Existing organic photovoltaic devices are currently limited to solar power conversion efficiencies of 3?5%. This is because of poor overlap between the absorption spectrum of the organic chromophores and the solar spectrum, non-ideal band alignment between the donor and acceptor species, and low charge carrier mobilities. To address these issues, we are investigating the development of dendrimeric organic semiconductors that are readily synthesized with high purity. They also benefit from optoelectronic properties, such as band gap and band positions, which can be easily tuned by substituting different chemical groups into the molecule. Additionally, we are developing nanostructured oxide/conjugated polymer composite photovoltaics. These composites take advantage of the high electron mobilities attainable in oxide semiconductors and can be fabricated using low-temperature solution-based growth techniques. Here, we discuss the synthesis and preliminary device results of these novel materials and composites.

Shaheen, S.; Olson, D.; White, M.; Mitchell, W.; Miedaner, A.; Curtis, C.; Rumbles, G.; Gregg, B.; Ginley, D.

2005-01-01T23:59:59.000Z

220

Thermionic energy conversion (TEC) topping thermoelectrics  

DOE Green Energy (OSTI)

Long-respected international experts on thermoelectrics (Dixon, Ertl and Goldsmid supported by Ure) determine the probable maximum figure of merit (ZT) for fully matured thermoelectric generators as about unity from ordiary temperatures to 2000 K. Thus the maximum efficiency for fully matured thermoelectrics would be approximately 0.414 (l - r/sub T/)/(1.414 + r/sub T/) where r/sub T/ is the ratio of cold and hot junction temperatures. This limitation contrasts with the recent burst of enthusiasm for high-temperature thermoelectrics - based on calculated figures of merit and efficiencies that increase more and more rapidly with rising temperatures. Unfortunately these calculations neglect internal radiation effects which diminish thermoelectric figures of merit significantly at 1000 K and substantially at 2000 K: The effective thermal-conductivity contribution of intrathermoelectric radiative dissipation increases with the third power of temperature. Therefore the quotation from Thermoelectricy: Science and Engineering by Heikes and Ure apparently still prevails: ...thermoelectric devices appear difficult to extend in the direction of high temperature, while thermionic devices become inefficient at low temperature. Accordingly consideration of thermoelectric power generation with high-temperature heat sources should include utilization of TEC topping thermoelectrics. However TEC alone or TEC topping more-efficient conversion systems like steam or gas turbines, combined cycles or Stirling engines would be more desirable generally.

Morris, J.F.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Supramolecular Structures for Photochemical Energy Conversion  

DOE Green Energy (OSTI)

OAK B188 The goal of this project is to mimic the energy transduction processes by which photosynthetic organisms harvest sunlight and convert it to forms of energy that are more easily used and stored. The results may lead to new technologies for solar energy harvesting based on the natural photosynthetic process. They may also enrich our understanding and control of photosynthesis in living organisms, and lead to methods for increasing natural biomass production, carbon dioxide removal, and oxygen generation. In our work to date, we have learned how to make synthetic antenna and reaction center molecules that absorb light and undergo photoinduced electron transfer to generate long-lived, energetic charge-separated states. We have assembled a prototype system in which artificial reaction centers are inserted into liposomes (artificial cell-like constructs), where they carry out light-driven transmembrane translocation of hydrogen ions to generate proton motive force. By insertion of natural ATP synthase into the liposomal bilayer, this proton motive force has been used to power the synthesis of ATP. ATP is a natural biological energy currency. We are carrying out a systematic investigation of these artificial photosynthetic energy harvesting constructs in order to understand better how they operate. In addition, we are exploring strategies for reversing the direction of the light-powered proton pumping. Most recently, we have extended these studies to develop a light-powered transmembrane calcium ion pump that converts sunlight into energy stored as a calcium ion concentration gradient across a lipid bilayer.

Gust, Devens; Moore, Thomas A.; Moore, Ana L.

2003-08-26T23:59:59.000Z

222

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion -  

NLE Websites -- All DOE Office Websites (Extended Search)

Ceramic Electrochemistry Ceramic Electrochemistry * Members * Contact * Publications * Overview * Solid Oxide Fuel Cells * Steam Electrolysis Catalysis & Energy Conversion Home Ceramic Electrochemistry Dave Carter and solid oxide fuel cell Materials scientist John David Carter prepares a solid oxide electrochemical cell for high temperature testing. Research activities in the Ceramic Electrochemistry Group are focused on the development of ceramic-based electrochemical devices and components, such as Solid Oxide Fuel Cells (SOFC) and High Temperature Steam Electrolyzers (HTSE). This extends to materials synthesis, fabrication, and characterization. Solid Oxide Fuel Cell Research As part of the Solid State Energy Conversion Alliance (SECA) Core Technology Program, the goal of this research is the development of solid

223

Commercialization analysis of large wind energy conversion systems. Final report  

DOE Green Energy (OSTI)

The framework is described that can be used to evaluate potential new federal incentives to facilitate the market acceptance of utility-scale wind energy conversion systems. The insights gained from utilizing this framework to evaluate a variety of hypothetical federal incentives are discussed. The heart of the evaluation framework is an explicit representation of the decisions made by utility purchasers, suppliers, and government agencies with respect to the utilization and fabrication of large wind energy conversion systems. The demand-side and supply-side aspects of the multiparty commercialization model are described, and the model's struture is explained. (LEW)

Boyd, D.W.; Buckley, O.E.; Haas, S.M.

1980-06-01T23:59:59.000Z

224

Ocean Wave Wind Energy Ltd OWWE | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ltd OWWE Jump to: navigation, search Name Ocean Wave Wind Energy Ltd OWWE Sector Marine and Hydrokinetic Website http:www.owwe.net Region Norway LinkedIn Connections...

225

Controlling Energy Costs with Coal Conversion  

E-Print Network (OSTI)

Even with a decade of substantial energy reduction in America's manufacturing plants and a temporary 'oil glut', energy often represents the largest plant expense, higher than labor or raw materials. Energy is not only a major plant expense; it is usually regarded as the most controllable. Fluidized bed combustion technology allows industrial steam users to use low-grade coals that are outside of mainstream coal markets, are abundant, and are very inexpensive, being one-quarter to one-third the price of oil or gas. This paper discusses the economics of low-grade coal, what is fluidized bed technology and its comparison to conventional coal and gas/oil fired systems, and one coal-fired FBC installation in Texas.

Sadowski, R. S.; von Hippel, C. S.

1984-01-01T23:59:59.000Z

226

Internal Wave–Wave Interactions. Part II: Spectral Energy Transfer and Turbulence Production  

Science Conference Proceedings (OSTI)

The spectral transfer of internal wave energy toward high vertical wavenumber kz and turbulence production ? is examined by ray tracing small-scale test waves in a canonical Garrett and Munk background wave field. Unlike previous ray-tracing ...

Haili Sun; Eric Kunze

1999-11-01T23:59:59.000Z

227

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network (OSTI)

Structures (Plantships) · Bottom-Mounted Structures · Model Basin Tests/ At-Sea Tests · 210 kW OC-OTEC systems and with an investment payback period estimated at 3 to 4 years. #12;OTEC 12 Energy Carriers & Attachments #12;#12;#12;#12;Bottom-Mounted Structures · Fixed Towers · Guyed Towers · TLP not shown · Causeway

228

Soft Capacitors for Wave Energy Harvesting  

E-Print Network (OSTI)

Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.

Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jørgen Jørgensen; Guggi Kofod

2011-04-21T23:59:59.000Z

229

This paper is published as part of a Dalton Transactions themed issue on: Solar Energy Conversion  

E-Print Network (OSTI)

This paper is published as part of a Dalton Transactions themed issue on: Solar Energy Conversion and Paul King, Dalton Trans., 2009, DOI: 10.1039/b913426n Solar energy conversion in a photoelectrochemical and the optimization of solar energy conversion using DSSCs.7­9 Currently, the maximum solar conversion efficiency

230

Proceedings of the 25th intersociety energy conversion engineering conference  

SciTech Connect

This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

Nelson, P.A.; Schertz, W.W.; Till, R.H.

1990-01-01T23:59:59.000Z

231

Wind Energy Input to the Surface Waves  

Science Conference Proceedings (OSTI)

Wind energy input into the ocean is primarily produced through surface waves. The total rate of this energy source, integrated over the World Ocean, is estimated at 60 TW, based on empirical formulas and results from a numerical model of surface ...

Wei Wang; Rui Xin Huang

2004-05-01T23:59:59.000Z

232

Energy conversion in Purple Bacteria Photosynthesis  

E-Print Network (OSTI)

The study of how photosynthetic organisms convert light offers insight not only into nature's evolutionary process, but may also give clues as to how best to design and manipulate artificial photosynthetic systems -- and also how far we can drive natural photosynthetic systems beyond normal operating conditions, so that they can harvest energy for us under otherwise extreme conditions. In addition to its interest from a basic scientific perspective, therefore, the goal to develop a deep quantitative understanding of photosynthesis offers the potential payoff of enhancing our current arsenal of alternative energy sources for the future. In the following Chapter, we consider the trade-off between dynamics, structure and function of light harvesting membranes in Rps. Photometricum purple bacteria, as a model to highlight the priorities that arise when photosynthetic organisms adapt to deal with the ever-changing natural environment conditions.

Caycedo-Soler, Felipe; Quiroga, Luis; Zhao, Guannan; Johnson, Neil F

2011-01-01T23:59:59.000Z

233

Energy conversion in Purple Bacteria Photosynthesis  

E-Print Network (OSTI)

The study of how photosynthetic organisms convert light offers insight not only into nature's evolutionary process, but may also give clues as to how best to design and manipulate artificial photosynthetic systems -- and also how far we can drive natural photosynthetic systems beyond normal operating conditions, so that they can harvest energy for us under otherwise extreme conditions. In addition to its interest from a basic scientific perspective, therefore, the goal to develop a deep quantitative understanding of photosynthesis offers the potential payoff of enhancing our current arsenal of alternative energy sources for the future. In the following Chapter, we consider the trade-off between dynamics, structure and function of light harvesting membranes in Rps. Photometricum purple bacteria, as a model to highlight the priorities that arise when photosynthetic organisms adapt to deal with the ever-changing natural environment conditions.

Felipe Caycedo-Soler; Ferney J. Rodriguez; Luis Quiroga; Guannan Zhao; Neil F. Johnson

2011-07-01T23:59:59.000Z

234

Introduction to Solar Energy Conversion Solar energy represents the largest energy input into the terrestrial system. Despite its  

E-Print Network (OSTI)

of the resource to allow supply to meet demand at all times. Photovoltaic energy conversion efficiency hasIntroduction to Solar Energy Conversion Solar energy represents the largest energy input the global energy demand on its own. The challenges that need to be addressed to make solar energy viable

Nur, Amos

235

MHK Technologies/The DEXAWAVE wave energy converter | Open Energy  

Open Energy Info (EERE)

DEXAWAVE wave energy converter DEXAWAVE wave energy converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The DEXAWAVE wave energy converter.jpg Technology Profile Primary Organization Dexawave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The DEXAWAVE wave energy converter has a simple construction It consists of two rigid pontoons hinged together using a patented hinge The one pontoon can pivot relative to the other There is a hydraulic power take off system on top of the converter generating up to 250 kW Technology Dimensions Technology Nameplate Capacity (MW) 25 Device Testing Scale Test *At present our 1 to 5 scale model is working the waters outside the Danish port of Hanstholm collecting valuable data about the waves and currents that are constantly pounding the structure

236

Nanowire silicon as a material for thermoelectric energy conversion  

Science Conference Proceedings (OSTI)

In order to use silicon as an efficient thermoelectric (TE) material for TE energy conversion, it is necessary to reduce its relatively high thermal conductivity, while maintaining the high power factor. This can be done by structuring silicon into 1-D ...

A. Stranz; J. Kähler; S. Merzsch; A. Waag; E. Peiner

2012-08-01T23:59:59.000Z

237

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

238

SEAWOLF - Home - Energy Innovation Portal  

POTENTIAL APPLI ATIONS GPM) in test section Offshore Wind Energy Wave Energy Conversion Anchors and Foundations Coastal Sediment Analysis

239

MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy Information  

Open Energy Info (EERE)

Converter OWEC Converter OWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Energy Converter OWEC.jpg Technology Profile Primary Organization Ocean Wave Energy Company Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Neutrally suspended and positively buoyant modules are quick connected into open frame networks Submerged portions are stabilized by variable ballast buoyancy chambers and optional damper sheets situated at a relatively calm depth Frame members carry shaft components of linear rotary converters associated with large point absorber buoys Both directions of reciprocal wave motion i e vertical and horizontal motion directly drive components of counter rotating electrical generators Compared to standard generators wherein one is associated with upstroke and another of smaller proportion with downstroke this configuration increases relative speed with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following buoys Electrical conductors are series connected and further quick connected with those of other modules via upper frame members Through implementation of rep

240

On the Energy Input from Wind to Surface Waves  

Science Conference Proceedings (OSTI)

A basic model relating the energy dissipation in the ocean mixed layer to the energy input into the surface wave field is combined with recent measurements of turbulent kinetic energy dissipation to determine the average phase speed of the waves ...

J. R. Gemmrich; T. D. Mudge; V. D. Polonichko

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

MHK Technologies/OCEANTEC Wave Energy Converter | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Converter Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCEANTEC Wave Energy Converter.jpg Technology Profile Primary Organization OCEANTEC Energias Marinas S L Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description OCEANTEC Marine Energy Company Ltd owned by Iberdrola and TECNALIA is developing a sensor for wave energy technology type Spanish attenuator Floating body oscillates due to wave excitation in its main DOF pitch Mooring system allows the body to weathervane so that it is faced to the predominant wave propagation direction Main advantage capture system completely encapsulated free of contact with sea water A flywheel continuously spins under the action of an electric motor Z The pitching motion of the WEC caused by wave action is transformed into an alternating precession in the longitudinal hull axis X A coupling device transforms this precession into an unidirectional rotation of higher frequency that is used to feed a conventional electric generator

242

Future of photovoltaic energy conversion in developing countries  

DOE Green Energy (OSTI)

Recent studies reveal that photovoltaic energy conversion will be economically viable for usage in developing countries. An overview of programs designed to lower the costs of such conversion systems is presented. Government goals are reviewed, as well as application projects relative to rural usage. A summary of the state-of-the-art in both advanced research and commercially available technology is presented. It is concluded that with the range of the work being done, such systems will be viable for many rural applications within 5 years.

Hogan, S.

1980-04-01T23:59:59.000Z

243

Ocean Thermal Energy Conversion Program Management Plan  

DOE Green Energy (OSTI)

The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

Combs, R E

1980-01-01T23:59:59.000Z

244

SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC  

Science Conference Proceedings (OSTI)

The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.

Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; H. Skip Mieney

2003-06-09T23:59:59.000Z

245

Energy Dissipation of Unsteady Wave Breaking on Currents  

Science Conference Proceedings (OSTI)

Energy dissipation for unsteady deep-water breaking in wave groups on following and opposing currents, including partial wave-blocking conditions, was investigated by detailed laboratory measurements. A range of focusing wave conditions, ...

Aifeng Yao; Chin H. Wu

2004-10-01T23:59:59.000Z

246

Kinetic Energy Transfer between Internal Gravity Waves and Turbulence  

Science Conference Proceedings (OSTI)

We describe a reliable method for distinguishing the mean, wave and turbulence fields when internal waves with changing amplitude perturb the turbulent boundary layer. By integrating the component wave and turbulence kinetic energy budgets ...

J. J. Finnigan

1988-02-01T23:59:59.000Z

247

SPS energy conversion and power management workshop. Final report  

Science Conference Proceedings (OSTI)

In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers. This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)

Not Available

1980-06-01T23:59:59.000Z

248

WaveCatcher Inc | Open Energy Information  

Open Energy Info (EERE)

WaveCatcher Inc WaveCatcher Inc Jump to: navigation, search Name WaveCatcher Inc Address 2307 Robincrest Ln Sector Marine and Hydrokinetic Year founded 2006 Phone number 1-847-764-9106 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=WaveCatcher_Inc&oldid=678511" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863326429 Varnish cache server

249

First results with a surface conversion H ion source based on helicon wave mode-driven plasma discharge  

DOE Green Energy (OSTI)

The currently employed converter-type negative ion source at Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H{sup -} ion beams in a filament-driven discharge. The extracted H{sup -} beam current is limited by the achievable plasma density, which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which degrades the performance of the H{sup -} conversion surface. In order to overcome these limitations we have designed and tested a prototype of a surface conversion H{sup -} ion source, based on excitation of helicon plasma wave mode with an external antenna. The source has been operated with and without cesium injection. An H{sup -} beam current of over 12 mA has been transported through the low energy beam transport of the LANSCE ion source test stand. The results of these experiments and the effects of different source parameters on the extracted beam current are presented. The limitations of the source prototype are discussed and future improvements are proposed based on the experimental observations.

Tarvainen, Ollie A [Los Alamos National Laboratory; Geros, Ernest [Los Alamos National Laboratory; Rouleau, Gary [Los Alamos National Laboratory; Zaugg, Thomas J [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

250

List of Wave Energy Incentives | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Incentives Wave Energy Incentives Jump to: navigation, search The following contains the list of 652 Wave Energy Incentives. CSV (rows 1-500) CSV (rows 501-652) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government

251

MHK Technologies/Wave Energy Propulsion | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Propulsion.jpg Technology Profile Primary Organization Kneider Innovations Technology Resource Click here Wave Technology Type Click here Attenuator Technology Description The device concept is a converter of the vertical potential energy moving wave to push the boat on horizontal kinetic motion Optimum Marine/Riverline Conditions The device is compliant for boat navigating on sea and oceans or lakes when water levels are changing cyclicly waves Technology Dimensions Device Testing Date Submitted 18:32.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Wave_Energy_Propulsion&oldid=681483"

252

MHK Technologies/Seatricity wave energy converter | Open Energy Information  

Open Energy Info (EERE)

Seatricity wave energy converter Seatricity wave energy converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Seatricity wave energy converter.jpg Technology Profile Primary Organization Seatricity Project(s) where this technology is utilized *MHK Projects/Seatricity Antigua *MHK Projects/Seatricity Orkney Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description In the simplest terms, a float travels up and down with the waves and operates a pump to pressurise sea water which is piped ashore. Many individual pumps are connected together to produce substantial amounts of pressurized water. Once ashore the pressurized sea water is used to drive a standard hydroelectric turbine to produce electricity.

253

Contributions to Key Energy Conversion Technologies and Advanced Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Contributions to Key Energy Conversion Technologies and Advanced Methods Contributions to Key Energy Conversion Technologies and Advanced Methods for Optimum Energy Systems Design and Planning Speaker(s): Daniel Favrat Date: February 27, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This presentation reviews some of EPFL-LENI's recent contributions to advanced cogeneration and heat pump technologies as well as to new system design approaches based on multimodal evolutionar algorithms. In the field of cogeneration, theoretical and experimental results show that gas engines with unscavenged ignition prechambers can, without the need of a catalyst, achieve high efficiencies with reasonable emissions with both natural gas and biogas. Combination with Organic Rankine Cycle (ORC) heat recovery

254

April 2013 Most Viewed Documents for Energy Storage, Conversion, And  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Energy Storage, Conversion, And April 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Seventh Edition Fuel Cell Handbook NETL (2004) 628 Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. (null) 205 A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design Stevens, J.W.; Corey, G.P. (1996) 173 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 153 Building a secondary containment system Broder, M.F. (1994) 144 An Improved Method of Manufacturing Corrugated Boxes: Lateral Corrugator Frank C. Murray Ph.D.; , Roman Popil Ph.D.; Michael Shaepe (formerly with IPST, now at Cargill. Inc) (2008) 141 Ammonia usage in vapor compression for refrigeration and air-conditioning in the United States

255

MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy  

Open Energy Info (EERE)

Wind Wave pumps and turbins Wind Wave pumps and turbins < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid wave Wind Wave pumps and turbins.jpg Technology Profile Primary Organization Ocean Wave Wind Energy Ltd OWWE Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 2Wave1Wind The hybrid wave power rig uses two wave converting technologies in addition to wind mills The main system is a pneumatic float in the category of overtopping as Wave Dragon In addition the pneumatic float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005

256

Table B1. Metric Conversion Factors - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

334 U.S. Energy Information Administration / Annual Energy Review 2011 aExact conversion. bCalculated by the U.S. Energy Information Administration.

257

MHK Technologies/CETO Wave Energy Technology | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Technology Wave Energy Technology < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage CETO Wave Energy Technology.png Technology Profile Primary Organization Carnegie Wave Energy Limited Project(s) where this technology is utilized *MHK Projects/CETO La Reunion *MHK Projects/CETO3 Garden Island *MHK Projects/Perth Wave Energy Project PWEP Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The CETO system distinguishes itself from other wave energy devices by operating out of sight and being anchored to the ocean floor. Each CETO unit consists of a pump unit moored to the ocean floor and connected to a submerged Buoyant Actuator via a tether. The Buoyant Actuator moves in an orbital motion, in harmony with the wave, capturing the power of the passing waves. The Buoyant Actuator is connected to a tether (marine rope) that creates a vertical upward force which actuates the seabed mounted piston pump. This force pressurises fluid in the CETO system. The high pressure fluid is then sent ashore via a subsea pipeline. Onshore the fluid passes through a standard hydroelectric turbine to generate zero-emission electricity and/or through a reverse osmosis plant to directly create zero-emission desalinated water (replacing greenhouse gas emitting electrically driven pumps usually required for such plants). The fluid is then re-circulated at low-pressure to the CETO units offshore creating a closed-loop system. The generation capacity of CETO projects is scalable. To increase the project capacity additional units can be added offshore and connected back to a larger power house onshore.

258

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Mahkamov, Renewable and Sustainable Energy Reviews, Vol. 11(S. Wongwises, Renewable and Sustainable Energy Reviews, Vol.E. Barbier, Renewable Sustainable Energy Review, Vol. 6, pp.

Lim, Hyuck

2011-01-01T23:59:59.000Z

259

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

the portion of thermal energy that can be converted toof high-performance thermal energy harvesting systems, butreferred to as the thermal energy from low- temperature heat

Lim, Hyuck

2011-01-01T23:59:59.000Z

260

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

SAN DIEGO Recycling of Wasted Energy : Thermal to ElectricalRecycling of Wasted Energy : Thermal to Electrical Energyenergy, geothermal energy, wasted heat from a nuclear

Lim, Hyuck

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Direct Solar Energy Conversion by the Reduction of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Solar Energy Conversion by the Reduction of CO2 Direct Solar Energy Conversion by the Reduction of CO2 Speaker(s): Reed Jensen Date: August 25, 2005 - 12:00pm Location: Bldg. 90 Reed Jensen has successfully demonstrated the direct solar reduction of CO2 to CO and O2 using a solar concentrator dish and ceramic converter that grew out of his work at Los Alamos National Laboratory. He will discuss the thermochemical, kinetic and spectral properties of the CO2 /CO/ O2 system that enable this process and how the CO is subsequently converted to useful fuels by a range of catalytic processes. He will also discuss the technical difficulties associated with the design, construction and operation of a multi-component optical system that must operate at high temperatures. Results from a prototype system will be discussed defining the efficiencies

262

September 2013 Most Viewed Documents for Energy Storage, Conversion, And  

Office of Scientific and Technical Information (OSTI)

September 2013 Most Viewed Documents for Energy Storage, Conversion, And September 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 169 Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System Burress, Timothy A [ORNL]; Campbell, Steven L [ORNL]; Coomer, Chester [ORNL]; Ayers, Curtis William [ORNL]; Wereszczak, Andrew A [ORNL]; Cunningham, Joseph Philip [ORNL]; Marlino, Laura D [ORNL]; Seiber, Larry Eugene [ORNL]; Lin, Hua-Tay [ORNL] (2011) 116 Evaluation of the 2007 Toyota Camry Hybrid Syneregy Drive System Burress, T.A.; Coomer, C.L.; Campbell, S.L.; Seiber, L.E.; Marlino, L.D.; Staunton, R.H.; Cunningham, J.P. (2008) 102 A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design

263

Most Viewed Documents - Energy Storage, Conversion, and Utilization | OSTI,  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Energy Storage, Conversion, and Utilization Most Viewed Documents - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. () Review of air flow measurement techniques McWilliams, Jennifer (2002) Building a secondary containment system Broder, M.F. (1994) Cost benefit analysis of the night-time ventilative cooling in office building Seppanen, Olli; Fisk, William J.; Faulkner, David (2003) Evaluation of the 2007 Toyota Camry Hybrid Syneregy Drive System Burress, T.A.; Coomer, C.L.; Campbell, S.L.; et al. (2008) Nanofluid technology : current status and future research. Choi, S. U.-S. (1998) An Improved Method of Manufacturing Corrugated Boxes: Lateral

264

Thermophotovoltaic energy conversion using photonic bandgap selective emitters  

DOE Patents (OSTI)

A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

2003-06-24T23:59:59.000Z

265

Estimating Internal Wave Energy Fluxes in the Ocean  

Science Conference Proceedings (OSTI)

Energy flux is a fundamental quantity for understanding internal wave generation, propagation, and dissipation. In this paper, the estimation of internal wave energy fluxes u?p? from ocean observations that may be sparse in either time or depth ...

Jonathan D. Nash; Matthew H. Alford; Eric Kunze

2005-10-01T23:59:59.000Z

266

Open Ocean Aquaculture & Wave Energy Site | Open Energy Information  

Open Energy Info (EERE)

Aquaculture & Wave Energy Site Aquaculture & Wave Energy Site Jump to: navigation, search Basic Specifications Facility Name Open Ocean Aquaculture & Wave Energy Site Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Depth(m) 52.0 Cost(per day) Contact POC Special Physical Features The Offshore Mooring System is placed in 52m water depth with a subsurface attachment grid at 20m. The entire mooring system covers 36 acres of bottom. There are four 'bays' into which devices can be attached. Each bay is approximately 130m on a side. There is a database with ~10 years of wave data and other environmental parameters available. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes

267

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JUNE 1, 2001 THROUGH SEPTEMBER 30, 2001  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JUNE 1, 2001 THROUGH SEPTEMBER 30, 2001

L.C. BROWN

2001-09-30T23:59:59.000Z

268

Direct Energy Conversion Fission Reactor for the period December 1, 1999 through February 29, 2000  

DOE Green Energy (OSTI)

OAK B135 Direct Energy Conversion Fission Reactor for the period December 1, 1999 through February 29, 2000

Brown, L.C.

2000-03-20T23:59:59.000Z

269

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume III. Wind conversion systems with energy storage. Final report  

DOE Green Energy (OSTI)

The variability of energy output inherent in wind energy conversion systems (WECS) has led to the investigation of energy storage as a means of managing the available energy when immediate, direct use is not possible or desirable. This portion of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a wind energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with wind energy conversion systems.

Not Available

1978-01-01T23:59:59.000Z

270

(Small scale wind energy conversion programmatic equipment. Final report)  

SciTech Connect

The purpose of this project is to provide South Dakota citizens with a case study of the institutional and technical problems encountered in the installation, maintenance and use of a small wind energy system. The project will provide information on wind turbine reliability, maintenance requirements and power production to demonstrate the feasibility of small-scale wind energy conversion projects for South Dakota. The system was installed by vocational students and instructors at Mitchell Vocational School. It has been in operation since the fall of 1983.

Wegman, S.

1985-05-20T23:59:59.000Z

271

Tidal Conversion by Supercritical Topography  

E-Print Network (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

Balmforth, Neil J.

272

Tidal Conversion by Supercritical Topography  

Science Conference Proceedings (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of periodic obstructions; a ...

Neil J. Balmforth; Thomas Peacock

2009-08-01T23:59:59.000Z

273

Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications  

E-Print Network (OSTI)

Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications. This article proposes a method to optimize the design of a small fixed-voltage wind energy conversion system are shown and discussed. Key words Wind energy conversion system, stand-alone application, nonlinear

Paris-Sud XI, Université de

274

The State of the Art of Generators for Wind Energy Conversion Systems  

E-Print Network (OSTI)

The State of the Art of Generators for Wind Energy Conversion Systems Yassine Amirat, Mohamed Benbouzid, Bachir Bensaker and René Wamkeue Abstract--Wind Energy Conversion Systems (WECS) have become. I. INTRODUCTION Wind energy conversion is the fastest-growing source of new electric generation

Paris-Sud XI, Université de

275

MHK Technologies/Wave Energy Seawater Transmission WEST | Open Energy  

Open Energy Info (EERE)

Wave Energy Seawater Transmission WEST Wave Energy Seawater Transmission WEST < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Seawater Transmission WEST.jpg Technology Profile Primary Organization Atmocean Inc Project(s) where this technology is utilized *MHK Projects/WEST Testing Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description Atmocean WEST efficiently captures wave energy by deploying many inexpensive devices across large ocean regions. By using hydraulic transmission, WEST avoids the high cost of seafloor power lines, generating electricity onshore to achieve higher reliability at lower cost. When WEST is combined with Bright Energy Storage Technologies seafloor compressed air energy storage (CAES) system, the two enable base load renewable power (eliminating the need for backup fossil-fuel power) at a projected levelized cost of electricity (LCOE) of $.08/kWh to $.12/kWh.

276

MHK Technologies/WaveStar | Open Energy Information  

Open Energy Info (EERE)

WaveStar WaveStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveStar.jpg Technology Profile Primary Organization Wave Star Energy Project(s) where this technology is utilized *MHK Projects/Wave Star Energy 1 10 Scale Model Test Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Star machine does not form a barrier against the waves - with a view to harnessing all their energy - but instead cuts in at right angles to the direction of the wave. In this way, the waves run through the length of the machine and the energy is utilized in a continuous process, which produces a smooth output. On each side of the oblong Wave Star machine, there are a number of hemisphere-shaped floats, which are half submerged in the water. When a wave rolls in, the floats are pressed up - one after the other - until the wave subsides. Each float is positioned at the end of an arm and pumps energy by the vertical movement of the waves up and down. Every time a float is raised or lowered, a piston presses oil into the machine's common transmission system. The pressure drives a hydraulic motor, which drives a generator, which produces electricity. As the machine is several wave lengths long, the floats will work continuously to harness the energy and produce a smooth output.

277

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORTOcean Thermal Energy Conversion (OTEC) sites in the Gulf ofOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,

Commins, M.L.

2010-01-01T23:59:59.000Z

278

OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORT FROM 0. S. S. RESEARCHER IN GULF OF MEXICO, JULY 12-23, 1977.  

E-Print Network (OSTI)

01 OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORTOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,Ocean Thermal Energy Conversion plant were in- itiated in

Quinby-Hunt, M.S.

2008-01-01T23:59:59.000Z

279

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

B. Dawley, I. Wind Energy Conversion System Monitoring &ment of Wind Energy Conversion Systems, Los AlamosCommerical Wind Energy Conversion System Monitoring and

Kay, J.

2009-01-01T23:59:59.000Z

280

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

9437 GOTEC-02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARYto potential Ocean Thermal Energy Conversion (OTEC) sites inThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:

Commins, M.L.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Static power conversion techniques for unique energy devices  

E-Print Network (OSTI)

Solar power, fuel cells, and supercapacitors are some hics. of the new energy devices that are being used today in various power applications. The first two of these devices are exciting alternative sources of clean energy. The third device is an important new energy storage device that has some properties of a battery and a capacitor allowing it to be used in applications where attributes of both are needed. To realize the full potential of these energy sources, novel engineering strategies have to be implemented to manage the conversion of power. Since these devices are relatively new and their development is constantly maturing, a introduction to these devices will be a useful to those unfamiliar with the state of the art of solar cells, fuel cells, and supercapacitors. In this paper characteristics of each technology will be reviewed and design consideration will be discussed, and methods of utilizing each of these devices will be offered.

Welch, Richard Andrew

1998-01-01T23:59:59.000Z

282

EERE News: Energy Department Invests $16 Million to Develop Wave...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Invests 16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 Image of machinery to generate energy using tides. As part of the Obama Administration's...

283

Assessment of Methods to Manipulate Thermal Emission and Evaluate the Quality of Thermal Radiation for Direct Energy Conversion.  

E-Print Network (OSTI)

??ABSTRACT Control of spectral thermal emission from surfaces may be desirable in some energy related applications, such as nano-scale antenna energy conversion and thermophotovoltaic conversion.… (more)

Wijewardane, Samantha

2012-01-01T23:59:59.000Z

284

Recycling of wasted energy : thermal to electrical energy conversion.  

E-Print Network (OSTI)

??Harvesting useful electric energy from ambient thermal gradients and/or temperature fluctuations is immensely important. For many years, a number of direct and indirect thermal-to-electrical energy… (more)

Lim, Hyuck

2011-01-01T23:59:59.000Z

285

SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Thermionic Solar Next-Generation Thermionic Solar Energy Conversion to someone by E-mail Share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Facebook Tweet about SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Twitter Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Google Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Delicious Rank SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Digg Find More places to share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload

286

MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy  

Open Energy Info (EERE)

Spar Buoy Engine Spar Buoy Engine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Power Spar Buoy Engine.jpg Technology Profile Primary Organization Functional Design Engineering Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A long period spar buoy supports a subsurface flow augmentor The augmentor directs water from the wave s submarine flow field to a free prime mover piston The prime mover is decoupled from the machine s PTO during times in the wave s cycle when there is little power available for conversion Wave energy is stored in the device until the is enough flow magnetude that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity

287

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion -  

NLE Websites -- All DOE Office Websites (Extended Search)

Atom-Efficient Chemical Transformations Atom-Efficient Chemical Transformations iact logo Argonne National Laboratory along with its academic partners has established an Energy Frontier Research Center, the Institute for Atom-efficient Chemical Transformations (IACT) whose focus is to advance the science of catalysis for the efficient conversion of energy resources into usable forms. IACT is one of 46 Energy Frontier Research Centers that DOE has established in the United States. IACT is a partnership among world-class scientists at Argonne National Laboratory, Northwestern University, Purdue University, University of Wisconsin-Madison, and Brookhaven National Laboratory. Using a multidisciplinary approach involving integrated catalyst synthesis, advanced characterization, catalytic experimentation, and computation, IACT is addressing key

288

Focus Area 2 - Biomass Deconstruction and Conversion : BioEnergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deconstruction and Conversion BESC research in biomass deconstruction and conversion targets CBP by studying model organisms and thermophilic anaerobes to understand novel...

289

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name Penrose Landfill Gas Conversion LLC Place Los Angeles, California Product Owner of landfill gas plant....

290

Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles  

DOE Green Energy (OSTI)

This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

Green, H.J. (Solar Energy Research Inst., Golden, CO (USA)); Guenther, P.R. (Scripps Institution of Oceanography, La Jolla, CA (USA))

1990-09-01T23:59:59.000Z

291

Photovoltaic energy conversion The objective of this laboratory is for you to explore the science and engineering of the conversion of  

E-Print Network (OSTI)

Photovoltaic energy conversion Objective The objective of this laboratory is for you to explore the photovoltaic energy conversion process is optimal only for photons with energies above, but not too far the science and engineering of the conversion of light to electricity by photovoltaic devices. Preparation

Braun, Paul

292

EIA Renewable Energy- Average Energy Conversion Efficiency of ...  

U.S. Energy Information Administration (EIA)

Renewables and Alternate Fuels > Solar Photovoltaic Cell/Module Annual Report > Annual Shipments of Photovoltaic Cells and Modules by Source: Average Energy ...

293

IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006 1 Distributed Control Agents Approach to Energy  

E-Print Network (OSTI)

IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006 1 Distributed Control Agents Approach to Energy a new scheme for an energy management system in the form of distributed control agents. The control and a minimum amount of communication. A case study using the distributed agents within a multilayer system

Lai, Hong-jian

294

Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint  

DOE Green Energy (OSTI)

During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

Li, Y.; Yu, Y. H.

2012-05-01T23:59:59.000Z

295

Combustion and direct energy conversion in a micro-combustor  

E-Print Network (OSTI)

The push toward the miniaturization of electromechanical devices and the resulting need for micro-power generation (milliwatts to watts) with low-weight, long-life devices has led to the recent development of the field of micro-scale combustion. Since batteries have low specific energy (~200 kJ/kg) and liquid hydrocarbon fuels have a very high specific energy (~50000 kJ/kg), a miniaturized power-generating device, even with a relatively inefficient conversion of hydrocarbon fuels to power, would result in increased lifetime and/or reduced weight of an electronic or mechanical system that currently requires batteries for power. Energy conversion from chemical energy to electrical energy without any moving parts can be achieved by a thermophotovoltaic (TPV) system. The TPV system requires a radiation source which is provided by a micro-combustor. Because of the high surface area to volume ratio for micro-combustor, there is high heat loss (proportional to area) compared to heat generation (proportional to volume). Thus the quenching and flammability problems are more critical in a micro-scale combustor. Hence innovative schemes are required to improve the performance of micro-combustion. In the current study, a micro-scale counter flow combustor with heat recirculation is adapted to improve the flame stability in combustion modeled for possible application to a TPV system. The micro-combustor consists of two annular tubes with an inner tube of diameter 3 mm and 30 mm long and an outer tube of 4.2 mm diameter and 30 mm long. The inner tube is supplied with a cold premixed combustible mixture, ignited and burnt. The hot produced gases are then allowed to flow through outer tube which supplies heat to inner tube via convection and conduction. The hot outer tube radiates heat to the TPV system. Methane is selected as the fuel. The model parameters include the following: diameter d , inlet velocity u , equivalence ratio Ï� and heat recirculation efficiency �· between the hot outer flow and cold inner flow. The predicted performance results are as followings: the lean flammability limit increased from 7.69% to 7.86% and the quenching diameter decreased from 1.3 mm to 0.9 mm when heat recirculation was employed. The overall energy conversion efficiency of current configuration is about 2.56.

Lei, Yafeng

2005-08-01T23:59:59.000Z

296

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

in thermal energy conversion efficiency over present solarsolar thermal- photovoltaic co-generation scheme could have potentially very high solar-to-electric efficiency.solar-to-electric conversion efficiencies are attained and no thermal

Ho, Tony

2012-01-01T23:59:59.000Z

297

Energy Conservation in Coastal-Trapped Wave Calculations  

Science Conference Proceedings (OSTI)

A consideration of energy conservation for coastal-trapped waves shows that, for a slowly varying medium, the normalization of the wave modes is not arbitrary. Errors related to incorrect normalization are demonstrated for a simple analytic ...

K. H. Brink

1989-07-01T23:59:59.000Z

298

Plasmadynamics and ionization kinetics of thermionic energy conversion  

DOE Green Energy (OSTI)

To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. To combine the analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. It is capable of solving for both unsteady and steady thermionic converter behavior including possible laser ionization enhancement or atomic recombination lasing. A proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed. (WHK)

Lawless, J.L. Jr.; Lam, S.H.

1982-02-01T23:59:59.000Z

299

Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop  

DOE Green Energy (OSTI)

Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States)] [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)] [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

1998-06-01T23:59:59.000Z

300

Contribution of chemistry to energy. [Fuels from coal; solar energy storage/conversion  

DOE Green Energy (OSTI)

Chemistry has contributed in many ways to energy production and conversion in the fossil fuel era. The challenges facing chemists and chemical engineers as we look forward to the 21st Century are addressed. This paper discusses some of the means that can be employed to meet this challenge both in the near-term and long-term, particularly alternate fuels from coal and solar energy storage and conversion. A leading candidate for an energy supply medium is hydrogen; implementing this concept may well be the greatest challenge faced by chemists as we leave the age of fossil fuels and enter the era of renewable energy. (DLC)

Cox, K.E.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Reversible information-energy conversions in a quantum hybrid system  

E-Print Network (OSTI)

We investigate the properties of a quantum hybrid opto-mechanical transducer in the context of information thermodynamics, and show that it provides a valuable platform to monitor information- to-energy conversions at the quantum level. An optically active emitter interacts with the electromagnetic field, that plays the role of an out-of-equilibrium heat bath. The bit of information encoded in the emitter is reversibly converted into mechanical energy stored in a nano-resonator whose displacement is measurable in time, offering direct access to the elementary work exchanged. The study of the complete thermodynamical cycle described over a full mechanical period reveals a new type of Landauer's erasure that produces, instead of costing, work. We finally show that this device can be turned into a powerful heat engine operating at Carnot efficiency.

Cyril Elouard; Maxime Richard; Alexia Auffèves

2013-09-20T23:59:59.000Z

302

Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.IF ; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5.lambda..sub.IF.

Brown, Edward J. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY); Dziendziel, Randolph J. (Middlegrove, NY)

1997-01-01T23:59:59.000Z

303

Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}.

Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

1996-12-31T23:59:59.000Z

304

Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}. 10 figs.

Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

1997-12-23T23:59:59.000Z

305

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

Hinsdale Wave Basin 1 Hinsdale Wave Basin 1 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 1 Overseeing Organization Oregon State University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 104.0 Beam(m) 3.7 Depth(m) 4.6 Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 1.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 12' by 12' concrete slabs anchored to flume walls

306

MHK Technologies/Magnetohydrodynamic MHD Wave Energy Converter MWEC | Open  

Open Energy Info (EERE)

Magnetohydrodynamic MHD Wave Energy Converter MWEC Magnetohydrodynamic MHD Wave Energy Converter MWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Magnetohydrodynamic MHD Wave Energy Converter MWEC.jpg Technology Profile Primary Organization Scientific Applications Research Associates Inc SARA Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Magnetohydrodynamic MHD Wave Energy Converter couples the up down motion of heave based systems A shaft transfers wave motion to the MHD generator which is deep underwater The shaft forces the conducting fluid through a set of powerful permanent magnets creating a low voltage high current electrical energy An electrical inverter converts the electrical energy to commercial quality 60 Hz AC power

307

Biochemical Conversion Pilot Plant (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Biochemical Conversion Pilot Plant A pilot-scale conversion plant for researchers, industry partners, and stakeholders to test a variety of biochemical conversion processes and technologies. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. In the biochemical conversion pilot plant, NREL's engineers and scientists focus on all aspects of the efficiency and cost reduction of biochemical conversion processes. Our capabilities accommodate research from bench-scale to pilot-scale (up to one ton per day). NREL's biochemical conversion pilot plant is located in the Integrated Biorefinery Research Facility (IBRF). Photo by Dennis Schroeder, NREL/PIX 20248

308

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Sheets Wave Basin Sheets Wave Basin Jump to: navigation, search Basic Specifications Facility Name Sheets Wave Basin Overseeing Organization University of Rhode Island Hydrodynamic Testing Facility Type Wave Basin Length(m) 30.0 Beam(m) 3.6 Depth(m) 1.8 Cost(per day) $750(+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.0 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 10 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Pre-programmed for regular and irregular waves, but wavemaker is capable of any input motion. Wave Direction Uni-Directional

309

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin Length(m) 38.1 Beam(m) 22.9 Depth(m) 1.5 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 3.3 Maximum Wave Length(m) 10.7 Wave Period Range(s) 3.3 Current Velocity Range(m/s) 0.2 Programmable Wavemaking Yes Wavemaking Description Directional, irregular, any spectrum, cnoidal or solitary wave Wave Direction Both Simulated Beach Yes Description of Beach Stone Channel/Tunnel/Flume Channel/Tunnel/Flume None

310

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

Wave Basin 2 Wave Basin 2 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 2 Overseeing Organization Oregon State University Hydrodynamics Length(m) 48.8 Beam(m) 26.5 Depth(m) 2.1 Water Type Freshwater Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Both Simulated Beach Yes Description of Beach Built to client specifications, currently rigid concrete over gravel fill

311

Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques  

Science Conference Proceedings (OSTI)

Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.

Hunter, Scott Robert [ORNL; Lavrik, Nickolay V [ORNL; Mostafa, Salwa [ORNL; Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL

2012-01-01T23:59:59.000Z

312

Resonant high energy graviton to photon conversion at post recombination epoch  

E-Print Network (OSTI)

Resonant conversion of high energy gravitons into photons in large scale cosmological magnetic fields at the post recombination epoch is considered. It is shown that the probability of the resonance photon production is much higher than the non-resonant one. As a result an observable isotropic background of cosmic gamma rays might be created. As shown in our previous paper, an early population of primordial black holes (PBHs) prior to big bang nucleosynthesis (BBN) could be an efficient source of high frequency gravitational waves. For the primordial black hole mass about $10^8$ g the produced photons would be the dominant component of the soft to hard Cosmic X-ray Background (CXB) and for lower masses the spectrum is shifted down to the ultraviolet and optic.

Alexander D. Dolgov; Damian Ejlli

2013-03-06T23:59:59.000Z

313

Ocean Wave Energy Company OWECO | Open Energy Information  

Open Energy Info (EERE)

Energy Company OWECO Energy Company OWECO Jump to: navigation, search Name Ocean Wave Energy Company (OWECO) Place Bristol, Rhode Island Sector Ocean Product Wave energy device developer. The company has patented the OWEC Ocean Wave Energy Converter®., a device consisting of a submerged array, suspended at depths permitting full reciprocation of buoys and respective driveshafts. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Materials Hydrogen and Fuel Cell Materials * Members * Contact * Publications * Overview * Alternative Electrocatalysts * Electrocatalyst Durability * Hydrogen Storage * Electrocatalyst Degradation Catalysis & Energy Conversion Home Hydrogen and Fuel Cell Materials Polymer electrolyte fuel cell (PEFC) systems are promising alternatives to conventional power systems for transportation, portable, and stationary applications due to their high efficiency of converting fuel to electricity, low emissions, and low operating temperatures. Three major issues for PEFC systems, especially for portable and transportation use, are cost, lifetime, and fuel storage, with the fuel of choice being hydrogen. Argonne's Hydrogen and Fuel Cell Materials group has active research projects in these three areas, to enable the use of this promising technology in a variety of applications.

315

Land-use implications of wind-energy-conversion systems  

DOE Green Energy (OSTI)

An estimated 20 utilities in the United States are now investigating potential wind machine sites in their areas. Identifying sites for wind machine clusters (wind farms) involves more than just finding a location with a suitable wind resource. Consideration must also be given to the proximity of sites to existing transmission lines, environmental impacts, aesthetics, and legal concerns as well as the availability of and alternative uses for the land. These issues have made it increasingly difficult for utilities to bring conventional power plants on-line quickly. Utilities are now required, however, to give careful consideration to specific legal, social, and environmental questions raised by the siting of wind energy conversion systems (WECS).

Noun, R.J.

1981-02-01T23:59:59.000Z

316

Siting handbook for small wind energy conversion systems  

DOE Green Energy (OSTI)

This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

1980-03-01T23:59:59.000Z

317

Standards for photovoltaic energy conversion systems. Final report  

DOE Green Energy (OSTI)

This report provides the results of a search for existing domestic standards and related documents for possible application in the development of a standards base for photovoltaic energy conversion systems. The search resulted in locating about 150 test methods, recommended practices, standards, solar-thermal performance criteria, and other standards-related documents. They are listed by topic areas in the appendix. The listing was prepared to assist those involved in developing performance criteria for photovoltaic systems and in identifying methods to test system performance against these criteria. It is clear from the results of the search that few standards are directly applicable to terrestrial solar photovoltaic systems and that much standards development is required to support the commercialization of such systems.

Schafft, H. A.

1980-04-01T23:59:59.000Z

318

Photochemical energy conversion by membrane-bound photoredox systems  

DOE Green Energy (OSTI)

Most of our effort during the past grant period has been directed towards investigating electron transfer processes involving redox proteins at lipid bilayer/aqueous interfaces. This theme, as was noted in our previous three year renewal proposal, is consistent with our goal of developing biomimetic solar energy conversion systems which utilize the unique properties of biological electron transfer molecules. Thus, small redox proteins such as cytochrome c, plastocyanin and ferredoxin function is biological photosynthesis as mediators of electron flow between the photochemical systems localized in the membrane, and more complex soluble or membrane-bound redox proteins which are designed to carry out specific biological tasks such as transbilayer proton gradient formation, dinitrogen fixation, ATP synthesis, dihydrogen synthesis, generation of strong reductants, etc. In these studies, we have utilized two principal experimental techniques, laser flash photolysis and cyclic voltammetry, both of which permit direct measurements of electron transfer processes.

Tollin, G.

1992-03-01T23:59:59.000Z

319

WATER CONSUMPTION OF ENERGY RESOURCE EXTRACTION, PROCESSING, AND CONVERSION  

E-Print Network (OSTI)

A review of the literature for estimates of water intensity of energyresource extraction, processing to fuels, and conversion to electricity

Erik Mielke; Laura Diaz Anadon; Venkatesh Narayanamurti; Erik Mielke; Laura Diaz Anadon; Venkatesh Narayanamurti

2010-01-01T23:59:59.000Z

320

Available Technologies: Green Wave: Energy-Efficient HPC ...  

A Berkeley Lab team led by John Shalf and David Donofrio developed Green Wave, a energy-efficient computing platform that can perform critical Reverse Time Migration ...

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

Resource This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed...

322

Traveling Wave Thermoacoustic-Piezoelectric Energy Harvester: Theory and Experiment.  

E-Print Network (OSTI)

??This thesis presents a theoretical and experimental investigation of a piezoelec- tric energy harvester coupled to a traveling wave thermoacoustic engine (TWTAE). By simplifying the… (more)

Roshwalb, Andrew Zvi

2011-01-01T23:59:59.000Z

323

Conversion of the Barotropic Tide  

Science Conference Proceedings (OSTI)

Using linear wave theory, the rate at which energy is converted into internal gravity waves by the interaction of the barotropic tide with topography in an ocean is calculated. Bell's formula for the conversion rate is extended to the case of an ...

Stefan G. Llewellyn Smith; W. R. Young

2002-05-01T23:59:59.000Z

324

M13 bacteriophage-enabled assembly of nanocomposites : synthesis and application in energy conversion devices  

E-Print Network (OSTI)

Lack of energy supply and non-uniform distribution of traditional energy sources, such as coal, oil, and natural gas, have brought up tremendous social issues. To solve these issues, highly efficient energy conversion ...

Dang, Xiangnan

2013-01-01T23:59:59.000Z

325

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

SciTech Connect

This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

Yu, Y.; Li, Y.

2011-10-01T23:59:59.000Z

326

AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion  

E-Print Network (OSTI)

AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion Steven J. Konezny and SnO2 play a central role in solar energy conversion applications.1­7 In fact, the discovery of low-cost high-efficiency dye-sensitized solar cells (DSSCs) (i.e., exceeding 10% solar-to-electric energy

327

Modeling and controller design of a wind energy conversion system with matrix converter  

Science Conference Proceedings (OSTI)

In order to meet increasing power demand, taking into account economical and environmental factors, wind energy conversion is gradually gaining interest as a suitable source of renewable energy. In this paper, The modeling of the Wind Energy Conversion ... Keywords: FCC, PWM, SPVM, WECS, induction generator, matrix converter CSCF, power control, variable speed, wind turbine

Y. S. Rao; A. J. laxmi; K. M. S. N. Krishna

2011-02-01T23:59:59.000Z

328

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems  

E-Print Network (OSTI)

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems B. Beltran, T. Ahmed power generation in variable speed wind energy conversion systems (VS-WECS). These systems have two (National Renewable Energy Laboratory) wind turbine simulator FAST (Fatigue, Aerodynamics, Structures

Brest, Université de

329

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Alden Wave Basin Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Wave Basin Length(m) 33.5 Beam(m) 21.3 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 1.0 Maximum Wave Length(m) 1.8 Wave Period Range(s) 1.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Period adjustable electronically, height adjustable mechanically Wave Direction Both Simulated Beach Yes Description of Beach Designed as needed using commercially available sand/sediment

330

Transmission and Conversion of Energy by Coupled Soft Gears  

E-Print Network (OSTI)

Dynamical aspects of coupled deformable gears are investigated to clarify the differences of mechanical properties between the machines consist of hard materials and those of soft materials. In particular, the performances of two functions, the transmission and the conversion of the energy, are compared between the hard and soft gears systems. First, the responses of the coupled gears against a constant torque working on one of gears are focused for two types of couplings; P) a pair gears are coupled, and T) three gears are coupled with forming a regular triangle. In systems with the coupling P), we obtain trivial results that the rotational energy can be transmitted to other gear only if these gears are hard enough. On the other hand, in systems with the coupling T), the transmission of the rotational energy to one of the other gears appears only if these gears are soft enough. Second, we show the responses of this system in which one of gears have contact with a high temperature heat bath and the other gears have contact with a 0 temperature heat bath. With the coupling T), the directional rotations appear in two gears having contact with 0 temperature heat bath. Here, the direction of these rotations change depending on the noise strength.

Akinori Awazu

2005-03-14T23:59:59.000Z

331

Characterization and Modeling of Electrochemical Energy Conversion Systems by Impedance Techniques.  

E-Print Network (OSTI)

??This thesis introduces (i) amendments to basic electrochemical measurement techniques in the time and frequency domain suitable for electrochemical energy conversion systems like fuel cells… (more)

Klotz, Dino

2012-01-01T23:59:59.000Z

332

Dynamic average-value modeling of doubly-fed induction generator wind energy conversion systems.  

E-Print Network (OSTI)

??In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a… (more)

Shahab, Azin

2013-01-01T23:59:59.000Z

333

MHK Technologies/bioWave | Open Energy Information  

Open Energy Info (EERE)

bioWave bioWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage BioWave.jpg Technology Profile Primary Organization BioPower Systems Pty Ltd Project(s) where this technology is utilized *MHK Projects/bioWAVE Pilot Plant Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description TThe bioWAVE is based on the swaying motion of sea plants in the presence of ocean waves. The hydrodynamic interaction of the buoyant blades with the oscillating flow field is designed for maximum energy absorption. Mooring Configuration Gravity base Optimum Marine/Riverline Conditions 30 to 50M depth 20kW m wave climate or greater

334

"Fundamental Challenges in Solar Energy Conversion" workshop hosted by  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications Contact BES Home 06.02.10 "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Print Text Size: A A A Subscribe FeedbackShare Page July 7, 2010 :: The Light-Material Interactions in Energy Conversion EFRC at the California Institute of Technology will host a one day "Fundamental Challenges in Solar Energy Conversion" workshop for faculty, staff, postdoctoral, and graduate researchers from EFRCs focused on solar energy conversion. More information can be found here .pdf file (553KB

335

MHK Projects/Santona Wave Energy Park | Open Energy Information  

Open Energy Info (EERE)

Santona Wave Energy Park Santona Wave Energy Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4421,"lon":-3.45319,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

336

MHK Projects/Oregon Coastal Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Coastal Wave Energy Coastal Wave Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5146,"lon":-123.913,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

337

Modeling the Q-cycle mechanism of transmembrane energy conversion  

E-Print Network (OSTI)

The Q-cycle mechanism plays an important role in the conversion of the redox energy into the energy of the proton electrochemical gradient across the biomembrane. The bifurcated electron transfer reaction, which is built into this mechanism, recycles one electron, thus, allowing to translocate two protons per one electron moving to the high-potential redox chain. We study a kinetic model of the Q-cycle mechanism in an artificial system which mimics the bf complex of plants and cyanobacteria in the regime of ferredoxin-dependent cyclic electron flow. Using methods of condensed matter physics, we derive a set of master equations and describe a time sequence of electron and proton transfer reactions in the complex. We find energetic conditions when the bifurcation of the electron pathways at the positive side of the membrane occurs naturally, without any additional gates. For reasonable parameter values, we show that this system is able to translocate more than 1.8 protons, on average, per one electron, with a thermodynamic efficiency of the order of 32% or higher.

Anatoly Yu. Smirnov; Franco Nori

2011-06-29T23:59:59.000Z

338

Modeling the Q-cycle mechanism of transmembrane energy conversion  

E-Print Network (OSTI)

The Q-cycle mechanism plays an important role in the conversion of the redox energy into the energy of the proton electrochemical gradient across the biomembrane. The bifurcated electron transfer reaction, which is built into this mechanism, recycles one electron, thus, allowing to translocate two protons per one electron moving to the high-potential redox chain. We study a kinetic model of the Q-cycle mechanism in an artificial system which mimics the bf complex of plants and cyanobacteria in the regime of ferredoxin-dependent cyclic electron flow. Using methods of condensed matter physics, we derive a set of master equations and describe a time sequence of electron and proton transfer reactions in the complex. We find energetic conditions when the bifurcation of the electron pathways at the positive side of the membrane occurs naturally, without any additional gates. For reasonable parameter values, we show that this system is able to translocate more than 1.8 protons, on average, per one electron, with a t...

Smirnov, Anatoly Yu

2011-01-01T23:59:59.000Z

339

Environmental programs for ocean thermal energy conversion (OTEC)  

Science Conference Proceedings (OSTI)

The environmental research effort in support of the US Department of Energy's Ocean Thermal Energy Conversion (OTEC) program has the goal of providing documented information on the effect of proposed operations on the ocean and the effect of oceanic conditions on the plant. The associated environment program consists of archival studies in potential areas serial oceanographic cruises to sites or regions of interest, studies from various fixed platforms at sites, and compilation of such information for appropriate legal compliance and permit requirements and for use in progressive design of OTEC plants. Site/regions investigated are south of Mobile and west of Tampa, Gulf of Mexico; Punta Tuna, Puerto Rico; St. Croix, Virgin Islands; Kahe Point, Oahu and Keahole Point, Hawaii, Hawaiian Islands; and off the Brazilian south Equatorial Coast. Four classes of environmental concerns identified are: redistribution of oceanic properties (ocean water mixing, impingement/entrainment etc.); chemical pollution (biocides, working fluid leaks, etc.); structural effects (artificial reef, aggregation, nesting/migration, etc.); socio-legal-economic (worker safety, enviromaritime law, etc.).

Wilde, P.

1981-07-01T23:59:59.000Z

340

Enhancement of particle-wave energy exchange by resonance sweeping  

SciTech Connect

It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation.

Berk, H.L.; Breizman, B.N.

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Motor Wave Group | Open Energy Information  

Open Energy Info (EERE)

Wave Group Jump to: navigation, search Name Motor Wave Group Place Hong Kong Sector Marine and Hydrokinetic Website http:www.motorwavegroup.com Region China LinkedIn Connections...

342

Kinetic Wave Power | Open Energy Information  

Open Energy Info (EERE)

Kinetic Wave Power Jump to: navigation, search Name Kinetic Wave Power Address 2861 N Tupelo St Place Midland Zip 48642 Sector Marine and Hydrokinetic Phone number 989-839-9757...

343

Wind Waves and Sun | Open Energy Information  

Open Energy Info (EERE)

Waves and Sun Jump to: navigation, search Name Wind Waves and Sun Sector Marine and Hydrokinetic Website http:www.windwavesandsun.com Region United States LinkedIn Connections...

344

MHK Technologies/C Wave | Open Energy Information  

Open Energy Info (EERE)

Wave Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage C Wave.jpg Technology Profile Primary Organization C Wave Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The C Wave device uses two neutrally buoyant walls approximately half a wave length apart so that while one is moving forward the other is moving back The device works at a broad bandwidth around this half wavelength spacing However to improve annualized energy yield still further a third wall at an unequal spacing can be added in order to extract energy from different wavelengths Technology Dimensions

345

Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

1988-12-01T23:59:59.000Z

346

MHK Technologies/Wave Dragon | Open Energy Information  

Open Energy Info (EERE)

Dragon Dragon < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Dragon.jpg Technology Profile Primary Organization Wave Dragon ApS Project(s) where this technology is utilized *MHK Projects/Wave Dragon Nissum Bredning Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The Wave Dragon is a floating wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp. Behind the ramp there is a large reservoir where the water that runs up the ramp is collected and temporarily stored. The water leaves the reservoir through hydro turbines that utilize the head between the level of the reservoir and the sea level.

347

MHK Technologies/MotorWave | Open Energy Information  

Open Energy Info (EERE)

MotorWave MotorWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MotorWave.jpg Technology Profile Primary Organization Motor Wave Group Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The MotorWave device is composed of about 70 float modules with each float measuring about 4 m3 Each MotorWave is designed to pump water ashore for onshore applications or energy production Technology Dimensions Device Testing Date Submitted 45:49.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/MotorWave&oldid=681609

348

Power conversion effectiveness and generation | Open Energy Informatio...  

Open Energy Info (EERE)

Linked Data Page Edit History Share this page on Facebook icon Twitter icon Power conversion effectiveness and generation Jump to: navigation, search Retrieved from...

349

Photovoltaic effect in InSe Application to Solar Energy Conversion  

E-Print Network (OSTI)

253 Photovoltaic effect in InSe Application to Solar Energy Conversion A. Segura, J. P. Guesdon, J are reported. Photovoltaic spectra are fitted with measured values oftransport and optical parameters. InSe is shown to be a new material with attractive characteristics for solar energy conversion. Performance

Paris-Sud XI, Université de

350

Author's personal copy Maximizing the solar to H2 energy conversion efficiency  

E-Print Network (OSTI)

Author's personal copy Maximizing the solar to H2 energy conversion efficiency of outdoor, Cockrell School of Engineering, The University of Texas at Austin ­ Austin, TX 78712, USA b Mechanical t A numerical study is presented aiming to maximize the solar to hydrogen energy conversion efficiency

Pilon, Laurent

351

Reliability analysis of fault tolerant wind energy conversion system with doubly fed induction generator  

Science Conference Proceedings (OSTI)

This paper deals with the design of a reliable fault tolerant converter topology for grid connected Wind Energy Conversion System (WECS) with Double Fed Induction Generator (DFIG) based on functional redundancy. The main contribution of the developed ... Keywords: Markov chain model, fault tolerant system, reliability analysis, wind energy conversion system

Philippe Weber; Florent Becker; Antoine Mathias; Didier Theilliol; Youmin M. Zhang

2012-10-01T23:59:59.000Z

352

New Wave Power Project In Oregon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Power Project In Oregon Wave Power Project In Oregon New Wave Power Project In Oregon June 17, 2011 - 3:12pm Addthis Mike Reed Water Power Program Manager, Water Power Program What does this project do? Promises to add tremendous value to the wave energy industry, reinforcing utility-scale viability, collecting ground-breaking environmental impact data and exploring avenues for cost reduction. Has issued localized manufacturing contracts for the PB150 to several Oregon companies. If you've ever been surfing, or gone swimming in choppy water, you've experienced first-hand the striking power of waves. In fact, further offshore, wave activity becomes even more powerful, making it an excellent resource for generating clean, renewable energy. That's exactly what the Department of Energy and its partner Ocean Power Technologies (OPT) are

353

Tidal Conversion at a Submarine Ridge  

Science Conference Proceedings (OSTI)

The radiative flux of internal wave energy (the “tidal conversion”) powered by the oscillating flow of a uniformly stratified fluid over a two-dimensional submarine ridge is computed using an integral-equation method. The problem is characterized ...

François Pétrélis; Stefan Llewellyn Smith; W. R. Young

2006-06-01T23:59:59.000Z

354

Overview of biomass thermochemical conversion activities funded by the biomass energy systems branch of DOE  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is actively involved in the development of renewable energy sources through research and development programs sponsored by the Biomass Energy Systems Branch. The overall objective of the thermochemical conversion element of the Biomass Energy Systems Program is to develop competitive processes for the conversion of renewable biomass resources into clean fuels and chemical feedstocks which can supplement fuels from conventional sources. An overview of biomass thermochemical conversion projects sponsored by the Biomass Energy Systems Branch is presented in this paper.

Schiefelbein, G.F.; Sealock, L.J. Jr.; Ergun, S.

1979-01-01T23:59:59.000Z

355

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

OTRC Wave Basin OTRC Wave Basin Jump to: navigation, search Basic Specifications Facility Name OTRC Wave Basin Overseeing Organization Texas A&M (OTRC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 45.7 Beam(m) 30.5 Depth(m) 5.8 Water Type Freshwater Cost(per day) $300/hour (excluding labor) Special Physical Features 4.6m wide x 9.1m long x 16.8m deep pit with adjustable depth floor in test area Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.6 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 25 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.6 Programmable Wavemaking Yes Wavemaking Description GEDAP 3D wave generation software, 48 hinged flap wave generator

356

Ocean thermal energy conversion plants : experimental and analytical study of mixing and recirculation  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a method of generating power using the vertical temperature gradient of the tropical ocean as an energy source. Experimental and analytical studies have been carried out to determine ...

Jirka, Gerhard H.

357

Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems  

E-Print Network (OSTI)

Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

Greenhut, Andrew David

2010-01-01T23:59:59.000Z

358

Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants  

DOE Green Energy (OSTI)

This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

1981-02-01T23:59:59.000Z

359

Estimation of wind characteristics at potential wind energy conversion sites  

DOE Green Energy (OSTI)

A practical method has been developed and applied to the problem of determining wind characteristics at candidate wind energy conversion sites where there are no available historical data. The method uses a mass consistent wind flow model (called COMPLEX) to interpolate between stations where wind data are available. The COMPLEX model incorporates the effects of terrain features and airflow. The key to the practical application of COMPLEX to the derivation of wind statistics is the model's linearity. This allows the input data sets to be resolved into orthogonal components along the set of eigenvectors of the covariance matrix. The solution for each eigenvector is determined with COMPLEX; the hourly interpolated winds are then formed from linear combinations of these solutions. The procedure requires: acquisition and merger of wind data from three to five stations, application of COMPLEX to each of the seven to 11 (depending on the number of stations for which wind data are available) eigenvectors, reconstruction of the hourly interpolated winds at the site from the eigenvector solutions, and finally, estimating the wind characteristics from the simulated hourly values. The report describes the methodology and the underlying theory. Possible improvements to the procedure are also discussed.

Not Available

1979-10-01T23:59:59.000Z

360

Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices  

SciTech Connect

The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

Authors, Various

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Estimation of wind characteristics at potential wind energy conversion sites  

SciTech Connect

A practical method has been developed and applied to the problem of determining wind characteristics at candidate wind energy conversion sites where there are no available historical data. The method uses a mass consistent wind flow model (called COMPLEX) to interpolate between stations where wind data are available. The COMPLEX model incorporates the effects of terrain features and airflow. The key to the practical application of COMPLEX to the derivation of wind statistics is the model's linearity. This allows the input data sets to be resolved into orthogonal components along the set of eigenvectors of the covariance matrix. The solution for each eigenvector is determined with COMPLEX; the hourly interpolated winds are then formed from linear combinations of these solutions. The procedure requires: acquisition and merger of wind data from three to five stations, application of COMPLEX to each of the seven to 11 (depending on the number of stations for which wind data are available) eigenvectors, reconstruction of the hourly interpolated winds at the site from the eigenvector solutions, and finally, estimating the wind characteristics from the simulated hourly values. The report describes the methodology and the underlying theory. Possible improvements to the procedure are also discussed.

1979-10-01T23:59:59.000Z

362

Oregon Wave Energy Trust OWET | Open Energy Information  

Open Energy Info (EERE)

Trust OWET Trust OWET Jump to: navigation, search Name Oregon Wave Energy Trust (OWET) Place Portland, Oregon Zip 97207 Product String representation "The Oregon Wave ... rgy generation." is too long. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Efficiency evaluation of oxygen enrichment in energy conversion processes  

SciTech Connect

The extent to which energy conversion efficiencies can be increased by using oxygen or oxygen-enriched air for combustion was studied. Combustion of most fuels with oxygen instead of air was found to have five advantages: increases combustion temperature and efficiency, improves heat transfer at high temperatures, reduces nitrous oxide emissions, permits a high ration of exhaust gas recirculation and allows combustion of certain materials not combustible in air. The same advantages, although to a lesser degree, are apparent with oxygen-enriched air. The cost-effectiveness of the process must necessarily be improved by about 10% when using oxygen instead of air before such use could become justifiable on purely economic terms. Although such a modest increase appears to be attainable in real situations, this study ascertained that it is not possible to generally assess the economic gains. Rather, each case requires its own evaluation. For certain processes industry has already proven that the use of oxygen leads to more efficient plant operation. Several ideas for essentially new applications are described. Specifically, when oxygen is used with exhaust gas recirculation in external or internal combustion engines. It appears also that the advantages of pulse combustion can be amplified further if oxygen is used. When burning wet fuels with oxygen, direct steam generation becomes possible. Oxygen combustion could also improve processes for in situ gasification of coals, oil shales, peats, and other wet fuels. Enhanced oil recovery by fire flooding methods might also become more effective if oxygen is used. The cold energy contained in liquid oxygen can be substantially recovered in the low end of certain thermodynamic cycles. Further efforts to develop certain schemes for using oxygen for combustion appear to be justified from both the technical and economic viewpoints.

Bomelburg, H.J.

1983-12-01T23:59:59.000Z

364

A Review of Previous Research in Direct Energy Conversion Fission Reactors  

DOE Green Energy (OSTI)

From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this day, but there have been no recent significant programs to develop the technology.

DUONG,HENRY; POLANSKY,GARY F.; SANDERS,THOMAS L.; SIEGEL,MALCOLM D.

1999-09-22T23:59:59.000Z

365

MHK Technologies/WavePlane | Open Energy Information  

Open Energy Info (EERE)

WavePlane WavePlane < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WavePlane.jpg Technology Profile Primary Organization WavePlane A S Project(s) where this technology is utilized *MHK Projects/WavePlane Prototype 1 Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The WavePlane is a V-shaped design, which is anchored with the head up against the incoming waves. Below the waterline the device is fitted with an artificial beach, which is designed to improve the capture of wave energy. The WavePlane is symmetrical in its construction. Each side captures the water from the waves of various heights. The device splits the oncoming waves with a series of intakes, known as lamellas, which guide the captured water into a 'flywheel tube.' The fast moving vortex that is formed then forces the water across two turbines, which are located at the ends of the two 'V-shaped legs'. Finally the water is discharged back into the ocean.

366

SeWave | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » SeWave Jump to: navigation, search Name SeWave Place Denmark Zip FO-110 Product Denmark-based 50:50 JV between UK's Wavegen and Faroese electricity company SEV to to design and build a tunnelled demonstration wave power plant in the Faroes Islands. References SeWave[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeWave is a company located in Denmark . References ↑ "SeWave"

367

Property:Wave Direction | Open Energy Information  

Open Energy Info (EERE)

Direction Direction Jump to: navigation, search Property Name Wave Direction Property Type String Pages using the property "Wave Direction" Showing 25 pages using this property. (previous 25) (next 25) A Alden Small Flume + Uni-Directional + Alden Wave Basin + Both + C Carderock Maneuvering & Seakeeping Basin + Both + Carderock Tow Tank 2 + Uni-Directional + Carderock Tow Tank 3 + Uni-Directional + Chase Tow Tank + Uni-Directional + Coastal Harbors Modeling Facility + Uni-Directional + Coastal Inlet Model Facility + Uni-Directional + Coastal Structures Modeling Complex + Both + D Davidson Laboratory Tow Tank + Uni-Directional + DeFrees Large Wave Basin + Uni-Directional + DeFrees Small Wave Basin + Uni-Directional + H Haynes Wave Basin + Both +

368

MHK Technologies/Wave Water Pump WWP | Open Energy Information  

Open Energy Info (EERE)

Pump WWP Pump WWP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Water Pump WWP.gif Technology Profile Primary Organization Renewable Energy Wave Pumps Technology Resource Click here Wave Technology Description The Water Wave Pump WWP is a point absorber that uses a submerged water pump to lift a small quantity of water to a higher head collect it in a piping network and feed it to a hydro turbine to produce power Mooring Configuration Gravity base installed at the sea bed Optimum Marine/Riverline Conditions The REWP can pump water to a hgih head fro waves ranging between 1 2 meters to waves in excess of 4 meters high It self adjusts to varyilng sea levels and wave hights It resists storms safe to navigation as red floats are clearly seen during the day and red flashing lights during the night It does not disturb marine life or shore line scenic view

369

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

370

MHK Technologies/Wave Rotor | Open Energy Information  

Open Energy Info (EERE)

Rotor Rotor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rotor.jpg Technology Profile Primary Organization Ecofys Subsidiary of Econcern Project(s) where this technology is utilized *MHK Projects/C Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Rotor uses a combined Darrieus-Wells rotor, which is contained on the same vertical axis of rotation. These are respectively omni- and bi-directional rotors that can operate in currents of changing directions. The Wave Rotor is mounted on a platform to allow for the capture of wave energy from circulating water particles created by local currents. Since it uses two types of rotor on a single axis of rotation it is able to convert not only tidal currents, but also waves into electricity.

371

Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications  

DOE Green Energy (OSTI)

The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

Atcitty, S.; Gray-Fenner, A.; Ranade, S.

1998-09-01T23:59:59.000Z

372

ME 599-001: Fundamentals of Energy Conversion Professor Angela Violi  

E-Print Network (OSTI)

ME 599-001: Fundamentals of Energy Conversion Professor Angela Violi Department of Mechanical: This class is a journey on energy. The goal is to provide information and analysis tools on the development of energy technology, energy resources and energy technologies available today. After an overview

Violi, Angel

373

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network (OSTI)

of conventional energy conversion systems. The approachlarge-scale wave energy conversion systems have been built.energy is determined by the end-use amenity provided, conversion efficiency and the supply system

Authors, Various

2010-01-01T23:59:59.000Z

374

ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES  

SciTech Connect

Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

2013-05-10T23:59:59.000Z

375

Methane Gas Conversion Property Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Program Info Start Date 01/01/2008 (retroactive) State Iowa Program Type Property Tax Incentive Rebate Amount 100% exemption for 10 years Provider Iowa Economic Development Authority '''''Note: This exemption is only available to facilities operated in connection or conjunction with a publicly-owned sanitary landfill. The exemption was available to other entities only for systems placed in service by December 31, 2012. Systems in place before this date are eligible to receive the property tax exemption for 10 years.''''' Under Iowa's methane gas conversion property tax exemption, real and

376

Recovery Act: Carbon Dioxide Conversion to Fuels and Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

would have been evaluated for suitability as a pyrolysis feedstock using benchmark-scale pyrolysis tests. The conversion of the residual biomass to bio-oil and char would then...

377

NREL: Power Technologies Energy Data Book - Chapter 12. Conversion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

378

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

379

Rankine cycle energy conversion system design considerations for low and intermediate temperature sensible heat sources. Geothermal, waste heat, and solar thermal conversion  

DOE Green Energy (OSTI)

Design considerations are described for energy conversion systems for low and intermediate temperature sensible heat sources such as found in geothermal, waste heat, and solar-thermal applications. It is concluded that the most cost effective designs for the applications studied did not require the most efficient thermodynamic cycle, but that the efficiency of the energy conversion hardware can be a key factor.

Abbin, J.P. Jr.

1976-10-01T23:59:59.000Z

380

Biomass conversion Task 4 1988 program of work: International Energy Agency Bioenergy Agreement  

DOE Green Energy (OSTI)

For biomass to meet its potential as an energy resource, conversion processes must be available which are both efficient and environmentally acceptable. Conversion can include direct production of heat and electricity as well as production of intermediate gaseous, liquid, and solid fuels. While many biomass conversion processes are commercially available at present, others are still in the conceptual stage. Additional research and development activities on these advanced concepts will be necessary to fully use biomass resources. Ongoing research on biomass conversion processes is being conducted by many nations throughout the world. In an effort to coordinate this research and improve information exchange, several countries have agreed to a cooperative effort through the International Energy Agency's Bioenergy Agreement (IEA/BA). Under this Agreement, Task IV deals specifically with biomass conversion topics. The cooperative activities consists of information exchange and coordination of national research programs on specific topics. The activities address biomass conversion in a systematic manner, dealing with the pretreatment of biomass prior to conversion, the subsequent conversion of the biomass to intermediate fuels or end-product energy, and then the environmental aspects of the conversion process. This document provides an outline of cooperative work to be performed in 1988. 1 fig., 2 tabs.

Stevens, D.J.

1987-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Biomass conversion Task 4 1988 program of work: International Energy Agency Bioenergy Agreement  

SciTech Connect

For biomass to meet its potential as an energy resource, conversion processes must be available which are both efficient and environmentally acceptable. Conversion can include direct production of heat and electricity as well as production of intermediate gaseous, liquid, and solid fuels. While many biomass conversion processes are commercially available at present, others are still in the conceptual stage. Additional research and development activities on these advanced concepts will be necessary to fully use biomass resources. Ongoing research on biomass conversion processes is being conducted by many nations throughout the world. In an effort to coordinate this research and improve information exchange, several countries have agreed to a cooperative effort through the International Energy Agency's Bioenergy Agreement (IEA/BA). Under this Agreement, Task IV deals specifically with biomass conversion topics. The cooperative activities consists of information exchange and coordination of national research programs on specific topics. The activities address biomass conversion in a systematic manner, dealing with the pretreatment of biomass prior to conversion, the subsequent conversion of the biomass to intermediate fuels or end-product energy, and then the environmental aspects of the conversion process. This document provides an outline of cooperative work to be performed in 1988. 1 fig., 2 tabs.

Stevens, D.J.

1987-12-01T23:59:59.000Z

382

Energy of tsunami waves generated by bottom motion  

E-Print Network (OSTI)

generation models. Theoretical and Computational Fluid Dynamics, 21:245­269, 2007. Z. Kowalik, W. Knight, TEnergy of tsunami waves generated by bottom motion By Denys Dutykh, Fr´ed´eric Dias CMLA, ENS investigation on the energy of waves generated by bottom motion is performed here. We start with the full

Paris-Sud XI, Université de

383

Momentum and Energy Transfer in Wind Generation of Waves  

Science Conference Proceedings (OSTI)

Complete expressions for wind momentum and energy transfer to wind-generated waves are derived based on a boundary-layer integral method. The airflow and wave measurements as made by Wu et al. (1977, 1979) are used to provide a first-order ...

Chin-Tsau Hsu; Hong-Ye Wu; En-Yun Hsu; Robert L. Street

1982-09-01T23:59:59.000Z

384

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

alternative energy sources. Hydrogen has been investigated to become a major component of world energy solutions

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

385

Biomass Conversion Task IV 1987 program of work: International Energy Agency Bioenergy Agreement  

DOE Green Energy (OSTI)

Biomass is a major, renewable energy resource through out the world, and extensive research is being conducted by many countries on bioenergy technologies. In an effort to improve communications and cooperation in the area of biomass energy, several nations have agreed to a cooperative program of work under the International Energy Agency's Bioenergy Agreement (IEA/BA). Three areas of major importance have been identified including Short Rotation Forestry, Conventional Forestry, and Biomass Conversion. This document describes the 1987 Program of Work for cooperative activities in the area of Biomass Conversion. The background of the cooperation and descriptions of specific conversion projects are presented. Details of activity funding are also provided. 3 tabs.

Stevens, D.J.

1986-12-01T23:59:59.000Z

386

Efficient energy conversion from laser to proton beam in a laser-foil interaction  

Science Conference Proceedings (OSTI)

Demonstrated is a remarkable improvement on the energy conversion efficiency from laser to protons in a laser-foil interaction by particle simulations. The total laser-proton energy conversion efficiency becomes 16.7%, although a conventional plane foil target serves a rather low efficiency. In our previous study we found that Al multihole thin-foil target was efficient for the energy conversion from laser to protons [Y. Nodera and S. Kawata, Phys. Rev. E 78, 046401 (2008)], and the energy conversion efficiency was 9.3%. In our 2.5-dimensional particle-in-cell simulations the Al multihole structure is also employed, and the parameters of the Al multihole wing width and length are optimized in the paper. The present results clarify the roles of the target Al hole width and depth in the laser-proton energy conversion. The main physical reason for the enhancement of the conversion efficiency is a reduction of the laser reflection at the target surface area. The optimized multihole foil target provides a remarkable increase in the laser-proton energy conversion efficiency as shown above.

Takahashi, K.; Kawata, S.; Satoh, D.; Barada, D. [Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, 321-8585 Utsunomiya (Japan); Ma, Y. Y. [Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, 321-8585 Utsunomiya (Japan); Department of Physics, College of Science, National University of Defense Technology, 410073 Changsha (China); Kong, Q.; Wang, P. X. [Institute of Modern Physics, Fudan University, 200433 Shanghai (China)

2010-09-15T23:59:59.000Z

387

MHK Technologies/Oceanlinx Mark 3 Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

Oceanlinx Mark 3 Wave Energy Converter Oceanlinx Mark 3 Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oceanlinx Mark 3 Wave Energy Converter.jpg Technology Profile Primary Organization Oceanlinx Project(s) where this technology is utilized *MHK Projects/GPP Namibia *MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project *MHK Projects/Hawaii *MHK Projects/Oceanlinx Maui *MHK Projects/Port Kembla *MHK Projects/Portland Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Oceanlinx Mark 3 Wave Energy Converter is a floating multi Oscilating Water Chamber Wave Energy Converter. The airflow generated by the OWC passes through a patented Denniss Auld turbine which converts the bidirectional airflow of the OWC to a unidirectional rotation of the axial flow turbine which in turn drives a generator.

388

MHK Technologies/Neptune Triton Wave | Open Energy Information  

Open Energy Info (EERE)

Triton Wave Triton Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Triton Wave.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Triton operates in the near-shore and consists of an axi-asymmetrical buoy attached to an A-frame piled into the sea bed. The axi-asymmetrical buoy is designed to generate a counter-phase upstream wave and a much reduced downstream wave, which maximizes capture from the wave and improves overall efficiency. In order to tune the buoy to the incident wave regime, the mass can be controlled by pumping sea water into and out of the hollow cavity inside the buoy. Power take-off is achieved via a piston and hydraulic arrangement.

389

MHK Technologies/Wave Roller | Open Energy Information  

Open Energy Info (EERE)

Roller Roller < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Roller.jpg Technology Profile Primary Organization AW Energy Project(s) where this technology is utilized *MHK Projects/Peniche Portugal *MHK Projects/AW Energy EMEC Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description A WaveRoller device is a plate anchored on the sea bottom by its lower part. The back and forth movement of surge moves the plate, and the kinetic energy produced is collected by a piston pump. This energy can be converted to electricity by a closed hydraulic system in combination with a hydraulic motor/generator system. Upgrade to No3 is more powerful hyraulic componets.

390

MITIGATION ACTION PLAN FOR THE OREGON STATE UNIVERSITY WAVE ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 | P a g e MITIGATION ACTION PLAN FOR THE OREGON STATE UNIVERSITY WAVE ENERGY TEST PROJECT ENVIRONMENTAL ASSESSMENT AUGUST 15, 2012 PREPARED TO ACCOMPANY DOEEA 1917 U.S....

391

Spectral Energy Dissipation due to Surface Wave Breaking  

Science Conference Proceedings (OSTI)

A semiempirical determination of the spectral dependence of the energy dissipation due to surface wave breaking is presented and then used to propose a model for the spectral dependence of the breaking strength parameter b, defined in the O. M. ...

Leonel Romero; W. Kendall Melville; Jessica M. Kleiss

2012-09-01T23:59:59.000Z

392

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box...

393

Energy Flux and Wavelet Diagnostics of Secondary Mountain Waves  

Science Conference Proceedings (OSTI)

In recent years, aircraft data from mountain waves have been primarily analyzed using velocity and temperature power spectrum and momentum flux estimation. Herein it is argued that energy flux wavelets (i.e., pressure–velocity wavelet cross-...

Bryan K. Woods; Ronald B. Smith

2010-11-01T23:59:59.000Z

394

Estimates of Kinetic Energy Dissipation under Breaking Waves  

Science Conference Proceedings (OSTI)

The dissipation of kinetic energy at the surface of natural water bodies has important consequences for many Physical and biochemical processes including wave dynamics, gas transfer, mixing of nutrients and pollutants, and photosynthetic ...

E.A. Terray; M.A. Donelan; Y.C. Agrawal; W.M. Drennan; K.K. Kahma; A.J. Williams; P.A. Hwang; S.A. Kitaigorodskii

1996-05-01T23:59:59.000Z

395

Validation of MPPT strategy for a wind energy conversion system using a hardware-in-the-loop  

E-Print Network (OSTI)

Validation of MPPT strategy for a wind energy conversion system using a hardware - A hardware-in-the-loop simulation of a wind energy conversion system is used to assess a MPPT strategy of wind energy conversion systems (WECS) have been studied [1, 2]. In most of case, simulation has been

Hansen, René Rydhof

396

A Conversation With Tribal Leaders in Denver | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Conversation With Tribal Leaders in Denver A Conversation With Tribal Leaders in Denver A Conversation With Tribal Leaders in Denver June 27, 2012 - 2:29pm Addthis Senior Advisor for Environmental Management David Huizenga, fifth from left, and EM Office of External Affairs Director Paul Seider, first from left, stand for a photo with leaders and staff members of the Tribal Nations while on a tour of the Rocky Flats site following the Tribal Leader Dialogue in Denver on Tuesday. Senior Advisor for Environmental Management David Huizenga, fifth from left, and EM Office of External Affairs Director Paul Seider, first from left, stand for a photo with leaders and staff members of the Tribal Nations while on a tour of the Rocky Flats site following the Tribal Leader Dialogue in Denver on Tuesday.

397

Energy Department Invests $16 Million to Harness Wave and Tidal Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Harness Wave and Tidal 6 Million to Harness Wave and Tidal Energy Energy Department Invests $16 Million to Harness Wave and Tidal Energy August 29, 2013 - 2:35pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United States and responsible development of this clean, renewable energy

398

Energy Department Invests $16 Million to Develop Wave and Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Develop Wave and Tidal 6 Million to Develop Wave and Tidal Energy Technologies Energy Department Invests $16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 - 12:00pm Addthis Image of machinery to generate energy using tides. As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United

399

Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint  

DOE Green Energy (OSTI)

The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

2012-04-01T23:59:59.000Z

400

Energy storage and generation from thermopower waves  

E-Print Network (OSTI)

The nonlinear coupling between an exothermic chemical reaction and a nanowire or nanotube with large axial heat conduction guides a self-propagating thermal wave along the nano-conduit. The thermal conduit accelerates the ...

Abrahamson, Joel T. (Joel Theodore)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Transport by Nonlinear Internal Waves  

Science Conference Proceedings (OSTI)

Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture ...

J. N. Moum; J. M. Klymak; J. D. Nash; A. Perlin; W. D. Smyth

2007-07-01T23:59:59.000Z

402

Energy Conversion Facilities Sales Tax Exemption (Ohio) | Open...  

Open Energy Info (EERE)

Thermal Process Heat, Solar Water Heat, Wind Active Incentive Yes Implementing Sector StateTerritory Energy Category Energy Efficiency Incentive Programs, Renewable Energy...

403

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network (OSTI)

3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using RelaxorWaste heat Pyroelectric energy

Lee, Felix

2012-01-01T23:59:59.000Z

404

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

hydrogen. Energy storage via molecular hydrogen is, ofhydrogen storage. International Journal of Hydrogen Energy,hydrogen storage. International Journal of Hydrogen Energy,

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

405

MHK Technologies/Multi Absorbing Wave Energy Converter MAWEC | Open Energy  

Open Energy Info (EERE)

Absorbing Wave Energy Converter MAWEC Absorbing Wave Energy Converter MAWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Multi Absorbing Wave Energy Converter MAWEC.jpg Technology Profile Primary Organization Leancon Wave Energy Project(s) where this technology is utilized *MHK Projects/Leancon Real Sea Test Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description MAWEC is an OWC wave energy converter that works differently from other OWCs in that it concurrently utilizes pressure and suck. This gives the wanted effect that the vertical force on the WEC is zero when the WEC stretches over more than one wave length. The device is V-shaped and oriented perpendicular to wave direction. The device consists of a number of vertical air tubes, and when a wave passes, air is pushed into a pressure channel that sucks air out of the suck channel. During one wave period each tube (120 in total) goes through a sequence where air is first pushed into a pressure channel when the wave is rising and is later sucked from the pressure channel when the wave is falling. In this situation there is constant pressure in the pressure channel and the air flow through the turbines is constant.

406

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

as energy/hydrogen carrier, its history. Comptes Rendusas energy/hydrogen carrier, its history. Comptes Rendus

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

407

Exploring electron and phonon transport at the nanoscale for thermoelectric energy conversion  

E-Print Network (OSTI)

Thermoelectric materials are capable of solid-state direct heat to electricity energy conversion and are ideal for waste heat recovery applications due to their simplicity, reliability, and lack of environmentally harmful ...

Minnich, Austin Jerome

2011-01-01T23:59:59.000Z

408

Recent developments in high-temperature photonic crystals for energy conversion  

E-Print Network (OSTI)

After decades of intense studies focused on cryogenic and room temperature nanophotonics, scientific interest is also growing in high-temperature nanophotonics aimed at solid-state energy conversion. These latest extensive ...

Rinnerbauer, Veronika

409

Contributions of Barotropic Energy Conversion to Northwest Pacific Tropical Cyclone Activity during ENSO  

Science Conference Proceedings (OSTI)

The contribution of barotropic energy conversion to tropical cyclone (TC) activity over the western North Pacific (WNP) during warm and cold phases of El Niño–Southern Oscillation (ENSO) is investigated by separating TC vortices from reanalysis ...

Yao Ha; Zhong Zhong; Yimin Zhu; Yijia Hu

2013-04-01T23:59:59.000Z

410

Efficiency calculations for the direct energy conversion system of the Cadarache neutral beam injectors  

DOE Green Energy (OSTI)

A prototype energy conversion system is presently in operation at Cadarache, France. Such a device is planned for installation on each six neutral beam injectors for use in the Tore Supra experiment in 1989. We present calculations of beam performance that may influence design considerations. The calculations are performed with the DART charged particle beam code. We investigate the effects of cold plasma, direct energy conversion and neutral beam production. 4 refs., 6 figs., 4 tabs.

White, R.C.

1988-06-08T23:59:59.000Z

411

Analysis of a direct energy conversion system using medium energy helium ions  

E-Print Network (OSTI)

A scaled direct energy conversion device was built to convert kinetic energy of singly ionized helium ions into an electric potential by the process of direct conversion. The experiments in this paper aimed to achieve higher potentials and higher efficiencies than ever before. The predicted maximum potential that could be produced by the 150 kV accelerator at the Texas A&M Ion Beam Lab was 150 kV, which was achieved with 92% collection efficiency. Also, an investigation into factors affecting collection efficiency was made. It was concluded that charge was being lost due to charge exchange occurring near the surface of the target which caused positive target atoms to be ejected from the face and accelerated away. Introducing a wire mesh near the face of the target with an electric potential, positive or negative, which aimed to control secondary ion emissions, did not have an effect on the collection efficiency of the system. Also, it was found that the gas pressure inside the chamber did not have an effect on the collection efficiency. The goal of achieving higher electric potentials and higher efficiencies than previous direct conversion work was met.

Carter, Jesse James

2005-05-01T23:59:59.000Z

412

MHK Technologies/Archimedes Wave Swing | Open Energy Information  

Open Energy Info (EERE)

Archimedes Wave Swing Archimedes Wave Swing < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Archimedes Wave Swing.jpg Technology Profile Primary Organization AWS Ocean Energy formerly Oceanergia Project(s) where this technology is utilized *MHK Projects/AWS II *MHK Projects/Portugal Pre Commercial Pilot Project Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The AWS wave energy converter is a cylindrical chamber moored to the seabed. Passing waves move an air-filled upper casing against a lower fixed cylinder, with up and down movement being converted into electricity. As a wave crest approaches, the water pressure on the top of the cylinder increases, and the upper part or 'floater' compresses the gas within the cylinder to balance the pressures. The reverse happens as the wave trough passes and the cylinder expands. The relative movement between the floater and the lower part or silo is converted to electricity by means of a hydraulic system and motor-generator set.

413

Performance Improvement of Doubly Fed Induction Generator-based Wind Energy Conversion System during Various Internal Converter Faults.  

E-Print Network (OSTI)

??The doubly fed induction generator (DFIG)-based wind energy conversion system (WECS) currently dominates the wind energy market due to its advantages over other WECSs. In… (more)

Abdou, Ahmed

2013-01-01T23:59:59.000Z

414

Thermophotovoltaic energy conversion system having a heavily doped n-type region  

DOE Patents (OSTI)

A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.

DePoy, David M. (Clifton Park, NY); Charache, Greg W. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY)

2000-01-01T23:59:59.000Z

415

Abstract--This paper addresses the problem of controlling wind energy conversion systems (WECS) which involve  

E-Print Network (OSTI)

Abstract-- This paper addresses the problem of controlling wind energy conversion systems (WECS-inverter. The goal of control is to maximize wind energy extraction and this needs letting the wind turbine rotor wind energy extraction) only for one wind speed value depending on the considered value of turbine

Paris-Sud XI, Université de

416

Electric resonance-rectifier circuit for renewable energy conversion  

Science Conference Proceedings (OSTI)

Variable speed generators are used more frequently for converting the energy from renewable energy sources to electric energy. The power production form a variable speed generator is dependent on the electrical damping of the generator. In this paper

C. Boström; B. Ekergård; M. Leijon

2012-01-01T23:59:59.000Z

417

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for Western Gulf of Mexico. Energy Research and Developmentfor central Gulf of Mexico. Energy Research and DevelopmentGulf of Mexico, - IV-34 in Proc. Fourth Ocean Thermal Energy

Sands, M. D.

2011-01-01T23:59:59.000Z

418

Organic Membranes for Energy Conversion and "Green" Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Membranes for Energy Conversion and "Green" Manufacturing Organic Membranes for Energy Conversion and "Green" Manufacturing Speaker(s): John Kerr Date: January 17, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Cynthia Tast Organic materials are central to the operation of energy conversion devices such as lithium batteries and fuel cells. Use of organic polymer membranes has been well established in the chlor-alkali and separations industries for several decades now. New applications such as light emitting diodes for displays and area lighting, organic photovoltaics for solar conversion and electrochromics illustrate the growing importance of organic materials in energetic applications. Understanding the operation of these materials, their limitations and advantages is of major importance to the successful

419

April 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer DOE Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Science and Technology Software Center...

420

MHK Technologies/Floating wave Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Floating Wave Powered Generator is an attenuator that uses three pontoons that pivot on rigid arms as the wave passes driving gears that turn a generator Technology Dimensions Device Testing Date Submitted 45:12.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Floating_wave_Generator&oldid=681577"

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MHK Technologies/Wave Rider | Open Energy Information  

Open Energy Info (EERE)

Rider Rider < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rider.jpg Technology Profile Primary Organization Seavolt Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The company s Wave Rider system uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity Electricity is generated via small turbines powered by hydraulic circuits which captures the energy of the wave and converts it into high pressure hydraulic fluid flow spinning the turbines to generate electricity Technology Dimensions Device Testing Date Submitted 19:42.1 << Return to the MHK database homepage

422

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

423

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD APRIL 1, 2002 THROUGH JUNE 30, 2002  

DOE Green Energy (OSTI)

Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation.

L.C. BROWN

2002-06-30T23:59:59.000Z

424

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JULY 1, 2002 THROUGH SEPTEMBER 30, 2002  

DOE Green Energy (OSTI)

Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation.

L.C. BROWN

2002-09-30T23:59:59.000Z

425

An Assessment of Solar Energy Conversion Technologies and Research Opportunities  

E-Print Network (OSTI)

(25%). The energy quality of diffused radiation is lower (75.2% of exergy content instead of 93 for the production of electricity and hot water. Similar estimates are shown for wind energy (0.06TW), ocean thermal of Solar Energy Deployment The global solar energy potential ranges from 2.5 to 80TW (see Appendix

Nur, Amos

426

Navy Catching Waves in Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii June 2, 2010 - 11:56am Addthis This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. To a casual observer, the buoy off the shore of Marine Corps Base Hawaii (MCBH) might look like nothing more than a bright yellow spot in a blue ocean. But this isn't an ordinary buoy - it's a small electrical generator, creating renewable electricity as it bobs up and down on the waves. It's also a test project by the U.S. Navy to see whether a wider

427

Wave Dragon ApS | Open Energy Information  

Open Energy Info (EERE)

Dragon ApS Dragon ApS Jump to: navigation, search Name Wave Dragon ApS Place Copenhagen, Denmark Zip DK-2200 Country Albania Product Wave energy converter development company. Has patented the Wave Dragon, an offshore floating slack moored wave energy converter. Coordinates 55.6760968°, 12.5683371° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.6760968,"lon":12.5683371,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

MHK Technologies/Syphon Wave Generator | Open Energy Information  

Open Energy Info (EERE)

Syphon Wave Generator Syphon Wave Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Syphon Wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Syphon Wave Generator is composed of a horizontal pipe containing a propeller driven generator mounted above the highest normal wave at high tide and two or more vertical pipes at least one at each end of the horizontal pipe Each vertical pipe must extend below the water surface at all times and have openings below the surface All the air must be removed from the pipe thus filling the unit completely with water When the crest of a wave reaches the first vertical pipe the water level will be higher at that pipe than at the second vertical pipe This causes water to flow up the first pipe and through the horizontal pipe thus turning the propeller and generator to produce electricity and then down the second vertical pipe due to the siphon effect When the crest of the wave moves to the second vertical pipe the water level is higher there than at the first pipe This will cause the water to flow up the second pipe and through the system in the opposite direction again prod

429

Total instantaneous energy transport in polychromatic fluid gravity waves at finite depth  

Science Conference Proceedings (OSTI)

The total instantaneous energy transport can be found for polychromatic waves when using the deep water approximation. Expanding this theory to waves in waters of finite depth

J. Engström; J. Isberg; M. Eriksson; M. Leijon

2012-01-01T23:59:59.000Z

430

MHK Technologies/Indian Wave Energy Device IWAVE | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Device IWAVE Wave Energy Device IWAVE < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Indian Wave Energy Device IWAVE.jpg Technology Profile Primary Organization Nualgi Nanobiotech Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description It is a floating device tethered with chains to piles driven to ocean bottom The wave action raises the heavy partially buoyant piston that drives the overhead crankshaft by half turn The receding wave drops the piston completing the balance half turn One revolution is obtained for every wave Using gear box and generator the current is produced continuously

431

Clean Wave Ventures | Open Energy Information  

Open Energy Info (EERE)

Clean Wave Ventures Clean Wave Ventures Place Indianapolis, Indiana Zip 46204 Product Midwest-based venture capital firm specializing in high growth Clean Technology investments Coordinates 39.76691°, -86.149964° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.76691,"lon":-86.149964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

Energy Conversion (OTEC) sites in the Gulf of Mexico. TheENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICOEnergy Conversion (OTEC) Sites: Puerto Rico, St. Croix and Northern Gulf of Mexico.

Commins, M.L.

2010-01-01T23:59:59.000Z

433

BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MHD PLASMA. II. HOW TO GET ALFVEN WAVES THROUGH THE SOLAR TRANSITION REGION  

SciTech Connect

Alfven waves may be difficult to excite at the photosphere due to low-ionization fraction and suffer near-total reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting fast magnetohydrodynamic waves, and that Alfvenic TR reflection is greatly reduced if the fast reflection point is within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is also explored. This phase can potentially be misinterpreted as a travel speed perturbation with implications for the practical seismic probing of active regions.

Hansen, Shelley C.; Cally, Paul S., E-mail: shelley.hansen@monash.edu, E-mail: paul.cally@monash.edu [Monash Centre for Astrophysics and School of Mathematical Sciences, Monash University, Clayton, Victoria 3800 (Australia)

2012-05-20T23:59:59.000Z

434

Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices  

DOE Green Energy (OSTI)

This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

1988-12-01T23:59:59.000Z

435

OPTIMAL POWER DISPATCH AND CONVERSION IN SYSTEMS WITH MULTIPLE ENERGY CARRIERS  

E-Print Network (OSTI)

This paper introduces a general optimization approach for power dispatch and conversion in power systems that include multiple energy carriers such as electricity, natural gas, and district heating. The classical Economic Dispatch method is modified in order to account for certain system properties, such as the possibility of conversion between the different energy carriers, or local overproduction and power feedback to the grid. In this work both a system model as well as an optimization approach are developed which are suitable for the integration of an arbitrary number of energy carriers. Analytical results show how the optimal conversion of power affects the marginal prices related to the different energy carriers. Finally the proposed optimization procedure is demonstrated in numerical examples.

Martin Geidl; Göran Andersson

2005-01-01T23:59:59.000Z

436

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network (OSTI)

Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular important source of energy. By approaching a photovoltaic (PV) cell3 in proximity of a thermal emitter

Paris-Sud XI, Université de

437

Evaluation of Power Extraction to Linear Gain Scheduling Controllers in a Small Wind Energy Conversion System  

Science Conference Proceedings (OSTI)

Renewable energy sources have focused a special attention in wind energy conversion systems, where the goal is maximal power extraction. This paper presents an evaluation of the linear controllers eigen structure assingment, linear quadratic regulator, ... Keywords: Wind turbines, permanent magnet synchronous generator, eigenstructure assingment, linear quadratic regulator, loop shaping design procedure

Santiago Sanchez Acevedo; Eduardo Giraldo; Edilson Delgado Trejos

2010-09-01T23:59:59.000Z

438

Energy Transfer from High-Shear, Low-Frequency Internal Waves to High-Frequency Waves near Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

Evidence is presented for the transfer of energy from low-frequency inertial–diurnal internal waves to high-frequency waves in the band between 6 cpd and the buoyancy frequency. This transfer links the most energetic waves in the spectrum, those ...

Oliver M. Sun; Robert Pinkel

2012-09-01T23:59:59.000Z

439

MHK Technologies/GyroWaveGen | Open Energy Information  

Open Energy Info (EERE)

GyroWaveGen GyroWaveGen < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage GyroWaveGen.jpg Technology Profile Primary Organization Paradyme Systems Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A gyro wave energy transducer is mounted on the buoyant body for translating the pendulum like motions of the buoyant body into rotational motion The gyro wave energy transducer includes a gimbal comprised of first and second frames with the first frame being pivotally mounted to the second frame and the second frame being pivotally mounted to the buoyant body A gyroscope is mounted to the first frame for rotation about an axis perpendicular to the axes of rotation of the first and second frames A motor generator is coupled to the gyroscope for maintaining a controlled rotational velocity for the gyroscope Transferring members are associated with one of the first and second frames for transferring torque of one of the first and second frames to the gyroscope about an axis that is perpendicular to that of the gyroscope which results in rotation of the other of the first and second frames An electrical generator is responsive to the relative rotational movement of the first and se

440

Improvement of Energy Conversion Efficiency on Pulsed Wire ...  

Science Conference Proceedings (OSTI)

Recently, several studies were carried out to the improvement of the energy ... Geopolymer Products from Jordan for Sustainability of the Environment.

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Direct Conversion of Light into Work - Energy Innovation Portal  

Alex Zettl, Jean M. J. Fréchet, and a team of Berkeley Lab researchers have discovered a mechanism for converting solar energy directly into mechanical work, thus ...

442

Doubly fed induction machine control for wind energy conversion .  

E-Print Network (OSTI)

??Due to increasing concerns about CO2 emissions and the shortage of fossil fuels, renewable energy has become a major topic in economic discussions. One renewable… (more)

Massey, Jason G.

2009-01-01T23:59:59.000Z

443

February 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

Urban HeatIslandMitigation Akbari, Hashem (2005) 138 Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report Michael Schuller; Frank...

444

Advanced Materials for Energy Conversion III TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's Hydrogen Storage Program: The Grand Challenge of Vehicular Hydrogen Storage [pp. 25] C. Read, J. Petrovic, G. Ordaz, and ...

445

Rapid Solar-Thermal Conversion of Biomass to Syngas - Energy ...  

Production of synthesis gas or hydrogen by gasification or pyrolysis of biological feedstocks using solar-thermal energy. The invention provides processes that ...

446

Watching Gravitational Waves  

E-Print Network (OSTI)

In the vicinity of merging neutron strar binaries or supernova remnants, gravitational waves can interact with the prevailing strong magnetic fields. The resulting partial conversion of gravitational waves into electromagnetic (radio) waves might prove to be an indirect way of detecting gravitational waves from such sources. Another interesting interaction considered in this article is the excitation of magnetosonic plasma waves by a gravitational wave passing through the surrounding plasma. The transfer of gravitational wave energy into the plasma might help to fuel the `fireball' of electromagnetic radiation observed in gamma ray bursts. In the last section of the article, a dispersion relation is derived for such magnetosonic plasma waves driven by a gravitational wave.

Joachim Moortgat

2001-04-02T23:59:59.000Z

447

Thermochemical conversion of biomass: an overview of R and D activities sponsored by the Biomass Energy Systems Branch of DOE  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is actively developing renewable energy sources through research and development programs sponsored by the Biomass Energy Systems Branch. The mission of the thermochemical conversion element of the Biomass Energy Systems Program is to develop competitive processes for the conversion of renewable biomass resources into clean fuels and chemical feedstocks which can supplement those produced from conventional sources. A description of thermochemical conversion program areas and an overview of specific thermochemical conversion projects sponsored by the Biomass Energy Systems Branch are presented in this paper.

Schiefelbein, G.F.; Sealock, L.J. Jr.; Ergun, S.

1979-10-01T23:59:59.000Z

448

The environmental interactions of tidal and wave energy generation devices  

Science Conference Proceedings (OSTI)

Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

2012-01-15T23:59:59.000Z

449

Arnold Schwarzenegger DEVELOPING WAVE ENERGY IN  

E-Print Network (OSTI)

Commission EMEC European Marine Energy Test Centre EPRI Electric Power Research Institute FERC Federal Energy penetration at times while maintaining voltage stability of the grid [1]. Autonomous grids with wind, penetration was allowed to reach 60% and showed no adverse effects on system stability. This level

450

Biomass Conversion Task IV 1986-1988 Program of Work. International Energy Agency Bioenergy Agreement  

DOE Green Energy (OSTI)

Biomass is a major, renewable energy resource throughout much of the world, and extensive research is being conducted on bioenergy technologies. In an effort to improve communications and cooperation in the area of biomass energy, several countries have agreed to a cooperative program of work under the International Energy Agency's Bioenergy Agreement (IEA/BA). Three areas of major importance have been identified including Short Rotation Forestry, Conventional Forestry, and Biomass Conversion. This document describes a Program of Work for cooperative activities in the area of Biomass Conversion. The background of the cooperation and general descriptions of specific conversion projects are presented. Details of activity funding are also provided. Finally, individual Activity Plans for specific cooperative activities are attached for reference. These plans describe projected work for the period 1986 to 1988.

Stevens, D.J.

1986-08-01T23:59:59.000Z

451

A Legacy of Energy Evaluation: A Conversation with Ed Vine  

NLE Websites -- All DOE Office Websites (Extended Search)

or invest in energy efficiency technology; and the administration and analysis of household surveys. Q: I know a recent focus of your work has been on climate change. Tell us...

452

NETL: Solid State Energy Conversion Alliance (SECA) Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

and are capable of operating on a wide variety of fuels, from coal and natural gas to landfill waste and hydrogen. 01.31.2013 News Fossil Energy-Developed Fuel Cell...

453

BlueWave Capital LLC | Open Energy Information  

Open Energy Info (EERE)

BlueWave Capital LLC BlueWave Capital LLC Jump to: navigation, search Name BlueWave Capital LLC Place Boston, Massachusetts Sector Renewable Energy Product Knowledge-based investment firm focused on early- and expansion-stage environmental and renewable energy-related operating companies. Coordinates 42.358635°, -71.056699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358635,"lon":-71.056699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Fundamental Principle of Information-to-Energy Conversion  

E-Print Network (OSTI)

The equivalence of 1 bit of information to entropy was given by Landauer in 1961 as kln2, k the Boltzmann constant. Erasing information implies heat dissipation and the energy of 1 bit would then be (the Landauers limit) kT ln 2, T being the ambient temperature. From a quantum-cosmological point of view the minimum quantum of energy in the universe corresponds today to a temperature of 10^(-29) degrees K, probably forming a cosmic background of a Bose condensate [1]. Then, the bit with minimum energy today in the Universe is a quantum of energy 10^(-45)ergs, with an equivalent mass of 10^(-66)g. Low temperature implies low energy per bit and, of course, this is the way for faster and less energy dissipating computing devices. Our conjecture is this: the possibility of a future access to the CBBC (a coupling/channeling?) would mean a huge jump in the performance of these devices.

Alfonso-Faus, Antonio

2014-01-01T23:59:59.000Z

455

Fundamental Principle of Information-to-Energy Conversion  

E-Print Network (OSTI)

The equivalence of 1 bit of information to entropy was given by Landauer in 1961 as kln2, k the Boltzmann constant. Erasing information implies heat dissipation and the energy of 1 bit would then be (the Landauers limit) kT ln 2, T being the ambient temperature. From a quantum-cosmological point of view the minimum quantum of energy in the universe corresponds today to a temperature of 10^(-29) degrees K, probably forming a cosmic background of a Bose condensate [1]. Then, the bit with minimum energy today in the Universe is a quantum of energy 10^(-45)ergs, with an equivalent mass of 10^(-66)g. Low temperature implies low energy per bit and, of course, this is the way for faster and less energy dissipating computing devices. Our conjecture is this: the possibility of a future access to the CBBC (a coupling/channeling?) would mean a huge jump in the performance of these devices.

Antonio Alfonso-Faus

2013-06-30T23:59:59.000Z

456

Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type and an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.

Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

1996-12-31T23:59:59.000Z

457

Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.

Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

1998-06-23T23:59:59.000Z

458

Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVenergy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.

Charache, Greg W. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY); Nichols, Greg J. (Burnt Hills, NY)

1998-01-01T23:59:59.000Z

459

Slide19 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

reports and 2,200 patents. * New Semantic Search. * Some subject area examples: hydrogen, solar energy, tidal and wave power, energy storage and direct energy conversion. Add new...

460

Reply to comment | OSTI, US Dept of Energy, Office of Scientific...  

Office of Scientific and Technical Information (OSTI)

and 2,200 patents. * New Semantic Search. * Some subject area examples: hydrogen, solar energy, tidal and wave power, energy storage and direct energy conversion. Add new...

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Application of genetic algorithm to improve voltage regulation of self-excited induction generator in a wind energy conversion system  

Science Conference Proceedings (OSTI)

Self-excited induction generators have been found to be most suitable for wind energy conversion in remote locations. In this paper, an attempt has been made to improve the voltage regulation of self-excited induction generator (SEIG) using series compensation. ... Keywords: genetic algorithms, intelligent systems, modelling, renewable energy, self-excited induction generators, simulation, voltage regulation, wind energy conversion systems, wind power

Dheeraj Joshi; K. S. Sandhu; M. K. Soni

2007-02-01T23:59:59.000Z

462

Comments on “Estimates of Kinetic Energy Dissipation under Breaking Waves”  

Science Conference Proceedings (OSTI)

It is noted that the results of recent experiments on the enhancement of turbulent kinetic energy (TKE) dissipation below surface waves can be stated as follows. TKE dissipation is enhanced by a factor 15Hws/z at depths 0.5Hws < z < 20Hws with ...

Gerrit Burgers

1997-10-01T23:59:59.000Z

463

Spectral Energy Balance of Breaking Waves within the Surf Zone  

Science Conference Proceedings (OSTI)

The spectral energy balance of ocean surface waves breaking on a natural beach is examined with field observations from a cross-shore array of pressure sensors deployed between the shoreline and the outer edge of the surf zone near Duck, North ...

T. H. C. Herbers; N. R. Russnogle; Steve Elgar

2000-11-01T23:59:59.000Z

464

MHK Technologies/Wave Treader fixed | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies/Wave Treader fixed MHK Technologies/Wave Treader fixed < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Treader fixed.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Wave Treader concept utilises the arms and sponsons from Ocean Treader and instead of reacting against a floating Spar Buoy, will react through an Interface Structure onto the Foundation of an Offshore Wind Turbine. Between the Arms and the Interface Structure hydraulic cylinders are mounted and as the wave passes the machine first the forward Sponson will lift and fall and then the aft Sponson will lift and fall each stroking their hydraulic cylinder in turn. This pressurises hydraulic fluid which is then smoothed by hydraulic accumulators before driving a hydraulic motor which in turn drives an electricity generator. The electricity is then exported through the cable shared with the Wind Turbine.

465

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD DECEMBER 1,2000 THROUGH FEBRUARY 28,2001  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD DECEMBER 1,2000 THROUGH FEBRUARY 28,2001

L.C. BROWN

2000-02-28T23:59:59.000Z

466

DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD OCTOBER 1, 2001 THROUGH DECEMBER 31, 2002  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD OCTOBER 1, 2001 THROUGH DECEMBER 31, 2002

L.C. BROWN

2003-04-07T23:59:59.000Z

467

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD DECEMBER 1,1999 THRIUGH FEBRUARY 29,2000  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD DECEMBER 1,1999 THRIUGH FEBRUARY 29,2000

LC BROWN

2000-02-29T23:59:59.000Z

468

DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD AUGUST 15,2000 THROUGH SEPTEMBER 30,2001  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD AUGUST 15,2000 THROUGH SEPTEMBER 30,2001

L.C. BROWN

2002-02-01T23:59:59.000Z

469

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD OCTOBER 1,2001 THROUGH DECEMBER 31,2001  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD OCTOBER 1,2001 THROUGH DECEMBER 31,2001

L.C. BROWN

2001-12-31T23:59:59.000Z

470

Maximally concentrating optics for photovoltaic solar energy conversion  

DOE Green Energy (OSTI)

The use of a two-stage concentrator with a fresnel lens primary and a non-imaging dielectric totally internally reflecting secondary, has unique advantages for photovoltaic concentration. This new design has a much larger acceptance angle than the conventional lens-cell concentrating system. In the continuation of this research, an optimally designed prototype which employs a 13.6-cm diameter flat fresnel tons as the primary focusing device, a dielectric compound hyperbolic concentrator (DCHC) as secondary and a 1-cm diameter high-concentration cell for electricity conversion has been built, tested and analyzed. Measurements under sunlight show that it has an angular acceptance of [plus minus]3.6 degrees, which is dramatically better than the [plus minus]0.5 degree achievable without a secondary concentrator. This performance agrees well with theoretical ray-tracing predictions. The secondary shows an optical efficiency of (91[plus minus]2)% at normal incidence. Combining with the primary fresnel tens which has an optical efficiency of (82[plus minus]2)%, tho two-stage system yields a total optical efficiency of (7l[plus minus]2)%. The measurement of the system electrical performance yielded a net electrical efficiency of 11.9%. No problems associated with non-uniform cell illumination were found, as evidenced by the excellent fill factor of (79[plus minus]2)% measured under concentration. The secondary geometrical properties and the optimal two-stage design procedures for various primary- cell combinations were systematical studied. A general design principle has been developed.

Winston, R.; O'Gallagher, J.; Ning, X.

1986-02-27T23:59:59.000Z

471

Thermo-chemical energy conversion and storage. Final report  

DOE Green Energy (OSTI)

Research support for the cyclohexane/benzene heat pipe development program at Sandia Laboratories is reported. The apparent kinetics of the gas-phase catalytic dehydrogenation of cyclohexane to benzene in an internally recirculated (gradientless) reactor over the temperature range from 500 to 800/sup 0/F at 1 atm at various space velocities was studied. A kinetic model was developed based on a reversible mass-action rate expression and a catalyst effectiveness factor which is able to correlate both the conversion and reaction rate data very well over the temperature range 500 to 750/sup 0/F. The data taken at 800/sup 0/F appear to be qualitatively and quantitatively different than the data taken at the lower temperatures. It is not as yet clear, whether this can be attributed to a change in kinetic mechanism or some reversible alteration of the catalyst surface at the higher temperature. The formation of side products in this system over the same temperature range was also studied. Both the number and amount of side product(s) formed increases with increasing temperature and residence time. Over the temperature range from 500 to 600/sup 0/F the side products produced appear to be strongly related to the presence of low molecular weight unsaturated hydrocarbon impurities in the (reagent grade) cyclohexane feed and it is possible that no side products would be formed were it not for the presence of these impurities. At temperatures above 600/sup 0/F, both the number and amount of side product(s) produced increases markedly. A test loop was designed and partially fabricated which will permit the study of the effects of long term continuous cycling of the system on catalyst activity and side product formation.

Ritter, A.B.; DeLancey, G.B.; Schneider, J.; Silla, H.

1978-09-01T23:59:59.000Z

472

Radiant energy collection and conversion apparatus and method  

SciTech Connect

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

Hunt, Arlon J. (Oakland, CA)

1982-01-01T23:59:59.000Z

473

An alternative method for calculating the energy of gravitational waves  

E-Print Network (OSTI)

In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.

Miroslav Sukenik; Jozef Sima

1999-09-21T23:59:59.000Z

474

STATEMENT OF CONSIDERATIONS REQUEST BY ENERGY CONVERSION DEVICES, INC. FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MAY 01 2007 11:22 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/04 MAY 01 2007 11:22 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/04 * * STATEMENT OF CONSIDERATIONS REQUEST BY ENERGY CONVERSION DEVICES, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-06NT43026; W(A)-06-034; CH-1392 The Petitioner, Energy Conversion Devices, Inc. (ECD) was awarded this cooperative agreement for the performance of work entitled, "Development of Advanced Small Hydrogen Internal Combustion Engines (ICEs)." The purpose of the cooperative agreement is to develop advanced, low cost conversions of small (<25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the performance and durability equivalent to, or superior to, the unmodified gasoline engine. The advanced hydrogen engines developed in this program will

475

Open cycle ocean thermal energy conversion system structure  

DOE Patents (OSTI)

A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

Wittig, J. Michael (West Goshen, PA)

1980-01-01T23:59:59.000Z

476

Electric utility application of wind energy conversion systems on the island of Oahu  

DOE Green Energy (OSTI)

This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

Lindley, C.A.; Melton, W.C.

1979-02-23T23:59:59.000Z

477

Photovoltaic engineering services pertinent to solar energy conversion  

SciTech Connect

The application of the compound parabolic concentrator (CPC) for use with solar cells has been investigated. Experiments with state-of-the-art Si cells in a CPC and under solar concentration were performed. A theoretical model for calculating the behavior of Si solar cells with concentration was developed. Detailed calculations of the energy distribution in the CPC were made. Finally a cost effectiveness analysis shows that the CPC system will produce power at very much lower cost than will flat panel solar cell arrays. (auth)

Bell, R O; Ho, J C.T.; Kurth, W; Surek, T

1975-06-01T23:59:59.000Z

478

Low Cost Solar Energy Conversion (Carbon Cycle 2.0)  

DOE Green Energy (OSTI)

Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Ramesh, Ramamoorthy

2010-02-04T23:59:59.000Z

479

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Robert C. Motta Kenneth J. Kelly William W. Warnock Executive Summary The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited

480

Compilation of Failure Data and Fault Tree Analysis for Geothermal Energy Conversion Systems  

DOE Green Energy (OSTI)

The failure data for geothermal energy conversion facilities collected to date are compiled and tabled. These facilities have not accumulated sufficient production history to reliably estimated component failure rates. In addition, the improvements made in drilling technology in recent years may have made less pertinent the accumulation of data on well failures.

Miller, F.L., Jr.; Zimmerman, D.E.

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.