Sample records for wave cloud radar

  1. ARM: Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Bharadwaj, Nitin; Johnson, Karen

    Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

  2. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01T23:59:59.000Z

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore »and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  3. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma [McGill Univ., Montreal, QC (Canada); Giangrande, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Kollias, Pavlos [McGill Univ., Montreal, QC (Canada)

    2014-12-01T23:59:59.000Z

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  4. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended

  5. SCANNING CLOUD RADAR OBSERVATIONS AT AZORES: PRELIMINARY 3D CLOUD PRODUCTS

    E-Print Network [OSTI]

    SCANNING CLOUD RADAR OBSERVATIONS AT AZORES: PRELIMINARY 3D CLOUD PRODUCTS P. Kollias, I. Jo, A, NY www.bnl.gov ABSTRACT The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers

  6. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloudscale. Profiling, millimeterwavelength (cloud) radars can provide such observations. In particular, the first three

  7. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar

    E-Print Network [OSTI]

    Li, Zhanqing

    Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud to analyze cloud vertical structure over this area by taking advantage of the first direct measurements of cloud vertical layers from the 95 GHz radar. Singlelayer, twolayer, and threelayer clouds account for 28

  8. An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA

    E-Print Network [OSTI]

    Shupe, Matthew

    distribution of cloud boundary heights, and occurrence of liquid phase in clouds are determined from radar-observed clouds containing liquid was 73% for the year. The least amount of liquid water phase was observed during-detected clouds. Liquid was distributed in a combination of all-liquid and mixed phase clouds, and was detected

  9. Sea surface wave reconstruction from marine radar images

    E-Print Network [OSTI]

    Qi, Yusheng, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    The X-band marine radar is one type of remote sensing technology which is being increasingly used to measure sea surface waves nowadays. In this thesis, how to reconstruct sea surface wave elevation maps from X-band marine ...

  10. On the Feasibility of Precisely Measuring the Properties of a Precipitating Cloud with a Weather Radar

    E-Print Network [OSTI]

    Runnels, R.C.

    In this paper the results of an investigation are presented that are concerned with the feasibility of employing a weather radar to make precise measurements of the properties of a precipitating cloud. A schematic cloud is proposed as a model...

  11. Prospects of the WSR-88D Radar for Cloud Studies

    E-Print Network [OSTI]

    Melnikov, Valery M.; Zrni?, Dusan S.; Doviak, Richard J.; Chilson, Phillip B.; Mechem, David B.; Kogan, Yefim L.

    2011-04-01T23:59:59.000Z

    - flectivity field at 908 azimuth. APRIL 2011 M E L N I K O V E T A L . 863 compared measured solar radiation with model results. The Bird model (Bird and Hulstrom 1981) has been used to estimate the solar flux on the ground in the absence of clouds....S. Department of Commerce). REFERENCES Battan, L. J., 1973: Radar Observation of the Atmosphere. Uni- versity of Chicago, 324 pp. Bird, R. E., and R. L. Hulstrom, 1981: A simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Solar...

  12. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29T23:59:59.000Z

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.

  13. Monitoring internal organ motion with continuous wave radar in CT

    SciTech Connect (OSTI)

    Pfanner, Florian [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Maier, Joscha [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Allmendinger, Thomas; Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Kachelrieß, Marc [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2013-09-15T23:59:59.000Z

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (?= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.

  14. Elements of a continuous-wave borehole radar. Final report

    SciTech Connect (OSTI)

    Caffey, T.W.H. [Sandia National Labs., Albuquerque, NM (United States). Geophysical Technology Dept.

    1997-08-01T23:59:59.000Z

    The theory is developed for the antenna array for a proposed continuous-wave, ground-penetrating radar for use in a borehole, and field measurements are presented. Accomplishments include the underground measurement of the transmitting beam in the azimuth plane, active azimuth-steering of the transmitting beam, and the development of a range-to-target algorithm. The excellent performance of the antenna array supports the concept of a continuous-wave borehole radar. A field-prototype should be developed for use in both geothermal zones and for the exploration and recovery of oil and gas.

  15. Ice iron/sodium film as cause for high noctilucent cloud radar reflectivity

    E-Print Network [OSTI]

    Bellan, Paul M.

    Ice iron/sodium film as cause for high noctilucent cloud radar reflectivity P. M. Bellan1 Received] Noctilucent clouds, tiny cold electrically charged ice grains located at about 85 km altitude, exhibit by assuming the ice grains are coated by a thin metal film; substantial evidence exists indicating

  16. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    SciTech Connect (OSTI)

    Luke,E.; Kollias, P.

    2007-08-06T23:59:59.000Z

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phase cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.

  17. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11T23:59:59.000Z

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  18. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16T23:59:59.000Z

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  19. Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data

    E-Print Network [OSTI]

    Stoffelen, Ad

    Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data ERWIN L. A. WOLTERS, ROBERT A. ROEBELING, AND ARNOUT J. FEIJT Royal Netherlands 2007) ABSTRACT Three cloud-phase determination algorithms from passive satellite imagers are explored

  20. MECHANICAL VIBRATION SENSING FOR STRUCTURAL HEALTH MONITORING USING A MILLIMETER-WAVE DOPPLER RADAR SENSOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MECHANICAL VIBRATION SENSING FOR STRUCTURAL HEALTH MONITORING USING A MILLIMETER-WAVE DOPPLER RADAR of structural health monitoring (SHM). In this paper, we report on a millimeter-wave Doppler radar sensor sensing, millimeter-waves, structural health monitoring. INTRODUCTION Structural health monitoring based

  1. Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Measurements at PEARL

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Atmospheric Radiative Transfer (SBDART) code. Results on the climatology and radiative effects of clouds, arctic regions are the site of interactions between aerosols, clouds, radiation and precipitations

  2. Constructing a Merged CloudPrecipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    E-Print Network [OSTI]

    of observations from three radars--the S-band dual-polarization Doppler radar (S-Pol), the C-band Shared Mobile, and radiative heating rate retrievals. With this dataset the full spectrum of tropical convective clouds during, U.S. Department of Energy, Washington, D.C. Corresponding author address: Dr. Zhe Feng, Pacific

  3. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

    2015-01-28T23:59:59.000Z

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  4. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen

    2014-01-01T23:59:59.000Z

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  5. Nonlinear Hydromagnetic Wave Support of a Stratified Molecular Cloud

    E-Print Network [OSTI]

    T. Kudoh; S. Basu

    2003-06-23T23:59:59.000Z

    We perform numerical simulations of nonlinear MHD waves in a gravitationally stratified molecular cloud that is bounded by a hot and tenuous external medium. We study the relation between the strength of the turbulence and various global properties of a molecular cloud, within a 1.5-dimensional approximation. Under the influence of a driving source of Alfvenic disturbances, the cloud is lifted up by the pressure of MHD waves and reaches a steady-state characterized by oscillations about a new time-averaged equilibrium state. The nonlinear effect results in the generation of longitudinal motions and many shock waves; however, the wave kinetic energy remains predominantly in transverse, rather than longitudinal, motions. There is an approximate equipartition of energy between the transverse velocity and fluctuating magnetic field (aspredicted by small-amplitude theory) in the region of the stratified cloud which contains most of the mass; however, this relation breaks down in the outer regions, particularly near the cloud surface, where the motions have a standing-wave character. This means that the Chandrasekhar-Fermi formula applied to molecular clouds must be significantly modified in such regions. Models of an ensemble of clouds show that, for various strengths of the input energy, the velocity dispersion in the cloud $\\sigma \\propto Z^{0.5}$, where $Z$ is a characteristic size of the cloud.Furthermore, $\\sigma$ is always comparable to the mean Alfven velocity of the cloud, consistent with observational results.

  6. NOTES AND CORRESPONDENCE CloudSat as a Global Radar Calibrator

    E-Print Network [OSTI]

    Protat, Alain

    Research, Melbourne, Victoria, Australia 1 Laboratoire Atmosphe`re, Milieux, et Observations Spatiales, Ve is the case). The power of using CloudSat as a global radar calibrator is demonstrated using the Atmospheric, Melbourne, VIC 3008, Australia. E-mail: a.protat@bom.gov.au MARCH 2011 N O T E S A N D C O R R E S P O N D E

  7. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  8. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  9. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bharadwaj, Nitin; Widener, Kevin

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  10. Scanning ARM Cloud Radars Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen; Clothiaux, Eugene E.

    2014-03-01T23:59:59.000Z

    The Scanning ARM Cloud Radars (SACR’s) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the Hemispherical Sky – Range Height Indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  11. Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave radiometer data are systematically compared to models to quantify and

    E-Print Network [OSTI]

    Hogan, Robin

    Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave a systematic evaluation of clouds in forecast models. Clouds and their associated microphysical processes for end users of weather forecasts, who may be interested not only in cloud cover, but in other variables

  12. Millimeter-wave radar sensor for automotive intelligent cruise control (ICC)

    SciTech Connect (OSTI)

    Russell, M.E.; Crain, A.; Curran, A.; Campbell, R.A.; Drubin, C.A.; Miccioli, W.F. [Raytheon, Tewksbury, MA (United States)] [Raytheon, Tewksbury, MA (United States)

    1997-12-01T23:59:59.000Z

    If automotive intelligent cruise-control (ICC) systems are to be successful in the marketplace, they must provide robust performance in a complex roadway environment. Inconveniences caused by reduced performance during inclement weather, interrupted performance due to dropped tracks, and annoying nuisance alarms will not be tolerated by the consumer, and would likely result in the rejection of this technology in the marketplace. An all-weather automotive millimeter-wave (MMW) radar sensor is described that uses a frequency-modulation coplanar-wave (FMCW) radar design capable of acquiring and tracking all obstacles in its field of view. Design tradeoffs are discussed and radar-sensor test results are presented along with the applicability of the radar to collision-warning systems.

  13. Waves on the surface of the Orion molecular cloud

    E-Print Network [OSTI]

    Olivier Berné; Núria Marcelino; José Cernicharo

    2010-11-01T23:59:59.000Z

    Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the `pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of `waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.

  14. STUDY OF CLOUD LIFETIME EFFECTS USING THE SGP HETEROGENEOUS DISTRIBUTED RADAR NETWORK: PRELIMINARY CONSIDERATIONS

    E-Print Network [OSTI]

    stages of cloud development. Here, we express cloud life cycle in terms of the temporal evolution-dimensional morphology and life cycle of clouds. Detailing key cloud processes as they transit from the formation stage National Laboratory For presentation at The Second Science Team Meeting of the Atmospheric System Research

  15. Using MSG-SEVIRI Cloud Physical Properties and Weather Radar Observations for the Detection of Cb/TCu Clouds

    E-Print Network [OSTI]

    Schmeits, Maurice

    . The presence of associated severe weather can be rel- evant to, for example, the transport industry, tourism, the energy supply industry, the construction industry, and farmers. The Cb and TCu clouds may pose a serious Society #12;wind shear, heavy precipitation, and lightning, that is associated with these clouds. Also

  16. Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approach

    E-Print Network [OSTI]

    Stephens, Graeme L.

    of the planet. These effects occur as a consequence of the way cloud particles scatter and absorb radiation, 0325); 1655 Global Change: Water cycles (1836); KEYWORDS: ice water content retrieval, cirrus cloud), 4335, doi:10.1029/2002JD002693, 2003. 1. Introduction [2] Clouds profoundly affect the radiation budget

  17. Continuous-wave radar to detect defects within heat exchangers and steam generator tubes.

    SciTech Connect (OSTI)

    Nassersharif, Bahram (New Mexico State University, Las Cruces, NM); Caffey, Thurlow Washburn Howell; Jedlicka, Russell P. (New Mexico State University, Las Cruces, NM); Garcia, Gabe V. (New Mexico State University, Las Cruces, NM); Rochau, Gary Eugene

    2003-01-01T23:59:59.000Z

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.

  18. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    SciTech Connect (OSTI)

    Janet Intrieri; Mathhew Shupe

    2005-01-01T23:59:59.000Z

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.

  19. Detection of supercooled liquid in mixedphase clouds using radar Doppler spectra

    E-Print Network [OSTI]

    Shupe, Matthew

    in the temperature range from 0 to -40°C, where both liquid and ice hydrometeor phases are sustainable of their hydrometeors (i.e., liquid or ice). Current cloud parameterizations that parti- tion water into liquid and ice 2010; published 1 October 2010. [1] Cloud phase identification from active remote sensors

  20. The use of Doppler radar to predict cloud-to-ground lightning

    E-Print Network [OSTI]

    Aclin, Keith Andrew

    1995-01-01T23:59:59.000Z

    during the spring of 1993 for squall line activity. These data will then be combined with the cloud-to-ground lightning that occurred within the six minutes of the scan time. Three sets of linear correlations will be generated. The first...

  1. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect (OSTI)

    Liu, Guosheng

    2013-03-15T23:59:59.000Z

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMsâ�� cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10�° (latitude) x 10�° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

  2. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    SciTech Connect (OSTI)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu, E-mail: keiser@dtm.ciw.edu [Department of Terrestrial Magnetism, Carnegie Institution, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)

    2013-06-10T23:59:59.000Z

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  3. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA Atmospheric Observatory

    SciTech Connect (OSTI)

    Chiriaco, M.; Vautard, R.; Chepfer, H.; Haeffelin, M.; Wanherdrick, Y.; Morille, Y.; Protat, A.; Dudhia, J.

    2005-03-18T23:59:59.000Z

    Ice clouds play a major role in the radiative energy budget of the Earth-atmosphere system (Liou 1986). Their radiative effect is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. For quantifying the effect of these clouds onto climate and weather systems, they must be properly characterized in atmospheric models. In this paper we use remote-sensing measurements from the SIRTA ground based atmospheric observatory (Site Instrumental de Recherche par Teledetection Atmospherique, http://sirta.lmd.polytechnique.fr). Lidar and radar observations taken over 18 months are used, in order to gain statistical confidence in the model evaluation. Along this period of time, 62 days are selected for study because they contain parts of ice clouds. We use the ''model to observations'' approach by simulating lidar and radar signals from MM5 outputs. Other more classical variables such as shortwave and longwave radiative fluxes are also used. Four microphysical schemes, among which that proposed by Reisner et al. (1998) with original or modified parameterizations of particle terminal fall velocities (Zurovac-Jevtic and Zhang 2003, Heymsfield and Donner 1990), and the simplified Dudhia (1989) scheme are evaluated in this study.

  4. Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003

    SciTech Connect (OSTI)

    Gary E. Rochau and Thurlow W.H. Caffey, Sandia National Laboratories, Albuquerque, NM 87185-0740; Bahram Nassersharif and Gabe V. Garcia, Department of Mechanical Engineering, New Mexico State University, Las Cruces, NM 88003-8001; Russell P. Jedlicka, Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88003-8001

    2003-05-01T23:59:59.000Z

    OAK B204 Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003. A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The technique is 100% volumetric, and may find smaller defects, more rapidly, and less expensively than present methods. The project described in this report was a joint development effort between Sandia National Laboratories (SNL) and New Mexico State University (NMSU) funded by the US Department of Energy. The goal of the project was to research, design, and develop a new concept utilizing a continuous wave radar to detect defects inside metallic tubes and in particular nuclear plant steam generator tubing. The project was divided into four parallel tracks: computational modeling, experimental prototyping, thermo-mechanical design, and signal detection and analysis.

  5. Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar

    E-Print Network [OSTI]

    Reading, University of

    partially cloudy grid boxes by weighting clear and cloudy fluxes by the fractional area of cloud cover (Ca cloud cover from 53% to 63%, and so is of similar importance to the cloud overlap assumption. A simple for calculating the radiative effect of cloud (Stephens 1984; Edwards and Slingo 1996) and the representation

  6. Comparing Clouds Using Cloud Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingth Lomonosov1Compact highDepartmentIntensity

  7. Nonlinear Hydromagnetic Wave Support of a Stratified Molecular Cloud II: A Parameter Study

    E-Print Network [OSTI]

    Takahiro Kudoh; Shantanu Basu

    2006-01-04T23:59:59.000Z

    We use numerical simulations to study the effect of nonlinear MHD waves in a stratified, self-gravitating molecular cloud that is bounded by a hot and tenuous external medium. In a previous paper, we had shown the details of a standard model and studied the effect of varying the dimensionless amplitude. In this paper, we present the results of varying two other important free parameters: beta_0, the initial ratio of gas to magnetic pressure at the cloud midplane, and the dimensionless frequency of driving. Furthermore, we present the case of a temporally random driving force. Our results demonstrate that a very important consideration for the actual level of turbulent support against gravity is the ratio of driving wavelength lambda_0 to the the size of the initial non-turbulent cloud; maximum cloud expansion is achieved when this ratio is close to unity. The best consistency with the observational correlation of magnetic field strength, turbulent line width, and density is achieved by cloud models with beta_0 approx 1. We also calculate the spatial power spectra of the turbulent clouds, and show that significant power is developed on scales larger than the scale length H_0 of the initial cloud, even if the input wavelength of turbulence lambda_0 approx H_0. The cloud stratification and resulting increase of Alfven speed toward the cloud edge allows for a transfer of energy to wavelengths significantly larger than lambda_0. This explains why the relevant time scale for turbulent dissipation is the crossing time over the cloud scale rather than the crossing time over the driving scale.

  8. Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: a study of lightning initiation signatures as indicated by Doppler radar

    E-Print Network [OSTI]

    Gremillion, Michael Shane

    1998-01-01T23:59:59.000Z

    , except for 1806-1824 UTC 58 29 Same as Fig. 27, except for 1830-1847 UTC 59 30 Radar echo tops for all categories of storms 95 31 Scatter diagram of mixed-phase reflectivity lapse rate and maximum reflectivity at the freezing level for all storms... Mexico. Taylor (1978) also found the center of activity to be associated with the supercooled cloud layer between the regions of ? 5'C and ? 20'C. One theory of thunderstorm electrification supports the idea of an ice-related precipitation...

  9. Real-time 3-d localization using radar and passive surface acoustic wave transponders

    E-Print Network [OSTI]

    LaPenta, Jason Michael

    2007-01-01T23:59:59.000Z

    This thesis covers ongoing work into the design, fabrication, implementation, and characterization of novel passive transponders that allow range measurements at short range and at high update rates. Multiple RADAR measurement ...

  10. Stratus cloud structure from MM-radar transects and satellite images: scaling properties and artifact detection with semi-discrete wavelet analysis

    SciTech Connect (OSTI)

    Davis, A. B. (Anthony B.); Petrov, N. P. (Nikola P.); Clothiaux, E. E. (Eugene E.); Marshak, A. (Alexander)

    2002-01-01T23:59:59.000Z

    Spatial and/or temporal variabilities of clouds is of paramount importance for at least two in tensely researched sub-problems in global and regional climate modeling: (1) cloud-radiation interaction where correlations can trigger 3D radiative transfer effects; and (2) dynamical cloud modeling where the goal is to realistically reproduce the said correlations. We propose wavelets as a simple yet powerful way of quantifying cloud variability. More precisely, we use 'semi-discrete' wavelet transforms which, at least in the present statistical applications, have advantages over both its continuous and discrete counterparts found in the bulk of the wavelet literature. With the particular choice of normalization we adopt, the scale-dependence of the variance of the wavelet coefficients (i.e,, the wavelet energy spectrum) is always a better discriminator of transition from 'stationary' to 'nonstationary' behavior than conventional methods based on auto-correlation analysis, second-order structure function (a.k.a. the semi-variogram), or Fourier analysis. Indeed, the classic statistics go at best from monotonically scale- or wavenumber-dependent to flat at such a transition; by contrast, the wavelet spectrum changes the sign of its derivative with respect to scale. We apply 1D and 2D semi-discrete wavelet transforms to remote sensing data on cloud structure from two sources: (1) an upward-looking milli-meter cloud radar (MMCR) at DOE's climate observation site in Oklahoma deployed as part of the Atmospheric Radiation Measurement (ARM) Progrm; and (2) DOE's Multispectral Thermal Imager (MTI), a high-resolution space-borne instrument in sunsynchronous orbit that is described in sufficient detail for our present purposes by Weber et al. (1999). For each type of data, we have at least one theoretical prediction - with empirical validation already in existence - for a power-law relation for wavelet statistics with respect to scale. This is what is expected in physical (i.e., finite scaling range) fractal phenomena. In particular, we find long-range correlations in cloud structure coming from the important nonstationary regime. More surprisingly, we also uncover artifacts the data that are traceable either to instrumental noise (in the satellite data) or to smoothing assumptions (in the MMCR data processing). Finally, we discuss the potentially damaging ramifications the smoothing artifact can have on both cloud-radiation and cloud-modeling studies using MMCR data.

  11. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    SciTech Connect (OSTI)

    Reeder, Michael J. [Monash University; Lane, Todd P. [University of Melbourne; Hankinson, Mai Chi Nguyen [Monash University

    2013-09-27T23:59:59.000Z

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection. The wave activity is strongest in the lower stratosphere below 22 km and, during the suppressed monsoon period, is modulated with a 3-4-day period. The concentration of the wave activity in the lower stratosphere is consistent with the properties of the environment in which these waves propagate, whereas its 3-4-day modulation is explained by the variation of the convection activity in the TWP-ICE domain. At low rainfall intensity the wave activity increases as rainfall intensity increases. At high values of rainfall intensity, however, the wave activity associated with deep convective clouds is independent of the rainfall intensity. The convection and gravity waves observed during TWP-ICE are simulated with the Weather Research and Forecasting (WRF) Model. These simulations are compared with radiosonde observations described above and are used to determine some of the properties of convectively generated gravity waves. The gravity waves appear to be well simulated by the model. The model is used to explore the relationships between the convection, the gravity waves and cirrus.

  12. Real-Time C-Band Radar Observations of 1992 Eruption Clouds from Crater Peak, Mount Spurr Volcano, Alaska

    E-Print Network [OSTI]

    Rose, William I.

    Survey (USGS), and the Federal Aviation Administration (FAA) at Anchorage provides for the exchange of the eruptions has had a considerable impact on commercial aviation in south- central Alaska, particularly of measuring and tracking ash clouds, in order to advise the aviation community about how to avoid ash clouds

  13. 12A.4 VERTICAL VELOCITY AND BUOYANCY CHARACTERISTICS OF ECHO PLUMES DETECTED BY AN AIRBORNE MM-WAVE RADAR IN THE CONVECTIVE

    E-Print Network [OSTI]

    Geerts, Bart

    12A.4 VERTICAL VELOCITY AND BUOYANCY CHARACTERISTICS OF ECHO PLUMES DETECTED BY AN AIRBORNE MM-WAVE, is the availability of in situ thermodynamic and kinematic observations, and the direct observation of horizontal, as part of IHOP_02 (The International Water Vapor Project, Weckwerth et al 2003). The key radar

  14. 4A.5 DERIVING TURBULENT KINETIC ENERGY DISSIPATION RATE WITHIN CLOUDS USING GROUND BASED 94 GHZ RADAR

    E-Print Network [OSTI]

    Hogan, Robin

    Terrestre et Plan´etaire, V´elizy, France University of Reading, Reading, United Kingdom 1. INTRODUCTION. The variance 1 #12;v 2 of the mean wind is an indicator of the kinetic energy in turbulent scales4A.5 DERIVING TURBULENT KINETIC ENERGY DISSIPATION RATE WITHIN CLOUDS USING GROUND BASED 94 GHZ

  15. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  16. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect (OSTI)

    Westwater, Edgeworth

    2011-05-06T23:59:59.000Z

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of this contract, we participated in another ARM-sponsored experiment at the NSA during February-March 2007. This experiment is called the Radiative Heating in Underexplored Bands Campaign (RHUBC) and the GSR was operated successfully for the duration of the campaign. One of the principal goals of the experiment was to provide retrievals of water vapor during PWV amounts less than 2 mm and to compare GSR data with ARM radiometers and radiosondes. A secondary goal was to compare the radiometric response of the microwave and millimeter wavelength radiometers to water and ice clouds. In this final report, we will include the separate progress reports for each of the three years of the project and follow with a section on major accomplishments of the project.

  17. On the Microphysical Properties of Ice Clouds as Inferred from the Polarization of Electromagnetic Waves

    E-Print Network [OSTI]

    Cole, Benjamin

    2012-10-19T23:59:59.000Z

    Uncertainties associated with the microphysical and radiative properties of ice clouds remain an active research area because of the importance these clouds have in atmospheric radiative transfer problems and the energy balance of the Earth...

  18. On the Microphysical Properties of Ice Clouds as Inferred from the Polarization of Electromagnetic Waves 

    E-Print Network [OSTI]

    Cole, Benjamin

    2012-10-19T23:59:59.000Z

    Uncertainties associated with the microphysical and radiative properties of ice clouds remain an active research area because of the importance these clouds have in atmospheric radiative transfer problems and the energy balance of the Earth...

  19. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at the

    E-Print Network [OSTI]

    Protat, Alain

    distribution are critical to the global radiative effect of ice clouds. One of the main uncertainties. To quantify the effect of these clouds onto climate and weather systems, their global coverage, altitude, tem effect. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium

  20. An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar

    SciTech Connect (OSTI)

    Lo, C; Comstock, JM; Flynn, C

    2006-10-01T23:59:59.000Z

    The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when ? approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

  1. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-Lived Radioisotopes with a Shock Wave. IV. Effects of Rotational Axis Orientation

    E-Print Network [OSTI]

    Boss, Alan P

    2015-01-01T23:59:59.000Z

    Both astronomical observations of the interaction of Type II supernova remnants (SNR) with dense interstellar clouds as well as cosmochemical studies of the abundances of daughter products of short-lived radioisotopes (SLRIs) formed by supernova nucleosynthesis support the hypothesis that the Solar Systems SLRIs may have been derived from a supernova. This paper continues a series devoted to examining whether such a shock wave could have triggered the dynamical collapse of a dense, presolar cloud core and simultaneously injected sufficient abundances of SLRIs to explain the cosmochemical evidence. Here we examine the effects of shock waves striking clouds whose spin axes are oriented perpendicular, rather than parallel, to the direction of propagation of the shock front. The models start with 2.2 solar mass cloud cores and shock speeds of 20 or 40 km/sec. Central protostars and protoplanetary disks form in all models, though with disk spin axes aligned somewhat randomly. The disks derive most of their angular...

  2. Calibration of the groundbased radars during CLARE'98 Robin J. Hogan

    E-Print Network [OSTI]

    Hogan, Robin

    Calibration of the ground­based radars during CLARE'98 Robin J. Hogan Department of Meteorology. The approach used to calibrate the radars is to start with the absolute calibration provided by the Rabelais radar in Rayleigh­scattering light rain or cloud. Finally the W­band radars are calibrated

  3. The vertical structure of Jupiter's equatorial zonal wind above the cloud deck, derived using mesoscale gravity waves

    E-Print Network [OSTI]

    Watkins, C; 10.1029/2012GL054368

    2013-01-01T23:59:59.000Z

    Data from the Galileo Probe, collected during its descent into Jupiter's atmosphere, is used to obtain a vertical profile of the zonal wind from $\\mathbf{\\sim 0.5}$ bar (upper troposphere) to $\\mathbf{\\sim 0.1\\, \\mu{bar}}$ (lower thermosphere) at the probe entry site. This is accomplished by constructing a map of gravity wave Lomb-Scargle periodograms as a function of altitude. The profile obtained from the map indicates that the wind speed above the visible cloud deck increases with height to $\\mathbf{\\sim 150}$ m\\,s$\\mathbf{^{-1}}$ and then levels off at this value over a broad altitude range. The location of the turbopause, as a region of wide wave spectrum, is also identified from the map. In addition, a cross-equatorial oscillation of a jet, which has previously been linked to the quasi-quadrennial oscillation in the stratosphere, is suggested by the profile.

  4. Cloud Services Cloud Services

    E-Print Network [OSTI]

    Cloud Services Cloud Services In 2012 UCD IT Services launched an exciting new set of cloud solutions called CloudEdu, which includes cloud servers, cloud storage, cloud hosting and cloud network. The CloudEdu package includes a consultancy service in design, deployment, management and utilisation

  5. The Accuracy of Radar Estimates of Ice Terminal Fall Speed from Vertically Pointing Doppler Radar Measurements

    E-Print Network [OSTI]

    Protat, Alain

    The Accuracy of Radar Estimates of Ice Terminal Fall Speed from Vertically Pointing Doppler Radar and 2835 MHz) are used to characterize the terminal fall speed of hydrometeors and the vertical air motion air velocity in ice clouds is small on average, as is assumed in terminal fall speed retrieval methods

  6. Radar polarimetry for geoscience applications

    SciTech Connect (OSTI)

    Elachi, C.; Kuga, Y.; McDonald, K.; Sarabandi, K.; Ulaby, F.T.; Whitt, M.; Zebker, H.; van Zyl, J.J.

    1990-01-01T23:59:59.000Z

    A source book for remote sensing and radar design engineers, this text covers wave polarization, polarization synthesis, scattering matrices, SAR polarization systems, and an array of applications It covers: an introduction to the different mathematical representations used to describe scattering properties, a review of scatterometer system design and calibration techniques for use in polarimetric measurements, a study of specific polarimetric radar systems, such as the shuttle imaging radar C (SIR-C), that includes calibration and compression techniques, data processing guidelines, and design approaches.

  7. Testing IWC Retrieval Methods using Radar and Ancillary Measurements with In-Situ Andrew J. Heymsfield1

    E-Print Network [OSTI]

    Hogan, Robin

    profiles of ice water content (IWC) can now be derived globally from spaceborne cloud radar (CloudSat) data energy to space. Because of their height in the atmosphere, ice clouds have a dominant effect on longwave (), and ice particle shape, significantly affect ice cloud radiative properties. CloudSat, with an onboard

  8. Kinematical relations among radar-observed water concentrations, vertical motions, and liquid-water drop-size spectra in convective clouds

    E-Print Network [OSTI]

    Runnels, Robert Clayton

    1962-01-01T23:59:59.000Z

    of return settling are often cloudless or consist of cumulus clouds which have had their growth impeded. If conditions in the atmosphere are favorable, convection cells form and the updraft areas associated with these cells develop into cumulonimbus... and time, M & M(x, y, z, t). The x- and y-directions are horizontal and z-direction is positive toward the zenith. If the quantity M is conservative, the local rate of change at a fixed locality (the local change) can be represented by the following...

  9. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25T23:59:59.000Z

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  10. 7, 80878111, 2007 Influence of cloud top

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 8087­8111, 2007 Influence of cloud top variability on radiative transfer Richter, Barfus top variability from radar measurements on 3-D radiative transfer F. Richter 1 , K. Barfus 1 , F. H.richter@awi.de) 8087 #12;ACPD 7, 8087­8111, 2007 Influence of cloud top variability on radiative transfer Richter

  11. Shipboard measurements of the cloud-capped marine boundary layer during FIRE/ASTEX

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Results are reported on measurements of the cloud-capped marine boundary layer during FIRE/ASTEX. A method was developed from the ASTEX dataset for measuring profiles of liquid water content, droplet size and concentration from cloud radar/microwave radiometer data in marine boundary layer clouds. Profiles were also determined from the first three moments of the Doppler spectrum measured in drizzle with the ETL cloud radar during ASTEX.

  12. Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds

    SciTech Connect (OSTI)

    Rambukkange, Mahlon P.; Verlinde, J.; Eloranta, E. W.; Flynn, Connor J.; Clothiaux, Eugene E.

    2011-01-31T23:59:59.000Z

    Multimodality of cloud radar Doppler spectra is used to partition cloud particle phases and to separate distinct ice populations in the radar sample volume, thereby facilitating analysis of individual ice showers in multilayered mixed-phase clouds. A 35-GHz cloud radar located at Barrow, Alaska, during the Mixed-Phase Arctic Cloud Experiment collected the Doppler spectra. Data from a pair of collocated depolarization lidars confirmed the presence of two liquid cloud layers reported in this study. Surprisingly, both of these cloud layers were embedded in ice precipitation yet maintained their liquid. Our spectral separation of the ice precipitation yielded two distinct ice populations: ice initiated within the two liquid cloud layers and ice precipitation formed in higher cloud layers. Comparisons of ice fall velocity versus radar reflectivity relationships derived for distinct showers reveal that a single relationship might not properly represent the ice showers during this period.

  13. ARM - Field Campaign - Cloud Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments?

  14. A census of precipitation features in the tropics using TRMM: radar, ice scattering, and lightning observations

    E-Print Network [OSTI]

    Nesbitt, Stephen William

    1999-01-01T23:59:59.000Z

    and two ocean regions during August, September and October 1998, this study used radar retrievals and 85 GHz Polarization Corrected Temperatures (PCTs, which passively measure relative concentrations of precipitation-sized ice particles within a cloud...

  15. Waves

    E-Print Network [OSTI]

    LaCure, Mari Mae

    2010-04-29T23:59:59.000Z

    Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...

  16. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Jensen, K

    2006-06-01T23:59:59.000Z

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  17. Fast methods for inverse wave scattering problems

    E-Print Network [OSTI]

    Lee, Jung Hoon, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    Inverse wave scattering problems arise in many applications including computerized/diffraction tomography, seismology, diffraction/holographic grating design, object identification from radar singals, and semiconductor ...

  18. Parameterization of Infrared Absorption in Midlatitude Cirrus Clouds

    SciTech Connect (OSTI)

    Sassen, Kenneth; Wang, Zhien; Platt, C.M.R.; Comstock, Jennifer M.

    2003-01-01T23:59:59.000Z

    Employing a new approach based on combined Raman lidar and millimeter-wave radar measurements and a parameterization of the infrared absorption coefficient {sigma}{sub a}(km{sup -1}) in terms of retrieved cloud microphysics, we derive a statistical relation between {sigma}{sub a} and cirrus cloud temperature. The relations {sigma}{sub a} = 0.3949 + 5.3886 x 10{sup -3} T + 1.526 x 10{sup -5} T{sup 2} for ambient temperature (T,{sup o}C), and {sigma}{sub a} = 0.2896 + 3.409 x 10{sup -3} T{sub m} for midcloud temperature (T{sub m}, {sup o}C), are found using a second order polynomial fit. Comparison with two {sigma}{sub a} versus T{sub m} relations obtained primarily from midlatitude cirrus using the combined lidar/infrared radiometer (LIRAD) approach reveals significant differences. However, we show that this reflects both the previous convention used in curve fitting (i. e., {sigma}{sub a} {yields} 0 at {approx} 80 C), and the types of clouds included in the datasets. Without such constraints, convergence is found in the three independent remote sensing datasets within the range of conditions considered valid for cirrus (i.e., cloud optical depth {approx} 3.0 and T{sub m} < {approx}20 C). Hence for completeness we also provide reanalyzed parameterizations for a visible extinction coefficient {sigma}{sub a} versus T{sub m} relation for midlatitude cirrus, and a data sample involving cirrus that evolved into midlevel altostratus clouds with higher optical depths.

  19. A newsletter for non-scientists (and scientists) interested in MAGIC Radars transmit pulses of radio waves of a given frequency and receive signals that are

    E-Print Network [OSTI]

    the Doppler effect, named after Christian Doppler, an Austrian physicist of the 19th century. Everyone sizes of raindrops. The Doppler effect pertains to the change in frequency of a wave emitted-- this is the Doppler effect in a nutshell. The amount by which the pitch is greater or lower, called the Doppler shift

  20. Progress reports for October 1994 -- Joint UK/US Radar Program

    SciTech Connect (OSTI)

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-11-18T23:59:59.000Z

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for each of the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis; modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Finally the budget status is given.

  1. Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Clouds Applied to ARM Data and Climate Models

    SciTech Connect (OSTI)

    Kuo-Nan Liou

    2003-12-29T23:59:59.000Z

    OAK-B135 (a) We developed a 3D radiative transfer model to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilized a diffusion approximation approach (four-term expansion in the intensity) employing Cartesian coordinates. The required single-scattering parameters, including the extinction coefficient, single-scattering albedo, and asymmetry factor, for input to the model, were parameterized in terms of the ice water content and mean effective ice crystal size. The incorporation of gaseous absorption in multiple scattering atmospheres was accomplished by means of the correlated k-distribution approach. In addition, the strong forward diffraction nature in the phase function was accounted for in each predivided spatial grid based on a delta-function adjustment. The radiation parameterization developed herein is applied to potential cloud configurations generated from GCMs to investigate broken clouds and cloud-overlapping effects on the domain-averaged heating rate. Cloud inhomogeneity plays an important role in the determination of flux and heating rate distributions. Clouds with maximum overlap tend to produce less heating than those with random overlap. Broken clouds show more solar heating as well as more IR cooling as compared to a continuous cloud field (Gu and Liou, 2001). (b) We incorporated a contemporary radiation parameterization scheme in the UCLA atmospheric GCM in collaboration with the UCLA GCM group. In conjunction with the cloud/radiation process studies, we developed a physically-based cloud cover formation scheme in association with radiation calculations. The model clouds were first vertically grouped in terms of low, middle, and high types. Maximum overlap was then used for each cloud type, followed by random overlap among the three cloud types. Fu and Liou's 1D radiation code with modification was subsequently employed for pixel-by-pixel radiation calculations in the UCLA GCM. We showed that the simulated cloud cover and OLR fields without special tuning are comparable to those of ISCCP dataset and the results derived from radiation budget experiments. Use of the new radiation and cloud schemes enhances the radiative warming in the middle to upper tropical troposphere and alleviates the cold bias in the UCLA atmospheric GCM. We also illustrated that ice crystal size and cloud inhomogeneous are significant factors affecting the radiation budgets at the top of the atmosphere and the surface (Gu et al. 2003). (c) An innovative approach has been developed to construct a 3D field of inhomogeneous clouds in general and cirrus in particular in terms of liquid/ice water content and particle size on the basis of a unification of satellite and ground-based cloud radar data. Satellite remote sensing employing the current narrow-band spectro-radiometers has limitation and only the vertically integrated cloud parameters (optical depth and mean particle size) can be determined. However, by combining the horizontal cloud mapping inferred from satellites with the vertical structure derived from the profiling Doppler cloud radar, a 3D cloud field can be constructed. This represents a new conceptual approach to 3D remote sensing and imaging and offers a new perspective in observing the cloud structure. We applied this novel technique to AVHRR/NOAA satellite and mm-wave cloud radar data obtained from the ARM achieve and assessed the 3D cirrus cloud field with the ice crystal size distributions independently derived from optical probe measurements aboard the University of North Dakota Citation. The retrieved 3D ice water content and mean effective ice crystal size involving an impressive cirrus cloud occurring on April 18, 1997, are shown to be comparable to those derived from the analysis of collocated and coincident in situ aircraft measurements (Liou et al. 2002). (d) Detection of thin cirrus with optical depths less than 0.5, particularly those occurring i n the tropics remains a fundamental problem in remote sensing. We developed a new detection scheme for the

  2. Dynamics of Finite Dust Clouds in a Magnetized Anodic Plasma

    SciTech Connect (OSTI)

    Piel, A.; Pilch, I.; Trottenberg, T. [Institute for Experimental and Applied Physics, Christian-Albrechts University, D-24098 Kiel (Germany); Koepke, M. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26505-6315 (United States)

    2008-09-07T23:59:59.000Z

    The response to an external modulation voltage of small dust clouds confined in an anodic plasma is studied. Dust density waves are excited when the cloud is larger than a wavelength, whereas a sloshing and stretching motion is found for smaller clouds. The wave dispersion shows similarities with waveguide modes.

  3. Cloud Properties and Radiative Heating Rates for TWP

    SciTech Connect (OSTI)

    Comstock, Jennifer

    2013-11-07T23:59:59.000Z

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  4. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  5. Sandia National Laboratories: Radar Friendly Blades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MitigationRadar Friendly Blades Radar Friendly Blades Some wind farms have the potential to cause interference with the normal operation of radar systems used for security, weather...

  6. Tripleclouds: An Efficient Method for Representing Horizontal Cloud Inhomogeneity in 1D Radiation Schemes by Using Three Regions at Each Height

    E-Print Network [OSTI]

    Hogan, Robin

    that a mere 4% increase in global cloud cover could counter- act the warming caused by a doubling of carbon the effect of in- homogeneity on the radiative properties of high cloud. They used cloud radar data to inferTripleclouds: An Efficient Method for Representing Horizontal Cloud Inhomogeneity in 1D Radiation

  7. Cloud Computing

    SciTech Connect (OSTI)

    Pete Beckman and Ian Foster

    2009-12-04T23:59:59.000Z

    Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

  8. High frequency radar and its application to fresh water Lorelle A. Meadows a,

    E-Print Network [OSTI]

    Ruf, Christopher

    ) at a Doppler shift corresponding very nearly to the phase velocity of the radially ad- vancing and receding frequency of the radar, c is the radial velocity of the Bragg resonant waves and cem is the speed of light average radiated powers, respectively. The effective offshore range for these radars was found to be 18 km

  9. Reflectivity retrieval in a networked radar environment: Demonstration from the CASA IP1

    E-Print Network [OSTI]

    Jayasumana, Anura P.

    using data from the first Integration Project (IP1) radar network in Oklahoma. Electromagnetic waves, the lowest coverage altitude gets higher with range due to earth curvature [1]. A networked radar environment is capable of high spatial coverage and temporal resolution. The Engineering Research Center for CASA

  10. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  11. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  12. Automatic Radar Antenna Scan Type Recognition in Electronic

    E-Print Network [OSTI]

    Barshan, Billur

    Automatic Radar Antenna Scan Type Recognition in Electronic Warfare BILLUR BARSHAN BAHAEDDIN ERAVCI in electronic warfare (EW). The stages of the algorithm are scan period estimation, preprocessing (normalization Continuous-wave EW Electronic warfare EM Electromagnetic LFM Linear frequency modulation DTW Dynamic time

  13. Impulse radar studfinder

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  14. Conventional and synthetic aperature processing for airborne ground penetrating radar

    SciTech Connect (OSTI)

    Cameron, R.M. [Airborne Environmental Surveys, Santa Maria, CA (United States); Simkins, W.L.; Brown, R.D. [MSB Technologies, Inc., Rome, NY (United States)

    1994-12-31T23:59:59.000Z

    For the past four years Airborne Environmental Surveys (AES), a Division of Era Aviation, Inc. has used unique and patented airborne Frequency-Modulated, Continuous Wave (FM-CW) radars and processes for detecting and mapping subsurface phenomena. Primary application has focused on the detection of man-made objects in landfills, hazardous waste sites (some of which contain unexploded ordinance), and subsurface plumes of refined free-floating hydrocarbons. Recently, MSB Technologies, Inc. (MSB) has developed a form of synthetic aperture radar processing (SAR), called GPSAR{trademark}, that is tailored especially for the AES radars. Used as an adjunct to more conventional airborne ground-penetrating radar data processing techniques, GPSAR takes advantage of the radars` coherent transmission and produces imagery that is better focused and more accurate in determining an object`s range and true depth. This paper describes the iterative stages of data processing and analysis used with the radars and shows the added advantages that GPSAR processing offers.

  15. At this meeting: Oral presentation: Cloud Properties From (A)ATSR (Caroline Poulsen)

    E-Print Network [OSTI]

    Oxford, University of

    sensors including radars, an infrared and microwave sounder unit, and microwave radiometer integrated vertically over each layer separated by cloud base. This strategy makes it possible to evaluate. Recent progress in satellite sensor technology, exempli- fied by hyperspectral sounders and cloud

  16. Anvil characteristics as seen by C-POL during the Tropical Warm Pool International Cloud Experiment (TWP-ICE)

    E-Print Network [OSTI]

    Frederick, Kaycee Loretta

    2007-04-25T23:59:59.000Z

    The Tropical Pacific Warm Pool International Cloud Experiment (TWP-ICE) took place in Darwin, Australia in early 2006. C-band radar data from this experiment were used to characterize tropical anvil areal coverage, height, and thickness during...

  17. Imaging synthetic aperture radar

    DOE Patents [OSTI]

    Burns, Bryan L. (Tijeras, NM); Cordaro, J. Thomas (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  18. Ground Penetrating Radar in Hydrogeophysics

    SciTech Connect (OSTI)

    Hubbard, Susan; Lambot, S.; Binley, A.; Slob, E.; Hubbard, S.

    2008-01-15T23:59:59.000Z

    To meet the needs of a growing population and to provide us with a higher quality of life, increasing pressures are being placed on our environment through the development of agriculture, industry, and infrastructures. Soil erosion, groundwater depletion, salinization, and pollution have been recognized for decades as major threats to ecosystems and human health. More recently, the progressive substitution of fossil fuels by biofuels for energy production and climate change have been recognized as potential threats to our water resources and sustained agricultural productivity. The vadose zone mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff , groundwater recharge, contaminant transport, plant growth, evaporation, and energy exchanges between the Earth's surface and its atmosphere. It also determines soil organic carbon sequestration and carbon-cycle feedbacks, which could substantially impact climate change. The vadose zone's inherent spatial variability and inaccessibility precludes direct observation of the important subsurface processes. In a societal context where the development of sustainable and optimal environmental management strategies has become a priority, there is a strong prerequisite for the development of noninvasive characterization and monitoring techniques of the vadose zone. In particular, hydrogeophysical approaches applied at relevant scales are required to appraise dynamic subsurface phenomena and to develop optimal sustainability, exploitation, and remediation strategies. Among existing geophysical techniques, ground penetrating radar (GPR) technology is of particular interest for providing high-resolution subsurface images and specifically addressing water-related questions. Ground penetrating radar is based on the transmission and reception of VHF-UHF (30-3000 MHz) electromagnetic waves into the ground, whose propagation is determined by the soil electromagnetic properties and their spatial distribution. As the dielectric permittivity of water overwhelms the permittivity of other soil components, the presence of water in the soil principally governs GPR wave propagation. Therefore, GPR-derived dielectric permittivity is usually used as surrogate measure for soil water content. In the areas of unsaturated zone hydrology and water resources, GPR has been used to identify soil stratigraphy, to locate water tables, to follow wetting front movement, to estimate soil water content, to assist in subsurface hydraulic parameter identification, to assess soil salinity, and to support the monitoring of contaminants. The purpose of this special section of the Vadose Zone Journal is to present recent research advances and applications of GPR in hydrogeophysics, with a particular emphasis on vadose zone investigations. This special section includes contributions presented at the European Geosciences Union General Assembly 2006 (EGU 2006, Vienna, Austria) and the 11th International Conference on Ground Penetrating Radar (GPR 2006, Columbus, OH). The studies presented here deal with a wide range of surface and borehole GPR applications, including GPR sensitivity to contaminant plumes, new methods for soil water content determination, three-dimensional imaging of the subsurface, time-lapse monitoring of hydrodynamic events and inversion techniques for soil hydraulic properties estimation, and joint interpretation of GPR and electric resistivity tomography (ERT) data.

  19. Retrieval of cloud properties using SCIAMACHY on ENVISAT

    E-Print Network [OSTI]

    Kuligowski, Bob

    ;2 AGENDA 1. Rationale 2. SCIAMACHY and its calibration 3. Algorithms 4. SCIMACHY cloud retrievals 5 Synthetic Aperture Radar (ASAR), operating at C-band, ASAR ensures continuity with the image mode (SAR;13 VICARIOUS CALIBRATION USING MERIS #12;14 MERIS on ENVISAT spacecraft /1.03.2002-present/ · Instrument bands

  20. Radar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGS Development BV JumpRTEV IncRadar

  1. ARM Scanning Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new,Scanning Radar Azores Graciosa

  2. Cloud Computing Adam Barker

    E-Print Network [OSTI]

    St Andrews, University of

    Cloud Computing 1 Adam Barker #12;Overview · Introduction to Cloud computing · Enabling technologies · Di erent types of cloud: IaaS, PaaS and SaaS · Cloud terminology · Interacting with a cloud: management consoles · Launching an instance · Connecting to an instance · Running your application · Clouds

  3. ARM Climate Research Facility Radar Operations Plan

    SciTech Connect (OSTI)

    Voyles, JW

    2012-05-18T23:59:59.000Z

    Roles, responsibilities, and processes associated with Atmospheric Radiation Measurement (ARM) Radar Operations.

  4. Lecture Ch. 8 Cloud Classification

    E-Print Network [OSTI]

    Russell, Lynn

    clouds Middle clouds Grayish, block the sun, sometimes patchy Sharp outlines, rising, bright white1 Lecture Ch. 8 · Cloud Classification ­ Descriptive approach to clouds · Drop Growth and Precipitation Processes ­ Microphysical characterization of clouds · Complex (i.e. Real) Clouds ­ Examples

  5. X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N

    2012-10-29T23:59:59.000Z

    The X-band scanning ARM cloud radar (X-SAPR) is a full-hemispherical scanning polarimetric Doppler radar transmitting simultaneously in both H and V polarizations. With a 200 kW magnetron transmitter, this puts 100 kW of transmitted power for each polarization. The receiver for the X-SAPR is a Vaisala Sigmet RVP-900 operating in a coherent-on-receive mode. Three X-SAPRs are deployed around the Southern Great Plains (SGP) Central Facility in a triangular array. A fourth X-SAPR is deployed near Barrow, Alaska on top of the Barrow Arctic Research Center.

  6. Cloud Controlling Factors --Low Clouds BJORN STEVENS,

    E-Print Network [OSTI]

    Stevens, Bjorn

    Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic) clouds is reviewed, with an emphasis on factors that may be expected to change in a changing climate of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

  7. Cloud Controlling Factors --Low Clouds BJORN STEVENS,

    E-Print Network [OSTI]

    Stevens, Bjorn

    Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic conspire to determine the statistics and cli- matology of layers of shallow (boundary layer) clouds of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

  8. Cloud Tracking in Cloud-Resolving Models

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models RMetS Conference 4th September 2007 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations What is the distribution of cloud lifetimes? What factors determine the lifetime of an individual

  9. ARM - Field Campaign - DC-8 Cloud Radar Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment at

  10. Posters Radar/Radiometer Retrievals of Cloud Liquid Water and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal observations71971 Posters

  11. Mixed-Phase Cloud Retrievals Using Doppler Radar Spectra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrinoMissionMissionJenningsMixed-Phase

  12. Time Correlations in Backscattering Radar Reflectivity Measurements from Cirrus Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003 (Next ReleaseThomasTheoriesClean

  13. Algorithms for Filtering Insect Echoes from Cloud Radar Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic| NationalAlexanderAlgal

  14. W-Band ARM Cloud Radar - Specifications and Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 -VisualizingVote For the Next HowSEE

  15. W-band ARM Cloud Radar (WACR) Update and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 -VisualizingVote For the Next HowSEEW-band ARM

  16. Cloud Security by Max Garvey

    E-Print Network [OSTI]

    Tolmach, Andrew

    Cloud Security Survey by Max Garvey #12;Cloudy Cloud is Cloudy What is the cloud? On Demand Service Network access Resource pooling Elasticity of Resources Measured Service #12;Cloud Types/Variants Iaa Cloud Public Cloud Hybrid Cloud combination. Private cloud with overflow going to public cloud. #12

  17. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  18. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12T23:59:59.000Z

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  19. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B. (Buellton, CA); Gardner, Duane (Santa Maria, CA); Patrick, Douglas (Santa Maria, CA); Lewallen, Tricia A. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA); Painter, Kelly D. (Goleta, CA); Vadnais, Kenneth G. (Alexandria, VA)

    1996-01-01T23:59:59.000Z

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  20. Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data

    SciTech Connect (OSTI)

    Zhang, Y; Klein, S; Boyle, J; Mace, G G

    2008-11-20T23:59:59.000Z

    The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

  1. Digital phase tightening for improved spatial resolution in millimeter-wave imaging systems

    E-Print Network [OSTI]

    Lu, Ke, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Imaging systems using millimeter-wave frequencies allow for the possibilities of vehicular radar and concealed weapons detection. By using silicon technology, the integration of millimeter-wave circuits can reach new levels ...

  2. A Comparison of ARM Cloud Radar Profiles with MMF Simulated Radar Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3(SC) ANeutronPastAARM

  3. Global coherence of dust density waves

    SciTech Connect (OSTI)

    Killer, Carsten; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2014-06-15T23:59:59.000Z

    The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

  4. Merged and corrected 915 MHz Radar Wind Profiler moments

    SciTech Connect (OSTI)

    Jonathan Helmus,Virendra Ghate, Frederic Tridon

    2014-06-25T23:59:59.000Z

    The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.

  5. Merged and corrected 915 MHz Radar Wind Profiler moments

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jonathan Helmus,Virendra Ghate, Frederic Tridon

    The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.

  6. Cloud Computing og availability

    E-Print Network [OSTI]

    Christensen, Henrik Bćrbak

    Cloud Computing og availability Projekt i pĺlidelighed Henrik Lavdal - 20010210 Sřren Bardino Kaa - 20011654 Gruppe 8 19-03-2010 #12;Cloud Computing og availability Side 2 af 28 Indholdsfortegnelse as a Service (SaaS) ...................................................................9 Availability i cloud

  7. Ad hoc cloud computing 

    E-Print Network [OSTI]

    McGilvary, Gary Andrew

    2014-11-27T23:59:59.000Z

    Commercial and private cloud providers offer virtualized resources via a set of co-located and dedicated hosts that are exclusively reserved for the purpose of offering a cloud service. While both cloud models appeal to ...

  8. Signal processing for airborne bistatic radar 

    E-Print Network [OSTI]

    Ong, Kian P

    The major problem encountered by an airborne bistatic radar is the suppression of bistatic clutter. Unlike clutter echoes for a sidelooking airborne monostatic radar, bistatic clutter echoes are range dependent. Using ...

  9. Obstacle penetrating dynamic radar imaging system

    DOE Patents [OSTI]

    Romero, Carlos E. (Livermore, CA); Zumstein, James E. (Livermore, CA); Chang, John T. (Danville, CA); Leach, Jr.. Richard R. (Castro Valley, CA)

    2006-12-12T23:59:59.000Z

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  10. Antarctic Mapping Project ACTIVE RADAR CALIBRATOR

    E-Print Network [OSTI]

    Howat, Ian M.

    RADARSAT Antarctic Mapping Project ACTIVE RADAR CALIBRATOR INSTALLATION DOCUMENT October, 1999 ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN CENTER FOR EARTH SCIENCES ALASKA SAR FACILITY BYRD POLAR RESEARCH...................................................................................................................................................3 Active Radar Calibrator Testing

  11. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01T23:59:59.000Z

    Toward Vehicular Service Cloud . . . . . . . . . . . . . . .4.2 Open Mobile Cloud Requirement . . . . .3.1 Mobile Cloud

  12. Investigation of the Dynamical, Macrophysical and Radiative Properties of High Clouds Combining Satellite Observations and Climate Model Simulations

    E-Print Network [OSTI]

    Li, Yue

    2012-02-14T23:59:59.000Z

    This dissertation investigates three topics concerning high clouds: 1) convectively coupled equatorial wave (CCEW) signals derived from cloud top temperature (CTT) and cirrus optical thickness retrieved from satellite observations; 2) investigation...

  13. GMTI radar minimum detectable velocity.

    SciTech Connect (OSTI)

    Richards, John Alfred

    2011-04-01T23:59:59.000Z

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  14. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms

    SciTech Connect (OSTI)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

    2007-06-01T23:59:59.000Z

    The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

  15. The Diurnal Cycle of Clouds and Precipitation along the Sierra Madre Occidental Observed during NAME-2004: Implications for Warm Season Precipitation Estimation

    E-Print Network [OSTI]

    Rutledge, Steven

    . Ground-based precipitation retrievals from the NAME Event Rain Gauge Network (NERN) and Colorado State University­National Center for Atmospheric Research (CSU­NCAR) version 2 radar composites over the southern due to changes in the depth and vigor of shallow clouds and mixed-phase cloud depths

  16. Microwave emissions from police radar

    E-Print Network [OSTI]

    Fink, John Michael

    1994-01-01T23:59:59.000Z

    MICROWAVE EMISSIONS FROM POLICE RADAR A Thesis by JOHN MICHAEL FINK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1994 Major Subject...: Industrial Hygiene MICROWAVE EMISSIONS FROM POLICE RADAR A Thesis by JOHN MICHAEL FINK Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE John P. Wag (Chair of Committee) Jero e J. C...

  17. A new cloud and aerosol layer detection method based on micropulse lidar measurements

    E-Print Network [OSTI]

    Li, Zhanqing

    A new cloud and aerosol layer detection method based on micropulse lidar measurements Chuanfeng algorithm to detect aerosols and clouds based on micropulse lidar measurements. A semidiscretization is then introduced. Combined with empirical threshold values, we determine if the signal waves indicate clouds

  18. Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.

    SciTech Connect (OSTI)

    Rambukkange,M.; Verlinde, J.; Elorante, E.; Luke, E.; Kollias, P.; Shupe, M.

    2006-07-10T23:59:59.000Z

    Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivity of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.

  19. Cloud Computing For Bioinformatics

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Cloud Computing For Bioinformatics EC2 and AMIs #12;Quick-starting an EC2 instance (let's get our feet wet!) Cloud Computing #12;Cloud Computing: EC2 instance Quick Start · On EC2 console, we can click on Launch Instance · This will let us get up and going quickly #12;Cloud Computing: EC2 instance

  20. Bridge Deck Evaluation with Ground Penetrating Radar Dryver Huston, Jing Hu, Noel Pelczarski, and Brian Esser

    E-Print Network [OSTI]

    Huston, Dryver R.

    in a step-frequency mode. The system is used to test laboratory specimens and bridge decks in the field Health Monitoring Stanford University September 1999 ABSTRACT Ground Penetrating Radar (GPR) uses electromagnetic (EM) waves to identify underlying features in solid structures. The typical technique uses

  1. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan Christine [University of Reading] [University of Reading

    2014-04-10T23:59:59.000Z

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  2. Ice Formation in Arctic Mixed-Phase Clouds: Insights from a 3-D Cloud-Resolving Model with Size-Resolved Aerosol and Cloud Microphysics

    SciTech Connect (OSTI)

    Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.; Khain, Alexander

    2009-02-27T23:59:59.000Z

    The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) program’s Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a 3-dimensional cloud-resolving model the System for Atmospheric Modeling (SAM) coupled with an explicit bin microphysics scheme and a radar-lidar simulator. Two possible ice enhancement mechanisms – activation of droplet evaporation residues by condensation-followed-by-freezing and droplet freezing by contact freezing inside-out, are scrutinized by extensive comparisons with aircraft and radar and lidar measurements. The locations of ice initiation associated with each mechanism and the role of ice nuclei (IN) in the evolution of mixed-phase clouds are mainly addressed. Simulations with either mechanism agree well with the in-situ and remote sensing measurements on ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give very similar cloud microphysical, macrophysical, dynamical, and radiative properties, although the ice nucleation properties (rate, frequency and location) are completely different. Ice nucleation from activation of evaporation nuclei is most efficient near cloud top areas concentrated on the edges of updrafts, while ice initiation from the drop freezing process has no significant location preference (occurs anywhere that droplet evaporation is significant). Both enhanced nucleation mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. The contribution of ice nuclei (IN) recycling from ice particle evaporation to IN and ice particle concentration is found to be very significant in this case. Cloud can be very sensitive to IN initially and form a nonquilibrium transition condition, but become much less sensitive as cloud evolves to a steady mixed-phase condition. The parameterization of Meyers et al. [1992] with the observed MPACE IN concentration is able to predict the observed mixed-phase clouds reasonably well. This validation may facilitate the application of this parameterization in the cloud and climate models to simulate Arctic clouds.

  3. Progress In Electromagnetics Research C, Vol. 49, 6777, 2014 Analysis and Design of Millimeter-Wave Circularly Polarized

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Communications Commission (FCC) for wireless communications and automotive radar [1­4]. The 77-GHz band has been transceivers for communication and radar systems at millimeter-wave frequencies. 1. INTRODUCTION Using on their applications. There are several frequency bands in the mm-wave range which have been approved by the Federal

  4. Radar investigation of the Cote Blanche salt dome

    E-Print Network [OSTI]

    Stewart, Robert Donald

    1974-01-01T23:59:59.000Z

    THE COTE BLANCHE SALT DOME. Geology of the Cote Blanche Salt-Dome Azea. . Economic History of the Cote BLanche Salt-Dome Azea, Salt. . Oil and gas. III. ELECTROMAGNETIC WAVE PROPAGATION. . . Radar Speed in Air and in Salt. . . Velocity...' zznd i'r. mzznz 1959) . The east, south, end west flanks are nearly vertical. However, the north side oi the dome is characterised by a massive overhang. A well drilled by Shell Oil Company, Caffrey No. 1, confirmed the presence of a minimum of 3300...

  5. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  6. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-11-07T23:59:59.000Z

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  7. Minimizing Biases in Radar Precipitation Estimates

    E-Print Network [OSTI]

    McRoberts, Douglas B

    2014-12-08T23:59:59.000Z

    ................................................................................................. 57 3.4 The same as Fig. 3.3b, but with HRAP grid cells detected by the flagging algorithm (gray diamonds) in the 90 km – 100 km annulus in the KABR radar domain .......................................................................... 62 3.5... ...................... 163 xiii FIGURE Page 5.1 Same as Fig. 3.1, but without radar locations or boundaries for radar domains ................................................................................................... 169 5.2 (a) Stage IV 1-month Po...

  8. A land based radar polarimeter processing system

    E-Print Network [OSTI]

    Kronke, Chester William

    1984-01-01T23:59:59.000Z

    Assignments 4 Indicator Circuit Read Port Assignments. 5 Interpretation of Indicator Circuit Data . 6 RF Head Common Control Port Signal Assignments . 7 iSBC-80/24 Parallel I/O Summary. 8 iSBX-311 Analog Input Signal Assignments 9 Memory Map... Polarimeter Antennas 2 Azimuthal Angle of Radar Polarimeter Boom. 3 Block Diagram of the Radar Polarimeter System. 4 Block Diagram of Radar Hardware. 10 5 Microwave Transceiver Circuit Transfer Switches Controlled by RDADS. 12 6 Block Diagram...

  9. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01T23:59:59.000Z

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  10. Radar network communication through sensing of frequency hopping

    DOE Patents [OSTI]

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28T23:59:59.000Z

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  11. Lightning and radar observations of hurricane Rita landfall

    SciTech Connect (OSTI)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  12. RISK ASSESSMENT CLOUD COMPUTING

    E-Print Network [OSTI]

    Columbia University

    SECURITY RESEARCH PRIVACY RISK ASSESSMENT AMC DATA FISMA CLOUD COMPUTING MOBILE DEVICES OPERATIONS application hosted in the cloud · Alaska DHHS fined $1.7M ­ Portable device stolen from vehicle · Mass Eye

  13. Sandia Energy - TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radar technologies and techniques developed at TTU have the potential to revolutionize wind energy generation by providing comprehensive information about the modulated flows...

  14. Radar investigation of the Hockley salt dome

    E-Print Network [OSTI]

    Hluchanek, James Andrew

    1973-01-01T23:59:59.000Z

    : Geophysics RADAR INVESTIGATION OF THE HOCKLEY SALT DOME A Thesis by UAMES ANDREW HLUCHANEK A'pproved as to style and content by: (Head of Departme t ? Member) May 1. 973 ABSTRACT Radar investigation of the Hockley Salt Dome. . (Nay, 1973) James... Andrew Hluchanek, B. S. , Texas A&M University Directed by: Dr. Robert R. Unterberger Radar probing through salt was accomplished at 17 radar stations established in the United Salt Company mine at Hockley, Texas. The top of the salt dom is mapped...

  15. Sandia National Laboratories: TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rotor sweep. Doppler radar technologies and techniques developed at TTU have the potential to revolutionize wind energy generation by providing comprehensive information...

  16. XSEDE Cloud Survey Report

    E-Print Network [OSTI]

    Walter, M.Todd

    XSEDE Cloud Survey Report David Lifka, Cornell Center for Advanced Computing Ian Foster, ANL, ANL and The University of Chicago A National Science Foundation-sponsored cloud user survey was conducted from September 2012 to April 2013 by the XSEDE Cloud Integration Investigation Team to better

  17. Research Cloud Computing Recommendations

    E-Print Network [OSTI]

    Qian, Ning

    Research Cloud Computing Recommendations SRCPAC December 3, 2014 #12;Mandate and Membership SRCPAC convened this committee in Sept 2014 to investigate the role that cloud computing should play in our & Academic Affairs (Social Work) #12;Questions discussed · What cloud resources are available? · Which kinds

  18. Sandia National Laboratories: National Air Space radar system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Space radar system Sandia Develops Tool to Evaluate Wind-TurbineRadar Impacts On December 3, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

  19. 915-MHz Radar Wind Profiler (915RWP) Handbook

    SciTech Connect (OSTI)

    Coulter, R

    2005-01-01T23:59:59.000Z

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  20. Radar MeteorologyRadar Meteorology Feb 20, 1941 10 cm (S-band) radar used to track rain showers (Ligda)

    E-Print Network [OSTI]

    Rutledge, Steven

    (Ligda) Possibility of such observations was predicted by Ryde (1941) MIT Radiation Laboratory made in 1943 First operational weather radar, Panama, 1943 Science of radar meteorology born from WWII research fluctuations at 1/2 the wavelength of the incident radiation (a few meters in this case). Power returned from

  1. PROGRESS REPORT OF FY 2004 ACTIVITIES: IMPROVED WATER VAPOR AND CLOUD RETRIEVALS AT THE NSA/AAO

    SciTech Connect (OSTI)

    E. R. Westwater; V. V. Leuskiy; M. Klein; A. J. Gasiewski; and J. A. Shaw

    2004-11-01T23:59:59.000Z

    The basic goals of the research are to develop and test algorithms and deploy instruments that improve measurements of water vapor, cloud liquid, and cloud coverage, with a focus on the Arctic conditions of cold temperatures and low concentrations of water vapor. The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement Program. Although several technologies have been investigated to measure these column amounts, microwave radiometers (MWR) have been used operationally by the ARM program for passive retrievals of these quantities: precipitable water vapor (PWV) and integrated water liquid (IWL). The technology of PWV and IWL retrievals has advanced steadily since the basic 2-channel MWR was first deployed at ARM CART sites Important advances are the development and refinement of the tipcal calibration method [1,2], and improvement of forward model radiative transfer algorithms [3,4]. However, the concern still remains that current instruments deployed by ARM may be inadequate to measure low amounts of PWV and IWL. In the case of water vapor, this is especially important because of the possibility of scaling and/or quality control of radiosondes by the water amount. Extremely dry conditions, with PWV less than 3 mm, commonly occur in Polar Regions during the winter months. Accurate measurements of the PWV during such dry conditions are needed to improve our understanding of the regional radiation energy budgets. The results of a 1999 experiment conducted at the ARM North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO) site during March of 1999 [5] have shown that the strength associated with the 183 GHz water vapor absorption line makes radiometry in this frequency regime suitable for measuring low amounts of PWV. As a portion of our research, we conducted another millimeter wave radiometric experiment at the NSA/AAO in March-April 2004. This experiment relied heavily on our experiences of the 1999 experiment. Particular attention was paid to issues of radiometric calibration and radiosonde intercomparisons. Our theoretical and experimental work also supplements efforts by industry (F. Solheim, Private Communication) to develop sub-millimeter radiometers for ARM deployment. In addition to quantitative improvement of water vapor measurements at cold temperature, the impact of adding millimeter-wave window channels to improve the sensitivity to arctic clouds was studied. We also deployed an Infrared Cloud Imager (ICI) during this experiment, both for measuring continuous day-night statistics of the study of cloud coverage and identifying conditions suitable for tipcal analysis. This system provided the first capability of determining spatial cloud statistics continuously in both day and night at the NSA site and has been used to demonstrate that biases exist in inferring cloud statistics from either zenith-pointing active sensors (lidars or radars) or sky imagers that rely on scattered sunlight in daytime and star maps at night [6].

  2. Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    D. Jui-Yuan Chiu

    2010-10-19T23:59:59.000Z

    Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the �¢����solar-background�¢��� mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM�¢����s zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS�¢���� 1 Hz sampling to study the �¢����twilight zone�¢��� around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM�¢����s 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM�¢����s operational data processing.

  3. Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles

    SciTech Connect (OSTI)

    Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

    2012-09-06T23:59:59.000Z

    Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.

  4. Ultra-wideband radar sensors and networks

    DOE Patents [OSTI]

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06T23:59:59.000Z

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  5. Sandia Energy - Radar Friendly Blades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshoreLiveSustainablePriceRadar

  6. Computing the apparent centroid of radar targets

    SciTech Connect (OSTI)

    Lee, C.E.

    1996-12-31T23:59:59.000Z

    A high-frequency multibounce radar scattering code was used as a simulation platform for demonstrating an algorithm to compute the ARC of specific radar targets. To illustrate this simulation process, several targets models were used. Simulation results for a sphere model were used to determine the errors of approximation associated with the simulation; verifying the process. The severity of glint induced tracking errors was also illustrated using a model of an F-15 aircraft. It was shown, in a deterministic manner, that the ARC of a target can fall well outside its physical extent. Finally, the apparent radar centroid simulation based on a ray casting procedure is well suited for use on most massively parallel computing platforms and could lead to the development of a near real-time radar tracking simulation for applications such as endgame fuzing, survivability, and vulnerability analyses using specific radar targets and fuze algorithms.

  7. Tangential velocity measurement using interferometric MTI radar

    DOE Patents [OSTI]

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03T23:59:59.000Z

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  8. Magneto-Radar Hidden Metal Detector

    DOE Patents [OSTI]

    McEwan, Thomas E. (Las Vegas, NV)

    2005-07-05T23:59:59.000Z

    A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.

  9. Working inside the Cloud: Developing a Cloud Computing Infrastructure

    E-Print Network [OSTI]

    Krause, Rolf

    UROP 2012 Working inside the Cloud: Developing a Cloud Computing Infrastructure Cloud computing and live-migration of running VM. USI participates to the development of the first European Cloud computing for a motivated student that will have a chance to improve his/her knowledge on Cloud computing, Java and/or Ruby

  10. Dynamic Cloud Resource Reservation via Cloud Brokerage

    E-Print Network [OSTI]

    Li, Baochun

    Department of Electrical and Computer Engineering, University of Toronto Department of Electrical@eecg.toronto.edu, liang@utoronto.ca Abstract--Infrastructure-as-a-Service clouds offer diverse pric- ing options

  11. Observations of colocated optical and radar aurora H. Bahcivan,1

    E-Print Network [OSTI]

    Lummerzheim, Dirk

    Observations of colocated optical and radar aurora H. Bahcivan,1 D. L. Hysell,2 D. Lummerzheim,3 M of the E region radar aurora obtained with a 30 MHz imaging radar and the optical aurora (green line, the radar aurora in the vicinity of a stable evening auroral arc arises because of the arc's polarization

  12. An Autonomous Reliabilit Cloud Comput

    E-Print Network [OSTI]

    Buyya, Rajkumar

    An Autonomous Reliabilit Ami Cloud Comput Department of Computing and Informa Abstract--Cloud computing paradigm allo based access to computing and storages s Internet. Since with advances of Cloud. Keywords- Cloud computing; SLA negotiat I. INTRODUCTION Cloud computing has transferred the services

  13. Development of the Solid State X-band Radar and the Phased Array Radar System in Japan

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    Development of the Solid State X-band Radar and the Phased Array Radar System in Japan By DR. TOMOO array radar system have been developed. Toshiba has developed the latest model of weather radar of precipitation and to achieve drastic reduction of its size and life cycle cost. It is now well known

  14. Clouds up close | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions that affect clouds and thus improve climate projections. Contact Heng Xiao Pacific Northwest National Laboratory 902 Battelle Blvd., PO Box 999 MSIN: K9-30...

  15. Finance Idol Word Cloud

    Broader source: Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  16. Using doppler radar images to estimate aircraft navigational heading error

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM); Jordan, Jay D. (Albuquerque, NM); Kim, Theodore J. (Albuquerque, NM)

    2012-07-03T23:59:59.000Z

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  17. SURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE VARIATION

    E-Print Network [OSTI]

    that have been used to quantify the effect of clouds on radiation budget in both modeling and observationalSURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE/Atmospheric Sciences Division Brookhaven National Laboratory P.O. Box, Upton, NY www.bnl.gov ABSTRACT Cloud-radiation

  18. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology]|[Oak Ridge National Lab., TN (United States); Doll, W.E. [Oak Ridge National Lab., TN (United States); Phillips, B.E. [Paducah Gaseous Diffusion Plant, KY (United States)

    1994-09-01T23:59:59.000Z

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  19. Gravity Waves Gravity Waves

    E-Print Network [OSTI]

    Weijgaert, Rien van de

    ;14/03/2014 6 H L H L L Phase & Group Velocity #12;14/03/2014 7 Doppler Effect #12;14/03/2014 8 Shock Waves #12;14/03/2014 14 Supernova Remnant Cassiopeia A Supernova blast waves #12;14/03/2014 15 Tycho's Remnant (SN 1572AD A SNR flythrough Theory of Supernova Blast Waves Supernovae: Type Ia Subsonic deflagration wave turning

  20. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Computing Services Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure Cloud Computing...

  1. Profiling clouds' inner life | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    life Released: May 29, 2014 Subgrid modeling pinpoints cloud transformation to uncover true reflective power An accurate understanding of clouds over the ocean is important for...

  2. Interaction of Gravitational Waves with Charged Particles

    E-Print Network [OSTI]

    Thulsi Wickramasinghe; Will Rhodes; Mitchell Revalski

    2015-02-03T23:59:59.000Z

    It is shown here that a cloud of charged particles could in principle absorb energy from gravitational waves (GWs) incident upon it, resulting in wave attenuation. This could in turn have implications for the interpretation of future data from early universe GWs.

  3. The Microbase Value-Added Product: A Baseline Retrieval of Cloud Microphysical Properties

    SciTech Connect (OSTI)

    Dunn, M; Johnson, K; Jensen, M

    2011-05-31T23:59:59.000Z

    This report describes the Atmospheric Radiation Measurement (ARM) Climate Research Facility baseline cloud microphysical properties (MICROBASE) value-added product (VAP). MICROBASE uses a combination of millimeter-wavelength cloud radar, microwave radiometer, and radiosonde observations to estimate the vertical profiles of the primary microphysical parameters of clouds including the liquid/ice water content and liquid/ice cloud particle effective radius. MICROBASE is a baseline algorithm designed to apply to most conditions and locations using a single set of parameterizations and a simple determination of water phase based on temperature. This document provides the user of this product with guidelines to assist in determining the accuracy of the product under certain conditions. Quality control flags are designed to identify outliers and indicate instances where the retrieval assumptions may not be met. The overall methodology is described in this report through a detailed description of the input variables, algorithms, and output products.

  4. CONTRIBUTED Green Cloud Computing

    E-Print Network [OSTI]

    Tucker, Rod

    to manage energy consumption across the entire information and communications technology (ICT) sector. While considers both public and private clouds, and includes energy consumption in switching and transmission to energy consumption and cloud computing seems to be an alternative to office-based computing. By Jayant

  5. Toward Securing Sensor Clouds

    E-Print Network [OSTI]

    · 32 GB microSDHC storage 2 Image from http://hothardware.com/News/Leaked-Motorola-DROID-X-2-Daytona Computer Mini Computer External Storage External Storage Router Router Router Router Cloud Computing Cloud: micro surveys, amber alerts 4 #12;Router Router Router Router Mini Computer Mini Computer Mini Computer

  6. Radar echo signatures versus relative precipitation

    E-Print Network [OSTI]

    Huber, Terry Alvin

    1987-01-01T23:59:59.000Z

    the relationship between cell-echo signatures and precipitation characteristics, and to support the hypothesis that, during the lifespan of any particular isolated convective cell, the relative rainfall rate, as determined by radar for a given volume scan... Cooperative Program) field experiment of 1979. Four isolated cases, two rainshowers and two thundershowers, were selected for study. Profiles from volume scans taken 10 minutes before, during, and 10 minutes after the maximum radar-determined rainfall rate...

  7. Using Surface Remote Sensors to Derive Radiative Characteristics of Mixed-Phase Clouds: An Example from M-PACE

    SciTech Connect (OSTI)

    de Boer, Gijs; Collins, William D.; Menon, Surabi; Long, Charles N.

    2011-12-02T23:59:59.000Z

    Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0-366.4 (0.5-114.1) gm-2, and cloud physical thicknesses fall between 286-2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm-2.

  8. Radiative and microphysical properties of Arctic stratus clouds from multiangle downwelling infrared radiances

    E-Print Network [OSTI]

    Shupe, Matthew

    climate is strongly influenced by an extensive and persistent pattern of cloud cover [Francis, 1997 properties can have significant effects on long- wave radiation, which dominates the radiation energy budgetRadiative and microphysical properties of Arctic stratus clouds from multiangle downwelling

  9. July 2012July 2012 Cloud Computing and Virtualization:Cloud Computing and Virtualization

    E-Print Network [OSTI]

    Liu, Jiangchuan (JC)

    July 2012July 2012 Cloud Computing and Virtualization:Cloud Computing and Virtualization/26/2633 Recent: CloudRecent: Cloud The fast growth of cloud computing Cloud file storage/synchronization services Google entries about cloud computing: 184,000,000 #12;July 2012July 2012 44/26/2644 Our CloudOur Cloud 7

  10. When Clouds become Green: the Green Open Cloud Architecture

    E-Print Network [OSTI]

    Boyer, Edmond

    of a new original energy-efficient Cloud infrastructure called Green Open Cloud. Keywords. Energy with the support of energy-efficient frameworks dedicated to Cloud architectures. Virtualization is a key feature of the energy-aware Cloud infras- tructure that we propose. The conclusion and future works are reviewed

  11. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    SciTech Connect (OSTI)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya [College of Science, Air Force Engineering University, Xi'an, Shaanxi 710051 (China); Zhang, Jieqiu [College of Science, Air Force Engineering University, Xi'an, Shaanxi 710051 (China); Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China); Xu, Zhuo [Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China); Zhang, Anxue [School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

    2014-06-02T23:59:59.000Z

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  12. IMPROVED CAPABILITIES FOR SITING WIND FARMS AND MITIGATING IMPACTS ON RADAR OBSERVATIONS

    SciTech Connect (OSTI)

    Chiswell, S.

    2010-01-15T23:59:59.000Z

    The development of efficient wind energy production involves challenges in technology and interoperability with other systems critical to the national mission. Wind turbines impact radar measurements as a result of their large reflectivity cross section as well as through the Doppler phase shift of their rotating blades. Wind farms can interfere with operational radar in multiple contexts, with degradation impacts on: weather detection such as tornado location, wind shear, and precipitation monitoring; tracking of airplanes where air traffic control software can lose the tracks of aircraft; and in identification of other low flying targets where a wind farm located close to a border might create a dead zone for detecting intruding objects. Objects in the path of an electromagnetic wave affect its propagation characteristics. This includes actual blockage of wave propagation by large individual objects and interference in wave continuity due to diffraction of the beam by individual or multiple objects. As an evolving industry, and the fastest growing segment of the energy sector, wind power is poised to make significant contributions in future energy generation requirements. The ability to develop comprehensive strategies for designing wind turbine locations that are mutually beneficial to both the wind industry that is dependent on production, and radar sites which the nation relies on, is critical to establishing reliable and secure wind energy. The mission needs of the Department of Homeland Security (DHS), Department of Defense (DOD), Federal Aviation Administration (FAA), and National Oceanographic and Atmospheric Administration (NOAA) dictate that the nation's radar systems remain uninhibited, to the maximum extent possible, by man-made obstructions; however, wind turbines can and do impact the surveillance footprint for monitoring airspace both for national defense as well as critical weather conditions which can impact life and property. As a result, a number of potential wind power locations have been contested on the basis of radar line of site. Radar line of site is dependent on local topography, and varies with atmospheric refractive index which is affected by weather and geographic conditions.

  13. Attribution Analysis of Cloud Feedback

    E-Print Network [OSTI]

    Zhou, Chen

    2014-07-15T23:59:59.000Z

    -term global warming. If the EIS-low cloud fraction relationship holds under global warming, it is likely that the tropical low cloud fraction change is non-negative. Climate models without significant negative low cloud fraction change suggest that the cloud...

  14. Convective Cloud Lifecycles Lunchtime seminar

    E-Print Network [OSTI]

    Plant, Robert

    Convective Cloud Lifecycles Lunchtime seminar 19th May 2009 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations Why Conclusions Convective Cloud Lifecycles ­ p.1/3 #12;Why bother? Convective Cloud Lifecycles ­ p.2/3 #12;Some

  15. On the measurement of wind speeds in tornadoes with a portable CW/FM-CW Doppler radar

    SciTech Connect (OSTI)

    Bluestein, H.B. (Oklahoma Univ., Norman, OK (USA). School of Meteorology); Unruh, W.P. (Los Alamos National Lab., NM (USA))

    1991-01-01T23:59:59.000Z

    Both the formation mechanism and structure of tornadoes are not yet well understood. The Doppler radar is probably the best remote-sensing instrument at present for determining the wind field in tornadoes. Although much has been learned about the non-supercell tornado from relatively close range using Doppler radars at fixed sites, close-range measurements in supercell tornadoes are relatively few. Doppler radar can increase significantly the number of high-resolution, sub-cloud base measurements of both the tornado vortex and its parent vortex in supercells, with simultaneous visual documentation. The design details and operation of the CW/FM-CW Doppler radar developed at the Los Alamos National Laboratory and used by storm-intercept teams at the Univ. of Oklahoma are described elsewhere. The radar transmits 1 W at 3 cm, and can be switched back and forth between CW and FM-CW modes. In the FM-CW mode the sweep repetition frequency is 15.575 kHz and the sweep width 1.9 MHz; the corresponding maximum unambiguous range and velocity, and range resolution are 5 km, {plus minus} 115 m s{sup {minus}1}, and 78 m respectively. The bistatic antennas, which have half-power beamwidths of 5{degree}, are easily pointed wit the aid of a boresighted VCR. FM-CW Data are recorded on the VCR, while voice documentation is recorded on the audio tape; video is recorded on another VCR. The radar and antennas are easily mounted on a tripod, and can be set up by three people in a minute or two. The purpose of this paper is to describe the signal processing techniques used to determine the Doppler spectrum in the FM-CW mode and a method of its interpretation in real time, and to present data gathered in a tornadic storm in 1990. 15 refs., 7 figs.

  16. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G. (Ojai, CA); Bashforth, Michael B. (Buellton, CA); Lewallen, Tricia S. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA)

    1994-01-01T23:59:59.000Z

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  17. The Magellan Final Report on Cloud Computing

    SciTech Connect (OSTI)

    ,; Coghlan, Susan; Yelick, Katherine

    2011-12-21T23:59:59.000Z

    The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.

  18. Reconfigurable Microstrip Bandpass Filters, Phase Shifters Using Piezoelectric Transducers, and Beam-scanning Leaky-wave Antennas

    E-Print Network [OSTI]

    Kim, Chan Ho

    2012-07-16T23:59:59.000Z

    of switchable dual-band filters. Beam-scanning features of the antennas are very important in the radar systems. Phase shifters using piezoelectric transducers and dielectric leaky-wave antennas using metal strips are studied in the Chapters V...

  19. The Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Petersen,W.; Jensen,M.; Genio, A. D.; Giangrande, S.; Heymsfield, A.; Heymsfield, G.; Hou, A.; Kollias, P.; Orr, B.; Rutledge, S.; Schwaller, M.; Zipser, E.

    2010-03-15T23:59:59.000Z

    The Midlatitude Continental Convective Cloud Experiment (MC3E) will take place in central Oklahoma during the April-May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy Atmospheric Radition Measurement Program and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement (GPM) mission Ground Validation program. The Intensive Observation Period leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall observations over land that have never before been available. Several different components of convective processes tangible to the convective parameterization problem are targeted such as, pre-convective environment and convective initiation, updraft / downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, influence on the environment and radiation and a detailed description of the large-scale forcing. MC3E will use a new multi-scale observing strategy with the participation of a network of distributed sensors (both passive and active). The approach is to document in 3-D not only the full spectrum of precipitation rates, but also clouds, winds and moisture in an attempt to provide a holistic view of convective clouds and their feedback with the environment. A goal is to measure cloud and precipitation transitions and environmental quantities that are important for satellite retrieval algorithms, convective parameterization in large-scale models and cloud-resolving model simulations. This will be accomplished through the deployment of several different elements that complement the existing (and soon to become available) ARM facilities: a network of radiosonde stations, NASA scanning multi-frequency/parameter radar systems at three different frequencies (Ka/Ku/S), high-altitude remote sensing and in situ aircraft, wind profilers and a network of surface disdrometers. In addition to these special MC3E instruments, there will be important new instrumentation deployed by DOE at the ARM site including: 3 networked scanning X-band radar systems, a C-band scanning radar, a dual wavelength (Ka/W) scanning cloud radar, a Doppler lidar and upgraded vertically pointing millimeter cloud radar (MMCR) and micropulse lidar (MPL).To fully describe the properties of precipitating cloud systems, both in situ and remote sensing airborne observations are necessary. The NASA GPM-funded University of North Dakota (UND) Citation will provide in situ observations of precipitation-sized particles, ice freezing nuclei and aerosol concentrations. As a complement to the UND Citation's in situ observations, the NASA ER-2 will provide a high altitude satellite simulator platform that carrying a Ka/Ku band radar and passive microwave radiometers (10-183 GHZ).

  20. Interannual Variations of Arctic Cloud Types

    E-Print Network [OSTI]

    Hochberg, Michael

    Sciences #12;Changes in Arctic Climate What is the role of cloud cover in Arctic climate change? What is the Cloud Radiative Effect (CRE) in the Arctic? #12;CRE depends on season, cloud type CRE ­ whether clouds specifically chosen to include nighttime obs Total cloud cover and nine cloud types: - High cloud (cirriform

  1. Interannual Variations of Arctic Cloud Types

    E-Print Network [OSTI]

    Hochberg, Michael

    Declining September sea-ice extent #12;Clouds & Changes in Arctic Climate What is the role of cloud cover in Arctic climate change? What is the Cloud Radiative Effect (CRE) in the Arctic? #12;CRE Defined CRE nighttime obs Total cloud cover and nine cloud types: - High cloud (cirriform) - Middle Clouds: Altocumulus

  2. Feel free to contact the authors either here at the conference or at zadelhof@knmi.nl resp. donovan@knmi.nl Towards vertical cloud profile retrieval from

    E-Print Network [OSTI]

    Zadelhoff, Gerd-Jan van

    to the parameterizations of clouds used. To provide better and more reliable predictions the parameterization schemes have to be measured and related to their liquid water content (LWC), ice water content (IWC regime of the radar. R ¨ ¥ ¦ can be related to R¥ ¦ through assumptions of the type of ice

  3. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01T23:59:59.000Z

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  4. A developer's survey on different cloud platforms

    E-Print Network [OSTI]

    Doan, Dzung

    2009-01-01T23:59:59.000Z

    1 Introduction Cloud computing is a computing paradigm inFor this reason, cloud computing has also been describedparallel processing. Cloud computing can be contrasted with

  5. Tracking butterfly flight paths across the landscape with harmonic radar

    E-Print Network [OSTI]

    Northampton, University of

    Tracking butterfly flight paths across the landscape with harmonic radar E. T. Cant1,*, A. D. Smith of five butterfly species were successfully tracked using harmonic radar within an agricultural landscape. Keywords: butterfly flight; harmonic radar; linear landscape features; Aglais urticae; Inachis io 1

  6. Bias adjustment of radar-based 3-hour precipitation accumulations

    E-Print Network [OSTI]

    Stoffelen, Ad

    projection of KNMI radar images 55 4 #12;Chapter 1 Introduction Since June 2003 a daily gauge is generated at 1400 UTC when the majority of the manual gauge observations have been reported. The radar-gaugeBias adjustment of radar-based 3-hour precipitation accumulations Iwan Holleman Technical Report

  7. Climatology of extreme rainfall from rain gauges and weather radar

    E-Print Network [OSTI]

    Stoffelen, Ad

    by conventional rain gauge networks. A 10-year radar-based climatology of rainfall depths for durations of 15 minClimatology of extreme rainfall from rain gauges and weather radar Aart Overeem #12;Thesis:30 PM in the Aula #12;Aart Overeem Climatology of extreme rainfall from rain gauges and weather radar

  8. Thin Cloud Length Scales Using CALIPSO and CloudSat Data

    E-Print Network [OSTI]

    Solbrig, Jeremy E.

    2010-10-12T23:59:59.000Z

    Thin clouds are the most difficult cloud type to observe. The recent availability of joint cloud products from the active remote sensing instruments aboard CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) facilitates...

  9. Soil-penetrating synthetic aperture radar

    SciTech Connect (OSTI)

    Boverie, B.; Brock, B.C.; Doerry, A.W.

    1994-12-01T23:59:59.000Z

    This report summarizes the results for the first year of a two year Laboratory Directed Research and Development (LDRD) effort. This effort included a system study, preliminary data acquisition, and preliminary algorithm development. The system study determined the optimum frequency and bandwidth, surveyed soil parameters and targets, and defined radar cross section in lossy media. The data acquisition imaged buried objects with a rail-SAR. Algorithm development included a radar echo model, three-dimensional processing, sidelobe optimization, phase history data interpolation, and clutter estimation/cancellation.

  10. USAGE OF RADARS FOR WIND ENERGY APPICATIONS Determine the benefit of using radar observations for wind energy applications by

    E-Print Network [OSTI]

    USAGE OF RADARS FOR WIND ENERGY APPICATIONS TASK: Determine the benefit of using radar observations for wind energy applications by analyzing i) the resolution effects and ii) sensitivity effects of weather radar systems. MOTIVATION: Wind energy applications strongly focus high-resolution wind observations

  11. Ice Heating Up Cold Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Heating Up Cold Clouds Ice Heating Up Cold Clouds Released: October 04, 2011 In a heated battle, ice crystals win the competition for cloud water vapor The mighty cloud ice...

  12. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15T23:59:59.000Z

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  13. Sub-mesoscale coastal eddies observed by high frequency radar: A new mechanism for delivering nutrients to kelp forests in the Southern

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    nutrients to kelp forests in the Southern California Bight Corinne J. Bassin and Libe Washburn Institute radar: A new mechanism for delivering nutrients to kelp forests in the Southern California Bight] Internal waves are one such process that transport nutrients and larvae to kelp forests on the inner shelf

  14. Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia

    SciTech Connect (OSTI)

    Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.; Delanoe, Julien; Deng, Min

    2013-05-22T23:59:59.000Z

    Ground-based radar and lidar observations obtained at the Department of Energy’s Atmospheric Radiation Measurement Program’s Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on the cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.

  15. Some non-precipitation radar echoes as observed by CPS-9 radar

    E-Print Network [OSTI]

    Luckenbach, Guenther Edward

    1959-01-01T23:59:59.000Z

    . Solar Signal Lightning Metallic Objects Anomalous Propagation 23 23 25 25 1. 23 July 1958 5 August 1958 7 August 1958 13 August 1958 5. 8 September 1958. 9 September 1958 Cold Front 32 32 41 41 47 10. Lightning Layers - Radiosonde... artificially produced boundaries of temperature~ humidity, and turbulence but failed to detect angels on 3. 2 and 1. 25 cm radar. No means independent of the radar for measuring the inhomogenities was employed. In 1948, Baldwin [ 2 ] suggested that angels...

  16. Motion Measurement for Synthetic Aperture Radar.

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2015-01-01T23:59:59.000Z

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3 - D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  17. Doppler Radar Wind Profiles Iwan Holleman

    E-Print Network [OSTI]

    Stoffelen, Ad

    ). The potential impact of a network of boundary layer wind profilers and sodars for mesoscale wind analysisDoppler Radar Wind Profiles Iwan Holleman Scientific Report, KNMI WR-2003-02, 2003 #12;2 #12 Strategy 18 3 Methods for Wind Profile Retrieval 25 3.1 Radial Velocity from Local Wind Model 25 3

  18. 620 VOLUME 41J O U R N A L O F A P P L I E D M E T E O R O L O G Y 2002 American Meteorological Society

    E-Print Network [OSTI]

    Stephens, Graeme L.

    - craft or precipitation gauge measurements, for example, radars offer the potential for the probing over Society Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical retrieval algorithms based on millimeter-wave radar reflectivity measurements. The simulated ice particle

  19. Attribution Analysis of Cloud Feedback 

    E-Print Network [OSTI]

    Zhou, Chen

    2014-07-15T23:59:59.000Z

    Uncertainty on cloud feedback is the primary contributor to the large spread of equilibrium climate sensitivity (ECS) in climate models. In this study, we compare the short-term cloud feedback in climate models with observations, and evaluate...

  20. Modeling Incoherent Electron Cloud Effects

    E-Print Network [OSTI]

    Benedetto, E.

    2008-01-01T23:59:59.000Z

    electron-cloud effects and synchrotron radiation can lead toelectron-cloud effects and synchrotron radiation can lead tocloud phenomena in positrons storage rings the effect of syn- chrotron radiation

  1. Secure Cloud Computing With Brokered Trusted

    E-Print Network [OSTI]

    ) ·Audio ·QualComm 7201 528MHZ ·64MB Ram ·MicroSD Slow Storage ·Currently NO SIM CHIPS Monday, March 29 External Storage External Storage Router Router Router Router Cloud Computing Cloud Computing Cloud Storage External Storage Router Router Router Router Cloud Computing Cloud Computing Cloud Computing Tower

  2. Micropower impulse radar technology and applications

    SciTech Connect (OSTI)

    Mast, J., LLNL

    1998-04-15T23:59:59.000Z

    The LLNL-developed Micropower Impulse Radar (MIR) technology has quickly gone from laboratory concept to embedded circuitry in numerous government and commercial systems in the last few years[l]. The main ideas behind MIR, invented by T. McEwan in the Laser Program, are the generation and detection systems for extremely low- power ultra-wideband pulses in the gigaHertz regime using low-cost components. These ideas, coupled with new antenna systems, timing and radio-frequency (RF) circuitry, computer interfaces, and signal processing, have provided the catalyst for a new generation of compact radar systems. Over the past several years we have concentrated on a number of applications of MIR which address a number of remote-sensing applications relevant to emerging programs in defense, transportation, medical, and environmental research. Some of the past commercial successes have been widely publicized [2] and are only now starting to become available for market. Over 30 patents have been filed and over 15 licenses have been signed on various aspects of the MIR technology. In addition, higher performance systems are under development for specific laboratory programs and government reimbursables. The MIR is an ultra- wideband, range-gated radar system that provides the enabling hardware technology used in the research areas mentioned above. It has numerous performance parameters that can be Selected by careful design to fit the requirements. We have improved the baseline, short- range, MIR system to demonstrate its effectiveness. The radar operates over the hand from approximately I to 4 GHz with pulse repetition frequencies up to 10 MHz. It provides a potential range resolution of I cm at ranges of greater than 20 m. We have developed a suite of algorithms for using MIR for image formation. These algorithms currently support Synthetic aperture and multistate array geometries. This baseline MIR radar imaging system has been used for several programmatic applications.

  3. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM)

    2009-01-20T23:59:59.000Z

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  4. Millimeter wave transmissometer computer system

    SciTech Connect (OSTI)

    Wiberg, J.D.; Widener, K.B.

    1990-04-01T23:59:59.000Z

    A millimeter wave transmissometer has been designed and built by the Pacific Northwest Laboratory in Richland, Washington for the US Army at the Dugway Proving Grounds in Dugway, Utah. This real-time data acquisition and control system is used to test and characterize battlefield obscurants according to the transmittance of electromagnetic radiation in the millimeter wavelengths. It is an advanced five-frequency instrumentation radar system consisting of a transceiver van and a receiver van deployed at opposite sides of a test grid. The transceiver computer systems is the successful integration of a Digital Equipment Corporation (DEC) VAX 8350, multiple VME bus systems with Motorola M68020 processors (one for each radar frequency), an IEEE-488 instrumentation bus, and an Aptec IOC-24 I/O computer. The software development platforms are the VAX 8350 and an IBM PC/AT. A variety of compilers, cross-assemblers, microcode assemblers, and linkers were employed to facilitate development of the system software. Transmittance measurements from each radar are taken forty times per second under control of a VME based M68020.

  5. Command Line Tools Cloud Computing

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Command Line Tools Cloud Computing #12;Everybody (or nearly everybody) loves GUI. AWS Command Line of advanced features. After surviving the cloud computing class till now, Your are almost a command line guru! You need AWS command line tools, ec2-api-tools, to maximize the power of AWS cloud computing. Plugging

  6. 8, 96979729, 2008 FRESCO+ cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 9697­9729, 2008 FRESCO+ cloud retrieval algorithm P. Wang et al. Title Page Abstract Chemistry and Physics Discussions FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric on behalf of the European Geosciences Union. 9697 #12;ACPD 8, 9697­9729, 2008 FRESCO+ cloud retrieval

  7. 3, 33013333, 2003 Cirrus cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 3, 3301­3333, 2003 Cirrus cloud occurrence as function of ambient relative humidity J. Str and Physics Discussions Cirrus cloud occurrence as function of ambient relative humidity: A comparison¨om (johan@itm.su.se) 3301 #12;ACPD 3, 3301­3333, 2003 Cirrus cloud occurrence as function of ambient

  8. Cloud Formation, Evolution and Destruction

    E-Print Network [OSTI]

    Estalella, Robert

    Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new stars and these stars tend to be young. The typical cloud cannot spend long, if any time at all

  9. 5, 60136039, 2005 FRESCO cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 6013­6039, 2005 FRESCO cloud algorithm N. Fournier et al. Title Page Abstract Introduction cloud information over deserts from SCIAMACHY O2 A-band N. Fournier 1 , P. Stammes 1 , M. de Graaf 1 , R, 6013­6039, 2005 FRESCO cloud algorithm N. Fournier et al. Title Page Abstract Introduction Conclusions

  10. NIST Cloud Computing Reference Architecture

    E-Print Network [OSTI]

    Perkins, Richard A.

    NIST Cloud Computing Reference Architecture Recommendations of the National Institute of Standards Publication 500-292 #12;i NIST Special Publication 500-292 NIST Cloud Computing Reference Architecture, John Messina, Lee Badger and Dawn Leaf Information Techonology Laboratory Cloud Computing Program

  11. Stratocumulus Clouds ROBERT WOOD

    E-Print Network [OSTI]

    Wood, Robert

    by latent heating in updrafts and cooling in downdrafts. Turbulent eddies and evaporative cooling drives, stratification of the STBL, and in some cases cloud breakup. Feedbacks between radiative cooling, precipitation- way interactions may be a key driver of aerosol concentrations over the remote oceans. Aerosol

  12. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels

    E-Print Network [OSTI]

    Hartmann, Dennis

    radiative forcing. The global and annual mean model-simulated cloud feedback is dominated by contributions to a hypothetical cloudless but other- wise identical planet, the global and annual mean effect of clouds at the top is how cloud radiative effects will change as the planet warms because of long-lived greenhouse gases

  13. Development of a Drillrod/Telemetry Radar

    SciTech Connect (OSTI)

    Raton Technology Research, Inc.

    1999-11-12T23:59:59.000Z

    Efficient extraction of deeply buried natural resources is dependent upon accurate geologic models. The model becomes the basis for developing plans for extraction of the resource. Geoscientists working in geothermal and hydrocarbon recovery have a great deal in common with fellow geoscientists working in the mining industry. They appreciate the intractable problem of increasing the depth of investigation to tens of meters from the wellbore. The goal of this project was to develop a borehole radar tool to acquire data within tens of meters from the wellbore. For geothermal and hydrocarbon applications, the tool was to acquire data for mapping fractures surrounding the wellbore. In mining of coal, the radar acquires data for determining coal seam thickness and detecting geologic anomalies ahead of mining.

  14. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect (OSTI)

    Tao, Wei-Kuo [NASA/GSFC] [NASA/GSFC

    2014-05-19T23:59:59.000Z

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bin

  15. EA-1852: Cloud County Community College Wind Energy Project,...

    Broader source: Energy.gov (indexed) [DOE]

    2: Cloud County Community College Wind Energy Project, Cloud County, Kansas EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas Summary This EA...

  16. Digitized dual wavelength radar data from a Texas thunderstorm

    E-Print Network [OSTI]

    Radlein, Robin Ann

    1977-01-01T23:59:59.000Z

    DIGITIZED DUAL WAVL'LENGTH RADAR DATA FROM A TEXAS THUNDERSTORM A Thesis ROBIN ANN RADLEIN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree ol MASTER OF SCIENCE December 1977... Wavelength Radar Data from a Texas Thunderstorm. (December 1977) Robin Ann Radlein~ B. S , Texas ASN University Chairman of Advisory Committee: Dr Vance Noyer Nulti-tilt digitized dual wavelength radar data collected during a Texas thunderstorm were...

  17. CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications

    E-Print Network [OSTI]

    Calheiros, Rodrigo N.

    CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications Bhathiya Wickremasinghe1 , Rodrigo N. Calheiros2 , and Rajkumar Buyya1 1 The Cloud Computing and Distributed Systems (CLOUDS) Laboratory Department of Computer Science and Software Engineering The University

  18. CloudSat Overview CloudSat will provide, from space, the first global survey of cloud profiles and

    E-Print Network [OSTI]

    on the radiative and water budgets of clouds are broadly referred to as indirect aerosol effects. The aerosol processes and their accumulated effects on the global scale. 2. Mission Description CloudSat is plannedCloudSat Overview CloudSat will provide, from space, the first global survey of cloud profiles

  19. Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology Hydrology and Earth System Sciences, 5(4), 615627 (2001) EGS

    E-Print Network [OSTI]

    Boyer, Edmond

    Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology 615 Hydrology and Earth System Sciences, 5(4), 615­627 (2001) © EGS Raindrop size distributions and radar reflectivity­rain rate relationships for radar hydrology* Remko Uijlenhoet1 Sub-department Water Resources

  20. Applications of Radar Interferometry to Detect Surface Deformation...

    Open Energy Info (EERE)

    Valley in Southern California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Applications of Radar Interferometry to Detect Surface...

  1. NNSA Completes its Critical Radar Arming and Fuzing Test for...

    National Nuclear Security Administration (NNSA)

    its Critical Radar Arming and Fuzing Test for the W88 ALT 370 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  2. Design and Development of Dual Polarized, Stacked Patch Antenna Element for S-Band Dual-Pol Weather Radar Array

    E-Print Network [OSTI]

    Bhardwaj, Shubhendu

    2012-01-01T23:59:59.000Z

    in Weather Detection . . . . . . . . . . . . . . . . . .for S-Band Weather Radar . . . . . . . . . . . . . Dual-polpatterns of polarimetric weather radars,” Journal of

  3. The dynamics and high-energy emission of conductive gas clouds in supernova-driven galactic superwinds

    E-Print Network [OSTI]

    A. Marcolini; D. K. Strickland; A. D'Ercole; T. M. Heckman; C. G. Hoopes

    2005-06-27T23:59:59.000Z

    In this paper we present high-resolution hydrodynamical models of warm ionized clouds embedded in a superwind, and compare the OVI and soft X-ray properties to the existing observational data. These models include thermal conduction, which we show plays an important role in shaping both the dynamics and radiative properties of the resulting wind/cloud interaction. Heat conduction stabilizes the cloud by inhibiting the growth of K-H and R-T instabilities, and also generates a shock wave at the cloud's surface that compresses the cloud. This dynamical behaviour influences the observable properties. We find that while OVI emission and absorption always arises in cloud material at the periphery of the cloud, most of the soft X-ray arises in the region between the wind bow shock and the cloud surface, and probes either wind or cloud material depending on the strength of conduction and the relative abundances of the wind with respect to the cloud. In general only a small fraction (thermal conduction, in particular in terms of the OVI-to-X-ray luminosity ratio, but cloud life times are uncomfortably short (thermal conductivity and found that even when we reduced conduction by a factor of 25 that the simulations retained the beneficial hydrodynamical stability and low O{\\sc vi}-to-X-ray luminosity ratio found in the Spitzer-level conductive models, while also having reduced evaporation rates.

  4. A Catalog of HI Clouds in the Large Magellanic Cloud

    E-Print Network [OSTI]

    S. Kim; E. Rosolowsky; Y. Lee; Y. Kim; Y. C. Jung; M. A. Dopita; B. G. Elmegreen; K. C. Freeman; R. J. Sault; M. J. Kesteven; D. McConnell; Y. -H. Chu

    2007-06-28T23:59:59.000Z

    A 21 cm neutral hydrogen interferometric survey of the Large Magellanic Cloud (LMC) combined with the Parkes multi-beam HI single-dish survey clearly shows that the HI gas is distributed in the form of clumps or clouds. The HI clouds and clumps have been identified using a thresholding method with three separate brightness temperature thresholds ($T_b$). Each catalog of HI cloud candidates shows a power law relationship between the sizes and the velocity dispersions of the clouds roughly following the Larson Law scaling $\\sigma_v \\propto R^{0.5}$, with steeper indices associated with dynamically hot regions. The clouds in each catalog have roughly constant virial parameters as a function mass suggesting that that the clouds are all in roughly the same dynamical state, but the values of the virial parameter are significantly larger than unity showing that turbulent motions dominate gravity in these clouds. The mass distribution of the clouds is a power law with differential indices between -1.6 and -2.0 for the three catalogs. In contrast, the distribution of mean surface densities is a log-normal distribution.

  5. Broken and inhomogeneous cloud impact on satellite cloud particle effective radius and cloudphase retrievals

    E-Print Network [OSTI]

    Stoffelen, Ad

    on the particle size distribution, height, and thermo- dynamic phase of clouds. Water and ice clouds have parameterizations is the global dis- tribution of cloud thermodynamic phase, i.e., whether a cloud is composed on satellitederived cloud particle effective radius (re) and cloud phase (CPH) for broken and overcast inhomogeneous

  6. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    SciTech Connect (OSTI)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31T23:59:59.000Z

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day?km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.

  7. Magnetic instability in a dilute circular rarefaction wave

    SciTech Connect (OSTI)

    Dieckmann, M. E. [Department of Science and Technology (ITN), Linkoping University, 60174 Norrkoping (Sweden); Sarri, G.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University of Belfast, Belfast BT7 1NN (United Kingdom)

    2012-12-15T23:59:59.000Z

    The growth of magnetic fields in the density gradient of a rarefaction wave has been observed in simulations and in laboratory experiments. The thermal anisotropy of the electrons, which gives rise to the magnetic instability, is maintained by the ambipolar electric field. This simple mechanism could be important for the magnetic field amplification in astrophysical jets or in the interstellar medium ahead of supernova remnant shocks. The acceleration of protons and the generation of a magnetic field by the rarefaction wave, which is fed by an expanding circular plasma cloud, is examined here in form of a 2D particle-in-cell simulation. The core of the plasma cloud is modeled by immobile charges, and the mobile protons form a small ring close to the cloud's surface. The number density of mobile protons is thus less than that of the electrons. The protons of the rarefaction wave are accelerated to 1/10 of the electron thermal speed, and the acceleration results in a thermal anisotropy of the electron distribution in the entire plasma cloud. The instability in the rarefaction wave is outrun by a TM wave, which grows in the dense core distribution, and its magnetic field expands into the rarefaction wave. This expansion drives a secondary TE wave.

  8. A Survey on Cloud Provider Security

    E-Print Network [OSTI]

    A Survey on Cloud Provider Security Measures Alex Pucher, Stratos Dimopoulos Abstract Cloud take advantage of this model already, but security and privacy concerns limit the further adoption agencies and start offering security certifications and separate tightly controlled "government" cloud

  9. Cicada: Predictive Guarantees for Cloud Network Bandwidth

    E-Print Network [OSTI]

    LaCurts, Katrina

    2014-03-24T23:59:59.000Z

    In cloud-computing systems, network-bandwidth guarantees have been shown to improve predictability of application performance and cost. Most previous work on cloud-bandwidth guarantees has assumed that cloud tenants know ...

  10. Electron-Cloud Build-Up: Summary

    E-Print Network [OSTI]

    Furman, M.A.

    2007-01-01T23:59:59.000Z

    Properties In?uencing Electron Cloud Phenomena,” Appl. Surf.Dissipation of the Electron Cloud,” Proc. PAC03 (Portland,is no signi?cant electron-cloud under nominal operating

  11. DIRSIG Cloud Modeling Capabilities; A Parametric Study

    E-Print Network [OSTI]

    Salvaggio, Carl

    1 DIRSIG Cloud Modeling Capabilities; A Parametric Study Kristen Powers powers:................................................................................................................... 13 Calculation of Sensor Reaching Radiance Truth Values for Cloudless & Stratus Cloud Scenes and Atmospheric Database Creation for Stratus Cloud Scene & Calculation of Associated Sensor Reaching Radiance

  12. Magellan: experiences from a Science Cloud

    E-Print Network [OSTI]

    Ramakrishnan, Lavanya

    2013-01-01T23:59:59.000Z

    2010. From Clusters To Clouds: xCAT 2 Is Out Of The Bag.Cost of Doing Science on the Cloud: The Montage Example. Incost of doing science on the cloud: the montage example. In

  13. The Cloud Computing and Other Variables

    E-Print Network [OSTI]

    Borjon-Kubota, Martha Estela

    2011-01-01T23:59:59.000Z

    12. Fragments in Six 13. Cloud Computing 14. Phase 15.Note 48. Devoured vi Cloud Computing and other Variables I.moment. Lasts hours. Cloud Computing Just there Over the

  14. The Magellan Final Report on Cloud Computing

    E-Print Network [OSTI]

    Coghlan, Susan

    2013-01-01T23:59:59.000Z

    4.3.1 Cloud Computing Attractive Features . 4.3.2A berkeley view of cloud computing. Technical Report UCB/matching computations on cloud computing platforms and hpc

  15. 32nd Conf. Radar Meteorology Albuquerque, NM, 2005

    E-Print Network [OSTI]

    Xue, Ming

    32nd Conf. Radar Meteorology Albuquerque, NM, 2005 J1J.4 MULTIPLE DOPPLER WIND ANALYSIS and smoothness constraints by incorporating them into a cost function yielding the 3-D wind. In this study, this 3DVAR analysis method is adapted to perform multiple Doppler wind analysis for CASA radars, together

  16. Radar-cross-section reduction of wind turbines. part 1.

    SciTech Connect (OSTI)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05T23:59:59.000Z

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  17. Greenland snow accumulation estimates from satellite radar scatterometer data

    E-Print Network [OSTI]

    Long, David G.

    Greenland snow accumulation estimates from satellite radar scatterometer data Mark R. Drinkwater accumulation on the Greenland ice sheet. Microwave radar backscatter images of Greenland are derived using (or decrease) in net snow accumulation on the polar ice caps. The net mass balance of the Greenland

  18. Weather Radar Control System Seidu Ibrahim; Advisor: Eric J. Knapp

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Weather Radar Control System Seidu Ibrahim; Advisor: Eric J. Knapp Dept. of Electrical and Computer Engineering University of Massachusetts, Amherst Abstract Weather radar is an important part of the national infrastructure that is used in producing forecasts and issuing hazardous weather warnings. Traditional weather

  19. Cassini Radio Detection and Ranging (RADAR): Earth and Venus observations

    E-Print Network [OSTI]

    Lorenz, Ralph D.

    of operation is as a synthetic aperture radar (SAR) mapper at Titan, with the fan-shaped beam dragged across of incidence angles. During all of the active modes, SAR, altimeter, and scat- terometer, the microwave power but rather was operated to obtain calibration data and rehearse instrument operations. 2. Venus The RADAR

  20. Ultrawideband radar clutter measurements of forested terrain, 1991--1992

    SciTech Connect (OSTI)

    Sheen, D.M.; Severtsen, R.H.; Prince, J.M.; Davis, K.C.; Collins, H.D.

    1993-06-01T23:59:59.000Z

    The ultrawideband (UWB) radar clutter measurements project was conducted to provide radar clutter data for new ultrawideband radar systems which are currently under development. A particular goal of this project is to determine if conventional narrow band clutter data may be extrapolated to the UWB case. This report documents measurements conducted in 1991 and additional measurements conducted in 1992. The original project consisted of clutter measurements of forested terrain in the Olympic National Forest near Sequim, WA. The impulse radar system used a 30 kW peak impulse source with a 2 Gigasample/second digitizer to form a UHF (300--1000 MHz) ultrawideband impulse radar system. Additional measurements were conducted in parallel using a Systems Planning Corporation (SPC) step-chirp radar system. This system utilized pulse widths of 1330 nanoseconds over a bandwidth of 300--1000 MHz to obtain similar resolution to the impulse system. Due to the slow digitizer data throughput in the impulse radar system, data collection rates were significantly higher using the step-chirp system. Additional forest clutter measurements were undertaken in 1992 to increase the amount of data available, and especially to increase the amount of data from the impulse radar system.

  1. Interferometry with correlated matter-waves

    E-Print Network [OSTI]

    Oksana I. Streltsova; Alexej I. Streltsov

    2014-12-12T23:59:59.000Z

    Matter-wave interferometry of ultra-cold atoms with attractive interactions is studied at the full many-body level. First, we study how a coherent light-pulse applied to an initially-condensed solitonic system splits it into two matter-waves. The split system looses its coherence and develops correlations with time, and inevitably becomes fragmented due to inter-particle attractions. Next, we show that by re-colliding the sub-clouds constituting the split density together, along with a simultaneous application of the same laser-pulse, one creates three matter-waves propagating with different momenta. We demonstrate that the number of atoms in the sub-cloud with zero-momentum is directly proportional to the degree of fragmentation in the system. This interferometric-based protocol to discriminate, probe, and measure the fragmentation is general and can be applied to ultra-cold systems with attractive, repulsive, short- and long-range interactions.

  2. Radar-Derived Forecasts of Cloud-to-Ground Lightning Over Houston, Texas

    E-Print Network [OSTI]

    Mosier, Richard Matthew

    2011-02-22T23:59:59.000Z

    .1.6 Comparison to Previous Studies......................................................................59 3.2 VII Forecast Method...............................................................................................61 3.2.1 Percentile Value...) percentile values for the entire dataset (1997-2006) when considering only cells with a minimum track count of 2.......................................................................... 117 3.5 Same as Figure 3.4 for the POD values...

  3. ARRA-funded Cloud Radar Development for the Department of Energy's ARM Climate Research Facility

    E-Print Network [OSTI]

    percent of all expenses on this contract will be required to purchase components and subsystems from US Power Industries (CPI) of Beverly, MA will be building 27 high voltage power supply-modulator units

  4. Cloud Properties from Doppler Radar Spectra - a Growing Suite of Information Extraction Algorithms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOE NationalCommittee offrom Doppler

  5. A Radar-based Observing System for Validation of Cloud Resolving Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1A Month toAA Present .ARadar

  6. ARM - Publications: Science Team Meeting Documents: W-Band ARM Cloud Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM InArctic Facilityandofuncover

  7. Sunlight Changes Aerosols in Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunlight Changes Aerosols in Clouds Sunlight Changes Aerosols in Clouds Released: October 20, 2011 Scientists show how sunlight alters optical, chemical properties of atmospheric...

  8. Simulating mixed-phase Arctic stratus clouds: Sensitivity to ice initiationmechanisms

    SciTech Connect (OSTI)

    Sednev, I.; Menon, S.; McFarquhar, G.

    2009-04-10T23:59:59.000Z

    The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during October 9th-10th, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-hour simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and subsaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.

  9. Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms

    SciTech Connect (OSTI)

    Sednev, Igor; Sednev, I.; Menon, S.; McFarquhar, G.

    2008-02-18T23:59:59.000Z

    The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9th-10th October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and undersaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.

  10. 3, 44614488, 2003 Cloud particle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    effects. On one hand, clouds reflect the incoming solar radiation and thus cool the Earth significant effect on the radiation balance (Wielicki et al, 1996; Mitchell, 1989) due to two competing-Atmosphere system. On the other hand, clouds absorb longwave thermal radiation coming from the surface and then re

  11. Radar transponder apparatus and signal processing technique

    DOE Patents [OSTI]

    Axline, Jr., Robert M. (Albuquerque, NM); Sloan, George R. (Albuquerque, NM); Spalding, Richard E. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  12. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-09-08T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna (10), so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive (24) and transmit cavities (22) by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling.

  13. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-09-08T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling. 25 figs.

  14. Assembly flow simulation of a radar

    SciTech Connect (OSTI)

    Rutherford, W.C.; Biggs, P.M.

    1993-10-01T23:59:59.000Z

    A discrete event simulation model has been developed to predict the assembly flow time of a new radar product. The simulation was the key tool employed to identify flow constraints. The radar, production facility, and equipment complement were designed, arranged, and selected to provide the most manufacturable assembly possible. A goal was to reduce the assembly and testing cycle time from twenty-six weeks to six weeks. A computer software simulation package (SLAM II) was utilized as the foundation a for simulating the assembly flow time. FORTRAN subroutines were incorporated into the software to deal with unique flow circumstances that were not accommodated by the software. Detailed information relating to the assembly operations was provided by a team selected from the engineering, manufacturing management, inspection, and production assembly staff. The simulation verified that it would be possible to achieve the cycle time goal of six weeks. Equipment and manpower constraints were identified during the simulation process and adjusted as required to achieve the flow with a given monthly production requirement. The simulation is being maintained as a planning tool to be used to identify constraints in the event that monthly output is increased. ``What-if`` studies have been conducted to identify the cost of reducing constraints caused by increases in output requirement.

  15. Final Report on the Development of an Improved Cloud Microphysical Product for Model and Remote Sensing Evaluation using RACORO Observations

    SciTech Connect (OSTI)

    McFarquhar, Greg

    2012-09-19T23:59:59.000Z

    We proposed to analyze data collected during the Routine Aerial Facilities (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) in order to develop an integrated product of cloud microphysical properties (number concentration of drops in different size bins, total liquid drop concentration integrated over all bin sizes, liquid water content LWC, extinction of liquid clouds bw, effective radius of water drops re, and radar reflectivity factor) that could be used to evaluate large-eddy simulations (LES), general circulation models (GCMs) and ground-based remote sensing retrievals, and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. We have completed the development of this microphysical database and have submitted it to ARM for consideration of its inclusion on the ARM database as a PI product. This report describes the development of this database, and also describes research that has been conducted on cloud-aerosol interactions using the data obtained during RACORO. A list of conference proceedings and publications is also included.

  16. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect (OSTI)

    Schumacher, Courtney

    2012-12-13T23:59:59.000Z

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  17. The Mid-latitude Continental Convective Clouds (MC3E) Experiment Final Campaign Report

    SciTech Connect (OSTI)

    Jensen, Michael [Brookhaven National Laboratory; Kollias, Pavlos [McGill University; Giangrande, Scott

    2014-04-01T23:59:59.000Z

    The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place from April 22 through June 6, 2011, centered at the ARM Southern Great Plains site (http://www.arm.gov/sites/sgp) in northcentral Oklahoma. MC3E was a collaborative effort between the ARM Climate Research Facility and the National Aeronautics and Space Administration’s (NASA’s) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The campaign leveraged the largest ground-based observing infrastructure available in the central United States, including recent upgrades through the American Recovery and Reinvestment Act of 2009, combined with an extensive sounding array, remote sensing and in situ aircraft observations, and additional radar and in situ precipitation instrumentation. The overarching goal of the campaign was to provide a three-dimensional characterization of convective clouds and precipitation for the purpose of improving the representation of convective lifecycle in atmospheric models and the reliability of satellite-based retrievals of precipitation.

  18. A 10-year radar-based climatology of rainfall Aart Overeem, Iwan Holleman, Adri Buishand

    E-Print Network [OSTI]

    Stoffelen, Ad

    the derivation of a 10- year radar-based precipitation climatology for the Netherlands. Using rain gauges of the radar-based accumulations with an independent gauge network confirms the quality of the data set. Finally, the radar data are used to obtain exceedance probabilities and maximum rainfall depths. II. RADAR

  19. ELEVATION-DEPENDENT TRENDS IN PRECIPITATION OBSERVED BY THE NAME RADAR NETWORK

    E-Print Network [OSTI]

    Rutledge, Steven

    i THESIS ELEVATION-DEPENDENT TRENDS IN PRECIPITATION OBSERVED BY THE NAME RADAR NETWORK Submitted BY ANGELA K. ROWE ENTITLED ELEVATION- DEPENDENT TRENDS IN PRECIPITATION OBSERVED BY THE NAME RADAR NETWORK BY THE NAME RADAR NETWORK Radar data from the 2004 North American Monsoon Experiment (NAME) Enhanced Observing

  20. Considerations for the use of radar-derived precipitation estimates in determining return intervals for extreme

    E-Print Network [OSTI]

    Allen, Robert J.

    to those based on traditional rain gauge networks. For both the radar and gauge data, increasing, considerable differences between radar ARF and gauge ARF exist. Radar ARF decays at a faster rate (with increasing area) than gauge ARF. For a basin size of 20,000 km2 , the percent difference between radar ARF

  1. Radar echo, Doppler Effect and Radar detection in the uniformly accelerated reference frame

    E-Print Network [OSTI]

    Bernhard Rothenstein; Stefan Popescu

    2006-09-14T23:59:59.000Z

    The uniformly accelerated reference frame described by Hamilton, Desloge and Philpott involves the observers who perform the hyperbolic motion with constant proper acceleration gi. They start to move from different distances measured from the origin O of the inertial reference frame K(XOY), along its OX axis with zero initial velocity. Equipped with clocks and light sources they are engaged with each other in Radar echo, Doppler Effect and Radar detection experiments. They are also engaged in the same experiments with an inertial observer at rest in K(XOY) and located at its origin O. We derive formulas that account for the experiments mentioned above. We study also the landing conditions of the accelerating observers on a uniformly moving platform.

  2. Platform for Hybrid Cloud Technical White Paper

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Platform for Hybrid Cloud Technical White Paper Published: September 2013 (updated) Applies to: SQL Server and Windows Azure Summary: Cloud computing brings a new paradigm shift in computing in the cloud with greater scale and flexibility. Microsoft SQL Server runs very well in the cloud environment

  3. Cloud Computing An enterprise perspective Raghavan Subramanian

    E-Print Network [OSTI]

    Rajamani, Sriram K.

    Cloud Computing ­ An enterprise perspective Raghavan Subramanian Infosys Technologies Limited #12;2Infosys Confidential Overview of cloud computing? Cloud computing* Computing in which dynamically scalable of cloud computing 1. On-demand self-service 2. Ubiquitous network access 3. Location independent resource

  4. IBM Software Solution Brief Safeguarding the cloud

    E-Print Network [OSTI]

    IBM Software Solution Brief Safeguarding the cloud with IBM Security solutions Maintain visibility and control with proven security solutions for public, private and hybrid clouds Highlights Address cloud internal and external users, data, applications and workloads as they move to and from the cloud Regain

  5. 7, 1711717146, 2007 Dependence of cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 17117­17146, 2007 Dependence of cloud fraction and cloud height on temperature T. Wagner et a Creative Commons License. Atmospheric Chemistry and Physics Discussions Dependence of cloud fraction and cloud top height on surface temperature derived from spectrally resolved UV/vis satellite observations T

  6. Draft NISTIR 80061 NIST Cloud Computing2

    E-Print Network [OSTI]

    Draft NISTIR 80061 NIST Cloud Computing2 Forensic Science Challenges NIST Cloud Computing Forensic Computing11 Forensic Science Challenges 12 NIST Cloud Computing Forensic Science Working Group13 Information challenges77 faced by experts when responding to incidents that have occurred in a cloud-computing ecosystem

  7. Cloud Data Management (CDM) Yunpeng Chai

    E-Print Network [OSTI]

    /W performance / Parallelism No/ Simple SQL operations 12 /26 Survey of CDM Cloud Storage: Architecture: Master#12;Cloud Data Management (CDM) Yunpeng Chai 2 /26 Outline Motivation of CDM Survey of CDM IBM SUR Cloud China Mobile National Health Care #12;9 /26 Outline Motivation of CDM Survey of CDM IBM SUR Cloud

  8. 6, 43414373, 2006 Cloud-borne aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Discussions Impact of cloud-borne aerosol representation on aerosol direct and indirect effects S. J. Ghan of aerosols employ a variety of rep- resentations of such cloud-borne particles. Here we use a global aerosol- ulated aerosol, cloud and radiation fields to various approximations to the representa- tion of cloud

  9. Vision: Cloud-Powered Sight for All Showing the Cloud What You See

    E-Print Network [OSTI]

    Zhong, Lin

    Vision: Cloud-Powered Sight for All Showing the Cloud What You See Paramvir Bahl Matthai Philipose argue that for computers to do more for us, we need to show the cloud what we see and embrace cloud General Terms Algorithms, Design, Human Factors, Languages, Performance, Security Keywords Camera, cloud

  10. CLOUD, DRIZZLE, AND TURBULENCE OBSERVATIONS IN MARINE STRATOCUMULUS CLOUDS IN THE AZORES

    E-Print Network [OSTI]

    CLOUD, DRIZZLE, AND TURBULENCE OBSERVATIONS IN MARINE STRATOCUMULUS CLOUDS IN THE AZORES Jasmine at the Azores provided a unique, long-term record (May 2009 to December 2010) of cloud observations in a regime dominated by low-level stratiform clouds. First, a comprehensive cloud classification scheme that utilizes

  11. Cloud Futures Workshop 2010 Cloud Computing Support for Massively Social Gaming Alexandru Iosup

    E-Print Network [OSTI]

    Iosup, Alexandru

    1 Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming Alexandru Iosup Pierre (Vrije U.). Cloud Computing Support for Massively Social Gaming (Rain for the Thirsty) #12;Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming 2 Intermezzo: Tips on how

  12. Changes in Cloud Cover and Cloud Types Over the Ocean from Surface

    E-Print Network [OSTI]

    Hochberg, Michael

    Total cloud cover 54 68 Clear sky (frequency) 22 3 #12;Low Clouds & Solar Radiation Low clouds scatterChanges in Cloud Cover and Cloud Types Over the Ocean from Surface Observations, 1954-2008 Ryan This produces a weak net warming effect in the atmosphere, since more radiation comes in, and less goes out

  13. Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey interactions radiative effects, i.e., the cloud cover, liquid water path (LWP) and cloud drop radius (Twomey negative radiative forcing on the global scale, mainly due to the cloud cover effect. © 2013 Elsevier B

  14. A Survey of Changes in Cloud Cover and Cloud Types over Land from Surface Observations, 197196

    E-Print Network [OSTI]

    Hochberg, Michael

    of their effects on solar radiation, terrestrial radiation, and precipitation. These effects depend on cloud height, and the season of the year and time of day. The effect of clouds on the earth's radiation budget, the "cloud to be a useful classification in studies of cloud processes (Houze 1993). The climatic effects of clouds further

  15. Automatic signal processing of front monitor radar for tunneling machines

    SciTech Connect (OSTI)

    Sato, Toru [Kyoto Univ. (Japan). Dept. of Electronics and Communication] [Kyoto Univ. (Japan). Dept. of Electronics and Communication; Takeda, Kenya [NTT Co. Ltd., Chiba (Japan)] [NTT Co. Ltd., Chiba (Japan); Nagamatsu, Takashi [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)] [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Wakayama, Toshio [Mitsubishi Electric Corp., Kamakura, Kanagawa (Japan)] [Mitsubishi Electric Corp., Kamakura, Kanagawa (Japan); Kimura, Iwane [Osaka Inst. of Tech., Hirakata, Osaka (Japan)] [Osaka Inst. of Tech., Hirakata, Osaka (Japan); Shinbo, Tetsuya [Komatsu Co. Ltd., Kanagawa (Japan)] [Komatsu Co. Ltd., Kanagawa (Japan)

    1997-03-01T23:59:59.000Z

    It is planned to install a front monitoring impulse radar on the surface of the rotating drill of tunneling machines in order to detect obstacles such as casing pipes of vertical borings. The conventional aperture synthesis technique can no more be applied to such cases because the radar image of a pipe dies not constituent a hyperbola as is the case for linear scanning radars. The authors have developed a special purpose signal processing algorithm with the aid of the discrete model fitting method, which can be used for any pattern of scanning. The details of the algorithm are presented together with the results of numerical simulations and test site experiments.

  16. Development and characterization analysis of a radar polarimeter

    E-Print Network [OSTI]

    Bong, Soei Siang

    1984-01-01T23:59:59.000Z

    . OPERATIONAL ANALYSIS OF THE RPS Assembling the RPS. Theoretical Calculations. Losses in the RF Heads. 1. The L-Band Radar Head (1. 6 GHz). 2. The C-Band Radar Head (4. 75 GHz) 3. The X-Band Radar Head (10. 003 GHz) RF Head Stability as Measured... of the Components in the IF Section. List of Components in the L-Band RF Head. List of Components in the C-Band RF Head. List of Components in the X-Band RF Head. Detail List of Components in the L-Band RF Head . Specifications of the Components in the L...

  17. Development and characterization analysis of a radar polarimeter 

    E-Print Network [OSTI]

    Bong, Soei Siang

    1984-01-01T23:59:59.000Z

    . OPERATIONAL ANALYSIS OF THE RPS Assembling the RPS. Theoretical Calculations. Losses in the RF Heads. 1. The L-Band Radar Head (1. 6 GHz). 2. The C-Band Radar Head (4. 75 GHz) 3. The X-Band Radar Head (10. 003 GHz) RF Head Stability as Measured... of the Components in the IF Section. List of Components in the L-Band RF Head. List of Components in the C-Band RF Head. List of Components in the X-Band RF Head. Detail List of Components in the L-Band RF Head . Specifications of the Components in the L...

  18. Mixed phase clouds, cloud electrification and remote sensing.

    SciTech Connect (OSTI)

    Chylek, P. (Petr); Borel, C. C. (Christoph C.); Klett, James

    2004-01-01T23:59:59.000Z

    Most of hypothesis trying to explain charge separation in thunderstorm clouds require presence of ice and supercooled water. Thus the existence of ice or at least mixed phase regions near cloud tops should be a necessary (but not a sufficient) condition for development of lightning. We show that multispectral satellite based instruments, like the DOE MTI (Multispectral Thermal Imager) or NASA MODIS (Moderate Resolution Imaging Spectroradiometer), using the near infrared and visible spectral bands are able to distinguish between water, ice and mixed phase cloud regions. An analysis of the MTI images of mixed phase clouds - with spatial resolution of about 20 m - shows regions of pure water, pure ice as well as regions of water/ice mixtures. We suggest that multispectral satellite instruments may be useful for a short time forecast of lightning probabilities.

  19. A joint study of the lower ionosphere by radar, lidar, and spectrometer

    SciTech Connect (OSTI)

    Zhou, Qihou.

    1991-01-01T23:59:59.000Z

    The dynamics and associated phenomena occurring in the lower ionospheric-E region, especially the mesopause region between 80 km to 110 km at low latitude, are studied. In particular, incoherent scatter radar (ISR), sodium lidar and airglow spectrometry are used to study the ionospheric structure and neutral sodium structure. The simultaneous study of the ionospheric plasma and neutral atomic sodium is unprecedented in scope and detail. The joint study of the mesopause region reveals that plasma, neutral densities and temperature are interconnected through the same atmospheric dynamics. The theme of the thesis is to explain the formation of the controversial sporadic sodium layer (SSL) events. Strong correlation is established between the average total ion and sodium concentrations, and between sporadic-E and SSL events. The mechanism proposed in the thesis, which invokes temperature fluctuations induced by tides and gravity waves, finds good agreement with observations. Tides and gravity waves can converge ions into thin layers through the windshear mechanisms and can influence the concentration of atomic sodium through temperature fluctuations. Sodium abundance is shown to augment rapidly when the temperature is increased. Gravity wave theory states that the ion convergence node coincides with a temperature maximum for a westward propagating gravity wave, and coincides with a temperature minimum for an eastward propagating wave. Because tidal winds propagate westward, the ion layer coincides with the temperature maximum which consequently induces higher sodium concentration. This can account for the general correlation between sodium and total ion concentration and is supported by the O2(0-1) rotational temperature. Gravity waves and their interaction with tidal winds are believed to be responsible for the close association between sudden sodium layers and sporadic-E layers.

  20. Where Are Aerosol-Cloud Albedo Effects? Muelmenstaedt et al., 2013

    E-Print Network [OSTI]

    Russell, Lynn

    particles. Wave Breaking ! Bubble Bursting Observed Aerosol Effects on Marine Cloud Nucleation with particles? #12;2/11/14 2 "Dissolved" Organic Matter is Measured in Filtered Seawater as Organic Carbon (OC) P. Verdugo, 2011 Par$culate Organic Carbon Dissolved Organic Carbon POC

  1. Coherent radar ice thickness measurements over the Greenland ice sheet

    E-Print Network [OSTI]

    Gogineni, S. Prasad; Tammana, Dilip; Braaten, David A.; Leuschen, C.; Legarsky, J.; Kanagaratnam, P.; Stiles, J.; Allen, C.; Jezek, K.; Akins, T.

    2001-12-27T23:59:59.000Z

    We developed two 150-MHz coherent radar depth sounders for ice thickness measurements over the Greenland ice sheet. We developed one of these using connectorized components and the other using radio frequency integrated circuits (RFICs). Both...

  2. Inversion of synthetic aperture radar interferograms for sources...

    Open Energy Info (EERE)

    synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to...

  3. Earth curvature and atmospheric refraction effects on radar signal propagation.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-01-01T23:59:59.000Z

    The earth isn't flat, and radar beams don't travel straight. This becomes more noticeable as range increases, particularly at shallow depression/grazing angles. This report explores models for characterizing this behavior.

  4. Radar Vehicle Detection Within Four Quadrant Gate Crossings

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    of the exit gate · Less delay between entry and exit gate descent · Extends the exit gate delay only) Methodology 4) Results 5) Conclusions 6) Acknowledgments Exit Gate Operating Modes (EGOM) Radar Vehicle

  5. A spatial display for Ground-Penetrating Radar change detection

    E-Print Network [OSTI]

    Quimby, Paul W

    2013-01-01T23:59:59.000Z

    Ground-Penetrating Radar (GPR) enables the exploration and mapping of subterranean volumes for applications such as construction, humanitarian demining, archeology, and environmental science. In each of these applications, ...

  6. Sandia National Laboratories: evaluating wind-turbine/radar impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Space (NAS) radar system, which has led to a blanket rejection of several wind-farm developments. To improve the siting and ... Last Updated: December 3, 2014 Go To...

  7. Vacuum Waves

    E-Print Network [OSTI]

    Paul S. Wesson

    2012-12-11T23:59:59.000Z

    As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.

  8. An airborne digital processor for radar scatterometer data

    E-Print Network [OSTI]

    Yeadon, David Steven

    1977-01-01T23:59:59.000Z

    AN AIRBORNE DIGITAL PROCESSOR FOR RADAR SCATTEROMETER DATA A Thesis by DAVID STEVEN YEADON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1977... Major Subject: Electrical Engineering AN AIRBORNE DIGITAL PROCESSOR FOR RADAR SCATTEROMETER DATA A Thesis by DAVID STEVEN YEADON Approved as to style and content by: (Chairman o Committee) Head of epartment) ( (Member ) (Member) August 1977...

  9. Differences in radar derived rainfall amounts due to sampling intervals

    E-Print Network [OSTI]

    Zdenek, David James

    1986-01-01T23:59:59.000Z

    DIFFERENCES IN RADAR DERIVED RAINFALL AMOUNTS DUE TO SAMPLING INTERVALS A Thesis by DAVID JAMES ZDENEK Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1986 Major Subject: Meteorology DIFFERENCES IN RADAR DERIVED RAINFALL AMOUNTS DUE TO SAMPLING INTERVALS A Thesis by DAVID JAMES ZDENEK Approved as to style and content by: eorge L. Huebner (Chairman of Committee) CP~ CG~& Robert C...

  10. Cloud Computing and Validation of Expandable In Silico Livers

    E-Print Network [OSTI]

    Ropella, Glen EP; Hunt, C Anthony

    2010-01-01T23:59:59.000Z

    benefit analysis of cloud computing versus desktop grids.as: Ropella and Hunt: Cloud computing and validation ofCloud computing and validation of expandable in silico

  11. Retrieval of Cloud Ice Water Content Profiles from Advanced Microwave Sounding Unit-B Brightness Temperatures Near the Atmospheric Radiation Measurement Southern Great Plains Site

    SciTech Connect (OSTI)

    Seo, E-K.; Liu, G.

    2005-03-18T23:59:59.000Z

    One of the Atmospheric Radiation Measurement (ARM) Program important goals is to develop and test radiation and cloud parameterizations of climate models using single column modeling (SCMs) (Randall et al. 1996). As forcing terms, SCMs need advection tendency of cloud condensates besides the tendencies of temperature, moisture and momentum. To compute the tendency terms of cloud condensates, 3D distribution of cloud condensates over a scale much larger than the climate model's grid scale is needed. Since they can cover a large area within a short time period, satellite measurements are useful utilities to provide advection tendency of cloud condensates for SCMs. However, so far, most satellite retrieval algorithms only retrieve vertically integrated quantities, for example, in the case of cloud ice, ice water path (IWP). To fulfill the requirement of 3D ice water content field for computing ice water advection, in this study, we develop an ice water content profile retrieval algorithm by combining the vertical distribution characteristics obtained from long-term surface radar observations and satellite high-frequency microwave observations that cover a large area. The algorithm is based on the Bayesian theorem using a priori database derived from analyzing cloud radar observations at the Southern Great Plains (SGP) site. The end product of the algorithm is a 3D ice water content covering 10{sup o} x 10{sup o} surrounding the SGP site during the passage of the satellite. This 3D ice water content, together with wind field analysis, can be used to compute the advection tendency of ice water for SCMs.

  12. Title: Networking the Cloud: Enabling Enterprise Computing and Storage Cloud computing has been changing how enterprises run and manage their IT systems. Cloud

    E-Print Network [OSTI]

    Title: Networking the Cloud: Enabling Enterprise Computing and Storage Abstract: Cloud computing has been changing how enterprises run and manage their IT systems. Cloud computing platforms provide introduction on Cloud Computing. We propose a Virtual Cloud Pool abstraction to logically unify cloud

  13. Cluster analysis of cloud properties : a method for diagnosing cloud-climate feedbacks

    E-Print Network [OSTI]

    Gordon, Neil D.

    2008-01-01T23:59:59.000Z

    represent cloud effects on gridbox mean visible radiationclouds and the resulting effect on the balance of radiationrepresent cloud effects on grid-box-mean visible radiation

  14. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01T23:59:59.000Z

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  15. The Evolution of Cloud Computing in ATLAS

    E-Print Network [OSTI]

    Taylor, Ryan P.; The ATLAS collaboration; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

    2015-01-01T23:59:59.000Z

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

  16. Gravitational Collapse in Turbulent Molecular Clouds. II. Magnetohydrodynamical Turbulence

    E-Print Network [OSTI]

    F. Heitsch; M. -M. Mac Low; R. S. Klessen

    2000-09-14T23:59:59.000Z

    Hydrodynamic supersonic turbulence can only prevent local gravitational collapse if the turbulence is driven on scales smaller than the local Jeans lengths in the densest regions, a very severe requirement (Paper I). Magnetic fields have been suggested to support molecular clouds either magnetostatically or via magnetohydrodynamic (MHD) waves. Whereas the first mechanism would form sheet-like clouds, the second mechanism not only could exert a pressure onto the gas counteracting the gravitational forces, but could lead to a transfer of turbulent kinetic energy down to smaller spatial scales via MHD wave interactions. This turbulent magnetic cascade might provide sufficient energy at small scales to halt local collapse. We test this hypothesis with MHD simulations at resolutions up to 256^3 zones, done with ZEUS-3D. We first derive a resolution criterion for self-gravitating, magnetized gas: in order to prevent collapse of magnetostatically supported regions due to numerical diffusion, the minimum Jeans length must be resolved by four zones. Resolution of MHD waves increases this requirement to roughly six zones. We then find that magnetic fields cannot prevent local collapse unless they provide magnetostatic support. Weaker magnetic fields do somewhat delay collapse and cause it to occur more uniformly across the supported region in comparison to the hydrodynamical case. However, they still cannot prevent local collapse for much longer than a global free-fall time.

  17. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    SciTech Connect (OSTI)

    Chiswell, S.; Buckley, R.

    2009-01-15T23:59:59.000Z

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher resolution real-time model simulations possible, the need to obtain observations to both initialize numerical models and verify their output has become increasingly important. The assimilation of high resolution radar observations therefore provides a vital component in the development and utility of numerical model forecasts for both weather forecasting and contaminant transport, including future opportunities to improve wet deposition computations explicitly.

  18. Dust takes detour on ice-cloud journey | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dust takes detour on ice-cloud journey Dust takes detour on ice-cloud journey Pollution-coated particles bypass ice formation, but influence clouds Cirrus clouds are composed of...

  19. Coronal transverse magnetohydrodynamic waves in a solar prominence

    E-Print Network [OSTI]

    T. J. Okamoto; S. Tsuneta; T. E. Berger; K. Ichimoto; Y. Katsukawa; B. W. Lites; S. Nagata; K. Shibata; T. Shimizu; R. A. Shine; Y. Suematsu; T. D. Tarbell; A. M. Title

    2008-01-13T23:59:59.000Z

    Solar prominences are cool 10$^4$ Kelvin plasma clouds supported in the surrounding 10$^6$ Kelvin coronal plasma by as-yet undetermined mechanisms. Observations from \\emph{Hinode} show fine-scale threadlike structures oscillating in the plane of the sky with periods of several minutes. We suggest these transverse magnetohydrodynamic waves may represent Alfv\\'en waves propagating on coronal magnetic field lines and these may play a role in heating the corona.

  20. Measuring soil moisture with imaging radars

    SciTech Connect (OSTI)

    Dubois, P.C.; Zyl, J. van [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.] [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.; Engman, T. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)] [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1995-07-01T23:59:59.000Z

    An empirical algorithm for the retrieval of soil moisture content and surface Root Mean Square (RMS) height from remotely sensed radar data was developed using scatterometer data. The algorithm is optimized for bare surfaces and requires two copolarized channels at a frequency between 1.5 and 11 GHz. It gives best results for kh {le} 2.5, {mu}{sub {upsilon}}{le}35%, and {theta}{ge}30{degree}. Omitting the usually weaker hv-polarized returns makes the algorithm less sensitive to system cross-talk and system noise, simplify the calibration process and adds robustness to the algorithm in the presence of vegetation. However, inversion results indicate that significant amounts of vegetation (NDVI>0.4) cause the algorithm to underestimate soil moisture and overestimate RMS height. A simple criteria based on the {sigma}{sub hv}{sup 0}/{sigma}{sub vv}{sup 0} ratio is developed to select the areas where the inversion is not impaired by the vegetation. The inversion accuracy is assessed on the original scatterometer data sets but also on several SAR data sets by comparing the derived soil moisture values with in-situ measurements collected over a variety of scenes between 1991 and 1994. Both spaceborne (SIR-C) and airborne (AIRSAR) data are used in the test. Over this large sample of conditions, the RMS error in the soil moisture estimate is found to be less than 4.2% soil moisture.

  1. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    SciTech Connect (OSTI)

    Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Hu, Zhirun [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Liu, Peiguo [College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-11-15T23:59:59.000Z

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  2. Wave represents displacement Wave represents pressure Source -Sound Waves

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency

  3. Socially Optimal Pricing of Cloud Computing Resources

    E-Print Network [OSTI]

    Menache, Ishai

    The cloud computing paradigm offers easily accessible computing resources of variable size and capabilities. We consider a cloud-computing facility that provides simultaneous service to a heterogeneous, time-varying ...

  4. The Evolution of Cloud Computing in ATLAS

    E-Print Network [OSTI]

    Taylor, Ryan P; The ATLAS collaboration; Brasolin, Franco; Cordeiro, Cristovao; Desmarais, Ron; Field, Laurence; Gable, Ian; Giordano, Domenico; Di Girolamo, Alessandro; Hover, John; Leblanc, Matthew Edgar; Love, Peter; Paterson, Michael; Sobie, Randall; Zaytsev, Alexandr

    2015-01-01T23:59:59.000Z

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This paper describes the overall evolution of cloud computing in ATLAS. The current status of the virtual machine (VM) management systems used for harnessing infrastructure as a service (IaaS) resources are discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for ma...

  5. Disruptive technology business models in cloud computing

    E-Print Network [OSTI]

    Krikos, Alexis Christopher

    2010-01-01T23:59:59.000Z

    Cloud computing, a term whose origins have been in existence for more than a decade, has come into fruition due to technological capabilities and marketplace demands. Cloud computing can be defined as a scalable and flexible ...

  6. Cloud-Top Temperatures for Precipitating Winter Clouds JAY W. HANNA

    E-Print Network [OSTI]

    Schultz, David

    1 Cloud-Top Temperatures for Precipitating Winter Clouds JAY W. HANNA NOAA/NESDIS Satellite of satellite-derived cloud-top brightness temperatures from GOES longwave infrared (channel 4) satellite data, rain, freezing rain, and sleet. The distributions of cloud-top brightness temperatures were constructed

  7. Cloud networking and communications Cloud computing is having an important impact on

    E-Print Network [OSTI]

    Boutaba, Raouf

    Editorial Cloud networking and communications Cloud computing is having an important impact attention has been devoted to system aspects of Cloud computing. More recently, however, the focus is shifting towards Cloud net- working and communications with evolutionary and revo- lutionary propositions

  8. Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus

    E-Print Network [OSTI]

    Miami, University of

    Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus hygroscopic aerosols were introduced into a solid marine stratocumulus cloud (200 m thick) by burning hygroscopic flares mounted on an aircraft. The cloud microphysical response in two parallel seeding plumes

  9. The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise

    E-Print Network [OSTI]

    Sommerville, Ian

    1 The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise Ali Khajeh-Hosseini, David Greenwood, James W. Smith, Ian Sommerville Cloud Computing Co-laboratory, School of Computer Science University of St Andrews, UK {akh, dsg22, jws7, ifs}@cs.st-andrews.ac.uk Abstract Cloud computing

  10. CLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy

    E-Print Network [OSTI]

    Lin, Jimmy

    CLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy: Computing in a Policy Cloud? Forthcoming in the Journal of Information Technology and Politics, 5(3). Paul T. Jaeger University of Maryland Jimmy Lin University of Maryland Justin M. Grimes University of Maryland #12;CLOUD

  11. HPI Cloud Symposium ,Operating The Cloud` 25.09.2013, Hasso-Plattner-Institut, Auditorium Building

    E-Print Network [OSTI]

    Weske, Mathias

    Agenda HPI Cloud Symposium ,Operating The Cloud` 25.09.2013, Hasso-Plattner-Institut, Auditorium Building 09:30h Registration 10:00h Opening Prof. Dr. Christoph Meinel, HPI Potsdam 10:30h Cloud-RAID: Eine Methode zur Bereitstellung zuverlässiger Speicherressourcen in Öffentlichen Clouds Maxim Schnajkin, HPI

  12. Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman

    E-Print Network [OSTI]

    Jaeger, Trent

    Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman Security Architecture University Park, PA, USA yus138,hvijay,tjaeger@cse.psu.edu Abstract--Cloud computing has commoditized compute paradigm, its adoption has been stymied by cloud platform's lack of trans- parency, which leaves customers

  13. Cloud Tracking in Cloud-Resolving Models R. S. Plant1

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models R. S. Plant1 1 Department of Meteorology, University. INTRODUCTION In recent years Cloud Resolving Models (CRMs) have become an increasingly important tool for CRM data, which allows one to investigate statistical prop- erties of the lifecycles of the "clouds

  14. From mini-clouds to Cloud Computing Boris Mejias, Peter Van Roy

    E-Print Network [OSTI]

    Bonaventure, Olivier

    From mini-clouds to Cloud Computing Boris Mej´ias, Peter Van Roy Universit´e catholique de Louvain ­ Belgium {boris.mejias|peter.vanroy}@uclouvain.be Abstract Cloud computing has many definitions with different views within industry and academia, but everybody agrees on that cloud computing is the way

  15. AnonymousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing

    E-Print Network [OSTI]

    Hamlen, Kevin W.

    AnonymousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing Safwan Mahmud Khan their computation results are ultimately delivered. To provide this data ownership privacy, the cloud's distributed-anonymity; authentication; cloud computing; in- formation security; privacy; Tor I. INTRODUCTION Revolutionary advances

  16. Leveraging Platform Basic Services in Cloud Application Platforms for the Development of Cloud

    E-Print Network [OSTI]

    Simons, Anthony J. H.

    Leveraging Platform Basic Services in Cloud Application Platforms for the Development of Cloud.Simons@dcs.shef.ac.uk Abstract-- Cloud application platforms gain popularity and have the potential to alter the way service based cloud applications are developed involving utilisation of platform basic services. A platform

  17. Carbon Chemistry in interstellar clouds

    E-Print Network [OSTI]

    Maryvonne Gerin; David Fosse; Evelyne Roueff

    2002-12-03T23:59:59.000Z

    We discuss new developments of interstellar chemistry, with particular emphasis on the carbon chemistry. We confirm that carbon chains and cycles are ubiquitous in the ISM and closely chemically related to ea ch other, and to carbon. Investigation of the carbon budget in shielded and UV illuminated gas shows that the inventory of interstellar molecules is not complete and more complex molecules with 4 or more carbon atoms must be present. Finally we discuss the consequences for the evolution of clouds and conclude that the ubiquitous presence of carbon chains and cycles is not a necessary consequence of a very young age for interstellar clouds.

  18. Changes in high cloud conditions

    E-Print Network [OSTI]

    Himebrook, Richard Frank

    1974-01-01T23:59:59.000Z

    ). When the effect of unknowns is added to the data (Figs. 3(a) and 3(b), p, 21), the period with most high-cloud cover seems to alter- nate back and forth almost monthly, The average, global, solar radiation (Fig. 3(c), p. 21) depicts a decrease from... radiation, per cent possible sunshine, and average sky cover. The increases in high-cloud cover occurred in areas with the following characteristics: strong upper-air flow; frequent jet ' aircraft traffic; coverage of less than half the sky; late...

  19. Incoherent scatter radar detection of enhanced plasma line in ionospheric E-region over Arecibo

    E-Print Network [OSTI]

    Pradipta, Rezy

    2006-01-01T23:59:59.000Z

    A series of incoherent scatter radar (ISR) observation were conducted at the Arecibo Observatory from December 27, 2005 until January 3, 2006. From plasma line measurements that were taken during this radar campaign, we ...

  20. Focused synthetic aperture radar processing of ice-sounder data collected over the Greenland ice sheet

    E-Print Network [OSTI]

    Legarsky, J.; Gogineni, Sivaprasad; Akins, T. L.

    2001-10-01T23:59:59.000Z

    We developed a synthetic aperture radar (SAR) processing algorithm for airborne/spaceborne ice-sounding radar systems and applied it to data collected in Greenland. By using focused SAR (phase-corrected coherent averaging), we improved along...

  1. Accuracy and resolution of shuttle radar topography mission data Bridget Smith and David Sandwell

    E-Print Network [OSTI]

    Sandwell, David T.

    Accuracy and resolution of shuttle radar topography mission data Bridget Smith and David Sandwell: General or miscellaneous. Citation: Smith, B., and D. Sandwell, Accuracy and resolution of shuttle radar

  2. Near real-time runoff estimation using spatially distributed radar rainfall data

    E-Print Network [OSTI]

    Hadley, Jennifer Lyn

    2004-09-30T23:59:59.000Z

    associated with rainfall. Radar networks, such as the Next Generation Weather Radar (NEXRAD) of the National Weather Service (NWS), which are widely available and continue to improve in quality and resolution, can accomplish these tasks. In general, a...

  3. Near Real-Time Runoff Estimation Using Spatially Distributed Radar Rainfall Data

    E-Print Network [OSTI]

    Hadley, Jennifer Lynn

    associated with rainfall. Radar networks, such as the Next Generation Weather Radar (NEXRAD) of the National Weather Service (NWS), which are widely available and continue to improve in quality and resolution, can accomplish these tasks. In general, a...

  4. Antarctica X-band MiniSAR crevasse detection radar : final report.

    SciTech Connect (OSTI)

    Sander, Grant J.; Bickel, Douglas Lloyd

    2007-09-01T23:59:59.000Z

    This document is the final report for the Antarctica Synthetic Aperture Radar (SAR) Project. The project involved the modification of a Sandia National Laboratories MiniSAR system to operate at X-band in order to assess the feasibility of an airborne radar to detect crevasses in Antarctica. This radar successfully detected known crevasses at various geometries. The best results were obtained for synthetic aperture radar resolutions of at most one foot and finer. In addition to the main goal of detecting crevasses, the radar was used to assess conops for a future operational radar. The radar scanned large areas to identify potential safe landing zones. In addition, the radar was used to investigate looking at objects on the surface and below the surface of the ice. This document includes discussion of the hardware development, system capabilities, and results from data collections in Antarctica.

  5. Analog FIR Filter Used for Range-Optimal Pulsed Radar Applications

    E-Print Network [OSTI]

    Su, Eric Chen

    2014-08-13T23:59:59.000Z

    Matched filter is one of the most critical block in radar applications. With different measured range and relative velocity of a target we will need different bandwidth of the matched filter to maximize the radar signal to noise ratio (SNR...

  6. On reconciling ground-based with spaceborne normalized radar cross section measurements

    E-Print Network [OSTI]

    Baumgartner, F.; Munk, J.; Jezek, K. C.; Gogineni, Sivaprasad

    2002-02-01T23:59:59.000Z

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) ...

  7. Interactive physically-based cloud simulation

    E-Print Network [OSTI]

    Overby, Derek Robert

    2002-01-01T23:59:59.000Z

    of digital artistic media. Previous methods for modeling the growth of clouds do not account for the fluid interactions that are responsible for cloud formation in the physical atmosphere. We propose a model for simulating cloud formation based on a basic...

  8. Dynamics of Clouds Fall Semester 2012

    E-Print Network [OSTI]

    ATS712 Dynamics of Clouds Fall Semester 2012 Meeting Times: T/Th: 9-10:15am Room: ATS 101-2pm Course Description: This class focuses on the general dynamics of cloud systems. Models of fog and other Tools / Skills Cotton, W.R., G.H. Bryan, and S.C. van den Heever, 2010: Storm and Cloud Dynamics

  9. Microsoft Private Cloud Title of document

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Microsoft Private Cloud Title of document 1 1 Microsoft Private Cloud A Comparative Look at Functionality, Benefits, and Economics November2012 #12;Microsoft Private Cloud Title of document 2 2 Copyright Information © 2012 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information

  10. Performance Engineering for Cloud Computing John Murphy

    E-Print Network [OSTI]

    Murphy, John

    Performance Engineering for Cloud Computing John Murphy Lero ­ The Irish Software Engineering.Murphy@ucd.ie Abstract. Cloud computing potentially solves some of the major challenges in the engineering of large efficient operation. This paper argues that cloud computing is an area where performance engineering must

  11. Level Set Implementations on Unstructured Point Cloud

    E-Print Network [OSTI]

    Duncan, James S.

    Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong A Thesis Submitted;Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong This is to certify that I have implementations on unstructured point cloud 15 3.1 Level set initialization

  12. 6, 93519388, 2006 Aerosol-cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

  13. Cloud Security: Issues and Concerns Pierangela Samarati*

    E-Print Network [OSTI]

    Samarati, Pierangela

    1 Cloud Security: Issues and Concerns Authors Pierangela Samarati* Universitŕ degli Studi di Milano, Italy sabrina.decapitani@unimi.it Keywords cloud security confidentiality integrity availability secure data storage and processing Summary The cloud has emerged as a successful computing paradigm

  14. Cloud Computing: Centralization and Data Sovereignty

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Cloud Computing: Centralization and Data Sovereignty Primavera De Filippi, Smari McCarthy Abstract: Cloud computing can be defined as the provision of computing resources on-demand over and elasticity of costs, problems arise concerning the collection of personal information in the Cloud

  15. Optimizing Offloading Strategies in Mobile Cloud Computing

    E-Print Network [OSTI]

    Hyytiä, Esa

    Optimizing Offloading Strategies in Mobile Cloud Computing Esa Hyyti¨a Department of Communications Abstract--We consider a dynamic offloading problem arising in the context of mobile cloud computing (MCC consider the task assignment problem arising in the context of the mobile cloud computing (MCC). In MCC

  16. CONTROLLING DATA IN THE CLOUD: OUTSOURCING COMPUTATION

    E-Print Network [OSTI]

    Zou, Cliff C.

    #12;CONTROLLING DATA IN THE CLOUD: OUTSOURCING COMPUTATION WITHOUT OUTSOURCING CONTROL Paper By Laboratories Of America 2009 ACM WORKSHOP ON CLOUD COMPUTING SECURITY (CCSW 2009) Presented By Talal Basaif CAP that will arise later · New directions to solve some issues #12;INTRODUCTION · Cloud computing is one of desirable

  17. Towards a Ubiquitous Cloud Computing Infrastructure

    E-Print Network [OSTI]

    van der Merwe, Kobus

    Towards a Ubiquitous Cloud Computing Infrastructure Jacobus Van der Merwe, K.K. Ramakrishnan of a number of cloud computing use cases. We specifically consider cloudbursting and follow-the-sun and focus that are also network service providers. I. INTRODUCTION Cloud computing is rapidly gaining acceptance

  18. Cloud Computing: Legal Issues in Centralized Architectures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Cloud Computing: Legal Issues in Centralized Architectures Primavera DE FILIPPI1 , Smari McCARTHY2, Reykjavik, 101, Iceland - Email: smari@gmail.com Abstract: Cloud computing can be defined as the provision they can access their data and the extent to which parties can exploit it. Keywords: Cloud Computing

  19. Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics

    SciTech Connect (OSTI)

    Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

    2013-10-01T23:59:59.000Z

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  20. FMCW radars for snow research Hans-Peter Marshall a,b,, Gary Koh a

    E-Print Network [OSTI]

    Marshall, Hans-Peter

    -available impulse radars are currently used operationally in Scandinavia's deep snow packs (e.g. Sand and Bruland

  1. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    SciTech Connect (OSTI)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01T23:59:59.000Z

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  2. Towards the azimuthal characteristics of ionospheric and seismic effects of "Chelyabinsk" meteorite fall according to the data from coherent radar, GPS and seismic networks

    E-Print Network [OSTI]

    Berngardt, O I; Kutelev, K A; Zherebtsov, G A; Dobrynina, A A; Shestakov, N V; Zagretdinov, R V; Bakhtiyarov, V F; Kusonsky, O A

    2015-01-01T23:59:59.000Z

    We present the results of a study of the azimuthal characteristics of ionospheric and seismic effects of the meteorite 'Chelyabinsk', based on the data from the network of GPS receivers, coherent decameter radar EKB SuperDARN and network of seismic stations. It is shown, that 6-14 minutes after the bolide explosion, GPS network observed the cone-shaped wavefront of TIDs that is interpreted as a ballistic acoustic wave. The typical TIDs propagation velocity were observed 661+/-256m/s, which corresponds to the expected acoustic wave speed for 240km height. 14 minutes after the bolide explosion, at distances of 200km we observed the emergence and propagation of a TID with spherical wavefront, that is interpreted as gravitational mode of internal acoustic waves. The propagation velocity of this TID was 337+/-89m/s which corresponds to the propagation velocity of these waves in similar situations. At EKB SuperDARN radar, we observed TIDs in the sector of azimuthal angles close to the perpendicular to the meteorite...

  3. Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    1 Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar Deanna A's Precipitation Radar (TRMM PR) show the vertical structure of tropical cyclone rainbands. Radar-echo statistics show that rainbands have a two-layered structure, with distinct modes separated by the melting layer

  4. Off-The-Grid X-band Weather Radar Network for the West

    E-Print Network [OSTI]

    Gilbes, Fernando

    and target. CayeyNWS radar Mayaguez The Problem #12;Puerto Rico Test Bed · Multi-level Research Team · Low · Relay Stations #12;Network Node · Weather Radar · Processing Computer · Wireless Link #12;X-Band Weather cost · Better Merging algorithms · More Radars.... #12;PR Test Bed Team #12;Questions · ??? #12;Live

  5. Radar Network Scanning Coordination Based on Ensemble Transform Kalman Filtering Variance

    E-Print Network [OSTI]

    White, Luther

    Radar Network Scanning Coordination Based on Ensemble Transform Kalman Filtering Variance an ensemble Kalman filter is used as a criterion with which to op- timize radar network scanning strategies, is a function of the retrieval scanning parameters. It is shown that the mapping from radar parameters

  6. ERAD 2008 -THE FIFTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGYAND HYDROLOGY 1. Introduction

    E-Print Network [OSTI]

    Haak, Hein

    , and the enhancement of the radar processing with capabilities found in modern radar equipment. In the European tender receivers and all data processing equipment in the radar sensor was replaced with modern equipment. The short pulse mode (0.8 microseconds) is used for PRFs up to 1200 Hz. To enhance reliability the thyratron

  7. A New Coherent Radar for Ice Sounding in Greenland A. Moussessian

    E-Print Network [OSTI]

    Kansas, University of

    A New Coherent Radar for Ice Sounding in Greenland A. Moussessian 1 , R.L. Jordan 1 , E. Rodriguez of this radar on board a P-3 aircraft took place in May of 1999 over Greenland with successful results blanking. The first deployment of this radar took place in May of 1999 in Greenland. During this deployment

  8. 2 1 APPLICATION GALLERY 1.1 Tracking ``Fuzzy'' Storms in Doppler Radar Images

    E-Print Network [OSTI]

    Barron, John

    and tornadoes. The Doppler radar generates intensity and radial velocity images, examples of which are shown Doppler radar radial and velocity image (a) (b) (c) (d) Figure 1.2: The storm tracks for the (a) 5 th , (b2 1 APPLICATION GALLERY 1.1 Tracking ``Fuzzy'' Storms in Doppler Radar Images J. L. Barron 1 , R. E

  9. Determining weather radar antenna pointing using signals detected from the sun at low antenna elevations

    E-Print Network [OSTI]

    Stoffelen, Ad

    Determining weather radar antenna pointing using signals detected from the sun at low antenna radiation of the sun for checking of the antenna alignment and of the sensitivity of the receiver chain is a well established method in weather radar maintenance, and radar manufacturers offer sun calibration

  10. Resultados obtidos com a utilizao de imagens de RADAR do satlite ALOS

    E-Print Network [OSTI]

    Resultados obtidos com a utilizaçăo de imagens de RADAR do satélite ALOS no combate ao desmatamento Documentos Indicativos de desmatamento com ALOS PALSAR #12;#12;INDICAR- Indicador de desmatamento por imagens de RADAR · Projeto desenvolvido pelo CSR/IBAMA · Utiliza imagens de RADAR do satélite Japonęs ALOS

  11. Influence of small scale rainfall variability on standard comparison tools between radar and rain gauge data

    E-Print Network [OSTI]

    in revised form 18 October 2013 Accepted 8 November 2013 Rain gauges and weather radars do not measure some usual practice. © 2013 Elsevier B.V. All rights reserved. Keywords: Radar­rain gauge comparison are tipping bucket rain gauges, disdrometers, weather radars and (passive or active) sensors onboard

  12. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    SciTech Connect (OSTI)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20T23:59:59.000Z

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  13. Cloud Seeding By: Julie Walter

    E-Print Network [OSTI]

    Toohey, Darin W.

    , smoke, that then are cooled because of the high altitudes. As the water or condensation nuclei cool more pushed up enough the warm air that is filled with moisture should reach an optimum cooling point-based Western Weather Consultants, whose company supplied Vail Resorts with the cloud seeding generators

  14. Cloud and Autonomic Computing Center

    E-Print Network [OSTI]

    Gelfond, Michael

    boundary layers and wind turbine aerodynamics Siva Parameswarn, Ph.D. Professor in the Department vehicles » Wake development behind wind turbines PHYSICS Ismael Regis de Farias Jr., Ph.D. Associate in cloud environments » Intelligent data management & understanding » Automated web service composition

  15. A radar study of the interaction between lightning and precipitation

    SciTech Connect (OSTI)

    Holden, D.N.; Ulbrich, C.W.

    1988-01-01T23:59:59.000Z

    A radar study was made of the interaction between lightning and precipitation with the 430 MHz Doppler radar at the Arecibo Observatory in Puerto Rico. On one occasion, the spectral power at Doppler velocities near that corresponding to the updraft increased substantially within a fraction of a second after a discharge was detected in the beam. Calculations were made to simulate the effect of an electric field change on mean Doppler velocity for a distribution of droplets in a thunderstorm. 13 refs., 4 figs.

  16. Astrophysics of Dust in Cold Clouds

    E-Print Network [OSTI]

    B. T. Draine

    2003-04-28T23:59:59.000Z

    Nine lectures reviewing the astrophysics of dust in interstellar clouds. Topics include: (1) Summary of observational evidence concerning interstellar dust: broadband extinction, scattering of starlight, polarization of starlight, spectroscopy of dust, IR and FIR emission, and depletions of grain-forming elements. (2) Optics of interstellar dust grains: dielectric functions of nonconducting and conducting materials, calculational techniques, formulae valid in the Rayleigh limit, Kramers-Kronig relations, microwave emission mechanisms, and X-ray scattering. (3) IR and FIR emission: heating of interstellar dust, including single-photon heating, and resulting IR emission spectrum. (4) Charging of dust grains: collisional charging, photoelectric emission, and resulting charge distribution functions. (5) Dynamics: gas drag, Lorentz force, forces due to anisotropic radiation, and resulting drift velocities. (6) Rotational dynamics: brownian rotation, suprathermal rotation, and effects of starlight torques. (7) Alignment of interstellar dust: observations and theories. (8) Evolution of the grain population: dust formation in outflows, grain growth in the ISM, photodesorption, and grain destruction in shock waves. (9) Effects of dust grains: photoelectric heating, H2 formation, ion recombination, coupling of gas to magnetic fields, and dust grains as indicators of magnetic field direction.

  17. Global cloud liquid water path simulations

    SciTech Connect (OSTI)

    Lemus, L. [Southern Hemisphere Meteorology, Clayton, Victoria (Australia)] [Southern Hemisphere Meteorology, Clayton, Victoria (Australia); Rikus, L. [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia)] [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia); Martin, C.; Platt, R. [CSIRO, Aspendale, Victoria (Australia)] [CSIRO, Aspendale, Victoria (Australia)

    1997-01-01T23:59:59.000Z

    A new parameterization of cloud liquid water and ice content has been included in the Bureau of Meteorology Global Assimilation and Prediction System. The cloud liquid water content is derived from the mean cloud temperatures in the model using an empirical relationship based on observations. The results from perpetual January and July simulations are presented and show that the total cloud water path steadily decreases toward high latitudes, with two relative maxima at midlatitudes and a peak at low latitudes. To validate the scheme, the simulated fields need to be processed to produce liquid water paths that can be directly compared with the corresponding field derived from Special Sensor Microwave/Imager (SSM/I) data. This requires the identification of cloud ice water content within the parameterization and a prescription to account for the treatment of strongly precipitating subgrid-scale cloud. The resultant cloud liquid water paths agree qualitatively with the SSM/I data but show some systematic errors that are attributed to corresponding errors in the model`s simulation of cloud amounts. Given that a more quantitative validation requires substantial improvement in the model`s diagnostic cloud scheme, the comparison with the SSM/I data indicates that the cloud water path, derived from the cloud liquid water content parameterization introduced in this paper, is consistent with the observations and can be usefully incorporated in the prediction system. 40 refs., 11 figs., 1 tab.

  18. Cloud speed impact on solar variability scaling â?? Application to the wavelet variability model

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan

    2013-01-01T23:59:59.000Z

    Kleissl, J. , 2013. Deriving cloud velocity from an array ofCloud Speed Impact on Solar Variability Scaling -this work, we determine from cloud speeds. Cloud simulator

  19. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-04-30T23:59:59.000Z

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.

  20. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.

  1. Assessment Of The Wind Farm Impact On The Radar

    E-Print Network [OSTI]

    Norman, Evgeny D

    2010-01-01T23:59:59.000Z

    This study shows the means to evaluate the wind farm impact on the radar. It proposes the set of tools, which can be used to realise this objective. The big part of report covers the study of complex pattern propagation factor as the critical issue of the Advanced Propagation Model (APM). Finally, the reader can find here the implementation of this algorithm - the real scenario in Inverness airport (the United Kingdom), where the ATC radar STAR 2000, developed by Thales Air Systems, operates in the presence of several wind farms. Basically, the project is based on terms of the department "Strategy Technology & Innovation", where it has been done. Also you can find here how the radar industry can act with the problem engendered by wind farms. The current strategies in this area are presented, such as a wind turbine production, improvements of air traffic handling procedures and the collaboration between developers of radars and wind turbines. The possible strategy for Thales as a main pioneer was given as ...

  2. Generating nonlinear FM chirp radar signals by multiple integrations

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM)

    2011-02-01T23:59:59.000Z

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  3. PAVEMENT OVERLAY THICKNESS EVALUATION USING GROUND PENTRATING RADAR (GPR)

    E-Print Network [OSTI]

    Shan, Jie

    PAVEMENT OVERLAY THICKNESS EVALUATION USING GROUND PENTRATING RADAR (GPR) Dwayne Harris, M.Sc., PG University, West Lafayette, IN 47907 jshan@ecn.purdue.edu ABSTRACT Accurate knowledge of pavement thickness is important information to have both at a network and project level. This information aids in pavement

  4. RADAR OBSERVATIONS OF COMET 103P/HARTLEY 2

    SciTech Connect (OSTI)

    Harmon, John K.; Nolan, Michael C.; Howell, Ellen S.; Taylor, Patrick A. [Arecibo Observatory, National Astronomy and Ionosphere Center, HC3 Box 53995, Arecibo, Puerto Rico 00612 (Puerto Rico); Giorgini, Jon D., E-mail: harmon@naic.edu [Jet Propulsion Laboratory, California Institute of Technology, MS 301-150, 4800 Oak Grove Dr., Pasadena, California 91109 (United States)

    2011-06-10T23:59:59.000Z

    Comets rarely come close enough to be studied intensively with Earth-based radar. The most recent such occurrence was when Comet 103P/Hartley 2 passed within 0.12 AU in late 2010 October, less than two weeks before the EPOXI flyby. This offered a unique opportunity to improve pre-encounter trajectory knowledge and obtain complementary physical data for a spacecraft-targeted comet. 103P/Hartley 2 is only the fourth comet nucleus to be imaged with radar and already the second to be identified as an elongated, bilobate object based on its delay-Doppler signature. The images show the dominant spin mode to be a rotation about the short axis with a period of 18.2 hr. The nucleus has a low radar albedo consistent with a surface density of 0.5-1.0 g cm{sup -3}. A separate echo component was detected from large (>cm) grains ejected anisotropically with velocities of several to tens of meters per second. Radar shows that, in terms of large-grain production, 103P/Hartley 2 is an unusually active comet for its size.

  5. Automated Target Recognition Using Passive Radar and Coordinated Flight Models

    E-Print Network [OSTI]

    Lanterman, Aaron

    of altitude and range. The Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, so Georgia Institute of Technology, Atlanta, GA 30332, USA ABSTRACT Rather than emitting pulses, passive system is in the transmitter, whereas designers of "hitchhiking" or "parasitic" radars have high

  6. The use of composite radar photographs in synoptic weather analysis

    E-Print Network [OSTI]

    Smith, G. D.

    1957-01-01T23:59:59.000Z

    of ursa. Velooity of line, figure K3 Xn addition t* th? foregoing infornacion, the bases and tope of leyscs end tops of convective echoes oan be ruporced. With certain radar installations, end under certain conditions, tha height of thu freeaing...

  7. Synthetic Aperture Radar Imaging with Motion Estimation and Liliana Borcea

    E-Print Network [OSTI]

    Papanicolaou, George C.

    Callaghan George Papanicolaou Abstract We introduce from first principles a synthetic aperture radar (SAR calibrated small apertures, (b) preliminary motion estimation from the data using the Wigner transform-band persistent surveillance SAR is a specific application that is covered by our analysis. Detailed numerical

  8. Synthetic aperture radar and interferometry development at Sandia National Laboratories

    SciTech Connect (OSTI)

    NONE

    1993-04-01T23:59:59.000Z

    Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

  9. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    E-Print Network [OSTI]

    Klein, Stephen A.

    2009-01-01T23:59:59.000Z

    cloud has the correct effect on surface fluxes of radiation.radiation is 200 W m –2 in clear-sky STREAMER calculations, the longwave cloud radiative effect

  10. Determinating Timing Channels in Statistically Multiplexed Clouds

    E-Print Network [OSTI]

    Aviram, Amittai; Ford, Bryan; Gummadi, Ramakrishna

    2010-01-01T23:59:59.000Z

    Timing side-channels represent an insidious security challenge for cloud computing, because: (a) they enable one customer to steal information from another without leaving a trail or raising alarms; (b) only the cloud provider can feasibly detect and report such attacks, but the provider's incentives are not to; and (c) known general-purpose timing channel control methods undermine statistical resource sharing efficiency, and, with it, the cloud computing business model. We propose a new cloud architecture that uses provider-enforced deterministic execution to eliminate all timing channels internal to a shared cloud domain, without limiting internal resource sharing. A prototype determinism-enforcing hypervisor demonstrates that utilizing such a cloud might be both convenient and efficient. The hypervisor enables parallel guest processes and threads to interact via familiar shared memory and file system abstractions, and runs moderately coarse-grained parallel tasks as efficiently and scalably as current nond...

  11. Coda wave interferometry 1 Coda wave interferometry

    E-Print Network [OSTI]

    Snieder, Roel

    Coda wave interferometry 1 Coda wave interferometry An interferometer is an instrument that is sensitive to the interference of two or more waves (optical or acoustic). For example, an optical interferometer uses two interfering light beams to measure small length changes. Coda wave interferometry

  12. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    SciTech Connect (OSTI)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01T23:59:59.000Z

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  13. Highly Resolved Self-Excited Density Waves in a Complex Plasma

    SciTech Connect (OSTI)

    Schwabe, M.; Rubin-Zuzic, M.; Zhdanov, S.; Thomas, H. M.; Morfill, G. E. [Max-Planck-Institut fuer extraterrestrische Physik, D-85740 Garching (Germany)

    2007-08-31T23:59:59.000Z

    Experimental results on self-excited density waves in a complex plasma are presented. An argon plasma is produced in a capacitively coupled rf discharge at a low power and gas pressure. A cloud of microparticles is subjected to effective gravity in the range of 1-4 g by thermophoresis. The cloud is stretched horizontally (width/height {approx_equal}45 mm/8 mm). The critical pressure for the onset of the waves increases with the temperature gradient. The waves are propagating in the direction of the ion drift. The wave frequency, phase velocity, and wavelength are measured, and particle migrations affected by the waves are analyzed at a time scale of 1 ms/frame and a subpixel space resolution.

  14. Crushing of interstellar gas clouds in supernova remnants II. X-ray emission

    E-Print Network [OSTI]

    S. Orlando; F. Bocchino; G. Peres; F. Reale; T. Plewa; R. Rosner

    2006-07-12T23:59:59.000Z

    AIMS. We study and discuss the time-dependent X-ray emission predicted by hydrodynamic modeling of the interaction of a SNR shock wave with an interstellar gas cloud. The scope includes: 1) to study the correspondence between modeled and X-ray emitting structures, 2) to explore two different physical regimes in which either thermal conduction or radiative cooling plays a dominant role, and 3) to investigate the effects of the physical processes at work on the emission of the shocked cloud in the two different regimes. METHODS. We use a detailed hydrodynamic model, including thermal conduction and radiation, and explore two cases characterized by different Mach numbers of the primary shock: M = 30 in which the cloud dynamics is dominated by radiative cooling and M = 50 dominated by thermal conduction. From the simulations, we synthesize the expected X-ray emission, using available spectral codes. RESULTS. The morphology of the X-ray emitting structures is significantly different from that of the flow structures originating from the shock-cloud interaction. The hydrodynamic instabilities are never clearly visible in the X-ray band. Shocked clouds are preferentially visible during the early phases of their evolution. Thermal conduction and radiative cooling lead to two different phases of the shocked cloud: a cold cooling dominated core emitting at low energies and a hot thermally conducting corona emitting in the X-ray band. The thermal conduction makes the X-ray image of the cloud smaller, more diffuse, and shorter-lived than that observed when thermal conduction is neglected.

  15. In Proceedings of APSEC 2010 Cloud Workshop, Sydney, Australia, 30th An Analysis of The Cloud Computing Security Problem

    E-Print Network [OSTI]

    Grundy, John

    of The Cloud Computing Security Problem Mohamed Al Morsy, John Grundy and Ingo Müller Computer Science to adopt IT without upfront investment. Despite the potential gains achieved from the cloud computing solution. Keywords: cloud computing; cloud computing security; cloud computing security management. I

  16. April 12, 2014: The Era of Cloud Computing is coming Headline: The Era of Cloud Computing is coming

    E-Print Network [OSTI]

    Buyya, Rajkumar

    April 12, 2014: The Era of Cloud Computing is coming #12;Headline: The Era of Cloud Computing of Cloud Computing at a seminar in MANIT and RGPV on Saturday. Inset headline: This is the right time to build a career in Cloud Computing Article: Prof. Rajkumar Buyya gave guidance to students about Cloud

  17. After the definition of Cloud Computing ... What has NIST done in the Cloud space lately? What's next?

    E-Print Network [OSTI]

    After the definition of Cloud Computing ... What has NIST done in the Cloud space lately? What Publication SP 500-292: Cloud Computing Reference Architecture. This document takes the NIST definition of Cloud Computing a step further by expanding the definition into a logical representation of the cloud

  18. Generated using version 3.0 of the official AMS LATEX template Computing and Partitioning Cloud Feedbacks using Cloud1

    E-Print Network [OSTI]

    Hartmann, Dennis

    by adjusting the change in cloud radiative forcing for non-cloud22 related effects as in Soden et al. (2008 planet, the global and annual mean effect40 of clouds at the top of atmosphere (TOA) is to increase Feedbacks using Cloud1 Property Histograms.2 Part I: Cloud Radiative Kernels3 Mark D. Zelinka Department

  19. Influence of Cloud-Top Height and Geometric Thickness on a MODIS Infrared-Based Ice Cloud Retrieval

    E-Print Network [OSTI]

    Baum, Bryan A.

    of the net cloud radiative forc- ing of these clouds requires a global, diurnal climatology, which can most and temporal scales. In this study, the sensitivity of an infrared-based ice cloud retrieval to effective cloud temperature is investigated, with a focus on the effects of cloud-top height and geometric thickness

  20. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719 (United States); Rodriguez, Sebastien [Laboratoire AIM, Universite Paris 7/CNRS/CEA-Saclay, DSM/IRFU/SAp (France); Le Mouelic, Stephane [Laboratoire de Planetologie et Geodynamique, CNRS, UMR-6112, Universite de Nantes, 44000 Nantes (France); Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Clark, Roger [U.S. Geological Survey, Denver, CO 80225 (United States); Nicholson, Phil [Department of Astronomy, Cornell University, Ithaca, NY (United States); Jaumann, Ralf [Institute of Planetary Exploration, Deutsche Zentrum, fuer Luft- und Raumfahrt (Germany)

    2009-09-10T23:59:59.000Z

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  1. Interstellar Turbulence, Cloud Formation and Pressure Balance

    E-Print Network [OSTI]

    Enrique Vazquez-Semadeni

    1998-10-23T23:59:59.000Z

    We discuss HD and MHD compressible turbulence as a cloud-forming and cloud-structuring mechanism in the ISM. Results from a numerical model of the turbulent ISM at large scales suggest that the phase-like appearance of the medium, the typical values of the densities and magnetic field strengths in the intercloud medium, as well as Larson's velocity dispersion-size scaling relation in clouds may be understood as consequences of the interstellar turbulence. However, the density-size relation appears to only hold for the densest simulated clouds, there existing a large population of small, low-density clouds, which, on the other hand, are hardest to observe. We then discuss several tests and implications of a fully dynamical picture of interstellar clouds. The results imply that clouds are transient, constantly being formed, distorted and disrupted by the turbulent velocity field, with a fraction of these fluctuations undergoing gravitational collapse. Simulated line profiles and estimated cloud lifetimes are consistent with observational data. In this scenario, we suggest it is quite unlikely that quasi-hydrostatic structures on any scale can form, and that the near pressure balance between clouds and the intercloud medium is an incidental consequence of the density field driven by the turbulence and in the presence of appropriate cooling, rather than a driving or confining mechanism.

  2. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during

    E-Print Network [OSTI]

    Zuidema, Paquita

    /crystal concentration also suggests the need for improved understanding of ice nucleation and its parameterizationIntercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud

  3. Dark Clouds on the Horizon: Using Cloud Storage as Attack Vector and Online Slack Space

    E-Print Network [OSTI]

    Dark Clouds on the Horizon: Using Cloud Storage as Attack Vector and Online Slack Space Martin this as online slack space. We conclude by discussing security improvements for mod- ern online storage services protocol. With the advent of cloud computing and the shared usage of resources, these centralized storage

  4. To Cloud or Not to Cloud: A Mobile Device Perspective on Energy Consumption of Applications

    E-Print Network [OSTI]

    Namboodiri, Vinod

    To Cloud or Not to Cloud: A Mobile Device Perspective on Energy Consumption of Applications Vinod important criteria might be the energy consumed by the applications they run. The goal of this work is to characterize under what scenarios cloud-based applications would be relatively more energy-efficient for users

  5. Aircraft Microphysical Documentation from Cloud Base to Anvils of Hailstorm Feeder Clouds in Argentina

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    in Argentina DANIEL ROSENFELD The Hebrew University of Jerusalem, Jerusalem, Israel WILLIAM L. WOODLEY Woodley, Argentina, with a cloud-physics jet aircraft penetrating the major feeder clouds from cloud base to the 45°C. Introduction The province of Mendoza in western Argentina (32°S, 68°W), which is known worldwide for its wine

  6. Investigating the Radiative Impact Clouds Using Retrieved Properties to Classify Cloud Type

    E-Print Network [OSTI]

    Hogan, Robin

    of Reading, RG6 6AL, UK Abstract. Active remote sensing allows cloud properties such as ice and liquid water remote sensing, Cloud categorization, Cloud properties, Radiative impact. PACS: 92.60. Vb. INTRODUCTION in a radiation scheme which can simulate the radiation budget and heating rates throughout the atmospheric

  7. The Design of a Community Science Cloud: The Open Science Data Cloud Perspective

    E-Print Network [OSTI]

    Grossman, Robert

    The Design of a Community Science Cloud: The Open Science Data Cloud Perspective Robert L. Grossman, Matthew Greenway, Allison P. Heath, Ray Powell, Rafael D. Suarez, Walt Wells, and Kevin White University Abstract--In this paper we describe the design, and implemen- tation of the Open Science Data Cloud

  8. From Grid to private Clouds, to interClouds. Project Team

    E-Print Network [OSTI]

    Vialle, Stéphane

    24/10/2011 1 From Grid to private Clouds, to interClouds. AlGorille Project Team An overviewGorille INRIA Project Team October 21, 2011 I Premise of Grid ComputingI Premise of Grid Computing... From Grid to private Clouds, to inter

  9. LETTER The incidence and implications of clouds for cloud forest plant water relations

    E-Print Network [OSTI]

    Goldsmith, Greg

    , the montane forest experienced higher precipi- tation, cloud cover and leaf wetting events of longer duration for an improved understanding of clouds and their effects on cloud forest plant functioning. As summarised below (VPD) and photosynthetically active radiation. In turn, this decreases plant water demand. The suppres

  10. Variations in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 19542008

    E-Print Network [OSTI]

    Hochberg, Michael

    ). MSC therefore have a cooling ef- fect on climate [negative cloud radiative effect (CRE)]. Randall et in climate, affecting both radiation fluxes and latent heat fluxes, but the various cloud types affect marine. By contrast, high (cirriform) clouds are thinner and colder, so their longwave effect dominates, giving them

  11. A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS CLOUDS

    E-Print Network [OSTI]

    Hogan, Robin

    A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS, Berkshire, United Kingdom 1 INTRODUCTION The importance of ice clouds on the earth's radiation budget for quantifying this effect, and several such models exist for boundary layer clouds, such as those of Cahalan et

  12. Methods And System Suppressing Clutter In A Gain-Block, Radar-Responsive Tag System

    DOE Patents [OSTI]

    Ormesher, Richard C. (Albuquerque, NM); Axline, Robert M. (Albuquerque, NM)

    2006-04-18T23:59:59.000Z

    Methods and systems reduce clutter interference in a radar-responsive tag system. A radar transmits a series of linear-frequency-modulated pulses and receives echo pulses from nearby terrain and from radar-responsive tags that may be in the imaged scene. Tags in the vicinity of the radar are activated by the radar's pulses. The tags receive and remodulate the radar pulses. Tag processing reverses the direction, in time, of the received waveform's linear frequency modulation. The tag retransmits the remodulated pulses. The radar uses a reversed-chirp de-ramp pulse to process the tag's echo. The invention applies to radar systems compatible with coherent gain-block tags. The invention provides a marked reduction in the strength of residual clutter echoes on each and every echo pulse received by the radar. SAR receiver processing effectively whitens passive-clutter signatures across the range dimension. Clutter suppression of approximately 14 dB is achievable for a typical radar system.

  13. Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management »EnergyHubs | DepartmentCloud Spatial

  14. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    SciTech Connect (OSTI)

    Wang, Zhixun; Cheng, Yongzhi, E-mail: cyz0715@126.com; Nie, Yan; Wang, Xian; Gong, Rongzhou, E-mail: rzhgong@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-07T23:59:59.000Z

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797??m, 0.592??m, 1.480??m, and 2.114??m, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5??m and 8–14??m and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5??m and 8–12??m, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band.

  15. Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage #12;2StorSimple White Pages: Shoring Up Infrastructure Weaknesses with Hybrid Cloud Storage Table of Contents The Hybrid Cloud Context for IT Managers ............................................................. 3 The Bottleneck of Managing Storage

  16. Satellite Remote Sensing of Mid-level Clouds

    E-Print Network [OSTI]

    Jin, Hongchun 1980-

    2012-11-07T23:59:59.000Z

    algorithm is evaluated using the CALIPSO cloud phase products for single-layer, heterogeneous, and multi-layer scenes. The AIRS phase algorithm has excellent performance (>90%) in detecting ice clouds compared to the CALIPSO ice clouds. It is capable...

  17. A cloud-assisted design for autonomous driving

    E-Print Network [OSTI]

    Suresh Kumar, Swarun

    This paper presents Carcel, a cloud-assisted system for autonomous driving. Carcel enables the cloud to have access to sensor data from autonomous vehicles as well as the roadside infrastructure. The cloud assists autonomous ...

  18. Aneka Cloud Application Platform and Its Integration with Windows Azure

    E-Print Network [OSTI]

    Melbourne, University of

    scheduling, and energy efficient resource utilization. The Aneka Cloud Application platform, together. Ltd., Melbourne, Victoria, Australia 2 Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Australia Abstract

  19. Fair-weather clouds hold dirty secret | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fair-weather clouds hold dirty secret Fair-weather clouds hold dirty secret Released: May 05, 2013 New study reveals particles that seed small-scale clouds over Oklahoma Air...

  20. E-Cloud Build-up in Grooved Chambers

    E-Print Network [OSTI]

    Venturini, Marco

    2007-01-01T23:59:59.000Z

    and F. Zimmermann, ”LC e-Cloud Activities at CERN”, talkal. , Simulations of the Electron Cloud for Vari- ous Con?E-CLOUD BUILD-UP IN GROOVED CHAMBERS ? M. Venturini † LBNL,

  1. Building Dynamic Computing Infrastructures over Distributed Clouds Pierre Riteau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Building Dynamic Computing Infrastructures over Distributed Clouds Pierre Riteau University--The emergence of cloud computing infrastructures brings new ways to build and manage computing systems objectives. First, leveraging virtualization and cloud computing infrastruc- tures to build distributed large

  2. Modelling Cloud Computing Infrastructure Marianne Hickey and Maher Rahmouni,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modelling Cloud Computing Infrastructure Marianne Hickey and Maher Rahmouni, HP Labs, Long Down, and shared vocabularies. Keywords: Modelling, Cloud Computing, RDF, Ontology, Rules, Validation 1 Introduction There is currently a shift towards cloud computing, which changes the model of provision

  3. Consistent cloud computing storage as the basis for distributed applications

    E-Print Network [OSTI]

    Anderson, James William

    2011-01-01T23:59:59.000Z

    Messaging in Cloud Computing . . . . . . . . . .7 1.4Eucalyptus Open—Source Cloud—Computing System. In C'C&#http://www.eweek.com/c/a/Cloud-Computing/Amazons—Head—Start—

  4. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect (OSTI)

    SCHWARTZ, S.E.

    2005-09-01T23:59:59.000Z

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  5. The Giant Molecular Cloud Environments of Infrared Dark Clouds

    E-Print Network [OSTI]

    Hernandez, Audra K

    2015-01-01T23:59:59.000Z

    We study the GMC environments surrounding 10 IRDCs, based on 13CO molecular line emission from the Galactic Ring Survey. Using a range of physical scales, we measure the physical properties of the IRDCs and their surrounding molecular material extending out to radii, R, of 30pc. By comparing different methods for defining cloud boundaries and for deriving mass surface densities, Sigma, and velocity dispersions, sigma, we settled on a preferred "CE,tau,G" method of "Connected Extraction" in position-velocity space along with Gaussian fitting to opacity-corrected line profiles for velocity dispersion and mass estimation. We examine how cloud definition affects measurements of the magnitude and direction of line of sight velocity gradients and velocity dispersions, including the associated dependencies on size scale. CE,tau,G-defined IRDCs and GMCs show velocity gradient versus size relations that scale approximately as dv_0/ds~s^(-1/2) and velocity dispersion versus size relations sigma~s^(1/2), which are consi...

  6. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30T23:59:59.000Z

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  7. ARM - Lesson Plans: Making Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska OutreachMaking Clouds Outreach Home

  8. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCaptureCloud Computing Services

  9. Feasibility of a borehole VHF radar technique for fracture mapping

    SciTech Connect (OSTI)

    Chang, H.T.

    1984-01-01T23:59:59.000Z

    Experiments were conducted to establish the feasibility of a downhole high-frequency electromagnetic technique for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver operated at 30 to 300 MHz was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole VHF radar for use in a single borehole for detection of fractures located away from the borehole.

  10. Saturated hydraulic conductivity determined by on ground mono-offset Ground-Penetrating Radar inside a single ring infiltrometer

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01T23:59:59.000Z

    In this study we show how to use GPR data acquired along the infiltration of water inside a single ring infiltrometer to inverse the saturated hydraulic conductivity. We used Hydrus-1D to simulate the water infiltration. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity, knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the 1D time convolution between reflectivity and GPR signal at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relation ship to invert the saturated hydraulic conductivity for constant and fallin...

  11. Forensic Application of FM-CW and Pulse Radar

    SciTech Connect (OSTI)

    S. K. Koppenjan; R. S. Freeland; M. L. Miller; R. E. Yoder

    2003-01-01T23:59:59.000Z

    Ground-penetrating radar (GPR) technology has supplied vital assistance in criminal investigations. However, law enforcement personnel desire further developments such that the technology is rapidly deployable, and that it provides both a simple user interface and sophisticated target identification. To assist in the development of target identification algorithms, our efforts involve gathering background GPR data for the various site conditions and circumstances that often typify clandestine burials. For this study, forensic anthropologists established shallow-grave plots at The University of Tennessee Anthropological Research Facility (ARF) that are specific to GPR research. These plots contain donated human cadavers lying in various configurations and depths, surrounded by assorted construction material and backfill debris. We scanned the plots using two GPR technologies: (1) a multi-frequency synthetic-aperture FM-CW radar (200-700 MHz) (GPR-X) developed by the U.S. Department of Energy's (DOE) Special Technologies Laboratory (STL), Bechtel Nevada (Koppenjan et al., 2000), and (2) a commercial pulse radar (SIR-20) manufactured by Geophysical Survey Systems, Inc. (400 and 900 MHz)(GSSI). The sweep-frequency data show the large biological mass decomposing within the torso as encircled ''hot spots.'' The 400-MHz pulse radar exhibit major horizontal reflectors above the body, with shadow reflectors (horizontal multiples) occurring beneath the body at 60 cm depth. The 400-MHz antenna was able to discern the grave walls and folded tarp covering the lower body. Under these moist, clay-rich conditions, the 900-MHz antenna was able to penetrate slightly beyond 30 cm beneath the concrete layer. However, neither system was able to penetrate beyond a one meter depth in the moist, clay-rich soil (fine, mixed, thermic Typic Paleudalf). Example scans from each system are provided, along with a discussion of the survey protocol and general performance.

  12. Radar antenna pointing for optimized signal to noise ratio.

    SciTech Connect (OSTI)

    Doerry, Armin Walter; Marquette, Brandeis [General Atomics Aeronautical Systems, Inc., San Diego, CA

    2013-01-01T23:59:59.000Z

    The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.

  13. A Millimeter-Wave Radar Microfabrication Technique and Its Application in Detection of

    E-Print Network [OSTI]

    Sarabandi, Kamal

    , Greg Allion, Brian VanDerElzen, Matt Oonk, David Yates, Russ Clifford, Robert Hower, Sanrine Matrin

  14. Radar Observations of MJO and Kelvin Wave Interactions During DYNAMO/AMIE/CINDY2011

    E-Print Network [OSTI]

    DePasquale, Amanda Michele

    2013-07-05T23:59:59.000Z

    The Madden-Julian Oscillation (MJO), a tropical phenomenon that exists on the time scale of 30-90 days, commonly initiates over the Indian Ocean and slowly propagates into the western Pacific as a series of convective events, which have time scales...

  15. Solar control of radar wave absorption by the Martian ionosphere D. D. Morgan,1

    E-Print Network [OSTI]

    California at Berkeley, University of

    ionosphere, fails to detect the planetary surface. We have generated a statistical measure of the surface reflection visibility, which we plot as a time series and compare with both in situ particle data taken that are observed and that impede the use of the subsurface sounder. [4] Luckily, an analogous case of absorption

  16. Cloud a particle beam facility to investigate the influence of cosmic rays on clouds

    E-Print Network [OSTI]

    Kirkby, Jasper

    2001-01-01T23:59:59.000Z

    Palaeoclimatic data provide extensive evidence for solar forcing of the climate during the Holocene and the last ice age, but the underlying mechanism remains a mystery. However recent observations suggest that cosmic rays may play a key role. Satellite data have revealed a surprising correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds \\cite{svensmark97,marsh}. Since the cosmic ray intensity is modulated by the solar wind, this may be an important clue to the long-sought mechanism for solar-climate variability. In order to test whether cosmic rays and clouds are causally linked and, if so, to understand the microphysical mechanisms, a novel experiment known as CLOUD\\footnotemark\\ has been proposed \\cite{cloud_proposal}--\\cite{cloud_addendum_2}. CLOUD proposes to investigate ion-aerosol-cloud microphysics under controlled laboratory conditions using a beam from a particle accelerator, which provides a precisely adjustable and measurable artificial source of cosmic rays....

  17. CloneCloud: Boosting Mobile Device Applications Through Cloud Clone Execution

    E-Print Network [OSTI]

    Chun, Byung-Gon; Maniatis, Petros; Naik, Mayur

    2010-01-01T23:59:59.000Z

    Mobile applications are becoming increasingly ubiquitous and provide ever richer functionality on mobile devices. At the same time, such devices often enjoy strong connectivity with more powerful machines ranging from laptops and desktops to commercial clouds. This paper presents the design and implementation of CloneCloud, a system that automatically transforms mobile applications to benefit from the cloud. The system is a flexible application partitioner and execution runtime that enables unmodified mobile applications running in an application-level virtual machine to seamlessly off-load part of their execution from mobile devices onto device clones operating in a computational cloud. CloneCloud uses a combination of static analysis and dynamic profiling to optimally and automatically partition an application so that it migrates, executes in the cloud, and re-integrates computation in a fine-grained manner that makes efficient use of resources. Our evaluation shows that CloneCloud can achieve up to 21.2x s...

  18. Public Cloud B CarbonEmission

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Sensors, Demand Prediction Power Capping, Green Software Services such as energy-efficient scientific) Request a Cloud service 4) Allocate service 5) Request service allocation 3) Request energy efficiency information Green Offer Directory 2) Request any `Green Offer' Routers Internet Green Broker #12;Cloud

  19. The CloudNets Network Virtualization Architecture

    E-Print Network [OSTI]

    Schmid, Stefan

    Nets Network Virtualization Architecture Johannes Grassler jgrassler@inet.tu-berlin.de 05. Februar, 2014 Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12

  20. Verifiable Resource Accounting for Cloud Computing Services

    E-Print Network [OSTI]

    Maniatis, Petros

    Verifiable Resource Accounting for Cloud Computing Services Vyas Sekar Intel Labs Petros Maniatis Intel Labs ABSTRACT Cloud computing offers users the potential to reduce operating and capital expenses cause providers to incorrectly attribute resource consumption to customers or im- plicitly bear

  1. Compression of Antiproton Clouds for Antihydrogen Trapping

    E-Print Network [OSTI]

    G. B. Andresen; W. Bertsche; P. D. Bowe; C. C. Bray; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; J. Fajans; M. C. Fujiwara; R. Funakoshi; D. R. Gill; J. S. Hangst; W. N. Hardy; R. S. Hayano; M. E. Hayden; R. Hydomako; M. J. Jenkins; L. V. Jorgensen; L. Kurchaninov; R. Lambo; N. Madsen; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; S. Seif El Nasr; D. M. Silveira; J. W. Storey; R. I. Thompson; D. P. van der Werf; J. S. Wurtele; Y. Yamazaki

    2008-06-30T23:59:59.000Z

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  2. CLOUD COMPUTING INFRASTRUCTURE AND OPERATIONS PROGRAM

    E-Print Network [OSTI]

    Schaefer, Marcus

    theory and best practices, Cloud operations analytics, globally-responsive architecture, functional of Cloud infrastructures Best practices for building Infrastructure as a Service (IaaS), with an emphasis-distributed, responsive web application capable of massive scale with operational performance metrics. DePaul University

  3. Privacy in the Cloud Computing Era

    E-Print Network [OSTI]

    Narasayya, Vivek

    Privacy in the Cloud Computing Era A Microsoft Perspective November 2009 #12;The information information presented after the date of publication. This white paper is for informational purposes only. Microsoft Corp. · One Microsoft Way · Redmond, WA 98052-6399 · USA #12;Contents Cloud Computing and Privacy

  4. Digital meteorological radar data compared with digital infrared data from a geostationary meteorological satellite

    E-Print Network [OSTI]

    Henderson, Rodney Stuart

    1979-01-01T23:59:59.000Z

    OF CONTENTS Page ABSTRACT. ACKNOWLEDGMENTS. DEDICATION . iv vi TABLE OF CONTENTS . vii LIST OF TABLES. IX LIST OF FIGURES . LIST OF ACRONYMS CHAPTER xii I. INTRODUCTION 1. The Need for This Investigation 2. Present Status of Research Relating... to This Investigation 3. Objectives of the Investigation 4. Techniques and Scope of the Investigation. II. METEOROLOGICAL RADAR DATA . 10 1. Basic Radar Theory . 2. Earth Curvature Correction . 3. The TAMU Weather Radar System. 4. Data Reduction and Display 10...

  5. Cloud-integrated Storage What & Why 2StoreSimple White Pages: Shoring Up Infrastructure Weaknesses with Cloud Storage

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Cloud-integrated Storage ­ What & Why #12;2StoreSimple White Pages: Shoring Up Infrastructure Weaknesses with Cloud Storage Overview..........................................................................................................3 Enterprise-class storage platform

  6. Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOE NationalCommitteeof3

  7. Improving ISR Radar Utilization (How I quit blaming the user and made the radar easier to use).

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2014-08-01T23:59:59.000Z

    In modern multi - sensor multi - mode Intelligence, Surveillance, and Reconnaissance ( ISR ) platforms, the plethora of options available to a sensor/payload operator are quite large, leading to an over - worked operator often down - selecting to favorite sensors an d modes. For example, Full Motion Video (FMV) is justifiably a favorite sensor at the expense of radar modes, even if radar modes can offer unique and advantageous information. The challenge is then to increase the utilization of the radar modes in a man ner attractive to the sensor/payload operator. We propose that this is best accomplished by combining sensor modes and displays into 'super - modes'. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia Natio nal Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL850 00.

  8. Geometrical vs wave optics under gravitational waves

    E-Print Network [OSTI]

    Raymond Angélil; Prasenjit Saha

    2015-05-20T23:59:59.000Z

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics - rather than solving Maxwell's equations directly for the fields, as in most previous approaches - we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.

  9. Stratus Cloud Structure from MM-Radar Transects and Satellite Images: Scaling Properties and Artifact Detection with Semi-...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochasticPlanHigh-Level RadioactiveStructure

  10. Engineering fast and stable splitting of matter waves

    E-Print Network [OSTI]

    E. Torrontegui; S. Martínez-Garaot; M. Modugno; Xi Chen; J. G. Muga

    2012-07-13T23:59:59.000Z

    When attempting to split coherent cold atom clouds or a Bose-Einstein condensate (BEC) by bifurcation of the trap into a double well, slow adiabatic following is unstable with respect to any slight asymmetry, and the wave "collapses" to the lower well, whereas a generic fast chopping splits the wave but it also excites it. Shortcuts to adiabaticity engineered to speed up the adiabatic process through non-adiabatic transients, provide instead quiet and robust fast splitting. The non-linearity of the BEC makes the proposed shortcut even more stable.

  11. Magnetic Fields in Molecular Cloud Cores

    E-Print Network [OSTI]

    Shantanu Basu

    2004-10-22T23:59:59.000Z

    Observations of magnetic field strengths imply that molecular cloud fragments are individually close to being in a magnetically critical state, even though both magnetic field and column density measurements range over two orders of magnitude. The turbulent pressure also approximately balances the self-gravitational pressure. These results together mean that the one-dimensional velocity dispersion $\\sigv$ is proportional to the mean \\Alf speed of a cloud $\\va$. Global models of MHD turbulence in a molecular cloud show that this correlation is naturally satisfied for a range of different driving strengths of the turbulence. For example, an increase of turbulent driving causes a cloud expansion which also increases $\\va$. Clouds are in a time averaged balance but exhibit large oscillatory motions, particularly in their outer rarefied regions. We also discuss models of gravitational fragmentation in a sheet-like region in which turbulence has already dissipated, including the effects of magnetic fields and ion-neutral friction. Clouds with near-critical mass-to-flux ratios lead to subsonic infall within cores, consistent with some recent observations of motions in starless cores. Conversely, significantly supercritical clouds are expected to produce extended supersonic infall.

  12. Clouds and the Faint Young Sun Paradox

    E-Print Network [OSTI]

    Goldblatt, Colin

    2011-01-01T23:59:59.000Z

    We investigate the role which clouds could play in resolving the Faint Young Sun Paradox (FYSP). Lower solar luminosity in the past means that less energy was absorbed on Earth (a forcing of -50 Wm-2 during the late Archean), but geological evidence points to the Earth being at least as warm as it is today, with only very occasional glaciations. We perform radiative calculations on a single global mean atmospheric column. We select a nominal set of three layered, randomly overlapping clouds, which are both consistent with observed cloud climatologies and reproduce the observed global mean energy budget of Earth. By varying the fraction, thickness, height and particle size of these clouds we conduct a wide exploration of how changed clouds could affect climate, thus constraining how clouds could contribute to resolving the FYSP. Low clouds reflect sunlight but have little greenhouse effect. Removing them entirely gives a~forcing of +25 Wm-2 whilst more modest reduction in their efficacy gives a forcing of +10 ...

  13. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  14. Securely Managing Cryptographic Keys used within a Cloud Environment

    E-Print Network [OSTI]

    , Co-tenancy, Distributed Management Cryptography essential to secure cloud operations Use of sound;Page 3 Cloud Service Provider (CSP) - Models Cloud Service Models Software as a Service (Saa CSP know who I am? How is my connection to cloud components protected? Administration Who

  15. Proximity Graphs for Defining Surfaces over Point Clouds

    E-Print Network [OSTI]

    Behnke, Sven

    over Point Clouds Gabriel Zachmann University of Bonn Germany Jan Klein University of Paderborn Germany

  16. The aerosol direct radiative effect (DRE) over clouds is quantified using measured reflectance spectra of UV-absorbing aerosol polluted cloud scenes and modeled reflectance spectra of unpolluted cloud scenes. The cloud reflectance spectra are read from

    E-Print Network [OSTI]

    Graaf, Martin de

    distribution of clouds and aerosols along the white CALIPSO track in Fig.1b is shown in Fig. 2. The distanceThe aerosol direct radiative effect (DRE) over clouds is quantified using measured reflectance spectra of UV-absorbing aerosol polluted cloud scenes and modeled reflectance spectra of unpolluted cloud

  17. CLOUD PHYSICS From aerosol-limited to invigoration

    E-Print Network [OSTI]

    Napp, Nils

    CLOUD PHYSICS From aerosol-limited to invigoration of warm convective clouds Ilan Koren,1 * Guy Dagan,1 Orit Altaratz1 Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base

  18. Fault-Tolerant and Reliable Computation in Cloud Computing

    E-Print Network [OSTI]

    Deng, Jing

    Fault-Tolerant and Reliable Computation in Cloud Computing Jing Deng Scott C.-H. Huang Yunghsiang S, Taipei, 106 Taiwan. § Intelligent Automation, Inc., Rockville, MD, USA. Abstract-- Cloud computing of scientific computation in cloud computing. We investigate a cloud selection strategy to decompose the matrix

  19. How Mobility Increases Mobile Cloud Computing Processing Capacity

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    How Mobility Increases Mobile Cloud Computing Processing Capacity Anh-Dung Nguyen, Patrick S--In this paper, we address a important and still unanswered question in mobile cloud computing "how mobility the resilience of mobile cloud computing services. Keywords--Mobile cloud computing, mobility, quality of service

  20. IBM Tivoli Cloud Computing: Technical Enablement for IBM Business Partners

    E-Print Network [OSTI]

    IBM Tivoli Cloud Computing: Technical Enablement for IBM Business Partners Cloud computing is a key part of driving greater alignment between business and IT. IBM Service Management and Cloud Computing to the IBM technical community. IBM Cloud Computing Business Partner Technical Enablement Offering

  1. Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol

    E-Print Network [OSTI]

    Collins, Gary S.

    Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol Rachel L. Atlas1' gas-phase emissions and the aerosols they form (figure 6), including a cloud condensation nuclei Cloud condensation nuclei (CCN) are particles which water vapor condenses onto to form cloud droplets

  2. Water Waves Roger Grimshaw

    E-Print Network [OSTI]

    ,2) provide a kinematic description of water waves, which to this point means that the conditionsWater Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves

  3. LONG-LIVED MAGNETIC-TENSION-DRIVEN MODES IN A MOLECULAR CLOUD

    SciTech Connect (OSTI)

    Basu, Shantanu; Dapp, Wolf B., E-mail: basu@uwo.c, E-mail: wdapp@uwo.c [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2010-06-10T23:59:59.000Z

    We calculate and analyze the longevity of magnetohydrodynamic (MHD) wave modes that occur in the plane of a magnetic thin sheet. Initial turbulent conditions applied to a magnetically subcritical cloud are shown to lead to relatively rapid energy decay if ambipolar diffusion is introduced at a level corresponding to partial ionization primarily by cosmic rays. However, in the flux-freezing limit, as may be applicable to photoionized molecular cloud envelopes, the turbulence persists at 'nonlinear' levels in comparison with the isothermal sound speed c {sub s}, with one-dimensional rms material motions in the range of {approx} 2 c {sub s}-5 c {sub s} for cloud sizes in the range of {approx} 2 pc-16 pc. These fluctuations persist indefinitely, maintaining a significant portion of the initial turbulent kinetic energy. We find the analytic explanation for these persistent fluctuations. They are magnetic-tension-driven modes associated with the interaction of the sheet with the external magnetic field. The phase speed of such modes is quite large, allowing residual motions to persist without dissipation in the flux-freezing limit, even as they are nonlinear with respect to the sound speed. We speculate that long-lived large-scale MHD modes such as these may provide the key to understanding observed supersonic motions in molecular clouds.

  4. The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research

    SciTech Connect (OSTI)

    Platt, C.M.; Young, S.A. [Division of Atmospheric Research, Victoria (Australia)] [Division of Atmospheric Research, Victoria (Australia); Carswell, A.I.; Pal, S.R. [York Univ., North York, Ontario (Canada)] [York Univ., North York, Ontario (Canada); McCormick, M.P.; Winker, D.M. [NASA Langley Research Center, Hampton, VA (United States)] [NASA Langley Research Center, Hampton, VA (United States); DelGuasta, M.; Stefanutti, L. [Institute Ricerca Onde Elettromagnetiche, Florence (Italy)] [Institute Ricerca Onde Elettromagnetiche, Florence (Italy); Eberhard, W.L.; Hardesty, M. [NOAA Environmental Technology Lab., Boulder, CO (United States)] [and others] [NOAA Environmental Technology Lab., Boulder, CO (United States); and others

    1994-09-01T23:59:59.000Z

    The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and April-July 1991, with intensive 30-day periods selected within the two time intervals. Data are being archived at NASA Langley Research Center, and, once there, are readily available to the international scientific community. 43 refs., 13 figs., 4 tabs.

  5. NIST Cloud Computing Strategy working paper, April 2011 1 of 25 NIST Strategy to build a USG Cloud Computing

    E-Print Network [OSTI]

    NIST Cloud Computing Strategy working paper, April 2011 1 of 25 NIST Strategy to build a USG Cloud of United States Government (USG) secure and effective adoption of the Cloud Computing2 model to reduce costs and improve services. The working document describes the NIST Cloud Computing program efforts

  6. Generated using version 3.0 of the official AMS LATEX template Computing and Partitioning Cloud Feedbacks using Cloud1

    E-Print Network [OSTI]

    Hartmann, Dennis

    Generated using version 3.0 of the official AMS LATEX template Computing and Partitioning Cloud Feedbacks using Cloud1 Property Histograms.2 Part II: Attribution to the Nature of Cloud Changes3 Mark D-103 Livermore, CA 94551 E-mail: zelinka1@llnl.gov 1 #12;ABSTRACT7 Cloud radiative kernels

  7. IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1 Cloud Federations in the Sky: Formation Game

    E-Print Network [OSTI]

    Grosu, Daniel

    IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1 Cloud Federations in the Sky federation, virtual machine, game theory. 1 INTRODUCTION CLOUDS are large-scale distributed computing sys (VM) instances. Cloud computing systems' ability to provide on de- mand access to always-on computing

  8. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect (OSTI)

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27T23:59:59.000Z

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  9. Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign

    SciTech Connect (OSTI)

    Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.; Lim, Kyo-Sun; Long, Charles N.; Wu, Di; Thompson, Gregory

    2014-11-12T23:59:59.000Z

    Regional cloud permitting model simulations of cloud populations observed during the 2011 ARM Madden Julian Oscillation Investigation Experiment/ Dynamics of Madden-Julian Experiment (AMIE/DYNAMO) field campaign are evaluated against radar and ship-based measurements. Sensitivity of model simulated surface rain rate statistics to parameters and parameterization of hydrometeor sizes in five commonly used WRF microphysics schemes are examined. It is shown that at 2 km grid spacing, the model generally overestimates rain rate from large and deep convective cores. Sensitivity runs involving variation of parameters that affect rain drop or ice particle size distribution (more aggressive break-up process etc) generally reduce the bias in rain-rate and boundary layer temperature statistics as the smaller particles become more vulnerable to evaporation. Furthermore significant improvement in the convective rain-rate statistics is observed when the horizontal grid-spacing is reduced to 1 km and 0.5 km, while it is worsened when run at 4 km grid spacing as increased turbulence enhances evaporation. The results suggest modulation of evaporation processes, through parameterization of turbulent mixing and break-up of hydrometeors may provide a potential avenue for correcting cloud statistics and associated boundary layer temperature biases in regional and global cloud permitting model simulations.

  10. Incorporating WAAS Data Into an Ionospheric Model for Correcting Satellite Radar

    E-Print Network [OSTI]

    Toews, Carl

    at the Millstone Hill Satellite Tracking Radar. She currently holds a joint appointment with the Atmospheric corrections to radar measurements, incorporating data from a single receiver to generate TEC estimates that the GRIMS ionospheric model degenerates during times of sharp spatial TEC gradients, e.g. during geomagnetic

  11. Vertical Structure of Tropical Cyclone Rainbands as Seen by the TRMM Precipitation Radar

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    Vertical Structure of Tropical Cyclone Rainbands as Seen by the TRMM Precipitation Radar DEANNA A Measurement Mission satellite's Precipitation Radar (TRMM PR) show the vertical structure of tropical cyclone separated by the melting layer. The ice layer is a combination of particles imported from the eyewall

  12. Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    1 Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar Deanna A (TRMM PR) show the vertical structure of tropical cyclone rainbands. Radar-echo2 statistics show that rainbands have a two-layered structure, with distinct modes separated by the3 melting layer. The ice layer

  13. Operational Monitoring of Weather Radar Receiving Chain Using the Sun IWAN HOLLEMAN

    E-Print Network [OSTI]

    Stoffelen, Ad

    Operational Monitoring of Weather Radar Receiving Chain Using the Sun IWAN HOLLEMAN Royal, is presented. The ``online'' method is entirely based on the analysis of sun signals in the polar volume data- termining the weather radar antenna pointing at low elevations using sun signals, and it is suited

  14. Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments

    E-Print Network [OSTI]

    Xue, Ming

    Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model on an ensemble Kalman filter (EnKF) method and tested with simulated radar data from a supercell storm for at least 2 h. 1. Introduction Since its introduction by Evensen (1994), the en- semble Kalman filter (En

  15. Wind Profiling by Doppler Weather Radar Iwan Holleman (holleman@knmi.nl)

    E-Print Network [OSTI]

    Stoffelen, Ad

    Wind Profiling by Doppler Weather Radar Iwan Holleman (holleman@knmi.nl) Royal Netherlands wind profiles at a high temporal resolution. Several algorithms and quality ensuring procedures for the extraction of wind profiles from radar volume data have been published. A comparison and verification

  16. ERAD 2008 -THE FIFTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY 1. Introduction

    E-Print Network [OSTI]

    Stoffelen, Ad

    , and the enhancement of the radar processing with capabilities found in modern radar equipment. In the European tender receivers and completely new data processing equipment. This modern equipment was integrated in the existing for PRFs up to 1200 Hz. To enhance reliability the thyratron powered switch unit, used to "fire

  17. Soil texture estimation over a semi-arid area using TERRASAR-X radar data

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Soil texture estimation over a semi-arid area using TERRASAR-X radar data M. Zribi1 , F. Kotti1 , Z Abstract In this paper, it is proposed to use TERRASAR-X data for analysis and estimation of soil surface. Simultaneously to TERRASAR-X radar acquisitions, ground measurements (texture, soil moisture and roughness) were

  18. Lagrangian Structures in Very High-Frequency Radar Data and Optimal Pollution Timing

    E-Print Network [OSTI]

    Marsden, Jerrold

    Lagrangian Structures in Very High-Frequency Radar Data and Optimal Pollution Timing Francois radar-based pollution release scheme using the hidden flow structure reduces the effect of industrial pollution in the coastal environment. INTRODUCTION The release of pollution in coastal areas [1, 2, 3] can

  19. Optimal Pollution Mitigation in Monterey Bay Based on Coastal Radar Data and Nonlinear

    E-Print Network [OSTI]

    Marsden, Jerrold

    Optimal Pollution Mitigation in Monterey Bay Based on Coastal Radar Data and Nonlinear Dynamics run-off which is a typical source of pollution in the bay. We show that a HF radar-based pollution release scheme using this flow structure reduces the impact of pollution on the coastal envi- ronment

  20. Radar Sounding of Glaciers in Greenland C. Allen, B, Wohletz, and S, Gogineni

    E-Print Network [OSTI]

    Kansas, University of

    Radar Sounding of Glaciers in Greenland C. Allen, B, Wohletz, and S, Gogineni The University on several flights over Greenland glaciers during the summer of 1995. The radar data were collected the theory and present results of the homomorphic deconvolution procedure. INTRODUCTION The Greenland

  1. FUSING MICROWAVE RADAR AND MICROWAVE-INDUCED THERMOACOUSTICS FOR BREAST CANCER DETECTION

    E-Print Network [OSTI]

    FUSING MICROWAVE RADAR AND MICROWAVE-INDUCED THERMOACOUSTICS FOR BREAST CANCER DETECTION Evgeny in the microwave range. Microwave-radar and microwave-induced thermoacoustic methods both struggle when-induced thermoacoustic (MIT) methods measure and process the acoustic signals induced by differential microwave heating

  2. Planning of Low-Cost 77-GHz Radar Transceivers for Automotive Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Moghavvemi University ofMalaya INTRODUCTION The use of electronics in the automotive industry will reach (or the position and speed as with other components used in the automotive industry, radars will find widespreadPlanning of Low-Cost 77-GHz Radar Transceivers for Automotive Applications H. Ameri, A. Attaran & M

  3. Performance comparison of pulse-pair and wavelets methods for the pulse Doppler weather radar

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - eters. The radar reflectivity (Z), the radial velocity (Vr) and the spectral width of velocities (W). [1). Generally, the meteorological targets move with speeds lower than 50 m/secs. The Doppler Effect wouldPerformance comparison of pulse-pair and wavelets methods for the pulse Doppler weather radar

  4. "A Functional Design and System Architecture of a Control System for a Weather Radar"

    E-Print Network [OSTI]

    Mountziaris, T. J.

    "A Functional Design and System Architecture of a Control System for a Weather Radar" Seidu Ibrahim Faculty Mentor: Eric Knapp Weather radars operate by transmitting pulses of very high microwave energy antenna scan, a three dimensional view of the surrounding atmosphere is created. Traditional weather

  5. Thunderstorm lightning and radar characteristics: insights on electrification and severe weather forecasting

    E-Print Network [OSTI]

    Steiger, Scott Michael

    2007-04-25T23:59:59.000Z

    THUNDERSTORM LIGHTNING AND RADAR CHARACTERISTICS: INSIGHTS ON ELECTRIFICATION AND SEVERE WEATHER FORECASTING A Dissertation by SCOTT MICHAEL STEIGER Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2005 Major Subject: Atmospheric Sciences THUNDERSTORM LIGHTNING AND RADAR CHARACTERISTICS: INSIGHTS ON ELECTRIFICATION AND SEVERE WEATHER...

  6. Design of X-Band FMCW Short Range Radar Dong-hun Shin*

    E-Print Network [OSTI]

    Park, Seong-Ook

    Proposed radar system is bi-static radar type. It is adopted for increasing the isolation between Tx and Rx of a power divider. A portion of the swept signal is coupled to the mixer as reference signal. The final transmitted power of the system is under 0dBm. Received echo signal from the Rx antenna is injected to mixer

  7. Development of advanced cloud parameterizations to examine air quality, cloud properties, and cloud-radiation feedback in mesoscale models

    SciTech Connect (OSTI)

    Lee, In Young

    1993-09-01T23:59:59.000Z

    The distribution of atmospheric pollutants is governed by dynamic processes that create the general conditions for transport and mixing, by microphysical processes that control the evolution of aerosol and cloud particles, and by chemical processes that transform chemical species and form aerosols. Pollutants emitted into the air can undergo homogeneous gas reactions to create a suitable environment for the production by heterogeneous nucleation of embryos composed of a few molecules. The physicochemical properties of preexisting aerosols interact with newly produced embryos to evolve by heteromolecular diffusion and coagulation. Hygroscopic particles wig serve as effective cloud condensation nuclei (CCN), while hydrophobic particles will serve as effective ice-forming nuclei. Clouds form initially by condensation of water vapor on CCN and evolve in a vapor-liquid-solid system by deposition, sublimation, freezing, melting, coagulation, and breakup. Gases and aerosols that enter the clouds undergo aqueous chemical processes and may acidity hydrometer particles. Calculations for solar and longwave radiation fluxes depend on how the respective spectra are modified by absorbers such as H{sub 2}O, CO{sub 2}, O{sub 3}, CH{sub 4}, N{sub 2}O, chlorofruorocarbons, and aerosols. However, the flux calculations are more complicated for cloudy skies, because the cloud optical properties are not well defined. In this paper, key processes such as tropospheric chemistry, cloud microphysics parameterizations, and radiation schemes are reviewed in terms of physicochemical processes occurring, and recommendations are made for the development of advanced modules applicable to mesoscale models.

  8. Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report

    SciTech Connect (OSTI)

    Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

    2011-08-31T23:59:59.000Z

    In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

  9. Compressive Radar with Off-Grid and Extended Targets

    E-Print Network [OSTI]

    Fannjiang, Albert

    2012-01-01T23:59:59.000Z

    Compressed sensing (CS) schemes are proposed for monostatic as well as synthetic aperture radar (SAR) imaging of sparse targets with chirps. In particular, a simple method is developed to improve performance with off-grid targets. Tomographic formulation of spotlight SAR is analyzed by CS methods with several bases and under various bandwidth constraints. Performance guarantees are established via coherence bound and the restricted isometry property. CS analysis provides a fresh and clear perspective on how to optimize temporal and angular samplings for spotlight SAR.

  10. North and northeast Greenland ice discharge from satellite radar interferometry

    SciTech Connect (OSTI)

    Rignot, E.J. [California Institute of Technology, Pasadena, CA (United States)] [California Institute of Technology, Pasadena, CA (United States); Gogineni, S.P. [Univ. of Kansas, Lawrence, KS (United States)] [Univ. of Kansas, Lawrence, KS (United States); Krabill, W.B. [NASA Goddard Space Flight Center, Wallops Island, VA (United States)] [and others] [NASA Goddard Space Flight Center, Wallops Island, VA (United States); and others

    1997-05-09T23:59:59.000Z

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and contributing positively to sea-level rise. 24 refs., 3 figs., 1 tab.

  11. Mitigating Wind-Radar Interference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official FileEnergyAERMOD-PRIME, UnitsMitigating Wind-Radar

  12. THE REGIONAL AND DIURNAL VARIABILITY OF THE VERTICAL STRUCTURE OF PRECIPITATION SYSTEMS IN AFRICA, BASED ON TRMM PRECIPITATION RADAR DATA

    E-Print Network [OSTI]

    Geerts, Bart

    IN AFRICA, BASED ON TRMM PRECIPITATION RADAR DATA Bart Geerts1 and Teferi Dejene University of Wyoming 1 microwave radiances (e.g. Kummerow and Giglio 1994), and 14 GHz radar reflectivities (e.g. Ferreira et al-based techniques are much inferior to radar-based techniques, in principle at least, because the anvil of large

  13. ARM Cloud Retrieval Ensemble Data Set (ACRED)

    SciTech Connect (OSTI)

    Zhao, C; Xie, S; Klein, SA; McCoy, R; Comstock, JM; Delanoë, J; Deng, M; Dunn, M; Hogan, RJ; Jensen, MP; Mace, GG; McFarlane, SA; O’Connor, EJ; Protat, A; Shupe, MD; Turner, D; Wang, Z

    2011-09-12T23:59:59.000Z

    This document describes a new Atmospheric Radiation Measurement (ARM) data set, the ARM Cloud Retrieval Ensemble Data Set (ACRED), which is created by assembling nine existing ground-based cloud retrievals of ARM measurements from different cloud retrieval algorithms. The current version of ACRED includes an hourly average of nine ground-based retrievals with vertical resolution of 45 m for 512 layers. The techniques used for the nine cloud retrievals are briefly described in this document. This document also outlines the ACRED data availability, variables, and the nine retrieval products. Technical details about the generation of ACRED, such as the methods used for time average and vertical re-grid, are also provided.

  14. EVENT CLOUDS : lighter than air architectural structures

    E-Print Network [OSTI]

    Peydro Duclos, Ignacio

    2014-01-01T23:59:59.000Z

    EVENT CLOUD is a versatile covering system that allows events to happen independently to weather conditions. It consists of a lighter than air pneumatic structure, filled either with helium or hot air, that covers spaces ...

  15. Uranus at equinox: Cloud morphology and dynamics

    E-Print Network [OSTI]

    Sromovsky, Lawrence; Hammel, Heidi; Ahue, William; de Pater, Imke; Rages, Kathy; Showalter, Mark; van Dam, Marcos

    2015-01-01T23:59:59.000Z

    As the 7 December 2007 equinox of Uranus approached, ring and atmosphere observers produced a substantial collection of observations using the 10-m Keck telescope and the Hubble Space Telescope. Those spanning the period from 7 June 2007 through 9 September 2007 we used to identify and track cloud features, determine atmospheric motions, characterize cloud morphology and dynamics, and define changes in atmospheric band structure. We confirmed the existence of the suspected northern hemisphere prograde jet, locating its peak near 58 N, and extended wind speed measurements to 73 N. For 28 cloud features we obtained extremely high wind-speed accuracy through extended tracking times. The new results confirm a small N-S asymmetry in the zonal wind profile, and the lack of any change in the southern hemisphere between 1986 (near solstice) and 2007 (near equinox) suggests that the asymmetry may be permanent rather than seasonally reversing. In the 2007 images we found two prominent groups of discrete cloud features ...

  16. Enabling Scalable Cloud Computing | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Scalable Cloud Computing Event Sponsor: Mathematics and Computer Science Division Start Date: Apr 9 2015 - 11:00am BuildingRoom: Building 240Room 4301 Location: Argonne...

  17. Factors shaping the future of Cloud Computing

    E-Print Network [OSTI]

    Francis, Steven (Steven Douglas)

    2011-01-01T23:59:59.000Z

    Many different forces are currently shaping the future of the Cloud Computing Market. End user demand and end user investment in existing technology are important drivers. Vendor innovation and competitive strategy are ...

  18. QER- Comment of Cloud Peak Energy Inc

    Broader source: Energy.gov [DOE]

    Dear Ms Pickett Please find attached comments from Cloud Peak Energy as input to the Department of Energy’s Quadrennial Energy Review. If possible I would appreciate a confirmation that this email has been received Thank you.

  19. HPC CLOUD APPLIED TO LATTICE OPTIMIZATION

    SciTech Connect (OSTI)

    Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong

    2011-03-18T23:59:59.000Z

    As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.

  20. Exploiting weather forecast data for cloud detection 

    E-Print Network [OSTI]

    Mackie, Shona

    2009-01-01T23:59:59.000Z

    Accurate, fast detection of clouds in satellite imagery has many applications, for example Numerical Weather Prediction (NWP) and climate studies of both the atmosphere and of the Earth’s surface temperature. Most ...