National Library of Energy BETA

Sample records for wave cloud radar

  1. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect (OSTI)

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  2. ARM: Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Nitin Bharadwaj

    1990-01-01

    Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

  3. Remote Cloud Sensing Intensive Observation Period (RCS-IOP) millimeter-wave radar calibration and data intercomparison

    SciTech Connect (OSTI)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E.

    1996-04-01

    During April 1994, the University of Massachusetts (UMass) and the Pennsylvania State University (Penn State) fielded two millimeter-wave atmospheric radars in the Atmospheric Radiation Measurement Remote Cloud Sensing Intensive Operation Period (RCS-IOP) experiment. The UMass Cloud Profiling Radar System (CPRS) operates simultaneously at 33.12 GHz and 94.92 GHz through a single antenna. The Penn State radar operates at 93.95 GHz and has separate transmitting and receiving antennas. The two systems were separated by approximately 75 meters and simultaneously observed a variety of cloud types at verticle incidence over the course of the experiment. This abstract presents some initial results from our calibration efforts. An absolute calibration of the UMass radar was made from radar measurements of a trihedral corner reflector, which has a known radar cross-section. A relative calibration of between the Penn State and UMass radars is made from the statistical comparison of zenith pointing measurements of low altitude liquid clouds. Attenuation is removed with the aid of radiosonde data, and the difference in the calibration between the UMass and Penn State radars is determined by comparing the ratio of 94-GHz and 95-GHz reflectivity values to a model that accounts for parallax effects of the two antennas used in the Penn State system.

  4. Dual-wavelength millimeter-wave radar measurements of cirrus clouds

    SciTech Connect (OSTI)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E.

    1996-04-01

    In April 1994, the University of Massachusetts` 33-GHz/95-GHz Cloud Profiling Radar System (CPRS) participated in the multi-sensor Remote Cloud Sensing (RCS) Intensive Operation Period (IOP), which was conducted at the Southern Great Plains Cloud and Radiation Testbed (CART). During the 3-week experiment, CPRS measured a variety of cloud types and severe weather. In the context of global warming, the most significant measurements are dual-frequency observations of cirrus clouds, which may eventually be used to estimate ice crystal size and shape. Much of the cirrus data collected with CPRS show differences between 33-GHz and 95-GHz reflectivity measurements that are correlated with Doppler estimates of fall velocity. Because of the small range of reflectivity differences, a precise calibration of the radar is required and differential attenuation must also be removed from the data. Depolarization, which is an indicator of crystal shape, was also observed in several clouds. In this abstract we present examples of Mie scattering from cirrus and estimates of differential attenuation due to water vapor and oxygen that were derived from CART radiosonde measurements.

  5. The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar

    SciTech Connect (OSTI)

    P Kollias; MA Miller; KB Widener; RT Marchand; TP Ackerman

    2005-12-30

    The United States (U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates millimeter wavelength cloud radars (MMCRs) in several climatological regimes. The MMCRs, are the primary observing tool for quantifying the properties of nearly all radiatively important clouds over the ACRF sites. The first MMCR was installed at the ACRF Southern Great Plains (SGP) site nine years ago and its original design can be traced to the early 90s. Since then, several MMCRs have been deployed at the ACRF sites, while no significant hardware upgrades have been performed. Recently, a two-stage upgrade (first C-40 Digital Signal Processors [DSP]-based, and later the PC-Integrated Radar AcQuisition System [PIRAQ-III] digital receiver) of the MMCR signal-processing units was completed. Our future MMCR related goals are: 1) to have a cloud radar system that continues to have high reliability and uptime and 2) to suggest potential improvements that will address increased sensitivity needs, superior sampling and low cost maintenance of the MMCRs. The Traveling Wave Tube (TWT) technology, the frequency (35-GHz), the radio frequency (RF) layout, antenna, the calibration and radar control procedure and the environmental enclosure of the MMCR remain assets for our ability to detect the profile of hydrometeors at all heights in the troposphere at the ACRF sites.

  6. ARM - Field Campaign - Cloud Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of aerosol properties during clear-sky conditions. The ETL Radar Meteorology and Oceanography Division will field their NOAAK scanning cloud radar near the new ARM millimeter...

  7. Scanning ARM Cloud Radar Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  8. ARM: Millimeter Wavelength Cloud Radar (MMCR): transmitted RF...

    Office of Scientific and Technical Information (OSTI)

    transmitted RF power Title: ARM: Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Authors: Karen ...

  9. ARM: X-Band Scanning ARM Cloud Radar (X-SACR) Side-Looking Radar...

    Office of Scientific and Technical Information (OSTI)

    Availability: ORNL Language: English Subject: 54 Environmental Sciences Cloud particle size distribution; Hydrometeor fall velocity; Radar polarization; Radar reflectivity Dataset ...

  10. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  11. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (first echo). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  12. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  13. W-Band ARM Cloud Radar - Specifications and Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-Band ARM Cloud Radar - Specifications and Design K. B. Widener Pacific Northwest ... to develop and deploy the W-band ARM Cloud Radar (WACR) at the SGP central facility. ...

  14. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Zenith Pointing...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 54 Environmental Sciences Atmospheric turbulence; Cloud particle size distribution; Hydrometeor fall velocity; Radar Doppler; Radar polarization; Radar ...

  15. CloudSat as a Global Radar Calibrator

    SciTech Connect (OSTI)

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  16. Posters Radar/Radiometer Retrievals of Cloud Liquid Water and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for retrieving cloud liquid water content and drizzle characteristics using a K -band Doppler radar (Kropfli et al. 1990) and microwave radiometer (Hogg et al. 1983). The...

  17. Separating Cloud and Drizzle Radar Moments during Precipitation...

    Office of Scientific and Technical Information (OSTI)

    Onset using Doppler Spectra Citation Details In-Document Search Title: Separating Cloud and Drizzle Radar Moments during Precipitation Onset using Doppler Spectra Authors: ...

  18. Scanning ARM Cloud Radar Handbook (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical ... Subject: 54 ENVIRONMENTAL SCIENCES; ATTENUATION; CLOUDS; MANUALS; RADAR; WATER VAPOR Word ...

  19. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Zenith Pointing...

    Office of Scientific and Technical Information (OSTI)

    Availability: ORNL Language: English Subject: 54 Environmental Sciences Cloud particle size distribution; Hydrometeor fall velocity; Radar polarization; Radar reflectivity Dataset ...

  20. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Authors: Dan Nelson ; ...

  1. W-band ARM Cloud Radar (WACR) Handbook

    SciTech Connect (OSTI)

    Widener, KB; Johnson, K

    2005-01-05

    The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and composition of clouds at 95.04 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar reports estimates for the first three spectra moments for each range gate up to 15 km. The 0th moment is reflectivity, the 1st moment is radial velocity, and the 2nd moment is spectral width. Also available are the raw spectra files. Unlike the millimeter wavelength cloud radar (MMCR), the WACR does not use pulse coding and operates in only copolarization and cross-polarization modes.

  2. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Rmillard, J.; Szyrmer, W.

    2011-07-02

    Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud-scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter-wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud-only, cloud mixed with drizzle, and drizzle-only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal-to-noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed.

  3. ARM: Marine W-band (95 GHz) ARM Cloud Radar (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Radar Title: ARM: Marine W-band (95 GHz) ARM Cloud Radar Marine W-band (95 GHz) ARM Cloud Radar Authors: Joseph Hardin ; Bradley Isom ; Alyssa Matthews ; Karen Johnson ; Nitin ...

  4. Scanning ARM Cloud Radars Part I: Operational Sampling Strategies

    SciTech Connect (OSTI)

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2014-03-01

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A cloud surveillance scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  5. W-band ARM Cloud Radar (WACR) Update and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-band ARM Cloud Radar (WACR) Update and Status PopStefanija, Ivan ProSensing, Inc. Mead, ... Widener, Kevin Pacific Northwest National Laboratory Category: Instruments Two W-band ARM ...

  6. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan Authors: Dan Nelson ; Joseph Hardin ; ...

  7. ARM: X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    W-SACR) Corner Reflector Raster Scan Title: ARM: X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector Raster Scan X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector ...

  8. ARM: Marine W-band (95 GHz) ARM Cloud Radar, filtered spectral...

    Office of Scientific and Technical Information (OSTI)

    Radar, filtered spectral data, co-polarized mode Title: ARM: Marine W-band (95 GHz) ARM Cloud Radar, filtered spectral data, co-polarized mode Marine W-band (95 GHz) ARM Cloud ...

  9. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan...

    Office of Scientific and Technical Information (OSTI)

    Cross-Wind RHI Scan Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan Authors: Dan Nelson ; Joseph ...

  10. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Raster Scan Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Raster Scan Authors: Dan Nelson ; ...

  11. ARM - Field Campaign - DC-8 Cloud Radar Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsDC-8 Cloud Radar Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : DC-8 Cloud Radar Campaign 1998.06.16 - 1998.06.28 Lead Scientist : Stephen Sekelsky Data Availability Quick-look images and datalogs are available from http://abyss.ecs.umass.edu/CART98DC8/ Data files are available to interested science team members. Contact Lihua Li (lihua@mirsl.ecs.umass.edu) or Steve Sekelsky (sekelsky@mirsl.ecs.umass.edu). Summary

  12. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Szyrmer, W.; Rmillard, J.

    2011-07-02

    In part I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended to include skewness and kurtosis as additional descriptors of the Doppler spectrum. Here, a short climatology of observed Doppler spectra moments as a function of the radar reflectivity at continental and maritime ARM sites is presented. The evolution of the Doppler spectra moments is consistent with the onset and growth of drizzle particles and can be used to assist modeling studies of drizzle onset and growth. Time-height radar observations are used to exhibit the coherency of the Doppler spectra shape parameters and demonstrate their potential to improve the interpretation and use of radar observations. In addition, a simplified microphysical approach to modeling the vertical evolution of the drizzle particle size distribution in warm stratiform clouds is described and used to analyze the observations. The formation rate of embryonic drizzle droplets due to the autoconversion process is not calculated explicitly; however, accretion and evaporation processes are explicitly modeled. The microphysical model is used as input to a radar Doppler spectrum forward model, and synthetic radar Doppler spectra moments are generated. Three areas of interest are studied in detail: early drizzle growth near the cloud top, growth by accretion of the well-developed drizzle, and drizzle depletion below the cloud base due to evaporation. The modeling results are in good agreement with the continental and maritime observations. This demonstrates that steady state one-dimensional explicit microphysical models coupled with a forward model and comprehensive radar Doppler spectra observations offer a powerful method to explore the vertical evolution of the drizzle particle size distribution.

  13. Radar applications of gigawatt sources at millimeter wave frequencies

    SciTech Connect (OSTI)

    Bruder, J.A.; Belcher, M.L. . Research Inst.)

    1991-06-01

    The high transmit powers provided by free electron laser (FEL) sources in combination with the narrow antenna beamwidths achievable at millimeter wave (MMW) frequencies offer potential for use in a number of radar applications. Potential applications of high power millimeter wave sources include satellite imaging, low angle radar tracking, radar astronomy, and a number of other possible applications such as atmospheric research, space debris detection, and space vehicle tracking. 3 refs., 3 figs.

  14. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect (OSTI)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the

  15. ARM: Ka-Band Scanning ARM Cloud Radar, filtered spectral data...

    Office of Scientific and Technical Information (OSTI)

    Ka-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; Nitin Bharadwaj + Show ...

  16. ARM: X-Band Scanning ARM Cloud Radar, filtered spectral data...

    Office of Scientific and Technical Information (OSTI)

    X-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; Nitin Bharadwaj + Show ...

  17. Interferometric millimeter wave and THz wave doppler radar

    DOE Patents [OSTI]

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  18. Validation of a radar doppler spectra simulator using measurements from the ARM cloud radars

    SciTech Connect (OSTI)

    Remillard, J.; Luke, E.; Kollias, P.

    2010-03-15

    The use of forward models as an alternative approach to compare models with observations contains advantages and challenges. Radar Doppler spectra simulators are not new; their application in high- resolution models with bin microphysics schemes could help to compare model output with the Doppler spectra recorded from the vertically pointing cloud radars at the ARM Climate Research Facility sites. The input parameters to a Doppler spectra simulator are both microphysical (e.g., particle size, shape, phase, and number concentration) and dynamical (e.g., resolved wind components and sub-grid turbulent kinetic energy). Libraries for spherical and non-spherical particles are then used to compute the backscattering cross-section and fall velocities, while the turbulence is parameterized as a Gaussian function with a prescribed width. The Signal-to-Noise Ratio (SNR) is used to determine the amount of noise added throughout the spectrum, and the spectral smoothing due to spectral averages is included to reproduce the averaging realized by cloud radars on successive returns. Thus, realistic Doppler spectra are obtained, and several parameters that relate to the morphological characteristics of the synthetically generated spectra are computed. Here, the results are compared to the new ARM microARSCL data products in an attempt to validate the simulator. Drizzling data obtained at the SGP site by the MMCR and the AMF site at Azores using the WACR are used to ensure the liquid part and the turbulence representation part of the simulator are properly accounted in the forward model.

  19. ARM: Millimeter Wavelength Cloud Radar (MMCR): monitoring data...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences Horizontal wind; Radar Doppler; Radar reflectivity; Vertical velocity ...

  20. ARM - Evaluation Product - Scanning ARM Cloud Radar Corrections...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    added moment variables (reflectivitycorrected, meandopplervelocitycorrected, and meandopplervelocitycorrected2) provide radar moments filtered to remove measurement...

  1. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The

  2. ARM: X-Band Scanning ARM Cloud Radar (XSACR) RHI Scans, which...

    Office of Scientific and Technical Information (OSTI)

    X-Band Scanning ARM Cloud Radar (XSACR) RHI Scans, which can vary in elevation range and azimuth Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; ...

  3. Monitoring internal organ motion with continuous wave radar in CT

    SciTech Connect (OSTI)

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-09-15

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the

  4. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.« less

  5. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  6. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2006-01-04

    The project is concerned with the characterization of cloud macrophysical and microphysical properties by combining radar, lidar, and radiometer measurements available from the U.S. Department of Energy's ARM Climate Research Facility (ACRF). To facilitate the production of integrated cloud product by applying different algorithms to the ARM data streams, an advanced cloud classification algorithm was developed to classified clouds into eight types at the SGP site based on ground-based active and passive measurements. Cloud type then can be used as a guidance to select an optimal retrieval algorithm for cloud microphysical property retrieval. The ultimate goal of the effort is to develop an operational cloud classification algorithm for ARM data streams. The vision 1 IDL code of the cloud classification algorithm based on the SGP ACRF site observations was delivered to the ARM cloud translator during 2004 ARM science team meeting. Another goal of the project is to study midlevel clouds, especially mixed-phase clouds, by developing new retrieval algorithms using integrated observations at the ACRF sites. Mixed-phase clouds play a particular role in the Arctic climate system. A multiple remote sensor based algorithm, which can provide ice water content and effective size profiles, liquid water path, and layer-mean effective radius of water droplet, was developed to study arctic mixed-phase clouds. The algorithm is applied to long-term ARM observations at the NSA ACRF site. Based on these retrieval results, we are studying seasonal and interannual variations of arctic mixed-phase cloud macro- and micro-physical properties.

  7. ARM - Field Campaign - Radar Wind Profiler for Cloud Forecasting at BNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsRadar Wind Profiler for Cloud Forecasting at BNL Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Radar Wind Profiler for Cloud Forecasting at BNL 2013.07.15 - 2015.08.06 Lead Scientist : Michael Jensen For data sets, see below. Abstract In support of recent activities funded by the DOE Energy Efficiency and Renewable Energy (EERE) to produce short-term

  8. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  9. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  10. Scanning ARM Cloud Radars. Part I: Operational Sampling Strategies...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE SC OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Word Cloud More Like This Full Text ...

  11. Scanning ARM Cloud Radars. Part II: Data Quality Control and...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE SC OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Word Cloud More Like This Full Text ...

  12. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    SciTech Connect (OSTI)

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.; Lenshow, D.H.; Mayer, S.D.

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  13. Scanning ARM Cloud Radars. Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen L.; Clothiaux, Eugene E.

    2014-03-01

    The Scanning ARM Cloud Radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the HS-RHI SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  14. A Comparison of ARM Cloud Radar Profiles with MMF Simulated Radar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It has been used as a tool in evaluating global climate and weather models (Hewitson and Crane 1994, 1996; Tennant 2003) including cloud properties (Jakob et al. 2003, 2004). Why ...

  15. Scanning ARM Cloud Radars Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen; Clothiaux, Eugene E.

    2014-03-01

    The Scanning ARM Cloud Radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the Hemispherical Sky Range Height Indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  16. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  17. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  18. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  19. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Joseph Hardin; Dan Nelson; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Alyssa Matthews; Nitin Bharadwaj

    2011-05-24

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  20. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Dan Nelson; Joseph Hardin; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    2011-09-14

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  1. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Joseph Hardin; Dan Nelson; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Alyssa Matthews; Nitin Bharadwaj

    1990-01-01

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  2. On the relationship among cloud turbulence, droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar

    SciTech Connect (OSTI)

    Feingold, G.; Frisch, A.S.; Cotton, W.R.

    1999-09-01

    Cloud radar, microwave radiometer, and lidar remote sensing data acquired during the Atlantic Stratocumulus Transition Experiment (ASTEX) are analyzed to address the relationship between (1) drop number concentration and cloud turbulence as represented by vertical velocity and vertical velocity variance and (2) drizzle formation and cloud turbulence. Six cases, each of about 12 hours duration, are examined; three of these cases are characteristic of nondrizzling boundary layers and three of drizzling boundary layers. In all cases, microphysical retrievals are only performed when drizzle is negligible (radar reflectivity{lt}{minus}17dBZ). It is shown that for the cases examined, there is, in general, no correlation between drop concentration and cloud base updraft strength, although for two of the nondrizzling cases exhibiting more classical stratocumulus features, these two parameters are correlated. On drizzling days, drop concentration and cloud-base vertical velocity were either not correlated or negatively correlated. There is a significant positive correlation between drop concentration and mean in-cloud vertical velocity variance for both nondrizzling boundary layers (correlation coefficient r=0.45) and boundary layers that have experienced drizzle (r=0.38). In general, there is a high correlation (r{gt}0.5) between radar reflectivity and in-cloud vertical velocity variance, although one of the boundary layers that experienced drizzle exhibited a negative correlation between these parameters. However, in the subcloud region, all boundary layers that experienced drizzle exhibit a negative correlation between radar reflectivity and vertical velocity variance. {copyright} 1999 American Geophysical Union

  3. ARM - Measurement - Radar polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    polarization ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radar polarization The temporal and geometric behavior of the electric field vector of an electromagnetic wave transmitted or received by a radar system, e.g. elliptical polarization, differential reflectivity, phase shift, co-polar correlation coefficient, linear depolarization ratio. Categories Cloud Properties Instruments The above

  4. Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations

    SciTech Connect (OSTI)

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao

    2014-10-01

    Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.

  5. Millimeter-wave radar sensor for automotive intelligent cruise control (ICC)

    SciTech Connect (OSTI)

    Russell, M.E.; Crain, A.; Curran, A.; Campbell, R.A.; Drubin, C.A.; Miccioli, W.F.

    1997-12-01

    If automotive intelligent cruise-control (ICC) systems are to be successful in the marketplace, they must provide robust performance in a complex roadway environment. Inconveniences caused by reduced performance during inclement weather, interrupted performance due to dropped tracks, and annoying nuisance alarms will not be tolerated by the consumer, and would likely result in the rejection of this technology in the marketplace. An all-weather automotive millimeter-wave (MMW) radar sensor is described that uses a frequency-modulation coplanar-wave (FMCW) radar design capable of acquiring and tracking all obstacles in its field of view. Design tradeoffs are discussed and radar-sensor test results are presented along with the applicability of the radar to collision-warning systems.

  6. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOE Patents [OSTI]

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  7. ARM - Measurement - Radar Doppler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quality assurance purposes. ARM Instruments CSAPR : C-Band ARM Precipitation Radar DL : Doppler Lidar KAZR : Ka ARM Zenith Radar KASACR : Ka-Band Scanning ARM Cloud Radar MWACR :...

  8. Cloud Properties from Doppler Radar Spectra - a Growing Suite of Information Extraction Algorithms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Doppler Radar Spectra - a Growing Suite of Information Extraction Algorithms Edward Luke 1 , Pavlos Kollias 2 , Matthew Shupe 3 , Karen Johnson 1 , Eugene Clothiaux 4 1. Brookhaven National Laboratory 2. McGill University 3. CIRES/NOAA/ETL 4. Penn State University C F B A E D Lidar Prediction Algorithm Depolarization C F B A E D Backscatter DOPPLER RADAR SPECTRA HYDROMETEOR PHASE CLASSIFICATION MIXED LIQUID SOLID MIXED LIQUID SOLID Shupe Multi-instrument Technique Doppler Radar Spectra

  9. Laser- and Radar-based Mission Concepts for Suborbital and Spaceborne Monitoring of Seismic Surface Waves

    SciTech Connect (OSTI)

    Foxall, W; Schultz, C A; Tralli, D M

    2004-09-21

    The development of a suborbital or spaceborne system to monitor seismic waves poses an intriguing prospect for advancing the state of seismology. This capability would enable an unprecedented global mapping of the velocity structure of the earth's crust, understanding of earthquake rupture dynamics and wave propagation effects, and event source location, characterization and discrimination that are critical for both fundamental earthquake research and nuclear non-proliferation applications. As part of an ongoing collaboration between LLNL and JPL, an advanced mission concept study assessed architectural considerations and operational and data delivery requirements, extending two prior studies by each organization--a radar-based satellite system (JPL) for earthquake hazard assessment and a feasibility study of space- or UAV-based laser seismometer systems (LLNL) for seismic event monitoring. Seismic wave measurement requirements include lower bounds on detectability of specific seismic sources of interest and wave amplitude accuracy for different levels of analysis, such as source characterization, discrimination and tomography, with a 100 {micro}m wave amplitude resolution for waves nominally traveling 5 km/s, an upper frequency bound based on explosion and earthquake surface displacement spectra, and minimum horizontal resolution (1-5 km) and areal coverage, in general and for targeted observations. For a radar system, corresponding engineering and operational factors include: Radar frequency (dictated by required wave amplitude measurement accuracy and maximizing ranging, Doppler or interferometric sensitivity), time sampling (maximum seismic wave frequency and velocity), and overall system considerations such as mass, power and data rate. Technical challenges include characterization of, and compensation for, phase distortion resulting from atmospheric and ionospheric perturbations and turbulence, and effects of ground scattering characteristics and seismic

  10. A Radar-based Observing System for Validation of Cloud Resolving...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from photographically recorded data of the radar PPI images Houze and Chen, 1977 South China Sea Monsoon Experiment (SCSMEX) TOGA-COARE 1992-1993 5 April to 31 August, 1998 TRMM ...

  11. Continuous-wave radar to detect defects within heat exchangers and steam generator tubes.

    SciTech Connect (OSTI)

    Nassersharif, Bahram (New Mexico State University, Las Cruces, NM); Caffey, Thurlow Washburn Howell; Jedlicka, Russell P.; Garcia, Gabe V. (New Mexico State University, Las Cruces, NM); Rochau, Gary Eugene

    2003-01-01

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.

  12. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    SciTech Connect (OSTI)

    Boss, Alan P.; Keiser, Sandra A. E-mail: keiser@dtm.ciw.edu

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  13. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    SciTech Connect (OSTI)

    Janet Intrieri; Mathhew Shupe

    2005-01-01

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two

  14. ARM - Radar Backgrounder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuesday, A24B-02: Use of Dual Frequency Doppler Radar to Infer Cloud and Precipitation Properties and Air Motion Statistics. Science Team: Mike Jensen, Brookhaven National ...

  15. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect (OSTI)

    Liu, Guosheng

    2013-03-15

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs’ cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3

  16. Comparing Clouds Using Cloud Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How To Graph Goals: The goal of this activity is to learn how to make a coordinate or line graph. Materials: Graph paper Pencil Introduction: Graphs and charts are great because they communicate information visually. Graphs are often used by scientists, but also by newspapers, magazines and businesses around the world. Sometimes, complicated information is difficult to understand and needs an illustration. Other times, a graph or chart helps impress people by getting the point across quickly and

  17. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    SciTech Connect (OSTI)

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection

  18. Theoretical Studies of TE-Wave Propagation as a Diagnostic for Electron Cloud

    SciTech Connect (OSTI)

    Penn, Gregory E; Vay, Jean-Luc

    2010-05-17

    The propagation of TE waves is sensitive to the presence of an electron cloud primarily through phase shifts generated by the altered dielectric function, but can also lead to polarization changes and other effects, especially in the presence of magnetic fields. These effects are studied theoretically and also through simulations using WARP. Examples are shown related to CesrTA parameters, and used to observe different regimes of operation as well as to validate estimates of the phase shift.

  19. TC_CLOUD_REGIME.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intensity (e.g. May and Ballinger, 2007) Resulting Cloud Properties Examine rain DSD using polarimetric radar Examine ice cloud properties using MMCR and MPL Expect...

  20. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. III. Rotating three-dimensional cloud cores

    SciTech Connect (OSTI)

    Boss, Alan P.; Keiser, Sandra A.

    2014-06-10

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure to undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ?10{sup 4} to ?3 10{sup 4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.

  1. Zenith/Nadir Pointing mm-Wave Radars: Linear or Circular Polarization...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE SC OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Word Cloud More Like This Full Text ...

  2. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect (OSTI)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  3. First observations of tracking clouds using scanning ARM cloud...

    Office of Scientific and Technical Information (OSTI)

    These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator ...

  4. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  5. Towards a Characterization of Arctic Mixed-Phase Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manual classification of cloud phase. Using collocated cloud radar and depolarization lidar observations, it is shown that mixed-phase conditions have a high correlation with a...

  6. Determination of radar MTF

    SciTech Connect (OSTI)

    Chambers, D.

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  7. A study of cloud and drizzle properties in the Azores using Doppler...

    Office of Scientific and Technical Information (OSTI)

    in the Azores using Doppler Radar spectra Citation Details In-Document Search Title: A study of cloud and drizzle properties in the Azores using Doppler Radar spectra ...

  8. ARM - Field Campaign - Measuring Clouds at SGP with Stereo Photogramme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the form of the Point Cloud of Cloud Points Product (PCCPP). The PCCPP will: provide context on life-cycle stage and cloud position for vertically pointing radars, lidars, and...

  9. ARM - Field Campaign - NSA Scanning Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : NSA Scanning Radar IOP ... Low-level mixed-phase clouds, frequently present over the North Slope of Alaska (NSA) ...

  10. Time Correlations in Backscattering Radar Reflectivity Measurements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... kristy@essc.psu.edu, (814) 863-4722 References Atlas, D., S.Y. Matrosov, A. J. Heymsfield, M.-D. Chou, and D. B. Wolff, 1995: Radar and radiation properties of ice clouds. J. Appl. ...

  11. Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-03-06

    The Ka-band ARM zenith radar (KAZR) is a zenith-pointing Doppler cloud radar operating at approximately 35 GHz. The KAZR is an evolutionary follow-on radar to ARM's widely successful millimeter-wavelength cloud radar (MMCR). The main purpose of the KAZR is to provide vertical profiles of clouds by measuring the first three Doppler moments: reflectivity, radial Doppler velocity, and spectra width. At the sites where the dual-polarization measurements are made, the Doppler moments for the cross-polarization channel are also available. In addition to the moments, velocity spectra are also continuously recorded for each range gate.

  12. Properties of tropical convection observed by ARM millimeter-radars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Properties of tropical convection observed by ARM millimeter-radars Haynes, John Colorado State University Stephens, Graeme Colorado State University Category: Cloud Properties The results of an analysis of tropical cloud systems observed from a variety of vertically pointing radar systems are described. In particular, observations taken during five years of operation of the ARM millimeter wavelength radar system (MMCR) at Manus Island in the Tropical West Pacific region are characterized into

  13. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E...

    Office of Scientific and Technical Information (OSTI)

    S-band Radar (williams-sband) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-sband) This data was ...

  14. Comparisons of cloud ice mass content retrieved from the radar-infrared radiometer method with aircraft data during the second international satellite cloud climatology project regional experiment (FIRE-II)

    SciTech Connect (OSTI)

    Matrosov, S.Y. |; Heymsfield, A.J.; Kropfli, R.A.; Snider, J.B.

    1996-04-01

    Comparisons of remotely sensed meteorological parameters with in situ direct measurements always present a challenge. Matching sampling volumes is one of the main problems for such comparisons. Aircraft usually collect data when flying along a horizontal leg at a speed of about 100 m/sec (or even greater). The usual sampling time of 5 seconds provides an average horizontal resolution of the order of 500 m. Estimations of vertical profiles of cloud microphysical parameters from aircraft measurements are hampered by sampling a cloud at various altitudes at different times. This paper describes the accuracy of aircraft horizontal and vertical coordinates relative to the location of the ground-based instruments.

  15. ARSCL Cloud Statistics - A Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data from active remote sensors to produce an objective determination of cloud location, radar reflectivity, vertical velocity, and Doppler spectral width. Information about the...

  16. ARM Value-Added Cloud Products: Description and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This VAP combines the data from the millimeter cloud radar (MMCR), micropulse lidar (MPL), laser ceilometer, microwave radiometer (MWR), and surface measurements. It produces a ...

  17. Evaluation of Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Sa...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Satellite and Cloud Radar Y. Luo and S. K. Krueger University of Utah Salt Lake City, Utah Introduction Because of both the various effects clouds exert on the earth-atmospheric system and the cloud feedback, correct representations of clouds in numerical models are critical for accurate climate modeling and weather forecast. Unfortunately, determination of clouds and their radiative

  18. Doppler radar flowmeter

    DOE Patents [OSTI]

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  19. Wave

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Summer 2001 Heat Wave This summer has proved to be downright hot in the Southern Great ... Not only is a summer heat wave uncomfortable, but it can also be ARM Facilities Newsletter ...

  20. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 m wavelength relative to 11 m wavelength due to the process of wave resonance or photon tunneling more active at 12 m. This makes the 12/11 m absorption optical depth ratio (or equivalently the 12/11 m Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  1. Developing and Evaluating Ice Cloud Parameterizations by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by remote sensing is that the transfer functions which relate the observables (e. g., radar Doppler spectrum) to cloud properties (e. g., ice water content, or IWC) are not...

  2. Science Goals for the ARM Recovery Act Radars

    SciTech Connect (OSTI)

    JH Mather

    2012-05-29

    Science Goals for the ARM Recovery Act Radars. In October 2008, an ARM workshop brought together approximately 30 climate research scientists to discuss the Atmospheric Radiation Measurement (ARM) Climate Research Facility's role in solving outstanding climate science issues. Through this discussion it was noted that one of ARM's primary contributions is to provide detailed information about cloud profiles and their impact on radiative fluxes. This work supports cloud parameterization development and improved understanding of cloud processes necessary for that development. A critical part of this work is measuring microphysical properties (cloud ice and liquid water content, cloud particle sizes, shapes, and distribution). ARM measurements and research have long included an emphasis on obtaining the best possible microphysical parameters with the available instrumentation. At the time of the workshop, this research was reaching the point where additional reduction in uncertainties in these critical parameters required new instrumentation for applications such as specifying radiative heating profiles, measuring vertical velocities, and studying the convective triggering and evolution of three-dimensional (3D) cloud fields. ARM was already operating a subset of the necessary instrumentation to make some progress on these problems; each of the ARM sites included (and still includes) a cloud radar (operating at 35 or 94 GHz), a cloud lidar, and balloon-borne temperature and humidity sensors. However, these measurements were inadequate for determining detailed microphysical properties in most cases. Additional instrumentation needed to improve retrievals of microphysical processes includes radars at two additional frequencies for a total of three at a single site (35 GHz, 94 GHz, and a precipitation radar) and a Doppler lidar. Evolving to a multi-frequency scanning radar is a medium-term goal to bridge our understanding of two-dimensional (2D) retrievals to the 3D cloud

  3. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    SciTech Connect (OSTI)

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O.; Yang, P.

    2008-12-10

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in cirrus clouds using a detailed microphysical model and remote sensing measurements obtained at the Department of Energys Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. To help understand dynamic scales important in cirrus formation, we force the model using both large-scale forcing derived using ARM variational analysis, and mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where we have implemented a rigorous classical theory heterogeneous nucleation scheme to compare with empirical representations. We evaluate model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. This approach allows for independent verification of both the large and small particle modes of the particle size distribution. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities, while nucleation mechanism is secondary. Slow ice crystal growth tends to overestimate the number of small ice crystals, but does not seem to influence bulk properties such as ice water path and cloud thickness. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Ice crystal number concentrations on the order of 10-100 L-1 produce results consistent with both lidar and radar observations during a cirrus event observed on 7 December 1999, which has an optical depth range typical of

  4. Determination of 3-D Cloud Ice Water Contents by Combining Multiple...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of 3-D Cloud Ice Water Contents by Combining Multiple Data Sources from Satellite, Ground Radar, and a Numerical Model Liu, Guosheng Florida State University Seo,...

  5. INTRODUCTION TO DOPPLER RADAR Pavlos Kollias McGill University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOPPLER RADAR Pavlos Kollias McGill University radarscience.weebly.com 15 March 2016 ARM Summer Training and Science Applications GRANT CHALLENGES OF RADARS 15 March 2016 ARM Summer Training and Science Applications Cloud Radars The use of letters for radar frequency bands and decibels The decibel (dB) is a logarithmic unit that expresses the ratio of two values of a physical quantity, often power or intensity. 3 dB is a factor of 2 !! 15 March 2016 ARM Summer Training and Science Applications

  6. A study of cloud and drizzle properties in the Azores using Doppler...

    Office of Scientific and Technical Information (OSTI)

    A study of cloud and drizzle properties in the Azores using Doppler Radar spectra Citation Details In-Document Search Title: A study of cloud and drizzle properties in the Azores using ...

  7. Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds

    SciTech Connect (OSTI)

    Rambukkange, Mahlon P.; Verlinde, J.; Eloranta, E. W.; Flynn, Connor J.; Clothiaux, Eugene E.

    2011-01-31

    Multimodality of cloud radar Doppler spectra is used to partition cloud particle phases and to separate distinct ice populations in the radar sample volume, thereby facilitating analysis of individual ice showers in multilayered mixed-phase clouds. A 35-GHz cloud radar located at Barrow, Alaska, during the Mixed-Phase Arctic Cloud Experiment collected the Doppler spectra. Data from a pair of collocated depolarization lidars confirmed the presence of two liquid cloud layers reported in this study. Surprisingly, both of these cloud layers were embedded in ice precipitation yet maintained their liquid. Our spectral separation of the ice precipitation yielded two distinct ice populations: ice initiated within the two liquid cloud layers and ice precipitation formed in higher cloud layers. Comparisons of ice fall velocity versus radar reflectivity relationships derived for distinct showers reveal that a single relationship might not properly represent the ice showers during this period.

  8. The lidar dark band: An oddity of the radar bright band analogy

    SciTech Connect (OSTI)

    Sassen, K.

    1996-04-01

    Although much has sbeen learned from independent radar and lidar studies of atmospheric precipitations, occasionally supported by aircraft profiling, what has been lacking is combined optical, microwave, and insitu observations of the melting layer. Fortunately, the rainshowers on April 21, 1994, during the Remote Cloud Sensing intensive obervations Period (RCSIOP) at the Southern Great Plains Cloud and radiation Testbed (CART) site provided an opportunity for coordinated dual-wavelength University of Utah Polarization Diversity Lidar, University of Massachusetts Cloud Profiling Radar System Doppler Radar, and the University of North Dakota Citation aircraft measurements.

  9. Surface based remote sensing of aerosol-cloud interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface based remote sensing of aerosol-cloud interactions Feingold, Graham NOAA/Environmental Technology Laboratory Frisch, Shelby NOAA/Environmental Technology Laboratory Min, Qilong State University of New York at Albany Category: Cloud Properties We will present an analysis of the effect of aerosol on clouds at the Southern Great Plains ARM site. New methods for retrieving cloud droplet effective radius with radar (MMCR), multifilter rotating shadowband radiometer (MFRSR), and microwave

  10. ARM - Field Campaign - Mixed-Phase Arctic Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The University of North Dakota Citation was the in situ platform, while the DOE-ARM UAV ... counter and the CSU IN counter, while the UAV had downward looking cloud radar, lidar and ...

  11. ER2 Instrumentation and Measurements for CLASIC (Cloud Land Surface...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ER2 Desired Measurements for CLASIC June 2007 SGP May 31, 2007 1 MEASUREMENT SOURCE DESIRED MEASUREMENTS AND PRODUCTS INSTRUMENT SYSTEMS Cloud Radar System (CRS), W-Band (95 GHz)...

  12. Polarimetric radar and aircraft observations of saggy bright bands during MC3E

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Matthew R. Kumjian; Giangrande, Scott E.; Mishra, Subashree; Toto, Tami; Ryzhkov, Alexander V.; Bansemer, Aaron

    2016-03-19

    Polarimetric radar observations increasingly are used to understand cloud microphysical processes, which is critical for improving their representation in cloud and climate models. In particular, there has been recent focus on improving representations of ice collection processes (e.g., aggregation, riming), as these influence precipitation rate, heating profiles, and ultimately cloud life cycles. However, distinguishing these processes using conventional polarimetric radar observations is difficult, as they produce similar fingerprints. This necessitates improved analysis techniques and integration of complementary data sources. Furthermore, the Midlatitude Continental Convective Clouds Experiment (MC3E) provided such an opportunity.

  13. ARM Scanning Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (fixed elevation) 3. Sector scan (for cloud tracking) 4. Staring mode 3D-Cloud Products Case Study - Marine Stratocumulus 75 o Horizontal Wind Height In-cloud horizontal wind and...

  14. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  15. Microwave and Millimeter-Wave Radiometric Studies of Temperature...

    Office of Scientific and Technical Information (OSTI)

    of Temperature, Water Vapor and Clouds Citation Details In-Document Search Title: Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds The ...

  16. Precipitating clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A suggestion for a new focus on cloud microphysical process study in the ARM program 1. Retrieving precipitating mixed- phase cloud properties Zhien Wang University of Wyoming zwang@uwyo.edu Retrieving Precipitating Mixed-phase Cloud Properties Global distribution of supercooled water topped stratiform clouds (top > 1 km and length> 14km) Most of them are mixed-phase with precipitation or virga An multiple sensor based approach to provide water phase as well as ice phase properties

  17. Ground-Based Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement (ARM) Program A Laboratory for the Study of Clouds and Atmospheric Radiation The Atmospheric Radiation Measurement (ARM) Program A Laboratory for the Study of Clouds and Atmospheric Radiation Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Why Study Clouds and Radiation? Why Study Clouds and Radiation? * Clouds control the radiation balance of the planet - top of atmosphere (TOA) and surface - Solar

  18. A Method for the Automatic Detection of Insect Clutter in Doppler-Radar Returns.

    SciTech Connect (OSTI)

    Luke,E.; Kollias, P.; Johnson, K.

    2006-06-12

    The accurate detection and removal of insect clutter from millimeter wavelength cloud radar (MMCR) returns is of high importance to boundary layer cloud research (e.g., Geerts et al., 2005). When only radar Doppler moments are available, it is difficult to produce a reliable screening of insect clutter from cloud returns because their distributions overlap. Hence, screening of MMCR insect clutter has historically involved a laborious manual process of cross-referencing radar moments against measurements from other collocated instruments, such as lidar. Our study looks beyond traditional radar moments to ask whether analysis of recorded Doppler spectra can serve as the basis for reliable, automatic insect clutter screening. We focus on the MMCR operated by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) facility in Oklahoma. Here, archiving of full Doppler spectra began in September 2003, and during the warmer months, a pronounced insect presence regularly introduces clutter into boundary layer returns.

  19. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  20. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  1. Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zheng; Muhlbauer, Andreas; Ackerman, Thomas

    2015-11-05

    In this paper, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. However, simulations performed with a single moment microphysical scheme exhibit low biases of approximately 20 dB. During convective events, two-moment microphysical overestimate the amount of high-level cloud and one-moment microphysics precipitate too readily and underestimate the amount and height of high-level cloud. For ARM9707, persistent large positive biases in high-level cloud are found, which are not sensitivemore » to changes in ice particle fall velocity and ice nuclei number concentration in the two-moment microphysics. These biases are caused by biases in large-scale forcing and maintained by the periodic lateral boundary conditions. The combined effects include significant biases in high-level cloud amount, radiation, and high sensitivity of cloud amount to nudging time scale in both convective cases. The high sensitivity of high-level cloud amount to the thermodynamic nudging time scale suggests that thermodynamic nudging can be a powerful ‘‘tuning’’ parameter for the simulated cloud and radiation but should be applied with caution. The role of the periodic lateral boundary conditions in reinforcing the biases in cloud and radiation suggests that reducing the uncertainty in the large-scale forcing in high levels is important for similar convective cases and has far reaching implications for simulating high-level clouds in super-parameterized global climate models such as the multiscale modeling framework.« less

  2. ARM - Measurement - Cloud size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements as cloud thickness, cloud area, and cloud aspect ratio. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  3. Stratiform and Convective Precipitation Observed by Multiple Radars during the DYNAMO/AMIE Experiment

    SciTech Connect (OSTI)

    Deng, Min; Kollias, Pavlos; Feng, Zhe; Zhang, Chidong; Long, Charles N.; Kalesse, Heike; Chandra, Arunchandra; Kumar, Vickal; Protat, Alain

    2014-11-01

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification is equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.

  4. ARM: Auxiliary data for the Marine W-band (95 GHz) ARM Cloud...

    Office of Scientific and Technical Information (OSTI)

    Auxiliary data for the Marine W-band (95 GHz) ARM Cloud Radar Authors: Joseph Hardin ; Bradley Isom ; Alyssa Matthews ; Karen Johnson ; Nitin Bharadwaj Publication Date: 2012-11-01 ...

  5. Downhole pulse radar

    DOE Patents [OSTI]

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  6. Downhole pulse radar

    DOE Patents [OSTI]

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  7. Radar imagery from the 1994 Lock Linnhe ship wake experiment

    SciTech Connect (OSTI)

    Mullenhoff, C.J.; Lehman, S.K.; Jones, H.

    1994-11-15

    The 1994 Loch Linnhe radar ocean imaging trials were held from September 4 through September 17. Two ships were used: the R.V. Colonel Templer, and the RMAS Collie. Thorn EMI, Inc., fielded a dual band, dual polarization radar on a hillside overlooking the loch. A primary purpose of the experiment was to obtain highly visible images of ship generated internal waves. Presented here is imagery for a few of the good ship runs, as well as a study of the environment of the visibility of ship generated internal waves.

  8. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    SciTech Connect (OSTI)

    Shupe, Matthew

    2013-05-22

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  9. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  10. ARM - Measurement - Radar reflectivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upon the size, shape, aspect, and dielectric properties of that target. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  11. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  12. ARM - Evaluation Product - Cloud Microbase-kazr Profiles (ka) VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCloud Microbase-kazr Profiles (ka) VAP ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Cloud Microbase-kazr Profiles (ka) VAP The KAZR radars have recently replaced the MMCR at ARM sites, and so the new KAZR-based radar products will now serve as input to Microbase. All of the historic Microbase

  13. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    SciTech Connect (OSTI)

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  14. ARM - Measurement - Cloud type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  15. Impulse radar studfinder

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  16. Impulse radar studfinder

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  17. Dispelling Clouds of Uncertainty

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Ernie; Teixeira, João

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  18. Just where exactly is the radar? (a.k.a. the radar antenna phase...

    Office of Scientific and Technical Information (OSTI)

    Just where exactly is the radar? (a.k.a. the radar antenna phase center). Citation Details In-Document Search Title: Just where exactly is the radar? (a.k.a. the radar antenna ...

  19. Imaging synthetic aperture radar

    DOE Patents [OSTI]

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  20. TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TTU Advanced Doppler Radar - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  1. Global coherence of dust density waves

    SciTech Connect (OSTI)

    Killer, Carsten; Melzer, Andr

    2014-06-15

    The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

  2. Python-ARM Radar Toolkit

    Energy Science and Technology Software Center (OSTI)

    2013-03-17

    The Python-ARM Radar Toolkit (Py-ART) is a collection of radar quality control and retrieval codes which all work on two unifying Python objects: the PyRadar and PyGrid objects. By building ingests to several popular radar formats and then abstracting the interface Py-ART greatly simplifies data processing over several other available utilities. In addition Py-ART makes use of Numpy arrays as its primary storage mechanism enabling use of existing and extensive community software tools.

  3. Radar Wind Profiler for Cloud Forecasting at Brookhaven National...

    Office of Scientific and Technical Information (OSTI)

    forecasts for solar-energy applications and 2) to provide vertical profiling capabilities for the study of dynamics (i.e., vertical velocity) and hydrometeors in winter storms. ...

  4. Stratus Cloud Structure from MM-Radar Transects and Satellite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Met. Soc., Boston, Massachusetts. Clothiaux, E. E., M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, and W. J. Syrett, 1995: An evaluation of a ...

  5. Mixed-Phase Cloud Retrievals Using Doppler Radar Spectra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drops are particularly important for aircraft icing hazard conditions (Cober et al. 2001). ... Characterization of aircraft icing environments that include supercooled large drops. ...

  6. ARM: Millimeter Wavelength Cloud Radar (MMCR): moments data ...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Science (SC), Biological and Environmental Research (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 ...

  7. Algorithms for Filtering Insect Echoes from Cloud Radar Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels » Algal Integrated Biorefineries Algal Integrated Biorefineries The Algae Program works closely with the Demonstration and Deployment Program on projects that can validate advancements toward commercialization at increasing scales. Integrated biorefineries apply R&D to scale-up facilities to a degree relevant to commercial applications. U.S. Department of Energy funding of this work helps to advance the industry by minimizing the risk of these technologies for investors. View a map

  8. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOE Patents [OSTI]

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  9. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect (OSTI)

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and

  10. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Cover of the Federal Interagency ...

  11. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Wind Turbine Radar Interference Mitigation Strategy January 2016 This report ... First, the authors would like to thank the entire Wind Turbine Radar Interference Working ...

  12. Dispelling Clouds of Uncertainty

    SciTech Connect (OSTI)

    Lewis, Ernie; Teixeira, João

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  13. ARM - Measurement - Cloud location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point in space and time, typically expressed as a binary cloud mask. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  14. Multiwavelength observations of a devleoping cloud system: The FIRE II 26 November 1991 case study

    SciTech Connect (OSTI)

    Intrieri, J.M.; Eberhard, W.L.; Uttal, T.

    1995-12-01

    Simultaneous multiwavelength measurements of a developing cloud system were obtained by NOAA Doppler lidar, Doppler radar, Fourier transform infrared interferometer, and microwave and infrared radiometers on 26 November 1991. The evolution of the cloud system is described in terms of lidar backscatter, radar reflectivity and velocity, interferometer atmospheric spectra, and radiometer brightness temperature, integrated liquid water, and water vapor paths. Utilizing the difference in wavelength between the radar and lidar, and therefore their independent sensitivity to different regions of the same cloud, the cloud top, base, depth, and multiple layer heights can be determined with better accuracy than with either instrument alone. Combining the radar, lidar, and radiometer measurements using two different techniques allows an estimation of the vertical profile of cloud microphysical properties such as particle sizes. Enhancement of lidar backscatter near zenith revealed when highly oriented ice crystals were present. The authors demonstrate that no single instrument is sufficient to accurately describe cirrus clouds and that measurements in combination can provide important details on their geometric, radiative, and microphysical properties.

  15. Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data

    SciTech Connect (OSTI)

    Zhang, Y; Klein, S; Boyle, J; Mace, G G

    2008-11-20

    The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

  16. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect (OSTI)

    Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-06-24

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37

  17. ARM - PI Product - Cloud Properties and Radiative Heating Rates for TWP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCloud Properties and Radiative Heating Rates for TWP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Properties and Radiative Heating Rates for TWP A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites

  18. ARM - PI Product - Cloud-Scale Vertical Velocity and Turbulent Dissipation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Retrievals ProductsCloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files

  19. Ocean current wave interaction study

    SciTech Connect (OSTI)

    Hayes, J.G.

    1980-09-20

    A numerical model has been developed to incorporate refraction of ocean surface gravity waves by major ocean currents. The model is initialized with directional wave spectra and verified with aircraft synthetic aperture radar X band spectra, laser profilometer spectra, and pitch and roll buoy data. Data collected during the Marineland test experiment are used as surface truth observations for the wave-current study. Evidence of Gulf Stream refraction and trapping of surface waves as well as caustics in the current is shown and modeled assuming a nonuniform Gulf Stream distribution. Frequency and directional resolution of the wave spectral distribution and the current refraction patterns illustrates the need for further study of ocean current-wave interaction in wave refraction studies.

  20. Science Cloud 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Cloud 2011 Science Cloud 2011 June 17, 2011 The Magellan teams at NERSC and Argonne recently presented a joint paper detailing their progress and conclusions. At Science Cloud 2011: The Second Workshop on Scientific Cloud Computing, in a paper titled "Magellan: Experiences from a Science Cloud" (PDF, 320KB), lead author Lavanya Ramakrishnan outlined the groups' most recent achievements and conclusions, including a successful run of real-time data analysis for the STAR

  1. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  2. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  3. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  4. X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N

    2012-10-29

    The X-band scanning ARM cloud radar (X-SAPR) is a full-hemispherical scanning polarimetric Doppler radar transmitting simultaneously in both H and V polarizations. With a 200 kW magnetron transmitter, this puts 100 kW of transmitted power for each polarization. The receiver for the X-SAPR is a Vaisala Sigmet RVP-900 operating in a coherent-on-receive mode. Three X-SAPRs are deployed around the Southern Great Plains (SGP) Central Facility in a triangular array. A fourth X-SAPR is deployed near Barrow, Alaska on top of the Barrow Arctic Research Center.

  5. Using Polarimetric Radar to Take Microphysical Fingerprints in Precipita9on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polarimetric Radar to Take Microphysical Fingerprints in Precipita9on Ma:hew R. Kumjian Department of Meteorology The Pennsylvania State University ARM Summer Workshop 20 July 2015 Norman, Oklahoma, USA Mo9va9on - What can dual-polariza9on radar tell us about ongoing microphysical processes in clouds? - If we can iden9fy different processes, perhaps we can: - Dis9nguish them - Determine what condi9ons favor/disfavor them - Quan9fy them - Evaluate how well models treat them - Improve model

  6. ARM: 1290-MHz Radar Wind Profiler, precipitation moments data...

    Office of Scientific and Technical Information (OSTI)

    1290-MHz Radar Wind Profiler, precipitation moments data Title: ARM: 1290-MHz Radar Wind Profiler, precipitation moments data 1290-MHz Radar Wind Profiler, precipitation moments ...

  7. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  8. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan Christine

    2014-04-10

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  9. On the radar cross section (RCS) prediction of vehicles moving on the ground

    SciTech Connect (OSTI)

    Sabihi, Ahmad

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Targets material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  10. Cloud Properties Working Group Low Clouds Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Properties Working Group Low Clouds Update Low Clouds Update Jennifer Comstock Jennifer Comstock Dave Turner Dave Turner Andy Andy Vogelmann Vogelmann Instruments Instruments 90/150 GHz microwave radiometer 90/150 GHz microwave radiometer Deployed during COPS AMF Deployed during COPS AMF Exploring calibration w/ DPR ( Exploring calibration w/ DPR ( Crewell Crewell & & L L ö ö hnert hnert ) ) See COPS Breakout, Wednesday evening See COPS Breakout, Wednesday evening 183 GHz (GVR)

  11. Observations of tropical clouds from the upgraded MMCR at Darwin and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    comparisons with C-Pol and satellite observations Observations of tropical clouds from the upgraded MMCR at Darwin and comparisons with C-Pol and satellite observations Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory Vogelmann, Andrew Brookhaven National Laboratory Mather, James Pacific Northwest National Laboratory May, Peter Bureau or Meteorology Research Centre Category: Instruments The upgrade of the processor for the millimeter cloud radar

  12. Merged and corrected 915 MHz Radar Wind Profiler moments

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jonathan Helmus,Virendra Ghate, Frederic Tridon

    2014-06-25

    The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.

  13. Bergada-M.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Millimeter-wave (MMW) radars have become standard cloud research tools because of their high sensitivity to small cloud particles, low prime power requirements, and ...

  14. ARM - Measurement - Cloud extinction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud extinction The removal of radiant energy from an incident beam by the process of cloud absorption andor ...

  15. Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.

    SciTech Connect (OSTI)

    Rambukkange,M.; Verlinde, J.; Elorante, E.; Luke, E.; Kollias, P.; Shupe, M.

    2006-07-10

    Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivity of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.

  16. Scientific Cloud Computing Misconceptions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Cloud Computing Misconceptions Scientific Cloud Computing Misconceptions July 1, 2011 Part of the Magellan project was to understand both the possibilities and the limitations of cloud computing in the pursuit of science. At a recent conference, Magellan investigator Shane Canon outlined some persistent misconceptions about doing science in the cloud - and what Magellan has taught us about them. » Read the ISGTW story. » Download the slides (PDF, 4.1MB

  17. How Radar Works | Open Energy Information

    Open Energy Info (EERE)

    Radar Works Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: How Radar Works Author Institute For Geophysics Published Institute For Geophysics, 2013...

  18. Obstacle penetrating dynamic radar imaging system

    DOE Patents [OSTI]

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  19. GMTI radar minimum detectable velocity.

    SciTech Connect (OSTI)

    Richards, John Alfred

    2011-04-01

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  20. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    SciTech Connect (OSTI)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, Christine; Mann, Julia; O Connor, Ewan; Hogan, Robin; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palinkonda, Rabindra; Albrecht, Bruce; Hannay, Cecile; Lin, Yanluan

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

  1. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; et al

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less

  2. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment

    SciTech Connect (OSTI)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Rémillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L.; O’Connor, Ewan J.; Hogan, Robin J.; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

    2015-03-01

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) 38 deployment at Graciosa Island in the Azores generated a 21 month (April 2009-December 2010) 39 comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric 40 Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is 41 to gain improved understanding of the interactions of clouds, aerosols and precipitation in the 42 marine boundary layer. 43 Graciosa Island straddles the boundary between the subtropics and midlatitudes in the 44 Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and 45 cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus 46 occurring regularly. Approximately half of all clouds contained precipitation detectable as radar 47 echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-48 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide 49 range of aerosol conditions was sampled during the deployment consistent with the diversity of 50 sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way 51 interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation 52 and cloud radiative properties while being controlled in part by precipitation scavenging. 53 The data from at Graciosa are being compared with short-range forecasts made a variety 54 of models. A pilot analysis with two climate and two weather forecast models shows that they 55 reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, 56 but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to 57 be a long-term ARM site that became operational in October 2013.

  3. Radar operation in a hostile electromagnetic environment

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  4. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Model computational expense is estimated, and sensitivity to the number of subcolumns is investigated. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in shortwave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation.« less

  5. Insights into riming and aggregation processes as revealed by aircraft, radar, and disdrometer observations for a 27 April 2011 widespread precipitation event: Insights into Riming and Aggregation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Giangrande, Scott E.; Toto, Tami; Bansemer, Aaron; Kumjian, Matthew R.; Mishra, Subhashree; Ryzhkov, Alexander V.

    2016-05-19

    Our study presents aircraft spiral ascent and descent observations intercepting a transition to riming processes during widespread stratiform precipitation. The sequence is documented using collocated scanning and profiling radar, including longer-wavelength dual polarization measurements and shorter-wavelength Doppler spectra. Riming regions are supported using aircraft measurements recording elevated liquid water concentrations, spherical particle shapes, and saturation with respect to water. Profiling cloud radar observations indicate riming regions during the event as having increasing particle fall speeds, rapid time-height changes, and bimodalities in Doppler spectra. These particular riming signatures are coupled to scanning dual polarization radar observations of higher differential reflectivity (ZDR)more » aloft. Moreover, reduced melting layer enhancements and delayed radar bright-band signatures in the column are also observed during riming periods, most notably with the profiling radar observations. The bimodal cloud radar Doppler spectra captured near riming zones indicate two time-height spectral ice peaks, one rimed particle peak, and one peak associated with pristine ice needle generation and/or growth between -4°C and -7°C also sampled by aircraft probes. We observe this pristine needle population near the rimed particle region which gives a partial explanation for the enhanced ZDR. The riming signatures aloft and radar measurements within the melting level are weakly lag correlated (r~0.6) with smaller median drop sizes at the surface, as compared with later times when aggregation of larger particle sizes was believed dominant.« less

  6. Synthetic aperture radar capabilities in development

    SciTech Connect (OSTI)

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  7. ARM - Measurement - Cloud fraction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flux Analysis SWFLUXANAL : Shortwave Flux Analysis TSI : Total Sky Imager UAV-EGRETT : UAV-Egrett WSI : Whole Sky Imager WSICLOUD : Whole Sky Imager Cloud Products ...

  8. ARM - Measurement - Cloud phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that involves property descriptors such as stratus, cumulus, and cirrus. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  9. Finance Idol Word Cloud

    Broader source: Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  10. PROGRESS REPORT OF FY 2004 ACTIVITIES: IMPROVED WATER VAPOR AND CLOUD RETRIEVALS AT THE NSA/AAO

    SciTech Connect (OSTI)

    E. R. Westwater; V. V. Leuskiy; M. Klein; A. J. Gasiewski; and J. A. Shaw

    2004-11-01

    experiment relied heavily on our experiences of the 1999 experiment. Particular attention was paid to issues of radiometric calibration and radiosonde intercomparisons. Our theoretical and experimental work also supplements efforts by industry (F. Solheim, Private Communication) to develop sub-millimeter radiometers for ARM deployment. In addition to quantitative improvement of water vapor measurements at cold temperature, the impact of adding millimeter-wave window channels to improve the sensitivity to arctic clouds was studied. We also deployed an Infrared Cloud Imager (ICI) during this experiment, both for measuring continuous day-night statistics of the study of cloud coverage and identifying conditions suitable for tipcal analysis. This system provided the first capability of determining spatial cloud statistics continuously in both day and night at the NSA site and has been used to demonstrate that biases exist in inferring cloud statistics from either zenith-pointing active sensors (lidars or radars) or sky imagers that rely on scattered sunlight in daytime and star maps at night [6].

  11. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-11-07

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  12. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1995-01-01

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  13. Radar channel balancing with commutation

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  14. Boundary Layer Cloud Turbulence Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Cloud Turbulence Characteristics Virendra Ghate Bruce Albrecht Parameter Observational Readiness (/10) Modeling Need (/10) Cloud Boundaries 9 9 Cloud Fraction Variance Skewness Up/Downdraft coverage Dominant Freq. signal Dissipation rate ??? Observation-Modeling Interface

  15. Cloud computing security.

    SciTech Connect (OSTI)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  16. Temperature, Water Vapor, and Clouds"

    Office of Scientific and Technical Information (OSTI)

    Radiometric Studies of Temperature, Water Vapor, and Clouds" Project ID: 0011106 ... measurements of column amounts of water vapor and cloud liquid has been well ...

  17. ARM - Measurement - Cloud effective radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the number size distribution of cloud particles, whether liquid or ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  18. Lightning and radar observations of hurricane Rita landfall

    SciTech Connect (OSTI)

    Henderson, Bradley G; Suszcynsky, David M; Hamlin, Timothy E; Jeffery, C A; Wiens, Kyle C; Orville, R E

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  19. 915-MHz Radar Wind Profiler (915RWP) Handbook

    SciTech Connect (OSTI)

    Coulter, R

    2005-01-01

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  20. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  1. Characterization of Radar Boundary Layer Data Collected During the 2001 Multi-Frequency Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Radar Boundary Layer Data Collected During the 2001 Multi-Frequency Radar IOP A. Khandwalla, N. Majurec, and S. M. Sekelsky University of Massachusetts Amherst, Massachusetts C. R. Williams and K. S. Gage National Oceanic and Atmospheric Administration Aeronomy Laboratory Boulder, Colorado Introduction Ground-based radar measurements of insect clutter at Ka-band (35 GHz) and W-band (95 GHz) were collected over an extended period during the 2001 multi-frequency radar (MFR)

  2. Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles

    SciTech Connect (OSTI)

    Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

    2012-09-06

    Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.

  3. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Wind Turbine Radar Interference Mitigation Strategy January 2016 This report ... from the advice and comments of two wind industry and trade association ...

  4. Ultra-wideband radar motion sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1994-11-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

  5. ARM - Evaluation Product - Corrected Precipitation Radar Moments...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCorrected Precipitation Radar Moments in Antenna Coordinates Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would...

  6. Correcting radar range measurements for atmospheric propagation...

    Office of Scientific and Technical Information (OSTI)

    Title: Correcting radar range measurements for atmospheric propagation effects. Abstract not provided. Authors: Doerry, Armin Walter Publication Date: 2013-12-01 OSTI Identifier: ...

  7. Balancing radar receiver channels with commutation. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Balancing radar receiver channels with commutation. Abstract not provided. Authors: Doerry, Armin Walter Publication Date: 2015-01-01 OSTI Identifier: 1244859 Report ...

  8. Synthetic Aperture Radar Persistent Scatterer Interferometry...

    Open Energy Info (EERE)

    NA, 2010 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Synthetic Aperture Radar Persistent Scatterer Interferometry (PSInSAR)...

  9. Millimeter wave technology III; Proceedings of the Meeting, Arlington, VA, April 9, 10, 1985

    SciTech Connect (OSTI)

    Wiltse, J.C.

    1985-01-01

    Various papers on millimeter wave technology are presented. The subjects addressed include: high-power millimeter and submillimeter wave lasers and gyrotrons, GaAs IMPATT sources, InP Gunn diode sources, phase and frequency control of millimeter wave source, the Fresnel zone-plate lens, uniform waveguide leaky wave antennas, microstrip dipole antennas on electrically thick substrates, measurement of antenna patterns at 94 GHz using infrared detection, and transitions in open millimeter waveguides. Also discussed are: millimeter wave subassembly packaging techniques, recent advances in millimeter wave integrated circuits and subsystems, millimeter wave active solid state devices, applications of millimeter wave imaging, contrast reversal in MMW radiometric imaging, detection of stationary ground targets by airborne MMW radars, millimeter wave polarimetric background measurements, coherent 96 GHz high power radar, high-resolution 986 GHz FM-CW solid state radar, integrated circuit radar and radiometric sensors, millimeter-wave six-ports, atmospheric turbulence measuring system, near-millimeter wave propagation instrumentation, and millimeter wave measurement by Fabry-Perot.

  10. ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in...

    Office of Scientific and Technical Information (OSTI)

    915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Title: ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode 915-MHz Radar Wind ...

  11. Merged and corrected 915 MHz Radar Wind Profiler moments (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Merged and corrected 915 MHz Radar Wind Profiler moments Title: Merged and corrected 915 MHz Radar Wind Profiler moments The radar wind profiler (RWP) present at the SGP central ...

  12. Radar network communication through sensing of frequency hopping

    DOE Patents [OSTI]

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  13. In the OSTI Collections: Clouds, Sunlight, and Radiant Heat | OSTI, US Dept

    Office of Scientific and Technical Information (OSTI)

    of Energy Office of Scientific and Technical Information Clouds, Sunlight, and Radiant Heat View Past"In the OSTI Collections"Articles. Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Clouds and other aerosols More about clouds Plans for further investigations References Reports available through OSTI's SciTech Connect Additional references The sun radiates electromagnetic waves of every frequency into the space around

  14. Wind Turbine Radar Interference Mitigation Working Group Releases...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Turbine Radar Interference Mitigation Working Group to address these challenges. This new report lays out the plan for how the working group will address wind turbine radar ...

  15. ARM Climate Research Facility Radar Operations Plan (Program...

    Office of Scientific and Technical Information (OSTI)

    Climate Research Facility Radar Operations Plan Citation Details In-Document Search Title: ARM Climate Research Facility Radar Operations Plan Roles, responsibilities, and ...

  16. ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation...

    Office of Scientific and Technical Information (OSTI)

    Precipitation Datastream Title: ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation Datastream 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation Datastream ...

  17. ARM: Ka ARM Zenith Radar (KAZR): filtered spectral data, moderate...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Ka ARM Zenith Radar (KAZR): filtered spectral data, moderate sensitivity mode, cross-polarized mode Ka ARM Zenith Radar (KAZR): filtered spectral data, moderate ...

  18. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...

    Office of Environmental Management (EM)

    INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION TECHNOLOGIES INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION ...

  19. Ultra-wideband radar sensors and networks

    DOE Patents [OSTI]

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  20. Helicopter discrimination apparatus for the murine radar

    DOE Patents [OSTI]

    Webb, Jr., John G.; Gray, Roger M.

    1977-01-01

    A helicopter discrimination apparatus for a radar utilizing doppler filtering to discriminate between a missile and ground clutter. The short duration of the doppler filter pulses which are emitted by helicopter rotor blades are processed to prevent false alarms, thus allowing the radar-protected helicopter to operate in formation with other helicopters while maintaining protection against infra-red-seeking missiles.

  1. Tangential velocity measurement using interferometric MTI radar

    DOE Patents [OSTI]

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  2. Magneto-Radar Hidden Metal Detector

    DOE Patents [OSTI]

    McEwan, Thomas E.

    2005-07-05

    A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.

  3. The Magellan Final Report on Cloud Computing

    SciTech Connect (OSTI)

    ,; Coghlan, Susan; Yelick, Katherine

    2011-12-21

    The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.

  4. Magellan: A Cloud Computing Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magellan News & Announcements Archive Petascale Initiative Exascale Computing APEX Home » R & D » Archive » Magellan: A Cloud Computing Testbed Magellan: A Cloud Computing Testbed Cloud computing is gaining a foothold in the business world, but can clouds meet the specialized needs of scientists? That was one of the questions NERSC's Magellan cloud computing testbed explored between 2009 and 2011. The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Oce

  5. Cloud properties derived from two lidars over the ARM SGP site

    SciTech Connect (OSTI)

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

    2011-02-16

    [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is

  6. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazil, J.; Feingold, G.; Yamaguchi, T.

    2015-10-21

    Observed and projected trends in large scale wind speed over the oceans prompt the question: how might marine stratocumulus clouds and their radiative properties respond to future changes in large scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum, and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamicalmoredriver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m?2, long wave emissions are very insensitive to LWP. This leads to the more general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find furthermore that large scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment, and in part because circulation driven by shear from large scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large scale

  7. Science on the Hill: Methane cloud hunting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane cloud hunting Science on the Hill: Methane cloud hunting Los Alamos researchers go ... Science on the Hill: Methane cloud hunting When our team from Los Alamos National ...

  8. Navigator alignment using radar scan

    DOE Patents [OSTI]

    Doerry, Armin W.; Marquette, Brandeis

    2016-04-05

    The various technologies presented herein relate to the determination of and correction of heading error of platform. Knowledge of at least one of a maximum Doppler frequency or a minimum Doppler bandwidth pertaining to a plurality of radar echoes can be utilized to facilitate correction of the heading error. Heading error can occur as a result of component drift. In an ideal situation, a boresight direction of an antenna or the front of an aircraft will have associated therewith at least one of a maximum Doppler frequency or a minimum Doppler bandwidth. As the boresight direction of the antenna strays from a direction of travel at least one of the maximum Doppler frequency or a minimum Doppler bandwidth will shift away, either left or right, from the ideal situation.

  9. Evaluation of high‐level clouds in cloud resolving model...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of high-level clouds in cloud resolving model 10.10022015MS000478 simulations with ARM and KWAJEX observations Key Points: * Two-moment microphysics improves simulated ...

  10. Using doppler radar images to estimate aircraft navigational heading error

    DOE Patents [OSTI]

    Doerry, Armin W.; Jordan, Jay D.; Kim, Theodore J.

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  11. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K.

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  12. Bringing Clouds into Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bringing Clouds into Focus Bringing Clouds into Focus A New Global Climate Model May Reduce the Uncertainty of Climate Forecasting May 11, 2010 Contact: John Hules, JAHules@lbl.gov , +1 510 486 6008 Randall-fig4.png The large data sets generated by the GCRM require new analysis and visualization capabilities. This 3D plot of vorticity isosurfaces was developed using VisIt, a 3D visualization tool with a parallel distributed architecture, which is being extended to support the geodesic grid used

  13. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. |; Doll, W.E.; Phillips, B.E.

    1994-09-01

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  14. ARM - Evaluation Product - Precipitation Radar Moments Mapped...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Precipitation Radar Moments Mapped to a Cartesian Grid The Scanning...

  15. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  16. TWP Island Cloud Trail Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These island cloud trails have been observed from both the islands of Nauru and Manus, Papua New Guinea. Figure 2 shows an island cloud at Manus observed from MTI and from the ...

  17. ARM - Measurement - Images of Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsImages of Clouds ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Images of Clouds Digital images of cloud scenes (various formats) from satellite, aircraft, and ground-based platforms. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  18. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  19. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    SciTech Connect (OSTI)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Zhang, Jieqiu; Xu, Zhuo; Zhang, Anxue

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  20. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    SciTech Connect (OSTI)

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  1. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  2. IMPROVED CAPABILITIES FOR SITING WIND FARMS AND MITIGATING IMPACTS ON RADAR OBSERVATIONS

    SciTech Connect (OSTI)

    Chiswell, S.

    2010-01-15

    The development of efficient wind energy production involves challenges in technology and interoperability with other systems critical to the national mission. Wind turbines impact radar measurements as a result of their large reflectivity cross section as well as through the Doppler phase shift of their rotating blades. Wind farms can interfere with operational radar in multiple contexts, with degradation impacts on: weather detection such as tornado location, wind shear, and precipitation monitoring; tracking of airplanes where air traffic control software can lose the tracks of aircraft; and in identification of other low flying targets where a wind farm located close to a border might create a dead zone for detecting intruding objects. Objects in the path of an electromagnetic wave affect its propagation characteristics. This includes actual blockage of wave propagation by large individual objects and interference in wave continuity due to diffraction of the beam by individual or multiple objects. As an evolving industry, and the fastest growing segment of the energy sector, wind power is poised to make significant contributions in future energy generation requirements. The ability to develop comprehensive strategies for designing wind turbine locations that are mutually beneficial to both the wind industry that is dependent on production, and radar sites which the nation relies on, is critical to establishing reliable and secure wind energy. The mission needs of the Department of Homeland Security (DHS), Department of Defense (DOD), Federal Aviation Administration (FAA), and National Oceanographic and Atmospheric Administration (NOAA) dictate that the nation's radar systems remain uninhibited, to the maximum extent possible, by man-made obstructions; however, wind turbines can and do impact the surveillance footprint for monitoring airspace both for national defense as well as critical weather conditions which can impact life and property. As a result, a

  3. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, M. P.; Petersen, W. A.; Bansemer, A.; Bharadwaj, N.; Carey, L. D.; Cecil, D. J.; Collis, S. M.; DelGenio, A. D.; Dolan, B.; Gerlach, J.; et al

    2015-12-18

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deepmore » convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms-1 supported growth of hail and large rain drops. As a result, data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.« less

  4. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Jensen, M. P.; Petersen, W. A.; Bansemer, A.; Bharadwaj, N.; Carey, L. D.; Cecil, D. J.; Collis, S. M.; DelGenio, A. D.; Dolan, B.; Gerlach, J.; Giangrande, S. E.; Heymsfield, A.; Heymsfield, G.; Kollias, P.; Lang, T. J.; Nesbitt, S. W.; Neumann, A.; Poellot, M.; Rutledge, S. A.; Schwaller, M.; Tokay, A.; Williams, C. R.; Wolff, D. B.; Xie, S.; Zipser, E. J.

    2015-12-18

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deep convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms-1 supported growth of hail and large rain drops. As a result, data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.

  5. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and Implementation Plan

    SciTech Connect (OSTI)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; T Jackson; B.Kustas; PJ Lamb; GM McFarquhar; Q Min; B Schmid; MS Torn; DD Turner

    2007-06-30

    The Cloud and Land Surface Interaction Campaign is a field experiment designed to collect a comprehensive data set that can be used to quantify the interactions that occur between the atmosphere, biosphere, land surface, and subsurface. A particular focus will be on how these interactions modulate the abundance and characteristics of small and medium size cumuliform clouds that are generated by local convection. These interactions are not well understood and are responsible for large uncertainties in global climate models, which are used to forecast future climate states. The campaign will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energys Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of Cloud and Land Surface Interaction Campaign includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations.

  6. Evaluation of high-level clouds in cloud resolving model simulations...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations: HIGH CLOUD IN CRM Authors: Liu, Zheng 1 ; Muhlbauer, Andreas 2 ; ...

  7. An investigation of the RCS (radar cross section) computation of grid cavities

    SciTech Connect (OSTI)

    Sabihi, Ahmad

    2014-12-10

    In this paper, the aperture of a cavity is covered by a metallic grid net. This metallic grid is to reduce RCS deduced by impinging radar ray on the aperture. A radar ray incident on a grid net installed on a cavity may create six types of propagation. 1-Incident rays entering inside the cavity and backscattered from it.2-Incidebnt rays on the grid net and created reection rays as an array of scatterers. These rays may create a wave with phase difference of 180 degree with respect to the exiting rays from the cavity.3-Incident rays on the grid net create surface currents owing on the net and make travelling waves, which regenerate the magnetic and electric fields. These fields make again propagated waves against incident ones.4-Creeping waves.5-Diffracted rays due to leading edges of net’s elements.6-Mutual impedance among elements of the net could be effective on the resultant RCS. Therefore, the author compares the effects of three out of six properties to a cavity without grid net. This comparison shows that RCS prediction of cavity having a grid net is much more reduced than that of without one.

  8. ARM - Field Campaign - Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Ken Sassen has plans to set up next to the UMASS Radar in order to be located with the other IOP instruments. His instrumentation is scheduled to arrive tomorrow. A power outage ...

  9. On the measurement of wind speeds in tornadoes with a portable CW/FM-CW Doppler radar

    SciTech Connect (OSTI)

    Bluestein, H.B. . School of Meteorology); Unruh, W.P. )

    1991-01-01

    Both the formation mechanism and structure of tornadoes are not yet well understood. The Doppler radar is probably the best remote-sensing instrument at present for determining the wind field in tornadoes. Although much has been learned about the non-supercell tornado from relatively close range using Doppler radars at fixed sites, close-range measurements in supercell tornadoes are relatively few. Doppler radar can increase significantly the number of high-resolution, sub-cloud base measurements of both the tornado vortex and its parent vortex in supercells, with simultaneous visual documentation. The design details and operation of the CW/FM-CW Doppler radar developed at the Los Alamos National Laboratory and used by storm-intercept teams at the Univ. of Oklahoma are described elsewhere. The radar transmits 1 W at 3 cm, and can be switched back and forth between CW and FM-CW modes. In the FM-CW mode the sweep repetition frequency is 15.575 kHz and the sweep width 1.9 MHz; the corresponding maximum unambiguous range and velocity, and range resolution are 5 km, {plus minus} 115 m s{sup {minus}1}, and 78 m respectively. The bistatic antennas, which have half-power beamwidths of 5{degree}, are easily pointed wit the aid of a boresighted VCR. FM-CW Data are recorded on the VCR, while voice documentation is recorded on the audio tape; video is recorded on another VCR. The radar and antennas are easily mounted on a tripod, and can be set up by three people in a minute or two. The purpose of this paper is to describe the signal processing techniques used to determine the Doppler spectrum in the FM-CW mode and a method of its interpretation in real time, and to present data gathered in a tornadic storm in 1990. 15 refs., 7 figs.

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The instrument's antenna is located adjacent to the instrumentsinstrument.php?idmmcrmillimeter wave cloud radar (MMCR) antenna on top of the MMCR shelter; the rest of the ...