Sample records for wave direction uni-directional

  1. Variable mode bi-directional and uni-directional computer communication system

    DOE Patents [OSTI]

    Cornett, Frank N.; Jenkins, Philip N.; Bowman, Terrance L.; Placek, Joseph M.; Thorson, Gregory M.

    2004-12-14T23:59:59.000Z

    A variable communication systems comprising a plurality of transceivers and a control circuit connected to the transceivers to configure the transceivers to operate in a bi-directional mode and a uni-directional mode at different times using different transfer methods to transfer data.

  2. Parameter assignment for improved connectivity and security in randomly deployed wireless sensor networks via hybrid omni/uni-directional antennas

    E-Print Network [OSTI]

    Shankar, Sonu

    2009-05-15T23:59:59.000Z

    ,omni-directional antennas have been used for communication in wireless sensor net-works. In this thesis, a hybrid communication model is presented where-in, nodes ina network are capable of both omni-directional and uni-directional communication.The eect of such a model...

  3. Approximate Uni-directional Benders Decomposition

    E-Print Network [OSTI]

    C N Burt, N Lipovetzky, A R Pearce, P J Stuckey

    2014-12-01T23:59:59.000Z

    with balancing problems in an electricity network (Piacen- tini et al. 2013) .... uct k that are picked up from market m, and ym be 1 if mar- ket m is visited (and 0 ...

  4. Optimization Online - Approximate Uni-directional Benders ...

    E-Print Network [OSTI]

    Christina N Burt

    2014-11-30T23:59:59.000Z

    Nov 30, 2014 ... Thus, we aim at finding good quality feasible solutions in the first iteration. ... Category 1: Applications -- OR and Management Sciences.

  5. Directed Relativistic Blast Wave

    E-Print Network [OSTI]

    Andrei Gruzinov

    2007-04-23T23:59:59.000Z

    A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.

  6. Forward-Only Uni-Directional Routing Jorge A. Cobb

    E-Print Network [OSTI]

    Cobb, Jorge Arturo

    , such as limits on battery life, memory, and computing power. Battery life is critical, since nodes are typically battery operated, and have a short battery life. To maximimize battery life, an efficient utilization has a set of network conditions under which it is the best. In this paper, we focus on the proactive

  7. Direct Drive Wave Energy Buoy

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29T23:59:59.000Z

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  8. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...

    Office of Environmental Management (EM)

    Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...

  9. Generation and analysis of multi-directional waves

    E-Print Network [OSTI]

    Liagre, Pierre-Yves Francois Bernard

    1999-01-01T23:59:59.000Z

    Real sea states cannot be represented adequately by a single sine wave. Indeed, wind-generated waves in the ocean have obviously different amplitudes and frequencies, but also come from different directions. Consequently, the distribution of energy...

  10. 38 CHAPTER 1. ASSEMBLY MANUAL BiDirectional Motor

    E-Print Network [OSTI]

    38 CHAPTER 1. ASSEMBLY MANUAL Bi­Directional Motor and Infrared Beacon Uni­Directional Motor, LED, Incandescent Lamp Sensor, Polarized Sensor, Non­polarized Figure 1.26: Standard Connector Plug Configurations

  11. Directed search for continuous gravitational waves from the Galactic center

    E-Print Network [OSTI]

    Aggarwal, Nancy

    We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO ...

  12. Simulations of Direct Ion Acceleration with Beating Electrostatic Waves

    E-Print Network [OSTI]

    Choueiri, Edgar

    . Gardineer, IV , Benjamin Jorns , and Edgar Y. Choueiri Electric Propulsion and Plasma Dynamics Laboratory Wave Thruster (BWT) ­ an electrodeless electric propulsion concept based on direct ion acceleration. The ultimate goal is for this acceleration mechanism to form the basis of a new plasma propulsion system called

  13. Generation and analysis of multi-directional waves 

    E-Print Network [OSTI]

    Liagre, Pierre-Yves Francois Bernard

    1999-01-01T23:59:59.000Z

    distribution technique through computer simulated wave data and found it to be accurate. Later, Hasle and Stansberg 5 (1984) applied this method for the determination of the directional spectrum in a laboratory basin by means of 12 gauges. 1.1.2 Parametric...

  14. Direct Detection of Gravity Waves from Neutron Stars

    E-Print Network [OSTI]

    Redouane Al Fakir; William G. Unruh

    2008-05-24T23:59:59.000Z

    In light of the discovery of the first-ever double pulsar system, PSR J0737-3039, we re-examine an earlier proposal to directly detect gravity waves from neutron stars, which was predicated on a hypothetical system almost identical to the later discovered double pulsar. We re-derive the effect in more detail, and confirm the initial estimate--sometimes doubted in the literature--that it includes a 1/b dependence, where b is the impact parameter of a pulsar with respect to its foreground, gravity-wave emitting, neutron star companion. A coherent modulation in pulsar time-of-arrival measurements of 10 nano-sec/sec is possible. A one-year intermittent experiment on an instrument comparable to the SKA could thus detect the exceedingly faint gravity waves from individual neutron stars.

  15. Computer simulations for direct conversion of the HF electromagnetic wave into the upper hybrid wave in ionospheric heating experiments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Computer simulations for direct conversion of the HF electromagnetic wave into the upper hybrid emissions (SEE). A direct conversion process is proposed as an excitation mech- anism of the upper hybrid, 1996) The electrostatic waves at the UH resonance were assumed to be excited via ``direct conversion

  16. Source and Listener Directivity for Interactive Wave-based Sound Propagation

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Source and Listener Directivity for Interactive Wave-based Sound Propagation Ravish Mehra, Lakulish realistic acoustic effects produced by wave-based sound propagation for directional sources and listeners at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave

  17. Influence of control strategy on the global efficiency of a Direct Wave Energy Converter with

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Influence of control strategy on the global efficiency of a Direct Wave Energy Converter, France Abstract--The choice of control strategy for Direct Wave Energy Converters (DWEC) is often a simple loss model in order to design a better control strategy. Keywords--Wave energy conversion; Point

  18. Gravitational Waves from Direct Collapse Black Holes Formation

    E-Print Network [OSTI]

    Pacucci, Fabio; Marassi, Stefania

    2015-01-01T23:59:59.000Z

    The possible formation of Direct Collapse Black Holes (DCBHs) in the first metal-free atomic cooling halos at high redshifts ($z > 10$) is nowadays object of intense study and several methods to prove their existence are currently under development. The abrupt collapse of a massive ($\\sim 10^4 - 10^5 \\, \\mathrm{M_{\\odot}}$) and rotating object is a powerful source of gravitational waves emission. In this work, we employ modern waveforms and the improved knowledge on the DCBHs formation rate to estimate the gravitational signal emitted by these sources at cosmological distances. Their formation rate is very high ($\\sim 10^4 \\, \\mathrm{yr^{-1}}$ up to $z\\sim20$), but due to a short duration of the collapse event ($\\sim 2-30\\, \\mathrm{s}$, depending on the DCBH mass) the integrated signal from these sources is characterized by a very low duty-cycle (${\\cal D}\\sim 10^{-3}$), i.e. a shot-noise signal. Our results show that the estimated signal lies above the foreseen sensitivity of the Ultimate-DECIGO observatory ...

  19. Inferring Propagation Direction of Nonlinear Internal Waves in a Vertically Sheared Background Flow

    E-Print Network [OSTI]

    Kelley, Dan

    Inferring Propagation Direction of Nonlinear Internal Waves in a Vertically Sheared Background Flow are resistant to heaving. The beamwise method provides accurate predictions of wave propagation angle for cases 2005). Determining the wave propagation di- rection, so that one may in turn identify potential lo

  20. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D. Schrupp, E. Rotenberg, K. Rossnagel, H. Koh, P. Blaha, and R. Claessen, "Electronic quasiparticle renormalization on the spin wave energy scale," Phys. Rev. Lett. 92, 097205...

  1. Direct measurement of the plasma response to electrostatic ion waves

    SciTech Connect (OSTI)

    Sarfaty, M.; DeSouza-Machado, S.; Skiff, F. [Univ. of Maryland, College Park, MD (United States). Inst. for Plasma Research

    1995-12-31T23:59:59.000Z

    Plasma wave-wave and wave-particle interactions are studied in a linear magnetized plasma. The relatively quiet plasma is produced by an argon gas-discharge. The plasma density is n{sub e} {approx_equal} 10{sup 9} cm{sup {minus}3} and the electron/ion temperatures are T{sub e} {approx_equal} 5eV and T{sub i} = 0.05eV. A grid and a four ring antenna, both mounted on a scanning carriage, are used to launch electrostatic ion waves in the plasma. Laser Induced Fluorescence measurements of both the linear and the nonlinear plasma response to the wave fields are presented. The Vlasov-Poisson equations are used to explain the measured zero, first and second order terms of the ion distribution function in the presence of wave fields. In addition to the broadening (heating) of the ion distribution as the authors increase the wave amplitudes, induced plasma flows are observed both along and across the magnetic field.

  2. The Whitham Equation as a Model for Surface Water Waves

    E-Print Network [OSTI]

    Daulet Moldabayev; Henrik Kalisch; Denys Dutykh

    2014-10-30T23:59:59.000Z

    The Whitham equation was proposed as an alternate model equation for the simplified description of uni-directional wave motion at the surface of an inviscid fluid. As the Whitham equation incorporates the full linear dispersion relation of the water wave problem, it is thought to provide a more faithful description of shorter waves of small amplitude than traditional long wave models such as the KdV equation. In this work, we identify a scaling regime in which the Whitham equation can be derived from the Hamiltonian theory of surface water waves. The Whitham equation is integrated numerically, and it is shown that the equation gives a close approximation of inviscid free surface dynamics as described by the Euler equations. The performance of the Whitham equation as a model for free surface dynamics is also compared to two standard free surface models: the KdV and the BBM equation. It is found that in a wide parameter range of amplitudes and wavelengths, the Whitham equation performs on par with or better than both the KdV and BBM equations.

  3. Contributions to the direct time integration in wave propagation analyses

    E-Print Network [OSTI]

    Noh, Gunwoo

    2013-01-01T23:59:59.000Z

    This thesis intends to contribute to the computational methods for wave propagations. We review an implicit time integration method, the Bathe method, that remains stable without the use of adjustable parameters when the ...

  4. New directions for gravity-wave physics via "Millikan oil drops"

    E-Print Network [OSTI]

    Raymond Y. Chiao

    2007-04-06T23:59:59.000Z

    Pairs of Planck-mass--scale drops of superfluid helium coated by electrons (i.e., "Millikan oil drops"), when levitated in the presence of strong magnetic fields and at low temperatures, can be efficient quantum transducers between electromagnetic (EM) and gravitational (GR) radiation. A Hertz-like experiment, in which EM waves are converted at the source into GR waves, and then back-converted at the receiver from GR waves back into EM waves, should be practical to perform. This would open up observations of the gravity-wave analog of the CMB from the extremely early Big Bang, and also communications directly through the interior of the Earth.

  5. Direct Drive Wave Energy Buoy – 33rd scale experiment

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29T23:59:59.000Z

    Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

  6. The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture

    E-Print Network [OSTI]

    Jackson, D. R; Chen, J.; Qiang, R.; Capolino, F.; Oliner, A. A

    2008-01-01T23:59:59.000Z

    W. Ebbesen, “Surface plasmon-enhanced transmission throughThe role of leaky plasmon waves in the directive beaming ofPolaritons, 240.6680 Surface plasmons, (240.6690), Surface

  7. Optimisation and comparison of integrated models of direct-drive linear machines for wave energy conversion 

    E-Print Network [OSTI]

    Crozier, Richard Carson

    2014-06-30T23:59:59.000Z

    Combined electrical and structural models of five types of permanent magnet linear electrical machines suitable for direct-drive power take-off on wave energy applications are presented. Electromagnetic models were ...

  8. Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data

    E-Print Network [OSTI]

    Barnum, Sam

    The gravitational-wave (GW) sky may include nearby pointlike sources as well as stochastic backgrounds. We perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for ...

  9. Direct Visualization of Laser-Driven Focusing Shock Waves

    E-Print Network [OSTI]

    Pezeril, Thomas

    Direct real-time visualization and measurement of laser-driven shock generation, propagation, and 2D focusing in a sample are demonstrated. A substantial increase of the pressure at the convergence of the cylindrical ...

  10. Three Dimensional MHD Wave Propagation and Conversion to Alfven Waves near the Solar Surface. I. Direct Numerical Solution

    E-Print Network [OSTI]

    P. S. Cally; M. Goossens

    2007-11-04T23:59:59.000Z

    The efficacy of fast/slow MHD mode conversion in the surface layers of sunspots has been demonstrated over recent years using a number of modelling techniques, including ray theory, perturbation theory, differential eigensystem analysis, and direct numerical simulation. These show that significant energy may be transferred between the fast and slow modes in the neighbourhood of the equipartition layer where the Alfven and sound speeds coincide. However, most of the models so far have been two dimensional. In three dimensions the Alfven wave may couple to the magneto-acoustic waves with important implications for energy loss from helioseismic modes and for oscillations in the atmosphere above the spot. In this paper, we carry out a numerical ``scattering experiment'', placing an acoustic driver 4 Mm below the solar surface and monitoring the acoustic and Alfvenic wave energy flux high in an isothermal atmosphere placed above it. These calculations indeed show that energy conversion to upward travelling Alfven waves can be substantial, in many cases exceeding loss to slow (acoustic) waves. Typically, at penumbral magnetic field strengths, the strongest Alfven fluxes are produced when the field is inclined 30-40 degrees from the vertical, with the vertical plane of wave propagation offset from the vertical plane containing field lines by some 60-80 degrees.

  11. Analysis of WACSIS data using a directional hybrid wave model

    E-Print Network [OSTI]

    Zhang, Shaosong

    2007-04-25T23:59:59.000Z

    .5 WACSIS Data Analysis ...................................................................102 6.5.1 Data Sets Recorded By the Directional Waverider Buoy .......105 6.5.2 Estimation Based On the PUV................................................108 6... (before shifted)..................................................31 4.2 Time series of pressure and Vx (after shifted).....................................................32 4.3 Power spectrum of pressure...

  12. Gaussian variational ansatz in the problem of anomalous sea waves: Comparison with direct numerical simulations

    E-Print Network [OSTI]

    Ruban, V P

    2015-01-01T23:59:59.000Z

    The nonlinear dynamics of an obliquely oriented wave packet at sea surface is studied both analytically and numerically for various initial parameters of the packet, in connection with the problem of oceanic rogue waves. In the framework of Gaussian variational ansatz applied to the corresponding (1+2D) hyperbolic nonlinear Schr\\"odinger equation, a simplified Lagrangian system of differential equations is derived, which determines the evolution of coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description for the process of nonlinear spatio-temporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system is integrated in quadratures, which fact allows us to understand qualitative differences between the linear and nonlinear regimes of the focusing of wave packet. Comparison of the Gaussian model predictions with results of direct numerical simulation of fully nonlinear long-cres...

  13. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefresh ModelES&HresultsARPES Provides Direct

  14. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefresh ModelES&HresultsARPES Provides DirectARPES

  15. DIPOLE COLLAPSE AND DYNAMO WAVES IN GLOBAL DIRECT NUMERICAL SIMULATIONS

    SciTech Connect (OSTI)

    Schrinner, Martin; Dormy, Emmanuel [MAG (ENS/IPGP), LRA, Ecole Normale Superieure, 24 Rue Lhomond, 75252 Paris Cedex 05 (France); Petitdemange, Ludovic, E-mail: martin@schrinner.eu [Previously at Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg, Germany. (Germany)

    2012-06-20T23:59:59.000Z

    Magnetic fields of low-mass stars and planets are thought to originate from self-excited dynamo action in their convective interiors. Observations reveal a variety of field topologies ranging from large-scale, axial dipoles to more structured magnetic fields. In this article, we investigate more than 70 three-dimensional, self-consistent dynamo models in the Boussinesq approximation obtained by direct numerical simulations. The control parameters, the aspect ratio, and the mechanical boundary conditions have been varied to build up this sample of models. Both strongly dipolar and multipolar models have been obtained. We show that these dynamo regimes in general can be distinguished by the ratio of a typical convective length scale to the Rossby radius. Models with a predominantly dipolar magnetic field were obtained, if the convective length scale is at least an order of magnitude larger than the Rossby radius. Moreover, we highlight the role of the strong shear associated with the geostrophic zonal flow for models with stress-free boundary conditions. In this case the above transition disappears and is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. We interpret our results in terms of dynamo eigenmodes using the so-called test-field method. We can thus show that models in the dipolar regime are characterized by an isolated 'single mode'. Competing overtones become significant as the boundary to multipolar dynamos is approached. We discuss how these findings relate to previous models and to observations.

  16. Off-axis directional acoustic wave beaming control by an asymmetric rubber heterostructures film

    E-Print Network [OSTI]

    Wang, Ji

    Off-axis directional acoustic wave beaming control by an asymmetric rubber heterostructures film rubber heterostructures film deposited on steel plate in water. The rubber heterostructures film at left side and right side are constructed by alternately stacking rubber-1 and rubber-2 film periodically

  17. Direct imaging of the acoustic waves generated by femtosecond filaments in air

    E-Print Network [OSTI]

    Milchberg, Howard

    Direct imaging of the acoustic waves generated by femtosecond filaments in air J. K. Wahlstrand, N of spatial single- and higher-mode 50 fs, 800 nm pulses in air at 10 Hz and 1 kHz repetition rates. Results in air [9]. They claimed a positive gas density perturba- tion on axis with a microsecond lifetime

  18. A directed search for continuous Gravitational Waves from the Galactic Center

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; The Virgo Collaboration; J. Aasi; J. Abadie; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; C. Adams; T. Adams; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; P. Ajith; B. Allen; A. Allocca; E. Amador Ceron; D. Amariutei; R. A. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. Ast; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; D. Barker; S. H. Barnum; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; C. Bell; I. Belopolski; G. Bergmann; J. M. Berliner; A. Bertolini; D. Bessis; J. Betzwieser; P. T. Beyersdorf; T. Bhadbhade; I. A. Bilenko; G. Billingsley; J. Birch; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; M. Blom; O. Bock; T. P. Bodiya; M. Boer; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; S. Bose; L. Bosi; J. Bowers; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; C. A. Brannen; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brückner; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; J. Calderón Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavagliá; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; M. Colombini; M. Constancio Jr; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. W. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; K. Craig; J. D. E. Creighton; T. D. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; G. Debreczeni; J. Degallaix; W. Del Pozzo; E. Deleeuw; S. Deléglise; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. DeRosa; R. DeSalvo; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; M. Díaz; A. Dietz; K. Dmitry; F. Donovan; K. L. Dooley; S. Doravari; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edwards; A. Effler; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endröczi; R. Essick; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; B. Farr; W. Farr; M. Favata; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. Fisher; R. Flaminio; E. Foley; S. Foley; E. Forsi; L. A. Forte; N. Fotopoulos; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; J. Garcia; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; L. Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil-Casanova; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. González; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goßler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Griffo; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. E. Gushwa; E. K. Gustafson; R. Gustafson; B. Hall; E. Hall; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. Heefner; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; S. Hild; D. Hoak; K. A. Hodge; K. Holt; M. Holtrop; T. Hong; S. Hooper; T. Horrom; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; Z. Hua; V. Huang; E. A. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; J. Iafrate; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; Y. J. Jang; P. Jaranowski; F. Jiménez-Forteza; W. W. Johnson; D. Jones; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; M. Kasprzack; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kaufman; K. Kawabe

    2013-09-27T23:59:59.000Z

    We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic Center region, performed on two years of data from LIGO's fifth science run from two LIGO detectors. The search uses a semi-coherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first order spindown values down to -7.86 x 10^-8 Hz/s at the highest frequency. No gravitational waves were detected. We place 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic Center. Placing 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic Center, we reach ~3.35x10^-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.

  19. Measuring surface ocean wave height and directional spectra using an Acoustic Doppler Current Profiler from an autonomous underwater vehicle

    E-Print Network [OSTI]

    Haven, Scott

    2012-01-01T23:59:59.000Z

    The Acoustic Doppler Current Profiler (ADCP) is a proven technology which is capable of measuring surface wave height and directional information, however it is generally limited to rigid, bottom mounted applications which ...

  20. Numerical modeling of extreme rogue waves generated by directional energy focusing

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    of an overturning rogue wave, and analyze the sensitivity of its geometry and kinematics to water depth and maximum. Keywords: Water waves; Numerical wave tank; Extreme wave kinematics; Rogue waves 1. Introduction finely resolved 3D focused overturning waves and analyze their geometry and kinematics. In this paper, we

  1. 2-D Coda and Direct Wave Attenuation Tomography in Northern Italy

    SciTech Connect (OSTI)

    Morasca, P; Mayeda, K; Gok, R; Phillips, W S; Malagnini, L

    2007-10-17T23:59:59.000Z

    A 1-D coda method was proposed by Mayeda et al. (2003) in order to obtain stable seismic source moment-rate spectra using narrowband coda envelope measurements. That study took advantage of the averaging nature of coda waves to derive stable amplitude measurements taking into account all propagation, site, and Sto-coda transfer function effects. Recently this methodology was applied to micro earthquake data sets from three sub-regions of northern Italy (i.e., western Alps, northern Apennines and eastern Alps). Since the study regions were small, ranging between local-to-near-regional distances, the simple 1-D path assumptions used in the coda method worked very well. The lateral complexity of this region would suggest, however, that a 2-D path correction might provide even better results if the datasets were combined, especially when paths traverse larger distances and complicated regions. The structural heterogeneity of northern Italy makes the region ideal to test the extent to which coda variance can be reduced further by using a 2-D Q tomography technique. The approach we use has been developed by Phillips et al. (2005) and is an extension of previous amplitude ratio techniques to remove source effects from the inversion. The method requires some assumptions such as isotropic source radiation which is generally true for coda waves. Our results are compared against direct Swave inversions for 1/Q and results from both share very similar attenuation features that coincide with known geologic structures. We compare our results with those derived from direct waves as well as some recent results from northern California obtained by Mayeda et al. (2005) which tested the same tomographic methodology applied in this study to invert for 1/Q. We find that 2-D coda path corrections for this region significantly improve upon the 1-D corrections, in contrast to California where only a marginal improvement was observed. We attribute this difference to stronger lateral variations in Q for northern Italy relative to California.

  2. Implications of the B-mode Polarization Measurement for Direct Detection of Inflationary Gravitational Waves

    E-Print Network [OSTI]

    Sachiko Kuroyanagi; Shinji Tsujikawa; Takeshi Chiba; Naoshi Sugiyama

    2014-10-09T23:59:59.000Z

    The prospects for direct measurements of inflationary gravitational waves by next generation interferometric detectors inferred from the possible detection of B-mode polarization of the cosmic microwave background are studied. We compute the spectra of the gravitational wave background and the signal-to-noise ratios by two interferometric detectors (DECIGO and BBO) for large-field inflationary models in which the tensor-to-scalar ratio is greater than the order of 0.01. If the reheating temperature $T_{\\rm RH}$ of chaotic inflation with the quadratic potential is high ($T_{\\rm RH}>7.9\\times10^6$ GeV for upgraded DECIGO and $T_{\\rm RH}> 1.8\\times 10^{6}$ GeV for BBO), it will be possible to reach the sensitivity of the gravitational background in future experiments at $3\\sigma$ confidence level. The direct detection is also possible for natural inflation with the potential $V(\\phi)=\\Lambda^4 [1-\\cos(\\phi/f)]$, provided that $f>4.2 M_{\\rm pl}$ (upgraded DECIGO) and $f>3.6 M_{\\rm pl}$ (BBO) with $T_{\\rm RH}$ higher than $10^8$ GeV. The quartic potential $V(\\phi)=\\lambda \\phi^4/4$ with a non-minimal coupling $\\xi$ between the inflaton field $\\phi$ and the Ricci scalar $R$ gives rise to a detectable level of gravitational waves for $|\\xi|$ smaller than the order of 0.01, irrespective of the reheating temperature.

  3. Direct electrical observation of plasma wave-related effects in GaN-based two-dimensional electron gases

    SciTech Connect (OSTI)

    Zhao, Y.; Chen, W.; Li, W.; Zhu, M.; Yue, Y.; Song, B.; Encomendero, J.; Xing, H.; Fay, P., E-mail: pfay@nd.edu [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Sensale-Rodriguez, B. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2014-10-27T23:59:59.000Z

    In this work, signatures of plasma waves in GaN-based high electron mobility transistors were observed by direct electrical measurement at room temperature. Periodic grating-gate device structures were fabricated and characterized by on-wafer G-band (140–220?GHz) s-parameter measurements as a function of gate bias voltage and device geometry. A physics-based equivalent circuit model was used to assist in interpreting the measured s-parameters. The kinetic inductance extracted from the measurement data matches well with theoretical predictions, consistent with direct observation of plasma wave-related effects in GaN-channel devices at room temperature. This observation of electrically significant room-temperature plasma-wave effects in GaN-channel devices may have implications for future millimeter-wave and THz device concepts and designs.

  4. Direct and Inverse Problems for Wave Propagation in Random Media February 29, 2000

    E-Print Network [OSTI]

    Asch, Mark

    vector and #27;(z) is the dissipation. The local acoustic sound speed is given by c(z) = s K(z) #26;(z Abstract The propagation of waves (acoustic, elastic, electromagnetic) in randomly layered media is highly that our work on the acoustic wave equation can be generalized to elastic waves and electromagnetic waves

  5. Quantification of the influence of directional sea state parameters over the performances of wave energy converters 

    E-Print Network [OSTI]

    Pascal, Remy Claude Rene

    2012-11-29T23:59:59.000Z

    Accurate predictions of the annual energy yield from wave energy converters are essential to the development of the wave industry. The current method based on power matrices uses only a small part of the data available ...

  6. Direct simulation and deterministic prediction of large-scale nonlinear ocean wave-field

    E-Print Network [OSTI]

    Wu, Guangyu, 1972-

    2004-01-01T23:59:59.000Z

    Despite its coarse approximation of physics, the phase-averaged wave spectrum model has been the only type of tool available for ocean wave prediction in the past 60 years. With the rapid advances in sensing technology, ...

  7. A directed search for gravitational waves from Scorpius X-1 with initial LIGO

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; the Virgo Collaboration; J. Aasi; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; F. Acernese; K. Ackley; C. Adams; T. Adams; T. Adams; P. Addesso; R. X. Adhikari; V. Adya; C. Affeldt; M. Agathos; K. Agatsuma; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; A. Alemic; B. Allen; A. Allocca; D. Amariutei; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. S. Areeda; G. Ashton; S. Ast; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. T. Baker; F. Baldaccini; G. Ballardin; S. W. Ballmer; J. C. Barayoga; M. Barbet; S. Barclay; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; J. Bartlett; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; Th. S. Bauer; C. Baune; V. Bavigadda; B. Behnke; M. Bejger; C. Belczynski; A. S. Bell; C. Bell; M. Benacquista; J. Bergman; G. Bergmann; C. P. L. Berry; D. Bersanetti; A. Bertolini; J. Betzwieser; S. Bhagwat; R. Bhandare; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; C. Biwer; M. A. Bizouard; J. K. Blackburn; L. Blackburn; C. D. Blair; D. Blair; S. Bloemen; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; P. Bojtos; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; Sukanta Bose; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; A. F. Brooks; D. A. Brown; D. D. Brown; N. M. Brown; S. Buchman; A. Buikema; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; C. Buy; L. Cadonati; G. Cagnoli; J. Calderón Bustillo; E. Calloni; J. B. Camp; K. C. Cannon; J. Cao; C. D. Capano; F. Carbognani; S. Caride; S. Caudill; M. Cavaglià; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; M. Cho; J. H. Chow; N. Christensen; Q. Chu; S. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. Collette; M. Colombini; L. Cominsky; M. Constancio, Jr.; A. Conte; D. Cook; T. R. Corbitt; N. Cornish; A. Corsi; C. A. Costa; M. W. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. J. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; T. D. Creighton; J. Cripe; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; C. Cutler; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; L. Dartez; V. Dattilo; I. Dave; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; D. DeBra; G. Debreczeni; J. Degallaix; M. De Laurentis; S. Deléglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. Díaz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; G. Dojcinoski; V. Dolique; E. Dominguez; F. Donovan; K. L. Dooley; S. Doravari; R. Douglas; T. P. Downes; M. Drago; J. C. Driggers; Z. Du; M. Ducrot; S. Dwyer; T. Eberle; T. Edo; M. Edwards; M. Edwards; A. Effler; H. -B. Eggenstein; P. Ehrens; J. Eichholz; S. S. Eikenberry; R. Essick; T. Etzel; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; X. Fan; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; M. Fays; H. Fehrmann; M. M. Fejer; D. Feldbaum; I. Ferrante; E. C. Ferreira; F. Ferrini; F. Fidecaro; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; S. Fuentes-Tapia; P. Fulda; M. Fyffe; J. R. Gair; L. Gammaitoni; S. Gaonkar; F. Garufi; A. Gatto; N. Gehrels; G. Gemme; B. Gendre; E. Genin; A. Gennai; L. Á. Gergely; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. González; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goßler; R. Gouaty; C. Gräf; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; P. Groot; H. Grote; S. Grunewald; G. M. Guidi; C. J. Guido; X. Guo; K. Gushwa; E. K. Gustafson; R. Gustafson; J. Hacker; E. D. Hall; G. Hammond; M. Hanke; J. Hanks; C. Hanna; M. D. Hannam; J. Hanson; T. Hardwick; J. Harms; G. M. Harry; I. W. Harry; M. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; S. Hee; A. Heidmann; M. Heintze; G. Heinzel; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; D. Hofman; S. E. Hollitt; K. Holt; P. Hopkins; D. J. Hosken; J. Hough; E. Houston; E. J. Howell; Y. M. Hu; E. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; A. Idrisy; N. Indik; D. R. Ingram; R. Inta; G. Islas; J. C. Isler; T. Isogai; B. R. Iyer; K. Izumi; M. Jacobson; H. Jang; P. Jaranowski; S. Jawahar; Y. Ji; F. Jiménez-Forteza; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; V. Kalogera

    2014-12-01T23:59:59.000Z

    We present results of a search for continuously-emitted gravitational radiation, directed at the brightest low-mass X-ray binary, Scorpius X-1. Our semi-coherent analysis covers 10 days of LIGO S5 data ranging from 50-550 Hz, and performs an incoherent sum of coherent $\\mathcal{F}$-statistic power distributed amongst frequency-modulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitational-wave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X-1; and an angle-restricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3e-24 and 8e-25 are reported at 150 Hz for the standard and angle-restricted searches respectively. This proof of principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of ~1.4 for the standard, and 2.3 for the angle-restricted search at the sensitive region of the detector.

  8. Experimental demonstration of directive Si3N4 optical leaky wave antenna with semiconductor perturbations at near infrared frequencies

    E-Print Network [OSTI]

    Zhao, Qiancheng; Huang, Yuewang; Campione, Salvatore; Capolino, Filippo; Boyraz, Ozdal

    2015-01-01T23:59:59.000Z

    Directive optical leaky wave antennas (OLWAs) with tunable radiation pattern are promising integrated optical modulation and scanning devices. OLWAs fabricated using CMOS-compatible semiconductor planar waveguide technology have the potential of providing high directivity with electrical tunability for modulation and switching capabilities. We experimentally demonstrate directive radiation from a silicon nitride ($Si_3N_4$) waveguide-based OLWA. The OLWA design comprises 50 crystalline Si perturbations buried inside the waveguide, with a period of 1 {\\mu}m, each with a length of 260 nm and a height of 150 nm, leading to a directive radiation pattern at telecom wavelengths. The measured far-field radiation pattern at the wavelength of 1540 nm is very directive, with the maximum intensity at the angle of 84.4{\\deg} relative to the waveguide axis and a half-power beam width around 6.2{\\deg}, which is consistent with our theoretical predictions. The use of semiconductor perturbations facilitates electronic radiat...

  9. Sinc-based method for an efficient solution in the direct space of quantum wave equations with periodic boundary conditions

    SciTech Connect (OSTI)

    Marconcini, Paolo; Logoteta, Demetrio; Macucci, Massimo [Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Via Caruso 16, I-56122 Pisa (Italy)] [Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Via Caruso 16, I-56122 Pisa (Italy)

    2013-11-07T23:59:59.000Z

    The solution of differential problems, and in particular of quantum wave equations, can in general be performed both in the direct and in the reciprocal space. However, to achieve the same accuracy, direct-space finite-difference approaches usually involve handling larger algebraic problems with respect to the approaches based on the Fourier transform in reciprocal space. This is the result of the errors that direct-space discretization formulas introduce into the treatment of derivatives. Here, we propose an approach, relying on a set of sinc-based functions, that allows us to achieve an exact representation of the derivatives in the direct space and that is equivalent to the solution in the reciprocal space. We apply this method to the numerical solution of the Dirac equation in an armchair graphene nanoribbon with a potential varying only in the transverse direction.

  10. Waves

    E-Print Network [OSTI]

    LaCure, Mari Mae

    2010-04-29T23:59:59.000Z

    Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...

  11. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Where We Are Directions The Bradbury Science Museum is located at 1350 Central Avenue Los Alamos, NM 87544 Los Alamos (elevation 7,355 feet) is perched high atop the...

  12. Seismic experiments provide new clues to earthquake wave directionality and growth speed PASADENA, Calif.--In recent years, seismologists thought they were getting a handle on how an earthquake

    E-Print Network [OSTI]

    Seismic experiments provide new clues to earthquake wave directionality and growth speed PASADENA that direction. The phenomenon has to do with the basic ways rupture fronts (generating seismic waves

  13. Bearing options, including design and testing, for direct drive linear generators in wave energy converters 

    E-Print Network [OSTI]

    Caraher, Sarah

    2011-11-22T23:59:59.000Z

    The key focus of this research was to investigate the bearing options most suited to operation in a novel direct drive linear generator. This was done through bearing comparisons, modelling and testing. It is fundamental ...

  14. Please cite this article in press as: Yao, H., et al., Estimation of surface wave Green's functions from correlation of direct waves, coda waves, and ambient noise in SE Tibet. Phys. Earth Planet. In. (2009), doi:10.1016/j.pepi.2009.07.002

    E-Print Network [OSTI]

    van der Hilst, Robert Dirk

    from correlation of direct waves, coda waves, and ambient noise in SE Tibet. Phys. Earth Planet. In. (2009), doi:10.1016/j.pepi.2009.07.002 ARTICLE IN PRESSG Model PEPI-5177; No.of Pages11 Physics with (plane wave) beamforming of the energy contributing to EGF construction. Beamforming also demonstrates

  15. Study of directional ocean wavefield evolution and rogue wave occurrence using large-scale phase-resolved nonlinear simulations

    E-Print Network [OSTI]

    Xiao, Wenting, 1982-

    2013-01-01T23:59:59.000Z

    It is challenging to obtain accurate predictions of ocean surface wavefield evolutions due to several complex dynamic processes involved, including nonlinear wave interaction, wave breaking and wind forcing, and also wave ...

  16. Numerical study of the direct pressure effect of acoustic waves in planar premixed flames

    SciTech Connect (OSTI)

    Schmidt, H. [BTU Cottbus, Siemens-Halske-Ring 14, D-03046 Cottbus (Germany); Jimenez, C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Avenida Complutense, 22, 28040 Madrid (Spain)

    2010-08-15T23:59:59.000Z

    Recently the unsteady response of 1-D premixed flames to acoustic pressure waves for the range of frequencies below and above the inverse of the flame transit time was investigated experimentally using OH chemiluminescence Wangher (2008). They compared the frequency dependence of the measured response to the prediction of an analytical model proposed by Clavin et al. (1990), derived from the standard flame model (one-step Arrhenius kinetics) and to a similar model proposed by McIntosh (1991). Discrepancies between the experimental results and the model led to the conclusion that the standard model does not provide an adequate description of the unsteady response of real flames and that it is necessary to investigate more realistic chemical models. Here we follow exactly this suggestion and perform numerical studies of the response of lean methane flames using different reaction mechanisms. We find that the global flame response obtained with both detailed chemistry (GRI3.0) and a reduced multi-step model by Peters (1996) lies slightly above the predictions of the analytical model, but is close to experimental results. We additionally used an irreversible one-step Arrhenius reaction model and show the effect of the pressure dependence of the global reaction rate in the flame response. Our results suggest first that the current models have to be extended to capture the amplitude and phase results of the detailed mechanisms, and second that the correlation between the heat release and the measured OH* chemiluminescence should be studied deeper. (author)

  17. Direct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential ApplicationYu,EnergyDimitriDirac ChargeDiracDirect

  18. Effects of nonlinearity and wave directionality on the use of Morison equation

    E-Print Network [OSTI]

    Chen, Weida

    1993-01-01T23:59:59.000Z

    @, coshk;k a;g sinh k;(z + h) k; sin 4s cosh k;k (21) (22) Diiferentiate the velocity vector with respect to x, y, and z individually: (24) BV( ) " a;g, cosh k;(z + k) k, '[ * ( ? cos' gs sin 4;i ? sin t)t cos i)r sin 4s j) f)z cosh ktk sinh k, (z...) (42) So, the velocities in x, y, z directions will be: k, e " cos 8, cos 4, ag (43) n, k, e " sin 8; cos iP, ai n P ? k, e '* sin%'; (44) (45) Differentiate the first-order velocity vector with respect to x, y, and z individually c)V ag (1...

  19. the wave model A traveling wave is an organized disturbance

    E-Print Network [OSTI]

    Winokur, Michael

    1 waves the wave model A traveling wave is an organized disturbance propagating at a well-defined wave speed v. · In transverse waves the particles of the medium move perpendicular to the direction of wave propagation. · In longitudinal waves the particles of the medium move parallel to the direction

  20. PHYSICAL REVIEW A 83, 053617 (2011) Controlling directed transport of matter-wave solitons using the ratchet effect

    E-Print Network [OSTI]

    Carretero, Ricardo

    2011-01-01T23:59:59.000Z

    the ratchet effect M. Rietmann,1,* R. Carretero-Gonz´alez,1 and R. Chac´on2 1 Nonlinear Dynamical Systems that the dependence of the directed soliton current on the number of atoms is a consequence of the ratchet The ratchet effect, that is, directed transport without any net external force [1,2], has attracted enormous

  1. Direct Radiative Effect of Mineral Dust on the Development of African Easterly Waves in Late Summer, 2003-07

    SciTech Connect (OSTI)

    Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong; Matsui, Toshihisa; Arking, Albert

    2012-12-19T23:59:59.000Z

    Episodic events of both Saharan dust outbreaks and African easterly waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan air layer on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximumtropical cyclone activity, in years 2003–07. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, mostAEWsintensify in the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. The authors conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.

  2. Geometrical vs wave optics under gravitational waves

    E-Print Network [OSTI]

    Raymond Angélil; Prasenjit Saha

    2015-05-20T23:59:59.000Z

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics - rather than solving Maxwell's equations directly for the fields, as in most previous approaches - we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.

  3. DIRECT IMAGING OF QUASI-PERIODIC FAST PROPAGATING WAVES OF {approx}2000 km s{sup -1} IN THE LOW SOLAR CORONA BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect (OSTI)

    Liu Wei; Title, Alan M.; Schrijver, Carolus J.; Aschwanden, Markus J.; De Pontieu, Bart; Tarbell, Theodore D. [Lockheed Martin Solar and Astrophysics Laboratory, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Zhao Junwei [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Ofman, Leon [Catholic University of America and NASA Goddard Space Flight Center, Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2011-07-20T23:59:59.000Z

    Quasi-periodic propagating fast mode magnetosonic waves in the solar corona were difficult to observe in the past due to relatively low instrument cadences. We report here evidence of such waves directly imaged in EUV by the new Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. In the 2010 August 1 C3.2 flare/coronal mass ejection event, we find arc-shaped wave trains of 1%-5% intensity variations (lifetime {approx}200 s) that emanate near the flare kernel and propagate outward up to {approx}400 Mm along a funnel of coronal loops. Sinusoidal fits to a typical wave train indicate a phase velocity of 2200 {+-} 130 km s{sup -1}. Similar waves propagating in opposite directions are observed in closed loops between two flare ribbons. In the k-{omega} diagram of the Fourier wave power, we find a bright ridge that represents the dispersion relation and can be well fitted with a straight line passing through the origin. This k-{omega} ridge shows a broad frequency distribution with power peaks at 5.5, 14.5, and 25.1 mHz. The strongest signal at 5.5 mHz (period 181 s) temporally coincides with quasi-periodic pulsations of the flare, suggesting a common origin. The instantaneous wave energy flux of (0.1-2.6) x 10{sup 7} erg cm{sup -2} s{sup -1} estimated at the coronal base is comparable to the steady-state heating requirement of active region loops.

  4. Gravity Waves Gravity Waves

    E-Print Network [OSTI]

    Weijgaert, Rien van de

    ;14/03/2014 6 H L H L L Phase & Group Velocity #12;14/03/2014 7 Doppler Effect #12;14/03/2014 8 Shock Waves #12;14/03/2014 14 Supernova Remnant Cassiopeia A Supernova blast waves #12;14/03/2014 15 Tycho's Remnant (SN 1572AD A SNR flythrough Theory of Supernova Blast Waves Supernovae: Type Ia Subsonic deflagration wave turning

  5. Low-EVM Adaptive Millimeter-Wave Transmit and Receive Systems

    E-Print Network [OSTI]

    Gupta, Arpit Kumar

    Accurate (Low-EVM) Millimeter-wave Direct-conversion I/Qmillimeter-wave direct-conversion modulators,” MicrowaveLow-EVM, Millimeter-Wave Direct-Conversion Modulators”, IEEE

  6. Control of molecular rotation in the limit of extreme rotational excitation

    E-Print Network [OSTI]

    Milner, V

    2015-01-01T23:59:59.000Z

    Laser control of molecular rotation is an area of active research. A number of recent studies has aimed at expanding the reach of rotational control to extreme, previously inaccessible rotational states, as well as controlling the directionality of molecular rotation. Dense ensembles of molecules undergoing ultrafast uni-directional rotation, known as molecular superrotors, are anticipated to exhibit unique properties, from spatially anisotropic diffusion and vortex formation to the creation of powerful acoustic waves and tuneable THz radiation. Here we describe our recent progress in controlling molecular rotation in the regime of high rotational excitation. We review two experimental techniques of producing uni-directional rotational wave packets with a "chiral train" of femtosecond pulses and an "optical centrifuge". Three complementary detection methods, enabling the direct observation, characterization and control of the superrotor states, are outlined: the one based on coherent Raman scattering, and two...

  7. Cycloidal Wave Energy Converter

    SciTech Connect (OSTI)

    Stefan G. Siegel, Ph.D.

    2012-11-30T23:59:59.000Z

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

  8. Developing de Broglie Wave

    E-Print Network [OSTI]

    J X Zheng-Johansson; P-I Johansson

    2006-08-27T23:59:59.000Z

    The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity $v$, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed $c$ between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength ${\\mit\\Lambda}_d$$=(\\frac{v}{c}){\\mit\\Lambda}$ and phase velocity $c^2/v+v$ which resembles directly L. de Broglie's hypothetic phase wave. This phase wave in terms of transporting the particle mass at the speed $v$ and angular frequency ${\\mit\\Omega}_d=2\\pi v /{\\mit\\Lambda}_d$, with ${\\mit\\Lambda}_d$ and ${\\mit\\Omega}_d$ obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase) wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schr\\"odinger equation of an identical system.

  9. Wave Decay in MHD Turbulence

    E-Print Network [OSTI]

    Andrey Beresnyak; Alex Lazarian

    2008-05-06T23:59:59.000Z

    We present a model for nonlinear decay of the weak wave in three-dimensional incompressible magnetohydrodynamic (MHD) turbulence. We show that the decay rate is different for parallel and perpendicular waves. We provide a general formula for arbitrarily directed waves and discuss particular limiting cases known in the literature. We test our predictions with direct numerical simulations of wave decay in three-dimensional MHD turbulence, and discuss the influence of turbulent damping on the development of linear instabilities in the interstellar medium and on other important astrophysical processes.

  10. Carbon nanotube-guided thermopower waves

    E-Print Network [OSTI]

    Choi, Wonjoon

    Thermopower waves are a new concept for the direct conversion of chemical to electrical energy. A nanowire with large axial thermal diffusivity can accelerate a self-propagating reaction wave using a fuel coated along its ...

  11. Directives Tools

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Useful links and resources for Directives Writers, Directives Point of Contact (DPCs), Subject Matter Experts (SMEs), and Draft Directive Reviewers.

  12. Nonlinear dust acoustic waves and shocks

    SciTech Connect (OSTI)

    Merlino, R. L.; Heinrich, J. R.; Hyun, S.-H.; Meyer, J. K. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2012-05-15T23:59:59.000Z

    We describe experiments on (1) nonlinear dust acoustic waves and (2) dust acoustic shocks performed in a direct current (DC) glow discharge dusty plasma. First, we describe experiments showing nonlinear dust acoustic waves characterized by waveforms of the dust density that are typically sharper in the wave crests and flatter in the wave troughs (compared to sinusoidal waves), indicating the development of wave harmonics. We discuss this behavior in terms of a second-order fluid theory for dust acoustic waves. Second, experimental observations of the propagation and steepening of large-amplitude dust acoustic waves into dust acoustic shock waves are presented. The observed shock wave evolution is compared with numerical calculations based on the Riemann solution of the fully nonlinear fluid equations for dust acoustic waves.

  13. Creating Wave-Focusing Materials

    E-Print Network [OSTI]

    A. G. Ramm

    2008-05-16T23:59:59.000Z

    Basic ideas for creating wave-focusing materials by injecting small particles in a given material are described. The number of small particles to be injected around any point is calculated. Inverse scattering problem with fixed wavenumber and fixed incident direction of the plane acoustic wave is formulated and solved.

  14. Reaction force control implementation of a linear generator in irregular waves for a wave power system 

    E-Print Network [OSTI]

    Li, Bin

    2012-11-29T23:59:59.000Z

    Most designs for wave energy converters include a hydraulic (or pneumatic) interface between the wave device and the generator to smooth electricity production, but a direct drive power take-off system is a possible way ...

  15. Piezoelectric wave motor

    DOE Patents [OSTI]

    Yerganian, Simon Scott (Lee's Summit, MO)

    2003-02-11T23:59:59.000Z

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  16. Piezoelectric wave motor

    DOE Patents [OSTI]

    Yerganian, Simon Scott (Lee's Summit, MO)

    2001-07-17T23:59:59.000Z

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  17. Visualizing the kinematics of relativistic wave packets

    E-Print Network [OSTI]

    Bernd Thaller

    2004-09-14T23:59:59.000Z

    This article investigates some solutions of the time-dependent free Dirac equation. Visualizations of these solutions immediately reveal strange phenomena that are caused by the interference of positive- and negative-energy waves. The effects discussed here include the Zitterbewegung, the opposite direction of momentum and velocity in negative-energy wave packets, and the superluminal propagation of the wave packet's local maxima.

  18. Property:Wave Direction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This propertyVolume Jump to:

  19. Two-wave interaction in ideal magnetohydrodynamics

    E-Print Network [OSTI]

    T. V. Zaqarashvili; B. Roberts

    2006-02-24T23:59:59.000Z

    The weakly nonlinear interaction of sound and linearly polarised Alfv{\\'e}n waves propagating in the same direction along an applied magnetic field is studied. It is found that a sound wave is coupled to the Alfv{\\'e}n wave with double period and wavelength when the sound and Alfv{\\'e}n speeds are equal. The Alfv{\\'e}n wave drives the sound wave through the ponderomotive force, while the sound wave returns energy back to the Alfv{\\'e}n wave through the parametric (swing) influence. As a result, the two waves alternately exchange their energy during propagation. The process of energy exchange is faster for waves with stronger amplitudes. The phenomenon can be of importance in astrophysical plasmas, including the solar atmosphere and solar wind.

  20. Vacuum Waves

    E-Print Network [OSTI]

    Paul S. Wesson

    2012-12-11T23:59:59.000Z

    As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.

  1. Standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

    1991-01-01T23:59:59.000Z

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  2. Collective behavior of stabilized reaction-diffusion waves

    SciTech Connect (OSTI)

    Steele, Aaron J.; Tinsley, Mark; Showalter, Kenneth [Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045 (United States)

    2008-06-15T23:59:59.000Z

    Stabilized wave segments in the photosensitive Belousov-Zhabotinsky reaction are directionally controlled with intensity gradients in the applied illumination. The constant-velocity waves behave like self-propelled particles, and multiple waves interact via an applied interaction potential. Alignment arises from the intrinsic properties of the interacting waves, leading to processional and rotational behavior.

  3. Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation

    E-Print Network [OSTI]

    Santolik, Ondrej

    12 Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation, containing waves which simultaneously propagate in different directions and/or wave modes the concept emission is found to propagate predominantly in the R-X mode with wave energy distributed in relatively

  4. Coronal shock waves observed in images H. S. Hudson

    E-Print Network [OSTI]

    Hudson, Hugh

    at new wave- lengths, including most directly soft X-rays (which show the direct thermal emission of a coronal shock front; only the non-thermal signatures such as radio waves or particle acceleration can in the heliosphere should have the character of bow waves; if the disturbance propagates into a region of reduced

  5. Coronal shock waves observed in images H. S. Hudson

    E-Print Network [OSTI]

    California at Berkeley, University of

    at new wave- lengths, including most directly soft X-rays (which show the direct thermal emission of a coronal shock front; only the non-thermal signatures such as radio waves or particle acceleration can the character of bow waves; if the disturbance propagates into a region of reduced Alfvén speed, a high Mach

  6. Wave EnergyFocusing in aThree-dimensional Numerical WaveTank C. Fochesato*, F. Dias**, S. Grilli***

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Wave EnergyFocusing in aThree-dimensional Numerical WaveTank C. Fochesato*, F. Dias**, S. Grilli Department (University of Rhode Island), Narragansett, RI, U.S.A. ABSTRACT Directional wave energy focusing in space is one of the mechanisms that may contribute to the generation of a rogue wave in the ocean

  7. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)

    2009-10-13T23:59:59.000Z

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  8. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A [LaFayette, CA

    2009-05-05T23:59:59.000Z

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  9. Theoretical and experimental study of nonlinear internal gravity wave beams

    E-Print Network [OSTI]

    Tabaei Befrouei, Ali, 1974-

    2005-01-01T23:59:59.000Z

    Continuously stratified fluids, like the atmosphere and the oceans, support internal gravity waves due to the effect of buoyancy. This type of wave motion is anisotropic since gravity provides a preferred direction. As a ...

  10. Phase Diagram of a Holographic Superconductor Model with s-wave and d-wave

    E-Print Network [OSTI]

    Mitsuhiro Nishida

    2014-12-11T23:59:59.000Z

    We consider a holographic model with a scalar field, a tensor field and a direct coupling between them as a superconductor with an s-wave and a d-wave. We find a rich phase structure in the model. The model exhibits a phase of coexistence of the s-wave and the d-wave, or a phase of an order competition. Furthermore, it has a triple point.

  11. Wave represents displacement Wave represents pressure Source -Sound Waves

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency

  12. What Is Sound? Sound is a pressure wave which is

    E-Print Network [OSTI]

    Toronto, University of

    What Is Sound? Sound is a pressure wave which is created by a vibrating object. This vibrations set the medium. Since the particles are moving in parallel direction to the wave movement, the sound wave of a sine wave (C~crests, R~troughs) The speed of a sound pressure wave in air is 331.5+0.6Tc m/s , Tc

  13. TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES...

    Open Energy Info (EERE)

    OF SHEAR-WAVE SPLITTING Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE...

  14. acoustic wave velocity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the offered analytical method the determinant relation for a phase velocities of elastic waves for an arbitrary propagation directions in a piezoelectric crystal are received. The...

  15. The Nature of Running Penumbral Waves Revealed

    E-Print Network [OSTI]

    D. Shaun Bloomfield; Andreas Lagg; Sami K. Solanki

    2007-09-24T23:59:59.000Z

    We seek to clarify the nature of running penumbral (RP) waves: are they chromospheric trans-sunspot waves or a visual pattern of upward-propagating waves? Full Stokes spectropolarimetric time series of the photospheric Si I 10827 \\AA line and the chromospheric He I 10830 \\AA multiplet were inverted using a Milne-Eddington atmosphere. Spatial pixels were paired between the outer umbral/inner penumbral photosphere and the penumbral chromosphere using inclinations retrieved by the inversion and the dual-height pairings of line-of-sight velocity time series were studied for signatures of wave propagation using a Fourier phase difference analysis. The dispersion relation for radiatively cooling acoustic waves, modified to incorporate an inclined propagation direction, fits well the observed phase differences between the pairs of photospheric and chromospheric pixels. We have thus demonstrated that RP waves are in effect low-beta slow-mode waves propagating along the magnetic field.

  16. A radiometer for stochastic gravitational waves

    E-Print Network [OSTI]

    Stefan W. Ballmer

    2005-10-20T23:59:59.000Z

    The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the 3rd LIGO science Run (S3). Now I present a new method for obtaining directional upper limits that the LIGO Scientific Collaboration intends to use for future LIGO science runs and that essentially implements a gravitational wave radiometer.

  17. Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30T23:59:59.000Z

    The Department of Energy (DOE) Directives System is the means by which DOE policies, requirements, and responsibilities are developed and communicated throughout the Department. Directives are used to inform, direct, and guide employees in the performance of their jobs, and to enable employees to work effectively within the Department and with agencies, contractors, and the public. Cancels: DOE O 251.1, DOE M 251.1-1

  18. A parametric study of directional sea modeling 

    E-Print Network [OSTI]

    Whatley, Christopher Paul

    1990-01-01T23:59:59.000Z

    from -s to rr at each frequency. If a certain functional form for the directional distribution of wave energy, D(8) is assumed, the covariances of the data, determined from a method like the Fourier series analysis mentioned above, can be used... to researchers. Still, no universally accepted model of this complex physical phenomena has yet evolved. Researchers have opted for selecting a functional form to describe the directional distribution of wave energy rather than using a Fourier series model...

  19. Wave optics and image formation in gravitational lensing

    E-Print Network [OSTI]

    Yasusada Nambu

    2012-07-30T23:59:59.000Z

    We discuss image formation in gravitational lensing systems using wave optics. Applying the Fresnel-Kirchhoff diffraction formula to waves scattered by a gravitational potential of a lens object, we demonstrate how images of source objects are obtained directly from wave functions without using a lens equation for gravitational lensing.

  20. Coda wave interferometry 1 Coda wave interferometry

    E-Print Network [OSTI]

    Snieder, Roel

    Coda wave interferometry 1 Coda wave interferometry An interferometer is an instrument that is sensitive to the interference of two or more waves (optical or acoustic). For example, an optical interferometer uses two interfering light beams to measure small length changes. Coda wave interferometry

  1. Directives Help

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All DOE directives are available through this site. While it may seem overwhelming, given the number of documents, we have provided a number of ways in which you may get to the information you need.

  2. Continuum Cascade Model: Branching Random Walk for Traveling Wave

    E-Print Network [OSTI]

    Yoshiaki Itoh

    2015-07-15T23:59:59.000Z

    The food web is a directed graph in which nodes label species and directed links represent the predation between species. Cascade models generate random food webs. The recursion to obtain the probability distribution of the longest chain length has the solution with traveling wave. We consider a branching random walk to study the asymptotic probability on the wave front.

  3. Application of wave generator theory to the development of a Wave Energy Converter

    E-Print Network [OSTI]

    Wood, Stephen L.

    of the second buoy's curved face. Upon deployment, the WEC successfully logged the power output of the system a wave energy converter (WEC) capable of providing at least a quarter-Watt of power to a small aquatic and basic wave generation technology to improving the power capture design of a basic direct drive WEC

  4. Wave turbulence revisited: Where does the energy flow?

    E-Print Network [OSTI]

    L. V. Abdurakhimov; I. A. Remizov; A. A. Levchenko; G. V. Kolmakov; Y. V. Lvov

    2014-04-03T23:59:59.000Z

    Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.

  5. SPECTROSCOPIC OBSERVATIONS OF A CORONAL MORETON WAVE

    SciTech Connect (OSTI)

    Harra, Louise K. [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Sterling, Alphonse C. [Space Science Office, VP62, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Goemoery, Peter [Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranska Lomnica (Slovakia); Veronig, Astrid, E-mail: lkh@mssl.ucl.ac.uk, E-mail: alphonse.sterling@nasa.gov, E-mail: gomory@astro.s, E-mail: astrid.veronig@uni-graz.at [Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria)

    2011-08-10T23:59:59.000Z

    We observed a coronal wave (EIT wave) on 2011 February 16, using EUV imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) and EUV spectral data from the Hinode/EUV Imaging Spectrometer (EIS). The wave accompanied an M1.6 flare that produced a surge and a coronal mass ejection (CME). EIS data of the wave show a prominent redshifted signature indicating line-of-sight velocities of {approx}20 km s{sup -1} or greater. Following the main redshifted wave front, there is a low-velocity period (and perhaps slightly blueshifted), followed by a second redshift somewhat weaker than the first; this progression may be due to oscillations of the EUV atmosphere set in motion by the initial wave front, although alternative explanations may be possible. Along the direction of the EIS slit the wave front's velocity was {approx}500 km s{sup -1}, consistent with its apparent propagation velocity projected against the solar disk as measured in the AIA images, and the second redshifted feature had propagation velocities between {approx}200 and 500 km s{sup -1}. These findings are consistent with the observed wave being generated by the outgoing CME, as in the scenario for the classic Moreton wave. This type of detailed spectral study of coronal waves has hitherto been a challenge, but is now possible due to the availability of concurrent AIA and EIS data.

  6. Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Jones, Craig

    2014-09-01T23:59:59.000Z

    The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

  7. Waves and propagation failure in discrete space models with nonlinear coupling and

    E-Print Network [OSTI]

    Waves and propagation failure in discrete space models with nonlinear coupling and feedback Markus by the linearisation ahead of the wave front. Wave propagation (and failure) is studied when the homogeneous dynamics are bistable. Simulations show that waves may propagate in either direction, or may be pinned. A Lyapunov

  8. Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma

    SciTech Connect (OSTI)

    Gao, Xinliang; Lu, Quanming; Shan, Lican; Wang, Shui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China)] [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China); Li, Xing [Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom)] [Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom)

    2013-07-15T23:59:59.000Z

    Two-dimensional hybrid simulations are performed to investigate the parametric decay of a monochromatic Alfven wave in low beta plasma. Both the linearly and left-hand polarized pump Alfven waves are considered in the paper. For the linearly polarized pump Alfven wave, either a parallel or obliquely propagating wave can lead to the decay along the perpendicular direction. Initially, the parametric decay takes place along the propagating direction of the pump wave, and then the decay occurs in the perpendicular direction. With the increase of the amplitude and the propagating angle of the pump wave (the angle between the propagating direction of the pump wave and the ambient magnetic field), the spectral range of the excited waves becomes broad in the perpendicular direction. But the effects of the plasma beta on the spectral range of the excited waves in perpendicular direction are negligible. However, for the left-hand polarized pump Alfven wave, when the pump wave propagates along the ambient magnetic field, the parametric decay occurs nearly along the ambient magnetic field, and there is no obvious decay in the perpendicular direction. Significant decay in the perpendicular direction can only be found when the pump wave propagates obliquely.

  9. Double Kelvin Wave Cascade in Superfluid Helium

    E-Print Network [OSTI]

    G. Boffetta; A. Celani; D. Dezzani; J. Laurie; S. Nazarenko

    2008-10-20T23:59:59.000Z

    We study the double cascade of energy and wave action in a local model of superfluid vortex filaments. The model is obtained from a truncated expansion of the 2D Local Induction Approximation and it is shown to support six-wave interactions. We argue that, because of the uncertainty in the vortex core profile, this model has the same status of validity as the traditionally used Biot-Savart model with cutoff, but it has advantage of being much simpler. Our minimal model leads to a wave kinetic equation for which we predict existence of two distinct power-law scaling in the spectrum, corresponding to a direct cascade of energy and an inverse one of wave action. Direct numerical simulations confirm the theoretical predictions in the weak turbulence regime.

  10. Fast waves and electron current drive in the Irvine Torus

    SciTech Connect (OSTI)

    Platt, R.C.

    1987-01-01T23:59:59.000Z

    This work reports the results of experimental studies of the fast wave with frequencies near the mean gyro-frequency in magnetized, toroidal plasmas with comparison to theory. Experiment investigating fast-wave dispersion and damping, and the use of unidirectional fast waves to drive steady-state electron currents were performed on the Irvine Torus. The wave was excited in the plasmas by a phased array antenna which allowed launching of uni- or bi-directional fast waves around the torus. Probe measurements of the angle of propagation of wave energy, radial wavelengths, and the direction and magnitude of radial wave phase velocities were found to be in good agreement with predictions from cold plasma theory. Measurements of fast-wave damping showed the observed damping lengths to be anomalously short when compared to predictions for electron Landau damping, transit-time magnetic pumping, and collisional damping, but may be explained by effects due to fast-wave scattering from drift-wave density fluctuations. Steady-state electron currents were driven by unidirectional fast waves. Up to 14% of the wave energy was converted to poloidal magnetic field energy. The maximum current observed was found to be in rough agreement with a prediction from quasi-linear theory.

  11. Time symmetry in wave function collapse models

    E-Print Network [OSTI]

    Daniel Bedingham

    2015-02-25T23:59:59.000Z

    A framework for wave function collapse models that is symmetric under time reversal is presented. Within this framework there are equivalent pictures of collapsing wave functions evolving in both time directions. The backwards-in-time Born rule can be broken by an initial condition on the Universe resulting in asymmetric behaviour. Similarly the forwards-in-time Born rule can in principle be broken by a final condition on the Universe.

  12. Reflection and transmission of ocean wave spectra by a band of randomly distributed ice floes

    E-Print Network [OSTI]

    Montiel, Fabien; Bennetts, Luke

    2014-01-01T23:59:59.000Z

    A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through an arbitrary finite array of circular ice floes, where wave/ice dynamics are entirely governed by wave scattering effects. The model is applied to characterise the wave reflection and transmission properties of a strip of ice floes, such as an ice edge band. A method is devised to extract the reflected and transmitted directional wave spectra produced by the array. The method builds upon an integral mapping from polar to Cartesian coordinates of the scattered wave components. Sensitivity tests are conducted for a row of floes randomly perturbed from a regular arrangement. Results for random arrays are generated using ensemble averaging. A realistic ice edge band is then reconstructed from field experiments data. Simulations show a good qualitative agreement with the data in terms of transmitted wave energy and directional spreading. In particular, it is observed that short waves ...

  13. The search for gravitational wave bursts in data from the second LIGO science run

    E-Print Network [OSTI]

    Chatterji, Shourov Keith

    2005-01-01T23:59:59.000Z

    The network of detectors comprising the Laser Interferometer Gravitational-wave Observatory (LIGO) are among a new generation of detectors that seek to make the first direct observation of gravitational waves. While providing ...

  14. Water Waves Roger Grimshaw

    E-Print Network [OSTI]

    ,2) provide a kinematic description of water waves, which to this point means that the conditionsWater Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves

  15. Sub-wavelength position measurements with running wave driving fields

    E-Print Network [OSTI]

    J. Evers; S. Qamar

    2009-01-29T23:59:59.000Z

    A scheme for sub-wavelength position measurements of quantum particles is discussed, which operates with running-wave laser fields as opposed to standing wave fields proposed in previous setups. The position is encoded in the phase of the applied fields rather than in the spatially modulated intensity of a standing wave. Therefore, disadvantages of standing wave schemes such as cases where the atom remains undetected since it is at a node of the standing wave field are avoided. Reversing the directions of parts of the driving laser fields allows to switch between different magnification levels, and thus to optimize the localization.

  16. Variation of seismic-wave velocities in westerly granite under stress

    E-Print Network [OSTI]

    Al-Shaibani, Abdulaziz Muhareb

    1994-01-01T23:59:59.000Z

    -wave Results. S-wave Results. SUMMARY. REFERENCES. . . . :. 10 . . . . 13 . . . . . . . . 17 . . . . . 21 . . . . . 24 . . . . . 24 . . . . . 28 . . . . . 35 . . . . . . . 36 LIST OF TABLES Page TABLE la. Compressional-wave velocities, Vp.... . 17 Figure 7 Crosscorrelation between two P-wave traces along one direction at two different pressure levels to determine the relative time delays. . . . . 20 Figure 8. (a, b and c). P-wave traces measured at the center of the faces along x-, y...

  17. Control of molecular rotation in the limit of extreme rotational excitation

    E-Print Network [OSTI]

    V. Milner; J. W. Hepburn

    2015-01-12T23:59:59.000Z

    Laser control of molecular rotation is an area of active research. A number of recent studies has aimed at expanding the reach of rotational control to extreme, previously inaccessible rotational states, as well as controlling the directionality of molecular rotation. Dense ensembles of molecules undergoing ultrafast uni-directional rotation, known as molecular superrotors, are anticipated to exhibit unique properties, from spatially anisotropic diffusion and vortex formation to the creation of powerful acoustic waves and tuneable THz radiation. Here we describe our recent progress in controlling molecular rotation in the regime of high rotational excitation. We review two experimental techniques of producing uni-directional rotational wave packets with a "chiral train" of femtosecond pulses and an "optical centrifuge". Three complementary detection methods, enabling the direct observation, characterization and control of the superrotor states, are outlined: the one based on coherent Raman scattering, and two other methods employing both resonant and non-resonant multi-photon ionization. The capabilities of the described excitation and detection techniques are demonstrated with a few examples. The paper is concluded with an outlook for future developments.

  18. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    SciTech Connect (OSTI)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01T23:59:59.000Z

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  19. The various manifestations of collisionless dissipation in wave propagation

    SciTech Connect (OSTI)

    Benisti, Didier; Morice, Olivier; Gremillet, Laurent [CEA, DAM, DIF, F-91297 Arpajon (France)

    2012-06-15T23:59:59.000Z

    The propagation of an electrostatic wave packet inside a collisionless and initially Maxwellian plasma is always dissipative because of the irreversible acceleration of the electrons by the wave. Then, in the linear regime, the wave packet is Landau damped, so that in the reference frame moving at the group velocity, the wave amplitude decays exponentially with time. In the nonlinear regime, once phase mixing has occurred and when the electron motion is nearly adiabatic, the damping rate is strongly reduced compared to the Landau one, so that the wave amplitude remains nearly constant along the characteristics. Yet, we show here that the electrons are still globally accelerated by the wave packet, and in one dimension, this leads to a non local amplitude dependence of the group velocity. As a result, a freely propagating wave packet would shrink, and therefore, so would its total energy. In more than one dimension, not only does the magnitude of the group velocity nonlinearly vary, but also its direction. In the weakly nonlinear regime, when the collisionless damping rate is still significant compared to its linear value, the group velocity is directed towards the outside of the wave packet and tends to increase its transverse extent, while the opposite is true once the wave is essentially undamped. The impact of the nonlinear variation of the group velocity on the transverse size of the wave packet is quantified, and compared to that induced by the self-focussing due to wave front bowing.

  20. Wave turbulent statistics in non-weak wave turbulence

    E-Print Network [OSTI]

    Naoto Yokoyama

    2011-05-08T23:59:59.000Z

    In wave turbulence, it has been believed that statistical properties are well described by the weak turbulence theory, in which nonlinear interactions among wavenumbers are assumed to be small. In the weak turbulence theory, separation of linear and nonlinear time scales derived from the weak nonlinearity is also assumed. However, the separation of the time scales is often violated even in weak turbulent systems where the nonlinear interactions are actually weak. To get rid of this inconsistency, closed equations are derived without assuming the separation of the time scales in accordance with Direct-Interaction Approximation (DIA), which has been successfully applied to Navier--Stokes turbulence. The kinetic equation of the weak turbulence theory is recovered from the DIA equations if the weak nonlinearity is assumed as an additional assumption. It suggests that the DIA equations is a natural extension of the conventional kinetic equation to not-necessarily-weak wave turbulence.

  1. Photon wave function

    E-Print Network [OSTI]

    Iwo Bialynicki-Birula

    2005-08-26T23:59:59.000Z

    Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, the photon wave function exists as long as it can be precisely defined and made useful.

  2. Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)

    E-Print Network [OSTI]

    1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution

  3. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01T23:59:59.000Z

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  4. Cold Plasma Wave Analysis in Magneto-Rotational Fluids

    E-Print Network [OSTI]

    M. Sharif; Umber Sheikh

    2010-05-25T23:59:59.000Z

    This paper is devoted to investigate the cold plasma wave properties. The analysis has been restricted to the neighborhood of the pair production region of the Kerr magnetosphere. The Fourier analyzed general relativistic magnetohydrodynamical equations are dealt under special circumstances and dispersion relations are obtained. We find the $x$-component of the complex wave vector numerically. The corresponding components of the propagation vector, attenuation vector, phase and group velocities are shown in graphs. The direction and dispersion of waves are investigated.

  5. Propagation of shear Alven waves in two-ion species plasmas confined by a nonuniform magnetic field

    E-Print Network [OSTI]

    California at Los Angles, University of

    Propagation of shear Alven waves in two-ion species plasmas confined by a nonuniform magnetic field for waves originally propagating along the magnetic field direction. Calculations are performed for waves propagating across the confinement magnetic field, typically the compressional or fast Alfven wave

  6. Internal Wave Interferometry

    E-Print Network [OSTI]

    Mathur, Manikandan S.

    Internal waves are a ubiquitous and significant means of momentum and energy transport in the oceans, atmosphere, and astrophysical bodies. Here, we show that internal wave propagation in nonuniform density stratifications, ...

  7. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J.

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...

  8. Anti-Synchronization in Multiple Time Delay Power Systems

    E-Print Network [OSTI]

    E. M. Shahverdiev

    2010-08-23T23:59:59.000Z

    We investigate chaos antisynchronization between two uni-directionally coupled multiple time delay power systems.The results are of certain importance to prevent power black-out in the entire power grid.

  9. Alfv'en Wave Solitons and Solar Intermediate Drift Bursts

    E-Print Network [OSTI]

    Guedel, Manuel

    propagate at velocities of the order of the Alfv'en veloc­ ity in a direction inclined to the magnetic field, the solar wind, and possibly accretion disks, and extra­ galactic jets. In such magnetized plasmas Alfv'en waves are easily excited by various processes. Linear waves propagate at the Alfv'en speed v

  10. Imaging wave-penetrable objects in a finite depth ocean

    E-Print Network [OSTI]

    Zou, Jun

    Imaging wave-penetrable objects in a finite depth ocean Keji Liu Yongzhi Xu Jun Zou Abstract. We- penetrable inhomogeneous medium in a 3D finite depth ocean. The method is based on a scat- tering analysis extend the direct sampling method proposed in [13] to image a wave- penetrable inhomogeneous medium

  11. DISSIPATIVE ENERGIZATION OF BAROCLINIC WAVES BY SURFACE EKMAN PUMPING

    E-Print Network [OSTI]

    Lee, Sukyoung

    DISSIPATIVE ENERGIZATION OF BAROCLINIC WAVES BY SURFACE EKMAN PUMPING Sukyoung Lee Department-geostrophic model is used to study the effect of lower boundary Ekman pumping on the energetics of baroclinic waves. Although the direct impact of the Ekman pumping is to damp the total eddy energy, either the eddy available

  12. Bragg grating rogue wave

    E-Print Network [OSTI]

    Degasperis, Antonio; Aceves, Alejandro B

    2015-01-01T23:59:59.000Z

    We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing, may lead to extreme waves at extremely low powers.

  13. Internal wave instability: Wave-wave versus wave-induced mean flow interactions

    E-Print Network [OSTI]

    Sutherland, Bruce

    , known as parametric sub- harmonic instability, results generally when a disturbance of one frequency imparts energy to disturbances of half that frequency.13,14 Generally, a plane periodic internal wave, energy from primary waves is transferred, for example, to waves with half frequency. Self

  14. Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino

    E-Print Network [OSTI]

    Merlino, Robert L.

    Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy with their announcement that: "We find that a new type of sound wave, namely, the dust-acoustic waves, can appear" [1 and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some

  15. Performance Assessment of the Wave Dragon Wave Energy Converter

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

  16. Wave | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWaranaWater Power ForumGeothermalWave

  17. Elgen Wave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagnetic ProfilingElgen Wave Jump to:

  18. Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics 

    E-Print Network [OSTI]

    Qian, Tingting

    2010-07-14T23:59:59.000Z

    Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...

  19. Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics

    E-Print Network [OSTI]

    Qian, Tingting

    2010-07-14T23:59:59.000Z

    Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...

  20. On the propagation of sound waves in a stellar wind traversed by periodic strong shocks

    E-Print Network [OSTI]

    F. P. Pijpers

    1994-09-19T23:59:59.000Z

    It has been claimed that in stellar winds traversed by strong shocks the mechanism for driving the wind by sound wave pressure cannot operate because sound waves cannot propagate past the shocks. It is shown here that sound waves can propagate through shocks in one direction and that this is a sufficient condition for the sound wave pressure mechanism to work. A strong shock amplifies a sound wave passing through it and can drag the sound wave away from the star. It is immaterial for the sound wave pressure gradient that the sound wave vector points towards the star. Since the strong shocks drag the sound waves away, the star itself is the source for the sound waves propagating towards it.

  1. PLANE-WAVE DECOMPOSITION OF A SOUND SCENE USING A CYLINDRICAL MICROPHONE ARRAY

    E-Print Network [OSTI]

    Zotkin, Dmitry N.

    PLANE-WAVE DECOMPOSITION OF A SOUND SCENE USING A CYLINDRICAL MICROPHONE ARRAY Dmitry N. Zotkin] and for the cylindrical array [2]. An alternative approach is to note that in the plane-wave basis [9] a sound field of converting a sound field into the plane-wave basis de- composes it into directional components. In a recent

  2. A comparison between matter wave and light wave interferometers for the detection of gravitational waves

    E-Print Network [OSTI]

    Pacôme Delva; Marie-Christine Angonin; Philippe Tourrenc

    2006-09-20T23:59:59.000Z

    We calculate and compare the response of light wave interferometers and matter wave interferometers to gravitational waves. We find that metric matter wave interferometers will not challenge kilometric light wave interferometers such as Virgo or LIGO, but could be a good candidate for the detection of very low frequency gravitational waves.

  3. Gravitational wave radiometry: Mapping a stochastic gravitational wave background

    SciTech Connect (OSTI)

    Mitra, Sanjit [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Observatoire de la Cote d'Azur, BP 4229, 06304 Nice Cedex 4 (France); Dhurandhar, Sanjeev; Souradeep, Tarun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Lazzarini, Albert; Mandic, Vuk; Ballmer, Stefan [LIGO Laboratory, California Institute of Technology, MS 18-34, Pasadena, California 91125 (United States); Bose, Sukanta [Department of Physics, Washington State University, Pullman, Washington 99164-2814 (United States)

    2008-02-15T23:59:59.000Z

    The problem of the detection and mapping of a stochastic gravitational wave background (SGWB), either cosmological or astrophysical, bears a strong semblance to the analysis of the cosmic microwave background (CMB) anisotropy and polarization, which too is a stochastic field, statistically described in terms of its correlation properties. An astrophysical gravitational wave background (AGWB) will likely arise from an incoherent superposition of unmodelled and/or unresolved sources and cosmological gravitational wave backgrounds (CGWB) are also predicted in certain scenarios. The basic statistic we use is the cross correlation between the data from a pair of detectors. In order to ''point'' the pair of detectors at different locations one must suitably delay the signal by the amount it takes for the gravitational waves (GW) to travel to both detectors corresponding to a source direction. Then the raw (observed) sky map of the SGWB is the signal convolved with a beam response function that varies with location in the sky. We first present a thorough analytic understanding of the structure of the beam response function using an analytic approach employing the stationary phase approximation. The true sky map is obtained by numerically deconvolving the beam function in the integral (convolution) equation. We adopt the maximum likelihood framework to estimate the true sky map using the conjugate gradient method that has been successfully used in the broadly similar, well-studied CMB map-making problem. We numerically implement and demonstrate the method on signal generated by simulated (unpolarized) SGWB for the GW radiometer consisting of the LIGO pair of detectors at Hanford and Livingston. We include 'realistic' additive Gaussian noise in each data stream based on the LIGO-I noise power spectral density. The extension of the method to multiple baselines and polarized GWB is outlined. In the near future the network of GW detectors, including the Advanced LIGO and Virgo detectors that will be sensitive to sources within a thousand times larger spatial volume, could provide promising data sets for GW radiometry.

  4. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-16T23:59:59.000Z

    The Order is the primary directive for administering the Department's directives Program. Cancels: DOE O 251.1A

  5. New directions for gravitational wave physics via "Millikan oil drops"

    E-Print Network [OSTI]

    Raymond Y. Chiao

    2009-04-29T23:59:59.000Z

    "Millikan oil drops" are drops of superfluid helium coated with electrons, and levitated in a strong, inhomogeneous magnetic field. When the temperature of the system becomes very low compared to the cyclotron gap energy, the system remains in its quantum ground state. Two such levitated charged drops can have their charge-to-mass ratio critically adjusted so that the forces of gravity and electricity between the drops are in balance. Then it is predicted that the amount of scattered electromagnetic and gravitational radiation from the drops are equalized, along with these two kinds of forces. The cross sections for the scattering of the two kinds of radiation can become large, hard-sphere cross-sections at the first Mie resonance, due to the hard-wall boundary conditions on the surfaces of the spheres for both kinds of radiations. An efficient quantum transduction process between electromagnetic and gravitational radiation by such a pair of drops is predicted at microwave frequencies, and a Hertz-like experiment is proposed. A more practical implementation of these ideas to use pairs of levitated, charged superconducting spheres is briefly discussed.

  6. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links FacilitiesER-ARM-0402Department ofto Hold

  7. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefresh ModelES&HresultsARPES Provides

  8. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefresh ModelES&HresultsARPES ProvidesARPES Provides

  9. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefresh ModelES&HresultsARPES ProvidesARPES

  10. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 5, MAY 2003 1 Integrated Antenna With Direct Conversion Circuitry

    E-Print Network [OSTI]

    Itoh, Tatsuo

    Integrated Antenna With Direct Conversion Circuitry for Broad-Band Millimeter-Wave Communications Ji, and Tatsuo Itoh, Life Fellow, IEEE Abstract--A compact integrated antenna with direct quadra- ture conversion-wave circuit, direct quadrature conversion, integrated patch antenna. I. INTRODUCTION CURRENTLY, many

  11. Nonlinear spherical Alfven waves

    E-Print Network [OSTI]

    Ulf Torkelsson; G. Christopher Boynton

    1997-09-23T23:59:59.000Z

    We present an one-dimensional numerical study of Alfven waves propagating along a radial magnetic field. Neglecting losses, any spherical Alfven wave, no matter how small its initial amplitude is, becomes nonlinear at sufficiently large radii. From previous simulations of Alfven waves in plane parallel atmospheres we did expect the waves to steepen and produce current sheets in the nonlinear regime, which was confirmed by our new calculations. On the other hand we did find that even the least nonlinear waves were damped out almost completely before 10 solar radii. A damping of that kind is required by models of Alfven wave-driven winds from old low-mass stars as these winds are mainly accelerated within a few stellar radii.

  12. Structure-borne sound Flexural wave (bending wave)

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Structure-borne sound · Flexural wave (bending wave) »One dimensional (beam) +(/x)dx +(/x)dx = (/x) (/x)dx=(2/x2)dx Mz +(Mz/x)dx Mz vy Fy Fy +(Fy/x)dx Structure-borne sound · Bending wave ­ flexural wave #12;2 Structure-borne sound · Two obliquely propagating waves + - + + - + - Structure

  13. Wave Propagation Theory 2.1 The Wave Equation

    E-Print Network [OSTI]

    2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived #12;66 2. Wave Propagation Theory quantities of the quiescent (time independent) medium are identified perturbations is much smaller than the speed of sound. 2.1.1 The Nonlinear Wave Equation Retaining higher

  14. Wave momentum flux parameter: a descriptor for nearshore waves

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution

  15. Title of dissertation: SENSING SMALL CHANGES IN A WAVE CHAOTIC SCATTERING SYSTEM

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of dissertation: SENSING SMALL CHANGES IN A WAVE CHAOTIC SCATTERING SYSTEM Dissertation directed by: Professor Steven M. Anlage Department of Electrical and Computer Engineering Wave of the cavity within its direct line-of-sight. In the first part of the dissertation, we propose and test a new

  16. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J; Mathur, Manikandan; Gostiaux, Louis; Peacock, Thomas; Dauxois, Thierry

    2015-01-01T23:59:59.000Z

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (2007). This mechanism, which involves a tunable source comprised of oscillating plates, has so far been used for a few fundamental studies of internal waves, but its full potential has yet to be realized. Our studies reveal that this approach is capable of producing a wide variety of two-dimensional wave fields, including plane waves, wave beams and discrete vertical modes in finite-depth stratifications. The effects of discretization by a finite number of plates, forcing amplitude and angle of propagation are investigated, and it is found that the method is remarkably efficient at generating a complete wave field despite forcing only one velocity component in a controllable manner. We furthermore find that the nature of the radiated wave field is well predicted using Fourier transforms of the spatial structure of the wave generator.

  17. Wave–current interaction in the presence of a three-dimensional bathymetry: Deep water wave focusing in opposing current conditions

    SciTech Connect (OSTI)

    Rey, V., E-mail: rey@univ-tln.fr; Charland, J., E-mail: jenna.charland@univ-tln.fr; Touboul, J., E-mail: julien.touboul@univ-tln.fr [Université de Toulon, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, F-83957 La Garde (France); Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, Cedex (France)

    2014-09-15T23:59:59.000Z

    Large scale experiments were carried out in the Ocean Engineering Basin FIRST, France. A tri-dimensional bathymetry consisting of two symmetrical submerged mounds was displayed on the flat bed on both sides of the basin. Regular waves of frequency corresponding to deep water conditions above the bathymetry were generated in opposing current conditions. A strong tri-dimensional behaviour is observed for the wave amplitude, leading to a strong focusing (up to twice the incident amplitude) of the wave energy towards the central deeper zone. This amplification cannot be ascribed to the increase of the current intensity in the main wave direction, nor to a current gradient normally to the wave direction. A wave phase gradient, normal to its main direction, is observed up-wave (or downstream) the mounds. This phase lag depends on the wave amplitude, it is the higher for the moderate amplitude case. The experimental data are compared with calculations of a refraction-diffraction model assuming a depth-averaged current. If the model qualitatively predicts the wave amplification in the centerline of the basin, discrepancies are observed in the vicinity of the depth changes. The observed mean current vertical profile shape is then supposed to play a significant role in the wave focusing, especially near the steep slopes down-stream the mounds. In addition, the waves are found to modify substantially both horizontal and vertical current fields.

  18. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01T23:59:59.000Z

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  19. Wave Energy challenges and possibilities

    E-Print Network [OSTI]

    © Wave Energy ­ challenges and possibilities By: Per Resen Steenstrup www.WaveStarEnergy.com Risø-R-1608(EN) 161 #12;© Wave energy is an old story.... The first wave energy patent is 200 years old. Over the last 100 years more than 200 new wave energy devices have been developped and more than 1.000 patents

  20. Wave-Corpuscle Mechanics for Electric Charges

    E-Print Network [OSTI]

    Babin, Anatoli; Figotin, Alexander

    2010-01-01T23:59:59.000Z

    superposition in nonlinear wave dynamics. Rev. Math. Phys.6. Babin, A. , Figotin, A. : Wave-corpuscle mechanics forV. , Fortunato, D. : Solitary waves in the nonlinear wave

  1. Wave Energy Resource Analysis for Use in Wave Energy Conversion 

    E-Print Network [OSTI]

    Pastor, J.; Liu, Y.; Dou, Y.

    2014-01-01T23:59:59.000Z

    In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...

  2. Harmonic generation of gravitational wave induced Alfven waves

    E-Print Network [OSTI]

    Mats Forsberg; Gert Brodin

    2007-11-26T23:59:59.000Z

    Here we consider the nonlinear evolution of Alfven waves that have been excited by gravitational waves from merging binary pulsars. We derive a wave equation for strongly nonlinear and dispersive Alfven waves. Due to the weak dispersion of the Alfven waves, significant wave steepening can occur, which in turn implies strong harmonic generation. We find that the harmonic generation is saturated due to dispersive effects, and use this to estimate the resulting spectrum. Finally we discuss the possibility of observing the above process.

  3. Gravitational waves and gamma-ray bursts

    E-Print Network [OSTI]

    Alessandra Corsi; for the LIGO Scientific Collaboration; for the Virgo Collaboration

    2012-05-11T23:59:59.000Z

    Gamma-Ray Bursts are likely associated with a catastrophic energy release in stellar mass objects. Electromagnetic observations provide important, but indirect information on the progenitor. On the other hand, gravitational waves emitted from the central source, carry direct information on its nature. In this context, I give an overview of the multi-messenger study of gamma-ray bursts that can be carried out by using electromagnetic and gravitational wave observations. I also underline the importance of joint electromagnetic and gravitational wave searches, in the absence of a gamma-ray trigger. Finally, I discuss how multi-messenger observations may probe alternative gamma-ray burst progenitor models, such as the magnetar scenario.

  4. Interferometry with correlated matter-waves

    E-Print Network [OSTI]

    Oksana I. Streltsova; Alexej I. Streltsov

    2014-12-12T23:59:59.000Z

    Matter-wave interferometry of ultra-cold atoms with attractive interactions is studied at the full many-body level. First, we study how a coherent light-pulse applied to an initially-condensed solitonic system splits it into two matter-waves. The split system looses its coherence and develops correlations with time, and inevitably becomes fragmented due to inter-particle attractions. Next, we show that by re-colliding the sub-clouds constituting the split density together, along with a simultaneous application of the same laser-pulse, one creates three matter-waves propagating with different momenta. We demonstrate that the number of atoms in the sub-cloud with zero-momentum is directly proportional to the degree of fragmentation in the system. This interferometric-based protocol to discriminate, probe, and measure the fragmentation is general and can be applied to ultra-cold systems with attractive, repulsive, short- and long-range interactions.

  5. Secondary dust density waves excited by nonlinear dust acoustic waves

    SciTech Connect (OSTI)

    Heinrich, J. R.; Kim, S.-H.; Meyer, J. K.; Merlino, R. L. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, M. [Department of Electrical and Computer Engineering, University of California, San Diego, California 92093 (United States)

    2012-08-15T23:59:59.000Z

    Secondary dust density waves were observed in conjunction with high amplitude (n{sub d}/n{sub d0}>2) dust acoustic waves (DAW) that were spontaneously excited in a dc glow discharge dusty plasma in the moderately coupled, {Gamma}{approx}1, state. The high amplitude dust acoustic waves produced large dust particle oscillations, displacements, and trapping. Secondary dust density waves were excited in the wave troughs of the high amplitude DAWs. The waveforms, amplitudes, wavelengths, and wave speeds of the primary DAWs and the secondary waves were measured. A dust-dust streaming instability is discussed as a possible mechanism for the production of the secondary waves.

  6. Recirculation in multiple wave conversions

    E-Print Network [OSTI]

    Brizard, A.J.

    2008-01-01T23:59:59.000Z

    model lies with the simple wave energy conservation law itthe recirculation of wave energy introduces interference e?particles, the tertiary-wave energy may be negative and thus

  7. Arnold Schwarzenegger CALIFORNIA OCEAN WAVE

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California this report as follows: Previsic, Mirko. 2006. California Ocean Wave Energy Assessment. California Energy Systems Integration · Transportation California Ocean Wave Energy Assessment is the final report

  8. Prediction and application of wave kinematics for near-shore structures subject to irregular seas with comparison to measured field data

    E-Print Network [OSTI]

    Sweetman, Bert

    Prediction and application of wave kinematics for near-shore structures subject to irregular seas of wave kinematics by Stokes theory or stream function theory. Stokes theory can be used directly to predict irregular wave kinematics from a specified wave spectrum, but the predicted kinematics

  9. Experimental Measurements and Numerical Prediction of the Effect of Waves on Mooring Line Forces for a Container Ship Moored to Pile Supported and Solid Wall Docks 

    E-Print Network [OSTI]

    Luai, Andres B

    2013-05-03T23:59:59.000Z

    The conditions of a moored container ship are examined by a physical model in a wave basin and by a numerical simulation. Each condition, wave period, significant wave height and wave direction, was isolated and tested for a 50:1 scale model of a...

  10. Directions and Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions & Maps Plan Your Visit Visit About the Museum Museum Hours Directions & Maps When to Visit Arrange for a Visit Around Los Alamos Contact Us invisible utility element...

  11. Diagonalization of pp-waves

    E-Print Network [OSTI]

    B. V. Ivanov

    1997-05-21T23:59:59.000Z

    A coordinate transformation is found which diagonalizes the axisymmetric pp-waves. Its effect upon concrete solutions, including impulsive and shock waves, is discussed.

  12. Modeling Kelvin Wave Cascades in Superfluid Helium

    E-Print Network [OSTI]

    Guido Boffetta; Antonio Celani; Davide Dezzani; Jason Laurie; Sergey Nazarenko

    2009-11-10T23:59:59.000Z

    We study two different types of simplified models for Kelvin wave turbulence on quantized vortex lines in superfluids near zero temperature. Our first model is obtained from a truncated expansion of the Local Induction Approximation (Truncated-LIA) and it is shown to possess the same scalings and the essential behaviour as the full Biot-Savart model, being much simpler than the latter and, therefore, more amenable to theoretical and numerical investigations. The Truncated-LIA model supports six-wave interactions and dual cascades, which are clearly demonstrated via the direct numerical simulation of this model in the present paper. In particular, our simulations confirm presence of the weak turbulence regime and the theoretically predicted spectra for the direct energy cascade and the inverse wave action cascade. The second type of model we study, the Differential Approximation Model (DAM), takes a further drastic simplification by assuming locality of interactions in $k$-space via a differential closure that preserves the main scalings of the Kelvin wave dynamics. DAMs are even more amenable to study and they form a useful tool by providing simple analytical solutions in the cases when extra physical effects are present, e.g. forcing by reconnections, friction dissipation and phonon radiation. We study these models numerically and test their theoretical predictions, in particular the formation of the stationary spectra, and the closeness of the numerics for the higher-order DAM to the analytical predictions for the lower-order DAM .

  13. Wave-wave interactions in solar type III radio bursts

    SciTech Connect (OSTI)

    Thejappa, G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); MacDowall, R. J. [NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

    2014-02-11T23:59:59.000Z

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  14. Propagating and reflecting of spin wave in permalloy nanostrip with 360° domain wall

    SciTech Connect (OSTI)

    Zhang, Senfu; Mu, Congpu; Zhu, Qiyuan; Zheng, Qi; Liu, Xianyin; Wang, Jianbo; Liu, Qingfang, E-mail: liuqf@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2014-01-07T23:59:59.000Z

    By micromagnetic simulation, we investigated the interaction between propagating spin wave (or magnonic) and a 360° domain wall in a nanostrip. It is found that propagating spin wave can drive a 360° domain wall motion, and the velocity and direction are closely related to the transmission coefficient of the spin wave of the domain wall. When the spin wave passes through the domain wall completely, the 360° domain wall moves toward the spin wave source. When the spin wave is reflected by the domain wall, the 360° domain wall moves along the spin wave propagation direction. Moreover, when the frequency of the spin wave is coincident with that of the 360° domain wall normal mode, the 360° domain wall velocity will be resonantly enhanced no matter which direction the 360 DW moves along. On the other hand, when the spin wave is reflected from the moving 360° domain wall, we observed the Doppler effect clearly. After passing through a 360° domain wall, the phase of the spin wave is changed, and the phase shift is related to the frequency. Nevertheless, phase shift could be manipulated by the number of 360° domain walls that spin wave passing through.

  15. Diffraction of surface wave on conducting rectangular wedge

    E-Print Network [OSTI]

    Igor A. Kotelnikov; Vasily V. Gerasimov; Boris A. Knyazev

    2013-01-16T23:59:59.000Z

    Diffraction of a surface wave on a rectangular wedge with impedance faces is studied using the Sommerfeld-Malyuzhinets technique. An analog of Landau's bypass rule in the theory of plasma waves is introduced for selection of a correct branch of the Sommerfeld integral, and the exact solution is given in terms of imaginary error function. The formula derived is valid both in the near-field and far-wave zones. It is shown that a diffracted surface wave is completely scattered into freely propagating electromagnetic waves and neither reflected nor transmitted surface waves are generated in case of bare metals which have positive real part of surface impedance. The scattered waves propagate predominantly at a grazing angle along the direction of propagation of the incident surface wave and mainly in the upper hemisphere regarding the wedge face. The profile of radiated intensity is nonmonotonic and does not resemble the surface wave profile which exponentially evanesces with the distance from the wedge face. Comparison with experiments carried out in the terahertz spectral range at Novosibirsk free electron laser has shown a good agreement of the theory and the experiments.

  16. AN EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A SURGE

    SciTech Connect (OSTI)

    Zheng, Ruisheng; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Hong, Junchao; Yang, Bo; Yang, Dan, E-mail: zhrsh@ynao.ac.cn [National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China)] [National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

    2013-02-10T23:59:59.000Z

    Taking advantage of the high temporal and spatial resolution observations from the Solar Dynamics Observatory, we present an extreme-ultraviolet (EUV) wave associated with a surge on 2010 November 13. Due to the magnetic flux cancelation, some surges formed in the source active region (AR). The strongest surge produced our studied event. The surge was deflected by the nearby loops that connected to another AR, and disrupted the overlying loops that slowly expanded and eventually evolved into a weak coronal mass ejection (CME). The surge was likely associated with the core of the CME. The EUV wave happened after the surge deflected. The wave departed far from the flare center and showed a close location relative to the deflected surge. The wave propagated in a narrow angular extent, mainly in the ejection direction of the surge. The close timing and location relations between the EUV wave and the surge indicate that the wave was closely associated with the CME. The wave had a velocity of 310-350 km s{sup -1}, while the speeds of the surge and the expanding loops were about 130 and 150 km s{sup -1}, respectively. All of the results suggest that the EUV wave was a fast-mode wave and was most likely triggered by the weak CME.

  17. Full wave simulations of lower hybrid wave propagation in tokamaks

    E-Print Network [OSTI]

    Wright, John C.

    Full wave simulations of lower hybrid wave propagation in tokamaks J. C. Wright , P. T. Bonoli , C hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance. Consequently these waves are well-suited to driving current in the plasma periphery where the electron

  18. Wave Propagation in Lipid Monolayers

    E-Print Network [OSTI]

    J. Griesbauer; A. Wixforth; M. F. Schneider

    2010-05-26T23:59:59.000Z

    Sound waves are excited on lipid monolayers using a set of planar electrodes aligned in parallel with the excitable medium. By measuring the frequency dependent change in the lateral pressure we are able to extract the sound velocity for the entire monolayer phase diagram. We demonstrate that this velocity can also be directly derived from the lipid monolayer compressibility and consequently displays a minimum in the phase transition regime. This minimum decreases from v0=170m/s for one component lipid monolayers down to vm=50m/s for lipid mixtures. No significant attenuation can be detected confirming an adiabatic phenomenon. Finally our data propose a relative lateral density oscillation of \\Delta\\rho/\\rho ~ 2% implying a change in all area dependent physical properties. Order of magnitude estimates from static couplings therefore predict propagating changes in surface potential of 1-50mV, 1 unit in pH (electrochemical potential) and 0.01{\\deg}K in temperature and fall within the same order of magnitude as physical changes measured during nerve pulse propagation. These results therefore strongly support the idea of propagating adiabatic sound waves along nerves as first thoroughly described by Kaufmann in 1989 and recently by Heimburg and Jackson, but claimed by Wilke already in 1912.

  19. Wind Wave Float

    Broader source: Energy.gov (indexed) [DOE]

    Water Power Peer Review WindWaveFloat Alla Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov...

  20. Waving in the rain

    E-Print Network [OSTI]

    Cavaleri, Luigi; Bidlot, Jean-Raymond

    2015-01-01T23:59:59.000Z

    We consider the effect of rain on wind wave generation and dissipation. Rain falling on a wavy surface may have a marked tendency to dampen the shorter waves in the tail of the spectrum, the related range increasing with the rain rate. Following the coupling between meteorological and wave models, we derive that on the whole this should imply stronger wind and higher waves in the most energetic part of the spectrum. This is supported by numerical experiments. However, a verification based on the comparison between operational model results and measured data suggests that the opposite is true. This leads to a keen analysis of the overall process, in particular on the role of the tail of the spectrum in modulating the wind input and the white-capping. We suggest that the relationship between white-capping and generation by wind is deeper and more implicative than presently generally assumed.

  1. Traveling-wave photodetector

    DOE Patents [OSTI]

    Hietala, V.M.; Vawter, G.A.

    1993-12-14T23:59:59.000Z

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  2. Surface wave interferometry 

    E-Print Network [OSTI]

    Halliday, David Fraser

    2009-01-01T23:59:59.000Z

    This thesis concerns the application of seismic interferometry to surface waves. Seismic interferometry is the process by which the wavefield between two recording locations is estimated, resulting in new recordings at ...

  3. Millimeter-wave sensors

    E-Print Network [OSTI]

    Kim, Seoktae

    2006-04-12T23:59:59.000Z

    New millimeter wave interferometric, multifunctional sensors have been studied for industrial sensing applications: displacement measurement, liquid-level gauging and velocimetry. Two types of configuration were investigated to implement the sensor...

  4. Pilot-wave hydrodynamics

    E-Print Network [OSTI]

    Bush, John W. M.

    Yves Couder, Emmanuel Fort, and coworkers recently discovered that a millimetric droplet sustained on the surface of a vibrating fluid bath may self-propel through a resonant interaction with its own wave field. This article ...

  5. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow, and wind direction on water depth, fetch, and the resulting wave-generated shear stresses. We identify four. Wiberg (2009), Importance of wind conditions, fetch, and water levels on wave-generated shear stresses

  6. LANDFORMS GENERATED BY WIND EROSION OF NAVAJO SANDSTONE OUTCROPS AT THE WAVE (COLORADO PLATEAU, UTAH / ARIZONA BORDER)

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    LANDFORMS GENERATED BY WIND EROSION OF NAVAJO SANDSTONE OUTCROPS AT THE WAVE (COLORADO PLATEAU that are undercut by wind abrasion. In the photos above and to the left, note the microbially darkened rock surface Bedforms: Direct Evidence for Eolian Abrasion Arizona Utah wind wind wind wind wind wind The Wave "The Wave

  7. Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure V. A. Fedotov,1,* P. L. Mladyonov,2

    E-Print Network [OSTI]

    Zheludev, Nikolay

    Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure V. A. Fedotov,1 of the effect would be reversed for an electromag- netic wave propagating in opposite directions. It is a polarization sensitive transmission effect asymmetric with respect to the direc- tion of wave propagation

  8. Geophys. J. Znt. (1991) 107, 531-543 Effects of point singularities on shear-wave propagation in

    E-Print Network [OSTI]

    Edinburgh, University of

    Geophys. J. Znt. (1991) 107, 531-543 Effects of point singularities on shear-wave propagation In most directions of propagation in anisotropic solids, seismic shear waves split in regular small to cause conventional cusps on the group-velocity wave surfaces. The effects of propagation near

  9. Coastal Dynamics 2013 A 3-D PHASE-AVERAGED MODEL FOR SHALLOW WATER FLOW WITH WAVES IN

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Coastal Dynamics 2013 1915 A 3-D PHASE-AVERAGED MODEL FOR SHALLOW WATER FLOW WITH WAVES in coastal vegetated waters with short waves. The model adopts the 3-D phase-averaged shallow water flow mesh in the vertical direction. The flow model is coupled with a spectral wave deformation model called

  10. Most fish have a forward undulatory swimming mechanism that involves a kinematic propulsive wave travelling down the

    E-Print Network [OSTI]

    D'Août, Kristiaan

    Most fish have a forward undulatory swimming mechanism that involves a kinematic propulsive wave backwards in a similar way. We compared the kinematics (wave speed, cycle frequency, amplitude, local in the direction opposite to that of swimming. We observe two major kinematic differences. First, the slope of wave

  11. Autoresonant Excitation of Diocotron Waves

    E-Print Network [OSTI]

    Wurtele, Jonathan

    of the wave, the pump and the wave will phase lock at very low wave amplitude. When the pump reachesAutoresonant Excitation of Diocotron Waves J. Fajans E. Gilson U.C. Berkeley L. Friedland Hebrew of phase with the oscillator, and the os- cillator's amplitude will decrease, eventually reaching zero

  12. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    SciTech Connect (OSTI)

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13T23:59:59.000Z

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  13. Direct-current-like Phase Space Manipulation Using Chirped Alternating Current Fields

    SciTech Connect (OSTI)

    P.F. Schmit and N.J. Fisch

    2010-02-01T23:59:59.000Z

    Waves in plasmas can accelerate particles that are resonant with the wave. A dc electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. Whereas wave-particle acceleration mechanisms have been widely discussed in the literature, this work discusses the direct analogy between wave acceleration and dc field acceleration in a particular parameter regime explored in previous works. Apart from the academic interest of this correspondence, there may be practical advantages in using waves to mimic dc electric fields, for example, in driving plasma current with high efficiency.

  14. An investigation of the relationships between mountain waves and clear air turbulence encountered by the XB-70 airplane in the stratosphere

    E-Print Network [OSTI]

    Incrocci, Thomas Paul

    1970-01-01T23:59:59.000Z

    . . . . . . . . , . . . ~ . ~ INTRODUCTION BACKGROUND TO THE PROBLEM Theory of Mountain Waves Mountain Waves and Clear Air Turbulence (CAT). Page iv v vi viii The Vertical Propagation and Transfer of Energy of Mountain Waves into the Stratosphere The Influence of Wind... and the prevailing wind directions favorable for the development of extensive mountain wave activity in the surrounding areas (Wind directions taken from Harrison and Sowa, 1966). 24 Nid-tropospheric conditions for 1200 GNT on 19 March 1966 28 Nid...

  15. Explicit dispersion relations for elastic waves in extremely deformed soft matter with application to nearly incompressible and auxetic materials

    E-Print Network [OSTI]

    Pavel Galich; Stephan Rudykh

    2014-12-31T23:59:59.000Z

    We analyze the propagation of elastic waves in soft materials subjected to finite deformations. We derive explicit dispersion relations, and apply these results to study elastic wave propagation in (i) nearly incompressible materials such as biological tissues and polymers, and (ii) negative Poisson's ratio or auxetic materials. We find that for nearly incompressible materials transverse wave velocities exhibit strong dependence on direction of propagation and initial strain state, whereas the longitudinal component is not affected significantly until extreme levels of deformations are attained. For highly compressible materials, we show that both pressure and shear wave velocities depend strongly on initial deformation and direction of propagation. When compression is applied, longitudinal wave velocity decreases in positive bulk modulus materials, and increases for negative bulk modulus materials; this is regardless the direction of wave prorogation. We demonstrate that finite deformations influence elastic wave propagation through combinations of induced effective compressibility and stiffness.

  16. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  17. Direct Loan Program (Connecticut)

    Broader source: Energy.gov [DOE]

    The Connecticut Development Authority’s Direct Loan Program provides direct senior and subordinated loans and mezzanine investments to companies creating or maintaining jobs. Up to $20,000 per job...

  18. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 251.1A, Directives System, dated 1-30-98.

  19. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1988-03-08T23:59:59.000Z

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  20. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1987-03-12T23:59:59.000Z

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  1. IR Hot Wave

    SciTech Connect (OSTI)

    Graham, T. B.

    2010-04-01T23:59:59.000Z

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  2. Adaptive multiconfigurational wave functions

    SciTech Connect (OSTI)

    Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)

    2014-03-28T23:59:59.000Z

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

  3. Directives Templates - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both theDirectives Review

  4. Modulational instability of Rossby and drift waves and generation of zonal jets

    E-Print Network [OSTI]

    Colm Connaughton; Balu Nadiga; Sergey Nazarenko; Brenda Quinn

    2009-05-14T23:59:59.000Z

    We study the modulational instability of geophysical Rossby and plasma drift waves within the Charney-Hasegawa-Mima (CHM) model both theoretically, using truncated (four-mode and three-mode) models, and numerically, using direct simulations of CHM equation in the Fourier space. The linear theory predicts instability for any amplitude of the primary wave. For strong primary waves the most unstable modes are perpendicular to the primary wave, which correspond to generation of a zonal flow if the primary wave is purely meridional. For weaker waves, the maximum growth occurs for off-zonal inclined modulations. For very weak primary waves the unstable waves are close to being in three-wave resonance with the primary wave. The nonlinear theory predicts that the zonal flows generated by the linear instability experience pinching into narrow zonal jets. Our numerical simulations confirm the theoretical predictions of the linear theory as well as of the nonlinear pinching. We find that, for strong primary waves, these narrow zonal jets further roll up into Karman-like vortex streets. On the other hand, for weak primary waves, the growth of the unstable mode reverses and the system oscillates between a dominant jet and a dominate primary wave. The 2D vortex streets appear to be more stable than purely 1D zonal jets, and their zonal-averaged speed can reach amplitudes much stronger than is allowed by the Rayleigh-Kuo instability criterion for the 1D case. We find that the truncation models work well for both the linear stage and and often even for the medium-term nonlinear behavior. In the long term, the system transitions to turbulence helped by the vortex-pairing instability (for strong waves) and by the resonant wave-wave interactions (for weak waves).

  5. Real-time Water Waves with Wave Particles

    E-Print Network [OSTI]

    Yuksel, Cem

    2010-10-12T23:59:59.000Z

    This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in our environment...

  6. Propagation of seismic waves through liquefied soils

    E-Print Network [OSTI]

    Taiebat, Mahdi; Jeremic, Boris; Dafalias, Yannis; Kaynia, Amir; Cheng, Zhao

    2010-01-01T23:59:59.000Z

    the mechanisms of wave propagation and ARTICLE IN PRESS M.Numerical analysis Wave propagation Earthquake Liquefactionenergy during any wave propagation. This paper summarizes

  7. California Small Hydropower and Ocean Wave Energy

    E-Print Network [OSTI]

    California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy............................................................................................................. 20 Wave Energy Conversion Technology

  8. mm-Wave Phase Shifters and Switches

    E-Print Network [OSTI]

    Adabi Firouzjaei, Ehsan

    2010-01-01T23:59:59.000Z

    4.1.1 Slow wave transmissioncombiners . . . . . . . . . . . 5.3 mm-Wave implementationfailed to predict current mm-wave design trend [1] . . . . .

  9. Heat Waves, Global Warming, and Mitigation

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01T23:59:59.000Z

    Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

  10. Sound Wave in Hot Dense Matter Created in Heavy Ion Collision

    E-Print Network [OSTI]

    X. Sun; Z. Yang

    2005-12-14T23:59:59.000Z

    A model to study the sound wave in hot dense matter created in heavy ion collisions by jet is proposed.The preliminary data of jet shape analysis of PHENIX Collaboration for all centralities and two directions is well explained in this model. Then the wavelength of the sound wave, the natural frequency of the hot dense matter and the speed of sound wave are estimated from the fit.

  11. Wave refraction and wave energy on Cayo Arenas

    E-Print Network [OSTI]

    Walsh, Donald Eugene

    1962-01-01T23:59:59.000Z

    WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...

  12. Dissipationless Directed Transport in Rocked Single-Band Quantum Dynamics

    E-Print Network [OSTI]

    Jiangbin Gong; Dario Poletti; Peter Hanggi

    2007-02-28T23:59:59.000Z

    Using matter waves that are trapped in a deep optical lattice, dissipationless directed transport is demonstrated to occur if the single-band quantum dynamics is periodically tilted on one half of the lattice by a monochromatic field. Most importantly, the directed transport can exist for almost all system parameters, even after averaged over a broad range of single-band initial states. The directed transport is theoretically explained within ac-scattering theory. Total reflection phenomena associated with the matter waves travelling from a tilting-free region to a tilted region are emphasized. The results are of relevance to ultracold physics and solid-state physics, and may lead to powerful means of selective, coherent, and directed transport of cold particles in optical lattices.

  13. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

    2013-01-26T23:59:59.000Z

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys������� that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

  14. Wave guide impedance matching method and apparatus

    DOE Patents [OSTI]

    Kronberg, James W. (Beech Island, SC)

    1990-01-01T23:59:59.000Z

    A technique for modifying the end portion of a wave guide, whether hollow or solid, carrying electromagnetic, acoustic or optical energy, to produce a gradual impedance change over the length of the end portion, comprising the cutting of longitudinal, V-shaped grooves that increase in width and depth from beginning of the end portion of the wave guide to the end of the guide so that, at the end of the guide, no guide material remains and no surfaces of the guide as modified are perpendicular to the direction of energy flow. For hollow guides, the grooves are cut beginning on the interior surface; for solid guides, the grooves are cut beginning on the exterior surface. One or more resistive, partially conductive or nonconductive sleeves can be placed over the exterior of the guide and through which the grooves are cut to smooth the transition to free space.

  15. Deflagration Wave Profiles

    SciTech Connect (OSTI)

    Menikoff, Ralph [Los Alamos National Laboratory

    2012-04-03T23:59:59.000Z

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  16. Water Waves and Integrability

    E-Print Network [OSTI]

    Rossen I. Ivanov

    2007-07-12T23:59:59.000Z

    The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

  17. Magnetohydrodynamic Shearing Waves

    E-Print Network [OSTI]

    Bryan M. Johnson

    2007-02-12T23:59:59.000Z

    I consider the nonaxisymmetric linear theory of a rotating, isothermal magnetohydrodynamic (MHD) shear flow. The analysis is performed in the shearing box, a local model of a thin disk, using a decomposition in terms of shearing waves, i.e., plane waves in a frame comoving with the shear. These waves do not have a definite frequency as in a normal mode decomposition, and numerical integration of a coupled set of amplitude equations is required to characterize their time dependence. Their generic time dependence, however, is oscillatory with slowly-varying frequency and amplitude, and one can construct accurate analytical solutions by applying the Wentzel-Kramers-Brillouin method to the full set of amplitude equations. The solutions have the following properties: 1) Their accuracy increases with wavenumber, so that most perturbations that fit within the disk are well-approximated as modes with time-dependent frequencies and amplitudes. 2) They can be broadly classed as incompressive and compressive perturbations, the former including the nonaxisymmetric extension of magnetorotationally unstable modes, and the latter being the extension of fast and slow modes to a differentially-rotating medium. 3) Wave action is conserved, implying that their energy varies with frequency. 4) Their shear stress is proportional to the slope of their frequency, so that they transport angular momentum outward (inward) when their frequency increases (decreases). The complete set of solutions constitutes a comprehensive linear test suite for numerical MHD algorithms that incorporate a background shear flow. I conclude with a brief discussion of possible astrophysical applications.

  18. Directional emission of stadium-shaped micro-lasers

    E-Print Network [OSTI]

    M. Lebental; J. -S. Lauret; J. Zyss; C. Schmit; E. Bogomolny

    2006-09-01T23:59:59.000Z

    The far-field emission of two dimensional (2D) stadium-shaped dielectric cavities is investigated. Micro-lasers with such shape present a highly directional emission. We provide experimental evidence of the dependance of the emission directionality on the shape of the stadium, in good agreement with ray numerical simulations. We develop a simple geometrical optics model which permits to explain analytically main observed features. Wave numerical calculations confirm the results.

  19. Preliminary Investigations on Uncertainty Analysis of Wind-Wave Predictions in Lake Michigan

    E-Print Network [OSTI]

    Nekouee, Navid

    2015-01-01T23:59:59.000Z

    With all the improvement in wave and hydrodynamics numerical models, the question rises in our mind that how the accuracy of the forcing functions and their input can affect the results. In this paper, a commonly used numerical third generation wave model, SWAN is applied to predict waves in Lake Michigan. Wind data were analyzed to determine wind variation frequency over Lake Michigan. Wave predictions uncertainty due to wind local effects were compared during a period where wind had a fairly constant speed and direction over the northern and southern basins. The study shows that despite model calibration in Lake Michigan area, the model deficiency arises from ignoring wind effects in small scales. Wave prediction also emphasizes that small scale turbulence in meteorological forces can increase error in predictions up to 35%. Wave frequency and coherence analysis showed that both models are able to reveal the time scale of the wave variation with same accuracy. Insufficient number of meteorological stations ...

  20. Analytical modeling of elastic-plastic wave behavior near grain boundaries in crystalline materials

    SciTech Connect (OSTI)

    Loomis, Eric [Los Alamos National Laboratory; Greenfield, Scott [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Swift, Damian [LLNL; Peralta, Pedro [ASU

    2009-01-01T23:59:59.000Z

    It is well known that changes in material properties across an interface will produce differences in the behavior of reflected and transmitted waves. This is seen frequently in planar impact experiments, and to a lesser extent, oblique impacts. In anisotropic elastic materials, wave behavior as a function of direction is usually accomplished with the aid of velocity surfaces, a graphical method for predicting wave scattering configurations. They have expanded this method to account for inelastic deformation due to crystal plasticity. The set of derived equations could not be put into a characteristic form, but instead led to an implicit problem. to overcome this difficulty an algorithm was developed to search the parameters space defined by a wave normal vector, particle velocity vector, and a wave speed. A solution was said to exist when a set from this parameter space satisfied the governing vector equation. Using this technique they can predict the anisotropic elastic-plastic velocity surfaces and grain boundary scattering configuration for crystalline materials undergoing deformation by slip. Specifically, they have calculated the configuration of scattered elastic-plastic waves in anisotropic NiAl for an incident compressional wave propagating along a <111> direction and contacting a 45 degree inclined grain boundary and found that large amplitude transmitted waves exist owing to the fact that the wave surface geometry forces it to propagate near the zero Schmid factor direction <100>.

  1. Direct observation of Rydberg-Rydberg transitions via CPmmW spectroscopy

    E-Print Network [OSTI]

    Zhou, Yan, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Rydberg-Rydberg transitions of BaF molecules have been directly observed in our lab. The key to the experimental success is our ability to combine two powerful and new technologies, Chirped-Pulse millimeter-Wave spectroscopy ...

  2. Temporally propagated optical pulses, and what they reveal about dispersion handling

    E-Print Network [OSTI]

    Kinsler, Paul

    2015-01-01T23:59:59.000Z

    I derive a temporally propagated uni-directional optical pulse equation valid in the few cycle limit. Temporal propagation is advantageous because it naturally preserves causality, unlike the competing spatially propagated models. The approach generates exact coupled bi-directional equations, which can be efficiently approximated down to a uni-directional form in cases where an optical pulse changes little over one optical cycle. It also also allows a direct term-to-term comparison of an exact bi-directional theory with an approximate uni-directional theory. Notably, temporal propagation handles dispersion in a different way, and this difference serves to highlight existing approximations inherent in spatially propagated treatments of dispersion. Accordingly, I emphasise the need for future work in clarifying the limitations of the dispersion conversion required by these types of approaches; since the only alternative in the few cycle limit may be to resort to the much more computationally intensive full Maxw...

  3. Wind-wave measurements in a shallow estuary: Trinity Bay, Texas

    E-Print Network [OSTI]

    Dupuis, Keith Wade

    2009-05-15T23:59:59.000Z

    Acoustic current meter data collected in the shallow ( 3m depth) Trinity Bay, (TB a sub-bay in Galveston Bay), TX, estuary were used to characterize locally generated windwaves. Significant wave heights, periods, and directions were estimated from...

  4. Geophysical Prospecting 31,265-292, 1983. REFLECTION OF ELASTIC WAVES FROM

    E-Print Network [OSTI]

    Santos, Juan

    Geophysical Prospecting 31,265-292, 1983. REFLECTION OF ELASTIC WAVES FROM PERIODICALLY STRATIFIED from Periodically Stratified Media with Interfacial Slip, Geophysical Prospecting 31 phase propagation in some other direction. INTRODUCTION Geophysical media often exhibit anisotropic

  5. CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland

    E-Print Network [OSTI]

    Haller, Merrick

    CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms at station 139. Keywords: wave energy, survivability, breaking waves, joint distribution, OWEC INTRODUCTION

  6. Directional intraoperative probe

    DOE Patents [OSTI]

    Majewski, Stanislaw; Popov, Vladimir; Loutts, Georgii

    2003-11-04T23:59:59.000Z

    An introperative surgical probe incorporating both a fiber optic imaging system and multi-element beta/gamma radiation directional indicating system is described.

  7. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-16T23:59:59.000Z

    To establish directives as the primary means to set, communicate, and institutionalize policies, requirements, responsibilities, and procedures for Departmental elements and contractors.

  8. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 251.1, which establishes requirements for the development, coordination, and sunset review of DOE directives.

  9. Cancellation of Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    Effective immediately the following Department of Energy directive is canceled. DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes, dated 04-14-2009.

  10. Electron heating using lower hybrid waves in the PLT tokamak

    SciTech Connect (OSTI)

    Bell, R.E.; Bernabei, S.; Cavallo, A.; Chu, T.K.; Luce, T.; Motley, R.; Ono, M.; Stevens, J.; von Goeler, S.

    1987-06-01T23:59:59.000Z

    Lower hybrid waves with a narrow high velocity wave spectrum have been used to achieve high central electron temperatures in a tokamak plasma. Waves with a frequency of 2.45 GHz launched by a 16-waveguide grill at a power level less than 600 kW were used to increase the central electron temperature of the PLT plasma from 2.2 keV to 5 keV. The magnitude of the temperature increase depends strongly on the phase difference between the waveguides and on the direction of the launched wave. A reduction in the central electron thermal diffusivity is associated with the peaked electron temperature profiles of lower hybrid current-driven plasmas. 16 refs.

  11. Weak and strong wave turbulence spectra for elastic thin plate

    E-Print Network [OSTI]

    Naoto Yokoyama; Masanori Takaoka

    2013-02-15T23:59:59.000Z

    Variety of statistically steady energy spectra in elastic wave turbulence have been reported in numerical simulations, experiments, and theoretical studies. Focusing on the energy levels of the system, we have performed direct numerical simulations according to the F\\"{o}ppl--von K\\'{a}rm\\'{a}n equation, and successfully reproduced the variability of the energy spectra by changing the magnitude of external force systematically. When the total energies in wave fields are small, the energy spectra are close to a statistically steady solution of the kinetic equation in the weak turbulence theory. On the other hand, in large-energy wave fields, another self-similar spectrum is found. Coexistence of the weakly nonlinear spectrum in large wavenumbers and the strongly nonlinear spectrum in small wavenumbers are also found in moderate energy wave fields.

  12. Non-principal surface waves in deformed incompressible materials

    E-Print Network [OSTI]

    Michel Destrade; Melanie Ottenio; Alexey V. Pichugin; Graham A. Rogerson

    2013-04-23T23:59:59.000Z

    The Stroh formalism is applied to the analysis of infinitesimal surface wave propagation in a statically, finitely and homogeneously deformed isotropic half-space. The free surface is assumed to coincide with one of the principal planes of the primary strain, but a propagating surface wave is not restricted to a principal direction. A variant of Taziev's technique [Sov. Phys. Acoust. 35 (1989) 535] is used to obtain an explicit expression of the secular equation for the surface wave speed, which possesses no restrictions on the form of the strain energy function. Albeit powerful, this method does not produce a unique solution and additional checks are necessary. However, a class of materials is presented for which an exact secular equation for the surface wave speed can be formulated. This class includes the well-known Mooney-Rivlin model. The main results are illustrated with several numerical examples.

  13. Doppler Effect of Nonlinear Waves and Superspirals in Oscillatory Media

    E-Print Network [OSTI]

    Lutz Brusch; Alessandro Torcini; Markus Baer

    2003-02-12T23:59:59.000Z

    Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example, where waves originate from a source exhibiting a back-and-forth movement in radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves (``superspiral''). Using the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonous growth or decay as well as saturation of these modulations away from the source depending on the perturbation frequency. Our findings allow a consistent interpretation of recent experimental observations concerning superspirals and their decay to spatio-temporal chaos.

  14. Intersections of S-branes with Waves and Monopoles

    E-Print Network [OSTI]

    Mert Besken; Nihat Sadik Deger

    2015-01-16T23:59:59.000Z

    We construct intersections of S-branes with waves and Kaluza-Klein monopoles. There are several possible ways to add a monopole to an S-brane solution similar to p-branes. On the other hand, one may add a wave only to the transverse space of an S-brane unlike a p-brane where wave resides on its worldvolume. The metric function of the wave is a harmonic function of the remaining transverse directions and an extra condition on integration constants is needed. We also show that it is not possible to add an S-brane to p-brane intersections whose near horizon geometry has an AdS part.

  15. Gas Explosion Characterization, Wave Propagation

    E-Print Network [OSTI]

    s & Dt^boooo^j Risø-R-525 Gas Explosion Characterization, Wave Propagation (Small-Scale Experiments EXPLOSION CHARACTERIZATION, WAVE PROPAGATION (Small-Scale Experiments) G.C. Larsen Abstract. A number characteristics 14 3.5. Characteristics of the primary pressure wave 21 3.6. Pressure propagation over a hard

  16. 2, 70177025, 2014 Freaque wave

    E-Print Network [OSTI]

    NHESSD 2, 7017­7025, 2014 Freaque wave occurrences in 2013 P. C. Liu Title Page Abstract to the corresponding final paper in NHESS if available. Brief Communication: Freaque wave occurrences in 2013 P. C. Liu­7025, 2014 Freaque wave occurrences in 2013 P. C. Liu Title Page Abstract Introduction Conclusions References

  17. EVOLUTION OF L HYBRID WAVES

    E-Print Network [OSTI]

    Karney, Charles

    is an envelope solitary wave. These solitary waves are not solitons. The occurrence of the constant phase pulses-state propagation of one of the two lower hybrid rays in a homogeneous considering the balance between thermal break up into two types of solitary waves, constant phase pulses or envelope pulses. e examine

  18. Nonreciprocal wave scattering on nonlinear string-coupled oscillators

    E-Print Network [OSTI]

    Stefano Lepri; Arkady Pikovsky

    2014-10-29T23:59:59.000Z

    We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: the same wave is transmitted differently in two directions. Periodic regimes of scattering are analysed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a "chaotic diode", where transmission is periodic in one direction and chaotic in the opposite one, is reported.

  19. Force-controlled absorption in a fully-nonlinear numerical wave tank

    SciTech Connect (OSTI)

    Spinneken, Johannes, E-mail: j.spinneken@imperial.ac.uk; Christou, Marios; Swan, Chris

    2014-09-01T23:59:59.000Z

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.

  20. Microstructural Design for Stress Wave Energy Management /

    E-Print Network [OSTI]

    Tehranian, Aref

    2013-01-01T23:59:59.000Z

    Nemat-Nasser, Stress-wave energy management through materialNasser, S. , 2010. Stress-wave energy management throughconstitute pressure wave energy and/or shear wave energy.

  1. Introduction Modeling of large ocean waves Propagation speed Coherent wavetrains Near-shore wave dynamics Conclusions Tsunamis and ocean waves

    E-Print Network [OSTI]

    Craig, Walter

    Introduction Modeling of large ocean waves Propagation speed Coherent wavetrains Near-shore wave waves #12;Introduction Modeling of large ocean waves Propagation speed Coherent wavetrains NearMaster University Tsunamis and ocean waves #12;Introduction Modeling of large ocean waves Propagation speed Coherent

  2. Method of detecting the direction of arcing faults on power distribution feeders

    E-Print Network [OSTI]

    Fernando, W. Anand Krisantha

    1992-01-01T23:59:59.000Z

    lines served by the same substation, resulting in false indications on the other feeders, in the case of an arcing fault. Two primary methods of detecting directionality of power system faults exist, impedance relaying and traveling wave relaying... is of significant magnitude to cause a current reversal in the case of a reverse fault [18]. 2. Traveling Wave Relaying The need for more accurate and fast detection of fault and direction of very high voltage transmission lines, was the base of invention...

  3. Title of dissertation: INERTIAL WAVES IN A LABORATORY MODEL

    E-Print Network [OSTI]

    Lathrop, Daniel P.

    ABSTRACT Title of dissertation: INERTIAL WAVES IN A LABORATORY MODEL OF THE EARTH'S CORE Santiago Andr´es Triana, Doctor of Philosophy, 2011 Dissertation directed by: Professor Daniel P. Lathrop by Santiago Andr´es Triana Dissertation submitted to the Faculty of the Graduate School of the University

  4. CHRISTOPHNIEMANN A new wave of start-ups

    E-Print Network [OSTI]

    Kammen, Daniel M.

    CHRISTOPHNIEMANN 20 INNOVATION A new wave of start-ups wants to install rooftop solar panels. Installing a rooftop ar- ray of solar panels large enough to produce all of the energy required by a building a pool of cash to pay for the solar panels. Directly or indirectly, homeowners buy the electricity

  5. Study Question: 7 May 2012 OC514 Waves Waveguide modes

    E-Print Network [OSTI]

    condition at t=0. Now consider propagation down the channel, in the x-direction. A disturbance at the center-dispersive waves have, in the presence of confining boundaries, a sort of dispersion. Plot the frequency, and discuss how a initially small scale disturbance will propagate. Choose just one value of n, so that we

  6. SECONDARY WAVES AND/OR THE 'REFLECTION' FROM AND 'TRANSMISSION' THROUGH A CORONAL HOLE OF AN EXTREME ULTRAVIOLET WAVE ASSOCIATED WITH THE 2011 FEBRUARY 15 X2.2 FLARE OBSERVED WITH SDO/AIA AND STEREO/EUVI

    SciTech Connect (OSTI)

    Olmedo, Oscar; Vourlidas, Angelos [Space Science Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Zhang Jie [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Cheng Xin, E-mail: oscar.olmedo.ctr@nrl.navy.mil [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2012-09-10T23:59:59.000Z

    For the first time, the kinematic evolution of a coronal wave over the entire solar surface is studied. Full Sun maps can be made by combining images from the Solar Terrestrial Relations Observatory satellites, Ahead and Behind, and the Solar Dynamics Observatory, thanks to the wide angular separation between them. We study the propagation of a coronal wave, also known as the 'Extreme Ultraviolet Imaging Telescope' wave, and its interaction with a coronal hole (CH) resulting in secondary waves and/or reflection and transmission. We explore the possibility of the wave obeying the law of reflection. In a detailed example, we find that a loop arcade at the CH boundary cascades and oscillates as a result of the extreme ultraviolet (EUV) wave passage and triggers a wave directed eastward that appears to have reflected. We find that the speed of this wave decelerates to an asymptotic value, which is less than half of the primary EUV wave speed. Thanks to the full Sun coverage we are able to determine that part of the primary wave is transmitted through the CH. This is the first observation of its kind. The kinematic measurements of the reflected and transmitted wave tracks are consistent with a fast-mode magnetohydrodynamic wave interpretation. Eventually, all wave tracks decelerate and disappear at a distance. A possible scenario of the whole process is that the wave is initially driven by the expanding coronal mass ejection and subsequently decouples from the driver and then propagates at the local fast-mode speed.

  7. Departmental Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-04-07T23:59:59.000Z

    The order establishes the directives system to be used for publishing permanent and temporary directives issued by DOE Headquarters and addressed to Headquarters and/or field elements. Chg 1 dated 3-14-85. Cancels DOE 1321.1A.

  8. C Wave Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy Information BurkinaButyl FuelC T Jump to:C Wave

  9. Nonlinear Hysteretic Torsional Waves

    E-Print Network [OSTI]

    J. Cabaret; P. Béquin; G. Theocharis; V. Andreev; V. E. Gusev; V. Tournat

    2015-01-09T23:59:59.000Z

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities, and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other type of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short term memory as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  10. Nonlinear Hysteretic Torsional Waves

    E-Print Network [OSTI]

    Cabaret, J; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V

    2015-01-01T23:59:59.000Z

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities, and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other type of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short term memory as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control de...

  11. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    SciTech Connect (OSTI)

    Shen Yuandeng; Liu Yu; Zhao Ruijuan; Tian Zhanjun [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China); Su Jiangtao [Key Laboratory of Solar Activity, Chinese Academy of Sciences, Beijing 100012 (China); Li Hui [Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China); Ichimoto, Kiyoshi; Shibata, Kazunari, E-mail: ydshen@ynao.ac.cn [Kwasan and Hida Observatories, Kyoto University, Kyoto 6078471 (Japan)

    2013-08-20T23:59:59.000Z

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, it transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.

  12. DNA waves and water

    E-Print Network [OSTI]

    L. Montagnier; J. Aissa; E. Del Giudice; C. Lavallee; A. Tedeschi; G. Vitiello

    2010-12-23T23:59:59.000Z

    Some bacterial and viral DNA sequences have been found to induce low frequency electromagnetic waves in high aqueous dilutions. This phenomenon appears to be triggered by the ambient electromagnetic background of very low frequency. We discuss this phenomenon in the framework of quantum field theory. A scheme able to account for the observations is proposed. The reported phenomenon could allow to develop highly sensitive detection systems for chronic bacterial and viral infections.

  13. Directives - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab box

  14. Directives Quarterly Updates - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  15. Directives Tools - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederalDirections Basic Energy SciencesDirections


  16. Modulational instability of Rossby and drift waves and generation of zonal jets

    E-Print Network [OSTI]

    Connaughton, Colm; Nazarenko, Sergey; Quinn, Brenda

    2009-01-01T23:59:59.000Z

    We study the modulational instability of geophysical Rossby and plasma drift waves within the Charney-Hasegawa-Mima (CHM) model both theoretically, using truncated (four-mode and three-mode) models, and numerically, using direct simulations of CHM equation in the Fourier space. The linear theory predicts instability for any amplitude of the primary wave. For strong primary waves the most unstable modes are perpendicular to the primary wave, which correspond to generation of a zonal flow if the primary wave is purely meridional. For weaker waves, the maximum growth occurs for off-zonal inclined modulations. For very weak primary waves the unstable waves are close to being in three-wave resonance with the primary wave. The nonlinear theory predicts that the zonal flows generated by the linear instability experience pinching into narrow zonal jets. Our numerical simulations confirm the theoretical predictions of the linear theory as well as of the nonlinear pinching. We find that, for strong primary waves, these...

  17. Concentration of near-inertial waves in anticyclones: an energetic argument

    E-Print Network [OSTI]

    Danioux, Eric; Bühler, Oliver

    2015-01-01T23:59:59.000Z

    An overlooked conservation law for near-inertial waves propagating in a background flow provides a new perspective on the concentration of these waves in regions of anticyclonic vorticity. The conservation law implies that this concentration is a direct consequence of the decrease in spatial scales and associated increase in potential energy experienced by an initially homogeneous wave field. Scaling arguments and numerical simulations of a reduced-gravity model of mixed-layer near-inertial waves confirm this interpretation and elucidate the influence of the strength of the background flow relative to the dispersion.

  18. Gravitational Wave Sources from New Physics

    E-Print Network [OSTI]

    Craig J. Hogan

    2006-08-25T23:59:59.000Z

    Forthcoming advances in direct gravitational wave detection from kilohertz to nanohertz frequencies have unique capabilities to detect signatures from or set meaningful constraints on a wide range of new cosmological phenomena and new fundamental physics. A brief survey is presented of the post-inflationary gravitational radiation backgrounds predicted in cosmologies that include intense new classical sources such as first-order phase transitions, late-ending inflation, and dynamically active mesoscopic extra dimensions. LISA will provide the most sensitive direct probes of such phenomena near TeV energies or Terascale. LISA will also deeply probe the broadband background, and possibly bursts, from loops of cosmic superstrings predicted to form in current models of brane inflation.

  19. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer

    2009-06-04T23:59:59.000Z

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  20. Direct Discharge Permit (Vermont)

    Broader source: Energy.gov [DOE]

    A direct discharge permit is required if a project involves the discharge of pollutants to state waters. For generation purposes, this involves the withdrawal of surface water for cooling purposes...

  1. Guided wave propagation in 0.67Pb,,Mg1/3Nb2/3...O30.33PbTiO3 single crystal plate poled along 001c

    E-Print Network [OSTI]

    Cao, Wenwu

    Guided wave propagation in 0.67Pb,,Mg1/3Nb2/3...O3­0.33PbTiO3 single crystal plate poled along 001c relations of Lamb waves and shear horizontal SH waves propagating in the 100 and 110 directions of 0.67Pb Mg, respectively, for waves propagating along 100 and 110 directions. These limiting velocities

  2. Refrigerant directly cooled capacitors

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

    2007-09-11T23:59:59.000Z

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  3. Art Directable Tornadoes

    E-Print Network [OSTI]

    Dwivedi, Ravindra

    2011-08-08T23:59:59.000Z

    of the Twisters? [Bond 1996], ?Tornado? [Nosseck 1996] and ?Hancock? [Berg 2008]. 5 (a) (b) Figure 4: Simulated tornadoes in "The Day After Tomorrow". (a) Twin tornadoes [Emmerich 2004]. (b) Tornado with a huge funnel [Emmerich 2004...]. The film "The Day after Tomorrow" [Emmerich 2004], had a variety of tornadoes with different shapes and sizes and the shots required a lot of art direct-ability to make it visually appealing and believable (Figure 4). In 2009, an animated movie ?Cloudy...

  4. Nondestructive testing using stress waves: wave propagation in layered media

    E-Print Network [OSTI]

    Ortega, Jose Alberto

    2013-02-22T23:59:59.000Z

    NONDESTRUCTIVE TESTING USING STRESS WAVES: WAVE PROPAGATION IN LAYERED MEDIA A Senior Honors Thesis by JOSE ALBERTO ORTEGA Submitted to the Office of Honors Program & Academic Scholarships Texas A&M University in partial fulfillment... of the requirement of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS April 2002 Group: Engineering NONDESTRUCTIVE TESTING USI WAVE PROPAGATION IN LA A Senior Honors The ~pe -C JOSE ALBERTO ORTI /CI Submitted to the Office of Honors Program k. Academic...

  5. Hydroelastic response of a floating runway to cnoidal waves

    SciTech Connect (OSTI)

    Ertekin, R. C., E-mail: ertekin@hawaii.edu [Department of Ocean and Resources Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Xia, Dingwu [Engineering Services, British Petroleum GoM, Houston, Texas 77079 (United States)] [Engineering Services, British Petroleum GoM, Houston, Texas 77079 (United States)

    2014-02-15T23:59:59.000Z

    The hydroelastic response of mat-type Very Large Floating Structures (VLFSs) to severe sea conditions, such as tsunamis and hurricanes, must be assessed for safety and survivability. An efficient and robust nonlinear hydroelastic model is required to predict accurately the motion of and the dynamic loads on a VLFS due to such large waves. We develop a nonlinear theory to predict the hydroelastic response of a VLFS in the presence of cnoidal waves and compare the predictions with the linear theory that is also developed here. This hydroelastic problem is formulated by directly coupling the structure with the fluid, by use of the Level I Green-Naghdi theory for the fluid motion and the Kirchhoff thin plate theory for the runway. The coupled fluid structure system, together with the appropriate jump conditions are solved in two-dimensions by the finite-difference method. The numerical model is used to study the nonlinear response of a VLFS to storm waves which are modeled by use of the cnoidal-wave theory. Parametric studies show that the nonlinearity of the waves is very important in accurately predicting the dynamic bending moment and wave run-up on a VLFS in high seas.

  6. Seismic waves in rocks with fluids and fractures

    SciTech Connect (OSTI)

    Berryman, J.G.

    2007-05-14T23:59:59.000Z

    Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracture parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.

  7. Wave Packet under Continuous Measurement via Bohmian Mechanics

    E-Print Network [OSTI]

    Antonio B. Nassar

    2010-01-25T23:59:59.000Z

    A new quantum mechanical description of the dynamics of wave packet under continuous measurement is formulated via Bohmian mechanics. The solution to this equation is found through a wave packet approach which establishes a direct correlation between a classical variable with a quantum variable describing the dynamics of the center of mass and the width of the wave packet. The approach presented in this paper gives a comparatively clearer picture than approaches using restrited path integrals and master equation approaches. This work shows how the extremely irregular character of classical chaos can be reconciled with the smooth and wavelike nature of phenomena on the atomic scale. It is demonstrated that a wave packet under continuous quantum measurement displays both chaotic and non-chaotic features. The Lyapunov characteristic exponents for the trajectories of classical particle and the quantum wave packet center of mass are calculated and their chaoticities are demonstrated to be about the same. Nonetheless, the width of the wave packet exhibits a non-chaotic behavior and allows for the possibility to beat the standard quantum limit by means of transient, contractive states.

  8. Elements of Radio Waves

    E-Print Network [OSTI]

    Frank G. Borg; Ismo Hakala; Jukka Määttälä

    2007-12-24T23:59:59.000Z

    We present a summary of the basic properties of the radio wave generation, propagation and reception, with a special attention to the gigahertz bandwidth region which is of interest for wireless sensor networks. We also present some measurement results which use the so-called RSSI indicator in order to track how the field strength varies with position and distance of the transceivers. We hope the paper may be useful to anyone who looks for a quick review of the fundamentals of electromagnetic theory with application to antennas.

  9. Spin waves in the (

    SciTech Connect (OSTI)

    Lipscombe, O. J. [University of Tennessee, Knoxville (UTK); Chen, G. F. [The Institute of Physics, Chinese Academy of Sciences; Fang, Chen [Purdue University; Perring, T. G. [ISIS Facility, Rutherford Appleton Laboratory; Abernathy, Douglas L [ORNL; Christianson, Andrew D [ORNL; Egami, Takeshi [ORNL; Wang, Nanlin [The Institute of Physics, Chinese Academy of Sciences; Hu, Jiangping [Purdue University and Chinese Academy of Sciences; Dai, Pengcheng [University of Tennessee, Knoxville (UTK)

    2011-01-01T23:59:59.000Z

    We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

  10. Wave-driven

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTURE LOOKSof Energy Wave

  11. Seismic isolation of Advanced LIGO gravitational waves detectors: Review of strategy, instrumentation, and performance

    E-Print Network [OSTI]

    Matichard, F; Mittleman, R; Mason, K; Kissel, J; McIver, J; Abbott, B; Abbott, R; Abbott, S; Allwine, E; Barnum, S; Birch, J; Biscans, S; Celerier, C; Clark, D; Coyne, D; DeBra, D; DeRosa, R; Evans, M; Foley, S; Fritschel, P; Giaime, J A; Gray, C; Grabeel, G; Hanson, J; Hardham, C; Hillard, M; Hua, W; Kucharczyk, C; Landry, M; Roux, A Le; Lhuillier, V; Macleod, D; Macinnis, M; Mitchell, R; Reilly, B O; Ottaway, D; Paris, H; Pele, A; Puma, M; Radkins, H; Ramet, C; Robinson, M; Ruet, L; Sarin, P; Shoemaker, D; Stein, A; Thomas, J; Vargas, M; Venkateswara, K; Warner, J; Wen, S

    2015-01-01T23:59:59.000Z

    Isolating ground-based interferometric gravitational wave observatories from environmental disturbances is one of the great challenges of the advanced detector era. In order to directly observe gravitational waves, the detector components and test masses must be highly inertially decoupled from the ground motion not only to sense the faint strain of space-time induced by gravitational waves, but also to maintain the resonance of the very sensitive 4 km interferometers. This article presents the seismic isolation instrumentation and strategy developed for Advanced LIGO interferometers. It reviews over a decade of research on active isolation in the context of gravitational wave detection, and presents the performance recently achieved with the Advanced LIGO observatory. Lastly, it discusses prospects for future developments in active seismic isolation and the anticipated benefits to astrophysical gravitational wave searches. Beyond gravitational wave research, the goal of this article is to provide detailed is...

  12. Metal-insulator Transition by Holographic Charge Density Waves

    E-Print Network [OSTI]

    Yi Ling; Chao Niu; Jianpin Wu; Zhuoyu Xian; Hongbao Zhang

    2014-08-06T23:59:59.000Z

    We construct a gravity dual for charge density waves (CDW) in which the translational symmetry along one spatial direction is spontaneously broken. Our linear perturbation calculation on the gravity side produces the frequency dependence of the optical conductivity, which exhibits the two familiar features of charge density waves, namely the pinned collective mode and gapped single-particle excitation. These two features indicate that our gravity dual also provides a new mechanism to implement the metal to insulator phase transition by CDW, which is further supported by the fact that d.c. conductivity decreases with the decreased temperature below the critical temperature.

  13. Volumetric measurements of a spatially growing dust acoustic wave

    SciTech Connect (OSTI)

    Williams, Jeremiah D. [Physics Department, Wittenberg University, Springfield, Ohio 45504 (United States)

    2012-11-15T23:59:59.000Z

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  14. Detecting Beyond-Einstein Polarizations of Continuous Gravitational Waves

    E-Print Network [OSTI]

    Maximiliano Isi; Alan J. Weinstein; Carver Mead; Matthew Pitkin

    2015-03-30T23:59:59.000Z

    The direct detection of gravitational waves with the next generation detectors, like Advanced LIGO, provides the opportunity to measure deviations from the predictions of General Relativity. One such departure would be the existence of alternative polarizations. To measure these, we study a single detector measurement of a continuous gravitational wave from a triaxial pulsar source. We develop methods to detect signals of any polarization content and distinguish between them in a model independent way. We present LIGO S5 sensitivity estimates for 115 pulsars.

  15. Detecting Beyond-Einstein Polarizations of Continuous Gravitational Waves

    E-Print Network [OSTI]

    Isi, Maximiliano; Mead, Carver; Pitkin, Matthew

    2015-01-01T23:59:59.000Z

    The direct detection of gravitational waves with the next generation detectors, like Advanced LIGO, provides the opportunity to measure deviations from the predictions of General Relativity. One such departure would be the existence of alternative polarizations. To measure these, we study a single detector measurement of a continuous gravitational wave from a triaxial pulsar source. We develop methods to detect signals of any polarization content and distinguish between them in a model independent way. We present LIGO S5 sensitivity estimates for 115 pulsars.

  16. Direct-to-digital holography reduction of reference hologram noise and fourier space smearing

    DOE Patents [OSTI]

    Voelkl, Edgar

    2006-06-27T23:59:59.000Z

    Systems and methods are described for reduction of reference hologram noise and reduction of Fourier space smearing, especially in the context of direct-to-digital holography (off-axis interferometry). A method of reducing reference hologram noise includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference image waves; and transforming the corresponding plurality of reference image waves into a reduced noise reference image wave. A method of reducing smearing in Fourier space includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference complex image waves; transforming the corresponding plurality of reference image waves into a reduced noise reference complex image wave; recording a hologram of an object; processing the hologram of the object into an object complex image wave; and dividing the complex image wave of the object by the reduced noise reference complex image wave to obtain a reduced smearing object complex image wave.

  17. Directional spherical multipole wavelets

    SciTech Connect (OSTI)

    Hayn, Michael; Holschneider, Matthias [Institute for Mathematics, University Potsdam, Am Neuen Palais 10, 144 69 Potsdam (Germany)

    2009-07-15T23:59:59.000Z

    We construct a family of admissible analysis reconstruction pairs of wavelet families on the sphere. The construction is an extension of the isotropic Poisson wavelets. Similar to those, the directional wavelets allow a finite expansion in terms of off-center multipoles. Unlike the isotropic case, the directional wavelets are not a tight frame. However, at small scales, they almost behave like a tight frame. We give an explicit formula for the pseudodifferential operator given by the combination analysis-synthesis with respect to these wavelets. The Euclidean limit is shown to exist and an explicit formula is given. This allows us to quantify the asymptotic angular resolution of the wavelets.

  18. Wave Evolution On the Evolution of Curvelets

    E-Print Network [OSTI]

    Smith, Hart F.

    Curvelets Wave Evolution On the Evolution of Curvelets by the Wave Equation Hart F. Smith of Curvelets by the Wave Equation #12;Curvelets Wave Evolution Curvelets and the Second Dyadic Decomposition Curvelets A curvelet frame {} is a wave packet frame on L2(R2) based on second dyadic decomposition. f

  19. Wave Mechanics and the Fifth Dimension

    E-Print Network [OSTI]

    Paul S. Wesson; James M. Overduin

    2013-01-28T23:59:59.000Z

    Replacing 4D Minkowski space by 5D canonical space leads to a clearer derivation of the main features of wave mechanics, including the wave function and the velocity of de Broglie waves. Recent tests of wave-particle duality could be adapted to investigate whether de Broglie waves are basically 4D or 5D in nature.

  20. Directional gamma detector

    DOE Patents [OSTI]

    LeVert, Francis E. (Downers Grove, Knoxville, TN); Cox, Samson A. (Downers Grove, IL)

    1981-01-01T23:59:59.000Z

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  1. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-02-24T23:59:59.000Z

    This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

  2. Directed Diffusion Fabio Silva

    E-Print Network [OSTI]

    Heidemann, John

    nodes can cache, or transform data, and may direct interests based on previously cached data (Section 3 University of Southern California Los Angeles, CA, USA 90089 ¶ Computer Science Department University of California, Los Angeles Los Angeles, CA, USA 90095 {fabio,johnh,govindan,estrin}@isi.edu February 10, 2004 1

  3. Turnitin Moodle Direct Integration

    E-Print Network [OSTI]

    de Lijser, Peter

    Turnitin Moodle® Direct Integration Instructor User Manual Turnitin Moodle Integration Manual: 1. Turnitin Moodle Integration Manual: 2 Contents Instructor User Manual 1 Creating a Turnitin Assignment 3 Accessing GradeMark® 15 Glossary 16 #12;Instructor User Manual Turnitin Moodle Integration Manual: 3

  4. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch CAPT Daniel M. Harper, M.P.H. A Diverse Environmental Public Health Workforce to Meet the Diverse Environmental Health Challenges on environmental health and to build part nerships in the profession. In pursuit of these goals, we will feature

  5. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch CAPT John Sarisky, R.S., M.P.H. Developing Environmental Public Health Leadership Editor's note: NEHA strives to provide up to of these goals, we will feature a column from the Environmental Health Services Branch (EHSB) of the Centers

  6. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch Daneen Farrow Collier, M.S.P.H. Editor's note: NEHA strives to pro vide up-to-date and relevant informa tion on environmental health the Environmental Health Services Branch (EHSB) of the Centers for Disease Control and Pre vention (CDC) in every

  7. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch Brian Hubbard, M.P.H. Editor the Environmental Health Services Branch (EHSB) of the Centers for Disease Con trol and Prevention (CDC) in every environmental health programs and professionals to antici pate, identify, and respond to adverse envi ronmental

  8. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-12T23:59:59.000Z

    The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

  9. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-12T23:59:59.000Z

    The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

  10. Bandwidth broadening and asymmetric softening of collective spin waves in magnonic crystals

    SciTech Connect (OSTI)

    Montoncello, F., E-mail: montoncello@fe.infn.it; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, CNISM-University of Ferrara, Ferrara, Emilia-Romagna I-44100 (Italy)

    2014-06-16T23:59:59.000Z

    We investigate the dependence on the applied field of the frequency/wavevector dispersion relations of collective spin waves in arrays of dots, close to a magnetic transition. In particular, we focus on the low frequency “soft” modes in three different cases: end modes in the transition between two different saturated states in ellipses, fundamental mode in the saturated-to-vortex transition in disks, and gyrotropic mode in the vortex-to-saturated transition in disks. Noteworthy, the spin waves with nonzero Bloch wavevector along the direction of the applied field happen to soften earlier than spin waves with a Bloch wavevector along different directions, and this feature is responsible for an asymmetric broadening of the bandwidth along the different lattice directions. This is particularly useful in magnonic/spin-logic device research, if different binary digits are associated to modes with the same cell function but different propagation directions.

  11. Colliding axisymmetric pp-waves

    E-Print Network [OSTI]

    B. V. Ivanov

    1997-10-21T23:59:59.000Z

    An exact solution is found describing the collision of axisymmetric pp-waves with M=0. They are impulsive in character and their coordinate singularities become point curvature singularities at the boundaries of the interaction region. The solution is conformally flat. Concrete examples are given, involving an ultrarelativistic black hole against a burst of pure radiation or two colliding beam- like waves.

  12. Spiral and concentric waves in active media with soft and hard excitation

    SciTech Connect (OSTI)

    Malomed, B.A.; Rudenko, A.N.

    1988-09-01T23:59:59.000Z

    An approximation method is presented for describing spiral waves with the generalized Ginzburg-Landau equation, which for weak overcriticality is a universal model of active media with soft excitation of self-oscillation. A comparison with numerical results indicates the this method, which is based on direct matching of asymptotic expansions, is valid for large and small values of the radial variable, and yields satisfactory values for the asymptotic radial wave number of a spiral wave for values of the dispersion coefficients that are not too small. Spiral waves are described with a simple model of an active medium with hard excitation. This description is based on the rigorous method of asymptotic expansion matching for small dispersion coefficients and on the direct matching method for the general case. Both methods are used to show that, in contrast to spiral waves, the asymptotic wave number for concentric waves is an arbitrary parameter, and the group velocity is directed from the periphery to the center.

  13. Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical wave tank

    E-Print Network [OSTI]

    Lynett, Patrick

    Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical wave tank S. Ryu and the resulting kinematics. In the present paper, the variation of wave amplitude and wave length and minimize wave reflections from the down- stream wall. Nonlinear wave kinematics as a result of nonlinear

  14. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing

    SciTech Connect (OSTI)

    Greve, David W.; Chin, Tao-Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-06-01T23:59:59.000Z

    Langasite surface acoustic wave devices can be used to implement harshenvironment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  15. A dimension-breaking phenomenon for water waves with weak surface tension

    E-Print Network [OSTI]

    Mark D. Groves; Shu-Ming Sun; Erik Wahlén

    2014-11-10T23:59:59.000Z

    It is well known that the water-wave problem with weak surface tension has small-amplitude line solitary-wave solutions which to leading order are described by the nonlinear Schr\\"odinger equation. The present paper contains an existence theory for three-dimensional periodically modulated solitary-wave solutions which have a solitary-wave profile in the direction of propagation and are periodic in the transverse direction; they emanate from the line solitary waves in a dimension-breaking bifurcation. In addition, it is shown that the line solitary waves are linearly unstable to long-wavelength transverse perturbations. The key to these results is a formulation of the water wave problem as an evolutionary system in which the transverse horizontal variable plays the role of time, a careful study of the purely imaginary spectrum of the operator obtained by linearising the evolutionary system at a line solitary wave, and an application of an infinite-dimensional version of the classical Lyapunov centre theorem.

  16. 2011 Interference -1 INTERFERENCE OF SOUND WAVES

    E-Print Network [OSTI]

    Glashausser, Charles

    2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: · To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. · To observe interference phenomena with ultrasonic sound waves. APPARATUS: Oscilloscope, function generator, ultrasonic

  17. Electrostatic-plasma-wave energy flux

    E-Print Network [OSTI]

    Amendt, P.; Rostoker, N.

    1984-01-01T23:59:59.000Z

    would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of

  18. Walking Wave as a Model of Particle

    E-Print Network [OSTI]

    A. V. Goryunov

    2012-05-02T23:59:59.000Z

    The concept of walking wave is introduced from classical relativistic positions. One- and three-dimensional walking waves considered with their wave equations and dispersion equations. It is shown that wave characteristics (de Broglie's and Compton's wavelengths) and corpuscular characteristics (energy-momentum vector and the rest mass) of particle may be expressed through parameters of walking wave. By that the new view on a number concepts of physic related with wave-particle duality is suggested.

  19. Sandia National Laboratories: Wave Energy Resource Characterization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eECEnergyComputational Modeling & SimulationWave Energy Resource Characterization at US Test Sites Wave Energy Resource Characterization at US Test Sites Sandia Report Presents...

  20. Future directions for QCD

    SciTech Connect (OSTI)

    Bjorken, J.D.

    1996-10-01T23:59:59.000Z

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.

  1. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04T23:59:59.000Z

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  2. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  3. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  4. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  5. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  6. Fast wave current drive in DIII-D

    SciTech Connect (OSTI)

    Petty, C.C.; Callis, R.W.; Chiu, S.C.; deGrassie, J.S.; Forest, C.B.; Freeman, R.L.; Gohil, P.; Harvey, R.W.; Ikezi, H.; Lin-Liu, Y.-R. [and others

    1995-02-01T23:59:59.000Z

    The non-inductive current drive from fast Alfven waves launched by a directional four-element antenna was measured in the DIII-D tokamak. The fast wave frequency (60 MHz) was eight times the deuterium cyclotron frequency at the plasma center. An array of rf pickup loops at several locations around the torus was used to verify the directivity of the four-element antenna. Complete non-inductive current drive was achieved using a combination of fast wave current drive (FWCD) and electron cyclotron current drive (ECCD) in discharges for which the total plasma current was inductively ramped down from 400 to 170 kA. For discharges with steady plasma current, up to 110 kA of FWCD was inferred from an analysis of the loop voltage, with a maximum non-inductive current (FWCD, ECCD, and bootstrap) of 195 out of 310 kA. The FWCD efficiency increased linearly with central electron temperature. For low current discharges, the FWCD efficiency was degraded due to incomplete fast wave damping. The experimental FWCD was found to agree with predictions from the CURRAY ray-tracing code only when a parasitic loss of 4% per pass was included in the modeling along with multiple pass damping.

  7. Directional drilling sub

    SciTech Connect (OSTI)

    Benoit, L.F.

    1980-09-02T23:59:59.000Z

    A directional drilling ''sub'' provides a shifting end portion which allows the sub to be rotated from a first in-line axially straight orientation with the drill string to a second angled or ''bent'' position which second position is normally associated with conventional bent ''subs'' which are permanently structured in the bent position. The device shifts from the first (In-line) position to the second (Bent) position upon the application of torsional force thereto which torsional force can be applied, for example, by the actuation of a ''turbodrill'' (Normally attached thereto in operation). The device can be manufactured or machined to provide varying angles to the sub in its bent position to satisfy differing directional drilling situations. The axially aligned first position allows easy entry of the drill string, sub , and turbodrill into the well hole, while the second bend position is used to commence directional drilling. The sub will return gradually to its original axially aligned position when the device is withdrawn from the wellhole, as such position is the path of minimum resistance for the withdrawing drill string and torsion is not present to hold the sub in the bent position.

  8. Measurements of parallel electron velocity distributions using whistler wave absorption

    SciTech Connect (OSTI)

    Thuecks, D. J.; Skiff, F.; Kletzing, C. A. [Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, Iowa 52242 (United States)

    2012-08-15T23:59:59.000Z

    We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense ({omega}{sub pe} > {omega}{sub ce}). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field. The whistler wave frequency was swept from somewhat below and up to the electron cyclotron frequency {omega}{sub ce}. As the frequency was swept, the wave was resonantly absorbed by the part of the electron phase space density which was Doppler shifted into resonance according to the relation {omega}-k{sub ||v||} = {omega}{sub ce}. The measured absorption is directly related to the reduced parallel electron distribution function integrated along the wave trajectory. The background theory and initial results from this diagnostic are presented here. Though this diagnostic is best suited to detect tail populations of the parallel electron distribution function, these first results show that this diagnostic is also rather successful in measuring the bulk plasma density and temperature both during the plasma discharge and into the afterglow.

  9. Wave runup on cylinders subject to deep water random waves

    E-Print Network [OSTI]

    Indrebo, Ann Kristin

    2001-01-01T23:59:59.000Z

    The accurate prediction of wave runup on deepwater offshore platform columns is of great importance for design engineers. Although linear predictive models are commonly used in the design and analysis process, many of the important effects...

  10. Wave Energy Resource Analysis for Use in Wave Energy Conversion

    E-Print Network [OSTI]

    Pastor, J.; Liu, Y.; Dou, Y.

    2014-01-01T23:59:59.000Z

    the naturally available and technically recoverable resource in a given location. The methodology was developed by the EPRI and uses a modified Gamma spectrum that interoperates hindcast sea state parameter data produced by NOAA's Wave watch III. This Gamma...

  11. Monopole gravitational waves from relativistic fireballs driving gamma-ray bursts

    E-Print Network [OSTI]

    M. Kutschera

    2003-09-16T23:59:59.000Z

    Einstein's general relativity predicts that pressure, in general stresses, play a similar role to energy density in generating gravity. The source of gravitational field, the active gravitational mass density, sometimes referred to as Whittaker's mass density, is not conserved, hence its changes can propagate as monopole gravitational waves. Such waves can be generated only by astrophysical sources with varying gravitational mass. Here we show that relativistic fireballs, considered in modelling gamma-ray burst phenomena, are likely to radiate monopole gravitational waves from high-pressure plasma with varying Whittaker's mass. Also, ejection of a significant amount of initial mass-energy of the progenitor contributes to the monopole gravitational radiation. We identify monopole waves with h^11+h^22 waves of Eddington's classification which propagate (in the z-direction) together with the energy carried by massless fields. We show that the monopole waves satisfy Einstein's equations, with a common stress-energy tensor for massless fields. The polarization mode of monopole waves is Phi_22, i.e. these are perpendicular waves which induce changes of the radius of a circle of test particles only (breathing mode). The astrophysical importance of monopole gravitational waves is discussed.

  12. Design of Optimal Dynamic Analyzers: Mathematical Aspects of Wave Pattern Recognition

    E-Print Network [OSTI]

    V. P. Belavkin; V. P. Maslov

    2004-12-03T23:59:59.000Z

    We give a review of the most important results on optimal tomography as mathematical wave-pattern recognition theory emerged in the 70's in connection with the problems of optimal estimation and hypothesis testing in quantum theory. In quantum theory such problems are sometimes referred as the problem of optimal measurement of an unknown quantum state, and are the main subject of the emerging mathematical theory of quantum statistics. We develop the results of quantum pattern recognition theory, most of which belong to VPB, further into the direction of wave, rather than particle statistical estimation and hypothesis testing theory, with the aim to include not only quantum matter waves but also classical wave patterns like optical and acoustic waves. We conclude that Hilbert space and operator methods developed in quantum theory are equally useful in the classical wave theory, as soon as the possible observations are restricted to only intensity distributions of waves, i.e. when the wave states are not the allowed observables, as they are not the observables of individual particles in the quantum theory. We show that all characteristic attributes of quantum theory such as complementarity, entanglement or Heisenberg uncertainty relations are also attributes of the generalized wave pattern recognition theory.

  13. Unsteady self-sustained detonation waves in flake aluminum dust/air mixtures

    E-Print Network [OSTI]

    Liu, Qingming; Zhang, Yunming; Li, Shuzhuan

    2015-01-01T23:59:59.000Z

    Self-sustained detonation waves in flake aluminum dust/air mixtures have been studied in a tube of diameter 199 mm and length 32.4 m. A pressure sensor array of 32 sensors mounted around certain circumferences of the tube was used to measure the shape of the detonation front in the circumferential direction and pressure histories of the detonation wave. A two-head spin detonation wave front was observed for the aluminum dust/air mixtures, and the cellular structure resulting from the spinning movement of the triple point was analyzed. The variations in velocity and overpressure of the detonation wave with propagation distance in a cell were studied. The interactions of waves in triple-point configurations were analyzed and the flow-field parameters were calculated. Three types of triple-point configuration exist in the wave front of the detonation wave of an aluminum dust/air mixture. Both strong and weak transverse waves exist in the unstable self-sustained detonation wave.

  14. Backreacting p-wave Superconductors

    E-Print Network [OSTI]

    Raúl E. Arias; Ignacio Salazar Landea

    2013-01-28T23:59:59.000Z

    We study the gravitational backreaction of the non-abelian gauge field on the gravity dual to a 2+1 p-wave superconductor. We observe that as in the $p+ip$ system a second order phase transition exists between a superconducting and a normal state. Moreover, we conclude that, below the phase transition temperature $T_c$ the lowest free energy is achieved by the p-wave solution. In order to probe the solution, we compute the holographic entanglement entropy. For both $p$ and $p+ip$ systems the entanglement entropy satisfies an area law. For any given entangling surface, the p-wave superconductor has lower entanglement entropy.

  15. Internal energy relaxation in shock wave structure

    SciTech Connect (OSTI)

    Josyula, Eswar, E-mail: Eswar.Josyula@us.af.mil; Suchyta, Casimir J. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)] [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Boyd, Iain D. [University of Michigan, Ann Arbor, Michigan 48109 (United States)] [University of Michigan, Ann Arbor, Michigan 48109 (United States); Vedula, Prakash [University of Oklahoma, Norman, Oklahoma 73019 (United States)] [University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2013-12-15T23:59:59.000Z

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

  16. Plasma waves driven by gravitational waves in an expanding universe

    E-Print Network [OSTI]

    D. B. Papadopoulos

    2002-05-22T23:59:59.000Z

    In a Friedmann-Robertson-Walker (FRW) cosmological model with zero spatial curvature, we consider the interaction of the gravitational waves with the plasma in the presence of a weak magnetic field. Using the relativistic hydromagnetic equations it is verified that large amplitude magnetosonic waves are excited, assuming that both, the gravitational field and the weak magnetic field do not break the homogeneity and isotropy of the considered FRW spacetime.

  17. Steady wave drift force on basic objects of symmetry

    E-Print Network [OSTI]

    Gupta, Anupam

    2009-05-15T23:59:59.000Z

    -handed coordinate system located at the still water level which can be expressed as () ( ) {} cosh ,,, exp cos sin 2cosh + =+?? ? ? ? kz d gH x yzt i i k x y t kd ? ??? ? (12) where g is the gravitational acceleration, H is wave height and here... the x direction is 12 () () () cosh ,,, cos exp cos sin 2co cos + =? + ?? ? ? ? = kz d gkH uxyzt ikx y t kd ik ? ??? ? ?? (13) and along the y direction is () ( ) () cosh ,,, sin exp cos sin 2cos sin + =? + ?? ? ? ? = kz d gk...

  18. Second-order diffraction forces on an array of vertical cylinders in bichromatic bidirectional waves

    SciTech Connect (OSTI)

    Vazquez, J.H. [Lamar Univ., Beaumont, TX (United States). Dept. of Civil Engineering; Williams, A.N. [Univ. of Houston, TX (United States). Dept. of Civil and Environmental Engineering

    1995-02-01T23:59:59.000Z

    A complete second-order solution is presented for the hydrodynamic forces due to the action of bichromatic, bidirectional waves on an array of bottom-mounted, surface-piercing cylinders of arbitrary cross section in water of uniform finite depth. Based on the constant structural cross section, the first-order problem is solved utilizing a two-dimensional Green function approach, while an assisting radiation potential approach is used to obtain the hydrodynamic loads due to the second-order potential. Results are presented which illustrate the influence of wave directionality on the second-order sum and difference frequency hydrodynamic forces on a two-cylinder array. It is found that wave directionality may have a significant influence on the second-order hydrodynamic forces on these arrays and that the assumption of unidirectional waves does not always lead to conservative estimates of the second-order loading.

  19. The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves

    SciTech Connect (OSTI)

    Jamil, M. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Department of Physics, Crescent Model School Shadman, Lahore 54000 (Pakistan); Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salimullah, M. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)

    2010-07-15T23:59:59.000Z

    The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.

  20. DSRP, direct sulfur production

    SciTech Connect (OSTI)

    McMichael, W.J.; Agarwal, S.K.; Jang, B.L.; Howe, G.B. [Research Triangle Institute, Research Triangle Park, NC (United States); Chen, D.H.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

    1993-06-01T23:59:59.000Z

    The objective of this work is to demonstrate on a bench-scale the Direct Sulfur Recovery Process (DSRP) for up to 99 percent or higher recovery of sulfur (as elemental sulfur) from regeneration off-gases and coal-gas produced in integrated gasification combined cycle (IGCC) power generating systems. Fundamental kinetic and thermodynamic studies will also be conducted to enable development of a model to predict DSRP performance in large-scale reactors and to shed light on the mechanism of DSRP reactions. The ultimate goal of the project is to advance the DSRP technology to the point where industry is willing to support its further development.

  1. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-03-18T23:59:59.000Z

    The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

  2. Direct Federal Financial

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanySFoot)YearD e s cDirect

  3. Directions & Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel pricesDiesel28,CollapseDirections &

  4. Directives Points of Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab

  5. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab Management's

  6. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab

  7. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  8. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  9. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  10. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  11. Directions_Crossroads_Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederalDirections Basic Energy SciencesDirections


  12. Numerical Analysis for Controlling the Eigenmode Formation of Alfven Waves in the GAMMA 10 Tandem Mirror

    SciTech Connect (OSTI)

    Yamaguchi, Y. [Plasma Research Center, University of Tsukuba (Japan); Ichimura, M. [Plasma Research Center, University of Tsukuba (Japan); Higaki, H. [Plasma Research Center, University of Tsukuba (Japan); Kakimoto, S. [Plasma Research Center, University of Tsukuba (Japan); Ide, K. [Plasma Research Center, University of Tsukuba (Japan); Inoue, D. [Plasma Research Center, University of Tsukuba (Japan); Nagai, H. [Plasma Research Center, University of Tsukuba (Japan); Nakagome, K. [Plasma Research Center, University of Tsukuba (Japan); Fukuyama, A. [Kyoto University (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

    2005-01-15T23:59:59.000Z

    The numerical analysis is performed with two dimensional wave code for controlling the eigenmode formation of fast Alfven waves in the GAMMA 10 central cell. The plasma production by fast waves depends on the wave excitation in the plasma. Eigenmodes are strongly formed when the boundary conditions in the axial and radial directions are satisfied. As the optimum density for the formation of eigenmode exists discretely, the density is clamped at the value where the eigenmode is strongly formed. For the higher density plasma production, the eigenmodes must be continuously excited as the density increases. It is found that the almost continuous excitation of eigenmodes can be realized by using two waves with different frequencies at the same time.

  13. Highly Resolved Self-Excited Density Waves in a Complex Plasma

    SciTech Connect (OSTI)

    Schwabe, M.; Rubin-Zuzic, M.; Zhdanov, S.; Thomas, H. M.; Morfill, G. E. [Max-Planck-Institut fuer extraterrestrische Physik, D-85740 Garching (Germany)

    2007-08-31T23:59:59.000Z

    Experimental results on self-excited density waves in a complex plasma are presented. An argon plasma is produced in a capacitively coupled rf discharge at a low power and gas pressure. A cloud of microparticles is subjected to effective gravity in the range of 1-4 g by thermophoresis. The cloud is stretched horizontally (width/height {approx_equal}45 mm/8 mm). The critical pressure for the onset of the waves increases with the temperature gradient. The waves are propagating in the direction of the ion drift. The wave frequency, phase velocity, and wavelength are measured, and particle migrations affected by the waves are analyzed at a time scale of 1 ms/frame and a subpixel space resolution.

  14. Simple Scalings for Various Regimes of Electron Acceleration in Surface Plasma Waves

    E-Print Network [OSTI]

    Riconda, C; Vialis, T; Grech, M

    2015-01-01T23:59:59.000Z

    Different electron acceleration regimes in the evanescent field of a surface plasma wave are studied by considering the interaction of a test electron with the high-frequency electromagnetic field of a surface wave. The non-relativistic and relativistic limits are investigated. Simple scalings are found demonstrating the possibility to achieve an efficient conversion of the surface wave field energy into electron kinetic energy. This mechanism of electron acceleration can provide a high-frequency pulsed source of relativistic electrons with a well defined energy. In the relativistic limit, the most energetic electrons are obtained in the so-called electromagnetic regime for surface waves. In this regime the particles are accelerated to velocities larger than the wave phase velocity, mainly in the direction parallel to the plasma-vacuum interface.

  15. Beating the spin-down limit on gravitational wave emission from the Crab pulsar

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; B. Abbott; R. Abbott; R. Adhikari; P. Ajith; B. Allen; G. Allen; R. Amin; S. B. Anderson; W. G. Anderson; M. A. Arain; M. Araya; H. Armandula; P. Armor; Y. Aso; S. Aston; P. Aufmuth; C. Aulbert; S. Babak; S. Ballmer; H. Bantilan; B. C. Barish; C. Barker; D. Barker; B. Barr; P. Barriga; M. A. Barton; M. Bastarrika; K. Bayer; J. Betzwieser; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; R. Biswas; E. Black; K. Blackburn; L. Blackburn; D. Blair; B. Bland; T. P. Bodiya; L. Bogue; R. Bork; V. Boschi; S. Bose; P. R. Brady; V. B. Braginsky; J. E. Brau; M. Brinkmann; A. Brooks; D. A. Brown; G. Brunet; A. Bullington; A. Buonanno; O. Burmeister; R. L. Byer; L. Cadonati; G. Cagnoli; J. B. Camp; J. Cannizzo; K. Cannon; J. Cao; L. Cardenas; T. Casebolt; G. Castaldi; C. Cepeda; E. Chalkley; P. Charlton; S. Chatterji; S. Chelkowski; Y. Chen; N. Christensen; D. Clark; J. Clark; T. Cokelaer; R. Conte; D. Cook; T. Corbitt; D. Coyne; J. D. E. Creighton; A. Cumming; L. Cunningham; R. M. Cutler; J. Dalrymple; K. Danzmann; G. Davies; D. DeBra; J. Degallaix; M. Degree; V. Dergachev; S. Desai; R. DeSalvo; S. Dhurandhar; M. Díaz; J. Dickson; A. Dietz; F. Donovan; K. L. Dooley; E. E. Doomes; R. W. P. Drever; I. Duke; J. -C. Dumas; R. J. Dupuis; J. G. Dwyer; C. Echols; A. Effler; P. Ehrens; E. Espinoza; T. Etzel; T. Evans; S. Fairhurst; Y. Fan; D. Fazi; H. Fehrmann; M. M. Fejer; L. S. Finn; K. Flasch; N. Fotopoulos; A. Freise; R. Frey; T. Fricke; P. Fritschel; V. V. Frolov; M. Fyffe; J. Garofoli; I. Gholami; J. A. Giaime; S. Giampanis; K. D. Giardina; K. Goda; E. Goetz; L. Goggin; G. González; S. Gossler; R. Gouaty; A. Grant; S. Gras; C. Gray; M. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; F. Grimaldi; R. Grosso; H. Grote; S. Grunewald; M. Guenther; E. K. Gustafson; R. Gustafson; B. Hage; J. M. Hallam; D. Hammer; C. Hanna; J. Hanson; J. Harms; G. Harry; E. Harstad; K. Hayama; T. Hayler; J. Heefner; I. S. Heng; M. Hennessy; A. Heptonstall; M. Hewitson; S. Hild; E. Hirose; D. Hoak; D. Hosken; J. Hough; S. H. Huttner; D. Ingram; M. Ito; A. Ivanov; B. Johnson; W. W. Johnson; D. I. Jones; G. Jones; R. Jones; L. Ju; P. Kalmus; V. Kalogera; S. Kamat; J. Kanner; D. Kasprzyk; E. Katsavounidis; K. Kawabe; S. Kawamura; F. Kawazoe; W. Kells; D. G. Keppel; F. Ya. Khalili; R. Khan; E. Khazanov; C. Kim; P. King; J. S. Kissel; S. Klimenko; K. Kokeyama; V. Kondrashov; R. K. Kopparapu; D. Kozak; I. Kozhevatov; B. Krishnan; P. Kwee; P. K. Lam; M. Landry; M. M. Lang; B. Lantz; A. Lazzarini; M. Lei; N. Leindecker; V. Leonhardt; I. Leonor; K. Libbrecht; H. Lin; P. Lindquist; N. A. Lockerbie; D. Lodhia; M. Lormand; P. Lu; M. Lubinski; A. Lucianetti; H. Lück; B. Machenschalk; M. MacInnis; M. Mageswaran; K. Mailand; V. Mandic; S. Márka; Z. Márka; A. Markosyan; J. Markowitz; E. Maros; I. Martin; R. M. Martin; J. N. Marx; K. Mason; F. Matichard; L. Matone; R. Matzner; N. Mavalvala; R. McCarthy; D. E. McClelland; S. C. McGuire; M. McHugh; G. McIntyre; G. McIvor; D. McKechan; K. McKenzie; T. Meier; A. Melissinos; G. Mendell; R. A. Mercer; S. Meshkov; C. J. Messenger; D. Meyers; J. Miller; J. Minelli; S. Mitra; V. P. Mitrofanov; G. Mitselmakher; R. Mittleman; O. Miyakawa; B. Moe; S. Mohanty; G. Moreno; K. Mossavi; C. MowLowry; G. Mueller; S. Mukherjee; H. Mukhopadhyay; H. Müller-Ebhardt; J. Munch; P. Murray; E. Myers; J. Myers; T. Nash; J. Nelson; G. Newton; A. Nishizawa; K. Numata; J. O'Dell; G. Ogin; B. O'Reilly; R. O'Shaughnessy; D. J. Ottaway; R. S. Ottens; H. Overmier; B. J. Owen; Y. Pan; C. Pankow; M. A. Papa; V. Parameshwaraiah; P. Patel; M. Pedraza; S. Penn; A. Perreca; T. Petrie; I. M. Pinto; M. Pitkin; H. J. Pletsch; M. V. Plissi; F. Postiglione; M. Principe; R. Prix; V. Quetschke; F. Raab; D. S. Rabeling; H. Radkins; N. Rainer; M. Rakhmanov; M. Ramsunder; H. Rehbein; S. Reid; D. H. Reitze; R. Riesen; K. Riles; B. Rivera; N. A. Robertson; C. Robinson; E. L. Robinson; S. Roddy; A. Rodriguez; A. M. Rogan; J. Rollins; J. D. Romano; J. Romie; R. Route; S. Rowan; A. Rüdiger; L. Ruet; P. Russell; K. Ryan; S. Sakata; M. Samidi; L. Sancho de la Jordana; V. Sandberg; V. Sannibale; S. Saraf; P. Sarin; B. S. Sathyaprakash; S. Sato; P. R. Saulson; R. Savage; P. Savov; S. W. Schediwy; R. Schilling; R. Schnabel; R. Schofield; B. F. Schutz; P. Schwinberg; S. M. Scott; A. C. Searle; B. Sears; F. Seifert; D. Sellers; A. S. Sengupta; P. Shawhan; D. H. Shoemaker; A. Sibley; X. Siemens; D. Sigg; S. Sinha; A. M. Sintes; B. J. J. Slagmolen; J. Slutsky; J. R. Smith; M. R. Smith; N. D. Smith; K. Somiya; B. Sorazu; L. C. Stein; A. Stochino; R. Stone; K. A. Strain; D. M. Strom; A. Stuver; T. Z. Summerscales; K. -X. Sun; M. Sung; P. J. Sutton; H. Takahashi; D. B. Tanner; R. Taylor; R. Taylor; J. Thacker; K. A. Thorne; K. S. Thorne; A. Thüring; K. V. Tokmakov; C. Torres; C. Torrie; G. Traylor; M. Trias; W. Tyler

    2008-07-22T23:59:59.000Z

    We present direct upper limits on gravitational wave emission from the Crab pulsar using data from the first nine months of the fifth science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). These limits are based on two searches. In the first we assume that the gravitational wave emission follows the observed radio timing, giving an upper limit on gravitational wave emission that beats indirect limits inferred from the spin-down and braking index of the pulsar and the energetics of the nebula. In the second we allow for a small mismatch between the gravitational and radio signal frequencies and interpret our results in the context of two possible gravitational wave emission mechanisms.

  16. Wave Propagation at Oblique Shocks: How Did Tycho Get Its Stripes?

    E-Print Network [OSTI]

    Laming, J Martin

    2015-01-01T23:59:59.000Z

    We describe a new model for the "stripes" of synchrotron radiation seen in the remnant of Tycho's supernova. In our picture, cosmic rays streaming ahead of the forward shock generate parallel (with respect to the local magnetic field direction) circularly polarized Alfven waves that are almost free of dissipation, and due to being circularly polarized exhibit no spatial variation of magnetic field strength. Following interaction with the SNR shock with nonzero obliquity, these parallel waves become obliquely propagating, due the the wave refraction (different in principle for the different plane wave components), and dissipation sets in. The magnetosonic polarization decays faster, due to transit time damping, leaving only the Alfven mode. This surviving mode now exhibits a spatial variation of the magnetic field, leading to local maxima and minima in the synchrotron emission, i.e. the stripes. We attribute the initial wave generation to the Bell instability, which in contrast to the resonant generation of up...

  17. Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma

    SciTech Connect (OSTI)

    Jian Liu and Hong Qin

    2011-11-07T23:59:59.000Z

    The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.

  18. Wave Energy Extraction from buoys

    E-Print Network [OSTI]

    Garnaud, Xavier

    2009-01-01T23:59:59.000Z

    Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

  19. Jet quenching in shock waves

    E-Print Network [OSTI]

    Michael Spillane; Alexander Stoffers; Ismail Zahed

    2011-10-23T23:59:59.000Z

    We study the propagation of an ultrarelativistic light quark jet inside a shock wave using the holographic principle. The maximum stopping distance and its dependency on the energy of the jet is obtained.

  20. Two-photon wave mechanics

    E-Print Network [OSTI]

    Brian J. Smith; M. G. Raymer

    2007-02-21T23:59:59.000Z

    The position-representation wave function for multi-photon states and its equation of motion are introduced. A major strength of the theory is that it describes the complete evolution (including polarization and entanglement) of multi-photon states propagating through inhomogeneous media. As a demonstration of the two-photon wave function's use, we show how two photons in an orbital-angular-momentum entangled state decohere upon propagation through a turbulent atmosphere.

  1. Wave function as geometric entity

    E-Print Network [OSTI]

    B. I. Lev

    2011-02-10T23:59:59.000Z

    A new approach to the geometrization of the electron theory is proposed. The particle wave function is represented by a geometric entity, i.e., Clifford number, with the translation rules possessing the structure of Dirac equation for any manifold. A solution of this equation is obtained in terms of geometric treatment. Interference of electrons whose wave functions are represented by geometric entities is considered. New experiments concerning the geometric nature of electrons are proposed.

  2. Remote direct memory access

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11T23:59:59.000Z

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  3. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  4. Steady water waves with multiple critical layers

    E-Print Network [OSTI]

    Mats Ehrnström; Joachim Escher; Erik Wahlén

    2011-04-01T23:59:59.000Z

    We construct small-amplitude periodic water waves with multiple critical layers. In addition to waves with arbitrarily many critical layers and a single crest in each period, two-dimensional sets of waves with several crests and troughs in each period are found. The setting is that of steady two-dimensional finite-depth gravity water waves with vorticity.

  5. Three dimensional electrostatic solitary waves in a dense magnetoplasma with relativistically degenerate electrons

    SciTech Connect (OSTI)

    Ata-ur-Rahman,; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan) [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Masood, W. [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan) [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); Eliasson, B. [Physics Department, University of Strathclyde, Glasgow G4 0NG, Scotland (United Kingdom)] [Physics Department, University of Strathclyde, Glasgow G4 0NG, Scotland (United Kingdom)

    2013-09-15T23:59:59.000Z

    In this paper, small but finite amplitude electrostatic solitary waves in a relativistic degenerate magnetoplasma, consisting of relativistically degenerate electrons and non-degenerate cold ions, are investigated. The Zakharov-Kuznetsov equation is derived employing the reductive perturbation technique and its solitary wave solution is analyzed. It is shown that only compressive electrostatic solitary structures can propagate in such a degenerate plasma system. The effects of plasma number density, ion cyclotron frequency, and direction cosines on the profiles of ion acoustic solitary waves are investigated and discussed at length. The relevance of the present investigation vis-a-vis pulsating white dwarfs is also pointed out.

  6. Theory of Optical Leaky-Wave Antenna Integrated in a Ring Resonator for Radiation Control

    E-Print Network [OSTI]

    Guclu, Caner; Capolino, Filippo

    2015-01-01T23:59:59.000Z

    The integration of a leaky-wave antenna with a ring resonator is presented using analytical guided wave models. The device consists of a ring resonator fed by a directional coupler, where the ring resonator path includes a leaky-wave antenna segment. The resonator integration provides two main advantages: the high-quality factor ensures effective control of radiation intensity by controlling the resonance conditions and the efficient radiation from a leaky-wave antenna even when its length is much smaller than the propagation length of the leaky wave. We devise an analytical model of the guided wave propagation along a directional coupler and the ring resonator path including the antenna and non-radiating segments. The trade-offs regarding the quality factor of resonance and the antenna efficiency of such a design is reported in terms of the coupler parameters, leaky-wave constant and radiation length. Finally a CMOS-compatible OLWA design suitable for the ring resonator integration is designed where Silicon ...

  7. Physica D 159 (2001) 3557 Wave group dynamics in weakly nonlinear long-wave models

    E-Print Network [OSTI]

    Pelinovsky, Dmitry

    Physica D 159 (2001) 35­57 Wave group dynamics in weakly nonlinear long-wave models Roger Grimshawa Communicated by A.C. Newell Abstract The dynamics of wave groups is studied for long waves, using the framework reserved. Keywords: Wave group dynamics; Korteweg­de Vries equation; Nonlinear Schr¨odinger equation 1

  8. Gravity Wave Turbulence in Wave Tanks: Space and Time Statistics Sergei Lukaschuk,1,* Sergey Nazarenko,2

    E-Print Network [OSTI]

    Nazarenko, Sergey

    Gravity Wave Turbulence in Wave Tanks: Space and Time Statistics Sergei Lukaschuk,1,* Sergey the first simultaneous space-time measurements for gravity wave turbulence in a large laboratory flume. We found that the slopes of k and ! wave spectra depend on wave intensity. This cannot be explained by any

  9. Site directed recombination

    DOE Patents [OSTI]

    Jurka, Jerzy W. (Los Altos, CA)

    1997-01-01T23:59:59.000Z

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  10. Conclusions and Policy Directions,

    SciTech Connect (OSTI)

    Wilbanks, Thomas J [ORNL; Romero-Lankao, Paty [National Center for Atmospheric Research (NCAR); Gnatz, P [National Center for Atmospheric Research (NCAR)

    2011-01-01T23:59:59.000Z

    This chapter briefly revisits the constraints and opportunities of mitigation and adaptation, and highlights and the multiple linkages, synergies and trade-offs between mitigation, adaptation and urban development. The chapter then presents future policy directions, focusing on local, national and international principles and policies for supporting and enhancing urban responses to climate change. In summary, policy directions for linking climate change responses with urban development offer abundant opportunities; but they call for new philosophies about how to think about the future and how to connect different roles of different levels of government and different parts of the urban community. In many cases, this implies changes in how urban areas operate - fostering closer coordination between local governments and local economic institutions, and building new connections between central power structures and parts of the population who have often been kept outside of the circle of consultation and discourse. The difficulties involved in changing deeply set patterns of interaction and decision-making in urban areas should not be underestimated. Because it is so difficult, successful experiences need to be identified, described and widely publicized as models for others. However, where this challenge is met, it is likely not only to increase opportunities and reduce threats to urban development in profoundly important ways, but to make the urban area a more effective socio-political entity, in general - a better city in how it works day to day and how it solves a myriad of problems as they emerge - far beyond climate change connections alone. It is in this sense that climate change responses can be catalysts for socially inclusive, economically productive and environmentally friendly urban development, helping to pioneer new patterns of stakeholder communication and participation.

  11. Propagation Plane waves -High order Modes

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Propagation · Plane waves - High order Modes y x a One wave: p(x,y,t)=p0 cos(k y)e-jk x e j t vy(y,t)= 0 ; y=0,a xy } ky = n a Propagation · Plane waves - High order Modes x n a p(x,y,t)=pn cos( y + - +- + + - +- + - + + +- - - (m,n) #12;4 Propagation · Circular duct ­ Helical waves (spiralling waves) kc=m/a kz k

  12. Propagation Plane waves -High order Modes

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Propagation · Plane waves - High order Modes y x a ky = n a One wave: p(x,y,t)=p0 cos(k y)e-jk x e j t vy(y,t)= 0 ; y=0,a xy } Propagation · Plane waves - High order Modes x n a p(x,y,t)=pn cos( y;4 Propagation · Circular duct ­ Helical waves (spiralling waves) kc=m/a kz kH Projection: Propagation #12

  13. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    SciTech Connect (OSTI)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Rousseau, Olivier [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otani, YoshiChika [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-10-28T23:59:59.000Z

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  14. Projected Constraints on Lorentz-Violating Gravity with Gravitational Waves

    E-Print Network [OSTI]

    Devin Hansen; Nicolas Yunes; Kent Yagi

    2014-12-12T23:59:59.000Z

    Gravitational waves are excellent tools to probe the foundations of General Relativity in the strongly dynamical and non-linear regime. One such foundation is Lorentz symmetry, which can be broken in the gravitational sector by the existence of a preferred time direction, and thus, a preferred frame at each spacetime point. This leads to a modification in the orbital decay rate of binary systems, and also in the generation and chirping of their associated gravitational waves. We here study whether waves emitted in the late, quasi-circular inspiral of non-spinning, neutron star binaries can place competitive constraints on two proxies of gravitational Lorentz-violation: Einstein-\\AE{}ther theory and khronometric gravity. We model the waves in the small-coupling (or decoupling) limit and in the post-Newtonian approximation, by perturbatively solving the field equations in small deformations from General Relativity and in the small-velocity/weak-gravity approximation. We assume a gravitational wave consistent with General Relativity has been detected with second- and third-generation, ground-based detectors, and with the proposed space-based mission, DECIGO, with and without coincident electromagnetic counterparts. Without a counterpart, a detection consistent with General Relativity of neutron star binaries can only place competitive constraints on gravitational Lorentz violation when using future, third-generation or space-based instruments. On the other hand, a single counterpart is enough to place constraints that are 10 orders of magnitude more stringent than current binary pulsar bounds, even when using second-generation detectors. This is because Lorentz violation forces the group velocity of gravitational waves to be different from that of light, and this difference can be very accurately constrained with coincident observations.

  15. Solution of the inverse problem in spherical gravitational wave detectors using a model with independent bars

    SciTech Connect (OSTI)

    Lenzi, Cesar H. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Campo Montenegro, Sao Jose dos Campos, SP, 12228-900 (Brazil); Departamento de Fisica, Universidade de Coimbra, Rua Larga, Coimbra, 3004-516 (Portugal); Magalhaes, Nadja S. [Centro Federal de Educacao de Tecnologica de Sao Paulo, R. Dr. Pedro Vicente 625, Sao Paulo, SP 01109-010 (Brazil); Marinho, Rubens M. Jr.; Araujo, Helmo A. B. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Campo Montenegro, Sao Jose dos Campos, SP, 12228-900 (Brazil); Costa, Cesar A.; Aguiar, Odylio D. [Departamento de Astrofisica, Instituto Nacional de Pesquisas Espaciais, Avenida dos Astronautas 1.758, Sao Jose dos Campos, SP, 12227-010 (Brazil)

    2008-09-15T23:59:59.000Z

    The direct detection of gravitational waves will provide valuable astrophysical information about many celestial objects. The SCHENBERG has already undergone its first test run. It is expected to have its first scientific run soon. In this work a new data analysis approach is presented, called the method of independent bars, which can be used with SCHENBERG's data. We test this method through the simulation of the detection of gravitational waves. With this method we find the source's direction without the need to have all six transducers operational. Also, we show that the method is a generalization of another one, already described in the literature, known as the mode channels method.

  16. Wave-Turbulence Interactions in a Breaking Mountain Wave Craig Epifanio and Tingting Qian

    E-Print Network [OSTI]

    #12;Dissipation of Mean Wave Energy · Mean wave energy E is just the total energy (kinetic + available · The dissipation of mean wave energy is caused by the turbulent momentum fluxes--specifically, by their tendency

  17. Energy-momentum relation for solitary waves of relativistic wave equations

    E-Print Network [OSTI]

    T. V. Dudnikova; A. I. Komech; H. Spohn

    2005-08-23T23:59:59.000Z

    Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.

  18. Experimental studies of irregular water wave component interactions with comparisons to the hybrid wave model

    E-Print Network [OSTI]

    Longridge, Jonathon Kent

    1993-01-01T23:59:59.000Z

    Waves in the oceans pose challenging problems to offshore structural design because they arc irregular and can be highly nonlinear. Although these irregular waves can be viewed as the summation of many linear wave components of different...

  19. Multiple direction vibration fixture

    DOE Patents [OSTI]

    Cericola, Fred (Albuquerque, NM); Doggett, James W. (Albuquerque, NM); Ernest, Terry L. (Albuquerque, NM); Priddy, Tommy G. (Rockville, MD)

    1991-01-01T23:59:59.000Z

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  20. Modulation and kinematics of mechanically-generated short gravity waves riding on long waves

    E-Print Network [OSTI]

    Spell, Charles Anthony

    1992-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE December 1992 Major Subject: Ocean Engineering MODULATION AND KINEMATICS OF MECHANICALLY- GENERATED SHORT GRAVITY WAVES RIDING ON LONG WAVES A Thesis by C~S ANTHONY SPELL Approved as to style and content by: Jun Zhang... fundamental nonlinear wave interaction occurring in an irregular wave field. The objectives of the present study are now stated: ~ Generate a dual-component wave formed from the interaction of two inde- pendently propagating monochromatic wave trains in a...

  1. Surface wave chemical detector using optical radiation

    DOE Patents [OSTI]

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17T23:59:59.000Z

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  2. Global coherence of dust density waves

    SciTech Connect (OSTI)

    Killer, Carsten; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2014-06-15T23:59:59.000Z

    The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

  3. B8 Page 1 B8. Using CMS-Wave

    E-Print Network [OSTI]

    US Army Corps of Engineers

    B8 ­ Page 1 B8. Using CMS-Wave The most recent CMS-Wave code developed is Version 3.2. Several new capabilities and advanced features in this version include: · Full-plane wind-generation of waves · Automatic wave run-up calculation · Infra-gravity wave calculation · Nonlinear wave-wave interaction · Muddy

  4. Direct and Inverse Cascades in the Wind-Driven Sea

    E-Print Network [OSTI]

    Zakharov, Vladimir E

    2015-01-01T23:59:59.000Z

    We offer a new form for the S(nl) term in the Hasselmann kinetic equation for squared wave amplitudes of wind-driven gravity wave. This form of S(nl) makes possible to rewrite in differential form the conservation laws for energy, momentum, and wave action, and introduce their fluxes by a natural way. We show that the stationary kinetic equation has a family of exact Kolmogorov-type solutions governed by the fluxes of motion constants: wave action, energy, and momentum. The simple "local" model for S(nl) term that is equivalent to the "diffusion approximation" is studied in details. In this case, Kolmogorov spectra are found in the explicit form. We show that a general solution of the stationary kinetic equation behind the spectral peak is described by the Kolmogorov-type solution with frequency-dependent fluxes. The domains of "inverse cascade" and "direct cascade" can be separated by natural way. The spectrum in the universal domain is close to $\\omega^{-4}$.

  5. Excitation of intense acoustic waves in hexagonal crystals

    SciTech Connect (OSTI)

    Alshits, V. I., E-mail: alshits@ns.crys.ras.ru; Bessonov, D. A.; Lyubimov, V. N. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-11-15T23:59:59.000Z

    Resonant excitation of an intense elastic wave using reflection of a pump wave from a free surface of hexagonal crystal is described. A resonance arises in the case of specially chosen propagation geometry where the reflecting boundary slightly deviates from symmetric orientation and the propagation direction of an intense reflected wave is close to that of an exceptional bulk wave, which satisfies the free boundary condition in unperturbed symmetric orientation. It is shown that, in crystals with elastic moduli c{sub 44}>c{sub 66}, a resonance arises when the initial boundary is chosen parallel to the hexagonal axis 6, whereas in crystals characterized by the relation c{sub 44}

  6. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    SciTech Connect (OSTI)

    Sati, Priti; Tripathi, V. K. [Indian Institute of Technology, Hauz Khas, Delhi 110054 (India)

    2012-12-15T23:59:59.000Z

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  7. Wave propagation in anisotropic viscoelasticity

    E-Print Network [OSTI]

    Andrzej Hanyga

    2015-04-30T23:59:59.000Z

    We extend the theory of complete Bernstein functions to matrix-valued functions and apply it to analyze Green's function of an anisotropic multi-dimension\\-al linear viscoelastic problem. Green's function is given by the superposition of plane waves. Each plane wave is expressed in terms of matrix-valued attenuation and dispersion functions given in terms of a matrix-valued positive semi-definite Radon measure. More explicit formulae are obtained for 3D isotropic viscoelastic Green's functions. As an example of an anisotropic medium the transversely isotropic medium with a constant symmetry axis is considered.

  8. Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy AS Jump to:WaveWave

  9. atmospheric gravity waves: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gravity waves (AGWs). Satellite imagery shows evidence the characteristics of these waves. The favorable wave propagation conditions in 12;this region are illustrated 5...

  10. anomalous spin waves: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered....

  11. Identifying two steps in the internal wave energy cascade

    E-Print Network [OSTI]

    Sun, Oliver Ming-Teh

    2010-01-01T23:59:59.000Z

    1.1.1 The internal wave energy cascade . . . . . . .? ? , which contain only wave energy trav- eling upward anddistinction is made between wave energy propagating upward

  12. Fundamentals of Traveling Wave Ion Mobility Spectrometry. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamentals of Traveling Wave Ion Mobility Spectrometry. Fundamentals of Traveling Wave Ion Mobility Spectrometry. Abstract: Traveling-wave ion mobility spectrometry (TW IMS) is a...

  13. MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...

    Open Energy Info (EERE)

    Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable...

  14. alfven wave spectrum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waves are easily excited by various processes. Linear waves propagate at the Alfv'en speed v Guedel, Manuel 14 Anisotropic weak turbulence of Alfven waves in collisionless...

  15. alfven wave avalanches: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waves are easily excited by various processes. Linear waves propagate at the Alfv'en speed v Guedel, Manuel 13 Anisotropic weak turbulence of Alfven waves in collisionless...

  16. Multicomponent seismic data, combining P-wave and converted P-to-SV wave (C-wave) wavefields, provide inde-

    E-Print Network [OSTI]

    Texas at Austin, University of

    (fast and slow) with differing polarization. The 4C, 3D ocean-bottom cable (OBC) multicomponent seismic and stratigraphic features within the gas-charged intervals. C- waves (Figure 3) penetrate these P-wave wipeout

  17. Wave VelocityWave Velocity Diff t f ti l l itDifferent from particle velocity

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Wave VelocityWave Velocity v=/T =f Diff t f ti l l itDifferent from particle velocity Depends on the medium in which the wave travelsDepends on the medium in which the wave travels stringaonvelocity F v of Waves11-8. Types of Waves Transverse wave Longitudinal wave Liu UCD Phy1B 2014 37 #12;Sound Wave

  18. WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA

    E-Print Network [OSTI]

    Cary, John R.

    2012-01-01T23:59:59.000Z

    case, the electrons have negative wave energy for 2w ne w wave energy for 2w .w > 0 nl Hence, unstable waves with negative phase velocity,

  19. Einstein, Black Holes Gravitational Waves

    E-Print Network [OSTI]

    Cook, Greg

    1 #12;Einstein, Black Holes and Gravitational Waves Gregory B. Cook Wake Forest University 2 #12;Einstein's Miraculous Year: 1905 · Einstein, A. "¨Uber einen die Erzeugung und Verwandlung des Lichtes Concerning the Production and Transformation of Light. · Einstein, A. "¨Uber die von der molekularkinetischen

  20. Wave functions of linear systems

    E-Print Network [OSTI]

    Tomasz Sowinski

    2007-06-05T23:59:59.000Z

    Complete analysis of quantum wave functions of linear systems in an arbitrary number of dimensions is given. It is shown how one can construct a complete set of stationary quantum states of an arbitrary linear system from purely classical arguments. This construction is possible because for linear systems classical dynamics carries the whole information about quantum dynamics.

  1. Nonlinear Saturation of Vertically Propagating Rossby Waves

    E-Print Network [OSTI]

    Giannitsis, Constantine

    The interaction between vertical Rossby wave propagation and wave breaking is studied in the idealized context of a beta-plane channel model. Considering the problem of propagation through a uniform zonal flow in an ...

  2. Arnold Schwarzenegger DEVELOPING WAVE ENERGY IN

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor DEVELOPING WAVE ENERGY IN COASTAL CALIFORNIA: POTENTIAL SOCIO. Developing Wave Energy In Coastal California: Potential Socio-Economic And Environmental Effects. California-ECONOMIC AND ENVIRONMENTAL EFFECTS Prepared For: California Energy Commission Public Interest Energy Research Program

  3. Mathematical aspects of surface water waves

    E-Print Network [OSTI]

    Craig, Walter

    questions remain. These have to do with the evolution of surface water waves, their approximation by model normally being chosen. Unless we are describing waves of a global extent, such as a tsunami, for our

  4. Fracture compliance estimation using borehole tube waves

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

  5. On quantization of nondispersive wave packets

    SciTech Connect (OSTI)

    Altaisky, M. V. [Space Research Institute RAS, Profsoyuznaya 84/32, Moscow 117997 (Russian Federation)] [Space Research Institute RAS, Profsoyuznaya 84/32, Moscow 117997 (Russian Federation); Kaputkina, N. E. [National University of Science and Technology “MISIS” Leninsky prospect 4, Moscow 119049 (Russian Federation)] [National University of Science and Technology “MISIS” Leninsky prospect 4, Moscow 119049 (Russian Federation)

    2013-10-15T23:59:59.000Z

    Nondispersive wave packets are widely used in optics and acoustics. We found it interesting that such packets could be also a subject of quantum field theory. Canonical commutation relations for the nondispersive wave packets are constructed.

  6. Wave Mechanics and General Relativity: A Rapprochement

    E-Print Network [OSTI]

    Paul S. Wesson

    2006-01-16T23:59:59.000Z

    Using exact solutions, we show that it is in principle possible to regard waves and particles as representations of the same underlying geometry, thereby resolving the problem of wave-particle duality.

  7. Wind effects on shoaling wave shape

    E-Print Network [OSTI]

    Feddersen, F; Veron, F

    2005-01-01T23:59:59.000Z

    breaking in the presence of wind drift and swell. J. Fluidlin, 1995: Asymmetry of wind waves studied in a laboratorycoupling between swell and wind-waves. J. Phys. Oceanogr. ,

  8. Oblique reflections of internal gravity wave beams

    E-Print Network [OSTI]

    Karimi, Hussain H. (Hussain Habibullah)

    2012-01-01T23:59:59.000Z

    We study nonlinear effects in reflections of internal gravity wave beams in a continuously stratified liquid which are incident upon a uniform slope at an oblique angle. Wave motion in a stratified fluid medium is unique ...

  9. Turbulent round jet under gravity waves

    E-Print Network [OSTI]

    Ryu, Yong Uk

    2002-01-01T23:59:59.000Z

    The behavior of a neutrally buoyant horizontal turbulent round jet under a wavy environment was investigated. Progressive waves with different wave amplitudes in an intermediate water depth were used. The Particle Image Velocimetry (PIV) technique...

  10. Gravitational waves from merging compact binaries

    E-Print Network [OSTI]

    Hughes, Scott A.

    Largely motivated by the development of highly sensitive gravitational-wave detectors, our understanding of merging compact binaries and the gravitational waves they generate has improved dramatically in recent years. ...

  11. Analysis of optimum Lamb wave tuning

    E-Print Network [OSTI]

    Shi, Yijun, 1970-

    2002-01-01T23:59:59.000Z

    Guided waves are of enormous interest in the nondestructive evaluation of thin-walled structures and layered media. Due to their dispersive and multi-modal nature, it is desirable to tune the waves by discriminating one ...

  12. The Role of Wave-Induced CoriolisStokes Forcing on the Wind-Driven Mixed Layer JEFF A. POLTON,* DAVID M. LEWIS, AND STEPHEN E. BELCHER

    E-Print Network [OSTI]

    Reading, University of

    The Role of Wave-Induced Coriolis­Stokes Forcing on the Wind-Driven Mixed Layer JEFF A. POLTON in the direction along wave crests. How this Coriolis­Stokes forcing affects the mean current profile in a wind. It is shown how, for this oceanic regime, the Coriolis­Stokes forcing supports a fraction of the applied wind

  13. Wave-driven Countercurrent Plasma Centrifuge

    SciTech Connect (OSTI)

    A.J. Fetterman and N.J. Fisch

    2009-03-20T23:59:59.000Z

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the ? channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  14. Wave Propagation in Fractured Poroelastic Media

    E-Print Network [OSTI]

    Seismic wave propagation through fractures and cracks is an important subject in exploration and production geophysics, earthquake seismology and mining.

  15. Breaking of relativistically intense longitudinal space charge waves: A description using Dawson sheet model

    SciTech Connect (OSTI)

    Sengupta, Sudip, E-mail: sudip@ipr.res.in [Institute for Plasma Research, Bhat , Gandhinagar - 382428 (India)

    2014-02-11T23:59:59.000Z

    Spatio-temporal evolution of relativistically intense longitudinal space charge waves in a cold homogeneous plasma is studied analytically as well as numerically, as an initial value problem, using Dawson sheet model. It is found that, except for very special initial conditions which generates the well known longitudinal Akhiezer-Polovin mode, for all other initial conditions, the waves break through a novel mechanism called phase mixing at an amplitude well below the Akhiezer-Polovin limit. An immediate consequence of this is, that Akhiezer-Polovin waves break when subjected to arbitrarily small longitudinal perturbations. We demonstrate this by performing extensive numerical simulations. This result may be of direct relevance to ultrashort, ultraintense laser/beam pulse-plasma interaction experiments where relativistically intense waves are routinely excited.

  16. Effective medium theory of elastic waves in random networks of rods

    E-Print Network [OSTI]

    J. I. Katz; J. J. Hoffman; M. S. Conradi; J. G. Miller

    2012-06-13T23:59:59.000Z

    We formulate an effective medium (mean field) theory of a material consisting of randomly distributed nodes connected by straight slender rods, hinged at the nodes. Defining novel wavelength-dependent effective elastic moduli, we calculate both the static moduli and the dispersion relations of ultrasonic longitudinal and transverse elastic waves. At finite wave vector $k$ the waves are dispersive, with phase and group velocities decreasing with increasing wave vector. These results are directly applicable to networks with empty pore space. They also describe the solid matrix in two-component (Biot) theories of fluid-filled porous media. We suggest the possibility of low density materials with higher ratios of stiffness and strength to density than those of foams, aerogels or trabecular bone.

  17. Spectral methods for the wave equation in second-order form

    E-Print Network [OSTI]

    Nicholas W. Taylor; Lawrence E. Kidder; Saul A. Teukolsky

    2010-05-17T23:59:59.000Z

    Current spectral simulations of Einstein's equations require writing the equations in first-order form, potentially introducing instabilities and inefficiencies. We present a new penalty method for pseudo-spectral evolutions of second order in space wave equations. The penalties are constructed as functions of Legendre polynomials and are added to the equations of motion everywhere, not only on the boundaries. Using energy methods, we prove semi-discrete stability of the new method for the scalar wave equation in flat space and show how it can be applied to the scalar wave on a curved background. Numerical results demonstrating stability and convergence for multi-domain second-order scalar wave evolutions are also presented. This work provides a foundation for treating Einstein's equations directly in second-order form by spectral methods.

  18. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30T23:59:59.000Z

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  19. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. (Kingston, TN) [Kingston, TN; Lowe, Kirk T. (Knoxville, TN) [Knoxville, TN

    2010-09-14T23:59:59.000Z

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  20. Policy Procedure Administrative Directive Title: _____________________________________

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Policy ­ Procedure ­ Administrative Directive Title: _____________________________________ Policy-President _____________ See also: Related Policies, Procedures and Agreements: Relevant Legislation and Regulations: ____________________________________________________________________________ Background and Purpose: ____________________________________________________________________________ Policy

  1. Hydromagnetic waves and instabilities in kappa distribution plasma

    SciTech Connect (OSTI)

    Basu, B. [Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts 01731 (United States)

    2009-05-15T23:59:59.000Z

    Stability properties of hydromagnetic waves (shear and compressional Alfven waves) in spatially homogeneous plasma are investigated when the equilibrium particle velocity distributions in both parallel and perpendicular directions (in reference to the ambient magnetic field) are modeled by kappa distributions. Analysis is presented for the limiting cases |{xi}{sub {alpha}}|<<1 and |{xi}{sub {alpha}}|>>1 for which solutions of the dispersion relations are analytically tractable. Here {xi}{sub {alpha}}({alpha}=e,i) is the ratio of the wave phase speed and the electron (ion) thermal speed. Both low and high {beta} (=plasma pressure/magnetic pressure) plasmas are considered. The distinguishing features of the hydromagnetic waves in kappa distribution plasma are (1) both Landau damping and transit-time damping rates are larger than those in Maxwellian plasma because of the enhanced high-energy tail of the kappa distribution and (2) density and temperature perturbations in response to the electromagnetic perturbations are different from those in Maxwellian plasma when |{xi}{sub {alpha}}|<<1. Moreover, frequency of the oscillatory stable modes (e.g., kinetic shear Alfven wave) and excitation condition of the nonoscillatory (zero frequency) unstable modes (e.g., mirror instability) in kappa distribution plasma are also different from those in Maxwellian plasma. Quantitative estimates of the differences depend on the specific choice of the kappa distribution. For simplicity of notations, same spectral indices {kappa}{sub ||} and {kappa}{sub perpendicular} have been assumed for both electron and ion population. However, the analysis can be easily generalized to allow for different values of the spectral indices for the two charged populations.

  2. Comparison of P-wave and S-wave data processed by DIP moveout

    E-Print Network [OSTI]

    Al-Misnid, Abdulaziz Mugbel

    1994-01-01T23:59:59.000Z

    of compressional (P) and shear (S) wave data in a fractured reservoir can show whether amplitude anomalies on the P-wave section are associated with the presence of gas or change of lithology. The P-wave and S-wave data selected for this study were shot in Burleson...

  3. High amplitude wave propagation in collapsible tubes. II. Forerunners and high amplitude waves

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    773 High amplitude wave propagation in collapsible tubes. II. Forerunners and high amplitude waves that, under certain circumstances, a pressure wave of large amplitude which propagates in a fluid feature of such a shock wave propagation inside an initially collapsed tube is the presence ofwavelets

  4. Thompson/Ocean 420/Winter 2004 2D waves 1 Two-dimensional wave propagation

    E-Print Network [OSTI]

    Thompson, LuAnne

    Thompson/Ocean 420/Winter 2004 2D waves 1 Two-dimensional wave propagation So far we have talked about wave propagation in one-dimension. For two or three spatial dimensions, we vectorize our ideas propagation. For surface waves, there is no vertical propagation, and we are only concerned with the two

  5. WAVE HEIGHTS IN A 4D OCEAN WAVE FIELD Paul C. Liu

    E-Print Network [OSTI]

    WAVE HEIGHTS IN A 4D OCEAN WAVE FIELD Paul C. Liu NOAA Great Lakes Environmental Research a preliminary examination and analysis of a small suite of 4-D wave data to explore what new insight century. We feel it is timely to encourage further 4-D ocean wave measurement and thereby facilitate fresh

  6. Wave Front Interaction Model of Stabilized Propagating Wave Segments Vladimir S. Zykov1

    E-Print Network [OSTI]

    Showalter, Kenneth

    Wave Front Interaction Model of Stabilized Propagating Wave Segments Vladimir S. Zykov1 and Kenneth; published 14 February 2005) A wave front interaction model is developed to describe the relationship between excitability and the size and shape of stabilized wave segments in a broad class of weakly excitable media

  7. Wave Turbulence in Superfluid 4 Energy Cascades, Rogue Waves & Kinetic Phenomena

    E-Print Network [OSTI]

    Fominov, Yakov

    Outline Wave Turbulence in Superfluid 4 He: Energy Cascades, Rogue Waves & Kinetic Phenomena Conference, Chernogolovka, 3 August 2009 McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4 He #12;Outline Outline 1 Introduction Motivation 2 Modelling wave turbulence Need for models

  8. Wave-pinned filaments of scroll waves Tams Bnsgi, Jr., Kevin J. Meyer, and Oliver Steinbocka

    E-Print Network [OSTI]

    Steinbock, Oliver

    Wave-pinned filaments of scroll waves Tamás Bánsági, Jr., Kevin J. Meyer, and Oliver Steinbocka Received 5 November 2007; accepted 26 December 2007; published online 6 March 2008 Scroll waves are three can be pinned to the wake of traveling wave pulses. This pinning is studied in experiments with the 1

  9. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    E-Print Network [OSTI]

    Klein, Spencer

    2010-01-01T23:59:59.000Z

    waves generated by the thermoacoustic mechanism, little workproduction by the thermoacoustic mechanism is suppressed,

  10. Wave Impact Study on a Residential Building Wave Impact Study on a Residential Building

    E-Print Network [OSTI]

    Cox, Dan

    Wave Impact Study on a Residential Building Paper: Wave Impact Study on a Residential Building John residential light- frame wood buildings and wave and surge loading be- cause often little is left residential structures and wave loading. To do this, one-sixth scale residen- tial building models typical

  11. Beauty waves: an artistic representation of ocean waves using Bezier curves

    E-Print Network [OSTI]

    Faulkner, Jay Allen

    2007-04-25T23:59:59.000Z

    In this thesis, we present a method for computing an artistic representation of ocean waves using Bezier curves. Wave forms are loosely based on procedural wave models and are designed to emulate those found in both art and nature. The wave forms...

  12. Autoresonance of coupled nonlinear waves L. Friedland

    E-Print Network [OSTI]

    Friedland, Lazar

    wave train solutions of the decoupled problem. At the same time, the waves are globally phase locked, allowing the continuation of the phase locking between the waves despite the variation of system's param and sustaining this multidimensional autoresonance are the internal reso- nant excitation of one of the coupled

  13. EFFECTS OF SOUND WAVES ON YOUNG SALMON

    E-Print Network [OSTI]

    EFFECTS OF SOUND WAVES ON YOUNG SALMON Marine Biological Laboratory X. 1 33 R A. RTT ir.':; WOODS instantaneously to sounds. It was con- were tested in an experimental tank and in eluded that sound waves were, Wash . sound studies conducted under the above contract are terminated. #12;EFFECTS OF SOUND WAVES

  14. Coupled Parabolic Equations for Wave Propagation

    E-Print Network [OSTI]

    Zhao, Hongkai

    Coupled Parabolic Equations for Wave Propagation Kai Huang, Knut Solna and Hongkai Zhao #3; April simulation of wave propagation over long distances. The coupled parabolic equations are derived from a two algorithms are important in order to understand wave propagation in complex media. Resolving the wavelength

  15. Solitary waves propagating over variable Roger Grimshaw

    E-Print Network [OSTI]

    Solitary waves propagating over variable topography Roger Grimshaw Loughborough University waves that can propagate steadily over long distances. They were first observed by Russell in 1837 in a now famous report [26] on his observations of a solitary wave propagating along a Scottish canal

  16. Seminario de Matemtica Aplicada "Renowable wave energy

    E-Print Network [OSTI]

    Tradacete, Pedro

    Seminario de Matemática Aplicada "Renowable wave energy: potencial and technical challenges Abstract: Among the various renewable energy sources, ocean wave energy has been only recently investiga will be at first to introduce the potential of wave energy, as a significant, and often neglected, contributor

  17. Wave propagation Remco Hartkamp (University of Twente)

    E-Print Network [OSTI]

    Entekhabi, Dara

    ) waves Sound: 20 Hz ­ 20 kHz Gas: P Liquid: P Plasma: P Solid: P & S #12;Stretched string example 1D wave Dispersion: Waves with different wavelengths propagate at different speeds 6 k c k k Shallow water: c gh mJ K material parameter (related to the strain saturation of the material) det FJ bulk modulus

  18. Multi-reflective acoustic wave device

    DOE Patents [OSTI]

    Andle, Jeffrey C.

    2006-02-21T23:59:59.000Z

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  19. Wave guides: vacuum w/ tube of conductor

    E-Print Network [OSTI]

    Hart, Gus

    Wave guides: vacuum w/ tube of conductor boundary conditions for conductor Properties: non-transverse waves except TEM mode in coaxial cable speed normal modes (from Liouville problem) TE or TM TEM for coaxial cable cuto frequency otherwise evanescent waves separation into and components with 1 #12;B

  20. WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS

    E-Print Network [OSTI]

    Stewart, Sarah T.

    WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle

  1. Wave Packets and Turbulent Peter Jordan1

    E-Print Network [OSTI]

    Dabiri, John O.

    Wave Packets and Turbulent Jet Noise Peter Jordan1 and Tim Colonius2 1 D´epartement Fluides-control efforts is incomplete. Wave packets are intermittent, advecting disturbances that are correlated over review evidence of the existence, energetics, dynamics, and acous- tic efficiency of wave packets. We

  2. EFFICIENCY OF FAST WAVE CURRENT DRIVE FOR

    E-Print Network [OSTI]

    Karney, Charles

    EFFICIENCY OF FAST WAVE CURRENT DRIVE FOR A WEAKLY RELATIVISTIC PLASMA by S.C. CHIU, C.F.F. KARNEY: http://charles.karney.info/biblio/chiu94.html #12;Chiu e t al. THE EFFICIENCY OF FAST WAVE CURRENT DRIVE FOR A WEAKLY RELATIVISTIC PLASMA THE EFFICIENCY OF FAST WAVE CURRENT DRIVE FOR A WEAKLY

  3. Hybrid wave model and its applications

    E-Print Network [OSTI]

    Yang, Jun

    1998-01-01T23:59:59.000Z

    A nonlinear hybrid wave model (HWM) is developed. It uses the conventional mode-coupling method (MCM) and the phase modulation method (PMM) to address the nonlinear interactions between free-wave components in an ocean wave field. The PMM is a...

  4. Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops

    E-Print Network [OSTI]

    Kumar, Pankaj

    2015-01-01T23:59:59.000Z

    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 {\\AA}) arcade loops observed by the SDO/AIA. The wave was associated with an impulsive/compact flare, near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060-760 km/s within ~3-4 minute. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km/s, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  5. Coherent molecular transistor: Control through variation of the gate wave function

    SciTech Connect (OSTI)

    Ernzerhof, Matthias, E-mail: Matthias.Ernzerhof@UMontreal.ca [Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Quebec H3C 3J7 (Canada)] [Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Quebec H3C 3J7 (Canada)

    2014-03-21T23:59:59.000Z

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  6. Plasma control by modification of helicon wave propagation in low magnetic fields

    SciTech Connect (OSTI)

    Lafleur, T.; Charles, C.; Boswell, R. W. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2010-07-15T23:59:59.000Z

    By making use of nonuniform magnetic fields, it is shown experimentally that control of helicon wave propagation can be achieved in a low pressure (0.08 Pa) expanding plasma. The m=1 helicon waves are formed during a direct capacitive to wave mode transition that occurs in a low diverging magnetic field (B{sub 0}<3 mT). In this initial configuration, waves are prevented from reaching the downstream region, but slight modifications to the magnetic field allows the axial distance over which waves can propagate to be controlled. By changing the effective propagation distance in this way, significant modification of the density and plasma potential profiles can be achieved, showing that the rf power deposition can be spatially controlled as well. Critical to the modification of the wave propagation behavior is the magnetic field strength (and geometry) near the exit of the plasma source region, which gives electron cyclotron frequencies close to the wave frequency of 13.56 MHz.

  7. Manufacturing Defects Common to Composite Wind Turbine Blades: Effects of Defects

    E-Print Network [OSTI]

    uni-directional wind turbine fiber-reinforced composite material with an epoxy resin were utilized of wind turbine blades have essentially dictated the use of low cost fiberglass composite materials. Even1 Manufacturing Defects Common to Composite Wind Turbine Blades: Effects of Defects Jared W. Nelson

  8. A Path Planning Method Using Cubic Spiral with Curvature Constraint

    E-Print Network [OSTI]

    Chen, Sheng-Wei

    . The generated path is constituted by both cubic spirals and straight lines, and has continuous and bounded it for the reason of practical use. Mobile robots with forward and backward driving abilities and only uni-direction driving ability are both considered. This method is flexible and is eligible to incorporate with other

  9. Airborne observations of the kinematics and statistics of breaking waves

    E-Print Network [OSTI]

    Kleiss, Jessica M.

    2009-01-01T23:59:59.000Z

    E. M. Janssen, 1996: Wave energy dissipation by whitecaps.waves: Surface impulse and wave energy dissipation rates. J.to the ocean, dissipating wave energy that is then available

  10. ITB KNAW UTwente Lectures on Free Surface Waves

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    , Acknowledgment Surface waves are phenomena that are characterised by the dynamic interplay between linear.3 Linear Dispersive wave model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Wave groupsITB KNAW UTwente Lectures on Free Surface Waves Brenny van Groesen, Applied Analysis & Mathematical

  11. Earth and Planetary Science Letters 403 (2014) 5666 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Spiga, Aymeric

    2014-01-01T23:59:59.000Z

    Earth and Planetary Science Letters 403 (2014) 56­66 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Sedimentation waves on the Martian between the ice sheet sur- face and the atmosphe

  12. Traveling wave device for combining or splitting symmetric and asymmetric waves

    DOE Patents [OSTI]

    Möbius, Arnold (Eggenstein, DE); Ives, Robert Lawrence (Saratoga, CA)

    2005-07-19T23:59:59.000Z

    A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

  13. A non local Schrdinger model for the propagation of waves in a photorefractive medium

    E-Print Network [OSTI]

    Bidegaray, Brigitte

    in the principal direction of the photovoltaic effect in the crystal (chosen as x): n x . B. Bidégaray modelling The photorefractive effect The propagation of an optical wave in insulating or semi modelling Characteristics of the photorefractive effect Main characteristics 1 Sensibility to energy

  14. Scattering of Magnetic Mirror Trapped Fast Electrons by a Shear Alfven Wave Yuhou Wang,1

    E-Print Network [OSTI]

    California at Los Angles, University of

    processes, such as Megastorms [15] as well as accidental or deliberate high altitude nuclear explosions can by L-mode electromagnetic ion cyclotron waves (EMIC) with a frequency below the cyclotron frequency in Fig. 1. The plasma is produced with a pulsed dc (direct current) discharge between a heated cathode

  15. Damage Detection in Plate Structures using Guided Ultrasonic Waves

    E-Print Network [OSTI]

    Jarmer, Gregory James Sylvester

    Guided Wave Structural Health Monitoring. ” Ultrasonics 50 (to Structural Health Monitoring. ” Philosophicalfor Guided-wave Structural Health Monitoring. ” Structural

  16. Magnonic band structure, complete bandgap, and collective spin wave excitation in nanoscale two-dimensional magnonic crystals

    SciTech Connect (OSTI)

    Kumar, D.; Barman, A., E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); K?os, J. W.; Krawczyk, M. [Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Pozna? 61-614 (Poland)

    2014-01-28T23:59:59.000Z

    We present the observation of a complete bandgap and collective spin wave excitation in two-dimensional magnonic crystals comprised of arrays of nanoscale antidots and nanodots, respectively. Considering that the frequencies dealt with here fall in the microwave band, these findings can be used for the development of suitable magnonic metamaterials and spin wave based signal processing. We also present the application of a numerical procedure, to compute the dispersion relations of spin waves for any high symmetry direction in the first Brillouin zone. The results obtained from this procedure have been reproduced and verified by the well established plane wave method for an antidot lattice, when magnetization dynamics at antidot boundaries are pinned. The micromagnetic simulation based method can also be used to obtain iso–frequency contours of spin waves. Iso–frequency contours are analogous of the Fermi surfaces and hence, they have the potential to radicalize our understanding of spin wave dynamics. The physical origin of bands, partial and full magnonic bandgaps have been explained by plotting the spatial distribution of spin wave energy spectral density. Although, unfettered by rigid assumptions and approximations, which afflict most analytical methods used in the study of spin wave dynamics, micromagnetic simulations tend to be computationally demanding. Thus, the observation of collective spin wave excitation in the case of nanodot arrays, which can obviate the need to perform simulations, may also prove to be valuable.

  17. Material loss angles from direct measurements of broadband thermal noise

    E-Print Network [OSTI]

    Principe, Maria; Pierro, Vincenzo; DeSalvo, Riccardo; Taurasi, Ilaria; Villar, Akira E; Black, Eric D; Libbrecht, Kenneth G; Michel, Christophe; Morgado, Nazario; Pinard, Laurent

    2015-01-01T23:59:59.000Z

    We estimate the loss angles of the materials currently used in the highly reflective test-mass coatings of interferometric detectors of gravitational waves, namely Silica, Tantala, and Ti-dop ed Tantala, from direct measurement of coating thermal noise in an optical interferometer testbench, the Caltech TNI. We also present a simple predictive theory for the material properties of amorphous glassy oxide mixtures, which gives results in good agreement with our measurements on Ti-doped Tantala. Alternative measure ment methods and results are reviewed, and some critical issues are discussed.

  18. Instabilities and generation of a quasistationary magnetic field by the interaction of relativistically intense electromagnetic wave with a plasma

    SciTech Connect (OSTI)

    Gillani, S. S. A.; Shah, H. A. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Tsintsadze, N. L. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Institute of Physics, Tbilisi 380077 (Georgia); Razzaq, M. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan)

    2010-08-15T23:59:59.000Z

    It is shown that the interaction of the superstrong laser radiation with an isotropic plasma leads to the generation of low frequency electromagnetic (EM) waves and in particular a quasistationary magnetic field. When the relativistic circularly polarized transverse EM wave propagates along z-axis, it creates a ponderomotive force, which affects the motion of particles along the direction of its propagation. On the other hand, motion of the particles across the direction of propagation is defined by the ponderomotive potential. The dispersion relation for the transverse EM wave using a special distribution function, which has an anisotropic form, is derived. The dispersion relation is subsequently investigated for a number of special cases. In general, it is shown that the growth rate of the EM wave strongly depends upon its intensity.

  19. Construction of KP solitons from wave patterns

    E-Print Network [OSTI]

    Sarbarish Chakravarty; Yuji Kodama

    2013-09-10T23:59:59.000Z

    We often observe that waves on the surface of shallow water form complex web-like patterns. They are examples of nonlinear waves, and these patterns are generated by nonlinear interactions among several obliquely propagating waves. In this note, we discuss how to construct an exact soliton solution of the KP equation from such web-pattern of shallow water wave. This can be regarded as an "inverse problem" in the sense that by measuring certain metric data of the solitary waves in the given pattern, it is possible to construct an exact KP soliton solution which can describe the non-stationary dynamics of the pattern.

  20. Thermal Gravitational Waves from Primordial Black Holes

    E-Print Network [OSTI]

    C. Sivaram; Kenath Arun

    2010-05-19T23:59:59.000Z

    Thermal gravitational waves can be generated in various sources such as, in the cores of stars, white dwarfs and neutron stars due to the fermion collisions in the dense degenerate Fermi gas. Such high frequency thermal gravitational waves can also be produced during the collisions in a gamma ray burst or during the final stages of the evaporation of primordial black holes. Here we estimate the thermal gravitational waves from primordial black holes and estimate the integrated energy of the gravitational wave emission over the entire volume of the universe and over Hubble time. We also estimate the gravitational wave flux from gamma ray bursts and jets.

  1. Refractive gravitational waves and quantum fluctuations

    E-Print Network [OSTI]

    John W. Barrett

    2000-11-14T23:59:59.000Z

    Refractive gravitational waves are a generalisation of impulsive waves on a null hypersurface in which the metric is discontinuous but a weaker continuity condition for areas holds. A simple example of a plane wave is examined in detail and two arguments are given that this should be considered a solution of Einstein's vacuum field equations. The study of these waves is motivated by quantum gravity, where the refractive plane waves are considered as elementary quantum fluctuations and the `area geometry' of a null hypersurface plays a primary role.

  2. Matter Wave Radiation Leading to Matter Teleportation

    E-Print Network [OSTI]

    Yong-Yi Huang

    2015-02-12T23:59:59.000Z

    The concept of matter wave radiation is put forward, and its equation is established for the first time. The formalism solution shows that the probability density is a function of displacement and time. A free particle and a two-level system are reinvestigated considering the effect of matter wave radiation. Three feasible experimental designs, especially a modified Stern-Gerlach setup, are proposed to verify the existence of matter wave radiation. Matter wave radiation effect in relativity has been formulated in only a raw formulae, which offers another explanation of Lamb shift. A possible mechanics of matter teleportation is predicted due to the effect of matter wave radiation.

  3. Ponderomotive Forces On Waves In Modulated Media

    SciTech Connect (OSTI)

    Dodin, I.Y; Fisch, Nathaniel

    2014-02-28T23:59:59.000Z

    Nonlinear interactions of waves via instantaneous cross-phase modulation can be cast in the same way as ponderomotive wave-particle interactions in high-frequency electromagnetic fi eld. The ponderomotive effect arises when rays of a probe wave scatter off perturbations of the underlying medium produced by a second, modulation wave, much like charged particles scatter off a quasiperiodic field. Parallels with the point-particle dynamics, which itself is generalized by this theory, lead to new methods of wave manipulation, including asymmetric barriers for light.

  4. Kinematic dynamo induced by helical waves

    E-Print Network [OSTI]

    Wei, Xing

    2014-01-01T23:59:59.000Z

    We investigate numerically the kinematic dynamo induced by the superposition of two helical waves in a periodic box as a simplified model to understand the dynamo action in astronomical bodies. The effects of magnetic Reynolds number, wavenumber and wave frequency on the dynamo action are studied. It is found that this helical-wave dynamo is a slow dynamo. There exists an optimal wavenumber for the dynamo growth rate. A lower wave frequency facilitates the dynamo action and the oscillations of magnetic energy emerge at some particular wave frequencies.

  5. Dimensional Reduction in 6D Standing Waves Braneworld

    E-Print Network [OSTI]

    Otari Sakhelashvili

    2014-07-20T23:59:59.000Z

    We found cosmological solution of the 6D standing wave braneworld model generated by gravity coupled to a massless scalar phantom-like field. By obtaining a full exact solution of the model we found a novel dynamical mechanism in which the anisotropic nature of the primordial metric gives rise to expansion of three spatial brane dimensions and affectively reduction of other spatial directions. This dynamical mechanism can be relevant for dimensional reduction in string and other higher dimensional theories in the attempt of getting a 4D isotropic expanding space-time.

  6. Wave Energy Simulation Team Carries Home International Award | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacksof Energy Wave Energy Simulation

  7. Danish Wave Energy Development Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro Site Jump(RedirectedDalian XinyangDanish Wave Energy

  8. Pelamis Wave Power Ocean Power Delivery Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)Pearl River Valley ElPelamis Wave Power

  9. Characterization of geothermal reservoir crack patterns using shear-wave

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER es una instituciónBy Shear-Wave Splittingsplitting

  10. Gravitational waves from perturbed stars

    E-Print Network [OSTI]

    Valeria Ferrari

    2011-05-09T23:59:59.000Z

    Non radial oscillations of neutron stars are associated with the emission of gravitational waves. The characteristic frequencies of these oscillations can be computed using the theory of stellar perturbations, and they are shown to carry detailed information on the internal structure of the emitting source. Moreover, they appear to be encoded in various radiative processes, as for instance in the tail of the giant flares of Soft Gamma Repeaters. Thus, their determination is central to the theory of stellar perturbation. A viable approach to the problem consists in formulating this theory as a problem of resonant scattering of gravitational waves incident on the potential barrier generated by the spacetime curvature. This approach discloses some unexpected correspondences between the theory of stellar perturbations and the theory of quantum mechanics, and allows us to predict new relativistic effects.

  11. Reconstruction of nonlinear wave propagation

    DOE Patents [OSTI]

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23T23:59:59.000Z

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  12. Millimeter-wave active probe

    DOE Patents [OSTI]

    Majidi-Ahy, Gholamreza (Sunnyvale, CA); Bloom, David M. (Portola Valley, CA)

    1991-01-01T23:59:59.000Z

    A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

  13. Freak waves in white dwarfs and magnetars

    SciTech Connect (OSTI)

    Sabry, R. [Theoretical Physics Group, Physics Department, Faculty of Science, Damietta University, New Damietta 34517 (Egypt); Department of Physics, College of Science and Humanitarian Studies, Salman bin Abdulaziz University, Alkharj (Saudi Arabia); International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Moslem, W. M. [International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); Shukla, P. K. [International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Department of Mechanical and Aerospace Engineering and Center for Energy Research, University of California, San Diego, La Jolla, California 92093 (United States)

    2012-12-15T23:59:59.000Z

    We report properties of ion acoustic freak waves that propagate in a plasma composed of warm ions and ultrarelativistic electrons and positrons. The dynamics of the nonlinear freak waves is governed by the nonlinear Schroedinger equation. The possible region for the freak waves to exist is defined precisely for typical parameters of white dwarfs and magnetars corona. It is found that for low wave number, the nonlinear ion-acoustic wave packets are structurally stable in magnetars corona than in white dwarfs. However, for large wave numbers the situation is opposite. The critical wave number threshold (k{sub c}), which indicates where the modulational instability sets in, is defined for both applications. It is seen that near to k{sub c} the freak wave amplitude becomes high, but it decreases whenever we stepped away from k{sub c}. For the wave numbers close to k{sub c}, the increase of the unperturbed density ratio of positrons-to-electrons ({beta}) would lead to increase the freak wave amplitude, but for larger wave numbers the amplitude decreases with the increase of {beta}.

  14. Corvino's construction using Brill waves

    E-Print Network [OSTI]

    Domenico Giulini; Gustav Holzegel

    2005-08-17T23:59:59.000Z

    For two-black-hole time-symmetric initial data we consider the Corvino construction of gluing an exact Schwarzschild end. We propose to do this by using Brill waves. We address the question of whether this method can be used to reduce the overall energy, which seems to relate to the question of whether it can reduce the amount of `spurious' gravitational radiation. We find a positive answer at first order in the inverse gluing radius.

  15. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

    2009-08-18T23:59:59.000Z

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  16. Focusing of Rayleigh waves generated by high-speed trains under the condition of ground vibration boom

    E-Print Network [OSTI]

    Krylov, Victor V

    2015-01-01T23:59:59.000Z

    In the present paper, the effects of focusing of Rayleigh waves generated by high speed trains in the supporting ground under the condition of ground vibration boom are considered theoretically. These effects are similar to the effects of focusing of sound waves radiated by aircraft under the condition of sonic boom. In particular, if a railway track has a bend to provide the possibility of changing direction of train movement, the Rayleigh surface waves generated by high-speed trains under the condition of ground vibration boom may become focused. This results in concentration of their energy along a simple caustic line at one side of the track and in the corresponding increase in ground vibration amplitudes. The effect of focusing of Rayleigh waves may occur also if a train moves along a straight line with acceleration and its current speed is higher than Rayleigh wave velocity in the ground. The obtained results are illustrated by numerical calculations.

  17. A Wave Interpretation of the Compton Effect As a Further Demonstration of the Postulates of de Broglie

    E-Print Network [OSTI]

    Ching-Chuan Su

    2006-01-02T23:59:59.000Z

    The Compton effect is commonly cited as a demonstration of the particle feature of light, while the wave nature of matter has been proposed by de Broglie and demonstrated by Davisson and Germer with the Bragg diffraction of electron beams. In this investigation, we present an entirely different interpretation of the Compton effect based on the postulates of de Broglie and on an interaction between electromagnetic and matter waves. The speeds of interacting electrons in the Compton scattering are quite fast and its mechanism relies heavily on the mass variation. Thus, based on this wave interpretation, the Compton effect can be viewed as a further demonstration of the postulates of de Broglie for high-speed particles. In addition to the scattered wave, a direct radiation depending on the mass variation is predicted, which provides a means to test the wave interpretation.

  18. Wave propagation in axion electrodynamics

    E-Print Network [OSTI]

    Yakov Itin

    2007-06-20T23:59:59.000Z

    In this paper, the axion contribution to the electromagnetic wave propagation is studied. First we show how the axion electrodynamics model can be embedded into a premetric formalism of Maxwell electrodynamics. In this formalism, the axion field is not an arbitrary added Chern-Simon term of the Lagrangian, but emerges in a natural way as an irreducible part of a general constitutive tensor.We show that in order to represent the axion contribution to the wave propagation it is necessary to go beyond the geometric approximation, which is usually used in the premetric formalism. We derive a covariant dispersion relation for the axion modified electrodynamics. The wave propagation in this model is studied for an axion field with timelike, spacelike and null derivative covectors. The birefringence effect emerges in all these classes as a signal of Lorentz violation. This effect is however completely different from the ordinary birefringence appearing in classical optics and in premetric electrodynamics. The axion field does not simple double the ordinary light cone structure. In fact, it modifies the global topological structure of light cones surfaces. In CFJ-electrodynamics, such a modification results in violation of causality. In addition, the optical metrics in axion electrodynamics are not pseudo-Riemannian. In fact, for all types of the axion field, they are even non-Finslerian.

  19. Topological Aspects of Wave Propagation

    E-Print Network [OSTI]

    Carlos Valero

    2014-06-13T23:59:59.000Z

    In the context of wave propagation on a manifold X, the characteristic functions are real valued functions on cotangent bundle of X that specify the allowable phase velocities of the waves. For certain classes of differential operators (e.g Maxwell's Equations) the associated characteristic functions have singularities. These singularities account for phenomena like conical refraction and the transformation of longitudinal waves into transversal ones (or viceversa). For a specific class of differential operators on surface, we prove that the singularities of the characteristic functions can be accounted from purely topological considerations. We also prove that there is a natural way to desingularsize the characteristic functions, and observe that this fact and Morse Theory establishes a specific connection between singularities and critical points of these functions. The relation between characteristic functions and differential operators is obtained through what is known as the symbol of the operator. We establish a connection between these symbols and holomorphic vector fields, which will provide us with symbols whose characteristic functions have interesting singularity sets.

  20. On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry

    E-Print Network [OSTI]

    Victoria, University of

    On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean wave

  1. Direct/Indirect Costs - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CCMD) and describes various estimating techniques for direct and indirect costs. g4301-1chp7.pdf -- PDF Document, 41 KB Writer: John Makepeace Subjects: ID: DOE G 430.1-1 Chp 7...

  2. Directions - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal FinancialDirectDirect-WriteDirections About

  3. Graphene-based terahertz tunable plasmonic directional coupler

    SciTech Connect (OSTI)

    He, Meng-Dong, E-mail: hemendong@sohu.com; Wang, Kai-Jun; Wang, Lei; Li, Jian-Bo [Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha 410004 (China); Liu, Jian-Qiang [College of Science, Jiujiang University, Jiujiang 332005 (China); Huang, Zhen-Rong; Wang, Lingling [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082 (China); Wang, Lin; Hu, Wei-Da; Chen, Xiaoshuang [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083 (China)

    2014-08-25T23:59:59.000Z

    We propose and numerically analyze a terahertz tunable plasmonic directional coupler which is composed of a thin metal film with a nanoscale slit, dielectric grating, a graphene sheet, and a dielectric substrate. The slit is employed to generate surface plasmon polaritons (SPPs), and the metal-dielectric grating-graphene-dielectric constructs a Bragg reflector, whose bandgap can be tuned over a wide frequency range by a small change in the Fermi energy level of graphene. As a graphene-based Bragg reflector is formed on one side of the slit, the structure enables SPP waves to be unidirectionally excited on the other side of the slit due to SPP interference, and the SPP waves in the Bragg reflector can be efficiently switched on and off by tuning the graphene's Fermi energy level. By introducing two optimized graphene-based Bragg reflectors into opposite sides of the slit, SPP waves can be guided to different Bragg reflectors at different Fermi energy levels, thus achieving a tunable bidirectional coupler.

  4. Scattering of Sound Waves by a Canonical Acoustic Hole

    E-Print Network [OSTI]

    Sam R. Dolan; Ednilton S. Oliveira; Luís C. B. Crispino

    2009-04-06T23:59:59.000Z

    This is a study of a monochromatic planar perturbation impinging upon a canonical acoustic hole. We show that acoustic hole scattering shares key features with black hole scattering. The interference of wavefronts passing in opposite senses around the hole creates regular oscillations in the scattered intensity. We examine this effect by applying a partial wave method to compute the differential scattering cross section for a range of incident wavelengths. We demonstrate the existence of a scattering peak in the backward direction, known as the glory. We show that the glory created by the canonical acoustic hole is approximately 170 times less intense than the glory created by the Schwarzschild black hole, for equivalent horizon-to-wavelength ratios. We hope that direct experimental observations of such effects may be possible in the near future.

  5. Traveling-wave device with mass flux suppression

    DOE Patents [OSTI]

    Swift, Gregory W. (Santa Fe, NM); Backhaus, Scott N. (Los Alamos, NM); Gardner, David L. (White Rock, NM)

    2000-01-01T23:59:59.000Z

    A traveling-wave device is provided with the conventional moving pistons eliminated. Acoustic energy circulates in a direction through a fluid within a torus. A side branch may be connected to the torus for transferring acoustic energy into or out of the torus. A regenerator is located in the torus with a first heat exchanger located on a first side of the regenerator downstream of the regenerator relative to the direction of the circulating acoustic energy; and a second heat exchanger located on an upstream side of the regenerator. The improvement is a mass flux suppressor located in the torus to minimize time-averaged mass flux of the fluid. In one embodiment, the device further includes a thermal buffer column in the torus to thermally isolate the heat exchanger that is at the operating temperature of the device.

  6. Circulating heat exchangers for oscillating wave engines and refrigerators

    DOE Patents [OSTI]

    Swift, Gregory W.; Backhaus, Scott N.

    2003-10-28T23:59:59.000Z

    An oscillating-wave engine or refrigerator having a regenerator or a stack in which oscillating flow of a working gas occurs in a direction defined by an axis of a trunk of the engine or refrigerator, incorporates an improved heat exchanger. First and second connections branch from the trunk at locations along the axis in selected proximity to one end of the regenerator or stack, where the trunk extends in two directions from the locations of the connections. A circulating heat exchanger loop is connected to the first and second connections. At least one fluidic diode within the circulating heat exchanger loop produces a superimposed steady flow component and oscillating flow component of the working gas within the circulating heat exchanger loop. A local process fluid is in thermal contact with an outside portion of the circulating heat exchanger loop.

  7. Guided Wave Propagation in Tubular Section with Multi-Layered Viscoelastic Coating

    E-Print Network [OSTI]

    Kuo, Chi-Wei 1982-

    2012-11-16T23:59:59.000Z

    cross-section of the pipe. The layer between radii r1 and r2 is elastic. The outer layer between radii r2 and r3 is the viscoelastic coating material. The axial direction of the cylinder is along the z-axis. The circumferential direction is defined... by the ?-axis. Fig. 2.1 Pipe model Fig. 2.2 Pipe cross-section 2.1. Longitudinal Wave along Axial Direction The Lame-Navier equation of motion for isotropic materials is 2 2 2( ) ( ) ( / )? ? ? ?? + + ? ?? = ? ? tu u u (2.1) r3 r2 r1...

  8. Branes in AdS and pp-wave spacetimes

    E-Print Network [OSTI]

    Kostas Skenderis; Marika Taylor

    2002-07-03T23:59:59.000Z

    We find half supersymmetric AdS-embeddings in AdS_5 x S^5 corresponding to all quarter BPS orthogonal intersections of D3-branes with Dp-branes. A particular case is the Karch-Randall embedding AdS_4 x S^2. We explicitly prove that these embeddings are supersymmetric by showing that the kappa symmetry projections are compatible with half of the target space Killing spinors and argue that all these cases lead to AdS/dCFT dualities involving a CFT with a defect. We also find an asymptotically AdS_4 x S^2 embedding that corresponds to a holographic RG-flow on the defect. We then consider the pp-wave limit of the supersymmetric AdS-embeddings and show how it leads to half supersymmetric D-brane embeddings in the pp-wave background. We systematically analyze D-brane embeddings in the pp-wave background along with their supersymmetry. We construct all supersymmetric D-branes wrapped along the light-cone using operators in the dual gauge theory: the open string states are constructed using defect fields. We also find supersymmetric D1 (monopoles) and D3 (giant gravitons) branes that wrap only one of the light-cone directions. These correspond to non-perturbative states in the dual gauge theory.

  9. Wave propagation and shock formation in different magnetic structures

    E-Print Network [OSTI]

    Rebecca Centeno; Manuel Collados; Javier Trujillo Bueno

    2008-10-20T23:59:59.000Z

    Velocity oscillations "measured" simultaneously at the photosphere and the chromosphere -from time series of spectropolarimetric data in the 10830 A region- of different solar magnetic features allow us to study the properties of wave propagation as a function of the magnetic flux of the structure (i.e. two different-sized sunspots, a tiny pore and a facular region). While photospheric oscillations have similar characteristics everywhere, oscillations measured at chromospheric heights show different amplitudes, frequencies and stages of shock development depending on the observed magnetic feature. The analysis of the power and the phase spectra, together with simple theoretical modeling, lead to a series of results concerning wave propagation within the range of heights of this study. We find that, while the atmospheric cut-off frequency and the propagation properties of the different oscillating modes depend on the magnetic feature, in all the cases the power that reaches the high chromosphere above the atmospheric cut-off comes directly from the photosphere by means of linear vertical wave propagation rather than from non-linear interaction of modes.

  10. Double porosity modeling in elastic wave propagation for reservoir characterization

    SciTech Connect (OSTI)

    Berryman, J. G., LLNL

    1998-06-01T23:59:59.000Z

    Phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated and the coefficients in these linear equations identified. The generalization from a single porosity model increases the number of independent coefficients from three to six for an isotropic applied stress. In a quasistatic analysis, the physical interpretations are based upon considerations of extremes in both spatial and temporal scales. The limit of very short times is the one most relevant for wave propagation, and in this case both matrix porosity and fractures behave in an undrained fashion. For the very long times more relevant for reservoir drawdown,the double porosity medium behaves as an equivalent single porosity medium At the macroscopic spatial level, the pertinent parameters (such as the total compressibility) may be determined by appropriate field tests. At the mesoscopic scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on core, and the compressibility can be measured for a single fracture. We show explicitly how to generalize the quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt flow under partially saturated conditions can be explained alternatively in terms of the double-porosity model. The result is therefore a theory that generalizes, but is completely consistent with, Biot`s theory of poroelasticity and is valid for analysis of elastic wave data from highly fractured reservoirs.

  11. A RECONNECTION-DRIVEN RAREFACTION WAVE MODEL FOR CORONAL OUTFLOWS

    SciTech Connect (OSTI)

    Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Aulanier, G. [LESIA, Observatoire de Paris, CNRS, UPMC, Universite Paris Diderot, 5 place Jules Janssen, 92190 Meudon (France); Del Zanna, G., E-mail: stephen.bradshaw@rice.edu [DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2011-12-10T23:59:59.000Z

    We conduct numerical experiments to determine whether interchange reconnection at high altitude coronal null points can explain the outflows observed as blueshifts in coronal emission lines at the boundaries between open and closed magnetic field regions. In this scenario, a strong, post-reconnection pressure gradient forms in the field-aligned direction when dense and hot, active region core loops reconnect with neighboring tenuous and cool, open field lines. We find that the pressure gradient drives a supersonic outflow and a rarefaction wave develops in both the open and closed post-reconnection magnetic field regions. We forward-model the spectral line profiles for a selection of coronal emission lines to predict the spectral signatures of the rarefaction wave. We find that the properties of the rarefaction wave are consistent with the observed velocity versus temperature structure of the corona in the outflow regions, where the velocity increases with the formation temperature of the emission lines. In particular, we find excellent agreement between the predicted and observed Fe XII 195.119 A spectral line profiles in terms of the blueshift (10 km s{sup -1}), full width at half-maximum (83 mA) and symmetry. Finally, we find that T{sub i} < T{sub e} in the open field region, which indicates that the interchange reconnection scenario may provide a viable mechanism and source region for the slow solar wind.

  12. Offshoring and Directed Technical Change

    E-Print Network [OSTI]

    Acemoglu, Daron

    2012-11-24T23:59:59.000Z

    To study the short-run and long-run implications on wage inequality, we introduce directed technical change into a Ricardian model of offshoring. A unique final good is produced by combining a skilled and an unskilled ...

  13. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  14. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  15. Directional impedance of geared transmissions

    E-Print Network [OSTI]

    Wang, Albert Duan

    2012-01-01T23:59:59.000Z

    The purpose of this research is to develop a design tool for geared actuation systems that experience bidirectional exchange of energy with the environment. Despite the asymmetry of efficiency depending on the direction ...

  16. Regional 166 Direct Loan (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Development Services Agency's (ODSA) Regional 166 Direct Loan provides low-interest loans to businesses creating new jobs or preserving existing employment opportunities in the State of Ohio.

  17. Searching for A Generic Gravitational Wave Background via Bayesian Nonparametric Analysis with Pulsar Timing Arrays

    E-Print Network [OSTI]

    Xihao Deng

    2014-10-23T23:59:59.000Z

    Gravitational wave background results from the superposition of gravitational waves generated from all sources across the Universe. Previous efforts on detecting such a background with pulsar timing arrays assume it is an isotropic Gaussian background with a power law spectrum. However, when the number of sources is limited, the background might be non-Gaussian or the spectrum might not be a power law. Correspondingly previous analysis may not work effectively. Here we use a method --- Bayesian Nonparametric Analysis --- to try to detect a generic gravitational wave background, which directly sets constraints on the feasible shapes of the pulsar timing signals induced by a gravitational wave background and allows more flexible forms of the background. Our Bayesian nonparametric analysis will infer if a gravitational wave background is present in the data, and also estimate the parameters that characterize the background. This method will be much more effective than the conventional one assuming the background spectrum follows a power law in general cases. While the context of our discussion focuses on pulsar timing arrays, the analysis itself is directly applicable to detect and characterize any signals that arise from the superposition of a large number of astrophysical events.

  18. Project Profile: Direct Supercritical Carbon Dioxide Receiver...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Supercritical Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo The...

  19. Gaseous Hydrogen Delivery Breakout - Strategic Directions for...

    Broader source: Energy.gov (indexed) [DOE]

    Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

  20. Quantum direct communication with authentication

    SciTech Connect (OSTI)

    Lee, Hwayean [Center for Information Security Technologies (CIST) and Graduate School of Information Security (GSIS), Korea University, Anam Dong, Sungbuk Gu, Seoul (Korea, Republic of); Institut fuer Experimentalphysik, Universitaet Wien (Austria); Lim, Jongin [Center for Information Security Technologies (CIST) and Graduate School of Information Security (GSIS), Korea University, Anam Dong, Sungbuk Gu, Seoul (Korea, Republic of); Yang, HyungJin [Center for Information Security Technologies (CIST) and Graduate School of Information Security (GSIS), Korea University, Anam Dong, Sungbuk Gu, Seoul (Korea, Republic of); Department of Physics, Korea University, Chochiwon, Choongnam (Korea, Republic of)

    2006-04-15T23:59:59.000Z

    We propose two quantum direct communication (QDC) protocols with user authentication. Users can identify each other by checking the correlation of Greenberger-Horne-Zeilinger (GHZ) states. Alice can directly send a secret message to Bob without any previously shared secret using the remaining GHZ states after authentication. Our second QDC protocol can be used even though there is no quantum link between Alice and Bob. The security of the transmitted message is guaranteed by properties of entanglement of GHZ states.

  1. Directions

    E-Print Network [OSTI]

    Apr 13, 2013 ... Another Option is to fly to Chicago O'Hare International Airport (ORD), and then either rent a car and drive (about 2 to 2.5 hours) to Purdue, ...

  2. Evanescent wave and video microscopy methods for directly measuring interactions between surface-immobilized biomolecules 

    E-Print Network [OSTI]

    Everett, William Neil

    2009-05-15T23:59:59.000Z

    Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase...

  3. Evanescent wave and video microscopy methods for directly measuring interactions between surface-immobilized biomolecules

    E-Print Network [OSTI]

    Everett, William Neil

    2009-05-15T23:59:59.000Z

    Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase...

  4. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEANSprings Gets anColoring and Activity|

  5. Wave

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTURE LOOKS

  6. Black-hole quasinormal resonances: Wave analysis versus a geometric-optics approximation

    E-Print Network [OSTI]

    Shahar Hod

    2009-09-02T23:59:59.000Z

    It has long been known that null unstable geodesics are related to the characteristic modes of black holes-- the so called quasinormal resonances. The basic idea is to interpret the free oscillations of a black hole in the eikonal limit in terms of null particles trapped at the unstable circular orbit and slowly leaking out. The real part of the complex quasinormal resonances is related to the angular velocity at the unstable null geodesic. The imaginary part of the resonances is related to the instability timescale (or the inverse Lyapunov exponent) of the orbit. While this geometric-optics description of the black-hole quasinormal resonances in terms of perturbed null {\\it rays} is very appealing and intuitive, it is still highly important to verify the validity of this approach by directly analyzing the Teukolsky wave equation which governs the dynamics of perturbation {\\it waves} in the black-hole spacetime. This is the main goal of the present paper. We first use the geometric-optics technique of perturbing a bundle of unstable null rays to calculate the resonances of near-extremal Kerr black holes in the eikonal approximation. We then directly solve the Teukolsky wave equation (supplemented by the appropriate physical boundary conditions) and show that the resultant quasinormal spectrum obtained directly from the wave analysis is in accord with the spectrum obtained from the geometric-optics approximation of perturbed null rays.

  7. Black-hole quasinormal resonances: Wave analysis versus a geometric-optics approximation

    SciTech Connect (OSTI)

    Hod, Shahar [Ruppin Academic Center, Emeq Hefer 40250 (Israel) and Hadassah Institute, Jerusalem 91010 (Israel)

    2009-09-15T23:59:59.000Z

    It has long been known that null unstable geodesics are related to the characteristic modes of black holes--the so-called quasinormal resonances. The basic idea is to interpret the free oscillations of a black hole in the eikonal limit in terms of null particles trapped at the unstable circular orbit and slowly leaking out. The real part of the complex quasinormal resonances is related to the angular velocity at the unstable null geodesic. The imaginary part of the resonances is related to the instability time scale (or the inverse Lyapunov exponent) of the orbit. While this geometric-optics description of the black-hole quasinormal resonances in terms of perturbed null rays is very appealing and intuitive, it is still highly important to verify the validity of this approach by directly analyzing the Teukolsky wave equation which governs the dynamics of perturbation waves in the black-hole spacetime. This is the main goal of the present paper. We first use the geometric-optics technique of perturbing a bundle of unstable null rays to calculate the resonances of near-extremal Kerr black holes in the eikonal approximation. We then directly solve the Teukolsky wave equation (supplemented by the appropriate physical boundary conditions) and show that the resultant quasinormal spectrum obtained directly from the wave analysis is in accord with the spectrum obtained from the geometric-optics approximation of perturbed null rays.

  8. The Loudest Gravitational Wave Events

    E-Print Network [OSTI]

    Hsin-Yu Chen; Daniel E. Holz

    2014-09-04T23:59:59.000Z

    As first emphasized by Bernard Schutz, there exists a universal distribution of signal-to-noise ratios for gravitational wave detection. Because gravitational waves (GWs) are almost impossible to obscure via dust absorption or other astrophysical processes, the strength of the detected signal is dictated solely by the emission strength and the distance to the source. Assuming that the space density of an arbitrary population of GW sources does not evolve, we show explicitly that the distribution of detected signal-to-noise (SNR) values depends solely on the detection threshold; it is independent of the detector network (interferometer or pulsar timing array), the individual detector noise curves (initial or Advanced LIGO), the nature of the GW sources (compact binary coalescence, supernova, or some other discrete source), and the distributions of source variables (only non-spinning neutron stars of mass exactly $1.4\\,M_\\odot$ or a complicated distribution of masses and spins). We derive the SNR distribution for each individual detector within a network as a function of the relative detector orientations and sensitivities. While most detections will have SNR near the detection threshold, there will be a tail of events to higher SNR. We derive the SNR distribution of the loudest (highest SNR) events in any given sample of detections. We find that the median SNR of the loudest out of the first four events should have an $\\mbox{SNR}=22$ (for a threshold of 12, appropriate for the Advanced LIGO/Virgo network), increasing to a median value for the loudest SNR of 47 for 40 detections. We expect these loudest events to provide particularly powerful constraints on their source parameters, and they will play an important role in extracting astrophysics from gravitational wave sources. These distributions also offer an important internal calibration of the response of the GW detector networks.

  9. Particle acceleration in superluminal strong waves

    E-Print Network [OSTI]

    Teraki, Yuto; Nagataki, Shigehiro

    2015-01-01T23:59:59.000Z

    We calculate the electron acceleration in random superluminal strong waves (SLSWs) and radiation from them by using numerical methods in the context of the termination shock of the pulsar wind nebulae. We pursue the electrons by solving the equation of motion in the analytically expressed electromagnetic turbulences. These consist of primary SLSW and isotropically distributed secondary electromagnetic waves. Under the dominance of the secondary waves, all electrons gain nearly equal energy. On the other hand, when the primary wave is dominant, selective acceleration occurs. The phase of the primary wave felt by the electrons moving nearly along the wavevector changes very slowly compared to the oscillation of the wave, which is called "phase locked", and such electrons are continuously accelerated. This acceleration by SLSWs may play a crucial role in the pre-acceleration for the shock acceleration. In general, the radiation from the phase-locked population is different from the synchro-Compton radiation. How...

  10. Wave Heating of the Solar Atmosphere

    E-Print Network [OSTI]

    Arregui, I

    2015-01-01T23:59:59.000Z

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding on coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding on the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation, and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us understanding and quantifying magnetic wave heating of the sola...

  11. Refrigeration system having standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S. (Glen Allen, VA)

    1992-01-01T23:59:59.000Z

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  12. Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar

    SciTech Connect (OSTI)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S. [LIGO - California Institute of Technology, Pasadena, California 91125 (United States)

    2011-02-15T23:59:59.000Z

    The physical mechanisms responsible for pulsar timing glitches are thought to excite quasinormal mode oscillations in their parent neutron star that couple to gravitational-wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two colocated Hanford gravitational-wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational-wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational-wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3x10{sup -21} to 1.4x10{sup -20} on the peak intrinsic strain amplitude of gravitational-wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0x10{sup 44} to 1.3x10{sup 45} erg.

  13. Laser Measurement of SAM Bulk and Surface Wave Amplitudes for Material Microstructure Analysis

    SciTech Connect (OSTI)

    Ken L. Telschow; Chiaki Miyasaka; David L. Cottle

    2005-07-01T23:59:59.000Z

    Scanning Acoustic Microscopy (SAM) at ultra high frequencies has proven to be a useful tool for investigating materials on the scale of individual grains. This technique is normally performed in a reflection mode from one side of a sample surface. Information about the generation and transmission of bulk acoustic waves into the material is inferred from the reflection signal amplitude. We present an adaptation to the SAM method whereby the acoustic bulk waves are directly visualized through laser acoustic detection. Ultrasonic waves were emitted from a nominal 200 MHz point focus acoustic lens into a thin silicon plate (thickness 75ìm) coupled with distilled water. A scanned laser beam detected the bulk and surface acoustic waves at the opposite surface of the thin silicon plate. Distinct amplitude patterns exhibiting the expected symmetry for Silicon were observed that alter in predictable ways as the acoustic focal point was moved throughout the plate. Predictions of the acoustic wave fields generated by the acoustic lens within and at the surface of the Silicon are being investigated through the angular spectrum of plane waves approach. Results shall be presented for plates with (100) and (111) orientations followed by discussion of applications of the technique for material microstructure analysis.

  14. A search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; J. Abadie; B. P. Abbott; R. Abbott; R. Adhikari; P. Ajith; B. Allen; G. Allen; E. Amador Ceron; R. S. Amin; S. B. Anderson; W. G. Anderson; M. A. Arain; M. Araya; Y. Aso; S. Aston; P. Aufmuth; C. Aulbert; S. Babak; P. Baker; S. Ballmer; D. Barker; B. Barr; P. Barriga; L. Barsotti; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; B. Behnke; M. Benacquista; M. F. Bennett; J. Betzwieser; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; R. Biswas; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; O. Bock; T. P. Bodiya; R. Bondarescu; R. Bork; M. Born; S. Bose; P. R. Brady; V. B. Braginsky; J. E. Brau; J. Breyer; D. O. Bridges; M. Brinkmann; M. Britzger; A. F. Brooks; D. A. Brown; S. Buchner; A. Bullington; A. Buonanno; O. Burmeister; R. L. Byer; L. Cadonati; J. Cain; J. B. Camp; J. Cannizzo; K. C. Cannon; J. Cao; C. Capano; L. Cardenas; S. Caudill; M. Cavaglià; C. Cepeda; T. Chalermsongsak; E. Chalkley; P. Charlton; S. Chatterji; S. Chelkowski; Y. Chen; N. Christensen; S. S. Y. Chua; C. T. Y. Chung; D. Clark; J. Clark; J. H. Clayton; R. Conte; D. Cook; T. R. C. Corbitt; N. Cornish; D. Coward; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; R. M. Culter; A. Cumming; L. Cunningham; K. Dahl; S. L. Danilishin; K. Danzmann; B. Daudert; G. Davies; E. J. Daw; T. Dayanga; D. DeBra; J. Degallaix; V. Dergachev; R. DeSalvo; S. Dhurandhar; M. Díaz; F. Donovan; K. L. Dooley; E. E. Doomes; R. W. P. Drever; J. Driggers; J. Dueck; I. Duke; J. -C. Dumas; M. Edgar; M. Edwards; A. Effler; P. Ehrens; T. Etzel; M. Evans; T. Evans; S. Fairhurst; Y. Faltas; Y. Fan; D. Fazi; H. Fehrmann; L. S. Finn; K. Flasch; S. Foley; C. Forrest; N. Fotopoulos; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; D. Friedrich; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; J. A. Garofoli; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; E. Goetz; L. M. Goggin; G. González; S. Goßler; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; R. Grosso; H. Grote; S. Grunewald; E. K. Gustafson; R. Gustafson; B. Hage; J. M. Hallam; D. Hammer; G. D. Hammond; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; K. Haughian; K. Hayama; T. Hayler; J. Heefner; I. S. Heng; A. Heptonstall; M. Hewitson; S. Hild; E. Hirose; D. Hoak; K. A. Hodge; K. Holt; D. J. Hosken; J. Hough; E. Howell; D. Hoyland; B. Hughey; S. Husa; S. H. Huttner; D. R. Ingram; T. Isogai; A. Ivanov; W. W. Johnson; D. I. Jones; G. Jones; R. Jones; L. Ju; P. Kalmus; V. Kalogera; S. Kandhasamy; J. Kanner; E. Katsavounidis; K. Kawabe; S. Kawamura; F. Kawazoe; W. Kells; D. G. Keppel; A. Khalaidovski; F. Y. Khalili; R. Khan; E. Khazanov; H. Kim; P. J. King; J. S. Kissel; S. Klimenko; K. Kokeyama; V. Kondrashov; R. Kopparapu; S. Koranda; D. Kozak; V. Kringel; B. Krishnan; G. Kuehn; J. Kullman; R. Kumar; P. Kwee; P. K. Lam; M. Landry; M. Lang; B. Lantz; N. Lastzka; A. Lazzarini; P. Leaci; M. Lei; N. Leindecker; I. Leonor; H. Lin; P. E. Lindquist; T. B. Littenberg; N. A. Lockerbie; D. Lodhia; M. Lormand; P. Lu; M. Lubinski; A. Lucianetti; H. Lück; A. Lundgren; B. Machenschalk; M. MacInnis; M. Mageswaran; K. Mailand; C. Mak; I. Mandel; V. Mandic; S. Márka; Z. Márka; A. Markosyan; J. Markowitz; E. Maros; I. W. Martin; R. M. Martin; J. N. Marx; K. Mason; F. Matichard; L. Matone; R. A. Matzner; N. Mavalvala; R. McCarthy; D. E. McClelland; S. C. McGuire; G. McIntyre; D. J. A. McKechan; M. Mehmet; A. Melatos; A. C. Melissinos; G. Mendell; D. F. Menéndez; R. A. Mercer; L. Merrill; S. Meshkov; C. Messenger; M. S. Meyer; H. Miao; J. Miller; Y. Mino; S. Mitra; V. P. Mitrofanov; G. Mitselmakher; R. Mittleman; O. Miyakawa; B. Moe; S. D. Mohanty; S. R. P. Mohapatra; G. Moreno; K. Mors; K. Mossavi; C. MowLowry; G. Mueller; H. Müller-Ebhardt; S. Mukherjee; A. Mullavey; J. Munch; P. G. Murray; T. Nash; R. Nawrodt; J. Nelson; G. Newton; E. Nishida; A. Nishizawa; J. O'Dell; B. O'Reilly; R. O'Shaughnessy; E. Ochsner; G. H. Ogin; R. Oldenburg; D. J. Ottaway; R. S. Ottens; H. Overmier; B. J. Owen; A. Page; Y. Pan; C. Pankow; M. A. Papa; P. Patel; D. Pathak; M. Pedraza; L. Pekowsky; S. Penn; C. Peralta; A. Perreca; M. Pickenpack; I. M. Pinto; M. Pitkin; H. J. Pletsch; M. V. Plissi; F. Postiglione; M. Principe; R. Prix; L. Prokhorov; O. Puncken; V. Quetschke; F. J. Raab; D. S. Rabeling; H. Radkins; P. Raffai; Z. Raics; M. Rakhmanov; V. Raymond; C. M. Reed; T. Reed; H. Rehbein; S. Reid; D. H. Reitze; R. Riesen; K. Riles; P. Roberts; N. A. Robertson; C. Robinson; E. L. Robinson; S. Roddy; C. Röver; J. Rollins; J. D. Romano; J. H. Romie; S. Rowan; A. Rüdiger; K. Ryan; S. Sakata; L. Sammut; L. Sancho de la Jordana; V. Sandberg; V. Sannibale; L. Santamaría; G. Santostasi; S. Saraf; P. Sarin; B. S. Sathyaprakash; S. Sato; M. Satterthwaite; P. R. Saulson; R. Savage; R. Schilling

    2010-11-23T23:59:59.000Z

    The physical mechanisms responsible for pulsar timing glitches are thought to excite quasi-normal mode oscillations in their parent neutron star that couple to gravitational wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two co-located Hanford gravitational wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3e-21 to 1.4e-20 on the peak intrinsic strain amplitude of gravitational wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0e44 to 1.3e45 erg.

  15. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect (OSTI)

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China); Sun, M.-T. [Department of Mechanical Engineering, Chang-Gung University, Kwei-San, Taiwan (China)], E-mail: chou@phys.nthu.edu.tw

    2009-05-01T23:59:59.000Z

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 {+-} 1.3%, emissivity reduction 8.2 {+-} 1.4%, and local suppression 68.5 {+-} 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10{sup -5} rad s{sup -1}.

  16. Disk heating by more than one spiral density wave

    E-Print Network [OSTI]

    I. Minchev; A. C. Quillen

    2005-11-01T23:59:59.000Z

    We consider a differentially rotating, 2D stellar disk perturbed by two steady state spiral density waves moving at different patterns speeds. Our investigation is based on direct numerical integration of initially circular test-particle orbits. We examine a range of spiral strengths and spiral speeds and show that stars in this time dependent gravitational field can be heated (their random motions increased).This is particularly noticeable in the simultaneous propagation of a 2-armed spiral density wave near the corotation resonance (CR), and a weak 4-armed one near the inner and outer 4:1 Lindblad resonances. In simulations with 2 spiral waves moving at different pattern speeds we find: (1) the variance of the radial velocity, sigma_R^2, exceeds the sum of the variances measured from simulations with each individual pattern; (2) sigma_R^2 can grow with time throughout the entire simulation; (3) sigma_R^2 is increased over a wider range of radii compared to that seen with one spiral pattern; (4) particles diffuse radially in real space whereas they don't when only one spiral density wave is present. Near the CR with the stronger, 2-armed pattern, test particles are observed to migrate radially. These effects take place at or near resonances of both spirals so we interpret them as the result of stochastic motions. This provides a possible new mechanism for increasing the stellar velocity dispersion in galactic disks. If multiple spiral patterns are present in the Galaxy we predict that there should be large variations in the stellar velocity dispersion as a function of radius.

  17. Radial disk heating by more than one spiral density wave

    E-Print Network [OSTI]

    I. Minchev; A. C. Quillen

    2005-10-28T23:59:59.000Z

    We consider a differentially rotating, 2D stellar disk perturbed by two steady state spiral density waves moving at different patterns speeds. Our investigation is based on direct numerical integration of initially circular test-particle orbits. We examine a range of spiral strengths and spiral speeds and show that stars in this time dependent gravitational field can be heated (their random motions increased). This is particularly noticeable in the simultaneous propagation of a 2-armed spiral density wave near the corotation resonance (CR), and a weak 4-armed one near the inner and outer 4:1 Lindblad resonances. In simulations with 2 spiral waves moving at different pattern speeds we find: (1) the variance of the radial velocity, sigma_R^2, exceeds the sum of the variances measured from simulations with each individual pattern; (2) sigma_R^2 can grow with time throughout the entire simulation; (3) sigma_R^2 is increased over a wider range of radii compared to that seen with one spiral pattern; (4) particles diffuse radially in real space whereas they don't when only one spiral density wave is present. Near the CR with the stronger, 2-armed pattern, test particles are observed to migrate radially. These effects take place at or near resonances of both spirals so we interpret them as the result of stochastic motions. This provides a possible new mechanism for increasing the stellar velocity dispersion in galactic disks. If multiple spiral patterns are present in the Galaxy we predict that there should be large variations in the stellar velocity dispersion as a function of radius.

  18. Scattering of internal gravity waves

    E-Print Network [OSTI]

    Leaman Nye, Abigail

    2011-04-19T23:59:59.000Z

    of the perturbed buoy- ancy field throughout a period of the motion. Curves represent cross-sections taken from the incident beam (cyan); a beam after reflection from a solid horizontal bound- ary (dark blue) and a beam after interaction with the sponge formation... wavenumber components and (b) plots power spectra calculated with Fourier and maximum entropy methods. k˜ is a nondimensional wavenumber representing the number of waves in an across-beam section of length Rc. . . . . . . 114 4.7 Two-dimensional power spectra...

  19. Electromagnetic or other directed energy pulse launcher

    DOE Patents [OSTI]

    Ziolkowski, Richard W. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  20. Sound waves and modulational instabilities on continuous wave solutions in spinor Bose-Einstein condensates

    E-Print Network [OSTI]

    Richard S. Tasgal; Y. B. Band

    2015-01-21T23:59:59.000Z

    We analyze sound waves (phonons, Bogoliubov excitations) propagating on continuous wave (cw) solutions of repulsive $F=1$ spinor Bose-Einstein condensates (BECs), such as $^{23}$Na (which is antiferromagnetic or polar) and $^{87}$Rb (which is ferromagnetic). Zeeman splitting by a uniform magnetic field is included. All cw solutions to ferromagnetic BECs with vanishing $M_F=0$ particle density and non-zero components in both $M_F=\\pm 1$ fields are subject to modulational instability (MI). MI increases with increasing particle density. MI also increases with differences in the components' wavenumbers; this effect is larger at lower densities but becomes insignificant at higher particle densities. CW solutions to antiferromagnetic (polar) BECS with vanishing $M_F=0$ particle density and non-zero components in both $M_F=\\pm 1$ fields do not suffer MI if the wavenumbers of the components are the same. If there is a wavenumber difference, MI initially increases with increasing particle density, then peaks before dropping to zero beyond a given particle density. The cw solutions with particles in both $M_F=\\pm 1$ components and nonvanishing $M_F=0$ components do not have MI if the wavenumbers of the components are the same, but do exhibit MI when the wavenumbers are different. Direct numerical simulations of a cw with weak white noise confirm that weak noise grows fastest at wavenumbers with the largest MI, and shows some of the results beyond small amplitude perturbations. Phonon dispersion curves are computed numerically; we find analytic solutions for the phonon dispersion in a variety of limiting cases.