Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

2

Wave Energy Extraction from buoys  

E-Print Network (OSTI)

Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

Garnaud, Xavier

2009-01-01T23:59:59.000Z

3

Direct Drive Wave Energy Buoy  

SciTech Connect

The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

4

Scaled modeling and simulation of ocean wave linear generator buoy systems.  

E-Print Network (OSTI)

??Accurate scaled modeling and simulation are critical to advancing ocean wave linear generator buoys. A 100th scaled model of ocean wave generator buoy systems is… (more)

Gore, Ganesh P.

2006-01-01T23:59:59.000Z

5

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy  

Office of Energy Efficiency and Renewable Energy (EERE)

Columbia Power Technologies, Inc. is working to advance their wave energy buoy to commercial readiness.

6

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power

7

Category:Marine and Hydrokinetic Technologies | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technologies Marine and Hydrokinetic Technologies Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? Click here for a user-friendly list of Marine and Hydrokinetic Technologies. This category has the default of form Form:Marine and Hydrokinetic Technology. Pages in category "Marine and Hydrokinetic Technologies" The following 200 pages are in this category, out of 282 total. (previous 200) (next 200) 1 MHK Technologies/14 MW OTECPOWER A MHK Technologies/Aegir Dynamo MHK Technologies/AirWEC MHK Technologies/Anaconda bulge tube drives turbine MHK Technologies/AquaBuoy MHK Technologies/Aquanator MHK Technologies/Aquantis MHK Technologies/Archimedes Wave Swing MHK Technologies/Atlantis AN 150 MHK Technologies/Atlantis AR 1000

8

Evaluation of wave energy generation from buoy heave response based on linear generator concepts  

Science Journals Connector (OSTI)

Previous studies of linear generator power extraction from ocean waves have usually ignored the buoy heave dynamics and taken the linear generator movement to coincide with the wave motion. Here the actual buoy motion is first determined and then used to solve the coupled hydrodynamic and electromagnetic problem of electrical power generation for both regular and irregular waves. Several buoy sizes are modeled to exploit the buoys' natural frequency in an attempt to create a greater heave response for a given sea state. Power output ranging from 75 to 375?W is predicted for the dimensions chosen.

M. A. Stelzer; R. P. Joshi

2012-01-01T23:59:59.000Z

9

MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy  

Open Energy Info (EERE)

Spar Buoy Engine Spar Buoy Engine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Power Spar Buoy Engine.jpg Technology Profile Primary Organization Functional Design Engineering Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A long period spar buoy supports a subsurface flow augmentor The augmentor directs water from the wave s submarine flow field to a free prime mover piston The prime mover is decoupled from the machine s PTO during times in the wave s cycle when there is little power available for conversion Wave energy is stored in the device until the is enough flow magnetude that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity

10

Marine and Hydrokinetic Technology Resources | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

hydrokinetic (MHK) energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101"...

11

Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement  

Energy.gov (U.S. Department of Energy (DOE))

On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

12

Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy’s Wave Energy Test Site (WETS)  

Energy.gov (U.S. Department of Energy (DOE))

On March 24, 2014, the U.S. Department of Energy (DOE) announced a Notice of Intent to issue a funding opportunity titled “Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy’s Wave Energy Test Site (WETS).”

13

Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys  

E-Print Network (OSTI)

for large scale grid power applications, but rather for relatively low-power ocean sensor and communicationsExperimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys Douglas A. Gemme1 Island Department of Ocean Engineering Narragansett, RI 02882, USA Abstract-- Methodology and results

Grilli, Stéphan T.

14

Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic...  

Energy Savers (EERE)

for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK)...

15

Sandia National Laboratories: marine hydrokinetic  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrokinetic Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter On September 16, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

16

Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy Annette R. Grilli  

E-Print Network (OSTI)

Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy at least one short-stroke linear generator (SSLG), made of a magnet, suspended to a spring, and oscillating within a coil. This system is aimed at producing low and renewable wave power (up to ¢ £ ¤ ¥ k

Grilli, Stéphan T.

17

Energy 101: Marine and Hydrokinetic Energy  

SciTech Connect

See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

None

2013-04-29T23:59:59.000Z

18

Energy 101: Marine and Hydrokinetic Energy  

ScienceCinema (OSTI)

See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

None

2014-06-26T23:59:59.000Z

19

Marine and Hydrokinetic | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine and Hydrokinetic Marine and Hydrokinetic Marine and Hydrokinetic The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus on advancing technologies that capture energy from the nation's oceans and rivers. Unlike hydropower, marine and hydrokinetics represent an emerging industry with hundreds of potentially viable technologies. The program is therefore leading efforts to prove functionality; evaluate technical and economic viability; and generate cost, performance, and reliability data for a variety of devices. Marine and hydrokinetic energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101" video explains how these technologies work and highlights some of the Water Power Program's efforts

20

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources (Redirected from Wave) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

22

Siting Methodologies for Hydrokinetics  

Energy.gov (U.S. Department of Energy (DOE))

Report that provides an overview of the federal and state regulatory framework for hydrokinetic projects.

23

Wave and Hydrokinetics Interest Group 1st Meeting of 2009/2010 Year  

E-Print Network (OSTI)

reserved. The State of Wave Energy · Installed Offshore Wave Capacity (as of 6/30/09) - five years . · Economic Status: The first U.S. commercial wave plant project in Reedsport, OR, was made.S. wave power plant license issued by FERC for the 1-MW Makah Bay, WA project was surrendered by Finavera

24

Energy 101: Marine and Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine and Hydrokinetic Energy Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy technologies ending with shots of ocean waves. We all know energy can come from the wind and the sun, but there's a plentiful renewable resource covering more than 75% of the planet that you might not have thought about: our water! The movement of the ocean's waves, tides, and currents carries energy that can be harnessed and converted into electricity to power our homes, buildings and cities. The words "Kinetic Energy" appear onscreen with shots of ocean scientists at sea. The words "Marine & Hydrokinetic" appear onscreen.

25

Energy 101: Marine & Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine & Hydrokinetic Energy Marine & Hydrokinetic Energy Energy 101: Marine & Hydrokinetic Energy August 13, 2013 - 10:54am Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings, and cities. The oceans represent a largely untapped renewable energy resource with potential to provide clean electricity to coastal communities and cities across the United States. In this edition of Energy 101, learn how the Energy Department is supporting research on a range of innovative marine and hydrokinetic energy technologies to capture energy from waves and currents. For more information on marine and hydrokinetic energy from the Office of Energy Efficiency and Renewable Energy, visit the Water Power Program

26

Marine and Hydrokinetic Technology Database | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Database Marine and Hydrokinetic Technology Database Jump to: navigation, search Introduction The U.S. Department of Energy's Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Using the Database (1) Map illustrates marine & hydrokinetic demonstration projects around the

27

Bragg scattering and wave-power extraction by an array of small buoys  

Science Journals Connector (OSTI)

...studies have been devoted to the potential of power extraction from sea waves by an isolated...Mei et al. 2005; Cruz 2008). To achieve power output comparable to a conventional power plant or a wind-turbine farm, a large array of absorbing...

2010-01-01T23:59:59.000Z

28

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

29

A Spar Buoy for High-Frequency Wave Measurements and Detection of Wave Breaking in the Open Ocean  

Science Journals Connector (OSTI)

Waves and wave breaking play a significant role in the air–sea exchanges of momentum, sea spray aerosols, and trace gases such as CO2, but few direct measurements of wave breaking have been obtained in the open ocean (far from the coast). This ...

Robin W. Pascal; Margaret J. Yelland; Meric A. Srokosz; Bengamin I. Moat; Edward M. Waugh; Daniel H. Comben; Alex G. Cansdale; Mark C. Hartman; David G. H. Coles; Ping Chang Hsueh; Timothy G. Leighton

2011-04-01T23:59:59.000Z

30

NOAA Data Buoy Office Programs  

Science Journals Connector (OSTI)

The NOAA Data Buoy Office (NDBO) buoys provide vital meteorological and oceanographic reports from data-sparse marine areas. To provide a better understanding of the scope and potential of the buoy system, the buoy network, monitoring ...

Glenn D. Hamilton

1980-09-01T23:59:59.000Z

31

Marine and Hydrokinetic Technology Glossary  

Energy.gov (U.S. Department of Energy (DOE))

Learn about the basic technologies and key terms used to describe marine and hydrokinetic technologies.

32

MHK Technologies/Finavera Buoy | Open Energy Information  

Open Energy Info (EERE)

Finavera Buoy Finavera Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Finavera Buoy.jpg Technology Profile Primary Organization Oregon Iron Works Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description MARINE DIVISION Oregon Iron Works Inc OIW has a globally recognized Marine Division with a wide range of advanced accomplishments from custom design prototype development Fabricate OPT Power Take Off 2007 Design Build Finavera Buoy 2007 Fabricate OPT Next Generation Buoy 2008 2009 large scale production outfitting electrical mechanical hydraulic pneumatic

33

Marine & Hydrokinetic Technologies (Fact Sheet)  

SciTech Connect

This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

Not Available

2010-04-01T23:59:59.000Z

34

Euro Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Euro Wave Energy Region: Norway Sector: Marine and Hydrokinetic Website: http:www.eurowaveenergy.com This company is listed in the Marine and Hydrokinetic Technology Database....

35

MHK Technologies/IPS OWEC Buoy | Open Energy Information  

Open Energy Info (EERE)

IPS OWEC Buoy IPS OWEC Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage IPS OWEC Buoy.jpg Technology Profile Primary Organization Interproject Service AB Technology Resource Click here Wave Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The IPS OWEC Offshore Wave Energy Converter Buoy is a system for generating electricity from ocean waves at a cost competitive with fossil fuel generated power Cluster of buoys gives energy and act as wave breaker Off shore wave energy converters and systems with great flexibility Units from 10 kW 150 kW annual mean power A new interesting alternative for the internal energy conversion is based on a set of hose pumps driven by the piston in the acceleration tube pumping water to a small turbine directly coupled to a special generator

36

Comparison and analysis of Envisat ASAR ocean wave spectra with buoy data in the northern Pacific Ocean  

Science Journals Connector (OSTI)

The validation and assessment of Envisat advanced synthetic aperture radar (ASAR) ocean wave spectra products are important to their application in ocean wave numerical predictions. Six-year ASAR wave ... co-loca...

Qifeng Ren ???; Jie Zhang ??…

2011-01-01T23:59:59.000Z

37

Marine and Hydrokinetic Energy Research & Development | Department...  

Energy Savers (EERE)

Energy Research & Development Marine and Hydrokinetic Energy Research & Development The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus...

38

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY...  

Office of Scientific and Technical Information (OSTI)

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION Marine & Hydrokinetic Technology Readiness Initiative DE-EE0003636 TIDAL...

39

MHK Technologies/WAG Buoy | Open Energy Information  

Open Energy Info (EERE)

WAG Buoy WAG Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WAG Buoy.jpg Technology Profile Primary Organization Ryokuseisha Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Wave Activated Generator Buoy By using the wave activated generator as the power supply for a buoy excellent economic and maintenance power saving properties are realized There is a complete line from mid size models for use with harbor engineering works to large models for use as actual channel markers The solar cell and the all purpose type hybrid type can also be used Technology Dimensions

40

Marine and Hydrokinetic Energy Projects  

Energy.gov (U.S. Department of Energy (DOE))

This report covers the Wind and Water Power Technologies Office’s marine and hydrokinetic projects from fiscal years 2008 to 2014.

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MHK Technologies/PowerBuoy | Open Energy Information  

Open Energy Info (EERE)

PowerBuoy PowerBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PowerBuoy.jpg Technology Profile Primary Organization Oregon Wave Energy Partners LLC Project(s) where this technology is utilized *MHK Projects/Coos Bay OPT Wave Park *MHK Projects/Cornwall Wave Hub *MHK Projects/Griffin Project *MHK Projects/NJBPU 1 5 MW Demonstration Program *MHK Projects/Orkney *MHK Projects/Reedsport OPT Wave Park *MHK Projects/Reedsport OPT Wave Park Expanded Project *MHK Projects/Santona Wave Energy Park *MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 9: Commercial-Scale Production / Application

42

MHK Technologies/Electric Buoy | Open Energy Information  

Open Energy Info (EERE)

Buoy Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Buoy.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description AMI s Ocean Swell and Wave Energy Conversion OSWEC device uses a patented linear generator to directly convert the motion of ocean swells and waves into electric power In our initial designs the generator mounts underneath a floating buoy or on the surface of a platform with the buoy below however it is possible to fit the generator on other types of wave motion energy extracting mechanisms Housing moves up and down with the motion of the Buoy on the ocean s surface while the Damping Plates hold the Generator Coil in a stable position The relative motion between the magnetic field in the generator housing and Generator Coil creates an electric voltage in the Generator Coil After four design evolutions Aqua Magnetics Inc has created our patented reciprocating linear generator Scalable for a wide range of applications and able to operate in a wide range of sea states Generator prototype will produce approximately 10 watts of power in 15 cm 6 inch wind chop in the intraco

43

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

44

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary (Redirected from Hybrid) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

45

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary (Redirected from Attenuator) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

46

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

47

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies This...

48

Massachusetts: New Report States That Hydrokinetic Turbines Have...  

Energy Savers (EERE)

New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish Massachusetts: New Report States That Hydrokinetic Turbines Have Minimal Environmental...

49

Sandia National Laboratories: Sandia Releases Open-Source Hydrokinetic...  

NLE Websites -- All DOE Office Websites (Extended Search)

ateECEnergyComputational Modeling & SimulationSandia Releases Open-Source Hydrokinetic Turbine Design Model, CACTUS Sandia Releases Open-Source Hydrokinetic Turbine Design Model,...

50

New Report States That Hydrokinetic Turbines Have Minimal Environmenta...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August...

51

MHK Technologies/The B1 buoy | Open Energy Information  

Open Energy Info (EERE)

buoy buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The B1 buoy.gif Technology Profile Primary Organization Fred Olsen Ltd Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Proprietary Mooring Configuration Proprietary Technology Dimensions Technology Nameplate Capacity (MW) Proprietary Device Testing Scale Test *Currently undergoing open sea testing scaled device Previous tests carried out in the sea with scaled devices 1 20 1 10 and 1 3 scale including the use of the research rig Buldra Lab Test *Various tests performed both in dry conditions and in wave test tanks 1 33 1 20 1 3

52

Marine & Hydrokinetic Technologies (Fact Sheet) | Department...  

Energy Savers (EERE)

Sheet) Marine & Hydrokinetic Technologies (Fact Sheet) This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and...

53

Marine and Hydrokinetic Resource Assessment and Characterization...  

Energy Savers (EERE)

Characterization Marine and Hydrokinetic Resource Assessment and Characterization The Water Power Program has released reports and maps that assess the resource potential of the...

54

MHK Technologies/OE Buoy OE 50 | Open Energy Information  

Open Energy Info (EERE)

OE Buoy OE 50 OE Buoy OE 50 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OE Buoy OE 50.jpg Technology Profile Primary Organization Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Ocean Energy Galway Bay IE *MHK Projects/OE Buoy OE 30 Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The OEBuoy device uses wave energy to compress air in a plenum chamber and pump it through an air turbine system. This isolates the power conversion system from the seawater and also provides a high-speed air flow to the turbine. The device is a floating system with the mouth of the OWC facing away from the wave direction. This results in high energy efficiencies at the operating point because of the motions of the float system relative to the waves.

55

Marine & Hydrokinetic Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet describes the U.S. Department of Energy’s Wind and Water Power Program efforts to develop advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients.

56

MHK Technologies/AquaBuoy | Open Energy Information  

Open Energy Info (EERE)

AquaBuoy AquaBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage AquaBuoy.jpg Technology Profile Primary Organization Finavera Renewables Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Figueira da Foz Portugal *MHK Projects/Humboldt County Wave Project *MHK Projects/Makah Bay Offshore Wave Pilot Project *MHK Projects/South Africa *MHK Projects/Ucluelet BC Canada Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Aquabuoy 2.0 is a large 3 meter wide buoy tied to a 70-foot-long shaft. By bobbing up and down, the water is rushed into an acceleration tube, which in turn causes a piston to move. This moving of the piston causes a steel reinforced rubber hose to stretch, making it act as a pump. The water is then pumped into a turbine which in turns powers a generator. The electricity generated is brought to shore via a standard submarine cable.

57

Dartmouth Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Dartmouth Wave Energy Jump to: navigation, search Name: Dartmouth Wave Energy Region: United Kingdom Sector: Marine and Hydrokinetic Website: http:www.dartmouthwaveenergy This...

58

Wind Waves and Sun | Open Energy Information  

Open Energy Info (EERE)

Waves and Sun Jump to: navigation, search Name: Wind Waves and Sun Region: United States Sector: Marine and Hydrokinetic Website: http:www.windwavesandsun.com This company is...

59

Experimental analysis of an energy self sufficient ocean buoy utilizing a bi-directional turbine  

E-Print Network (OSTI)

An experimental analysis of a Venturi shrouded hydro turbine for wave energy conversion. The turbine is designed to meet the specific power requirements of a, Woods Hole Oceanographic Institute offshore monitoring buoy ...

Gruber, Timothy J. (Timothy James)

2012-01-01T23:59:59.000Z

60

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures  

SciTech Connect

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-01T23:59:59.000Z

62

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinetic  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine & Hydrokinetic Data Marine & Hydrokinetic Data This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices. The total available energy resource along the U.S. continental shelf edge,

63

Kinetic Wave Power | Open Energy Information  

Open Energy Info (EERE)

Wave Power Address: 2861 N Tupelo St Place: Midland Zip: 48642 Region: United States Sector: Marine and Hydrokinetic Phone Number: 989-839-9757 Website: http:...

64

Sandia National Laboratories: wave energy converters  

NLE Websites -- All DOE Office Websites (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

65

MHK Technologies/SeaRaser buoy seawater pump | Open Energy Information  

Open Energy Info (EERE)

SeaRaser buoy seawater pump SeaRaser buoy seawater pump < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaRaser buoy seawater pump.jpg Technology Profile Primary Organization Dartmouth Wave Energy Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description SEARASER uses wave displacement to lift a float attached to a piston and uses gravity in the wave s following trough to push the piston back down It is different from other wecs as it is tethered to a weight on the seabed by a single flexible tether but utilises a double acting piston thereby producing volumes of pressurised water in both directions of the piston

66

Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures  

SciTech Connect

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-10T23:59:59.000Z

67

Wave Energy Technology New Zealand | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Technology New Zealand Address: PO Box 25456 Panama St Place: Wellington Zip: 6146 Region: New Zealand Sector: Marine and Hydrokinetic Year Founded: 2003 Phone Number:...

68

Green Wave Energy Corp GWEC | Open Energy Information  

Open Energy Info (EERE)

Energy Corp GWEC Jump to: navigation, search Name: Green Wave Energy Corp GWEC Region: United States Sector: Marine and Hydrokinetic Website: http:http:greenwaveenergyc This...

69

Category:Marine and Hydrokinetic Technology Projects | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Projects Marine and Hydrokinetic Technology Projects Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? Click here for a user-friendly list of Marine and Hydrokinetic Technology Projects. This category has the default of form Form:Marine and Hydrokinetic Technology Project. Pages in category "Marine and Hydrokinetic Technology Projects" The following 200 pages are in this category, out of 379 total. (previous 200) (next 200) 4 MHK Projects/40MW Lewis project A MHK Projects/ADM 3 MHK Projects/ADM 4 MHK Projects/ADM 5 MHK Projects/Admirality Inlet Tidal Energy Project MHK Projects/Agucadoura MHK Projects/Alaska 1 MHK Projects/Alaska 13 MHK Projects/Alaska 17 MHK Projects/Alaska 18 MHK Projects/Alaska 24 MHK Projects/Alaska 25

70

Form:Marine and Hydrokinetic Technology | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Marine and Hydrokinetic Technology Jump to: navigation, search Add a Marine and Hydrokinetic Technology Input the name of your Marine and Hydrokinetic Technology below to add it to the registry. If your technology is already in the registry, the form will be populated with that technology's fields and you may edit. MHK_Technologies/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Technologies/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the Marine and Hydrokinetic Database Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology&oldid=680669"

71

MHK Technologies/In stream River Hydrokinetics | Open Energy Information  

Open Energy Info (EERE)

In stream River Hydrokinetics In stream River Hydrokinetics < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization ABS Alaskan Inc Technology Resource Click here Current Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description New Energy Corporation EnCurrent vertical axis turbine mounted on pontoon barge Technology Dimensions Device Testing Date Submitted 10:01.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/In_stream_River_Hydrokinetics&oldid=680959" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version

72

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...  

Office of Science (SC) Website

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in North America Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR...

73

Elgen Wave | Open Energy Information  

Open Energy Info (EERE)

Elgen Wave Jump to: navigation, search Name: Elgen Wave Region: United States Sector: Marine and Hydrokinetic Website: http:www.elgenwave.com This company is listed in the Marine...

74

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...  

Energy Savers (EERE)

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...

75

River Hydrokinetic Resource Atlas | Open Energy Information  

Open Energy Info (EERE)

River Hydrokinetic Resource Atlas River Hydrokinetic Resource Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: River Hydrokinetic Resource Atlas Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Water Power Resource Type: Maps, Software/modeling tools User Interface: Website Website: maps.nrel.gov/river_atlas Country: United States Web Application Link: maps.nrel.gov/river_atlas Cost: Free UN Region: Northern America Coordinates: 39.7412019515°, -105.172290802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7412019515,"lon":-105.172290802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Scientific Solutions (TRL 5 6 Component)- Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy  

Energy.gov (U.S. Department of Energy (DOE))

Scientific Solutions (TRL 5 6 Component) - Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy

77

Energy Department Announces Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $10 million to strengthen the U.S. marine and hydrokinetic (MHK) energy industry, including wave and tidal energy sources.

78

Rene Wave Ltd | Open Energy Information  

Open Energy Info (EERE)

Rene Wave Ltd Jump to: navigation, search Name: Rene Wave Ltd Address: 85 Emmett Ave Suite 2508 Place: Toronto Zip: M6M 5A2 Region: Canada Sector: Marine and Hydrokinetic Phone...

79

Form:Marine and Hydrokinetic Technology Project | Open Energy Information  

Open Energy Info (EERE)

Form Form Edit History Facebook icon Twitter icon » Form:Marine and Hydrokinetic Technology Project Jump to: navigation, search Add a Marine and Hydrokinetic Technology Project Input the name of your Marine and Hydrokinetic Technology Project below to add it to the registry. If your project is already in the registry, the form will be populated with that project's fields and you may edit. MHK_Projects/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Projects/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology_Project&oldid=688143"

80

Request for Information for Marine and Hydrokinetic Field Measurements  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department’s Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry regarding the verification and validation of advanced open source MHK design tools and models.

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE Announces Marine and Hydrokinetic Open Data Effort | Department...  

Office of Environmental Management (EM)

Open Data Effort April 10, 2014 - 3:39pm Addthis In an effort to improve future data management and access, DOE's Water Power Program is standing up a Marine and Hydrokinetics...

82

Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar  

Energy.gov (U.S. Department of Energy (DOE))

Over the years, the global marine and hydrokinetic (MHK) industry has suffered a number of technological and commercial setbacks, including some that resulted in bankruptcy. To help reduce the...

83

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

84

Preliminary Screening Analysis for the Environmental Risk Evaluation System: Task 2.1.1: Evaluating Effects of Stressors – Fiscal Year 2010 Progress Report: Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

Possible environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term effects. An understanding of risk associated with likely interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help reduce the level of uncertainty and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases - a tidal project in Puget Sound using Open Hydro turbines, a wave project off the coast of Oregon using Ocean Power Technologies point attenuator buoys, and a riverine current project in the Mississippi River using Free Flow turbines. Through an iterative process, the screening analysis revealed that top-tier stressors in all three cases were the effects of the dynamic physical presence of the device (e.g., strike), accidents, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the four highest tiers of risk were dominated by marine mammals (cetaceans and pinnipeds) and birds (diving and non-diving); only the riverine case (Free Flow) included different receptors in the third tier (fish) and the fourth tier (benthic invertebrates). Although this screening analysis provides a preliminary analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis, especially of risk associated with chemical toxicity and accidents such as oil spills or lost gear, will be necessary to further understand high-priority risks. Subject matter expert review of this process and results is required and is planned for the first quarter of FY11. Once expert review is finalized, the screening analysis phase of ERES will be complete.

Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

2010-11-15T23:59:59.000Z

85

Massachusetts: New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE has released a report assessing likelihood of fish injury and mortality from the operation of hydrokinetic turbines.

86

New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE has released a report assessing likelihood of fish injury and mortality from the operation of hydrokinetic turbines.

87

Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources  

SciTech Connect

The world’s oceans and estuaries offer an enormous potential to meet the nation’s growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40° and 70° north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

2010-07-30T23:59:59.000Z

88

Wave Energy AS | Open Energy Information  

Open Energy Info (EERE)

Wave Energy AS Address: Opstadveien 11C Place: Aalgaard Zip: 4330 Region: Norway Sector: Marine and Hydrokinetic Phone Number: (+47) 51 6109 30 Website: http:www.waveenergy.no...

89

Assessment and Mapping of the Riverine Hydrokinetic Resource in the  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Abstract This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the

90

Multnomah County Hydrokinetic Feasibility Study: Final Feasibility Study Report  

SciTech Connect

HDR has completed a study of the technical, regulatory, and economic feasibility of installing hydrokinetic turbines under the Morrison, Broadway, and Sellwood bridges. The primary objective of installing hydrokinetic turbines is a demonstration of in-stream hydrokinetic technologies for public education and outreach. Due to the low gradient of the Lower Willamette and the effects of the tide, velocities in the area in consideration are simply not high enough to economically support a commercial installation. While the velocities in the river may at times provide enough energy for a commercial turbine to reach capacity, the frequency and duration of high flow events which provide suitable velocities is not sufficient to support a commercial hydrokinetic installation. We have observed that over an 11 year period, daily average velocities in the Lower Willamette exceeded a nominal cut-in speed of 0.75 m/s only 20% of the time, leaving net zero power production for the remaining 80% of days. The Sellwood Bridge site was estimated to have the best hydrokinetic resource, with an estimated average annual production of about 9,000 kWh. The estimated production could range from 2,500 kWh to 15,000 kWh. Based on these energy estimates, the amount of revenue generated through either a power purchase agreement (PPA) or recovered through net metering is not sufficient to repay the project costs within the life of the turbine. The hydrokinetic resource at the Morrison and Broadway Bridges is slightly smaller than at the Sellwood Bridge. While the Broadway and Morrison Bridges have existing infrastructure that could be utilized, the project is not expected to generate enough revenue to repay the investment. Despite low velocities and energy production, the sites themselves are favorable for installation of a demonstration or experimental project. With high public interest in renewable energy, the possibility exists to develop a hydrokinetic test site which could provide developers and scientists a location to temporarily deploy and test hydrokinetic devices, and also function as an educational tool for the general public. Bridge piers provide an excellent pre-existing anchor point for hydrokinetic devices, and existing infrastructure at the Morrison and Broadway Bridges may reduce installation costs. Opportunity exists to partner with local universities with engineering and environmental interest in renewable energy. A partnership with Portland State University�¢����s engineering school could provide students with an opportunity to learn about hydrokinetics through senior design projects. Oregon State University and University of Washington, which are partnered through the Northwest National Marine Renewable Energy Center (NNMREC) to study and test hydrokinetic technology, are also relatively local to the site. In addition to providing an opportunity for both public and private entities to learn technically about in-stream kinetics, this approach will encourage grant funding for outreach, education, and product development, while also serving as a positive community relations opportunity for the County and its partners.

Stephen Spain

2012-03-15T23:59:59.000Z

91

Autonomous buoy for seismic reflection data acquisition in the inaccessible parts of the Arctic Ocean  

E-Print Network (OSTI)

Autonomous buoy for seismic reflection data acquisition in the inaccessible parts of the Arctic Instrumentation, Bergen, Norway An autonomous buoy which collects seismic reflection data and transmits to shore of the seismic buoy (thick red, green and black lines). - we have successfully developed an autonomous buoy

Kristoffersen, Yngve

92

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,...

93

Direct - drive permanent magnet synchronous generator design for hydrokinetic energy extraction .  

E-Print Network (OSTI)

??"Hydrokinetic turbines deliver lower shaft speeds when compared to both steam and wind turbines. Hence, a water wheel generator must operate at speeds as low… (more)

Kashyap, Amshumaan Raghunatha

2013-01-01T23:59:59.000Z

94

2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on marine and hydrokinetic technologies February 24–27.

95

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...  

Energy Savers (EERE)

verification and validation o Environmental monitoring and permitting o Wave energy conversion (WEC) devices * How can future events of a similar nature be improved? The remainder...

96

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

97

MHK Projects/Passamaquoddy Tribe Hydrokinetic Project | Open Energy  

Open Energy Info (EERE)

Passamaquoddy Tribe Hydrokinetic Project Passamaquoddy Tribe Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

98

MHK Projects/Atchafalaya River Hydrokinetic Project II | Open Energy  

Open Energy Info (EERE)

Atchafalaya River Hydrokinetic Project II Atchafalaya River Hydrokinetic Project II < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9828,"lon":-91.7994,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

99

MHK Projects/Sakonnet River Hydrokinetic Project | Open Energy Information  

Open Energy Info (EERE)

Sakonnet River Hydrokinetic Project Sakonnet River Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6224,"lon":-71.2153,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

100

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MHK Technologies/Hydrokinetic Power Barge | Open Energy Information  

Open Energy Info (EERE)

Power Barge Power Barge < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydrokinetic Power Barge.jpg Technology Profile Primary Organization Onsite Recovered Energy LP Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Vurbine proprietary technology design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest hydrokinetic energy from flowing water in a low impact application Technology Dimensions Device Testing Date Submitted 36:51.7 << Return to the MHK database homepage

102

MHK Projects/Yukon River Hydrokinetic Turbine Project | Open Energy  

Open Energy Info (EERE)

Yukon River Hydrokinetic Turbine Project Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.7883,"lon":-141.198,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

103

Marine and Hydrokinetic Technology Readiness Level | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Readiness Level Marine and Hydrokinetic Technology Readiness Level Jump to: navigation, search << Return to the MHK database homepage This field indicates the stage of development/deployment that technologies, which are undergoing partial or full-scale device testing, are currently in. Contents 1 TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering 2 TRL 4: Proof of Concept 3 TRL 5/6: System Integration and Technology Laboratory Demonstration 4 TRL 7/8: Open Water System Testing, Demonstration, and Operation 5 TRL 9: Commercial-Scale Production / Application TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering The purpose of this stage is to evaluate, to the largest extent possible, the scientific or technical merit and feasibility of ideas that appear to

104

Title: Sustainable Communities Based on a New Clean Energy Source -Marine & Hydrokinetic Power: Roosevelt Island and Beyond  

E-Print Network (OSTI)

Title: Sustainable Communities Based on a New Clean Energy Source - Marine & Hydrokinetic Power Earth Hour "a symbol of our commitment to sustainable energy for all," and underscored the need to "fuel hydrokinetic farm in the U.S. Verdant envisions marine & hydrokinetic (MHK) power as the basis of a new local

Angenent, Lars T.

105

2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)  

SciTech Connect

This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

Not Available

2014-02-01T23:59:59.000Z

106

Proceedings of the Hydrokinetic and Wave Energy Technologies...  

Energy Savers (EERE)

Energy Conversion Technologies on Aquatic Environments Before the House Science and Technology Subcommittee on Energy and Environment Water Power Program: 2011 Peer Review Report...

107

Proceedings of the Hydrokinetic and Wave Energy Technologies...  

Energy Savers (EERE)

no one-stop shopping. You have to brainstorm to come up with multiple funding sources, patch the resources together. It is hard to get money, but if you can get a half a dozen...

108

Wind Wave Float | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(TRL 1 2 3 Component) Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project...

109

Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$37 Million for Marine and Hydrokinetic $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to generate renewable electricity from the nation's oceans and free-flowing rivers and streams. The 27 projects range from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and hydrokinetic energy technologies to

110

Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards $37 Million for Marine and Hydrokinetic Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to generate renewable electricity from the nation's oceans and free-flowing rivers and streams. The 27 projects range from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and hydrokinetic energy technologies to

111

Small Buoys for Energy Harvesting : Experimental and Numerical Modeling Studies  

E-Print Network (OSTI)

of a permanent magnet, suspended to a spring, oscillating within a (two-phase) coil), whose armature motion. A rod, attached to the LEG magnetic armature, exits through the bottom of the canister and connects to its bottom, oscillates as a result of buoy heave through coupled resonance. Hence, LEG oscillations

Grilli, Stéphan T.

112

Comparing TRMM rainfall retrieval with NOAA buoy rain gauge data  

E-Print Network (OSTI)

to December of 2001. TRMM's 3G68 product provides instantaneous rain rate data averaged over 0.5? x 0.5? latitude-longitude grid boxes for the TRMM Microwave Imager (TMI), Precipitation Radar (PR), and a combined algorithm (COMB). The buoy's rain rate data...

Phillips, Amy Blackmore

2002-01-01T23:59:59.000Z

113

Heaving buoys, point absorbers and arrays  

Science Journals Connector (OSTI)

...09576509JPE751 ) 52 Hals, J. SubmittedPractical limits to the power that can be captured from ocean waves by oscillating bodies 53 Rademakers, L. W. M. M. , R. G. van Schie, R. Schuitema, B. Vriesema, and F. Gardner2000Physical model testing for characterising...

2012-01-01T23:59:59.000Z

114

Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades  

SciTech Connect

A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.

J.L. Rovey

2012-09-21T23:59:59.000Z

115

2011 Marine and Hydrokinetic Device Modeling Workshop: Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRAM PROGRAM � 2011 Marine Hydrokinetic Device Modeling Workshop: Final Report March 1, 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

116

Template:Marine and Hydrokinetic Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search This is the Marine and Hydrokinetic Technology template. It is designed for use by MHK Technologies Pages. To define an MHK Technology, please use this form. Parameters Image - Associated image file. (optional) Primary Organization - Field def missing! Project(s) where this technology is utilized - Field def missing! Technology Resource - Field def missing! Technology Type - Field def missing! Technology Readiness Level - Field def missing! Technology Description - Field def missing! Designed to Operate with Shore Connection - Field def missing! Power Transfer Method - Field def missing! Water Column Location - Field def missing! Mooring Configuration - Field def missing! Optimum Marine/Riverline Conditions - Field def missing!

117

Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Interior the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment Author Bureau of Ocean Energy Management Office of Renewable Energy Programs Published by U.S. Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs August 2013 iii FINDING OF NO SIGNIIFCANT IMPACT Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental

118

MHK Projects/OE Buoy OE 30 | Open Energy Information  

Open Energy Info (EERE)

OE Buoy OE 30 OE Buoy OE 30 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8037,"lon":-124.76,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

119

Assessment of hydrokinetic energy near Rose Dhu Island, Georgia  

Science Journals Connector (OSTI)

The presented study reports on numerical simulations of flows in tidal channels near Rose Dhu Island GA which is used to identify hotspots of hydrokinetic energy and to assess the tidal stream energy potential at this site. The numerical simulations are complemented with field measurements of local currentvelocities and water surface heights which are used to validate the simulations. Both velocity distributions and water surface heights as predicted by the numerical model are in good agreement with observed data. The simulations reveal a tidal asymmetry in the encompassing Ogeechee estuary with the ebb tidecurrents dominating over the floodtide ones. The model is able to successfully predict the distribution of discharge into the smaller creeks around Rose Dhu Island and thereby capturing the location of local hotspots of hydrokinetic energy. It is found that local hotspots do exist near the island and the analysis suggests the maximum available annual power of 4.75?MW with a peak estimated extraction surpassing 4?KW during Spring tides.

Sandeep Bomminayuni; Brittany Bruder; Thorsten Stoesser; Kevin Haas

2012-01-01T23:59:59.000Z

120

Failure analysis of a Calm buoy anchor chain system  

SciTech Connect

In 1982, Philippines-Cities Service experienced a wear failure of a cateneary anchor chain mooring used to moor a CALM type buoy. In order to explain the failure, Cities Service conducted a comprehensive failure analysis and model basin test of the failed system, and in addition, performed comparative wear tests on U3 and U4 chain. The results of the investigation indicate that interlink motion and resulting wear are an important design criteria for mooring lines.

Shoup, G.J.; Mueller, R.A.

1984-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

Energy.gov (U.S. Department of Energy (DOE))

This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments.

122

Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater aquatic resources.

123

Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

Energy.gov (U.S. Department of Energy (DOE))

Report that describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters.

124

AUTONOMOUS MOBILE BUOY (A-M-B) COASTAL & LAGOON: autonomous monitoring and sampling  

E-Print Network (OSTI)

AUTONOMOUS MOBILE BUOY (A-M-B) COASTAL & LAGOON: autonomous monitoring and sampling PI: Stephen, goals and objectives The project objective of this proposal is to develop an Autonomous Mobile Buoy student built instrumentation and autonomous/remotely operated vehicles that will be deployed, monitored

Wood, Stephen L.

125

Simulating environmental changes due to marine hydrokinetic energy installations.  

SciTech Connect

Marine hydrokinetic (MHK) projects will extract energy from ocean currents and tides, thereby altering water velocities and currents in the site's waterway. These hydrodynamics changes can potentially affect the ecosystem, both near the MHK installation and in surrounding (i.e., far field) regions. In both marine and freshwater environments, devices will remove energy (momentum) from the system, potentially altering water quality and sediment dynamics. In estuaries, tidal ranges and residence times could change (either increasing or decreasing depending on system flow properties and where the effects are being measured). Effects will be proportional to the number and size of structures installed, with large MHK projects having the greatest potential effects and requiring the most in-depth analyses. This work implements modification to an existing flow, sediment dynamics, and water-quality code (SNL-EFDC) to qualify, quantify, and visualize the influence of MHK-device momentum/energy extraction at a representative site. New algorithms simulate changes to system fluid dynamics due to removal of momentum and reflect commensurate changes in turbulent kinetic energy and its dissipation rate. A generic model is developed to demonstrate corresponding changes to erosion, sediment dynamics, and water quality. Also, bed-slope effects on sediment erosion and bedload velocity are incorporated to better understand scour potential.

Jones, Craig A. (Sea Engineering Inc., Santa Cruz, CA); James, Scott Carlton; Roberts, Jesse Daniel (Sandia National Laboratories, Albuquerque, NM); Seetho, Eddy

2010-08-01T23:59:59.000Z

126

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine and Hydrokinetic Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Technical Report NREL/TP-5000-57605 February 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Prepared under Task No. WA09.3406

127

Carnegie Wave Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Carnegie Wave Energy Limited Carnegie Wave Energy Limited Jump to: navigation, search Name Carnegie Wave Energy Limited Address 1 124 Stirling Highway Place North Fremantle Zip 6159 Sector Marine and Hydrokinetic Year founded 1993 Number of employees 25 Website http://www.carnegiewave.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: CETO La Reunion CETO3 Garden Island Perth Wave Energy Project PWEP This company is involved in the following MHK Technologies: CETO Wave Energy Technology This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Carnegie_Wave_Energy_Limited&oldid=678263

128

Experimental studies of the hydrodynamic characteristics of a sloped wave energy device   

E-Print Network (OSTI)

Many wave energy convertors are designed to use either vertical (heave) or horizontal (surge) movements of waves. But the frequency response of small heaving buoys and oscillating water column devices shows that they are ...

Lin, Chia-Po

2000-07-19T23:59:59.000Z

129

Navy Catching Waves in Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii June 2, 2010 - 11:56am Addthis This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. To a casual observer, the buoy off the shore of Marine Corps Base Hawaii (MCBH) might look like nothing more than a bright yellow spot in a blue ocean. But this isn't an ordinary buoy - it's a small electrical generator, creating renewable electricity as it bobs up and down on the waves. It's also a test project by the U.S. Navy to see whether a wider

130

Oregon Wave Energy Partners LLC | Open Energy Information  

Open Energy Info (EERE)

PowerBuoy This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleOregonWaveEnergyPartnersLLC&oldid76930...

131

regulation. Buoys and ship-based sensors are normally used to measure the amount of  

E-Print Network (OSTI)

regulation. Buoys and ship-based sensors are normally used to measure the amount of water the concept by building electronic components such as field-effect transistors. MATERIALS SCIENCE Bettercoats

Heller, Eric

132

Quantifying the Hygroscopic Growth of Marine Boundary Layer Aerosols by Satellite-base and Buoy Observations  

Science Journals Connector (OSTI)

In this study, collocated satellite and buoy observations as well as satellite observations over an extended region during 2006-2010 were used to quantify the humidity effects on marine boundary layer (MBL) aerosols. Although the near-surface ...

Tao Luo; Renmin Yuan; Zhien Wang; Damao Zhang

133

Wave Power Demonstration Project at Reedsport, Oregon  

SciTech Connect

Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager

2013-10-21T23:59:59.000Z

134

WaveCatcher Inc | Open Energy Information  

Open Energy Info (EERE)

WaveCatcher Inc WaveCatcher Inc Jump to: navigation, search Name WaveCatcher Inc Address 2307 Robincrest Ln Sector Marine and Hydrokinetic Year founded 2006 Phone number 1-847-764-9106 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=WaveCatcher_Inc&oldid=678511" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863326429 Varnish cache server

135

US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines  

Energy.gov (U.S. Department of Energy (DOE))

US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

136

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water...  

Energy Savers (EERE)

Department of Energy's Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and...

137

Request for Information Regarding the Testing of Marine and Hydrokinet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program is seeking to better understand the current state of development of existing wave energy converter systems and current energy converter systems nearing one of two...

138

MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Hydrokinetic Energy Project Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6853,"lon":-75.0694,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

139

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Technology Glossary Technology Glossary (Redirected from Axial Flow Turbine) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

140

WEC up! Energy Department Announces Wave Energy Conversion Prize Administrator  

Office of Energy Efficiency and Renewable Energy (EERE)

The Water Power Program today awarded $6.5 million to a Prize Administration Team for the development and execution of the Energy Department’s Wave Energy Conversion (WEC) Prize Competition. The WEC Prize will continue to advance marine and hydrokinetic (MHK) technology as a viable source for America’s clean energy future, in part by providing an opportunity for developers to test their innovative wave energy conversion (WEC) devices in a wave generating basin.

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Working Group Reports A Short-Wave Radiometer Array Across  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Working Group Reports A Short-Wave Radiometer Array Across the Tropical Pacific Ocean as a Component of the TOGA-TAO Buoy Array R. M. Reynolds Brookhaven National Laboratory Upton, New York Introduction The purpose of this document is to bring together pertinent information concerning the NOAA TOGA-TAO buoy array so that a decision can be made for the following questions: 1. Are the scientific gains from an array of short-wave radiation sensors in the equatorial Pacific Ocean sufficiently impelling that DOE/ARM should provide financial and material support to NOAA/PMEL to install and operate this array? 2. What scientists and/or scientific studies would directly benefit from such a data set? 3. What should that array look like? That is, what sub-set of buoys should be so implemented given the per-buoy

142

The Signature of Inertial and Tidal Currents in Offshore Wave Records  

Science Journals Connector (OSTI)

The roughness of the sea surface can be affected by strong currents. Here, long records of surface wave heights from buoy observations in the northeastern Pacific Ocean are examined. The data show the influence of tidal currents, but the first ...

Johannes Gemmrich; Chris Garrett

2012-06-01T23:59:59.000Z

143

In situ Monitoring of Cyanobacterial HABs in Western Lake Erie using Buoy-mounted Sensors  

E-Print Network (OSTI)

In situ Monitoring of Cyanobacterial HABs in Western Lake Erie using Buoy-mounted Sensors Primary for the rest of the western basin of Lake Erie. We propose to deploy environmental sensors at these sites. The first sensor is a fluorescence-based detector of phycocyanin, a pigment found predominantly

144

Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait  

SciTech Connect

The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

Neary, Vincent S [ORNL; Gunawan, Budi [ORNL; Ryou, Albert S [ORNL

2012-06-01T23:59:59.000Z

145

Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2011: Annual Progress Report  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL), in collaboration with the Applied Physics Laboratory at the University of Washington (APL-UW), has carried out a detailed preliminary fluid flow field study at site selected for testing of marine and hydrokinetic turbines using Acoustic Doppler Velocimetry (ADV) measurements, Acoustic Doppler Current Profiler (ADCP) measurements, and Conductivity, Temperature and Depth (CTD) measurements. In FY-2011 these measurements were performed continuously for two weeks, in order to collect data during neap and spring tides, as well as during diurnal tidal variations.

Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

2011-06-09T23:59:59.000Z

146

2011 Marine Hydrokinetic Device Modeling Workshop: Final Report; March 1, 2011  

SciTech Connect

This report summarizes the NREL Marine and Hydrokinetic Device Modeling Workshop. The objectives for the modeling workshop were to: (1) Review the designs of existing MHK device prototypes and discuss design and optimization procedures; (2) Assess the utility and limitations of modeling techniques and methods presently used for modeling MHK devices; (3) Assess the utility and limitations of modeling methods used in other areas, such as naval architecture and ocean engineering (e.g., oil & gas industry); and (4) Identify the necessary steps to link modeling with other important components that analyze MHK devices (e.g., tank testing, PTO design, mechanical design).

Li, Y.; Reed, M.; Smith, B.

2011-10-01T23:59:59.000Z

147

Energy Department Announces $8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $8 million in available funding to spur innovation in next-generation marine and hydrokinetic control and component technologies. In the United States, waves, tides, and ocean currents represent a largely untapped renewable energy resource that could provide clean, affordable energy to homes and businesses across the country's coastal regions.

148

MHK Technologies/Wave Catcher | Open Energy Information  

Open Energy Info (EERE)

Wave Catcher.png Wave Catcher.png Technology Profile Primary Organization Offshore Islands Ltd Technology Resource Click here Current Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Wave Catcher can be orientated to take advantage of the most numerous prevailing waves to generate power It is a long surface buoy cylinder that is lifted by each passing wave As the cylinder is lifted it pulls on its anchor lines which in turn pulls on a support pulley This support pulley turns the generator s rotor and flywheel The generator s flywheel keeps the rotor turning until the next wave lifts up the cylinder and the anchor line once again turns the pulley The cylinder will also be lifted by waves from all directions As a result the anchor cables at each end of the buoy may either pull together or at slightly different times The gears the pulleys the rotor and flywheel are turned when the anchor cable s tension is high The uni direction pulley s re coil spring re winds the anchor cable back around the pulley when the buoy moves down with the trough of the wave and the anchor cable tension is low The wave generator can be in a surface buoy or mounted sub

149

MHK Technologies/Neptune Triton Wave | Open Energy Information  

Open Energy Info (EERE)

Triton Wave Triton Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Triton Wave.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Triton operates in the near-shore and consists of an axi-asymmetrical buoy attached to an A-frame piled into the sea bed. The axi-asymmetrical buoy is designed to generate a counter-phase upstream wave and a much reduced downstream wave, which maximizes capture from the wave and improves overall efficiency. In order to tune the buoy to the incident wave regime, the mass can be controlled by pumping sea water into and out of the hollow cavity inside the buoy. Power take-off is achieved via a piston and hydraulic arrangement.

150

MHK Projects/OSU Direct Drive Power Generation Buoys | Open Energy  

Open Energy Info (EERE)

OSU Direct Drive Power Generation Buoys OSU Direct Drive Power Generation Buoys < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6472,"lon":-124.127,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

151

Detiding DART buoy data for real-time extraction of source coefficients for operational tsunami forecasting  

E-Print Network (OSTI)

U.S. Tsunami Warning Centers use real-time bottom pressure (BP) data transmitted from a network of buoys deployed in the Pacific and Atlantic Oceans to tune source coefficients of tsunami forecast models. For accurate coefficients and therefore forecasts, tides at the buoys must be accounted for. In this study, five methods for coefficient estimation are compared, each of which accounts for tides differently. The first three subtract off a tidal prediction based on (1) a localized harmonic analysis involving 29 days of data immediately preceding the tsunami event, (2) 68 pre-existing harmonic constituents specific to each buoy, and (3) an empirical orthogonal function fit to the previous 25 hrs of data. Method (4) is a Kalman smoother that uses method (1) as its input. These four methods estimate source coefficients after detiding. Method (5) estimates the coefficients simultaneously with a two-component harmonic model that accounts for the tides. The five methods are evaluated using archived data from eleven...

Percival, Donald B; Eble, Marie C; Gica, Edison; Huang, Paul Y; Mofjeld, Harold O; Spillane, Michael C; Titov, Vasily V; Tolkova, Elena I

2014-01-01T23:59:59.000Z

152

Hydrodynamic principles of wave power extraction  

Science Journals Connector (OSTI)

...Despite the abundance of wave power in the sea, technologies...extraction share with offshore wind power at least two similar challenges...present, the estimated power-generating capacity of...20-40 buoys to match a wind turbine of 2MW capacity...

2012-01-01T23:59:59.000Z

153

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments  

Energy.gov (U.S. Department of Energy (DOE))

The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

154

Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop  

Energy.gov (U.S. Department of Energy (DOE))

This workshop focused on information about the technologies and identified potential environmental issues associated with deploying them, and outlined a list of research needs and possible approaches to addressing those issues.

155

Wave Star Energy | Open Energy Information  

Open Energy Info (EERE)

Star Energy Star Energy Jump to: navigation, search Name Wave Star Energy Place Denmark Zip DK-2920 Product Denmark-based private wave device developer. References Wave Star Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Wave Star Energy 1 10 Scale Model Test This company is involved in the following MHK Technologies: C5 WaveStar This article is a stub. You can help OpenEI by expanding it. Wave Star Energy is a company located in Denmark . References ↑ "Wave Star Energy" Retrieved from "http://en.openei.org/w/index.php?title=Wave_Star_Energy&oldid=678928" Categories: Clean Energy Organizations

156

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

NLE Websites -- All DOE Office Websites (Extended Search)

5021 5021 August 2009 Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors D. Sale University of Tennessee J. Jonkman and W. Musial National Renewable Energy Laboratory Presented at the ASME 28 th International Conference on Ocean, Offshore, and Arctic Engineering Honolulu, Hawaii May 31-June 5, 2009 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

157

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

SciTech Connect

This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

Sale, D.; Jonkman, J.; Musial, W.

2009-08-01T23:59:59.000Z

158

Simulating Blade-Strike on Fish passing through Marine Hydrokinetic Turbines  

SciTech Connect

The study reported here evaluated the occurrence, frequency, and intensity of blade strike of fish on an axial-flow marine hydrokinetic turbine by using two modeling approaches: a conventional kinematic formulation and a proposed Lagrangian particle- based scheme. The kinematic model included simplifying assumptions of fish trajectories such as distribution and velocity. The proposed method overcame the need for such simplifications by integrating the following components into a computational fluid dynamics (CFD) model: (i) advanced eddy-resolving flow simulation, (ii) generation of ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The test conditions to evaluate the blade-strike probability and fish survival rate were: (i) the turbulent environment, (ii) the fish size, and (iii) the approaching flow velocity. The proposed method offered the ability to produce potential fish trajectories and their interaction with the rotating turbine. Depending upon the scenario, the percentile of particles that registered a collision event ranged from 6% to 19% of the released sample size. Next, by using a set of experimental correlations of the exposure-response of living fish colliding with moving blades, the simulated collision data were used as input variables to estimate the survival rate of fish passing through the operating turbine. The resulting survival rates were greater than 96% in all scenarios, which is comparable to or better than known survival rates for conventional hydropower turbines. The figures of strike probability and mortality rate were amplified by the kinematic model. The proposed method offered the advantage of expanding the evaluation of other mechanisms of stress and injury on fish derived from hydrokinetic turbines and related devices.

Romero Gomez, Pedro DJ; Richmond, Marshall C.

2014-06-16T23:59:59.000Z

159

Waves  

E-Print Network (OSTI)

Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...

LaCure, Mari Mae

2010-04-29T23:59:59.000Z

160

Dynamics Simulation in a Wave Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Coupled Dynamic Simulation in a Wave Coupled Dynamic Simulation in a Wave Environment (Navatek, AEGIR, and WECs) Marine and Hydrokinetics Instrumentation Workshop 9 July 2012 David Kring, Navatek Ltd. Presentation Overview * Introduction to Navatek * AEGIR brief: resistance, seakeeping, global and local loads a 3D, NURBS-based, high-order, Rankine boundary element method ... from same lab as at MIT as WAMIT and SWAN, with pFFT acceleration coupling with controls, structures, aerodynamics, power take-offs * Some WEC applications at Navatek 2 Honolulu, Hawaii, USA Company Background A "Research Shipyard" based in Honolulu, HI Combining simulation-based design with prototype construction

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Tethys: The Marine and Hydrokinetic Technology Environmental Impacts Knowledge Management System -- Requirements Specification -- Version 1.0  

SciTech Connect

The marine and hydrokinetic (MHK) environmental impacts knowledge management system (KMS), dubbed Tethys after the mythical Greek goddess of the seas, is being developed for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program (WHTP) by Pacific Northwest National Laboratory (PNNL). This requirements specification establishes the essential capabilities required of Tethys and clarifies for WHTP and the Tethys development team the results that must be achieved by the system.

Butner, R. Scott; Snowden-Swan, Lesley J.; Ellis, Peter C.

2010-11-09T23:59:59.000Z

162

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

163

SeWave | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » SeWave Jump to: navigation, search Name SeWave Place Denmark Zip FO-110 Product Denmark-based 50:50 JV between UK's Wavegen and Faroese electricity company SEV to to design and build a tunnelled demonstration wave power plant in the Faroes Islands. References SeWave[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeWave is a company located in Denmark . References ↑ "SeWave"

164

Ice Mass Balance Buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea ice cover  

E-Print Network (OSTI)

Ice Mass Balance Buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea ice cover Jacqueline A. Richter-Menge1 , Donald K. Perovich1 , Bruce C. Elder1 , Keran Claffey1 Abstract Recent observational and modeling studies indicate that the Arctic sea ice cover is undergoing

Rigor, Ignatius G.

165

Attraction to and Avoidance of instream Hydrokinetic Turbines by Freshwater Aquatic Organisms  

SciTech Connect

The development of hydrokinetic (HK) energy projects is under consideration at over 150 sites in large rivers in the United States, including the Mississippi, Ohio, Tennessee, and Atchafalaya Rivers. These waterbodies support numerous fish species that might interact with the HK projects in a variety of ways, e.g., by attraction to or avoidance of project structures. Although many fish species inhabit these rivers (about 172 species in the Mississippi River alone), not all of them will encounter the HK projects. Some species prefer low-velocity, backwater habitats rather than the high-velocity, main channel areas that would be the best sites for HK. Other, riverbank-oriented species are weak swimmers or too small to inhabit the main channel for significant periods of time. Some larger, main channel fish species are not known to be attracted to structures. Based on a consideration of habitat preferences, size/swim speed, and behavior, fish species that are most likely to be attracted to HK structures in the main channel include carps, suckers, catfish, white bass, striped bass, smallmouth bass, spotted bass, and sauger. Proper siting of the project in order to avoid sensitive fish populations, backwater and fish nursery habitat areas, and fish migration corridors will likely minimize concerns about fish attraction to or avoidance of HK structures.

Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2011-05-01T23:59:59.000Z

166

Wave power absorption: Experiments in open sea and simulation  

Science Journals Connector (OSTI)

A full scale prototype of a wave power plant based on a direct drive linear generator driven by a point absorber has been installed at the west coast of Sweden. In this paper experimentally collected data of energy absorption for different electrical loads are used to verify a model of the wave power plant including the interactions of wave buoy generator and external load circuit. The wave-buoy interaction is modeled with linear potential wavetheory. The generator is modeled as a nonlinear mechanical damping function that is dependent on piston velocity and electric load. The results show good agreement between experiments and simulations. Potential wavetheory is well suited for the modeling of a point absorber in normal operation and for the design of future converters. Moreover the simulations are fast which opens up for simulations of wave farms.

M. Eriksson; R. Waters; O. Svensson; J. Isberg; M. Leijon

2007-01-01T23:59:59.000Z

167

Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound  

SciTech Connect

Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

2012-03-30T23:59:59.000Z

168

Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project  

SciTech Connect

The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

2015-01-01T23:59:59.000Z

169

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

170

DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES  

SciTech Connect

Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric aspects of the passage event ---which the probabilistic method does--- as well as the fluid-particle interactions ---which the Lagrangian particle method does. The DEM-based survival rates were comparable to laboratory results for small fish but not for mid-size fish because of the considerably different turbine diameters. The modeling framework can be used for applications that aim at evaluating the biological performance of MHK turbine units during the design phase and to provide information to regulatory agencies needed for the environmental permitting process.

Romero Gomez, Pedro DJ; Richmond, Marshall C.

2014-04-17T23:59:59.000Z

171

Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

SciTech Connect

The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. The assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

Jacobson, Paul T. [Electric Power Research Institute; Ravens, Thomas M. [University of Alaska Anchorage; Cunningham, Keith W. [University of Alaska Fairbanks; Scott, George [National Renewable Energy Laboratory

2012-12-14T23:59:59.000Z

172

An Open Ocean Trial of Controlled Upwelling Using Wave Pump Technology  

Science Journals Connector (OSTI)

In 1976, John D. Isaacs proposed to use wave energy to invert the density structure of the ocean and pump deep, nutrient-rich water into the sunlit surface layers. The basic principle is simple: a length of tubing attached to a surface buoy at ...

Angelicque White; Karin Björkman; Eric Grabowski; Ricardo Letelier; Steve Poulos; Blake Watkins; David Karl

2010-02-01T23:59:59.000Z

173

Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency  

Science Journals Connector (OSTI)

Abstract Power and drag (or thrust) measurements were performed in a towing tank for two different helical cross-flow marine hydrokinetic energy conversion devices—a cylindrical Gorlov Helical Turbine (GHT) and a Lucid Spherical Turbine (LST). The turbines are compared with respect to their various design parameters, with the GHT overall operating at higher power and drag coefficients. An estimate for the exergy efficiency of a turbine in free flow is formulated using momentum theory, and this quantity is computed for both devices. The GHT's exergy efficiency advantage over the LST was higher than that based on the power coefficient. Momentum theory-based blockage corrections were applied to the measurements and compared with the non-corrected data. The results presented here will help increase the amount of experimental data for helical devices in the literature, which is necessary for the development of more accurate engineering tools that take into account the unique three-dimensional nature of these devices.

Peter Bachant; Martin Wosnik

2015-01-01T23:59:59.000Z

174

FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473  

SciTech Connect

This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

Driscoll, F.

2013-04-01T23:59:59.000Z

175

MHK Technologies/Uppsala Seabased AB Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

AB Wave Energy Converter AB Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Seabased AB Wave Energy Converter.jpg Technology Profile Primary Organization Uppsala University Division for Electricity Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The system consists of a linear permanent magnet synchronous generator located on the sea floor The generator is connected directly via a line to a buoy on the surface There are no intermediate energy conversion steps thus the generator motion is the same as the buoy motion Several generators 3 today are connected to a marine substation where the voltage is converted to grid frequency transformed to higher voltage and transmitted to shore All electrical cables throughout the system are fixed i e there are no motions that subject the cables to bending moments

176

Langlee Wave Power AS | Open Energy Information  

Open Energy Info (EERE)

Power AS Address: Smedsvingen 4 Entrance B 1st floor Place: Hvalstad Zip: 1395 Region: Norway Sector: Marine and Hydrokinetic Phone Number: +47 90044104 Website: http:...

177

MHK Technologies | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Click one of the following Marine Hydrokinetic Technologies for more information: Loading... 14 MW OTECPOWER Aegir Dynamo AirWEC Anaconda bulge tube drives turbine AquaBuoy Aquanator Aquantis Archimedes Wave Swing Atlantis AN 150 Atlantis AR 1000 Atlantis AS 400 Atlantisstrom BOLT Lifesaver Benkatina Turbine Blue Motion Energy marine turbine Bluetec Brandl Generator C Plane C Wave C5 CETO Wave Energy Technology Centipod Closed Cycle OTEC CoRMaT Cross Flow Turbine Current Catcher Current Electric Generator Current Power CurrentStar DEXA Wave Converter Davidson Hill Venturi DHV Turbine Deep Gen Tidal Turbines Deep Green Deep Ocean Water Application Facility DOWAF Deep Water Pipelines Deep water capable hydrokinetic turbine

178

Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review  

Science Journals Connector (OSTI)

The energy in flowing river streams, tidal currents or other artificial water channels is being considered as viable source of renewable power. Hydrokinetic conversion systems, albeit mostly at its early stage of development, may appear suitable in harnessing energy from such renewable resources. A number of resource quantization and demonstrations have been conducted throughout the world and it is believed that both in-land water resources and offshore ocean energy sector will benefit from this technology. In this paper, starting with a set of basic definitions pertaining to this technology, a review of the existing and upcoming conversion schemes, and their fields of applications are outlined. Based on a comprehensive survey of various hydrokinetic systems reported to date, general trends in system design, duct augmentation, and placement methods are deduced. A detailed assessment of various turbine systems (horizontal and vertical axis), along with their classification and qualitative comparison, is presented. In addition, the progression of technological advancements tracing several decades of R&D efforts are highlighted.

M.J. Khan; G. Bhuyan; M.T. Iqbal; J.E. Quaicoe

2009-01-01T23:59:59.000Z

179

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

21 - 30 of 175 results. Video Energy 101: Marine and Hydrokinetic Energy See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents...

180

MHK Technologies/Wave Rider | Open Energy Information  

Open Energy Info (EERE)

Rider Rider < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rider.jpg Technology Profile Primary Organization Seavolt Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The company s Wave Rider system uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity Electricity is generated via small turbines powered by hydraulic circuits which captures the energy of the wave and converts it into high pressure hydraulic fluid flow spinning the turbines to generate electricity Technology Dimensions Device Testing Date Submitted 19:42.1 << Return to the MHK database homepage

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Finavera Renewables Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Renewables Ocean Energy Ltd Renewables Ocean Energy Ltd Jump to: navigation, search Name Finavera Renewables Ocean Energy Ltd Address 595 Burrard Street Suite 3113 Three Bentall Centre PO Box 49071 Place Vancouver Zip V7X 1G4 Sector Marine and Hydrokinetic Phone number 604-288-9051 Website http://www.finavera.com Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Coos County Offshore Wave Energy Power Plant Figueira da Foz Portugal Humboldt County Wave Project Makah Bay Offshore Wave Pilot Project South Africa Ucluelet BC Canada This company is involved in the following MHK Technologies: AquaBuoy This article is a stub. You can help OpenEI by expanding it.

182

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

SciTech Connect

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

Maniaci, D. C.; Li, Y.

2011-10-01T23:59:59.000Z

183

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint  

SciTech Connect

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

Maniaci, D. C.; Li, Y.

2012-04-01T23:59:59.000Z

184

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating the Influence of Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code D.C. Maniaci Pennsylvania State University Y. Li National Renewable Energy Laboratory Presented at the Oceans 11 Conference Kona, Hawaii September 19-21, 2011 Conference Paper NREL/CP-5000-52306 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

185

Calling All Coders: Help Advance America's Wave Power Industry...  

Office of Environmental Management (EM)

Resource Assessment and Characterization maps and tools Watch the Energy 101 video on Marine and Hydrokinetic technology With more than 50% of the nation's population...

186

Calling All Coders: Help Advance America's Wave Power Industry  

Office of Energy Efficiency and Renewable Energy (EERE)

The second round of coding competition kicks off that will help industry develop models and tools that improve the design, development, and optimization of marine and hydrokinetic devices.

187

MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy Information  

Open Energy Info (EERE)

Converter OWEC Converter OWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Energy Converter OWEC.jpg Technology Profile Primary Organization Ocean Wave Energy Company Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Neutrally suspended and positively buoyant modules are quick connected into open frame networks Submerged portions are stabilized by variable ballast buoyancy chambers and optional damper sheets situated at a relatively calm depth Frame members carry shaft components of linear rotary converters associated with large point absorber buoys Both directions of reciprocal wave motion i e vertical and horizontal motion directly drive components of counter rotating electrical generators Compared to standard generators wherein one is associated with upstroke and another of smaller proportion with downstroke this configuration increases relative speed with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following buoys Electrical conductors are series connected and further quick connected with those of other modules via upper frame members Through implementation of rep

188

A comparison of observed and modeled surface waves in southern Lake Michigan and the implications for models of sediment resuspension.  

SciTech Connect

Subsurface pressure sensors were used to make measurements of surface waves during 18 deployments in southern Lake Michigan between 1998 and 2000. Most of the observations were made during the unstratified period (November--May) in water depths between 10 and 55 m. The observations (as well as those obtained from the National Data Buoy Center (NDBC) buoy 45007, which is located in the middle of the southern basin of the lake) were compared to the results obtained from the Great Lakes Environmental Research Laboratory (GLERL)-Donelan wave model implemented on a 2-km grid. The results show that the wave model does a good job of calculating the wave heights, but consistently underestimates the wave periods. In over 80% of the cases the bottom stresses calculated from both the observations and the wave model results agree as to whether or not resuspension occurs, but over 70% of this agreement is for cases when resuspension does not occur; both stresses predict resuspension about 6% of the time. Since the bottom stresses calculated from the model results are usually lower than those calculated from the observations, resuspension estimates based on the wave model parameters are also lower than those calculated from the observed waves.

Hawley, N.; Lesht, B. M.; Schwab, D. J.; Environmental Research; Great Lakes Environmental Research Lab

2004-06-25T23:59:59.000Z

189

Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices Task 2.1.3: Effects on Aquatic Organisms – Fiscal Year 2011 Progress Report Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

A literature search was conducted by using the Web of Science® Databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on marine mammals, seabirds, and fish. Several relatively recent general review articles that included possible effects of marine renewable energy devices on marine mammals and seabirds were examined to begin the search process (e.g., Boehlert et al. 2008; Thompson et al. 2008; Simas et al. 2009). From these articles, several general topics of potential environmental effects on marine mammals, seabirds, and fish were derived. These topics were used as the primary search factors. Searches were conducted with reference to the potential effects of offshore wind farms and MHK devices on marine mammals, seabirds, and fish. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that often the potential effects were offered as hypotheses that often were not supported by the presentation of appropriate documentation. Therefore, the search was refined and focused on trying to obtain the necessary information to support or challenge a proposed potential effect to a specific concern. One of the expressed concerns regarding MHK devices is that placing wave parks in coastal waters could compromise the migration patterns of whales. Disruption of the annual migration of the gray whale (Eschrichtius robustus), which swims at least 30,000 km on its round trip from breeding grounds in Baja California to feeding areas in the Bering Sea, is of particular concern. Among the hypothesized effects on the migrating gray whales are increased predation risk by constricting migration corridor to between array and shore or by forcing the whales to swim into deeper waters, increased metabolic energy costs and delays in reaching the destinations, and interrupting feeding by blocking access to benthic areas under arrays. The literature search focused on identifying published studies that could provide information to evaluate these concerns. The results were developed into a case study that evaluated the potential effects of the placement of wave parks in coastal waters along the migration route of the gray whale. Wave parks and other MHK arrays may have additional effects on gray whales and other marine mammals, including entanglement in mooring lines and interference with communications among other effects, that were not included in this case study. The case study results were rewritten into a simpler form that would be suitable for placement on a web blog

Kropp, Roy K.

2011-09-30T23:59:59.000Z

190

Energy Department Announces $10 Million for Full-Scale Wave Energy Device Testing  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department, in coordination with the Navy, today announced funding for two companies to test their innovative wave energy conversion devices in new deep water test berths off the waters of the Navy’s Marine Corps Base Hawaii. Ocean Energy USA will leverage lessons learned from previous quarter-scale test deployments that have led to design improvements for a full-scale deployment of their Ocean Energy Buoy. Northwest Energy Innovations will build and test a full-scale model of its Azura device.

191

Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

Energy generated by the world’s oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

2013-05-20T23:59:59.000Z

192

MHK Technologies/Wave Treader fixed | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies/Wave Treader fixed MHK Technologies/Wave Treader fixed < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Treader fixed.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Wave Treader concept utilises the arms and sponsons from Ocean Treader and instead of reacting against a floating Spar Buoy, will react through an Interface Structure onto the Foundation of an Offshore Wind Turbine. Between the Arms and the Interface Structure hydraulic cylinders are mounted and as the wave passes the machine first the forward Sponson will lift and fall and then the aft Sponson will lift and fall each stroking their hydraulic cylinder in turn. This pressurises hydraulic fluid which is then smoothed by hydraulic accumulators before driving a hydraulic motor which in turn drives an electricity generator. The electricity is then exported through the cable shared with the Wind Turbine.

193

Wave energy  

Science Journals Connector (OSTI)

Waves receive their energy from the wind by means of a ... whose yield is not yet clearly understood. Energy in the wave is more concentrated than in the wind ... density. For this reason a motor utilizing wave p...

Ferruccio Mosetti

1982-01-01T23:59:59.000Z

194

2011 Waves -1 STANDING WAVES  

E-Print Network (OSTI)

-multiple of the wavelength: n 2 L ,n 1,2,... . A vibrating string is an example of a transverse wave: its oscillation2011 Waves - 1 STANDING WAVES ON A STRING The objectives of the experiment are: · To show that standing waves can be set up on a string. · To determine the velocity of a standing wave. · To understand

Glashausser, Charles

195

Marine & Hydrokinetic Technologies (Fact Sheet)  

SciTech Connect

This document described the U.S. Department of Energy's Water Power Program efforts to promote the development and deployment of advanced water power devices.

Not Available

2011-07-01T23:59:59.000Z

196

Electrical damping of linear generators for wave energy converters—A review  

Science Journals Connector (OSTI)

Abstract The electrical damping of point-absorber wave energy converters is crucial to optimize the power output. Many circuit topologies have been proposed, but the possible increase in power absorption must be weighed against parameters such as cost, reliability and control system complexity. In this paper, the known electrical damping circuits are categorized, described and compared. The hydrodynamic damping of the buoy is covered, and how a linear generator can be used as a power take-off unit to apply a damping force. A qualitative comparison of the circuits is presented in the end. A more complex and costly power electronics system may be viable for wave energy converters (WECs) of large-scale power rating. However, for farm operation with small-scale WECs, a simpler and passive damping may be more suitable.

Rickard Ekström; Boel Ekergård; Mats Leijon

2015-01-01T23:59:59.000Z

197

Wave-actuated power take-off device for electricity generation  

SciTech Connect

Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME'Â?Â?s power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels Â?Â?e.g., 10 to 100kW?

Chertok, Allan

2013-01-31T23:59:59.000Z

198

Property:Project(s) where this technology is utilized | Open Energy  

Open Energy Info (EERE)

Project(s) where this technology is utilized Project(s) where this technology is utilized Jump to: navigation, search Property Name Project(s) where this technology is utilized Property Type Page Marine and Hydrokinetic Technology Project Pages using the property "Project(s) where this technology is utilized" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/AirWEC + MHK Projects/Ocean Trials Ver 2 + MHK Technologies/AquaBuoy + MHK Projects/Figueira da Foz Portugal +, MHK Projects/Humboldt County Wave Project +, MHK Projects/Makah Bay Offshore Wave Pilot Project +, ... MHK Technologies/Archimedes Wave Swing + MHK Projects/AWS II +, MHK Projects/Portugal Pre Commercial Pilot Project + MHK Technologies/Atlantis AN 150 + MHK Projects/Gujarat + MHK Technologies/Atlantis AR 1000 + MHK Projects/Castine Harbor Badaduce Narrows +, MHK Projects/Gujarat +, MHK Projects/Tidal Energy Device Evaluation Center TIDEC +

199

The wave energy resource along Australia’s Southern margin  

Science Journals Connector (OSTI)

The Southern Australian margin is one of the most energetic regions in the world suitable for the extraction of waveenergy for electricity generation. We have produced a data set in which the deep-water waveenergy resource for the region is described by three representative deep-water wave states equivalent to the 10th 50th and 90th percentiles of the deep-water waveenergy flux derived from archives of the USA National Oceanic and Atmospheric Administration (NOAA) WaveWatch III (NWW3) operational wavemodel. The Simulating WAves Nearshore (SWAN) wavemodel is then applied along the full Southern Australian margin to propagate these representative wave states into the near-shore region to quantify the effects of shallow water processes such as refraction shoaling and bottom friction. The waveenergy incident on the 25-m isobath ( ? 30 – 50 ? kW / m ) is approximately 35%–50% less than the World Energy Council estimates of offshore waveenergy but is approximately 20% greater than the energy observed from long-term buoy deployments on the midshelf. The latter discrepancy is attributed to an overestimation of significant wave height along the Southern Australian margin by the NWW3 model. The near-shore model applied in this study adequately simulates the attenuation of wave heights across the continental shelf when compared with estimates of wave height attenuation obtained from the Topex satellite altimeter. The attenuation of waveenergy across the continental shelf reduces the estimates of offshore waveenergy as given by the World Energy Council; however the waveenergy resource incident on the Southern Australian margin remains considerable. We estimate that if 10% of the incident near-shore energy in this region which is an ambitious target when conversion efficiency is considered were converted to electricity approximately 130 TW?h/yr (one-half of Australia’s total present-day electricity consumption) would be produced.

M. A. Hemer; D. A. Griffin

2010-01-01T23:59:59.000Z

200

Ocean Wave Energy Company OWECO | Open Energy Information  

Open Energy Info (EERE)

Energy Company OWECO Energy Company OWECO Jump to: navigation, search Name Ocean Wave Energy Company (OWECO) Place Bristol, Rhode Island Sector Ocean Product Wave energy device developer. The company has patented the OWEC Ocean Wave Energy Converter®., a device consisting of a submerged array, suspended at depths permitting full reciprocation of buoys and respective driveshafts. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sound transmission through the internal?wave field: The inverse problem.  

Science Journals Connector (OSTI)

Buoyed by the early success of ocean acoustictomography for ocean mapping and of path integral theory combined with the Garrett–Munk internal?wave model for explaining acoustic fluctuations Flatte and others could not resist the temptation of using statistical moments of the acoustic field to learn something about the spatial and temporal distributions of oceaninternal waves. Indeed internal waves are of intense oceanographic interest because of their relation to tides eddies (which account for 99% of the ocean kinetic energy) and the mixing processes that maintain the thermocline. Because of the integrating property of acoustics and the sensitivity of certain acoustic observables to different parts of the internal?wave spectrum acoustical techniques like those described by Flatte offer a unique view into internal?wave behavior. Recent acoustic and oceanographic measurements made in the Philippine Sea using a large vertical aperture array and high temporal sampling may provide the first field demonstration of internal?wave tomography progress of which would be quite pleasing to Flatte.

John Colosi

2009-01-01T23:59:59.000Z

202

wave energy  

Science Journals Connector (OSTI)

wave energy ? Wellenenergie f [Die einer Schwerewelle innewohnende potentielle und kinetische Energie. Sie ist etwa proportional dem Quadrat der Wellenhöhe. Zeichen: E we ...

2014-08-01T23:59:59.000Z

203

Property:Length (m) | Open Energy Information  

Open Energy Info (EERE)

(m) (m) Jump to: navigation, search Property Name Length (m) Property Type Number Pages using the property "Length (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/AirWEC + 0 + MHK Technologies/CurrentStar + 30.5 + MHK Technologies/Deep Green + 4 + MHK Technologies/Deep water capable hydrokinetic turbine + 5 + MHK Technologies/Electric Buoy + 10 + MHK Technologies/European Pico Pilot Plant + 20 + MHK Technologies/Evopod E35 + 12.5 + MHK Technologies/Float Wave Electric Power Station + 12 + MHK Technologies/Floating anchored OTEC plant + 60 + MHK Technologies/HyPEG + 50 + MHK Technologies/HydroGen 10 + 4.5 + MHK Technologies/Hydroflo + 7 + MHK Technologies/ITRI WEC + 6 + MHK Technologies/IVEC Floating Wave Power Plant + 150 +

204

Property:Freeboard (m) | Open Energy Information  

Open Energy Info (EERE)

Freeboard (m) Freeboard (m) Jump to: navigation, search Property Name Freeboard (m) Property Type Number Pages using the property "Freeboard (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 4 + MHK Technologies/AirWEC + 0.25 + MHK Technologies/CurrentStar + 3.65 + MHK Technologies/Deep Green + 0 + MHK Technologies/Deep water capable hydrokinetic turbine + 0 + MHK Technologies/Electric Buoy + 3 + MHK Technologies/European Pico Pilot Plant + 15 + MHK Technologies/Evopod E35 + 1.5 + MHK Technologies/Float Wave Electric Power Station + 5 + MHK Technologies/Floating anchored OTEC plant + 10 + MHK Technologies/GyroWaveGen + 3 + MHK Technologies/HydroGen 10 + 2.5 + MHK Technologies/Hydroflo + 2 + MHK Technologies/ITRI WEC + 4.9 +

205

SeaVolt Technologies formerly Sea Power Associates | Open Energy  

Open Energy Info (EERE)

SeaVolt Technologies formerly Sea Power Associates SeaVolt Technologies formerly Sea Power Associates Jump to: navigation, search Name SeaVolt Technologies (formerly Sea Power & Associates) Place San Francisco, California Zip CA 94111 Sector Ocean Product The company's Wave Rider system, which is still in prototype stages, uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity. References SeaVolt Technologies (formerly Sea Power & Associates)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeaVolt Technologies (formerly Sea Power & Associates) is a company located in San Francisco, California .

206

Property:Draft (m) | Open Energy Information  

Open Energy Info (EERE)

Draft (m) Draft (m) Jump to: navigation, search Property Name Draft (m) Property Type String Pages using the property "Draft (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 8 + MHK Technologies/Deep Green + 40 + MHK Technologies/Deep water capable hydrokinetic turbine + 5 + MHK Technologies/Electric Buoy + 7 + MHK Technologies/European Pico Pilot Plant + 7 + MHK Technologies/Evopod E35 + 5 + MHK Technologies/Float Wave Electric Power Station + 7 + MHK Technologies/Floating anchored OTEC plant + 530 + MHK Technologies/HyPEG + 20 + MHK Technologies/HydroGen 10 + 1 + MHK Technologies/Hydroflo + 2 + MHK Technologies/ITRI WEC + 13 + MHK Technologies/Microturbine River In Stream + 0.7 + MHK Technologies/OCEANTEC Wave Energy Converter + 5.25 +

207

Vacuum Waves  

E-Print Network (OSTI)

As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.

Paul S. Wesson

2012-12-11T23:59:59.000Z

208

Estimating wave energy from a wave record  

Science Journals Connector (OSTI)

This note is concerned with the calculation of wave energy from a time series record of wave heights. Various methods are used to estimate the wave energy. For wave records that contain a number of different ... ...

Sasithorn Aranuvachapun; John A. Johnson

1977-01-01T23:59:59.000Z

209

Coherence waves  

Science Journals Connector (OSTI)

In 1955 Wolf noticed that the mutual coherence function ? obeys two wave equations [Proc. R. Soc. London230, 246 (1955)]. The physical optics of this finding is thoroughly presented in...

Lohmann, Adolf W; Mendlovic, David; Shabtay, Gal

1999-01-01T23:59:59.000Z

210

Wave represents displacement Wave represents pressure Source -Sound Waves  

E-Print Network (OSTI)

Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency

Colorado at Boulder, University of

211

Long Wave/Short Wave Resonance in Equatorial Waves  

Science Journals Connector (OSTI)

It is shown that resonant coupling between ultra long equatorial Rossby waves and packets of either short Rossby or short westward-traveling gravity waves is possible. Simple analytic formulas give the discrete value of the packet wave number k, ...

John P. Boyd

1983-03-01T23:59:59.000Z

212

Rogue waves for a long wave-short wave resonance model with multiple short waves  

E-Print Network (OSTI)

1 Rogue waves for a long wave-short wave resonance model with multiple short waves Hiu Ning Chan (1 waves; Long-short resonance PACS Classification: 02.30.Jr; 05.45.Yv; 47.35.Fg #12;2 ABSTRACT A resonance between long and short waves will occur if the phase velocity of the long wave matches the group velocity

213

Property:Width (m) | Open Energy Information  

Open Energy Info (EERE)

Width (m) Width (m) Jump to: navigation, search Property Name Width (m) Property Type Number Pages using the property "Width (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 4.5 + MHK Technologies/AirWEC + 2.5 + MHK Technologies/CurrentStar + 30.5 + MHK Technologies/Deep Green + 12 + MHK Technologies/Deep water capable hydrokinetic turbine + 10 + MHK Technologies/ECO Auger + 4.877 + MHK Technologies/Electric Buoy + 10 + MHK Technologies/European Pico Pilot Plant + 14 + MHK Technologies/Evopod E35 + 4.5 + MHK Technologies/Float Wave Electric Power Station + 2.5 + MHK Technologies/Floating anchored OTEC plant + 60 + MHK Technologies/HyPEG + 50 + MHK Technologies/HydroGen 10 + 2 + MHK Technologies/Hydroflo + 5 +

214

Aqua Magnetics Inc | Open Energy Information  

Open Energy Info (EERE)

Magnetics Inc Magnetics Inc Jump to: navigation, search Name Aqua-Magnetics Inc Place Satellite Beach, Florida Zip 32937 Sector Ocean Product Manufactures patented system that converts ocean wave energy into electric power. References Aqua-Magnetics Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Electric Buoy Mobil Stabilized Energy Conversion Platform Platform generators This article is a stub. You can help OpenEI by expanding it. Aqua-Magnetics Inc is a company located in Satellite Beach, Florida . References ↑ "Aqua-Magnetics Inc" Retrieved from "http://en.openei.org/w/index.php?title=Aqua_Magnetics_Inc&oldid=678881"

215

Vortices in Brain waves  

E-Print Network (OSTI)

2003). Vortices in Brain Waves 62. M. E. Raichle, ScienceVORTICES IN BRAIN WAVES WALTER J. FREEMAN Department ofthat is recorded in brain waves (electroencephalogram, EEG).

Freeman, Walter J III; Vitiello, Giuseppe

2010-01-01T23:59:59.000Z

216

OES-IA Annex IV: Environmental Effects of Marine and Hydrokinetic Devices - Report from the Experts’ Workshop September 27th – 28th 2010 Clontarf Castle, Dublin Ireland  

SciTech Connect

An experts' workshop was convened in Dublin Ireland September 27th – 28th 2010 in support of IEA Ocean Energy Systems Implementing Agreement Annex IV. PNNL was responsible for organizing the content of the workshop, overseeing the contractors (Irish Marine Institute) hosting the event, presenting material on Annex IV and materials applicable to the workshop intent. PNNL is also overseeing a contractor (Wave Energy Center/University of Plymouth – WEC/UP) in the collection and analysis of the Annex IV data. Fifty-eight experts from 8 countries attended the workshop by invitation, spending two days discussing the needs of Annex IV. Presentations by DOE (background on Annex IV), PNNL (process for developing Annex IV; presentation of the draft database for PNNL project, plans for incorporating Annex IV data), WEC/UP on the environmental effect matrix, and four MHK developers (two from the UK, one from Ireland and one from Sweden; each discussing their own projects and lessons learned for measuring and mitigating environmental effects, as well as interactions with consenting [permitting] processes) helped provide background. The workshop participants worked part of the time in the large group and most of the time in four smaller breakout groups. Participants engaged in the process and provided a wealth of examples of MHK environmental work, particularly in the European nations. They provided practical and actionable advice on the following: • Developing the Annex IV database, with specific uses and audiences • Strong consensus that we should collect detailed metadata on available data sets, rather than attempting to draw in copious datasets. The participants felt there would then be an opportunity to then ask for specific set of data as needed, with specific uses and ownership of the data specified. This is particularly important as many data collected, particularly in Europe but also in Canada, are proprietary; developers were not comfortable with the idea of handing over all their environmental effects data, but all said they would entertain the request if they specifics were clear. • The recommendation was to collect metadata via an online interactive form, taking no more than one hour to complete. • Although the idea of cases representing the “best practices” was recognized as useful, the participants pointed out that there are currently so few MHK projects in the water, that any and all projects were appropriate to highlight as “cases”. There was also discomfort at the implication that “best practices” implied “lesser practices”; this being unhelpful to a new and emerging industry. • Workshop participants were asked if they were willing to continue to engage in the Annex IV process; all expressed willingness. The workshop was successful in adequately addressing its objectives and through participation and interaction in the breakout sessions around the various topics. As a result of the workshop, many delegates are now better informed and have a greater understanding of the potential environmental effects of MHK devices on the marine environment. There is now a greater sense of understanding of the issues involved and consensus by those regulators, developers and scientists who attended the workshop. A strong network has also been built over the two days between European and US/Canadian technical experts in wave and tidal energy.

Copping, Andrea E.; O'Toole, Michael J.

2010-12-02T23:59:59.000Z

217

Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

2012-05-01T23:59:59.000Z

218

ARPA-E Technical Support Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX rulemaking files More Documents & Publications Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Report to Congress on the...

219

Sandia National Laboratories: DOE-Sponsored Reference Model Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

220

Energy Department Announces $7.25 Million for Projects to Advance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and hydrokinetic (MHK) technologies convert the energy of waves, tides, rivers, and ocean currents into electricity that can be used by homes and businesses, especially in...

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and...

222

Sandia National Laboratories: Reference Model Project  

NLE Websites -- All DOE Office Websites (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

223

Sandia National Laboratories: University of Washington  

NLE Websites -- All DOE Office Websites (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

224

Sandia National Laboratories: river current energy converters  

NLE Websites -- All DOE Office Websites (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

225

Sandia National Laboratories: Water Power  

NLE Websites -- All DOE Office Websites (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

226

Sandia National Laboratories: NREL  

NLE Websites -- All DOE Office Websites (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

227

Plane waves Lumped systems  

E-Print Network (OSTI)

1 Impedance · Plane waves ­ Lumped systems S x y z Impedance · Plane waves ­ Lumped systems · open tube #12;2 Impedance · Plane waves ­ Lumped systems · closed tube Impedance · Cylindrical waves z x y r #12;3 Impedance · Cylindrical waves ­ Circumferential part n=0 n=1 n=2 n=3 Impedance · Cylindrical

Berlin,Technische Universität

228

Reference Model 6 (RM6): Oscillating Wave Energy Converter.  

SciTech Connect

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

2014-10-01T23:59:59.000Z

229

Marine and Hydrokinetic Market Acceleration and Deployment |...  

Energy Savers (EERE)

the Navy, U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, and U.S. Fish and Wildlife Service. These agencies share information on a large range of issues,...

230

Sandia National Laboratories: Investigations on Marine Hydrokinetic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbine Foil Structural Health Monitoring Presented at GMREC METS On June 26, 2014, in Energy, News, News & Events, Renewable Energy, Systems Analysis, Water Power...

231

Sandia National Laboratories: Marine Hydrokinetics Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

assessments. Laboratory-scale testing will be done to investigate materials and coatings, hydrofoil performance, and small-scale array effects. Test and evaluation is initially...

232

Marine and Hydrokinetic Technology Development and Testing |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

floating, metal test unit floating in the ocean. Northwest National Marine Renewable Energy Center: Advanced Assessment and Device Testing NNMREC is designing, installing, and...

233

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...  

Energy Savers (EERE)

Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review 2014 Water Power Program Peer Review Compiled Presentations: Marine and...

234

Sandia National Laboratories: Numerical Simulations of Hydrokinetics...  

NLE Websites -- All DOE Office Websites (Extended Search)

study, three grids were generated, all of which use the same bathymetric data for the Roza Canal. Converged results were achieved with the 19,777-cell grid. Because...

235

Sandia National Laboratories: Marine Hydrokinetics Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

236

Sandia National Laboratories: marine hydrokinetic reference models  

NLE Websites -- All DOE Office Websites (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

237

Overwash induced by storm conditions  

E-Print Network (OSTI)

wave height and period from offshore buoy in January,abcde abcd2004.......................................................................................................................53 3.19 Observed significant wave height and period from... offshore buoy inabcdef abcdFebruary, 2004......................................................................................................53 3.20 Observed significant wave height and period from offshore buoy in April,abcdef abcd2004...

Park, Young Hyun

2009-05-15T23:59:59.000Z

238

PROPAGATING WAVES ALONG SPICULES  

SciTech Connect

Alfvenic waves are thought to play an important role in coronal heating and acceleration of solar wind. Here we investigate the statistical properties of Alfvenic waves along spicules (jets that protrude into the corona) in a polar coronal hole using high-cadence observations of the Solar Optical Telescope on board Hinode. We developed a technique for the automated detection of spicules and high-frequency waves. We detected 89 spicules and found (1) a mix of upward propagating, downward propagating, as well as standing waves (occurrence rates of 59%, 21%, and 20%, respectively); (2) the phase speed gradually increases with height; (3) upward waves dominant at lower altitudes, standing waves at higher altitudes; (4) standing waves dominant in the early and late phases of each spicule, while upward waves were dominant in the middle phase; (5) in some spicules, we find waves propagating upward (from the bottom) and downward (from the top) to form a standing wave in the middle of the spicule; and (6) the medians of the amplitude, period, and velocity amplitude were 55 km, 45 s, and 7.4 km s{sup -1}, respectively. We speculate that upward propagating waves are produced near the solar surface (below the spicule) and downward propagating waves are caused by reflection of (initially) upward propagating waves off the transition region at the spicule top. The mix of upward and downward propagating waves implies that exploiting these waves to perform seismology of the spicular environment requires careful analysis and may be problematic.

Okamoto, Takenori J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); De Pontieu, Bart, E-mail: joten.okamoto@nao.ac.jp [Lockheed Martin Solar and Astrophysics Laboratory, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2011-08-01T23:59:59.000Z

239

Kelvin Waves around Antarctica  

Science Journals Connector (OSTI)

The Southern Ocean allows circumpolar structure and the Antarctic coastline plays a role as a waveguide for oceanic Kelvin waves. Under the cyclic conditions, the horizontal wavenumbers and frequencies for circumpolarly propagating waves are ...

Kazuya Kusahara; Kay I. Ohshima

2014-11-01T23:59:59.000Z

240

Gravity perturbed Crapper waves  

Science Journals Connector (OSTI)

...waves are known to have multi-valued height. Using...gravity-capillary waves with multi-valued height. The...of single-valued and multi-valued travelling waves...absence of gravity, a family of exact solutions is...elliptic functions. Building upon the work by Tanveer...

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Performance Assessment of the Wave Dragon Wave Energy Converter  

E-Print Network (OSTI)

Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

Hansen, René Rydhof

242

The Effect of Wave Breaking on the Wave Energy Spectrum  

Science Journals Connector (OSTI)

The effect of wave breaking on the wave energy spectral shape is examined. The Stokes wave-breaking criterion is first extended to random waves and a breaking wave model is established in which the elevation of breaking waves is expressed in ...

C. C. Tung; N. E. Huang

1987-08-01T23:59:59.000Z

243

Sandia National Laboratories: Innovation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

demands. Presently, real-time wave measurement buoys are available at costs in excess of 50,000 per buoy. The high cost limits the ability to deploy large networks of...

244

Comparison between third and second generation ocean wave models  

E-Print Network (OSTI)

. This is accomplished by adjusting the CPSD to agree with linear theory. The 2-D buoy spectrum with 40 frequency bands and 72 direction bands is estimated using the Maximum Likelihood Method (MLM) (Capon 1969; Isobe et aL 1984; Brissette and Tsanis 1994) applied... to the CPSD. More accurate methods for estimating the 2-D spectra from pitch-roll- heave buoys exist, but the MLM method's computational efficiency and robust behavior make it a practical choice for processing large amounts of data. One important MLM...

Bratos, Steven Martin

2012-06-07T23:59:59.000Z

245

Hysteresis of ionization waves  

SciTech Connect

A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

Dinklage, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Bruhn, B.; Testrich, H. [Institut fuer Physik, E.-M.-Arndt Universitaet Greifswald, Felix-Hausdorff-Str. 6, 17487 Greifswald (Germany); Wilke, C. [Leibniz-Institut fuer Plasmaforschung und Technologie, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

2008-06-15T23:59:59.000Z

246

Wave momentum flux parameter: a descriptor for nearshore waves  

E-Print Network (OSTI)

Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution

US Army Corps of Engineers

247

Shallow Water Waves and Solitary Waves Willy Hereman  

E-Print Network (OSTI)

Shallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer of the Subject II. Introduction­Historical Perspective III. Completely Integrable Shallow Water Wave Equations IV. Shallow Water Wave Equations of Geophysical Fluid Dynamics V. Computation of Solitary Wave Solutions VI

Hereman, Willy A.M.

248

Matter Waves and Electricity  

Science Journals Connector (OSTI)

Classical four-dimensional relativity gives a most natural and harmonious interpretation of the three basic phenomena of nature: gravity, electricity, and the wave structure of matter, provided that the basic assumptions of the Einsteinian theory are modified in two respects: (1) the fundamental invariant of the action principle is chosen as a quadratic instead of a linear function of the curvature components; (2) the static equilibrium of the world is replaced by a dynamic equilibrium. Electricity comes out as a second-order resonance effect of the matter waves. The matter waves are gravitational waves but superposed not on an empty Euclidean space but on a space of high average curvature.

Cornelius Lanczos

1942-06-01T23:59:59.000Z

249

kinetic wave energy  

Science Journals Connector (OSTI)

kinetic wave energy ? kinetische Wellenenergie f [Teil der Wellenlänge, die im Feld der Orbitalgeschwindigkeiten unter der Welle enthalten ist und als Orbitalbewegung am Ort verbleibt

2014-08-01T23:59:59.000Z

250

potential wave energy  

Science Journals Connector (OSTI)

potential wave energy ? potentielle Wellenenergie f [Der für die Auslenkung des Wasserspiegels zum Ruhewasserspiegel erforderliche Teil der Wellenenergie, die mit der Wellengeschwindigkeit fortbewegt...

2014-08-01T23:59:59.000Z

251

Wave runup on cylinders subject to deep water random waves  

E-Print Network (OSTI)

was measured close to the test cylinders are analyzed. These data on wave runup in deepwater random waves were generated at similar water depths with significant wave heights and spectral peak periods. Statistical parameters, zero crossing analysis...

Indrebo, Ann Kristin

2012-06-07T23:59:59.000Z

252

Wave Energy Resource Analysis for Use in Wave Energy Conversion  

E-Print Network (OSTI)

In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...

Pastor, J.; Liu, Y.; Dou, Y.

2014-01-01T23:59:59.000Z

253

Free-Wave Energy Dissipation in Experimental Breaking Waves  

Science Journals Connector (OSTI)

Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using an energy focusing technique. Surface elevation measurements of each transient wave ...

Eustorgio Meza; Jun Zhang; Richard J. Seymour

2000-09-01T23:59:59.000Z

254

Harmonic generation of gravitational wave induced Alfven waves  

E-Print Network (OSTI)

Here we consider the nonlinear evolution of Alfven waves that have been excited by gravitational waves from merging binary pulsars. We derive a wave equation for strongly nonlinear and dispersive Alfven waves. Due to the weak dispersion of the Alfven waves, significant wave steepening can occur, which in turn implies strong harmonic generation. We find that the harmonic generation is saturated due to dispersive effects, and use this to estimate the resulting spectrum. Finally we discuss the possibility of observing the above process.

Mats Forsberg; Gert Brodin

2007-11-26T23:59:59.000Z

255

Self-consistent full wave simulations of lower hybrid waves  

E-Print Network (OSTI)

Self-consistent full wave simulations of lower hybrid waves John C. Wright P. T. Bonoli - MIT E .J for Simulation of Wave-Plasma Interactions L.A. Berry, D.B. Batchelor, E.F. Jaeger, E. D`Azevedo D. Green C. Milanesio #12;3 Outline · Introduction to Lower Hybrid waves · Modeling LH waves ­ Ray tracing ­ Full Wave

Wright, John C.

256

Wave energy: a Pacific perspective  

Science Journals Connector (OSTI)

...study by Cornett used wind/wave hindcasting to assess Canada's offshore wave energy resource...will probably attract offshore birds, possibly leading...related projects, such as offshore wind farms. If wave energy development...

2012-01-01T23:59:59.000Z

257

Rainbow trapping of guided waves  

E-Print Network (OSTI)

Rainbow trapping of guided waves Javier Polanco and Rosa M.the propagation of a wave packet that is a superpositionof three s-polarized guided waves with different frequencies

Polanco, Javier; Fitzgerald, Rosa M; Leskova, Tamara A; Maradudin, Alexei A

2011-01-01T23:59:59.000Z

258

Center for Wave Phenomena Wave Phenomena  

E-Print Network (OSTI)

into a life of scientific discovery." Kurang Mehta, Ph.D. Class of 2007 Shell Exploration and Production Phil research and education program in seismic exploration, monitoring and wave propagation. The main focus and efficiency of seismic processing algorithms, especially for application to regions of structural complexity

259

Wave Energy | Open Energy Information  

Open Energy Info (EERE)

List of Wave Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleWaveEnergy&oldid267203" Category: Articles with outstanding TODO tasks...

260

Wave-wave interactions in solar type III radio bursts  

SciTech Connect

The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

Thejappa, G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); MacDowall, R. J. [NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

2014-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

wave | OpenEI  

Open Energy Info (EERE)

9 9 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281559 Varnish cache server wave Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (3 years ago) Date Updated Unknown Keywords

262

SEISMIC WAVES ESTIMATION AND WAVE FIELD DECOMPOSITION WITH FACTOR GRAPHS  

E-Print Network (OSTI)

SEISMIC WAVES ESTIMATION AND WAVE FIELD DECOMPOSITION WITH FACTOR GRAPHS Stefano Maranò Christoph, Dept. Information Technology & Electr. Eng., 8092 Zürich ABSTRACT Physical wave fields are often from sensors of different kinds. In this paper we propose a technique for the analysis of vector wave

Loeliger, Hans-Andrea

263

Taming water waves Case study: Surface Water Waves  

E-Print Network (OSTI)

Taming water waves Case study: Surface Water Waves Few things in nature are as dramatic, and potentially dangerous, as ocean waves. The impact they have on our daily lives extends from shipping to the role they play in driving the global climate. From a theoretical viewpoint water waves pose rich

264

Selfconsistent full wave simulations of lower hybrid waves  

E-Print Network (OSTI)

Selfconsistent full wave simulations of lower hybrid waves John C. Wright P. T. Bonoli MIT E .J. Porkolab Sherwood/Spring APS Denver May 2009 #12; 2 Participants in the Center for Simulation of Wave hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance

Wright, John C.

265

On Generating Gravity Waves with Matter and Electromagnetic Waves  

E-Print Network (OSTI)

If a homogeneous plane light-like shell collides head-on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.

C. Barrabes; P. A. Hogan

2008-04-05T23:59:59.000Z

266

Traveling-wave photodetector  

SciTech Connect

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

Hietala, V.M.; Vawter, G.A.

1992-12-31T23:59:59.000Z

267

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave...

268

Mathematical Caricature of Large Waves  

E-Print Network (OSTI)

The Kadomtsev-Petviiashvili equation is considered as a mathematical caricature of large and rogue waves.

Mikhail Kovalyov

2014-03-21T23:59:59.000Z

269

Clustering of floaters by waves  

E-Print Network (OSTI)

We study experimentally how waves affect distribution of particles that float on a water surface. We show that clustering of small particles in a standing wave is a nonlinear effect with the clustering time decreasing as the square of the wave amplitude. In a set of random waves, we show that small floaters concentrate on a multi-fractal set.

P. Denissenko; G. Falkovich; S. Lukaschuk

2005-11-22T23:59:59.000Z

270

December 2010 | 23 GUIDED WAVES  

E-Print Network (OSTI)

December 2010 | 23 GUIDED WAVES Tuning Wave Dispersion in Resonant Networks Eyal Feigenbaum with meta-atoms. Resonant guided wave networks (RGWNs) are a new class of artificial photonic material,5 distinct from photonic crystals and metamateri- als, in which localized waves resonate in closed paths

Atwater, Harry

271

Selection Rules for the Nonlinear Interactions of Internal Gravity Waves and Inertia-Gravity Waves  

E-Print Network (OSTI)

Internal Gravity Waves . . . . . . . . . . . . . . 3.2.1 Twodimensional inertia-gravity wave physics . . . . . . . . .Three dimensional inertia-gravity wave physics . . . . . .

Jiang, Chung-Hsiang

2010-01-01T23:59:59.000Z

272

Various Boussinesq solitary wave solutions  

SciTech Connect

The generalized Boussinesq (gB) equations have been used to model nonlinear wave evolution over variable topography and wave interactions with structures. Like the KdV equation, the gB equations support a solitary wave solution which propagates without changing shape, and this solitary wave is often used as a primary test case for numerical studies of nonlinear waves using either the gB or other model equations. Nine different approximate solutions of the generalized Boussinesq equations are presented with simple closed form expressions for the wave elevation and wave speed. Each approximates the free propagation of a single solitary wave, and eight of these solutions are newly obtained. The author compares these solutions with the well known KdV solution, Rayleigh`s solution, Laitone`s higher order solution, and ``exact`` numerical integration of the gB equations. Existing experimental data on solitary wave shape and wave speed are compared with these models.

Yates, G.T. [Univ. of Hong Kong (Hong Kong). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

273

Noise sustained waves in subexcitable media: From chemical waves to brain waves  

E-Print Network (OSTI)

Noise sustained waves in subexcitable media: From chemical waves to brain waves P. Junga: a subexcitable photosensitive Belousov­Zhabotinsky reaction, hippocampal slices of rat brains, and astrocyte of such a behavior for calcium wave net- works in interconnected brain cells. I. INTRODUCTION Since the early days

Showalter, Kenneth

274

Explosive plane-wave lens  

DOE Patents (OSTI)

An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

Marsh, S.P.

1988-03-08T23:59:59.000Z

275

Explosive plane-wave lens  

DOE Patents (OSTI)

An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

Marsh, S.P.

1987-03-12T23:59:59.000Z

276

Explosive plane-wave lens  

DOE Patents (OSTI)

An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.

Marsh, Stanley P. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

277

Standing wave compressor  

DOE Patents (OSTI)

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

278

Adaptive multiconfigurational wave functions  

SciTech Connect

A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)

2014-03-28T23:59:59.000Z

279

Wave Loading on Floating Platforms by Internal Solitary Waves  

Science Journals Connector (OSTI)

Morison’s equation is used for estimating internal solitary wave-induced forces exerted on SPAR and semi-submersible platforms. And the results we got have also ... estimate internal wave loading even for SPAR an...

H. Q. Zhang; J. C. Li

2009-01-01T23:59:59.000Z

280

Real-time Water Waves with Wave Particles  

E-Print Network (OSTI)

This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in our environment...

Yuksel, Cem

2010-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Heat Waves, Global Warming, and Mitigation  

E-Print Network (OSTI)

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

Carlson, Ann E.

2008-01-01T23:59:59.000Z

282

Structural health monitoring by ultrasonic guided waves  

E-Print Network (OSTI)

E. (2005) “Modeling guided wave propagation with applicationMultiple Guided Ultrasonic Wave Features,” ASME Journal ofto-spar joints using guided waves and macro fiber composite

Bartoli, Ivan

2007-01-01T23:59:59.000Z

283

Heat Waves, Global Warming, and Mitigation  

E-Print Network (OSTI)

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HCHANGE AND HEAT WAVES .. CLIMATE III. IV. HEAT

Carlson, Ann E.

2008-01-01T23:59:59.000Z

284

Wave refraction and wave energy on Cayo Arenas  

E-Print Network (OSTI)

WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...

Walsh, Donald Eugene

1962-01-01T23:59:59.000Z

285

Assessing wave energy effects on biodiversity: the Wave Hub experience  

Science Journals Connector (OSTI)

...effects of wave energy on biodiversity...accelerate the implementation of wave energy, within a coherent...in the form of wind, wave and tidal...Rajapandian2007A review of wind energy technologiesRenew...emergence and the challenges it facesRefocus...

2012-01-01T23:59:59.000Z

286

Secular Sediment Waves, Channel Bed Waves, and Legacy Sediment  

E-Print Network (OSTI)

Secular Sediment Waves, Channel Bed Waves, and Legacy Sediment L. Allan James* Geography Department, University South Carolina Abstract The concept of sediment waves is reviewed and clarifications are proposed for nomenclature con- cerning vertical channel responses to large fluvial sediment fluxes over a period of a decade

James, L. Allan

287

Plane wave solution for elastic wave scattering by a heterogeneous ...  

E-Print Network (OSTI)

A plane-wave method for computing the three-dimensional scattering of propagating elastic waves ... boundary conditions also called linear slip interface conditions, and therefore, called the ... good agreement between measured waves and theoretical ..... tribution with a mean and a standard deviation of the com-.

2004-05-28T23:59:59.000Z

288

Resuspension of Clays Under Waves  

Science Journals Connector (OSTI)

Owing to their complex form, very small size and relatively low density, clays freshly deposited in a bay are vulnerable to resuspension when agitated by waves. The model of resuspension of clays under wave motio...

Prida Thimakorn

1984-01-01T23:59:59.000Z

289

MHD Waves in Astrophysical Plasma  

Science Journals Connector (OSTI)

The dependence of the wave velocities on the angle ? between the undisturbed field B 0 and the wave vector k is clearly demonstrated in a polar diagram—the phase velocity diagram. In Fig.?15.2, th...

Boris V. Somov

2012-01-01T23:59:59.000Z

290

Transformative Wave Technologies Kent, Washington  

E-Print Network (OSTI)

Transformative Wave Technologies Kent, Washington www.transformativewave.com #12;#12;North America are shifted to off peak times #12;#12;Transformative Wave Technologies www.transformativewave.com #12

California at Davis, University of

291

The Nonlinear Equatorial Kelvin Wave  

Science Journals Connector (OSTI)

Using the method of strained coordinates, a uniformly valid approximation to the nonlinear equatorial Kelvin wave is derived. It is shown that nonlinear effects are negligible for the Kelvin waves associated with the Gulf of Guinea upwelling. The ...

John P. Boyd

1980-01-01T23:59:59.000Z

292

Spherical waves r Legendre polynomials  

E-Print Network (OSTI)

1 Impedance · Spherical waves r er e e Impedance · Legendre polynomials P0(x) = 1 P1(x) = x P2(x · Spherical waves ­ Spherical Hankel functions hn (2)(kr)=jn(kr)-iyn(kr) Impedance · Spherical waves Order: 0 1 4 Circumferential And azimuthal: 0,0 1,1 3,2 #12;3 Impedance · Spherical waves ­ Arbitrary

Berlin,Technische Universität

293

CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland  

E-Print Network (OSTI)

CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms at station 139. Keywords: wave energy, survivability, breaking waves, joint distribution, OWEC INTRODUCTION

Haller, Merrick

294

2014 Tube -1 STANDING WAVES  

E-Print Network (OSTI)

2014 Tube - 1 STANDING WAVES IN AN AIR COLUMN The objective of the experiment is: · To study the harmonic structure of standing waves in an air column. APPARATUS: Computer, FFTScope software, PC speaker, meterstick, sound tube apparatus, thermometer, microphone INTRODUCTION traveling wave of sinusoidal shape

Glashausser, Charles

295

GENERATING ELECTRICITY USING OCEAN WAVES  

E-Print Network (OSTI)

GENERATING ELECTRICITY USING OCEAN WAVES A RENEWABLE SOURCE OF ENERGY REPORT FOR THE HONG KONG ELECTRIC COMPANY LIMITED Dr L F Yeung Mr Paul Hodgson Dr Robin Bradbeer July 2007 #12;Ocean Waves and construction of equipment that could measure and log wave conditions and tide levels at Hoi Ha Wan. Prototypes

Bradbeer, Robin Sarah

296

Energy Loss by Breaking waves  

Science Journals Connector (OSTI)

Observations of the frequency of wind wave breaking in deep water are combined with laboratory estimates of the rate of energy loss a from single breaking wave to infer the net rate of energy transfer to the mixed layer from breaking waves, as a ...

S. A. Thorpe

1993-11-01T23:59:59.000Z

297

Extreme wave impinging and overtopping  

E-Print Network (OSTI)

This investigates the velocity fields of a plunging breaking wave impinging on a structure through measurements in a two-dimensional wave tank. As the wave breaks and overtops the structure, so-called green water is generated. The flow becomes multi...

Ryu, Yong Uk

2009-06-02T23:59:59.000Z

298

Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since  

E-Print Network (OSTI)

Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since radar involves the transmission, propagation and scattering of EM waves by various is the electrostatic force between two point charges. #12;Electromagnetic WavesElectromagnetic Waves Electric fields

Rutledge, Steven

299

Ryan Sun Chee Fore | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ryan Sun Chee Fore About Us Ryan Sun Chee Fore - Marine and Hydrokinetic Technology Manager Most Recent Riding the Clean Energy Wave: New Projects Aim to Improve Water Power...

300

Charge Density Wave Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Fisher Research Group Fisher Research Group Layered Chalcogenides 29 February 2008 Controlling the Wave by Brad Plummer, SLAC Communications Stanford University researchers working in part at SSRL have discovered a novel set of properties pertaining to a compound of materials called tritellurides. These compounds, composed of three atoms of tellurium and a single atom of one of the rare earth elements, demonstrate unique electronic properties that can be controlled by altering the temperature of the material. The tritellurides display phenomena known as charge density waves (CDW). In a normal conductive metal, electrons persist in a "sea" wherein they are evenly distributed and equally available, or conductive. A CDW occurs under certain circumstances and causes the electrons to clump together, lowering their availability, and thereby lowering the compound's conductivity. Tellurium, when crystallized into quasi-two-dimensional planes and combined with rare earth elements, produces a material with CDWs that can be manipulated and controlled.

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Waves in Plasmas  

SciTech Connect

Quadratic corrections to the metaplectic formulation of mode conversions. In this work we showed how to systematically deal with quadratic corrections beyond the usual linearization of the dispersion matrix at a conversion. The linearization leads to parabolic cylinder functions as the local approximation to the full-wave behavior, but these do not include the variation in amplitude associated with ray refraction in the neighborhood of the conversion. Hence, the region over which they give a good fit to the incoming and outgoing WKB solutions is small. By including higher order corrections it is possible to provide a much more robust matching. We also showed that it was possible, in principle, to extend these methods to arbitrary order. A new normal form for mode conversion. This is based upon our earlier NSF-DOE-funded work on ray helicity. We have begun efforts to apply these new ideas in practical ray tracing algorithms. Group theoretical foundation of path integrals and phase space representations of wave problems. Using the symbol theory of N. Zobin, we developed a new understanding of path integrals on phase space. The initial goal was to find practical computational tools for dealing with non-standard mode conversions. Along the way we uncovered a new way to represent wave functions directly on phase space without the intermediary of a Wigner function. We are exploring the use of these ideas for numerical studies of conversion, with the goal of eventually incorporating kinetic effects. Wave packet studies of gyroresonance crossing. In earlier work, Huanchun Ye and Allan Kaufman -- building upon ideas due to Lazar Friedland -- had shown that gyroresonance crossings could be treated as a double conversion. This perspective is one we have used for many of our papers since then. We are now performing a detailed numerical comparison between full-wave and ray tracing approaches in the study of minority-ion gyroresonance crossing. In this study, a fast magnetosonic wave -- supported by a majority-ion species such as deuterium -- crosses the resonance layer associated with a minority species, such as hydrogen. By using wave packets instead of harmonic solutions, it becomes easy to see the evolution in k-space of the minority-ion disturbance, and the time delay for emission of the reflected fast-wave packet. Iterated conversion in a cavity. When mode conversion occurs in a cavity where rays are trapped, multiple conversions will occur and the resulting absorption profile will typically have a complicated spatial dependence due to overlapping interference patterns. The goal of this work is to develop fast and efficient ray-based methods for computing the cavity response to external driving, and to compute the spatial absorption profile. We have introduced a new approach that allows us to visualize in great detail the underlying iterated ray geometry, and should lead to simpler methods for identifying parameter values where global changes occur in the qualitative response (e.g. global bifurcations).

Tracy, Eugene R

2009-09-21T23:59:59.000Z

302

Fractional Electromagnetic Waves  

E-Print Network (OSTI)

In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.

J. F. Gómez; J. J. Rosales; J. J. Bernal; V. I. Tkach; M. Guía

2011-08-31T23:59:59.000Z

303

Gravitational wave astronomy and cosmology  

E-Print Network (OSTI)

The first direct observation of gravitational waves' action upon matter has recently been reported by the BICEP2 experiment. Advanced ground-based gravitational-wave detectors are being installed. They will soon be commissioned, and then begin searches for high-frequency gravitational waves at a sensitivity level that is widely expected to reach events involving compact objects like stellar mass black holes and neutron stars. Pulsar timing arrays continue to improve the bounds on gravitational waves at nanohertz frequencies, and may detect a signal on roughly the same timescale as ground-based detectors. The science case for space-based interferometers targeting millihertz sources is very strong. The decade of gravitational-wave discovery is poised to begin. In this writeup of a talk given at the 2013 TAUP conference, we will briefly review the physics of gravitational waves and gravitational-wave detectors, and then discuss the promise of these measurements for making cosmological measurements in the near future.

Scott A. Hughes

2014-05-02T23:59:59.000Z

304

Coexisting rogue waves within the (2+1)-component long-wave–short-wave resonance  

Science Journals Connector (OSTI)

The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations describing the (2+1)-component long-wave–short-wave resonance. For a wide range of asymptotic background fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear optics.

Shihua Chen; Jose M. Soto-Crespo; Philippe Grelu

2014-09-15T23:59:59.000Z

305

Millimeter wave interconnect and slow wave transmission lines in CMOS.  

E-Print Network (OSTI)

??When heading into the millimeter wave frequency band, even wires on CMOS exhibit transmission line effects, this thesis therefore presents models, simulation and measurements for… (more)

Bjørndal, Øystein

2013-01-01T23:59:59.000Z

306

Iterated multidimensional wave conversion  

SciTech Connect

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

307

Gravity Waves in the Sun  

E-Print Network (OSTI)

We present numerical simulations of penetrative convection and gravity wave excitation in the Sun. Gravity waves are self-consistently generated by a convective zone overlying a radiative interior. We produce power spectra for gravity waves in the radiative region as well as estimates for the energy flux of gravity waves below the convection zone. We calculate a peak energy flux in waves below the convection zone to be three orders of magnitude smaller than previous estimates for m=1. The simulations show that the linear dispersion relation is a good approximation only deep below the convective-radiative boundary. Both low frequency propagating gravity waves as well as higher frequency standing modes are generated; although we find that convection does not continually drive the standing g-mode frequencies.

Tamara M. Rogers; Gary A. Glatzmaier

2005-08-25T23:59:59.000Z

308

Quantum Emulation of Gravitational Waves  

E-Print Network (OSTI)

Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

Ivan Fernandez-Corbaton; Mauro Cirio; Alexander Büse; Lucas Lamata; Enrique Solano; Gabriel Molina-Terriza

2014-06-17T23:59:59.000Z

309

A Reconsideration of Matter Waves  

E-Print Network (OSTI)

Matter waves were discovered in the early 20th century from their wavelength, predicted by DeBroglie, Planck's constant divided by the particle's momentum, that is, lmw = h/mv. But, the failure to obtain a reasonable theory for the matter wave frequency resulted somewhat in loss of further interest. It was expected that the frequency of the matter wave should correspond to the particle kinetic energy, that is, fmw = 1/2mv^2/h but the resulting velocity of the matter of the particle, v = fmw x lmw, is that the matter wave moves at one half the speed of the particle, obviously absurd as the particle and its wave must move together. If relativistic mass is used (as it should in any case) the problem remains, the same mass appearing in numerator and denominator and canceling. It is no help to hypothesize that the total energy, not just the kinetic energy, yields the matter wave. That attributes a matter wave to a particle at rest. It also gives the resulting velocity as c^2/v, the wave racing ahead of its particle. A reinterpretation of Einstein's derivation of relativistic kinetic energy (which produced his famous E = mc^2) leads to a valid matter wave frequency and a new understanding of particle kinetics and of the atom's stable orbits.

Roger Ellman

2005-05-16T23:59:59.000Z

310

Topological horseshoes in travelling waves of discretized nonlinear wave equations  

SciTech Connect

Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.

Chen, Yi-Chiuan, E-mail: YCChen@math.sinica.edu.tw [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China)] [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shyan-Shiou, E-mail: sschen@ntnu.edu.tw [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China)] [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Yuan, Juan-Ming, E-mail: jmyuan@pu.edu.tw [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)] [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)

2014-04-15T23:59:59.000Z

311

Discrete wave turbulence of rotational capillary water waves  

E-Print Network (OSTI)

We study the discrete wave turbulent regime of capillary water waves with constant non-zero vorticity. The explicit Hamiltonian formulation and the corresponding coupling coefficient are obtained. We also present the construction and investigation of resonance clustering. Some physical implications of the obtained results are discussed.

Adrian Constantin; Elena Kartashova; Erik Wahlén

2010-05-12T23:59:59.000Z

312

Laboratory Studies of Nonlinear and Breaking Surface Waves  

E-Print Network (OSTI)

A. Breaking-wave generation . . . . . . . . . . . . . . . .of the wave tank. . . . . . . . . . . . . . . . . . . .On steep gravity waves meeting a vertical wall: a triple

Drazen, David

2006-01-01T23:59:59.000Z

313

Excitation of plasma waves in the ionosphere caused by atmospheric acoustic waves  

Science Journals Connector (OSTI)

The transformation of atmospheric acoustic waves into plasma waves in the ionosphere is investigated. The transformation mechanism is based on plasma wave exitation by growing acoustic waves, when ... is reached....

N. Ya. Kotsarenko; R. Pérez Enríquez; S. V. Koshevaya

314

Experimental studies of irregular water wave component interactions with comparisons to the hybrid wave model  

E-Print Network (OSTI)

computed by Wheeler Stretching and Linear Extrapolation modifications to Linear Random Wave Theory and the Hybrid Wave Model. Extreme wave acceleration fields arc compared with Hybrid Wave Model acceleration fields only. Comparisons between measurements...

Longridge, Jonathon Kent

1993-01-01T23:59:59.000Z

315

Dynamic response analysis of spar buoy floating wind turbine systems  

E-Print Network (OSTI)

The importance of alternative energy development has been dramatically increased by the dwindling supplies of oil and gas, and our growing efforts to protect our environment. A variety of meaningful steps have been taken ...

Lee, Sungho, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

316

Development, Operation, and Results From the Texas Automated Buoy System  

E-Print Network (OSTI)

of the Gulf of Mexico Coastal Ocean Observing System (GCOOS) regional association and the primary source of near-surface current measurements in the northwestern Gulf of Mexico. This article describes the origin of Angolan crude, exploded and caught fire while lightering its cargo about 60 nautical miles south

317

Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...  

Office of Environmental Management (EM)

as the device performed as expected, with no discernible harm to river-dwelling fish. Free Flow has also completed preliminary designs of utility-scale installations at a...

318

SITING PROTOCOLS FOR MARINE AND HYDROKINETIC ENERGY PROJECTS  

SciTech Connect

Project Objective: The purpose of this project is to identify and address regulatory issues that affect the cost, time and the management of potential effects as it relates to siting and permitting advanced water power technologies. Background: The overall goal of this effort is to reduce the cost, time and effort of managing potential effects from the development advanced water power projects as it relates to the regulatory process in siting and permitting. To achieve this goal, a multi-disciplinary team will collect and synthesize existing information regarding regulatory processes into a user-friendly online format. In addition, the team will develop a framework for project planning and assessment that can incorporate existing and new information. The team will actively collaborate and coordinate with other efforts that support or influence regulatory process. Throughout the process, the team will engage in an iterative, collaborative process for gathering input and testing ideas that involves the relevant stakeholders across all sectors at the national, regional, and all state levels.

Kopf, Steven; Klure, Justin; Hofford, Anna; McMurray, Greg; Hampton, Therese

2012-07-15T23:59:59.000Z

319

Marine and Hydrokinetic (MHK) Technology Development Risk Management...  

Energy Savers (EERE)

1800-111-42436 POLAND 00-800-1213476 PORTUGAL 8008-14928 ROMANIA 40-31-630-01-38 RUSSIA 8-10-8002-5594011 SAUDI ARABIA 800-8-110062 SINGAPORE 65-6517-0502 800-120-5213 SLOVAK...

320

Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE))

The following online information resources are designed to provide the public access to information pertaining to MHK technologies, projects, and research.

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Funding Opportunity Announcement for a Marine and Hydrokinetic...  

Energy Savers (EERE)

necessary for enabling arrays: e.g. moorings and foundations, transmission, and other offshore grid components. * Array performance testing and evaluation. * In-water testing and...

322

Upcoming Funding Opportunity for Marine and Hydrokinetic Development...  

Office of Environmental Management (EM)

necessary for enabling arrays: e.g. moorings and foundations, transmission, and other offshore grid components. * Array performance testing and evaluation. * In-water testing and...

323

Assessment and Mapping of the Riverine Hydrokinetic Resource...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

termed the technically recoverable resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The technically...

324

Department of Energy Awards $37 Million for Marine and Hydrokinetic...  

Office of Environmental Management (EM)

and free-flowing rivers represent a promising energy source located close to centers of electricity demand. The Department of Energy is working with industry, universities,...

325

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinet...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy's Water Power Program site. For Geographic Information System (GIS) MHK resource data, access the Data Resources page. If you have difficulty accessing...

326

Marine and Hydrokinetic (MHK) Technology Development Risk Management...  

Office of Environmental Management (EM)

UNITED KINGDOM MANCHESTER 44-161-601-0113 0808-238-9817 URUGUAY 000-413-598-3832 USA 1-203-607-0666 877-951-7311 VENEZUELA 0800-1-00-3644 VIETNAM 120-11747 Contact...

327

Wave energy technology in China  

Science Journals Connector (OSTI)

...Wave energy technology in China Yage...Energy and Gas Hydrate...wave energy technology, summarizing...of an air turbine rotating at...research, development and construction...variable-pitch air turbine for the Azores...Liu2000Research and development of Daguan...National Ocean Technology Center, Tianjin...

2012-01-01T23:59:59.000Z

328

Tube-wave seismic imaging  

DOE Patents (OSTI)

The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

Korneev, Valeri A [LaFayette, CA

2009-05-05T23:59:59.000Z

329

Tube-wave seismic imaging  

DOE Patents (OSTI)

The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)

2009-10-13T23:59:59.000Z

330

Application of wave generator theory to the development of a Wave Energy Converter  

E-Print Network (OSTI)

Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri approve the attached thesis Application of wave generator theory to the development of a Wave Energy Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri Principal

Wood, Stephen L.

331

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

Hinsdale Wave Basin 1 Hinsdale Wave Basin 1 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 1 Overseeing Organization Oregon State University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 104.0 Beam(m) 3.7 Depth(m) 4.6 Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 1.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 12' by 12' concrete slabs anchored to flume walls

332

Wave and Tide-Dominated Coasts  

Science Journals Connector (OSTI)

Between the wave- and tide-dominated coastal extremes is a broad spectrum of wave and tide-dominated coasts. These range from settings with high wave energy and perceptible tidal energy associated with a low tida...

Edward J. Anthony

2005-01-01T23:59:59.000Z

333

Electrostatic-plasma-wave energy flux  

E-Print Network (OSTI)

would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of

Amendt, P.; Rostoker, N.

1984-01-01T23:59:59.000Z

334

Scholte waves generated by seafloor topography  

E-Print Network (OSTI)

Seafloor topography can excite strong interface waves called Scholte waves that are often dispersive and characterized by slow propagation but large amplitude. This type of wave can be used to invert for near seafloor shear ...

Zheng, Yingcai

2012-01-01T23:59:59.000Z

335

Second Harmonic Resonance for Equatorial Waves  

Science Journals Connector (OSTI)

Simple, exact analytical conditions for second harmonic resonance between equatorial waves are derived. Such resonance can occur only between two Rossby waves or two westward travelling gravity waves. It is shown that regardless of whether the ...

John P. Boyd

1983-03-01T23:59:59.000Z

336

New wave effects in nonstationary plasma  

SciTech Connect

Through particle-in-cell simulations and analytics, a host of interesting and novel wave effects in nonstationary plasma are examined. In particular, Langmuir waves serve as a model system to explore wave dynamics in plasmas undergoing compression, expansion, and charge recombination. The entire wave life-cycle is explored, including wave excitation, adiabatic evolution and action conservation, nonadiabatic evolution and resonant wave-particle effects, collisional dissipation, and potential laboratory applications of the aforementioned phenomenology.

Schmit, P. F. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185-1186 (United States)] [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185-1186 (United States); Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)] [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

2013-05-15T23:59:59.000Z

337

Are "EIT Waves" Fast-Mode MHD Waves?  

E-Print Network (OSTI)

We examine the nature of large-scale, coronal, propagating wave fronts (``EIT waves'') and find they are incongruous with solutions using fast-mode MHD plane-wave theory. Specifically, we consider the following properties: non-dispersive single pulse manifestions, observed velocities below the local Alfven speed, and different pulses which travel at any number of constant velocities, rather than at the ``predicted'' fast-mode speed. We discuss the possibility of a soliton-like explanation for these phenomena, and show how it is consistent with the above-mentioned aspects.

M. J. Wills-Davey; C. E. DeForest; J. O. Stenflo

2007-04-23T23:59:59.000Z

338

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and construction services provider. References: Wave...

339

Heat Waves, Global Warming, and Mitigation  

E-Print Network (OSTI)

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HW aves B. Heat-related

Carlson, Ann E.

2008-01-01T23:59:59.000Z

340

Sandia National Laboratories: wave energy converter  

NLE Websites -- All DOE Office Websites (Extended Search)

wave energy converter Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter On September 16, 2014, in Computational Modeling & Simulation, Energy, News, News &...

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mirror force induced wave dispersion in Alfvén waves  

SciTech Connect

Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvén waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror force effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.

Damiano, P. A.; Johnson, J. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

2013-06-15T23:59:59.000Z

342

Nondestructive testing using stress waves: wave propagation in layered media  

E-Print Network (OSTI)

The use of stress waves in several civil engineering applications such as nondestructive testing of soil deposits or pavement systems has become extremely popular over the last few years. In all cases, a dynamic impulse is applied to the surface...

Ortega, Jose Alberto

2013-02-22T23:59:59.000Z

343

Branes are Waves and Monopoles  

E-Print Network (OSTI)

In a recent paper it was shown that fundamental strings are null waves in Double Field Theory. Similarly, membranes are waves in exceptional extended geometry. Here the story is continued by showing how various branes are Kaluza-Klein monopoles of these higher dimensional theories. Examining the specific case of the E7 exceptional extended geometry, we see that all branes are both waves and monopoles. Along the way we discuss the O(d; d) transformation of localized brane solutions not associated to an isometry and how true T-duality emerges in Double Field Theory when the background possesses isometries.

David S. Berman; Felix J. Rudolph

2014-09-22T23:59:59.000Z

344

Recirculation in multiple wave conversions  

SciTech Connect

A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

2008-07-30T23:59:59.000Z

345

Wave Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Energy Basics Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, and Australia as well as the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it is feasible that wave energy could produce 40-70 kilowatts (kW) per 3.3 feet (1 meter) of western coastline. Wave Energy Technologies

346

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

Wave Basin 2 Wave Basin 2 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 2 Overseeing Organization Oregon State University Hydrodynamics Length(m) 48.8 Beam(m) 26.5 Depth(m) 2.1 Water Type Freshwater Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Both Simulated Beach Yes Description of Beach Built to client specifications, currently rigid concrete over gravel fill

347

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Sheets Wave Basin Sheets Wave Basin Jump to: navigation, search Basic Specifications Facility Name Sheets Wave Basin Overseeing Organization University of Rhode Island Hydrodynamic Testing Facility Type Wave Basin Length(m) 30.0 Beam(m) 3.6 Depth(m) 1.8 Cost(per day) $750(+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.0 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 10 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Pre-programmed for regular and irregular waves, but wavemaker is capable of any input motion. Wave Direction Uni-Directional

348

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin Length(m) 38.1 Beam(m) 22.9 Depth(m) 1.5 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 3.3 Maximum Wave Length(m) 10.7 Wave Period Range(s) 3.3 Current Velocity Range(m/s) 0.2 Programmable Wavemaking Yes Wavemaking Description Directional, irregular, any spectrum, cnoidal or solitary wave Wave Direction Both Simulated Beach Yes Description of Beach Stone Channel/Tunnel/Flume Channel/Tunnel/Flume None

349

wave energy | OpenEI  

Open Energy Info (EERE)

99 99 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281099 Varnish cache server wave energy Dataset Summary Description Source The Wave Energy Resource Assessment project is a joint venture between NREL, EPRI, and Virginia Tech. EPRI is the prime contractor, Virginia Tech is responsible for development of the models and estimating the wave resource, and NREL serves as an independent validator and also develops the final GIS-based display of the data. Source National Renewable Energy Laboratory (NREL) Date Released September 27th, 2011 (3 years ago) Date Updated October 20th, 2011 (3 years ago) Keywords EPRI GIS NREL Puerto Rico shapefile United States Virginia Tech wave energy

350

Gravitational waves: a foundational review  

E-Print Network (OSTI)

The standard linear approach to the gravitational waves theory is critically reviewed. Contrary to the prevalent understanding, it is pointed out that this theory contains many conceptual and technical obscure issues that require further analysis.

J. G. Pereira

2013-07-25T23:59:59.000Z

351

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect

Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

Not Available

2010-07-01T23:59:59.000Z

352

Cluster Dynamics of Planetary Waves  

E-Print Network (OSTI)

The dynamics of nonlinear atmospheric planetary waves is determined by a small number of independent wave clusters consisting of a few connected resonant triads. We classified the different types of connections between neighboring triads that determine the general dynamics of a cluster. Each connection type corresponds to substantially different scenarios of energy flux among the modes. The general approach can be applied directly to various mesoscopic systems with 3-mode interactions, encountered in hydrodynamics, astronomy, plasma physics, chemistry, medicine, etc.

Elena Kartashova; Victor S. L'vov

2008-11-05T23:59:59.000Z

353

Encyclopedia of Atmospheric Sciences, 2002 ROSSBY WAVES  

E-Print Network (OSTI)

WAVES Peter B. Rhines School of Oceanography, University of Washington, Seattle, Washington Large` wave. These waves owe their existence to the rotation and spherical shape of the Earth. Weather reinforce this inequality. Waves then become possible, which are dominated by nearly horizontal wind

Bordoni, Simona

354

Wavelet Spectrum Analysis and Ocean Wind Waves  

E-Print Network (OSTI)

Wavelet Spectrum Analysis and Ocean Wind Waves Paul C. Liu Abstract. Wavelet spectrum analysis is applied to a set of measured ocean wind waves data collected during the 1990 SWADE {Surface Wave Dynamics Experi- ment) program. The results reveal significantly new and previously unexplored Insights on wave

355

SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES  

SciTech Connect

Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

2012-07-10T23:59:59.000Z

356

Rogue Waves UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL  

E-Print Network (OSTI)

Rogue Waves UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL OF MARINE AND ATMOSPHERIC SCIENCE 4600 Rickenbacker Causeway Miami, Florida 33149 http://www.rsmas.miami.edu Taking the Surprise Out of the Freak Wave another to create monster waves that not even the bravest surfer could love. Big waves are big news

Miami, University of

357

Wave energy devices with compressible volumes  

Science Journals Connector (OSTI)

...author and source are credited. Wave energy devices with compressible volumes Adi...1BJ, UK We present an analysis of wave energy devices with air-filled compressible...wave period range of about-4s. wave energy|compressible volume|axisymmetric device...

2014-01-01T23:59:59.000Z

358

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Alden Wave Basin Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Wave Basin Length(m) 33.5 Beam(m) 21.3 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 1.0 Maximum Wave Length(m) 1.8 Wave Period Range(s) 1.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Period adjustable electronically, height adjustable mechanically Wave Direction Both Simulated Beach Yes Description of Beach Designed as needed using commercially available sand/sediment

359

SOLITARY-WAVE AND MULTI-PULSED TRAVELING-WAVE SOLUTIONS OF BOUSSINESQ SYSTEMS  

E-Print Network (OSTI)

SOLITARY-WAVE AND MULTI-PULSED TRAVELING-WAVE SOLUTIONS OF BOUSSINESQ SYSTEMS MIN CHEN Department words: water wave, Boussinesq system, traveling wave, homoclinic orbit, multi-pulsed solution 1. Introduction This paper studies solitary-wave and multi-pulsed solutions of the Boussinesq systems t + ux + (u

Chen, Min

360

Rogue Waves and Explorations of Coastal Wave Characteristics Primary Investigator: Paul C. Liu -NOAA GLERL (Emeritus)  

E-Print Network (OSTI)

Rogue Waves and Explorations of Coastal Wave Characteristics Primary Investigator: Paul C. Liu engineering, University of Wisconsin Overview Freak waves are unusually large waves. They have been observed. As the cause of freak waves is still unknown, measurements and analysis of this phenomena are extremely rare

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Wave–wave interactions and deep ocean acoustics  

Science Journals Connector (OSTI)

Deep ocean acoustics in the absence of shipping and wildlife is driven by surface processes. Best understood is the signal generated by non-linear surface wave interactions the Longuet-Higgins mechanism which dominates from 0.1 to 10?Hz and may be significant for another octave. For this source the spectral matrix of pressure and vector velocity is derived for points near the bottom of a deep ocean resting on an elastic half-space. In the absence of a bottom the ratios of matrix elements are universal constants. Bottom effects vitiate the usual “standing wave approximation ” but a weaker form of the approximation is shown to hold and this is used for numerical calculations. In the weak standing wave approximation the ratios of matrix elements are independent of the surface wave spectrum but depend on frequency and the propagation environment. Data from the Hawaii-2 Observatory are in excellent accord with the theory for frequencies between 0.1 and 1?Hz less so at higher frequencies. Insensitivity of the spectral ratios to wind and presumably waves is indeed observed in the data.

Z. Guralnik; J. Bourdelais; X. Zabalgogeazcoa; W. E. Farrell

2013-01-01T23:59:59.000Z

362

Energy in a String Wave  

Science Journals Connector (OSTI)

When one end of a taut horizontal elastic string is shaken repeatedly up and down a transverse wave (assume sine waveform) will be produced and travel along it.1 College students know this type of wave motion well. They know when the wave passes by each element of the string will perform an oscillating up?down motion which in mechanics is termed simple harmonic 2. They also know elements of the string at the highest and the lowest positions—the crests and the troughs—are momentarily at rest while those at the centerline (zero displacement) have the greatest speed as shown in Fig. 1. Irrespective of this they are less familiar with the energy associated with the wave. They may fail to answer a question such as “In a traveling string wave which elements have respectively the greatest kinetic energy (KE) and the greatest potential energy (PE)?” The answer to the former is not difficult; elements at zero position have the fastest speed and hence their KE being proportional to the square of speed is the greatest. To the PE what immediately comes to their mind may be the simple harmonic motion (SHM) in which the PE is the greatest and the KE is zero at the two turning points. It may thus lead them to think elements at crests or troughs have the greatest PE. Unfortunately this association is wrong. Thinking that the crests or troughs have the greatest PE is a misconception.3

Chiu?king Ng

2010-01-01T23:59:59.000Z

363

MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy  

Open Energy Info (EERE)

Wind Wave pumps and turbins Wind Wave pumps and turbins < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid wave Wind Wave pumps and turbins.jpg Technology Profile Primary Organization Ocean Wave Wind Energy Ltd OWWE Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 2Wave1Wind The hybrid wave power rig uses two wave converting technologies in addition to wind mills The main system is a pneumatic float in the category of overtopping as Wave Dragon In addition the pneumatic float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005

364

Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves  

E-Print Network (OSTI)

Price, Attenuation of acoustic waves in glacial ice and saltacoustics, South Pole, sound speed, pressure waves,shear waves PACS: 47.35.De, 47.35.Rs, 62.65. +k, 92.40.Vq,

Klein, Spencer

2010-01-01T23:59:59.000Z

365

Global coherence of dust density waves  

SciTech Connect

The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

Killer, Carsten; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

2014-06-15T23:59:59.000Z

366

Wave Power: Destroyer of Rocks; Creator of Clean Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E E PG&E Wave Energy Wave Energy Federal Utility Partnership Federal Utility Partnership Working Group Meeting Working Group Meeting Wave Energy Wave Energy Development Development Ontario, CA Ontario, CA November 18 November 18- -19, 200 19, 2009 9 Donald G. Price Donald G. Price Senior Consulting Scientist, PG&E Senior Consulting Scientist, PG&E Wave Power Overview Wave Power Overview * * What is Wave Power? What is Wave Power? o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean waves that is converted into electricity by various means. waves that is converted into electricity by various means. o o It is a clean, renewable energy resource capable of being utilized

367

Wave | OpenEI Community  

Open Energy Info (EERE)

Wave Wave Home Ocop's picture Submitted by Ocop(5) Member 18 April, 2013 - 13:41 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing claims of LCOE, DOE has developed-for its own use-a standardized cost and performance data reporting process to facilitate uniform calculation of LCOE from MHK device developers. This standardization framework is only the first version in what is anticipated to be an iterative process that involves industry and the broader DOE stakeholder community. Multiple files are attached here for review and comment.Upload Files: application/vnd.openxmlformats-officedocument.wordprocessingml.document icon device_performance_validation_data_request.docx application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon

368

Gravitational waves from gravitational collapse  

SciTech Connect

Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

369

Detonation waves in relativistic hydrodynamics  

Science Journals Connector (OSTI)

This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: p=(?-1)? where p, ?, and ? are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial ?(X) where X is the ratio ?/?0 of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

Mahdy Cissoko

1992-02-15T23:59:59.000Z

370

Reaction force control implementation of a linear generator in irregular waves for a wave power system.  

E-Print Network (OSTI)

??Most designs for wave energy converters include a hydraulic (or pneumatic) interface between the wave device and the generator to smooth electricity production, but a… (more)

Li, Bin

2012-01-01T23:59:59.000Z

371

Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel  

SciTech Connect

Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

Sati, Priti; Tripathi, V. K. [Indian Institute of Technology, Hauz Khas, Delhi 110054 (India)

2012-12-15T23:59:59.000Z

372

Nonlinear dissipation of circularly polarized Alfven waves due to the beam-induced obliquely propagating waves  

SciTech Connect

In the present study, the dissipation processes of circularly polarized Alfven waves in solar wind plasmas including beam components are numerically discussed by using a 2-D hybrid simulation code. Numerical results suggest that the parent Alfven waves are rapidly dissipated due to the presence of the beam-induced obliquely propagating waves, such as kinetic Alfven waves. The nonlinear wave-wave coupling is directly evaluated by using the induction equation for the parent wave. It is also observed both in the 1-D and 2-D simulations that the presence of large amplitude Alfven waves strongly suppresses the beam instabilities.

Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190, Toyama City, Toyama 930-8555 (Japan); Hada, T. [Department of Earth System Science and Technology, Kyushu University, 6-1, Kasuga City, Fukuoka 816-8580 (Japan); Tsubouchi, K. [Department of Earth and Planetary Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan)

2012-08-15T23:59:59.000Z

373

Optical Wave Propagation Simulation, Wigner Phase-Space Diagrams, and Wave Energy Confinement  

Science Journals Connector (OSTI)

The number of samples required for efficient numerical simulation of wave propagation can be determined by a combination of Wigner phase-space techniques, wave energy confinement...

Rhodes, William T; Sheridan, John T; Hennelley, Bryan M

374

Geodesic deviation and gravitational waves  

E-Print Network (OSTI)

The detection of gravitational waves based on the geodesic deviation equation is discussed. In particular, it is shown that the only non-vanishing components of the wave field in the conventional traceless-transverse gauge in linearized general relativity do not enter the geodesic deviation equation, and therefore, apparently, no effect is predicted by that equation in that specific gauge. The reason is traced back to the fact that the geodesic deviation equation is written in terms of a coordinate distance, which is not a directly measurable quantity. On the other hand, in the proper Lorentz frame of the detector, the conventional result described in standard textbooks holds.

M. Leclerc

2006-05-24T23:59:59.000Z

375

Undulations from amplified low frequency surface waves  

SciTech Connect

We study the linear scattering of gravity waves in longitudinal inhomogeneous stationary flows. When the flow becomes supercritical, it is known that counterflow propagating shallow waves are blocked and converted into deep waves. Here we show that in the zero-frequency limit, the reflected waves are amplified in such a way that the free surface develops an undulation, i.e., a zero-frequency wave of large amplitude with nodes located at specific places. This amplification involves negative energy waves and implies that flat surfaces are unstable against incoming perturbations of arbitrary small amplitude. The relation between this instability and black hole radiation (the Hawking effect) is established.

Coutant, Antonin, E-mail: antonin.coutant@aei.mpg.de [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muhlenberg 1, 14476 Golm (Germany)] [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muhlenberg 1, 14476 Golm (Germany); Parentani, Renaud, E-mail: renaud.parentani@th.u-psud.fr [Laboratoire de Physique Théorique, CNRS UMR 8627, Bâtiment 210, Université Paris-Sud 11, 91405 Orsay Cedex (France)] [Laboratoire de Physique Théorique, CNRS UMR 8627, Bâtiment 210, Université Paris-Sud 11, 91405 Orsay Cedex (France)

2014-04-15T23:59:59.000Z

376

Oregon State University OSU | Open Energy Information  

Open Energy Info (EERE)

OSU OSU Jump to: navigation, search Name Oregon State University OSU Address 1148 Kelley Engineering Center Place Corvallis Zip 97331 Sector Marine and Hydrokinetic Phone number 541-737-2995 Website http://www.eecs.orst.edu/msrf Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: OSU Direct Drive Power Generation Buoys This company is involved in the following MHK Technologies: Oregon State University Columbia Power Technologies Direct Drive Point Absorber This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oregon_State_University_OSU&oldid=678417

377

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

378

Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter Atargis Energy (TRL 4 System) - Cycloidal Wave...

379

Identifying two steps in the internal wave energy cascade  

E-Print Network (OSTI)

1.1.1 The internal wave energy cascade . . . . . . .? ? , which contain only wave energy trav- eling upward anddistinction is made between wave energy propagating upward

Sun, Oliver Ming-Teh

2010-01-01T23:59:59.000Z

380

MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...  

Open Energy Info (EERE)

Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable...

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Langmuir Waves and Electron Acceleration at Heliospheric Shocks  

E-Print Network (OSTI)

Results for S/WAVES . . . . . . . . . . . . . A.7 Rheometry2.4 MHD Wave Modes . . . . . . . . . . . . . . . . . . . .Electron Acceleration, Plasma Waves, and Radio Emission 3.1

Pulupa, Marc Peter

2010-01-01T23:59:59.000Z

382

Airborne observations of the kinematics and statistics of breaking waves  

E-Print Network (OSTI)

v 3 Observations of wave breaking kinematics in fetch-crest length . . . . . C.6 Wave elevation . . . . . . . .breaking waves in the images . . . . . . . . . . . 3.3.3

Kleiss, Jessica M.

2009-01-01T23:59:59.000Z

383

Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy Information  

Open Energy Info (EERE)

Wave Height(m) at Wave Period(s) Wave Height(m) at Wave Period(s) Jump to: navigation, search Property Name Maximum Wave Height(m) at Wave Period(s) Property Type String Pages using the property "Maximum Wave Height(m) at Wave Period(s)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 10.0 + 10-ft Wave Flume Facility + 10.0 + 11-ft Wave Flume Facility + 10.0 + 2 2-ft Flume Facility + 10.0 + 3 3-ft Wave Flume Facility + 10.0 + 5 5-ft Wave Flume Facility + 10.0 + 6 6-ft Wave Flume Facility + 10.0 + A Alden Large Flume + 0.0 + Alden Wave Basin + 1.0 + C Chase Tow Tank + 3.1 + Coastal Harbors Modeling Facility + 2.3 + Coastal Inlet Model Facility + 2.3 + D Davidson Laboratory Tow Tank + 4.0 + DeFrees Large Wave Basin + 3.0 + DeFrees Small Wave Basin + 3.0 +

384

Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- PB500, 500 kW Utility-Scale PowerBuoy Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project Water Power Program About the Program Research &...

385

Tabular icebergs in ocean waves  

Science Journals Connector (OSTI)

... in ocean waves. Two field seasons have been carried out by SPRI in cooperation with Norsk Polarinstitutt, and Foldvik et a/.11 have reported some measurements which took place during ... officers and the crew of the ship for their patience and help. We thank the Norsk Polarinstitutt (NP) and the Radio Echo Group at SPRI for loan of equipment, ...

Monica Kristensen; Vernon A. Squire; Stuart C. Moore

1982-06-24T23:59:59.000Z

386

Dispersion of discontinuous periodic waves  

Science Journals Connector (OSTI)

...Benjamin-Bona-Mahony (BBM) model's is asymptotically...standard bidirectional Boussinesq systems is asymptotically...waves |k|1/2k Boussinesq system, regularized Boussinesq equation signk Boussinesq...Korteweg-de Vries k 3 RLW/BBM k 1 Figure 2. RLW...

2013-01-01T23:59:59.000Z

387

Spiral Waves of Chemical Activity  

Science Journals Connector (OSTI)

...is tethered by an unwinding string (Fig. 1B). At p > l...minute. In its spontaneously oscillating form and its merely excitable...mentions spiral waves in the oscillating reagent on page 29 of "Investiga-tion...homogeneous chemical auto-oscillating systems" (in Russian...

Arthur T. Winfree

1972-02-11T23:59:59.000Z

388

On the use of computational models for wave climate assessment in support of the wave energy industry.  

E-Print Network (OSTI)

??Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean wave environment. Unfortunately, wave data is typically un- available in… (more)

Hiles, Clayton E.

2011-01-01T23:59:59.000Z

389

First Plasma Wave Observations at Uranus  

Science Journals Connector (OSTI)

...electrons. Various other plasma waves were also observed...plane crossing, the plasma wave instrument detected a large number of impulsive...BRIDGE, H.S., PLASMA OBSERVATIONS NEAR URANUS...FROM URANUS AT 0.5 MHZ, ASTROPHYSICAL JOURNAL...

D. A. GURNETT; W. S. KURTH; F. L. SCARF; R. L. POYNTER

1986-07-04T23:59:59.000Z

390

Sandia National Laboratories: Wave Energy Resource Characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Ivanpah Solar Power Site Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter Wave Energy Resource Characterization at US Test Sites On September...

391

Wave Patterns and Southern Hemisphere Convergence Zones  

E-Print Network (OSTI)

-rate days, a wave pattern is identified that is characteristic of high rain events. This wave pattern is then compared to the patterns of variability of brightness temperature using empirical orthogonal functions. A linear regression technique is used...

Ramotowski, Michelle R.

2013-04-11T23:59:59.000Z

392

Wave Energy Centre | Open Energy Information  

Open Energy Info (EERE)

Centre Jump to: navigation, search Name: Wave Energy Centre Address: Wave Energy Centre Av Manuela da Maia 36 R C Dto Place: Lisboa Zip: 1000-201 Region: Portugal Sector: Marine...

393

Arnold Schwarzenegger DEVELOPING WAVE ENERGY IN  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor DEVELOPING WAVE ENERGY IN COASTAL CALIFORNIA: POTENTIAL SOCIO. Developing Wave Energy In Coastal California: Potential Socio-Economic And Environmental Effects. California-ECONOMIC AND ENVIRONMENTAL EFFECTS Prepared For: California Energy Commission Public Interest Energy Research Program

394

On quantization of nondispersive wave packets  

SciTech Connect

Nondispersive wave packets are widely used in optics and acoustics. We found it interesting that such packets could be also a subject of quantum field theory. Canonical commutation relations for the nondispersive wave packets are constructed.

Altaisky, M. V. [Space Research Institute RAS, Profsoyuznaya 84/32, Moscow 117997 (Russian Federation)] [Space Research Institute RAS, Profsoyuznaya 84/32, Moscow 117997 (Russian Federation); Kaputkina, N. E. [National University of Science and Technology “MISIS” Leninsky prospect 4, Moscow 119049 (Russian Federation)] [National University of Science and Technology “MISIS” Leninsky prospect 4, Moscow 119049 (Russian Federation)

2013-10-15T23:59:59.000Z

395

Motor Wave Group | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies: MotorWave This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleMotorWaveGroup&oldid769272...

396

Strings in plane-fronted gravitational waves  

E-Print Network (OSTI)

Brinkmann's plane-fronted gravitational waves with parallel rays --~shortly pp-waves~-- are shown to provide, under suitable conditions, exact string vacua at all orders of the sigma-model perturbation expansion.

C. Duval; Z. Horvath; P. A. Horvathy

2006-02-13T23:59:59.000Z

397

Symmetries and Interaction coefficients of Kelvin waves  

E-Print Network (OSTI)

We considered symmetry restriction on the interaction coefficients of Kelvin waves and demonstrated that linear in small wave vector asymptotic is not forbidden, as one can expect by naive reasoning.

Vladimir V. Lebedev; Victor S. L'vov

2010-05-25T23:59:59.000Z

398

Nonlinear Saturation of Vertically Propagating Rossby Waves  

E-Print Network (OSTI)

The interaction between vertical Rossby wave propagation and wave breaking is studied in the idealized context of a beta-plane channel model. Considering the problem of propagation through a uniform zonal flow in an ...

Giannitsis, Constantine

399

Fracture compliance estimation using borehole tube waves  

E-Print Network (OSTI)

We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

Bakku, Sudhish Kumar

400

On Rayleigh Waves Across the Pacific Ocean  

Science Journals Connector (OSTI)

......research-article Articles On Rayleigh Waves Across the Pacific Ocean K. E. Bullen University College, Auckland, N. Z. ON RAYLEIGH WAVES ACROSS THE PACIFIC OCEAN K. E. Bullen (Received 1939November 9) The Bering......

K. E. Bullen

1939-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Wave Breaking Dissipation Observed with “SWIFT” Drifters  

Science Journals Connector (OSTI)

Energy dissipation rates during ocean wave breaking are estimated from high-resolution profiles of turbulent velocities collected within 1 m of the surface. The velocity profiles are obtained from a pulse-coherent acoustic Doppler sonar on a wave-...

Jim Thomson

2012-12-01T23:59:59.000Z

402

Green Ocean Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Ocean Wave Air Piston This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleGreenOceanWaveEnergy&oldid769161...

403

Equatorial Solitary Waves. Part 2: Envelope Solitons  

Science Journals Connector (OSTI)

Via the method of multiple scales, it is shown that the time and space evolution of the envelope of wave packets of weakly nonlinear, strongly dispersive equatorial waves is governed by the Nonlinear Schrödinger equation. The diverse phenomena of ...

John P. Boyd

1983-03-01T23:59:59.000Z

404

Periodic wave solutions of the Boussinesq equation  

Science Journals Connector (OSTI)

The Boussinesq equation usually arises in a physical problem as a long wave equation. The present work extends the search of periodic wave solutions for it. The Hirota bilinear method and Riemann theta function are employed in the process. We also analyse the asymptotic property of periodic waves in detail. Furthermore, it is of interest to note that well-known soliton solutions can be reduced from the periodic wave solutions.

Yi Zhang; Ling-ya Ye; Yi-neng Lv; Hai-qiong Zhao

2007-01-01T23:59:59.000Z

405

Numerical study on active wave devouring propulsion  

Science Journals Connector (OSTI)

The possibility of extracting energy from gravity waves for marine propulsion was numerically studied by a two-dimensional...

Liyanarachchi Waruna Arampath De Silva…

2012-09-01T23:59:59.000Z

406

Electromagnetic wave scattering by Schwarzschild black holes  

E-Print Network (OSTI)

We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira

2009-05-20T23:59:59.000Z

407

Nonlinear Mixing of Electromagnetic Waves in Plasmas  

Science Journals Connector (OSTI)

...coupling (32, 33). Plasma instabilities with multiple...experiment (34) with 430-MHz incoher-ent backscatter...probing of ionospheric plasma with beat waves appears...four-wave mixing in a plasma opens up the possibility...important in future upper atmospheric research. Beat waves...

V. STEFAN; B. I. COHEN; C. JOSHI

1989-01-27T23:59:59.000Z

408

Airbreathing Rotating Detonation Wave Engine Cycle Analysis  

E-Print Network (OSTI)

Airbreathing Rotating Detonation Wave Engine Cycle Analysis Eric M. Braun, Frank K. Lu, Donald R analysis of an airbreathing, rotating detonation wave engine (RDWE) is developed. The engine consists of a steady inlet system with an isolator which delivers air into the detonation annulus. A single wave

Texas at Arlington, University of

409

Slow magnetohydrodynamic waves in the solar atmosphere  

Science Journals Connector (OSTI)

...waves and oscillations in the solar plasma organized by Robert Erdelyi...waves at a magnetic interface. Solar Phys. 69, 1981a 27-38...Cram1981bpp. 369-383. Eds. New Mexico:Sunspot, Sacramento Peak...Magnetohydrodynamic waves. In Solar system magnetic fields E.R...

2006-01-01T23:59:59.000Z

410

Seminario de Matemtica Aplicada "Renowable wave energy  

E-Print Network (OSTI)

Seminario de Matemática Aplicada "Renowable wave energy: potencial and technical challenges Abstract: Among the various renewable energy sources, ocean wave energy has been only recently investiga will be at first to introduce the potential of wave energy, as a significant, and often neglected, contributor

Tradacete, Pedro

411

Discrete control of resonant wave energy devices  

Science Journals Connector (OSTI)

...Society 28 January 2012 research-article Articles 1006...peaks and troughs of wave energy: the dreams and the...control of deep water wave energy devices using an active...www.iwwwfb.org/Abstracts/iwwwfb20/iwwwfb20...latching control of a wave energy device in regular and...

2012-01-01T23:59:59.000Z

412

An Introduction to Wave-Current Interactions  

E-Print Network (OSTI)

-scale wave focusing across a storm can re-direct the wind-stress? #12;1. Adiabatic interaction StartAn Introduction to Wave-Current Interactions Jerry Smith, MPL-SIO-UCSD jasmith@ucsd.edu http just want to hold up your hand. #12;Some Questions in Wave-Current Interaction Physics 1. Adiabatic

Smith, Jerome A.

413

Hydrodynamic principles of wave power extraction  

Science Journals Connector (OSTI)

...Based on statistical data, Thorpe [12] has estimated the wave power potential along various...and K. Budal1982Wave-power absorption by parallel...de2008Phase control through load control of oscillating-body...and C. C. Mei2009Wave power extraction by a compact...

2012-01-01T23:59:59.000Z

414

CURRENTS DRIVEN BY ELECTRON CYCLOTRON WAVES  

E-Print Network (OSTI)

CURRENTS DRIVEN BY ELECTRON CYCLOTRON WAVES C.F.F. KARNEY, NJ. FISCH Plasma Physics Laboratory of the generation of steady-state currents by electron cyclotron waves are explored. A numerical solution of electron cyclotron wave absorption appears to be one of the more promising schemes of providing a steady

Karney, Charles

415

SCATTERING BEHAVIOR OF TRANSITIONAL SHOCK WAVES  

E-Print Network (OSTI)

SCATTERING BEHAVIOR OF TRANSITIONAL SHOCK WAVES Kevin R. Zumbrun Bradley J. Plohr Dan Marchesin September, 1991 Abstract. We study the stability and asymptotic behavior of transitional shock waves as solutions of a parabolic system of conservation laws. In contrast to classical shock waves, transitional

New York at Stoney Brook, State University of

416

Waves on unsteady currents Merrick C. Haller  

E-Print Network (OSTI)

Waves on unsteady currents Merrick C. Haller School of Civil and Construction Engineering, Oregon 2007; published online 3 December 2007 Models for surface gravity wave propagation in the presence of currents often assume the current field to be quasi-stationary, which implies that the absolute wave

Haller, Merrick

417

Bifurcation Theory of Meandering Spiral Waves  

E-Print Network (OSTI)

Bifurcation Theory of Meandering Spiral Waves Claudia Wul Freie Universitat Berlin, Fachbereich Mathematik und Informatik, Arnimallee 2{6, 14195 Berlin, email: wul @math.fu-berlin.de Abstract. Spiral waves-Zhabotinsky reaction. We develop a mathematical theory for the Hopf bifurcation from rigidly rotating spiral waves

Wulff, Claudia

418

Energy and Energy Flux in Planetary Waves  

Science Journals Connector (OSTI)

...research-article Energy and Energy Flux in Planetary Waves V. T. Buchwald The propagation...a thorough study of the energy of these waves in the plane approximation...case of divergent planetary waves, the total energy density being E = T + U...

1972-01-01T23:59:59.000Z

419

A Positive-Energy Relativistic Wave Equation  

Science Journals Connector (OSTI)

...research-article A Positive-Energy Relativistic Wave Equation P. A. M...positive and negative energies. A new relativistic wave equation for particles...positive values for the energy. There is great formal...usual relativistic wave equation for the electron...

1971-01-01T23:59:59.000Z

420

Some Common Wave Phenomena Applied to an M.H.D. Anisotropic Surface Wave System  

Science Journals Connector (OSTI)

......10xf. 4. The Kelvin Ship Wave Problem The effect of a local disturbance...anisotropy relative to its effect on the ship wave pattern. It is...demonstrate clearly the effect of the anisotropy of...surface waves in the ship wave problem. However......

I. S. ROBINSON

1976-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wave Turbulence in Superfluid 4 Energy Cascades, Rogue Waves & Kinetic Phenomena  

E-Print Network (OSTI)

Outline Wave Turbulence in Superfluid 4 He: Energy Cascades, Rogue Waves & Kinetic Phenomena Conference, Chernogolovka, 3 August 2009 McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4 He #12;Outline Outline 1 Introduction Motivation 2 Modelling wave turbulence Need for models

Fominov, Yakov

422

Beauty waves: an artistic representation of ocean waves using Bezier curves  

E-Print Network (OSTI)

In this thesis, we present a method for computing an artistic representation of ocean waves using Bezier curves. Wave forms are loosely based on procedural wave models and are designed to emulate those found in both art and nature. The wave forms...

Faulkner, Jay Allen

2007-04-25T23:59:59.000Z

423

Lossless Tapers, Gaussian Beams, Free-Space Modes: Standing Waves Versus Through-Flowing Waves  

E-Print Network (OSTI)

Lossless Tapers, Gaussian Beams, Free-Space Modes: Standing Waves Versus Through-Flowing Waves inconsistencies, in Marcatili's lossless tapers through-flowing waves must be drastically different from standing waves. First, we reconfirm this by means of numerical results based on an extended BPM algorithm. Next

Curtarolo, Stefano

424

Segmented Waves from a Spatiotemporal Transverse Wave Instability Lingfa Yang, Igal Berenstein, and Irving R. Epstein*  

E-Print Network (OSTI)

Segmented Waves from a Spatiotemporal Transverse Wave Instability Lingfa Yang, Igal Berenstein observe traveling waves emitted from Turing spots in the chlorine dioxide-iodine-malonic acid reaction. The newborn waves are continuous, but they break into segments as they propagate, and the propagation

Epstein, Irving R.

425

THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES  

SciTech Connect

One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ({sup f}ast waves{sup )}. In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

Pongkitiwanichakul, Peera; Chandran, Benjamin D. G. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Karpen, Judith T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); DeVore, C. Richard, E-mail: pbu3@unh.edu, E-mail: benjamin.chandran@unh.edu, E-mail: judy.karpen@nasa.gov, E-mail: devore@nrl.navy.mil [Naval Research Laboratory, Washington, DC 20375 (United States)

2012-09-20T23:59:59.000Z

426

Category:Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared page? For detailed information on Long-Wave Infrared as exploration techniques, click here. Category:Long-Wave Infrared Add.png Add a new Long-Wave Infrared...

427

Traveling wave device for combining or splitting symmetric and asymmetric waves  

DOE Patents (OSTI)

A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

Möbius, Arnold (Eggenstein, DE); Ives, Robert Lawrence (Saratoga, CA)

2005-07-19T23:59:59.000Z

428

von Neumann-Landau equation for wave functions, wave-particle duality and collapses of wave functions  

E-Print Network (OSTI)

It is shown that von Neumann-Landau equation for wave functions can present a mathematical formalism of motion of quantum mechanics. The wave functions of von Neumann-Landau equation for a single particle are `bipartite', in which the associated Schr\\"{o}dinger's wave functions correspond to those `bipartite' wave functions of product forms. This formalism establishes a mathematical expression of wave-particle duality and that von Neumann's entropy is a quantitative measure of complementarity between wave-like and particle-like behaviors. Furthermore, this extension of Schr\\"{o}dinger's form suggests that collapses of Schr\\"{o}dinger's wave functions can be regarded as the simultaneous transition of the particle from many levels to one.

Zeqian Chen

2007-03-22T23:59:59.000Z

429

Ponderomotive Forces On Waves In Modulated Media  

SciTech Connect

Nonlinear interactions of waves via instantaneous cross-phase modulation can be cast in the same way as ponderomotive wave-particle interactions in high-frequency electromagnetic fi eld. The ponderomotive effect arises when rays of a probe wave scatter off perturbations of the underlying medium produced by a second, modulation wave, much like charged particles scatter off a quasiperiodic field. Parallels with the point-particle dynamics, which itself is generalized by this theory, lead to new methods of wave manipulation, including asymmetric barriers for light.

Dodin, I.Y; Fisch, Nathaniel

2014-02-28T23:59:59.000Z

430

Standing waves in the Universe  

E-Print Network (OSTI)

At first, a review of our knowledge on the distribution of galaxies at large-scale, leading to a foam-like large-scale structure of the Universe, is presented in the Introduction. Then, it is shown how, according to the present theory for the formation of superclusters, wave scalar perturbations of the same frequency traveling in opposite directions give rise to standing waves, which cause a motion of the cosmic material towards the nodes, resulting in the concentration of the cosmic material around the nodes. Generalizing this effect to two (three) dimensions, the cosmic material is concentrated around the node lines (node surfaces). It is proposed that the three-dimensional effect is responsible for the foam-like large-scale structure of the Universe.

Evangelos Chaliasos

2005-12-06T23:59:59.000Z

431

Millimeter-wave active probe  

DOE Patents (OSTI)

A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

Majidi-Ahy, Gholamreza (Sunnyvale, CA); Bloom, David M. (Portola Valley, CA)

1991-01-01T23:59:59.000Z

432

Progress towards Gravitational Wave Astronomy  

E-Print Network (OSTI)

I will review the most recent and interesting results from gravitational wave detection experiments, concentrating on recent results from the LIGO Scientific Collaboration (LSC). I will outline the methodologies utilized in the searches, explain what can be said in the case of a null result, what quantities may be constrained. I will compare these results with prior expectations and discuss their significance. As I go along I will outline the prospects for future improvements.

M. Alessandra Papa

2008-02-07T23:59:59.000Z

433

Rabi Waves in Carbon Nanotubes  

E-Print Network (OSTI)

QED-model for the multichain qubit system with interactions of qubits and chains between themselves on the example of the system of $\\sigma$-polarons in carbon zigzag nanotubes, interacting with quantized EM-field, is considered analytically. The possibility of experimental detection of Rabi waves in conventional stationary optical experiments for any quasi-1D system with strong electron-photon interaction is predicted.

Alla Dovlatova; Dmitry Yearchuck

2010-09-08T23:59:59.000Z

434

The Wave of the Future  

E-Print Network (OSTI)

The Wave of the Future Story by Courtney Swyden THEWAVE OF THE FUTURE tx H2O | pg. 2 Plans use local involvement to enhance water quality Comprehensive watershed protection plans,outlining ways to preserve or restore water-sheds, are becoming a... popular approach for protecting Texas surface waters. The Texas Water Resources Institute (TWRI), Texas Agricultural Experiment Station and Texas Cooperative Extension are taking an active role in providing assessment, educational outreach, manage...

Swyden, Courtney

2006-01-01T23:59:59.000Z

435

Sequentially pulsed traveling wave accelerator  

DOE Patents (OSTI)

A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

2009-08-18T23:59:59.000Z

436

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

OTRC Wave Basin OTRC Wave Basin Jump to: navigation, search Basic Specifications Facility Name OTRC Wave Basin Overseeing Organization Texas A&M (OTRC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 45.7 Beam(m) 30.5 Depth(m) 5.8 Water Type Freshwater Cost(per day) $300/hour (excluding labor) Special Physical Features 4.6m wide x 9.1m long x 16.8m deep pit with adjustable depth floor in test area Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.6 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 25 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.6 Programmable Wavemaking Yes Wavemaking Description GEDAP 3D wave generation software, 48 hinged flap wave generator

437

1 P A P E R 2 Design, Modeling and Optimization of an  

E-Print Network (OSTI)

system comprising a buoy that houses a set of mechanical 48 devices and a permanent magnetic generator results are 57 provided and compared. 58 Keywords: buoy, ocean wave energy, permanent magnetic generator a shaft to 51 move armature coils within the generator to produce an electric current. The amount 52

Qu, Zhihua

438

ON THE EXECUTION OF MARINE RESEARCH IN THE BERING STRAIT, EAST SIBERIAN AND THE CHUKCHI SEA BY THE  

E-Print Network (OSTI)

Strait; - determination of the influence of wind-wave mixing upon the structure of waters; - monitoring: - recovery of the three autonomous buoy-based stations, deployed during the year of 2008 within the territorial waters of the Russian Federation and five autonomous buoy-based stations within the territorial

439

On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry  

E-Print Network (OSTI)

On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean wave

Victoria, University of

440

Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics  

E-Print Network (OSTI)

with open circles). The resolved-scale eddy term is shown by stars (no line), with the background viscous part then being the di erence between the net resolved-scale and resolved-scale eddy parts. : : : : : : : : : : : 36 16 Schematic sea breeze system... breeze and mesoscale convective systems. Gravity wave momentum transport away from topography in particular plays an important role in the momentum budget of the atmosphere and hence the general circulation. The present study addresses two aspects...

Qian, Tingting

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

FDI Waves, Waves of Neglect of Political Risk  

Science Journals Connector (OSTI)

Summary Studies of the impact of local political risk on foreign direct investment inflows overlook that worldwide FDI comes in waves. Using a simple model we show that the impact of political risk on FDI inflows is likely to be weaker, the larger the worldwide amount of FDI, which may question standard estimates and their policy implications. Using a large sample of developing and developed economies, we estimate the sensitivity of the distribution of FDI inflows across countries, to the local political risk. We find that it is a decreasing function of the worldwide amount of FDI. This finding has been upheld after many robustness checks.

Pierre-Guillaume Méon; Khalid Sekkat

2012-01-01T23:59:59.000Z

442

Waves  

NLE Websites -- All DOE Office Websites (Extended Search)

Acerca de las ondas Acerca de las ondas Volver Principal ESTOY PERDIDO!!! Hablando en términos simples, una onda es algo que oscila en el tiempo y en el espacio. Las ondas se extienden de un lugar a otro. Pueden vibrar periódicamente (como el sonido de la nota de un violín) o de modo no periódico (como en el sonido de una explosión, por ejemplo.) Todas las ondas tienen las siguientes propiedades: El tamaño de la vibración se llama su amplitud. Cuán seguido ocurre la vibración es la frecuencia. La distancia que la onda ha recorrido entre dos máximos es la longitud de onda. Puesto que una onda dada se propaga a una determinada velocidad, a través de un material, si Usted incrementa la frecuencia de la onda, la distancia entre crestas disminuirá (es decir se produce una disminución

443

Wave  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Plains states. The temperatures soared to record- setting levels. The state of Oklahoma saw its fourth hottest July since 1895, while Kansas experienced its seventh warmest....

444

Waves  

Science Journals Connector (OSTI)

The fractal behavior of accidents like the Fukushima dai-ichi disaster gives scientists a tool ... by the projection of nuclear power incidents going forward, in Fig. 1.4c. The likelihood of a reportable incident...

Ted G. Lewis

2014-01-01T23:59:59.000Z

445

On the application of circular–cylindrical waves to ocean wave power absorption  

Science Journals Connector (OSTI)

This study derives mathematical forms for the waves radiated from a heaving, surging and swaying point source on the surface of a three dimensional ocean. The interactions between a monochromatic plane wave and monochromatic circular–cylindrical radiated waves are examined, and solutions to the time averaged power are calculated. These calculations confirm pre-existing theoretical maximum absorption lengths for both a heaving and surging point source. The derivations also lead to the definition of the amplitude, phase and form of the radiated waves required to achieve these maximums. Two experimental case studies match measured radiated wave with circular waves. These matches demonstrate a correlation between the body motions and the dominant form of radiated waves as well as higher frequency waves. The study develops three general guidelines for the design of efficient point absorber wave energy converters (PAWECs). Optimum power absorption occurs when the PAWEC radiates theoretical heave and surge waves of the appropriate amplitude and phase. Theoretical sway type waves should be minimized as these radiate energy and do not interact with the incident wave. Similarly, the radiation of higher harmonic waves should also be minimized for the same reasons.

Matthew Wypych; Lan Le-Ngoc; Keith Alexander; Alister Gardner

2012-01-01T23:59:59.000Z

446

Wave maps on a wormhole  

E-Print Network (OSTI)

We consider equivariant wave maps from a wormhole spacetime into the three-sphere. This toy-model is designed for gaining insight into the dissipation-by-dispersion phenomena, in particular the soliton resolution conjecture. We first prove that for each topological degree of the map there exists a unique static solution (harmonic map) which is linearly stable. Then, using the hyperboloidal formulation of the initial value problem, we give numerical evidence that every solution starting from smooth initial data of any topological degree evolves asymptotically to the harmonic map of the same degree. The late-time asymptotics of this relaxation process is described in detail.

Piotr Bizo?; Micha? Kahl

2014-12-17T23:59:59.000Z

447

Property:Wave Direction | Open Energy Information  

Open Energy Info (EERE)

Direction Direction Jump to: navigation, search Property Name Wave Direction Property Type String Pages using the property "Wave Direction" Showing 25 pages using this property. (previous 25) (next 25) A Alden Small Flume + Uni-Directional + Alden Wave Basin + Both + C Carderock Maneuvering & Seakeeping Basin + Both + Carderock Tow Tank 2 + Uni-Directional + Carderock Tow Tank 3 + Uni-Directional + Chase Tow Tank + Uni-Directional + Coastal Harbors Modeling Facility + Uni-Directional + Coastal Inlet Model Facility + Uni-Directional + Coastal Structures Modeling Complex + Both + D Davidson Laboratory Tow Tank + Uni-Directional + DeFrees Large Wave Basin + Uni-Directional + DeFrees Small Wave Basin + Uni-Directional + H Haynes Wave Basin + Both +

448

Refrigeration system having standing wave compressor  

DOE Patents (OSTI)

A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

Lucas, Timothy S. (Glen Allen, VA)

1992-01-01T23:59:59.000Z

449

Emergent cosmological constant from colliding electromagnetic waves  

E-Print Network (OSTI)

In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

M. Halilsoy; S. Habib Mazharimousavi; O. Gurtug

2014-10-15T23:59:59.000Z

450

Wave Heating of the Solar Atmosphere  

E-Print Network (OSTI)

Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding on coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding on the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation, and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us understanding and quantifying magnetic wave heating of the sola...

Arregui, I

2015-01-01T23:59:59.000Z

451

Some Wave Equations for Electromagnetism and Gravitation  

E-Print Network (OSTI)

The paper studies the inferences of wave equations for electromagnetic fields when there are gravitational fields at the same time. In the description with the algebra of octonions, the inferences of wave equations are identical with that in conventional electromagnetic theory with vector terminology. By means of the octonion exponential function, we can draw out that the electromagnetic waves are transverse waves in a vacuum, and rephrase the law of reflection, Snell's law, Fresnel formula, and total internal reflection etc. The study claims that the theoretical results of wave equations for electromagnetic strength keep unchanged in the case for coexistence of gravitational and electromagnetic fields. Meanwhile the electric and magnetic components of electromagnetic waves can not be determined simultaneously in electromagnetic fields.

Zi-Hua Weng

2010-08-11T23:59:59.000Z

452

The Nonlinear Essence of Gravitational Waves  

E-Print Network (OSTI)

A critical review of gravitational wave theory is made. It is pointed out that the usual linear approach to the gravitational wave theory is neither conceptually consistent nor mathematically justified. Relying upon that analysis it is then argued that -- analogously to a Yang-Mills propagating field, which must be nonlinear to carry its gauge charge -- a gravitational wave must necessarily be nonlinear to transport its own charge -- that is, energy-momentum.

R. Aldrovandi; J. G. Pereira; K. H. Vu

2007-09-11T23:59:59.000Z

453

Speed selection for coupled wave equations  

E-Print Network (OSTI)

We discuss models for coupled wave equations describing interacting fields, focusing on the speed of travelling wave solutions. In particular, we propose a general mechanism for selecting and tuning the speed of the corresponding (multi-component) travelling wave solutions under certain physical conditions. A number of physical models (molecular chains, coupled Josephson junctions, propagation of kinks in chains of adsorbed atoms and domain walls) are considered as examples.

Mariano Cadoni; Giuseppe Gaeta

2015-01-13T23:59:59.000Z

454

Sharp shock model for propagating detonation waves  

SciTech Connect

Recent analyses of the reactive Euler equations have led to an understanding of the effect of curvature on an underdriven detonation wave. This advance can be incorporated into an improved sharp shock model for propagating detonation waves in hydrodynamic calculations. We illustrate the model with two simple examples: time dependent propagation of a diverging detonation wave in 1-D, and the steady 2-D propagation of a detonation wave in a rate stick. Incorporating this model into a 2-D front tracking code is discussed. 20 refs., 3 figs.

Bukiet, B.; Menikoff, R.

1989-01-01T23:59:59.000Z

455

Holographic p-wave Josephson junction  

E-Print Network (OSTI)

In this work we generalized holographic model for s-wave DC Josephson junction constructed in arXiv:1101.3326[hep-th] to a holographic description for p-wave Josephson junction. By solving numerically the coupled equations of motion of Yang-Mills theory for a non-Abelian SU(2) gauge fields in (3+1)-dimensional AdS spacetimes, we shown that DC current of the p-wave Josephson junction is proportional to the sine of the phase difference across the junction like the s-wave case.

Wang, Yong-Qiang; Zhao, Zhen-Hua

2011-01-01T23:59:59.000Z

456

Holographic p-wave Josephson junction  

E-Print Network (OSTI)

In this work we generalized holographic model for s-wave DC Josephson junction constructed in arXiv:1101.3326[hep-th] to a holographic description for p-wave Josephson junction. By solving numerically the coupled equations of motion of Yang-Mills theory for a non-Abelian SU(2) gauge fields in (3+1)-dimensional AdS spacetimes, we shown that DC current of the p-wave Josephson junction is proportional to the sine of the phase difference across the junction like the s-wave case.

Yong-Qiang Wang; Yu-Xiao Liu; Zhen-Hua Zhao

2011-09-20T23:59:59.000Z

457

Fast methods for inverse wave scattering problems  

E-Print Network (OSTI)

Inverse wave scattering problems arise in many applications including computerized/diffraction tomography, seismology, diffraction/holographic grating design, object identification from radar singals, and semiconductor ...

Lee, Jung Hoon, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

458

European Wave and Tidal Energy Conference  

Energy.gov (U.S. Department of Energy (DOE))

The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

459

Surface acoustic wave for microfluidic applications.  

E-Print Network (OSTI)

??Surface acoustic wave-based (SAW) microfluidics attracts attention from microfluidic research community due to its simple fabrication, large force and fast, yet efficient operation. The scope… (more)

Luong, Trung Dung.

2012-01-01T23:59:59.000Z

460

Emergence of exponentially small reflected waves  

E-Print Network (OSTI)

We study the time-dependent scattering of a quantum mechanical wave packet at a barrier for energies larger than the barrier height, in the semi-classical regime. More precisely, we are interested in the leading order of the exponentially small scattered part of the wave packet in the semiclassical parameter when the energy density of the incident wave is sharply peaked around some value. We prove that this reflected part has, to leading order, a Gaussian shape centered on the classical trajectory for all times soon after its birth time. We give explicit formulas and rigorous error bounds for the reflected wave for all of these times.

Volker Betz; Alain Joye; Stefan Teufel

2008-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ARM - Lesson Plans: Moving Water and Waves  

NLE Websites -- All DOE Office Websites (Extended Search)

Moving Water and Waves Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM...

462

Microsoft Word - Wave Erosion Lesson1.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

many causes of coastal erosion that include storms, changes in permafrost, flooding, sea level rise, and waves. The retreat of coastal land can cause irreversible damage to the...

463

Lower Hybrid to Whistler Wave Conversion  

SciTech Connect

In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

Winske, Dan [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

464

Conjugate memory effect of random scattered waves  

Science Journals Connector (OSTI)

The correlation function between two speckle patterns produced by different incident waves is studied by means of stochastic approaches. The angular-frequency memory effect, which...

Kawanishi, Tetsuya; Wang, Zhi Liang; Izutsu, Masayuki; Ogura, Hisanao

1999-01-01T23:59:59.000Z

465

Encircled energy of diffracted converging spherical waves  

Science Journals Connector (OSTI)

We studied the diffraction phenomenon of a circular aperture that was illuminated by a monochromatic converging spherical wave. The theoretical part of this study was based on the...

Li, Yajun

1983-01-01T23:59:59.000Z

466

Measurements and Linear Wave Theory Based Simulations of Vegetated Wave Hydrodynamics for Practical Applications  

E-Print Network (OSTI)

density exceeding some threshold where maximum wave attenuation capabilities are exceeded and lowering of damping ensues. Additionally, wave attenuation increased with higher stem spatial variation due to less wake sheltering. A one-dimensional model...

Anderson, Mary Elizabeth

2011-10-21T23:59:59.000Z

467

A One-Dimensional Propagation of Shock Wave Supported by Atmospheric Millimeter-Wave Plasma  

Science Journals Connector (OSTI)

A shock wave supported by an atmospheric breakdown plasma caused by a high-power millimeter-wave ... was detached from the ionization front of the plasma whenever the propagation velocity of the ionization ... . ...

Yasuhisa Oda; Toshikazu Yamaguchi…

2011-06-01T23:59:59.000Z

468

Implications of the semigeostrophic nature of Rossby waves for Rossby wave packet detection  

Science Journals Connector (OSTI)

Upper tropospheric Rossby wave packets have received increased attention recently. In most previous studies wave packets have been detected by computing the envelope of the meridional wind field using either complex demodulation or a Hilbert ...

Gabriel Wolf; Volkmar Wirth

469

Reflection of electromagnetic waves from mixtures of plane gravitational and scalar waves  

E-Print Network (OSTI)

We consider colliding wave packets consisting of hybrid mixtures of electromagnetic, gravitational and scalar waves. Irrespective of the scalar field, the electromagnetic wave still reflects from the gravitational wave. Some reflection processes are given for different choice of packets in which the Coulomb-like component $\\Psi_2$ vanishes. Exact solution for multiple reflection of an electromagnetic wave from successive impulsive gravitational waves is obtained in a closed form. It is shown that a succesive sign flip in the Maxwell spinor arises as a result of encountering with an impulsive train (i.e. the Dirac's comb curvature) of gravitational waves. Such an observable effect may be helpful in the detection of gravitational wave bursts.

Ozay Gurtug; Mustafa Halilsoy; Ozlem Unver

2006-08-22T23:59:59.000Z

470

Microsoft Word - FINAL Hydro Workshop Proceedings - Rev. 1 - FINAL.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop October 26-28, 2005 Washington, D.C. Sponsored by: U.S. Department of Energy OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY Wind and Hydropower Technologies Program March 24, 2006 To access this document and presentations made at the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop visit: http://hydropower.inl.gov/hydrokinetic_wave/ The production of this document was supported by the National Renewable Energy Laboratory under the subcontract YAM-4-33-217-01. Financial support by the National Renewable Energy Laboratory and the Department of Energy does not constitute an endorsement by these

471

Shock Waves in Space Environments  

Science Journals Connector (OSTI)

We present results on two topics: a) The three?dimensional (3D) Hybrid Heliospheric Modeling System with Pickup Ions (HHMS?PI) simulations of shock waves and initial comparisons with ACE and Ulysses data for the Halloween 2003 solar events including the Ulysses SWICS pickup proton densities; and b) Our analyses of Voyager 2 (V2) data near the termination shock (TS). Previously we used our time?dependent 3D Hybrid Heliospheric Modeling System (HHMS) for magnetohydrodynamic (MHD) simulations of transient events originating on the Sun. We now have added the physics of “pickup” proton processes to these models. Interstellar neutral hydrogen flows into the heliosphere and becomes ionized by photoionization and by charge exchange with solar wind protons. These “pickup” protons cause a slowing and heating of the solar wind flow in the outer heliosphere. Both HHMS?PI and HHMS use continuous solar inputs to simulate processes that originate at the Sun. Our V2 analyses identified some elevated readings in the plasma subsystem (PLS) data. It is tempting to interpret these at face value as detections of high energy ions (HEIs) which may interact with the bulk convective plasma through a two stream instability giving rise to the observed enhanced signals in the plasma wave subsystem (PWS).

Devrie S. Intriligator; Thomas Detman; James Intriligator; Christine Gloeckler; Wei Sun; W. David Miller; William R. Webber; Murray Dryer

2009-01-01T23:59:59.000Z

472

Neutron Star Crustal Interface Waves  

Science Journals Connector (OSTI)

The eigenfrequencies of nonradial oscillations are a powerful probe of a star's interior structure. This is especially true when there exist discontinuities such as at the neutron star (NS) ocean/crust boundary, as first noted by McDermott, Van Horn, & Hansen. The interface mode associated with this boundary has subsequently been neglected in studies of stellar nonradial oscillations. We revisit this mode, investigating its properties both analytically and numerically for a simple NS envelope model. We find that it acts like a shallow surface ocean wave, but with a large radial displacement at the ocean/crust boundary due to flexing of the crust with shear modulus ? P, the pressure. This displacement lowers the mode's frequency by a factor of ~(?/P)1/2 ~ 0.1 in comparison to a shallow surface wave frequency on a hard surface. The interface mode may be excited on accreting or bursting NSs, and future work on nonradial oscillations should consider this mode. Our work also implies an additional mode on massive and/or cold white dwarfs with crystalline cores, which may have a frequency between the f-mode and g-modes, an otherwise empty part of the frequency domain.

Anthony L. Piro; Lars Bildsten

2005-01-01T23:59:59.000Z

473

Gravitational waves versus cosmic strings  

Science Journals Connector (OSTI)

The equation which governs the temporal evolution of a gravitational wave (GW) in curved space-time can be treated as the Schrodinger equation for a particle moving in the presence of an effective potential. When GWs propagate in an expanding Universe with constant effective potential, there is a critical value (kc) of the comoving wave-number which discriminates the metric perturbations into oscillating (k > kc) and non-oscillating (k kc) modes. The effective potential is reduced to a non-vanishing constant in a cosmological model which is driven by a two-component fluid, consisting of radiation (dominant) and cosmic strings (subdominant). However, the cosmological evolution (gradually) results in the scaling of any long-cosmic-string network and, therefore, after some time (??) the Universe enters in the pure-radiation epoch. The evolution of the non-oscillatory GW modes during ??, results in the distortion of the low-frequency part of the stochastic GW power-spectrum, which, therefore, departs from scale invariance (anticipated in the pure-radiation case). As regards the corresponding high-frequency part (which is determined by the evolution of the oscillating modes), we find that the presence of cosmic strings gives rise to the quantum-gravitational creation of gravitons, leading to the amplification of the GW signal by (almost) two orders of magnitude.

Kostas Kleidis

2009-01-01T23:59:59.000Z

474

DeFrees Large Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Large Wave Basin Large Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Large Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 32.0 Beam(m) 0.6 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 64 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled 4m hydraulic wave paddle stroke allows a series of solitary waves to be generated; arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes

475

Can We Measure the Wave Function of a SingleWave Packet of Light?  

E-Print Network (OSTI)

Can We Measure the Wave Function of a SingleWave Packet of Light? Brownian Motion and Continuous Wave Packet Collapse in RepeatedWeak Quantum Nondemolition Measurements ORLY ALTER AND YOSHIHISA information about the physical system under consideration. The result of a precise measurement on a single

Utah, University of

476

Electromagnetic waves and Stokes parameters in the wake of a gravitational wave  

E-Print Network (OSTI)

A theoretical description of electromagnetic waves in the background of a (weak) gravitational wave is presented. Explicit expressions are obtained for the Stokes parameters during the passage of a plane-fronted gravitational wave described by the Ehlers-Kundt metric. In particular, it is shown that the axis of the polarization ellipse oscillates, its ellipticity remaining constant.

Shahen Hacyan

2012-06-15T23:59:59.000Z

477

Introduction Idealized Moist Jet/Front Waves Ray Tracing Momentum Flux/Forcing Conclusion Gravity Waves  

E-Print Network (OSTI)

Introduction Idealized Moist Jet/Front Waves Ray Tracing Momentum Flux/Forcing Conclusion Gravity Waves in Moist Baroclinic Jet-Front Systems Junhong Wei, Fuqing Zhang Department of Meteorology The Pennsylvania State University Tuesday 19th August, 2014 #12;Introduction Idealized Moist Jet/Front Waves Ray

Thompson, Anne

478

Plane wave solution for elastic wave scattering by a heterogeneous fracture  

E-Print Network (OSTI)

Plane wave solution for elastic wave scattering by a heterogeneous fracture Seiji Nakagawa,a) Kurt for computing the three-dimensional scattering of propagating elastic waves by a planar fracture with heterogeneous fracture compliance distribution is presented. This method is based upon the spatial Fourier

Santos, Juan

479

NONLINEAR ELASTIC WAVE NDE II. NONLINEAR WAVE MODULATION SPECTROSCOPY AND NONLINEAR TIME  

E-Print Network (OSTI)

NONLINEAR ELASTIC WAVE NDE II. NONLINEAR WAVE MODULATION SPECTROSCOPY AND NONLINEAR TIME REVERSED. This paper presents the second part of the review of Nonlinear Elastic Wave Spectroscopy (NEWS) in NDE, and describe two different methods of nonlinear NDE that provide not only damage detection but location as well

480

On Wave Breaking and the Equilibrium Spectrum of Wind-Generated Waves  

Science Journals Connector (OSTI)

...Equilibrium Spectrum of Wind-Generated Waves M...is made of the loss of energy by wave breaking in a...g the proportion of energy lost per mean wave cycle...equilibrium state the loss of energy by breaking is comparable to that supplied by the wind, one can estimate the...

1969-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave buoy hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Wave Climate and Trends for the Gulf of Mexico: A 30-Yr Wave Hindcast  

Science Journals Connector (OSTI)

This paper describes wave climate and variability in the Gulf of Mexico based on a 30-yr wave hindcast. The North American Regional Reanalysis wind fields are employed to drive a third-generation spectral wave model with high spatial (0.005°–0.06°)...

Christian M. Appendini; Alec Torres-Freyermuth; Paulo Salles; Jose López-González; E. Tonatiuh Mendoza

2014-02-01T23:59:59.000Z

482

Violent Wave Motion due to Impact Violent Wave Motion due to Impact  

E-Print Network (OSTI)

Violent Wave Motion due to Impact Violent Wave Motion due to Impact Mark J. Cooker School of Mathematics, University of East Anglia, Norwich, England. m.cooker@uea.ac.uk Theory of Water Waves, Cambridge Motion due to Impact 2. Pressure-Impulse Theory 214 M.J. COOKER AND D.H. PEREGRINE Y; O: .-- I mpact zone

483

Physics Waves Worksheet Solutions 1. The diagram on the right shows a wave  

E-Print Network (OSTI)

the oscillations of the string separated by 1.0 m along the wave is (a) /4 (b) /2 (c) (d) 2 Answer (b it moving upwards at maximum speed 2. A standing wave is generated on a string which is fixed at both ends, and vibrates at its fundamental frequency. The tension of the string is now increased and a new standing wave

484

5 - Surface Wave Plasma Sources  

Science Journals Connector (OSTI)

Publisher Summary This chapter summarizes the advantages of the surface wave (SW) plasma sources. It includes a summary of the wave and plasma properties of SW sustained plasma columns, review of the essential parts composing a SW plasma source; describes a family of efficient SW launchers for such plasma sources, dwells on three typical experimental arrangements and a brief summary recalling the advantages of SW plasma sources. Surface wave discharges have the advantage of the broadest operating conditions in terms of frequency, tube dimensions and shape, and gas pressure. For example they can be utilized over both the RF (radiofrequency) and microwave domains, which permits one to optimize given processes as a function of frequency (generally through changes in the electron energy distribution function). A further advantage of SW plasmas is that they are the best modeled HF plasmas. This provides insight into HF discharges in general since, to a first approximation, the local plasma properties of SW discharges are the same as in all RF and microwave discharges under given discharge conditions, and for a given HF power density deposited in the plasma. Compared to other RF and microwave plasma sources, SW discharges are undoubtedly the most flexible ones. They also are efficient discharges since very little HF power is lost in the impedance matching circuit. Finally, a major future avenue for these discharges is their operation as magnetized plasmas. As a first approach to presenting surface wave (SW) plasma sources, let us consider their distinctive features with respect to the other plasma sources described in the book:o1. The discharge can be sustained far away from the active zone of the field applicator. This is because the electric field supporting the discharge is provided by a wave that carries away the power from the applicator. It is an electromagnetic surface wave whose sole guiding structure is the plasma column that it sustains and the dielectric tube enclosing it [1]–[3]. This is, thus, a non-cumbersome method for producing long plasma columns; plasma columns up to 6 meters in length have been achieved in our laboratory while launching the wave with a field applicator that surrounded the discharge tube over a few centimeters in length only. [4][5] 2. The range of the applied field frequency f=?/2? is the broadest of all kinds of high frequency (HF) sustained plasma sources. We have succeeded in realizing HF power transfer to the discharge efficiently from approximately 10 \\{MHz\\} to 10 \\{GHz\\} [6] and, with impaired coupling efficiency, down to 200 kHz [7]. This frequency range includes radiofrequencies (RF) and the lower part of the microwave frequency spectrum; we use the term high frequencies to designate RF as well as microwave frequencies. An interesting aspect of this frequency flexibility is the possibility of acting on the electron energy distribution function (EEDF) to optimize a given plasma process [8]. 3. The gas pressure range is extremely large. On the one hand, one can operate SW discharges in the sub-mtorr range under electron cyclotron resonance (ECR) conditions, [9] while, on the other hand, it is possible to sustain a stable plasma of a few millimeters diameter at pressures at least a few times atmospheric pressure [10]. 4. The range of plasma, density, n, is very large. At reduced pressure and with f in the few \\{MHz\\} range, n, can be as low as 108 cm?3, [7] while at atmospheric pressure it can exceed 1015 cm?3[10] A related parameter is the degree of ionization ?i, i.e. the plasma density relative to the initial neutral atom concentration. Under ECR conditions, for example with f=2.45 \\{GHz\\} where n can reach up to a few 1012 cm?3, ?i ranges approximately from 0.1–10%, whereas in the above-mentioned atmospheric pressure case, it is smaller than 10?4. The higher n, the higher the rate of plasma processes depending on ions or on neutral particles (e.g., atoms, radicals) when the latter are obtained through electron collisions [8]. Large ?i values favor the existence of

Michel Moisan; Joëlle Margot; Zenon Zakrzewski

1996-01-01T23:59:59.000Z

485

Directional Spectra of Wind-Generated Waves  

Science Journals Connector (OSTI)

...H. Hui From observations of wind and of water surface elevation...the directional spectrum of wind-generated waves on deep water...inversely proportional to the fourth power of the frequency , with the...clearly dependent on the ratio of wind speed to peak wave speed...

1985-01-01T23:59:59.000Z

486

INTRODUCTION In detonation wave computations involving  

E-Print Network (OSTI)

INTRODUCTION In detonation wave computations involving curved detonation fronts, accurate solutions to compute solutions to detonation prob­ lems without numerically resolving the reaction zone. For planar detonation waves, algebraic jump conditions which do not depend on the dynamics within the reaction zone can

Bukiet, Bruce

487

Gravitational dispersion in a torsional wave machine  

E-Print Network (OSTI)

We demonstrate that mechanical waves traveling in a torsional, mechanical wave machine exhibit dispersion due to gravity and the discreteness of the medium. We also show that although the dispersion due to discreteness is negligible, the dispersion due to gravity can be easily measured, and can be shown to disappear in a zero-gravity environment.

Rafael de la Madrid; Alejandro Gonzalez; George Irwin

2014-09-01T23:59:59.000Z

488

First Plasma Wave Observations at Neptune  

Science Journals Connector (OSTI)

...the electric field of plasma waves and radio emissions...range from 10 Hz to 56.2 kHz. Further information...high frequencies (>100 kHz) as much as 30 days before...closest approach (2), the plasma wave in-strument did...low frequencies (kHz) until only a few days...

D. A. Gurnett; W. S. Kurth; R. L. Poynter; L. J. Granroth; I. H. Cairns; W. M. Macek; S. L. Moses; F. V. Coroniti; C. F. Kennel; D. D. Barbosa

1989-12-15T23:59:59.000Z

489

First Plasma Wave Observations at Uranus  

Science Journals Connector (OSTI)

...ring plane crossing, the plasma wave instrument detected...kilometers. BRIDGE, H.S., PLASMA OBSERVATIONS NEAR URANUS...RADIO-EMISSION FROM URANUS AT 0.5 MHZ, ASTROPHYSICAL JOURNAL...SATURN BY THE VOYAGER PLASMA-WAVE INSTRUMENT, ICARUS...position where the 97.2-kHz radiation was blocked...

D. A. GURNETT; W. S. KURTH; F. L. SCARF; R. L. POYNTER

1986-07-04T23:59:59.000Z

490

Solar coronal heating by magnetosonic waves  

Science Journals Connector (OSTI)

......presence of MHD waves in the solar corona. Saba Strong...data acquired by the Solar Maximum Mission (SMM...emission lines came the SOHO project (Doyle, Teriaca Banerjee...calculated the Alfven wave energy flux density as for...and a combination of Solar Untraviolet Measurements......

E. R. Pekünlü; Ö. Çakirli; E. Özetken

2001-09-11T23:59:59.000Z

491

WAVE-DRIVEN SURFACE FROM HF RADAR  

E-Print Network (OSTI)

experiments using the University of Miami's Ocean Surface Current Radar (OSCR) (Shay et al., 1995, 1997 to the internal wave signals. Observations The HF radar system mapped the coastal ocean currents over a 30 Ã? 45 kmFEATURE INTERNAL CURRENTS WAVE-DRIVEN SURFACE FROM HF RADAR By Lynn K. Shay Observations from

Miami, University of

492

Wave energy extraction by coupled resonant absorbers  

Science Journals Connector (OSTI)

...alter those natural frequencies more readily, and...fundamental sloshing frequency in the tank is lowered...fundamental sloshing frequency is located at an...over-topping absorber wave energy converter We develop...sloshing motions in response to wave forcing...is to control the storage of a head of water...

2012-01-01T23:59:59.000Z

493

Wave propagation in the magnetic sun  

E-Print Network (OSTI)

This paper reports on efforts to simulate wave propagation in the solar interior. Presented is work on extending a numerical code for constant entropy acoustic waves in the absence of magnetic fields to the case where magnetic fields are present. A set of linearized magnetohydrodynamic (MHD) perturbation equations has been derived and implemented.

T. Hartlep; M. S. Miesch; N. N. Mansour

2008-05-03T23:59:59.000Z

494

Interaction of Gravitational Waves with Charged Particles  

E-Print Network (OSTI)

It is shown here that a cloud of charged particles could in principle absorb energy from gravitational waves (GWs) incident upon it, resulting in wave attenuation. This could in turn have implications for the interpretation of future data from early universe GWs.

Wickramasinghe, Thulsi; Revalski, Mitchell

2015-01-01T23:59:59.000Z

495

Comments on the radial plane waves  

E-Print Network (OSTI)

The orthogonality of the radial plane waves, introduced by Fujikawa, turns out to be broken for the case of infinite volume. We will find, though they become overcomplete, the concept of the radial plane waves remains useful for constructing radial path integrals.

Seiji Sakoda

2009-07-30T23:59:59.000Z

496

Environmental Data Collection Using Autonomous Wave Gliders  

E-Print Network (OSTI)

Environmental Data Collection Using Autonomous Wave Gliders LCDR Kate Hermsdorfer Qing Wang model ­AIRMAR PB200 weather station Pressure, Temperature, Wind Speed and Direction 10 min averaged sea conditions Bulk flux estimates 2-D wave spectra Water temperature profile Autonomous

497

Wave Propagation in Fractured Poroelastic Media  

E-Print Network (OSTI)

and mining. In geophysical prospecting, reservoir development and CO2 storage in geological formations-scale heterogeneities due to patchy brine-CO2 saturation and fractal porosity (fractal frame properties). Wave conditions associated with compressibility and shear tests, which are solved using the FE method. Wave

Santos, Juan

498

Phase Correlation of Electrons and Langmuir Waves  

E-Print Network (OSTI)

elsewhere in the solar system and beyond. For example, the generation of auroral roar is similar mode conversion of Lang- muir waves in the solar wind, and recent observations of structured type III, the Langmuir/upper hybrid waves radiate away some of their energy into elec- tromagnetic radiation, which can

California at Berkeley, University of

499

Discrete control of resonant wave energy devices  

Science Journals Connector (OSTI)

...time domain, which allows us to find non-harmonic...first applied to the wave energy area by Hoskin Nichols...Clement, A. H. 2002Wave energy in Europe: current status and perspectivesRenew. Sustain. Energy Rev. 6 405431 10.1016...

2012-01-01T23:59:59.000Z

500

Plasma Waves Near Venus: Initial Observations  

Science Journals Connector (OSTI)

...noise, damping of the waves by the ionospheric electrons can be an important interaction mecha-nism that transfers solar wind energy di-rectly to the ionosphere. The measurements of plasma wave ac-tivity near Venus are made by using a vee-type...

F. L. SCARF; W. W. L. TAYLOR; I. M. GREEN

1979-02-23T23:59:59.000Z