Powered by Deep Web Technologies
Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 September 11, 2014 -...

2

BerkeleyGW  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BerkeleyGW BerkeleyGW BerkeleyGW Description The BerkeleyGW Package is a set of computer codes that calculates the quasiparticle properties and the optical responses of a large variety of materials from bulk periodic crystals to nanostructures such as slabs, wires and molecules. The package takes as input the mean-field results from various electronic structure codes such as the Kohn-Sham DFT eigenvalues and eigenvectors computed with PARATEC, Quantum ESPRESSO, SIESTA,Octopus, or TBPW (aka EPM). How to Access BerkeleyGW NERSC uses modules to manage access to software. To use the default version of BerkeleyGW, type: % module load berkeleygw Using BerkeleyGW on Hopper There are two ways of running BerkeleyGW on Hopper: submitting a batch job, or running interactively in an interactive batch session.

3

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

4

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

5

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

6

Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialUrbanUtilityScalePVCapacity PotentialUrbanUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialUrbanUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from utility-scale PV in urban areas of a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

7

Property:PotentialEGSGeothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialEGSGeothermalCapacity PotentialEGSGeothermalCapacity Jump to: navigation, search Property Name PotentialEGSGeothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from EGS Geothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

8

Property:PotentialCSPCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialCSPCapacity PotentialCSPCapacity Jump to: navigation, search Property Name PotentialCSPCapacity Property Type Quantity Description The nameplate capacity technical potential from CSP for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

9

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

10

Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalCapacity PotentialGeothermalHydrothermalCapacity Jump to: navigation, search Property Name PotentialGeothermalHydrothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from Geothermal Hydrothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

11

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerCapacity PotentialHydropowerCapacity Jump to: navigation, search Property Name PotentialHydropowerCapacity Property Type Quantity Description The nameplate capacity technical potential from Hydropower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

12

Property:PotentialBiopowerGaseousCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousCapacity PotentialBiopowerGaseousCapacity Jump to: navigation, search Property Name PotentialBiopowerGaseousCapacity Property Type Quantity Description The nameplate capacity technical potential from gaseous biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

13

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

14

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

15

Property:PotentialRooftopPVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialRooftopPVCapacity PotentialRooftopPVCapacity Jump to: navigation, search Property Name PotentialRooftopPVCapacity Property Type Quantity Description The nameplate capacity technical potential from Rooftop PV for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

16

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

17

Property:PotentialBiopowerSolidCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerSolidCapacity PotentialBiopowerSolidCapacity Jump to: navigation, search Property Name PotentialBiopowerSolidCapacity Property Type Quantity Description The nameplate capacity technical potential from solid biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

18

Property:PotentialRuralUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialRuralUtilityScalePVCapacity PotentialRuralUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialRuralUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from rural utility-scale PV for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

19

0 min 2 4 0 min 2 4 Watts Watts  

E-Print Network [OSTI]

0 min 2 4 0 min 2 4 Watts Watts Time 0 min 2 4 Watts Time TRADEOFFS POWER Jonathan Pearce Advisor D'load IDLE CPU WAVELAN 1.0 .43 1.3 Watts #12;

Smailagic, Asim

20

Gigawatts of Geothermal: JASON Study Highlights Huge Potential for EGS  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Geological Survey estimates there is up to 500 gigawatts of untapped geothermal energy in the United States, enough to power millions of homes. A new study by JASON, an independent advisory group of world-class scientists, illustrates how this resource can be developed to generate renewable electricity for future generations.

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

GEORGE WATTS HILL ALUMNI CENTER  

E-Print Network [OSTI]

BR IN KH O U S- BU LLITT CHILLER BUILDING F KENAN STADIUM GEORGE WATTS HILL ALUMNI CENTER EHRINGHAUS

North Carolina at Chapel Hill, University of

22

GW Energi | Open Energy Information  

Open Energy Info (EERE)

GW Energi GW Energi Jump to: navigation, search Name GW Energi Place Rødovre, Denmark Zip 2610 Sector Wind energy Product Danish wind farm investor. Coordinates 55.680531°, 12.45423° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.680531,"lon":12.45423,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

Lantz, E.

2011-05-23T23:59:59.000Z

24

Definition: Watt | Open Energy Information  

Open Energy Info (EERE)

Watt Watt Jump to: navigation, search Dictionary.png Watt A unit of measure for power, which measures the rate of energy conversion; equal to one joule per second (or 1/746 horsepower); equivalent to one ampere under a pressure of one volt.[1][2] View on Wikipedia Wikipedia Definition The watt' is a derived unit of power in the International System of Units (SI), named after the Scottish engineer James Watt (1736-1819). The unit, defined as one joule per second, measures the rate of energy conversion or transfer. Also Known As W Related Terms Electricity, Power, Kilowatt References ↑ http://www.eia.gov/tools/glossary/index.cfm?id=W#watt ↑ http://needtoknow.nas.edu/energy/glossary/ Retri LikeLike UnlikeLike You like this.Sign Up to see what your friends like. eved from

25

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

energy/23460/page1/. ?Feed-in Tariffs. ? Online entry inAdministration FIT Feed-in Tariff GW Gigawatt, 10 9 wattsGagnon, ?An analysis of feed-in tariff remuneration models:

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

26

Symbolic Symbolic Computation Stephen M. Watt  

E-Print Network [OSTI]

Symbolic Symbolic Computation Stephen M. Watt University of Western Ontario London, Ontario, Canada www.csd.uwo.ca/watt Abstract Symbolic mathematical computation has become an important tool

Watt, Stephen M.

27

PlotWatt | Open Energy Information  

Open Energy Info (EERE)

PlotWatt PlotWatt Jump to: navigation, search Tool Summary LAUNCH TOOL Name: PlotWatt Agency/Company /Organization: PlotWatt Sector: Energy Focus Area: Energy Efficiency Resource Type: Software/modeling tools User Interface: Mobile Device Website: plotwatt.com/ Country: United States Web Application Link: plotwatt.com/ Cost: Free OpenEI Keyword(s): Green Button Apps Northern America Language: English PlotWatt Screenshot References: PlotWatt[1]PlotWatt FAQ[2] Logo: PlotWatt PlotWatt helps you to save money and energy, instead of getting hit with high energy bills every month. PlotWatt shows you exactly where to save. Overview PlotWatt's algorithms analyze home energy consumption to figure out spending at the appliance level and figure out how to cost effectively save

28

On a QUEST to Save Oakland 8.4 Gigawatt Hours | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

On a QUEST to Save Oakland 8.4 Gigawatt Hours On a QUEST to Save Oakland 8.4 Gigawatt Hours On a QUEST to Save Oakland 8.4 Gigawatt Hours August 13, 2010 - 3:38pm Addthis Lorelei Laird Writer, Energy Empowers Derrick Rebello wants to make the downtown corridor of Oakland, California, one of the greenest in the nation. Through the new Downtown Oakland Targeted Measure Saturation Project, he and his company, Quantum Energy Services and Technologies (QUEST), are targeting the city's 120-block business district to make as many buildings as possible highly energy efficient. "The goal is to really leave no stone unturned," said Rebello, president of QUEST. "We are trying to achieve 80 percent participation. And of those participating buildings, we are focusing on getting a 20 percent reduction

29

Towards gigawatt terahertz emission by few-cycle laser pulses  

SciTech Connect (OSTI)

It is shown by analysis and simulations that an extremely powerful terahertz (THz) radiation can be produced by a few-cycle laser pulse in a tenuous plasma. The THz amplitude scales linearly with the laser amplitude as well as with the sine of the laser carrier-envelope phase, and in particular, it increases exponentially with the decrease of the laser duration. For example, the THz amplitude increases by near 2 orders of magnitude as the laser duration decreases from one and a half cycles to one cycle; a single-cycle laser of 200 TW can drive the THz radiation of 1 GW with the energy conversion efficiency higher than 10{sup -4}.

Wang Weimin [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585 (Japan); Kawata, Shigeo [Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585 (Japan); Sheng Zhengming; Zhang Jie [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Key Laboratory for Laser Plasmas of the Ministry of Education of China and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Li Yutong [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China)

2011-07-15T23:59:59.000Z

30

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030  

Broader source: Energy.gov [DOE]

DOE recently funded a study that finds the deployment of at least 54 gigawatts of offshore wind power to be technically possible by 2030. The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS), which focused on two DOE objectives in reducing barriers to deployment of offshore wind, cost of energy and timeline of deployment.

31

NSCU, September 2004 Duke's Milly Watt Project  

E-Print Network [OSTI]

1 NSCU, September 2004 Duke's Milly Watt Project Carla Ellis Faculty · Alvin Lebeck · Amin Vahdat-power hardware? Milly Watt Motivation #12;2 NSCU, September 2004 Energy should be a "first class" resource energy goals Milly Watt Vision NSCU, September 2004 Energy Management Spectrum · Re-examine interactions

Ellis, Carla

32

Oben: Die Station im Watt bei Spiekeroog.  

E-Print Network [OSTI]

Oben: Die Station im Watt bei Spiekeroog. Unten: Ausschnitt des innen begeh- baren Pfahlrohrs mit Ossietzky Universität Oldenburg Meeresdaten rund um die Uhr: Die Station im Watt Von Rainer Reuter In autumn Rückseiten- watt und offener Nordsee. Die Umwelt zu beobachten und verläss- liche Messungen zu gewinnen, ist

Oldenburg, Carl von Ossietzky Universität

33

WattQuiz | Open Energy Information  

Open Energy Info (EERE)

WattQuiz WattQuiz Jump to: navigation, search Tool Summary LAUNCH TOOL Name: WattQuiz Agency/Company /Organization: Genability Sector: Energy Focus Area: Energy Efficiency Resource Type: Software/modeling tools User Interface: Website Website: www.wattquiz.com/ Country: United States Web Application Link: www.wattquiz.com/ Cost: Free Northern America Language: English WattQuiz Screenshot References: Genability[1] NYC Open Data[2] Donors Choose[3] Logo: WattQuiz A social quiz on energy usage that donates proceeds to charity via DonorsChoose.org. Questions are powered by Genability APIs. Overview WattQuiz is a simple social quiz, a la freerice.com, that asks you questions and educates you about your energy. Correct answers generate watts that are donated to worthy charities via DonorsChoose.org!

34

Goodbye, Watts. Hello, LUMENS! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Goodbye, Watts. Hello, LUMENS! Goodbye, Watts. Hello, LUMENS! Goodbye, Watts. Hello, LUMENS! May 17, 2012 - 2:21pm Addthis John Chu John Chu Communications Specialist with the Office of Energy Efficiency and Renewable Energy For years, I bought light bulbs based on watts, or energy use. Like many light bulb consumers, I looked for a traditional 40, 60, 75, or 100 watt incandescent bulb. Now that stores today carry more and more energy efficient lighting choices, I wanted to replace my old incandescents with new bulbs to save energy and money on my electricity bill. But in shopping for the right bulb, I came across a challenge in looking for bulbs based on watts. Since these newer bulbs use less energy, I found bulbs that use 8, 15, or 26 watts. The wattages are pretty close to each other, but the

35

Tennessee Nuclear Profile - Watts Bar Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

36

GW Health Sciences Programs Student Services Office  

E-Print Network [OSTI]

1 _________________________ GW Health Sciences Programs Student Services Office hsp@gwu.edu (202) 994-4241 Health Sciences Programs 2012-13 The School of Medicine and Health Sciences offers a broad range of undergraduate and graduate programs to prepare health sciences professionals for roles

Vertes, Akos

37

Award of James Watt International Medal  

Science Journals Connector (OSTI)

... THE Council of the Institution of Mechanical Engineers has unanimously awarded the James Watt International Medal to Mr. A. G. M. Michell, of ... the bicentenary of the birth of James Watt on January 19, 1736, and is awarded every two years to an engineer of any nationality who is deemed worthy of the ...

1942-06-06T23:59:59.000Z

38

MagLab - Pioneers in Electricity and Magnetism: James Watt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

James Watt (1736-1819) James Watt The Scottish instrument maker and inventor James Watt had a tremendous impact on the shape of modern society. His improvements to the steam engine...

39

Resource Assessment for Hydrogen Production: Hydrogen Production...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Administration ERR Estimated Recoverable Reserves FCEV fuel cell electric vehicle GHG greenhouse gas GW gigawatt GWh gigawatt-hour GWdt gigawatt-days thermal H2A Hydrogen...

40

Watt Does It Cost To Use It?  

Broader source: Energy.gov (indexed) [DOE]

Watt Does It Cost to Use It? Grades: 5-8, 9-12 Topic: Energy Efficiency and Conservation Author: Mark Ziesmer Owner: Alliance to Save Energy This educational material is brought to...

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

TerraWatt Power | Open Energy Information  

Open Energy Info (EERE)

TerraWatt Power TerraWatt Power Jump to: navigation, search Name TerraWatt Power Place Schenectady, New York Zip 12305-1036 Product American manufacturer of micro-inverters, subsidiary of Advanced Energy Conversion. Coordinates 42.81226°, -73.941026° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.81226,"lon":-73.941026,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

AstroWatt | Open Energy Information  

Open Energy Info (EERE)

AstroWatt AstroWatt Jump to: navigation, search Name AstroWatt Place Austin, Texas Sector Solar Product Texas-based venture backed company developing a proprietary solar cell technology. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

AlphaWatt Ltd | Open Energy Information  

Open Energy Info (EERE)

AlphaWatt Ltd AlphaWatt Ltd Jump to: navigation, search Name AlphaWatt Ltd Place London, United Kingdom Zip EC1V 4PY Sector Solar Product Solar project developer, plans to become an independent power provider. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

GlobalWatt Inc | Open Energy Information  

Open Energy Info (EERE)

GlobalWatt Inc GlobalWatt Inc Jump to: navigation, search Name GlobalWatt Inc Place Dover, Delaware Zip 19801 Product Shell company, once planned to float on AIM to raise money in order to acquire the business of semiconductor and/or PV manufacturing equipment suppliers. Coordinates 42.67954°, -88.110374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.67954,"lon":-88.110374,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

WASTE TO WATTS Waste is a Resource!  

E-Print Network [OSTI]

WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From Waste to Energy To Energy from Waste #12;9.00-9.30: Registration 9.30-9.40: Chairman Ella Stengler opens

Columbia University

46

PERFORMANCE RIGHTS FOR SOFTWARE Mark Perry Stephen M. Watt  

E-Print Network [OSTI]

1 PERFORMANCE RIGHTS FOR SOFTWARE Mark Perry Stephen M. Watt Department of Computer Science University of Western Ontario London Ontario, Canada N6A 5B7 {markp,watt}@csd.uwo.ca ABSTRACT As we use

Watt, Stephen M.

47

Symbolic Polynomials with Sparse Exponents Stephen M. Watt  

E-Print Network [OSTI]

Symbolic Polynomials with Sparse Exponents Stephen M. Watt Ontario Research Centre for Computer Algebra Department of Computer Science, University of Western Ontario London Ontario, CANADA N6A 5B7 watt

Watt, Stephen M.

48

Functional Decomposition of Symbolic Polynomials Stephen M. Watt  

E-Print Network [OSTI]

Functional Decomposition of Symbolic Polynomials Stephen M. Watt Ontario Research CentreB7 watt@uwo.ca Abstract Earlier work has presented algorithms to factor and compute GCDs of symbolic

Watt, Stephen M.

49

Improving Pen-Based Mathematical Interfaces Stephen Watt  

E-Print Network [OSTI]

Improving Pen-Based Mathematical Interfaces Stephen Watt Computer Science Department, The University of Western Ontario, Canada watt@scl.csd.uwo.ca Abstract Pen-based user interfaces offer

Watt, Stephen M.

50

Type Specialization in Aldor Laurentiu Dragan and Stephen M. Watt  

E-Print Network [OSTI]

Type Specialization in Aldor Laurentiu Dragan and Stephen M. Watt Computer Science Department The University of Western Ontario London, Canada {ldragan,watt}@csd.uwo.ca Abstract. Computer algebra

Watt, Stephen M.

51

Post Facto Type Extension for Mathematical Programming Stephen M. Watt  

E-Print Network [OSTI]

Post Facto Type Extension for Mathematical Programming Stephen M. Watt Department of Computer Science University of Western Ontario London ON, Canada N6A 5B7 watt@csd.uwo.ca Abstract We present

Watt, Stephen M.

52

Generalization in Maple Cosmin Oancea Clare So Stephen M. Watt  

E-Print Network [OSTI]

Generalization in Maple Cosmin Oancea Clare So Stephen M. Watt Ontario Research Centre for Computer {coancea,clare,watt}@orcca.on.ca Abstract We explore the notion of generalization in the setting

Watt, Stephen M.

53

BOUNDED PARALLELISM IN COMPUTER ALGEBRA Stephen Michael Watt  

E-Print Network [OSTI]

BOUNDED PARALLELISM IN COMPUTER ALGEBRA by Stephen Michael Watt A thesis presented in Computer Science Waterloo, Ontario, 1985 c S.M. Watt 1985 #12;Permission has been granted to the National

Watt, Stephen M.

54

Garbage Collecting the World Wide Web Stephen M. Watt  

E-Print Network [OSTI]

Garbage Collecting the World Wide Web Stephen M. Watt Western University London, Ontario, Canada N6A 5B7 Stephen.Watt@uwo.ca Abstract The World Wide Web has grown over the past decade and a half from

Watt, Stephen M.

55

An Analytic Model for Colluding Processes Stephen M. Watt  

E-Print Network [OSTI]

An Analytic Model for Colluding Processes Stephen M. Watt University of Western Ontario London, Canada www.csd.uwo.ca/watt Abstract--We develop a quantitative framework in order to understand how

Watt, Stephen M.

56

Pivot-Free Block Matrix Inversion Stephen M. Watt  

E-Print Network [OSTI]

Pivot-Free Block Matrix Inversion Stephen M. Watt Ontario Research Centre for Computer Algebra Department of Computer Science University of Western Ontario London Ontario, CANADA N6A 5B7 watt

Watt, Stephen M.

57

PERFORMANCE RIGHTS FOR SOFTWARE Mark Perry & Stephen M. Watt  

E-Print Network [OSTI]

1 PERFORMANCE RIGHTS FOR SOFTWARE Mark Perry & Stephen M. Watt Department of Computer Science University of Western Ontario London Ontario, Canada N6A 5B7 {markp,watt}@csd.uwo.ca ABSTRACT As we use

Perry, Mark

58

Watts, Qian, and Tracey 1 Multivariate OI correlation functions  

E-Print Network [OSTI]

Watts, Qian, and Tracey 1 APPENDIX Multivariate OI correlation functions The optimal interpolation to indicate its dependent variable. #12; Watts, Qian, and Tracey 2 As an example of using this extension

Rhode Island, University of

59

James A. Spudich and Susan Watt PROTEOLYTIC FRAGMENTS OF  

E-Print Network [OSTI]

James A. Spudich and Susan Watt MYOSIN PROTEOLYTIC FRAGMENTS OF COMPLEX WITH ACTIN THE PROTEOLYTlC l?RAGMEKTS OF MYOSLN (Received for publication, March 19, 1971) JAMES h. SPUDICH* AXD Susm WATT

Spudich, James A.

60

Development of a 100-Watt High Temperature Thermoelectric Generator  

Broader source: Energy.gov [DOE]

Test results for low and high temperature thermoelectric generators (TEG) those for a 530-watt BiTe TEG; design and construction of a 100-watt high temperature TEG currently in fabrication.

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Goodbye, Watts. Hello, Lumens. (High-Resolution EPS Billboard...  

Broader source: Energy.gov (indexed) [DOE]

EPS Billboard) Goodbye, Watts. Hello, Lumens. (High-Resolution EPS Billboard) High-resolution EPS of billboard reading, 'Goodbye Watts. Hello Lumens. The new way to shop for light....

62

Goodbye, Watts. Hello, Lumens. (High-Resolution JPG Billboard...  

Broader source: Energy.gov (indexed) [DOE]

Hello Lumens. The new way to shop for light. Energysaver.gov DoEBillboardGoodbyeWatts.jpg More Documents & Publications Goodbye, Watts. Hello, Lumens. (High-Resolution EPS...

63

Context Sensitive Mathematical Character Recognition Elena Smirnova Stephen M. Watt  

E-Print Network [OSTI]

Context Sensitive Mathematical Character Recognition Elena Smirnova Stephen M. Watt Ontario Research Centre for Computer Algebra The University of Western Ontario London Ontario, Canada {elena,watt handwritten mathematical expressions. Watt and Xie [5, 6] have studied methods to improve the performance

Watt, Stephen M.

64

GIDL User Guide Cosmin Oancea and Stephen M. Watt  

E-Print Network [OSTI]

GIDL User Guide Cosmin Oancea and Stephen M. Watt Ontario Research Centre for Computer Algebra one is "Parametric Polymorphism for Software Component Architectures", by Oancea and Watt [6 language bindings. The paper "Generic Library Extension in a Heterogeneous Environment", by Oancea and Watt

Watt, Stephen M.

65

Writing on Clouds Vadim Mazalov and Stephen M. Watt  

E-Print Network [OSTI]

Writing on Clouds Vadim Mazalov and Stephen M. Watt Department of Computer Science The University of Western Ontario London Ontario, Canada N6A 5B7 {vmazalov,Stephen.Watt}@uwo.ca Abstract. While writer. Watt In our classification paradigm, a character is represented by the coefficients of an approximation

Watt, Stephen M.

66

Watts Professorship of Psychology in association with Wolfson College  

E-Print Network [OSTI]

1 Watts Professorship of Psychology in association with Wolfson College Outline of the post The University intends to make an appointment to the Watts Professorship of Psychology with effect from 1 October Sciences Board's current expectation is that the incoming Watts Professor will become Head of Department

Oxford, University of

67

Watts, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Watts, Oklahoma: Energy Resources Watts, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1092487°, -94.5702202° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.1092487,"lon":-94.5702202,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Shanghai Solar Watt Ltd | Open Energy Information  

Open Energy Info (EERE)

Solar Watt Ltd Solar Watt Ltd Jump to: navigation, search Name Shanghai Solar-Watt Ltd Place Shanghai, Shanghai Municipality, China Zip 200040 Sector Renewable Energy, Solar, Wind energy Product Providing photovoltaic systems, solar air heating systems, solar water pumping systems, wind energy systems (small), photovoltaic module manufacturing equipment and renewable energy system batteries. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Unit of Measure Equivalents 5. Unit of Measure Equivalents Unit Equivalent Kilowatt (kW) 1,000 (One Thousand) Watts Megawatt (MW) 1,000,000 (One Million) Watts Gigawatt (GW) 1,000,000,000 (One Billion) Watts Terawatt (TW) 1,000,000,000,000 (One Trillion) Watts Gigawatt 1,000,000 (One Million) Kilowatts Thousand Gigawatts 1,000,000,000 (One Billion) Kilowatts Kilowatthours (kWh) 1,000 (One Thousand) Watthours Megawatthours (MWh) 1,000,000 (One Million) Watthours Gigawatthours (GWh) 1,000,000,000 (One Billion) Watthours Terawatthours (TWh) 1,000,000,000,000 (One Trillion) Watthours Gigawatthours 1,000,000 (One Million) Kilowatthours Thousand Gigawatthours 1,000,000,000(One Billion Kilowatthours U.S. Dollar 1,000 (One Thousand) Mills U.S. Cent 10 (Ten) Mills Barrel of Oil 42 Gallons

70

G.W. Robinson Homes | Open Energy Information  

Open Energy Info (EERE)

G.W. Robinson Homes G.W. Robinson Homes Jump to: navigation, search Name G.W. Robinson Homes Place Gainesville, FL Website http://www.gwrobinson.com/ References NREL Case Study[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! G.W. Robinson Homes is a company located in Gainesville, FL. References ↑ "NREL Case Study" Retrieved from "http://en.openei.org/w/index.php?title=G.W._Robinson_Homes&oldid=381681" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version

71

Development of a 500 Watt High Temperature Thermoelectric Generator...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat...

72

Development of a 500 Watt High Temperature Thermoelectric Generator  

Broader source: Energy.gov [DOE]

A low temperature TEG has been built and tested providing over 500 watts electric power at a ?T of 2000C

73

Development of a 100-Watt High Temperature Thermoelectric Generator...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric generators (TEG) those for a...

74

Lower Watts Bar Reservoir Clinch River/Poplar Creek  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the Lower Watts Bar Reservoir Clinch River/Poplar Creek.

75

Watts, Qian, and Tracey 1 1. Leveling and Mapping  

E-Print Network [OSTI]

Watts, Qian, and Tracey 1 1. Leveling and Mapping Accurate maps of the daily pressure and current other sites, giving \\Delta s P 0 (s) = \\Delta s p(t; s) \\Gamma \\Delta s P 0 (t; s), (1) #12; Watts, Qian

Rhode Island, University of

76

Watt parameters for the Los Alamos Model : Subroutine getab  

E-Print Network [OSTI]

Many neutron transport Monte-Carlo codes can randomly sample fission neutron energies from a Watt spectrum. The quality of simulations depends on how well the Watt spectrum represents the true energy spectrum of the fission neutrons, and on one's choice of the Watt parameters a and b. The energy spectra of fission neutrons have been calculated and tabulated for the neutron induced fission of 235,238U and 239Pu as a function of incoming neutron energy by Madland using the Los Alamos Model. Each of these energy spectra are mapped into time-of-flight space and fitted with a Watt spectrum. A subroutine getab has been written to interpolate these results, so that Watt a and b parameters can be estimated for all incoming neutron energies up to ~16 MeV.

Lestone, J P

2014-01-01T23:59:59.000Z

77

Watt parameters for the Los Alamos Model : Subroutine getab  

E-Print Network [OSTI]

Many neutron transport Monte-Carlo codes can randomly sample fission neutron energies from a Watt spectrum. The quality of simulations depends on how well the Watt spectrum represents the true energy spectrum of the fission neutrons, and on one's choice of the Watt parameters a and b. The energy spectra of fission neutrons have been calculated and tabulated for the neutron induced fission of 235,238U and 239Pu as a function of incoming neutron energy by Madland using the Los Alamos Model. Each of these energy spectra are mapped into time-of-flight space and fitted with a Watt spectrum. A subroutine getab has been written to interpolate these results, so that Watt a and b parameters can be estimated for all incoming neutron energies up to ~16 MeV.

J. P. Lestone

2014-09-18T23:59:59.000Z

78

Trico Electric Cooperative - SunWatts Incentive Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Trico Electric Cooperative - SunWatts Incentive Program Trico Electric Cooperative - SunWatts Incentive Program Trico Electric Cooperative - SunWatts Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV systems 10 kW or smaller: 30% of the total system cost Program Info State Arizona Program Type Utility Rebate Program Rebate Amount PV systems 10 kW or smaller: $0.10/watt DC PV greater than 10 kW up to 1 MW: Performance-Based Incentive (competitive bid process) Solar water heaters: $0.40 per expected first year kWh savings Provider Trico Electric Cooperative, Inc. Through the SunWatts Program, Trico Electric Cooperative offers residential and business customers a rebate for installing photovoltaic (PV) systems

79

Motivation Green's functions The GW Approximation The Bethe-Salpeter Equation Introduction to Green's functions  

E-Print Network [OSTI]

Motivation Green's functions The GW Approximation The Bethe-Salpeter Equation Introduction to Green=whiteMotivation Green's functions The GW Approximation The Bethe-Salpeter Equation Outline 1 Motivation 2 Green's functions 3 The GW Approximation 4 The Bethe-Salpeter Equation #12;bg=whiteMotivation Green's functions

Botti, Silvana

80

Kill-a-Watt Contest at UCF | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kill-a-Watt Contest at UCF Kill-a-Watt Contest at UCF Kill-a-Watt Contest at UCF April 2, 2010 - 5:16pm Addthis The University of Central Florida has created an innovative way to save energy and money on campus through a new dorm-based competition called "Kill-a-Watt". Students representing campus residence halls compete against each other to achieve energy savings and can receive up to $200 in scholarships. Watch how former DOE intern and current UCF DOE Campus Ambassador, Chris Castro, is spearheading this exciting effort and learn more about energy saving tips that students find useful like proper thermostat set points and reducing plug load. Read the DoE's press release about the video. Addthis Related Articles University of Central Florida Students' Energy Saving Work Showcased in New

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Goodbye, Watts. Hello, Lumens. (Low-Resolution Billboard) | Department...  

Energy Savers [EERE]

Hello Lumens. The new way to shop for light. Energysaver.gov DoEBillboardGoodbyeWattsweb.jpg More Documents & Publications Goodbye, Watts. Hello, Lumens. (High-Resolution JPG...

82

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant,  

Broader source: Energy.gov (indexed) [DOE]

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts associated with the U.S. Department of Energy proposed action to conduct a lead test assembly program to confirm the viability of using a commercial light water reactor to produce tritium. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 22, 1997 EA-1210: Finding of No Significant Impact Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington July 22, 1997 EA-1210: Final Environmental Assessment

83

THE MASS OF THE WHITE DWARF IN GW LIBRA  

SciTech Connect (OSTI)

We report a mass and rotational broadening (vsin i) for the pulsating white dwarf (WD) component of the WZ Sge type Dwarf Nova GW Lib based on high-resolution Very Large Telescope spectroscopy that resolves the Mg II 4481 A absorption feature. Its gravitational redshift combined with WD mass-radius models provides us with a direct measurement of the WD mass of M {sub 1} = 0.84 {+-} 0.02 M {sub sun}. The line is clearly resolved and if associated with rotational broadening gives vsin i = 87.0 {+-} 3.4 km s{sup -1}, equivalent to a spin period of 97 {+-} 12 s.

Van Spaandonk, L.; Steeghs, D.; Marsh, T. R.; Parsons, S. G., E-mail: l.van-spaandonk@warwick.ac.u [Astronomy and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

2010-06-01T23:59:59.000Z

84

VP 100: Retooling Michigan -- Yachts and Watts | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

VP 100: Retooling Michigan -- Yachts and Watts VP 100: Retooling Michigan -- Yachts and Watts VP 100: Retooling Michigan -- Yachts and Watts June 18, 2010 - 4:13pm Addthis Energetx Composites was able to purchase equipment such as this mold for utility-scale wind turbine blades thanks to a Recovery Act grant that matched the company’s $3.5 million investment. | Photo Courtesy of Energetx | Energetx Composites was able to purchase equipment such as this mold for utility-scale wind turbine blades thanks to a Recovery Act grant that matched the company's $3.5 million investment. | Photo Courtesy of Energetx | Joshua DeLung Near the eastern shore of Lake Michigan, there's a shift taking place. Tiara Yachts makes fiber composite structures for boats. Now the Holland, Mich.-based company is transforming part of its factory and using its 30

85

Gigawatt-year nuclear-geothermal energy storage for light-water and high-temperature reactors  

SciTech Connect (OSTI)

Capital-intensive, low-operating cost nuclear plants are most economical when operated under base-load conditions. However, electricity demand varies on a daily, weekly, and seasonal basis. In deregulated utility markets this implies high prices for electricity at times of high electricity demand and low prices for electricity at times of low electricity demand. We examined coupling nuclear heat sources to geothermal heat storage systems to enable these power sources to meet hourly to seasonal variable electricity demand. At times of low electricity demand the reactor heats a fluid that is then injected a kilometer or more underground to heat rock to high temperatures. The fluid travels through the permeable-rock heat-storage zone, transfers heat to the rock, is returned to the surface to be reheated, and re-injected underground. At times of high electricity demand the cycle is reversed, heat is extracted, and the heat is used to power a geothermal power plant to produce intermediate or peak power. When coupling geothermal heat storage with light-water reactors (LWRs), pressurized water (<300 deg. C) is the preferred heat transfer fluid. When coupling geothermal heat storage with high temperature reactors at higher temperatures, supercritical carbon dioxide is the preferred heat transfer fluid. The non-ideal characteristics of supercritical carbon dioxide create the potential for efficient coupling with supercritical carbon dioxide power cycles. Underground rock cannot be insulated, thus small heat storage systems with high surface to volume ratios are not feasible because of excessive heat losses. The minimum heat storage capacity to enable seasonal storage is {approx}0.1 Gigawatt-year. Three technologies can create the required permeable rock: (1) hydro-fracture, (2) cave-block mining, and (3) selective rock dissolution. The economic assessments indicated a potentially competitive system for production of intermediate load electricity. The basis for a nuclear geothermal system with LWRs exists today; but, there is need for added research and development before deployment. There are significantly greater challenges for geothermal heat storage at higher temperatures. Such systems are strongly dependent upon the local geology. (authors)

Forsberg, C. W.; Lee, Y.; Kulhanek, M.; Driscoll, M. J. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

2012-07-01T23:59:59.000Z

86

Absorption Spectra and Plotting Exciton Wavefunctions BerkeleyGW Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hands on Session 5: Converging Hands on Session 5: Converging Absorption Spectra and Plotting Exciton Wavefunctions BerkeleyGW Workshop 11/23/2013 Diana Qiu Converging Absorption General Parameters: ● K-grid sampling (WFN_fi, WFNq_fi) - Generally need to be finer when excitons are localized in k-space ● Number of valence bands and conduction bands (eqp.dat) - Needs to capture all the transitions in the energy range of interest Parameters Particular to BGW: ● Coarse k-grid (WFN_co, same as for epsilon) - Need to be fine enough to capture correct screening ● Number of coarse grid bands used in interpolation (eqp_co.dat) - Interpolation quality reported in dcc_mat.dat and dvv_mat.dat files Plotting Exciton Wavefunctions ● Plotxct.x calculates the exciton wavefunction in real-space with the

87

Exploring approximations to the GW self-energy ionic gradients  

E-Print Network [OSTI]

The accuracy of the many-body perturbation theory GW formalism to calculate electron-phonon coupling matrix elements has been recently demonstrated in the case of a few important systems. However, the related computational costs are high and thus represent strong limitations to its widespread application. In the present study, we explore two less demanding alternatives for the calculation of electron-phonon coupling matrix elements on the many-body perturbation theory level. Namely, we test the accuracy of the static Coulomb-hole plus screened-exchange (COHSEX) approximation and further of the constant screening approach, where variations of the screened Coulomb potential W upon small changes of the atomic positions along the vibrational eigenmodes are neglected. We find this latter approximation to be the most reliable, whereas the static COHSEX ansatz leads to substantial errors. Our conclusions are validated in a few paradigmatic cases: diamond, graphene and the C60 fullerene. These findings open the way f...

Faber, C; Attaccalite, C; Cannuccia, E; Duchemin, I; Deutsch, T; Blase, X

2015-01-01T23:59:59.000Z

88

A Note on the Functional Decomposition of Symbolic Polynomials Stephen M. Watt  

E-Print Network [OSTI]

A Note on the Functional Decomposition of Symbolic Polynomials Stephen M. Watt Ontario Research, CANADA N6A 5B7 watt@uwo.ca It often arises that the general form of a polynomial is known

Watt, Stephen M.

89

Online Recognition of Multi-Stroke Symbols with Orthogonal Series Oleg Golubitsky Stephen M. Watt  

E-Print Network [OSTI]

Online Recognition of Multi-Stroke Symbols with Orthogonal Series Oleg Golubitsky Stephen M. Watt Department of Computer Science University of Western Ontario London, Ontario, Canada N6A 5B7 {ogolubit,watt

Watt, Stephen M.

90

Content-Faithful Stylesheets for MathML Igor Rodionov Stephen M. Watt  

E-Print Network [OSTI]

Content-Faithful Stylesheets for MathML Igor Rodionov Stephen M. Watt Ontario Research Centre for Computer Algebra Department of Computer Science University of Western Ontario London Ontario, Canada {igor,watt

Watt, Stephen M.

91

Report on the SNAP minisymposium at Siam '98 Robert M. Corless and Stephen M. Watt  

E-Print Network [OSTI]

Report on the SNAP minisymposium at Siam '98 Robert M. Corless and Stephen M. Watt Department6A 5B7 Rob.Corless@uwo.ca, Stephen.Watt@uwo.ca July, 1998 1 Background In the essay [10], Nick

Watt, Stephen M.

92

SPARSE EXPONENTS IN SYMBOLIC POLYNOMIALS MATTHEW MALENFANT AND STEPHEN M. WATT  

E-Print Network [OSTI]

SPARSE EXPONENTS IN SYMBOLIC POLYNOMIALS MATTHEW MALENFANT AND STEPHEN M. WATT Abstract. We.M. WATT The algorithms fall into two families: algebraic extension methods and projec- tion methods

Watt, Stephen M.

93

Generic Library Extension in a Heterogeneous Environment Cosmin Oancea Stephen M. Watt  

E-Print Network [OSTI]

Generic Library Extension in a Heterogeneous Environment Cosmin Oancea Stephen M. Watt Department of Computer Science The University of Western Ontario London Ontario, Canada N6A 5B7 {coancea,watt

Watt, Stephen M.

94

Hybrid Mathematical Symbol Recognition using Support Vector Machines Birendra Keshari and Stephen M. Watt  

E-Print Network [OSTI]

. Watt Department of Computer Science University of Western Ontario London, Ontario, Canada N6A 5B7 {bkeshari,watt}@orcca.on.ca Abstract Recognition of mathematical symbols is a challenging task, with a large

Watt, Stephen M.

95

Aspects of Mathematical Expression Analysis in Arabic Handwriting Elena Smirnova and Stephen M. Watt  

E-Print Network [OSTI]

. Watt Ontario Research Centre for Computer Algebra The University of Western Ontario London, ON, N6A5B7, Canada e-smirnova@ti.com, watt@orcca.on.ca Abstract We address the question of recognizing handwritten

Watt, Stephen M.

96

Streaming-Archival InkML Conversion Birendra Keshari and Stephen M. Watt  

E-Print Network [OSTI]

Streaming-Archival InkML Conversion Birendra Keshari and Stephen M. Watt Dept. of Computer Science University of Western Ontario London, Ontario, Canada N6A 5B7 {bkeshari,watt}@csd.uwo.ca Abstract Ink Markup

Watt, Stephen M.

97

InkChat: A Collaboration Tool for Mathematics Rui Hu and Stephen M. Watt  

E-Print Network [OSTI]

InkChat: A Collaboration Tool for Mathematics Rui Hu and Stephen M. Watt The University of Western Ontario London Ontario, Canada N6A 5B7 {rhu8,Stephen.Watt}@uwo.ca Abstract. We investigate the question

Watt, Stephen M.

98

Digital Ink Compression via Functional Approximation Vadim Mazalov and Stephen M. Watt  

E-Print Network [OSTI]

Digital Ink Compression via Functional Approximation Vadim Mazalov and Stephen M. Watt University of Western Ontario London, Ontario, Canada vmazalov@csd.uwo.ca, watt@csd.uwo.ca Abstract Representing digital

Watt, Stephen M.

99

Linear Compression of Digital Ink via Point Selection Vadim Mazalov and Stephen M. Watt  

E-Print Network [OSTI]

Linear Compression of Digital Ink via Point Selection Vadim Mazalov and Stephen M. Watt Ontario, Canada vmazalov@uwo.ca, Stephen.Watt@uwo.ca Abstract--We present a method to compress digital ink based

Watt, Stephen M.

100

A Context for Pen-Based Mathematical Computing Elena Smirnova Stephen M. Watt  

E-Print Network [OSTI]

A Context for Pen-Based Mathematical Computing Elena Smirnova Stephen M. Watt Ontario Research, Canada N6A 5B7 {elena,watt}@orcca.on.ca Abstract We report on an investigation to determine

Watt, Stephen M.

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Performance Analysis of Generics in Scientific Computing Laurentiu Dragan Stephen M. Watt  

E-Print Network [OSTI]

Performance Analysis of Generics in Scientific Computing Laurentiu Dragan Stephen M. Watt Ontario Research Centre for Computer Algebra University of Western Ontario London, Ontario, Canada N6A 5B7 {ldragan,watt

Watt, Stephen M.

102

A Structure for Adaptive Handwriting Recognition Vadim Mazalov and Stephen M. Watt  

E-Print Network [OSTI]

A Structure for Adaptive Handwriting Recognition Vadim Mazalov and Stephen M. Watt Department of Computer Science University of Western Ontario London, Canada {vmazalov, Stephen.Watt}@uwo.ca Abstract We

Watt, Stephen M.

103

A Collaborative Interface for Multimodal Ink and Audio Documents Amit Regmi and Stephen M. Watt  

E-Print Network [OSTI]

A Collaborative Interface for Multimodal Ink and Audio Documents Amit Regmi and Stephen M. Watt Department of Computer Science University of Western Ontario London, Ontario, Canada N6A 5B7 {aregmi,watt

Watt, Stephen M.

104

An Approach to Mathematical Notation Selection Elena Smirnova, Stephen M. Watt  

E-Print Network [OSTI]

An Approach to Mathematical Notation Selection Elena Smirnova, Stephen M. Watt Ontario Research Centre for Computer Algebra, The University of Western Ontario E-mail: {alena, watt}@orcca.on.ca (Demo

Watt, Stephen M.

105

RECOGNITION FOR LARGE SETS OF HANDWRITTEN MATHEMATICAL SYMBOLS Stephen M. Watt and Xiaofang Xie  

E-Print Network [OSTI]

RECOGNITION FOR LARGE SETS OF HANDWRITTEN MATHEMATICAL SYMBOLS Stephen M. Watt and Xiaofang Xie Dept. of Computer Science University of Western Ontario London Ontario, Canada N6A 5B7 {watt

Watt, Stephen M.

106

A Technique for Generic Iteration and Its Optimization Stephen M. Watt  

E-Print Network [OSTI]

A Technique for Generic Iteration and Its Optimization Stephen M. Watt Department of Computer Science University of Western Ontario London Ontario, Canada N6A 5B7 watt@csd.uwo.ca Abstract Software

Watt, Stephen M.

107

John C. Mitani David Watts The evolution of non-maternal caretaking among anthropoid primates  

E-Print Network [OSTI]

John C. Mitani · David Watts The evolution of non-maternal caretaking among anthropoid primates: do (1997) 40: 213 ­ 220 © Springer-Verlag 1997 J.C. Mitani (&) · David Watts1 Department of Anthropology

108

Processes Coupling the Upper and Deep Ocean on the Continental Slope D. Randolph Watts  

E-Print Network [OSTI]

Processes Coupling the Upper and Deep Ocean on the Continental Slope D. Randolph Watts Graduate-pronged approach has required a combination of expertise from R. Watts, G. Sutyrin, and I. Ginis (who have

Rhode Island, University of

109

Letter-based speech synthesis Oliver Watts, Junichi Yamagishi, Simon King  

E-Print Network [OSTI]

Letter-based speech synthesis Oliver Watts, Junichi Yamagishi, Simon King Centre for Speech Technology Research, University of Edinburgh, UK O.S.Watts@sms.ed.ac.uk jyamagis@inf.ed.ac.uk Simon

Edinburgh, University of

110

Name of the University: HeriotWatt University Names of the students: Katrn Emma Ammendrup  

E-Print Network [OSTI]

Name of the University: HeriotWatt University Names of the students: Katrín Emma Ammendrup Exchange semester: Fall, 2013 Faculty: At HeriotWatt: Built Environment, Civil Engineering. At RU: Science

Karlsson, Brynjar

111

Processes Coupling the Upper and Deep Ocean on the Continental Slope D. Randolph Watts  

E-Print Network [OSTI]

Processes Coupling the Upper and Deep Ocean on the Continental Slope D. Randolph Watts Graduate of expertise from R. Watts, G. Sutyrin, and I. Ginis (who have a coordinated ONR-supported study at URI

Rhode Island, University of

112

A Comparative Evaluation of Three Mobile Languages Heriot-Watt University  

E-Print Network [OSTI]

A Comparative Evaluation of Three Mobile Languages Zara Field Heriot-Watt University Edinburgh, Scotland E-mail: zf1@macs.hw.ac.uk P. W. Trinder Heriot-Watt University Edinburgh, Scotland E-mail: trinder

Trinder, Phil

113

Bruce G. Terrell, Gordon P. Watts & Timothy J. Runyan The Search For Planter  

E-Print Network [OSTI]

May 2014 Bruce G. Terrell, Gordon P. Watts & Timothy J. Runyan The Search For Planter The Ship Design & Layout: Matt McIntosh, ONMS; Liz.Liang, ONMS #12;May 2014 Bruce G. Terrell, Gordon P. Watts

114

Call for Presentations The GPGPU Continuum from mWatts to peta flops  

E-Print Network [OSTI]

Call for Presentations SAVE the DATE The GPGPU Continuum from mWatts to peta flops Organizing on using GPUs as part of mobile devices, which limits the power consumption of the GPU to mWatts. We

Schuster, Assaf

115

AVTA: GE Energy WattStation AC Level 2 Charging System Testing...  

Broader source: Energy.gov (indexed) [DOE]

GE Energy WattStation AC Level 2 Charging System Testing Results AVTA: GE Energy WattStation AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced...

116

Evidence of Bottom-Trapped Currents in the Kuroshio Extension Region STUART P. BISHOP AND D. RANDOLPH WATTS  

E-Print Network [OSTI]

. RANDOLPH WATTS Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island JAE trapping (Thompson and Luyten 1976; Hogg 1981; Johns and Watts 1986; Hogg 2000). Johns and Watts (1986

Rhode Island, University of

117

Online Stroke Modeling for Handwriting Recognition Oleg Golubitsky Stephen M. Watt  

E-Print Network [OSTI]

Online Stroke Modeling for Handwriting Recognition Oleg Golubitsky Stephen M. Watt Department of Computer Science University of Western Ontario London Ontario, Canada N6A 5B7 {oleg,watt Stephen M. Watt and Oleg Gol- ubitsky. Permission to copy is hereby granted provided the original

Watt, Stephen M.

118

Programming Language Concepts and Paradigms David A Watt 3-1 Solutions to Exercises 3  

E-Print Network [OSTI]

Programming Language Concepts and Paradigms © David A Watt 3-1 Solutions to Exercises 3 3 lifetime of p lifetime of i #12;Programming Language Concepts and Paradigms © David A Watt 3-2 3) call return #12;Programming Language Concepts and Paradigms © David A Watt 3-3 ** 3.7.2 A possible

Watt, David A.

119

Optimization of Point Selection on Digital Ink Curves Rui Hu and Stephen M. Watt  

E-Print Network [OSTI]

Optimization of Point Selection on Digital Ink Curves Rui Hu and Stephen M. Watt Computer Science Department University of Western Ontario London, Canada rhu8@uwo.ca, Stephen.Watt@uwo.ca Abstract Digital ink. In 2012, Mazalov and Watt [6] described a piecewise linear ap- proximation algorithm to compress digital

Watt, Stephen M.

120

Programming Language Concepts and Paradigms David A Watt 2-1 Solutions to Exercises 2  

E-Print Network [OSTI]

Programming Language Concepts and Paradigms © David A Watt 2-1 Solutions to Exercises 2 2 and Paradigms © David A Watt 2-2 function not (b: Boolean) return Boolean is begin if b then return false; else ::= ... | { Expression ( , Expression )* } #12;Programming Language Concepts and Paradigms © David A Watt 2-3 2

Watt, David A.

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

INVERTED ECHO SOUNDER DEVELOPMENT G. F. Chaplin and D. Randolph Watts  

E-Print Network [OSTI]

INVERTED ECHO SOUNDER DEVELOPMENT G. F. Chaplin and D. Randolph Watts Graduate School thermocline. Watts (1975), in discussing IES data from MODE I, showed that changes in dynamic height can evolving since its initial development. The first multi- instrument deployment was in MODE I (Watts

Rhode Island, University of

122

Cache Size in a Cost Model for Heterogeneous Skeletons Heriot-Watt University, Edinburgh,  

E-Print Network [OSTI]

Cache Size in a Cost Model for Heterogeneous Skeletons K.A. Armih Heriot-Watt University, Edinburgh, Scotland, UK kaa41@hw.ac.uk G.J. Michaelson Heriot-Watt University, Edinburgh, Scotland, UK G.Michaelson@hw.ac.uk P.W. Trinder Heriot-Watt University, Edinburgh, Scotland, UK P.W.Trinder@hw.ac.uk Abstract High

Trinder, Phil

123

Einzigartige energiesparende Lsungen mit einem Stromverbrauch von 0,0 Watt im Standby und  

E-Print Network [OSTI]

Einzigartige energiesparende Lösungen mit einem Stromverbrauch von 0,0 Watt im Standby und ECO,9 cm (22 Zoll) TFT Bildschirm 0-Watt-Energiesparmodus Datenblatt Ausgabedatum April 2009 Genie?en Sie Merkmale IPS (In Plane Switching), 0 Watt im Energiesparmodus, ECO-Taste, ECO-Status-LED: 3 Farben für 3

Ott, Albrecht

124

Name of the University: Heriot-Watt University Names of the student: Andri Mr Reynisson  

E-Print Network [OSTI]

Name of the University: Heriot-Watt University Names of the student: Andri Már Reynisson Exchange ­ very short Heriot-Watt University is based in Riccarton, just outside Edinburgh in Scotland. The school faculty divisions and special areas. These are the schools at Heriot-Watt Universtity: School

Karlsson, Brynjar

125

Einzigartige energiesparende Lsungen mit einem Stromverbrauch von 0,0 Watt im Standby und  

E-Print Network [OSTI]

Einzigartige energiesparende Lösungen mit einem Stromverbrauch von 0,0 Watt im Standby und ECO P Line mit 0-Watt-Energiesparmodus DaTEnBLaTT Ausgabedatum Oktober 2009 Genie?en Sie die perfekte dieses 66 cm (26 Zoll)-Widescreen-Displays der P Line. #12;P26W-5 ECO IPS Besondere Merkmale 0 Watt im

Ott, Albrecht

126

WattProbe: Automatic Learning of Hardware Energy Models Manish Prasad  

E-Print Network [OSTI]

WattProbe: Automatic Learning of Hardware Energy Models Manish Prasad CSE 629 Project Report be the ability to do so without the cumbersome use of externally connected measurement devices. Watt like multi­meters for measurement would be extremely desirable. WattProbe precisely tar­ gets this goal

Chiueh, Tzi-cker

127

Towards Better Performance Per Watt in Virtual Environments on Asymmetric Single-ISA Multi-core  

E-Print Network [OSTI]

Towards Better Performance Per Watt in Virtual Environments on Asymmetric Single-ISA Multi, performance-asymmetric multicore architec- tures, performance per watt 1. INTRODUCTION Asymmetric single performance per watt than homogeneous multicore proces- sors. As power consumption in data centers becomes

Fedorova, Alexandra

128

Clinical and Experimental Optometry 88.5 September 2005 Retinal remodelling Jones, Watt and Marc  

E-Print Network [OSTI]

Clinical and Experimental Optometry 88.5 September 2005 282 Retinal remodelling Jones, Watt defects). Even though all these INVITED REVIEW Retinal remodelling Bryan W Jones PhD Carl B Watt Ph and Experimental Optometry 88.5 September 2005 283 Retinal remodelling Jones, Watt and Marc dystrophies

Marc, Robert E.

129

Processes Coupling the Upper and Deep Ocean on the Continental Slope D. Randolph Watts  

E-Print Network [OSTI]

Processes Coupling the Upper and Deep Ocean on the Continental Slope D. Randolph Watts Graduate / modeling) approach requires a combination of expertise from R. Watts, G. Sutyrin, and I. Ginis (who have in a published journal article (Logoutov, Sutyrin and Watts, 2001). These results are being used by Ginis

Rhode Island, University of

130

Fisher & Paykel Appliances: ENERGY STAR Referral (WA42T26GW1) | Department  

Broader source: Energy.gov (indexed) [DOE]

Fisher & Paykel Appliances: ENERGY STAR Referral (WA42T26GW1) Fisher & Paykel Appliances: ENERGY STAR Referral (WA42T26GW1) Fisher & Paykel Appliances: ENERGY STAR Referral (WA42T26GW1) June 12, 2013 DOE referred the matter of Fisher & Paykel Appliances residential clothes washer, model WA42T26GW1, to the U.S. Environmental Protection Agency, brand manager for the ENERGY STAR Program, for appropriate action after DOE testing showed that the model does not meet the ENERGY STAR specification. Fisher & Paykel Appliances: ENERGY STAR Referral (WA42T26GW1) More Documents & Publications Regulatory Burden RFI DOE response to questions from AHAM on the supplemental proposed test procedure for residential clothes washers Scoping Study to Evaluate Feasibility of National Databases for EM&V Documents and Measure Savings: Appendices

131

Denver Watts to Water | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Denver Watts to Water Denver Watts to Water Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate ENERGY STAR communications toolkit Bring Your Green to Work with ENERGY STAR

132

Watts Community, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Watts Community, Oklahoma: Energy Resources Watts Community, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.035006°, -94.5727598° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.035006,"lon":-94.5727598,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

White LED Benchmark of 65 Lumens Per Watt Achieved  

Broader source: Energy.gov [DOE]

Novel chip design and the balance of multiple interrelated design parameters have enabled Cree, Inc.'s Santa Barbara Technology Center to demonstrate white LEDs with efficacies greater than 65 lumens per watt at 350 mA. The results are particularly significant because they were achieved with a pre-production prototype chip using the same package used in Cree's commercially available XLamp 7090 high power LED, rather than a laboratory device.

134

Equilibrium pricing in electricity markets with wind power.  

E-Print Network [OSTI]

?? Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from (more)

Rubin, Ofir David

2010-01-01T23:59:59.000Z

135

Equilibrium pricing in electricity markets with wind power.  

E-Print Network [OSTI]

??Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000 (more)

Rubin, Ofir David

2010-01-01T23:59:59.000Z

136

Propagation of Kuroshio Extension Meanders between 143 and 149E KAREN L. TRACEY, D. RANDOLPH WATTS, AND KATHLEEN A. DONOHUE  

E-Print Network [OSTI]

WATTS, AND KATHLEEN A. DONOHUE Graduate School of Oceanography, University of Rhode Island, Narragansett

Rhode Island, University of

137

Department of Defense 3 GW Solar Target | OpenEI Community  

Open Energy Info (EERE)

Department of Defense 3 GW Solar Target Department of Defense 3 GW Solar Target Home > Groups > Renewable Energy Finance Workshop Ianjkalin's picture Submitted by Ianjkalin(84) Contributor 15 December, 2012 - 16:56 Upload Files: application/pdf icon dod_presentation.pdf Groups: Renewable Energy Finance Workshop Login to post comments Latest documents Kalston BCSE Industry Overview slides Posted: 20 Dec 2012 - 13:56 by Kalston Ianjkalin Department of Defense 3 GW Solar Target Posted: 15 Dec 2012 - 16:56 by Ianjkalin 1 of 2 ›› Groups Menu You must login in order to post into this group. Latest document comments No comments have been made yet Recent content BCSE Industry Overview slides Department of Defense 3 GW Solar Target Presentation on Open Data & Finance Value Meeting Agenda Group members (2)

138

Programming Language Concepts and Paradigms David A Watt 6-1 Solutions to Exercises 6  

E-Print Network [OSTI]

Programming Language Concepts and Paradigms © David A Watt 6-1 Solutions to Exercises 6 6;Programming Language Concepts and Paradigms © David A Watt 6-2 6.2.3 Date abstract type in ADA: (a) Possible and Paradigms © David A Watt 6-3 function "+" (r1, r2: Rat) return Rat is begin return (r1.num*r2.den + r2.num

Watt, David A.

139

Absolute Factorization of Bivariate Polynomials with Floating Point Coe cients Andr Galligo and Stephen M. Watt  

E-Print Network [OSTI]

and Stephen M. Watt University of Nice-Sophia Antipolis Given a polynomial px y of degree d and complex oating

Watt, Stephen M.

140

Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines  

Science Journals Connector (OSTI)

1 June 1971 research-article Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines W. A. Smeaton

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Outlook for detection of GW inspirals by GRB-triggered searches in the Advanced detector era  

E-Print Network [OSTI]

Short, hard gamma-ray bursts (GRBs) are believed to originate from the coalescence of two neutron stars (NSs) or a NS and a black hole (BH). If this scenario is correct, then short GRBs will be accompanied by the emission of strong gravitational waves (GWs), detectable by GW observatories such as LIGO, Virgo, KAGRA, and LIGO-India. As compared with blind, all-sky, all-time GW searches, externally triggered searches for GW counterparts to short GRBs have the advantages of both significantly reduced detection threshold due to known time and sky location and enhanced GW amplitude because of face-on orientation. Based on the distribution of signal-to-noise ratios in candidate compact binary coalescence events in the most recent joint LIGO-Virgo data, our analytic estimates, and our Monte Carlo simulations, we find an effective sensitive volume for GRB-triggered searches that is about 2 times greater than for an all-sky, all-time search. For NS-NS systems, a jet angle of 20 degrees, a gamma-ray satellite field of view of 10% of the sky, and priors with generally precessing spin, this doubles the number of NS-NS short-GRB and NS-BH short-GRB associations, to ~3-4% of all detections of NS-NSs and NS-BHs. We also investigate the power of tests for statistical excesses in lists of subthreshold events, and show that these are unlikely to reveal a subthreshold population until finding GW associations to short GRBs is already routine. Finally, we provide useful formulas for calculating the prior distribution of GW amplitudes from a compact binary coalescence, for a given GW detector network and given sky location.

Alexander Dietz; Nickolas Fotopoulos; Leo Singer; Curt Cutler

2013-04-25T23:59:59.000Z

142

ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project  

SciTech Connect (OSTI)

Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulness of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to find a Federal sponsor to continue with the project, the Watts Bar Dam Project was canceled and the Exploranium radiation monitors were removed from the doors of Watts Bar Dam in early 2006. The DHS Domestic Nuclear Detection Office decided to proceed with a Pilot building on the ORNL work performed at the TN and SC weigh stations in the highway sector of the Trusted Corridors project and eventually expanded it to other southern states under the name of Southeastern Corridor Pilot Project (SETCP). Many of the Phase I goals were achieved however real-world test data of private watercraft and barges was never obtained.

Walker, Randy M [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Hill, David E [ORNL

2011-11-01T23:59:59.000Z

143

Further testing and development of an 11-watt Stirling converter  

SciTech Connect (OSTI)

Three previous IECEC papers describe the development of an 11-watt Radioisotope Stirling Generator (RSG) intended for remote power applications. This paper describes more recent testing and development activities. Testing of the engineering model (EM) was performed to determine the effect of heat rejection temperature, thermal input and initial charge pressure on thermal efficiency. Shock testing of the generator included a drop test and 3 hours of testing in a random vibration environment where g{sup 2}/Hz = 0.04. Endurance testing of a complete Stirling converter continues, with over 15,000 maintenance-free operating hours. Endurance testing of critical subsystems and components has achieved 14,000 to 26,000 hours of operation without failure. Minor changes to the RSG prototype design, based on the development of the EM, are described.

Ross, B.A.; Montgomery, W.L. [Stirling Technology Co., Richland, WA (United States)

1995-12-31T23:59:59.000Z

144

Programming Language Concepts and Paradigms David A Watt 5-1 Solutions to Exercises 5  

E-Print Network [OSTI]

Programming Language Concepts and Paradigms © David A Watt 5-1 Solutions to Exercises 5 5.1.1 We;Programming Language Concepts and Paradigms © David A Watt 5-2 · Reference parameter mechanisms: v, w, and sum

Watt, David A.

145

New Aspects of InkML for Pen-Based Computing Stephen M. Watt  

E-Print Network [OSTI]

New Aspects of InkML for Pen-Based Computing Stephen M. Watt Department of Computer Science University of Western Ontario London, Ontario, Canada N6A 5B7 watt@csd.uwo.ca Abstract As pen-based computing

Watt, Stephen M.

146

Programming Language Concepts and Paradigms David A Watt 4-1 Solutions to Exercises 4  

E-Print Network [OSTI]

Programming Language Concepts and Paradigms © David A Watt 4-1 Solutions to Exercises 4 4 with a Nat in-parameter } #12;Programming Language Concepts and Paradigms © David A Watt 4-2 4.2.2 Static vs

Watt, David A.

147

Approximate Polynomial Decomposition Robert M. Corless Mark W. Giesbrecht David J. Jeffrey Stephen M. Watt  

E-Print Network [OSTI]

M. Watt Dept. of Computer Science and Dept. of Applied Mathematics University of Western Ontario London, ON, N6A 5B7, Canada email: Rob.Corless, Mark.Giesbrecht David.Jeffrey, Stephen.Watt @uwo.ca 1

Watt, Stephen M.

148

CS 115: Programming I Spring 2014 Instructors Dr. Suzanne Rivoire, Dr. Tia Watts, Noah Melcon  

E-Print Network [OSTI]

CS 115: Programming I ­ Spring 2014 Instructors Dr. Suzanne Rivoire, Dr. Tia Watts, Noah Melcon Meeting times Lecture: TTh 9:20­10:35 Darwin 102 Rivoire Lab (Sections 1/2): T 5:00­7:50 Darwin 25 Watts

Ravikumar, B.

149

Free-hand Sketch Grouping for Video Retrieval J. P. Collomosse, G. McNeill, and L. Watts  

E-Print Network [OSTI]

Free-hand Sketch Grouping for Video Retrieval J. P. Collomosse, G. McNeill, and L. Watts Department of Computer Science, University of Bath, UK {jpc, g.mcneill, l.watts}@cs.bath.ac.uk Abstract We present

Collomosse, John

150

*s.watt@bangor.ac.uk Achieving near-correct focus cues in a 3-D display using multiple  

E-Print Network [OSTI]

*s.watt@bangor.ac.uk Achieving near-correct focus cues in a 3-D display using multiple image planes Simon J. Watt* a , Kurt Akeley b , Ahna R. Girshick c , Martin S. Banks c a School of Psychology

Banks, Marty

151

Utilizing RF-I and Intelligent Scheduling for Better Throughput/Watt in a Mobile GPU Memory System  

E-Print Network [OSTI]

Utilizing RF-I and Intelligent Scheduling for Better Throughput/Watt in a Mobile GPU Memory System system is essential for the mobile GPU. In this article, we propose to improve throughput/watt are able to improve throughput 17% up to 66% while increasing throughput per watt by an average of 18% up

Cong, Jason "Jingsheng"

152

the future of gw's mount vernon campus implementing the 2010 mount vernon campus plan  

E-Print Network [OSTI]

and academic space to enhance the living and learning community; Sustainable practices such as green building campus development and reallocation of currently proposed building uses; Balance of residential. The first Campus Plan for GW's Mount Vernon Campus was developed in 1967 when it operated as Mount Vernon

Vertes, Akos

153

Third generation development of an 11-watt Stirling converter  

SciTech Connect (OSTI)

This paper describes recent design enhancements, performance results, and development of an artificial neural network (ANN) model related to the Radioisotope Stirling Generator (RSG), an 11-watt converter designed for remote power applications. Design enhancements include minor changes to improve performance, increase reliability, facilitate fabrication and assembly for limited production, and reduce mass. Innovative modifications were effected to increase performance and improve reliability of the vacuum foil insulation (VFI) package and linear alternator. High and low operating temperature acceptance testing of the Engineering Model (EM) demonstrated the robust system characteristics. These tests were conducted for 1 week of operation each, with rejector temperatures of 95 C and 20 C, respectively. Endurance testing continues for a complete Stirling converter, the Development Model (DM), with over 25,000 hours of maintenance-free operation. Endurance testing of flexures has attained over 540 flexure-years and endurance testing of linear motors/alternators has achieved nearly 27,000 hours of operation without failure. An ANN model was developed and tested successfully on the DM. Rejection temperatures were varied between 3 C and 75 C while load voltages ranged between engine stall and displacer overstroke. The trained ANN model, based solely on externally measured parameters, predicted values of piston amplitude, displacer amplitude, and piston-displacer phase angle within {+-}2% of the measured values over the entire operating regime. The ANN model demonstrated its effectiveness in the long-term evaluation of free-piston Stirling machines without adding the complexity, reduced reliability, and increased cost of sophisticated diagnostic instrumentation.

Montgomery, W.L.; Ross, B.A.; Penswick, L.B. [Stirling Technology Co., Kennewick, WA (United States)

1996-12-31T23:59:59.000Z

154

A guide to web content for Heriot-Watt University websites  

E-Print Network [OSTI]

1 A guide to web content for Heriot-Watt University websites #12;2 Contents A guide to web content..........................................................................................................................3 Why is writing for the web different?..........................................................................................3 Planning your web content

Howie, Jim

155

WATTS TOWERS: THE EFFECTS OF THERMAL CYCLES ON THE FORMATION AND BEHAVIOR OF CRACKS  

E-Print Network [OSTI]

to make lasting repairs to the Watts Towers. 15 REFERENCES [1] LSTC. "LS-DYNA KEYWROD MANUAL." DYNA Support. Livermore Software Technology Corporation, n.d. Web. 5 Apr. 2013.

Spencer, Matthew T

2013-02-06T23:59:59.000Z

156

Structural Studies on the Hydration of L-Glutamic Acid in Solution Sylvia E. McLain,*,, Alan K. Soper, and Anthony Watts,  

E-Print Network [OSTI]

. Soper, and Anthony Watts, Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, Oxfordshire OX

Watts, Anthony

157

Structure and Hydration of L-Proline in Aqueous Solutions Sylvia E. McLain,*,, Alan K. Soper, Ann E. Terry, and Anthony Watts  

E-Print Network [OSTI]

. Terry, and Anthony Watts ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX

Watts, Anthony

158

Hands-On Session 6: Monolayer Boron Nitride BerkeleyGW Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hands-On Session 6: Monolayer Boron Nitride Hands-On Session 6: Monolayer Boron Nitride BerkeleyGW Workshop 11/23/2013 Diana Qiu Goals: 1. Demonstrate a GW-BSE calculation for a 2D semiconductor 2. Look at the behavior of ε -1 00 (q) for a system with a truncated Coulomb interaction 3. Learn how to use BerkeleyGW's visualization tools to look at the exciton wave function Instructions: Please copy the example directory into your scratch directory >> cp -rP /project/projectdirs/m1694/BGW-2013/6-boron_nitride $SCRATCH/ 1-MF ● Please go the directory ``6-boron_nitride/1-mf/`` ● Enter each directory in numerical order and follow the instructions in the README files. Some things to note for 2D calculations: ● The system is in a periodic supercell. Though we will not do so in this calculation, you should always converge the k-grid sampling and amount of vacuum between

159

The Kill-a-Watt Competition at University of Central Florida | Department  

Broader source: Energy.gov (indexed) [DOE]

The Kill-a-Watt Competition at University of Central Florida The Kill-a-Watt Competition at University of Central Florida The Kill-a-Watt Competition at University of Central Florida Addthis Description At the University of Central Florida, students have taken it upon themselves to create a culture of energy efficiency. Each year, different dorm buildings compete to see who can save the most. In 2009, the school saw a total savings of $27,000. As of March 2010, they've saved over $24,000 this year alone. Speakers Chris Castro, Alexandra Kennedy, Margaret Lo, David Norvell, Keith Coelho, John Hitt PhD Duration 5:40 Topic Energy Efficiency Commercial Heating & Cooling Consumption Credit Energy Department Video CHRIS CASTRO: Last summer, I was an intern at the Department of Energy Office of Energy Efficiency and Renewable Energy and I got a chance to

160

Watch the Watts: Tips for Buying a New Television | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Watch the Watts: Tips for Buying a New Television Watch the Watts: Tips for Buying a New Television Watch the Watts: Tips for Buying a New Television March 8, 2011 - 6:30am Addthis Jeannie Saur Senior Communicator, National Renewable Energy Laboratory Buying a new television in a complex and feature-rich market can be a daunting experience. Sure there are lots of great choices with stunning picture quality and amazing features. And with so much competition, TV prices have fallen dramatically from even a year ago. But when my 1990-era television finally died, I was overwhelmed with choices for a flat screen TV. There are plasmas, liquid crystal displays (LCDs), and light-emitting diodes (LEDs). TVs can be Internet enabled so they can stream programming. And now there are a number of choices for 3D viewing. With so many things to consider, I decided the most important

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR  

E-Print Network [OSTI]

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR S. Das1 , D. P. Arnold2 presents the design, fabrication, and characterization of permanent-magnet (PM) generators for use, coupled to a transformer and rectifier, delivers 1.1 W of DC electrical power to a resistive load

162

HMM adaptation and voice conversion for the synthesis of child speech: a Oliver Watts1  

E-Print Network [OSTI]

, Junichi Yamagishi1 , Simon King1 , Kay Berkling2 1 Centre for Speech Technology Research, University of Edinburgh, UK 2 Inline Internet Online Dienste GmbH, Germany O.S.Watts@sms.ed.ac.uk jyamagis- netically balanced, consistently read, and cleanly recorded. The type of child speech typically available

Edinburgh, University of

163

La question du privilge en France pour la machine de Watt Paul Naegel,  

E-Print Network [OSTI]

;2 The steam engine, invented and patented in 1769 by James Watt, then marketed by him in association of very large diameter. Started in England, matters related to the new steam engines were obtained opportunities were based in France on already known applications, made with Newcomen fire engines

Paris-Sud XI, Université de

164

Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser  

E-Print Network [OSTI]

with cladding pumping for high average power. The laser generates 31 nJ chirped pulses at 70 MHz repetition rate of double-clad (DC) gain fiber is common, and there are a few reports of mode-locked lasers that employ DCSub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser K. Kieu,* W. H

Kieu, Khanh

165

University of Hawai`i Watt Watcher: Energy Consumption Data Analysis  

E-Print Network [OSTI]

: This material is based upon work supported by the United States Department of Energy under Award Number DE-FC-06 or reflect those of the United States Government or any agency thereof. #12; UH Watt Watcher: Energy A METHODS Background 18 Energy Use Measurement 19 Comfort Level Measurement

166

Statistical analysis of wind energy in Chile David Watts a,b,*, Danilo Jara a  

E-Print Network [OSTI]

Data Bank Statistical analysis of wind energy in Chile David Watts a,b,*, Danilo Jara December 2010 Keywords: Wind Wind speed Energy Capacity factor Electricity Chile a b s t r a c t Bearing role in any future national energy generation matrix. With a view to understanding the local wind

Catholic University of Chile (Universidad Católica de Chile)

167

A 5-WATT, 37-GHz MONOLITHIC GRID AMPLIFIER Blythe Deckman1  

E-Print Network [OSTI]

of the fabricated active grid. Thermal Management Previous grid amplifiers lacked a heat spreader, so Figure 1A 5-WATT, 37-GHz MONOLITHIC GRID AMPLIFIER Blythe Deckman1 , Donald S. Deakin, Jr.2 , Emilio Sovero has been demonstrated. The area of the grid am- plifier is 1 cm2, and there are 512 transistors

168

Rigid Deployable Solar Array A.M. Watt and S. Pellegrino  

E-Print Network [OSTI]

with the design of low-cost rigid-panel deployable solar arrays with self- locking tape-spring hinges. The reportRigid Deployable Solar Array A.M. Watt and S. Pellegrino CUED/D-STRUCT/TR214 Department on the deployment of a solar array wing are evaluated experimentally. #12;#12;Contents 1 Introduction 1 1.1 Layout

Pellegrino, Sergio

169

Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)  

SciTech Connect (OSTI)

The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplify the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.

Felker, B.; Allen, S.; Bell, H. [and others

1993-10-06T23:59:59.000Z

170

Distributed Models of Thread-Level Speculation Cosmin E. Oancea, Jason W. A. Selby, Mark W. Giesbrecht and Stephen M. Watt  

E-Print Network [OSTI]

. Giesbrecht and Stephen M. Watt Department of Computer Science, University of Western Ontario, London, Ontario, Canada, N6A 5B7 coancea,watt@csd.uwo.ca School of Computer Science, University of Waterloo

Giesbrecht, Mark

171

Federated Authentication & Authorisation for e-Science J. Watt, R.O. Sinnott, J. Jiang, T. Doherty, A.J. Stell, D. Martin, G. Stewart  

E-Print Network [OSTI]

Federated Authentication & Authorisation for e-Science J. Watt, R.O. Sinnott, J. Jiang, T. Doherty, UK j.watt@nesc.gla.ac.uk Abstract The Grid and Web service community are defining a range of stan

Glasgow, University of

172

The Model 5000-16C 1000 WATT FEL Lamp Standard pro-vides absolute calibration of spectral irradiance from 250 nm to  

E-Print Network [OSTI]

The Model 5000-16C 1000 WATT FEL Lamp Standard pro- vides absolute calibration of spectral. It has been selected by the National Institute of Standards and Technology to replace the 1000 watt, DXW-pin 1000 watt lamp that is adapted by Gamma Scientific into a bi-post configuration. It is used

173

Wildlife Management: The Case of Bucks Only Hunting The model in Figure 1 is adapted from an example in Ken Watt's (1968) text on Ecology and  

E-Print Network [OSTI]

an example in Ken Watt's (1968) text on Ecology and Resource Management. It distinguishes between bucks that this population will grow, despite the aggressive hunting of the adult bucks. This diagram is adapted from Watt's description of a theoretical deer herd (Watt 1968, p. 127). He uses the numerical example to argue against

Ford, Andrew

174

Optimizing performance per watt on GPUs in High Performance Computing: temperature, frequency and voltage effects  

E-Print Network [OSTI]

The magnitude of the real-time digital signal processing challenge attached to large radio astronomical antenna arrays motivates use of high performance computing (HPC) systems. The need for high power efficiency (performance per watt) at remote observatory sites parallels that in HPC broadly, where efficiency is an emerging critical metric. We investigate how the performance per watt of graphics processing units (GPUs) is affected by temperature, core clock frequency and voltage. Our results highlight how the underlying physical processes that govern transistor operation affect power efficiency. In particular, we show experimentally that GPU power consumption grows non-linearly with both temperature and supply voltage, as predicted by physical transistor models. We show lowering GPU supply voltage and increasing clock frequency while maintaining a low die temperature increases the power efficiency of an NVIDIA K20 GPU by up to 37-48% over default settings when running xGPU, a compute-bound code used in radio...

Price, D C; Barsdell, B R; Babich, R; Greenhill, L J

2014-01-01T23:59:59.000Z

175

Zinc and cadmium residues in striped bass from Cherokee, Norris, and Watts Bar reservoirs  

SciTech Connect (OSTI)

Zinc and cadmium concentrations in muscle, liver, and kidney were measured in striped bass (Morone saxatilis) from Cherokee, Norris, and Watts Bar reservoirs in East Tennessee to determine if these metals had contributed to fish kills observed in Cherokee during the 1970's. The range of mean concentrations of zinc from collections of Cherokee striped bass (muscle 11-14, liver 98-106, kidney 88-105 mg Zn/kg dry weight) were comparable to ranges in fish from Norris and Watts Bar (muscle 12-13, liver 83-132, kidney 96-108 mg/kg dry weight). With the exception of concentrations in the kidneys of one collection, cadmium residues from Cherokee striped bass (muscle 0.02-0.09, liver 0.3-0.7, kidney 0.2-4.0 mg Cd/kg dry weight) were also similar to residues from Norris and Watts Bar fish (muscle 0.05-0.13, liver 0.3-2.1, kidney 0.3-0.5 mg Cd/kg dry weight). There were significant differences in tissue residues among seasons (summer 1979, spring 1980, summer 1980) in Cherokee Reservoir, as well as significant differences among the three reservoirs (Cherokee, Norris, Watts Bar) during the same season (spring 1980). All concentrations, however, were well below those reported for fish exposed to the maximum non-harmful concentrations of zinc and the lowest potentially harmful concentration of cadmium and moreover, were within the range typically reported for fish tissues. It is, therefore, believed that in at least the last two years, zinc and cadmium in the tissues of striped bass from Cherokee Reservoir have not been harmful to the fish.

Tisa, M.S.; Strange, R.J.

1981-10-01T23:59:59.000Z

176

Excited states properties of organic molecules: from density functional theory to the GW and BetheSalpeter Green's function formalisms  

Science Journals Connector (OSTI)

...quasi-particle Green's function approaches...accurate electronic energy levels (ionization...The many-body Green's function GW formalism...expression of the self-energy within many-body...the poles in the energy representation of...time-ordered G(1,2) Green's function which...

2014-01-01T23:59:59.000Z

177

Acoustic Emission Monitoring of ASME Section III Hydrostatic Test: Watts Bar Unit 1 Nuclear Reactor  

SciTech Connect (OSTI)

Through the cooperation of the Tennessee Valley Authority, Pacific Northwest Laboratory has installed instrumentation on Watts Bar Nuclear Power Plant Unit 1 for the purpose of test and evaluation of acoustic emission (AE) monitoring of nuclear reactor pressure vessels and piping for flaw detection. This report describes the acoustic emission monitoring performed during the ASME Section III hydrostatic testing of Watts Bar Nuclear Power Plant Unit 1 and the results obtained. Highlights of the results are: Spontaneous AE was detected from a nozzle area during final pressurization. Evaluation of the apparent source of the spontaneous AE using an empirically derived AE/fracture mechanics relationship agreed within a factor of two with an evaluation by ASME Section XI Code procedures. AE was detected from a fracture specimen which was pressure coupled to the 10-inch accumulator nozzle. This provided reassurance of adequate system sensitivity. High background noise was observed when all four reactor coolant pumps were operating. Work is continuing at Watts Bar Unit 1 toward AE monitoring hot functional testing and subsequently monitoring during reactor operation.

Hutton,, P. H.; Taylor,, T. T.; Dawson,, J. F.; Pappas,, R. A.; Kurtz,, R. J.

1982-06-01T23:59:59.000Z

178

Parametric design study of ``mini-generator`` with 6-watt heat source  

SciTech Connect (OSTI)

The Fairchild study showed that generator designs based on a single 1-watt RHU had very poor thermal efficiencies. At their optimum operating point, more than half of the generated heat was lost through the thermal insulation. This resulted in system efficiency of only 2.2%, compared to 7.2% for current Radioisotope Thermoelectric Generators (RTGs). Moreover, there were serious doubts about the fabricability of the required multicouples, particularly of the series/parallel connections between the large number (900) of thermoelectric legs of very small cross-section (0.21 mm square). All in all, the preceding paper showed that neither JPL`s Power Stick design nor the Fairchild-generated derivatives based on the 1-watt heat source looked promising. The present paper describes a similar parametric study of a mini-generator based on a 6-watt heat source, and compares its performance and fabricability to that of the optimum Power Stick derivative and of the current RTG design for the same mission. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

Schock, A.; Or, C.T. [Orbital Sciences Corporation, 20301 Century Blvd., Germantown, Maryland 20874 (United States)

1995-01-20T23:59:59.000Z

180

Acoustic emission monitoring of hot functional testing: Watts Bar Unit 1 Nuclear Reactor  

SciTech Connect (OSTI)

Acoustic emission (AE) monitoring of selected pressure boundary areas at TVA's Watts Bar, Unit 1 Nuclear Power Plant during hot functional preservice testing is described in this report. The report deals with background, methodology, and results. The work discussed here is a major milestone in a program supported by NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. The subject work demonstrated that anticipated problem areas can be overcome. Work is continuing toward AE monitoring during reactor operation.

Hutton, P.H.; Dawson, J.F.; Friesel, M.A.; Harris, J.C.; Pappas, R.A.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Power translation chart kWh/d/p GW / UK TWh/y / UK Mtoe/y / UK  

E-Print Network [OSTI]

Wh/d Solar PV: 12 kWh/d Energy crops: 9 kWh/d Tide: 2.4 kWh/d Wave: 2.3 kWh/d Hydroelectricity: 0.09k people GW often used for `capacity' (peak output) TWh/y often used for average output USA energy consumption: 250 kWh/d per person 1 Mtoe `one million tons of oil equivalent' Europe energy consumption: 125 k

MacKay, David J.C.

182

A FIVE-WATTS G-M/J-T REFRIGERATOR FOR LHE TARGET AT BNL.  

SciTech Connect (OSTI)

A five-watts G-M/J-T refrigerator was built and installed for the high-energy physics research at Brookhaven National Laboratory in 2001. A liquid helium target of 8.25 liters was required for an experiment in the proton beam line at the Alternating Gradient Synchrotron (AGS) of BNL. The large radiation heat load towards the target requires a five-watts refrigerator at 4.2 K to support a liquid helium flask of 0.2 meter in diameter and 0.3 meter in length which is made of Mylar film of 0.35 mm in thickness. The liquid helium flask is thermally exposed to the vacuum windows that are also made of 0.35 mm thickness Mylar film at room temperature. The refrigerator uses a two-stage Gifford-McMahon cryocooler for precooling the Joule-Thomson circuit that consists of five Linde-type heat exchangers. A mass flow rate of 0.8 {approx} 1.0 grams per second at 17.7 atm is applied to the refrigerator cold box. The two-phase helium flows between the liquid target and liquid/gas separator by means of thermosyphon. The paper presents the system design as well as the test results including the control of thermal oscillation.

JIA,L.X.; WANG,L.; ADDESSI,L.; MIGLIONICO,G.; MARTIN,D.; LESKOWICZ,J.; MCNEILL,M.; YATAURO,B.; TALLERICO,T.

2001-07-16T23:59:59.000Z

183

Java Collections 2001 D.A. Watt and D.F. Brown 6-1 Solutions to Exercises in Chapter 6  

E-Print Network [OSTI]

Java Collections © 2001 D.A. Watt and D.F. Brown 6-1 Solutions to Exercises in Chapter 6 6 from input to output, using spur: #12;Java Collections © 2001 D.A. Watt and D.F. Brown 6-2 1. For c = 1 `[' 2 depth=3 4 5After scanning `arg[': #12;Java Collections © 2001 D.A. Watt and D.F. Brown 6-3 Figure

Watt, David A.

184

Java Collections 2001 D.A. Watt and D.F. Brown 2-1 Solutions to Exercises in Chapter 2  

E-Print Network [OSTI]

Java Collections © 2001 D.A. Watt and D.F. Brown 2-1 Solutions to Exercises in Chapter 2 2 (non-recursive version): #12;Java Collections © 2001 D.A. Watt and D.F. Brown 2-2 static int factorial of program: #12;Java Collections © 2001 D.A. Watt and D.F. Brown 2-3 static void moveTower (int n, int source

Watt, David A.

185

Java Collections 2001 D.A. Watt and D.F. Brown 10-1 Solutions to Exercises in Chapter 10  

E-Print Network [OSTI]

Java Collections © 2001 D.A. Watt and D.F. Brown 10-1 Solutions to Exercises in Chapter 10 10 the subtree whose topmost node is top (recursive version): #12;Java Collections © 2001 D.A. Watt and D.max(depth(top.left), depth(top.right)); } #12;Java Collections © 2001 D.A. Watt and D.F. Brown 10-3 public static Object get

Watt, David A.

186

Java Collections 2001 D.A. Watt and D.F. Brown 13-1 Solutions to Exercises in Chapter 13  

E-Print Network [OSTI]

Java Collections © 2001 D.A. Watt and D.F. Brown 13-1 Solutions to Exercises in Chapter 13 13 E G A B C D E GF A D G D G D #12;Java Collections © 2001 D.A. Watt and D.F. Brown 13-2 Figure S13 Collections © 2001 D.A. Watt and D.F. Brown 13-3 public class UnsortedLinkedPriorityQueue implements Priority

Watt, David A.

187

P26W-5 eCo iPs P24W-5 eCo iPs special features In Plane Switching (IPS), 0 Watt  

E-Print Network [OSTI]

Watt in power save mode, ECO button, Auto Brightness Control (ABC), DisplayViewTM IT Suite In Plane Switching (IPS), 0 Watt in power save mode, ECO button, Auto Brightness Control (ABC), Display P22W-5 eCo iPs P19-5P eCo special features In Plane Switching (IPS), 0 Watt in power save mode, ECO

Ott, Albrecht

188

DOE Publishes Final Rule for the Request for Exclusion of 100 Watt R20 Short Incandescent Reflector Lamps from Energy Conservation Standards  

Broader source: Energy.gov [DOE]

The Department of Energy has published a final rule regarding the request for exclusion of 100 Watt R20 short incandescent reflector lamps from energy conservation standards.

189

Java Collections 2001 D.A. Watt and D.F. Brown 3-1 Solutions to Exercises in Chapter 3  

E-Print Network [OSTI]

Java Collections © 2001 D.A. Watt and D.F. Brown 3-1 Solutions to Exercises in Chapter 3 3 the character array a[left...right] is a palindrome: #12;Java Collections © 2001 D.A. Watt and D.F. Brown 3-2 1

Watt, David A.

190

Four Current Meter Models Compared in Strong Currents in Drake Passage D. RANDOLPH WATTS, MAUREEN A. KENNELLY, KATHLEEN A. DONOHUE,  

E-Print Network [OSTI]

Four Current Meter Models Compared in Strong Currents in Drake Passage D. RANDOLPH WATTS, MAUREEN A February 2013, in final form 11 June 2013) ABSTRACT Seven current meters representing four models: two vector-measuring current meters (VMCMs), two Aanderaa recording current meter (RCM) 11s, two

Rhode Island, University of

191

Policy on the Moderation of Assessment: Approved by the Senate, 22 May 2013 Heriot-Watt University  

E-Print Network [OSTI]

1 Policy on the Moderation of Assessment: Approved by the Senate, 22 May 2013 Heriot-Watt University Policy on the Moderation of Assessment With diversity in form of assessment across multi in all disciplines, across all Schools and in all modes or locations of study. The University Policy

Painter, Kevin

192

Introduction The Fiber-Lite MI-150 is a 150 Watt quartz halogen fiber optic illuminator designed for general microscopy  

E-Print Network [OSTI]

Introduction ® The Fiber-Lite MI-150 is a 150 Watt quartz halogen fiber optic illuminator designed for general microscopy use. When used with specialty fiber optic cables the MI-150 illuminator can also Illuminator from the carton and retain the manual and any additional documents. ! Remove the fiber optic cable

Kleinfeld, David

193

Heriot-Watt University has consolidated and updated its various logos to form a single more distinctive identity.  

E-Print Network [OSTI]

Brand Identity USING THE LOGO It is essential that a consistent use of colour and positioning-Watt Brand Identity. The logo should always appear in Pantone 293 and 30% Pantone 293 with a white keyline, it is necessary to consider the printers normal image parameters. The logo should therefore be positioned using

Glasbey, Chris

194
195

COSTBI-935; NO. OF PAGES 6 Please cite this article in press as: Oates J, Watts A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation, Curr Opin Struct Biol (2011), doi:10.1016/  

E-Print Network [OSTI]

COSTBI-935; NO. OF PAGES 6 Please cite this article in press as: Oates J, Watts A. Uncovering between lipids, cholesterol and GPCR activation Joanne Oates and Anthony Watts The membrane bilayer has, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK Corresponding author: Watts, Anthony

Watts, Anthony

196

Watts Bar Unit 1 Cycle Zero Power Physics Tests Analysis with VERA-CS  

SciTech Connect (OSTI)

The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications, including a core simulation capability called VERA-CS. A key milestone for this endeavor is to validate VERA against measurements from operating nuclear power reactors. The first step in validation against plant data is to determine the ability of VERA to accurately simulate the initial startup physics tests for Watts Bar Nuclear Power Station, Unit 1 (WBN1) cycle 1. VERA-CS calculations were performed with the Insilico code developed at ORNL using cross section processing from the SCALE system and the transport capabilities within the Denovo transport code using the SPN method. The calculations were performed with ENDF/B-VII.0 cross sections in 252 groups (collapsed to 23 groups for the 3D transport solution). The key results of the comparison of calculations with measurements include initial criticality, control rod worth critical configurations, control rod worth, differential boron worth, and isothermal temperature reactivity coefficient (ITC). The VERA results for these parameters show good agreement with measurements, with the exception of the ITC, which requires additional investigation. Results are also compared to those obtained with Monte Carlo methods and a current industry core simulator.

Gehin, Jess C [ORNL; Godfrey, Andrew T [ORNL; Evans, Thomas M [ORNL; Hamilton, Steven P [ORNL; Francheschini, F. [Westinghouse Electric Company, Cranberry Township

2014-01-01T23:59:59.000Z

197

Simulation of Watts Bar Unit 1 Initial Startup Tests with Continuous Energy Monte Carlo Methods  

SciTech Connect (OSTI)

The Consortium for Advanced Simulation of Light Water Reactors* is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications. One component of the testing and validation plan for VERA is comparison of neutronics results to a set of continuous energy Monte Carlo solutions for a range of pressurized water reactor geometries using the SCALE component KENO-VI developed by Oak Ridge National Laboratory. Recent improvements in data, methods, and parallelism have enabled KENO, previously utilized predominately as a criticality safety code, to demonstrate excellent capability and performance for reactor physics applications. The highly detailed and rigorous KENO solutions provide a reliable nu-meric reference for VERAneutronics and also demonstrate the most accurate predictions achievable by modeling and simulations tools for comparison to operating plant data. This paper demonstrates the performance of KENO-VI for the Watts Bar Unit 1 Cycle 1 zero power physics tests, including reactor criticality, control rod worths, and isothermal temperature coefficients.

Godfrey, Andrew T [ORNL; Gehin, Jess C [ORNL; Bekar, Kursat B [ORNL; Celik, Cihangir [ORNL

2014-01-01T23:59:59.000Z

198

New Stream-reach Development (NSD) Fact Sheet  

Broader source: Energy.gov [DOE]

This fact sheet explores the more than 65 gigawatts (GW) of sustainable hydropower potential in U.S. stream-reaches, according to the hydropower resource assessment funded by DOE and executed by Oak Ridge National Laboratory.

199

Environmental test report on the CTI-Cryogenics 1-watt integral Stirling cooler (long-life HD-1033d). Final report, 16 June-24 July 1988  

SciTech Connect (OSTI)

This final report describes and provides the data on the environmental testing of the CTI-Cryogenics 1-Watt Integral Stirling Cooler (Long-Life HD-1033D). The 1-Watt Integral Cooler (HD-1033B/C) is currently used in the M1 FLIR, M60 FLIR, and the Advanced Attack Helicopter FLIR. The long life cooler (clearance seal) improves life of the cooler by approximately two and one half times. C2NVEO evaluated the cooler performance at environmental extremes per the purchase description, PD-0182-001(CR). The cooler successfully passed all the environmental tests with no failures.

Doggett, G.; Dunmire, H.; Samuels, R.; Shaffer, J.

1989-04-01T23:59:59.000Z

200

POLICY ON STAFF USE OF WEB 2.0 TECHNOLOGIES Heriot-Watt University encourages staff to make appropriate use of Web 2.0 technologies in  

E-Print Network [OSTI]

POLICY ON STAFF USE OF WEB 2.0 TECHNOLOGIES Summary Heriot-Watt University encourages staff to make appropriate use of Web 2.0 technologies in work and private life. In order to promote student and staff safety and reduce legal, operational, financial and reputational risk to the University, all staff who use Web 2

Howie, Jim

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Security Infrastructures for Grid Education Prof R.O. Sinnott, A.J. Stell, Dr J.P. Watt, Prof D.W. Chadwick,  

E-Print Network [OSTI]

Advanced Security Infrastructures for Grid Education Prof R.O. Sinnott, A.J. Stell, Dr J.P. Watt domain. Keywords: Grid, education, Security, PERMIS, Shibboleth. 1. Introduction As Grid technology addressing these challenges. This is one of the first full Grid computing courses available today. Security

Kent, University of

202

A summary of the Planck constant measurements using a watt balance with a superconducting solenoid at NIST  

E-Print Network [OSTI]

Researchers at the National Institute of Standards and Technology have been using a watt balance, NIST-3, to measure the Planck constant $h$ for over ten years. Two recently published values disagree by more than one standard uncertainty. The motivation for the present manuscript is twofold. First, we correct the latest published number to take into account a recently discovered systematic error in mass dissemination at the Bureau International des Poids et Mesures (BIPM). Second, we provide guidance on how to combine the two numbers into one final result. In order to adequately reflect the discrepancy, we added an additional systematic uncertainty to the published uncertainty budgets. The final value of $h$ measured with NIST-3 is $h = 6.626\\,069\\,36(37)\\times 10^{-34}\\,\\mbox{J\\,s}$. This result is $77(57) \\times 10^{-9}$ fractionally higher than $h_{\\mathrm{90}}$. Each number in parentheses gives the value of the standard uncertainty in the last two digits of the respective value and $h_{\\mathrm{90}}$ is th...

Schlamminger, S; Haddad, D; Newell, D B; Seifert, F; Chao, L S; Liu, R; Williams, E R; Pratt, J R

2015-01-01T23:59:59.000Z

203

Superfund record of decision (EPA Region 4): USDOE Oak Ridge Reservation, Lower Watts Bar Reservoir Operable Unit, Oak Ridge, TN, September 29, 1995  

SciTech Connect (OSTI)

The decision document presents the selected remedial action for the Lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The selected remedy for the LWBR OU addresses the contamination of the Watts Bar Reservoir area from Tennessee River mile (TRM) 529.9 at Watts Bar Dam upstream to TRM 567.5 at the confluence of the Clinch and Tennessee Rivers. The response action was chosen from a full range of actions that could possibly address the two primary risks identified in the remedial investigation (RI). Risks to human health posed by LWBR include exposure to metals in deep sediment of the main river channel and to polychlorinated biphenyls (PCBs), chlordane, aldrin, arsenic, and mercury in fish tissue. The same response actions are applicable to reducing ecological risk in LWBR. The selected remedy uses existing institutional controls to reduce exposure to contaminated sediment; fish consumption advisories to reduce exposure to contaminants in fish tissue; and annual monitoring to detect changes in LWBR contaminant levels or mobility.

NONE

1996-02-01T23:59:59.000Z

204

Watt steam governor  

Science Journals Connector (OSTI)

The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.

Mark Denny

2002-01-01T23:59:59.000Z

205

Quanta vs. watts  

Science Journals Connector (OSTI)

power available. In plant groups other than phaeophytes neither quantum or energy measurements are entirely satisfactory. In green and red algae the quantum...

2000-01-03T23:59:59.000Z

206

James Watt and biotechnology  

Science Journals Connector (OSTI)

... be if universities were genuinely autonomous and not as at present constrained by an invidious numerus ...

1982-08-05T23:59:59.000Z

207

Electronic band structure of LiInSe2: A first-principles study using the Tran-Blaha density functional and GW approximation  

Science Journals Connector (OSTI)

Abstract Using first-principles theoretical techniques within density functional theory and many-body perturbation theory we investigated the structural and electronic properties of two LiInSe2 crystal modifications, orthorhombic (?-NaFeO2-type) and tetragonal (CuFeS2-type), focusing on the interband transitions and band gaps. It is found that the Tran-Blaha (TB09) functional predicts LiInSe2 to be a direct-gap semiconductor with a significantly larger band gap as compared with that from common local-density and gradient-corrected functionals. The most accurate values of the fundamental energy gaps are calculated within quasiparticle GW approximation and found to be 2.95eV for the orthorhombic phase and 2.85eV for the tetragonal one, with equal pressure coefficients of 63meV/GPa. Our theoretical results eliminate the uncertainty in the band gap of LiInSe2. Moreover, the data obtained define the upper limit of the band gap of solid solutions (Cu,Li)InSe2 and (Ag,Li)InSe2, which can be of interest for applications in optoelectronics.

A.V. Kosobutsky; Yu.M. Basalaev

2014-01-01T23:59:59.000Z

208

Safety Evaluation Report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Numbers 50-390 and 50-391). Supplement Number 13  

SciTech Connect (OSTI)

This report supplements the Safety Evaluation Report (SER), NUREG-0847 (June 1982), Supplement No. 1 (September 1982), Supplement No. 2 (January 1984), Supplement No. 3 (January 1985), Supplement No. 4 (March 1985), Supplement No. 5 (November 1990), Supplement No. 6 (April 1991), Supplement No. 7 (September 1991), Supplement No. 8 (January 1992), Supplement No. 9 (June 1992), Supplement No. 10 (October 1992), Supplement No. 11 (April 1993), and Supplement No. 12 (October 1993), issued by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by the Tennessee Valley Authority, as applicant and owner, for licenses to operate the Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). The facility is located in Rhea County, Tennessee, near the Watts Bar Dam on the Tennessee River. This supplement provides recent information regarding resolution of some of the outstanding and confirmatory items, and proposed license conditions identified in the SER. These issues relate to: Design criteria -- structures, components, equipment, and systems; Reactor; Instrumentation and controls; Electrical power systems; Auxiliary systems; Conduct of operations; Accident analysis; and Quality assurance.

Not Available

1994-04-01T23:59:59.000Z

209

From Microwatts to Gigawatts: What's New under the Sun  

Science Journals Connector (OSTI)

The current interest in solar energy should be self-sustaining due to economies of scale, new materials and processes, and an understanding of the requirements for economical,...

Smestad, Greg P

210

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity So far this year (through October 2013), the electricity industry has added 10.0 gigawatts (GW) of new generating capacity. Much of this new capacity (6.2 GW) is fueled by natural gas. Renewable energy sources are used in 2.3 GW of the new capacity while two new coal plants (1.5 GW) have also started producing electricity this year. However, these new sources for power generation have been more than offset by 11.1 GW of retired capacity. Coal-fired and nuclear plants comprise the largest proportion of year-to-date retired capacity (3.8 GW and 3.6 GW, respectively). A total of 2.3 GW of natural-gas-fired capacity has been retired so far this year. U.S. Electricity Consumption Electricity sales during 2013 have experienced little, if any, growth.

211

Chapter 13. No Watt Left Behind No Watt Left Behind  

E-Print Network [OSTI]

­ from the smallest refrigerator to the largest building air-conditioning system ­ become fouled of previous forays. Much of the current thinking for making buildings "smart" about their energy consumption. This information is essential in order to understand and optimize energy consumption, to detect and #12;Chapter 13

212

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Nuclear Nuclear On This Page EPACT2005 tax credits... EPACT2005 tax credits stimulate some nuclear builds In the AEO2011 Reference case, nuclear power capacity increases from 101.0 gigawatts in 2009 to 110.5 gigawatts in 2035 (Figure 82), including 3.8 gigawatts of expansion at existing plants and 6.3 gigawatts of new capacity. The new capacity includes completion of a second unit at the Watts Bar site, where construction on a partially completed plant has resumed. Increases in the estimated costs for new nuclear plants make new investments in nuclear power uncertain. Four new nuclear power plants are completed in the Reference case, all of which are brought on line by 2020 to take advantage of Federal financial incentives. High construction costs for nuclear plants, especially relative to natural-gas-fired plants, make

213

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

market trends icon Nuclear market trends icon Nuclear Mkt trends Market Trends In the AEO2011 Reference case, nuclear power capacity increases from 101.0 gigawatts in 2009 to 110.5 gigawatts in 2035 (Figure 82), including 3.8 gigawatts of expansion at existing plants and 6.3 gigawatts of new capacity. The new capacity includes completion of a second unit at the Watts Bar site, where construction on a partially completed plant has resumed. Increases in the estimated costs for new nuclear plants make new investments in nuclear power uncertain. Four new nuclear power plants are completed in the Reference case, all of which are brought on line by 2020 to take advantage of Federal financial incentives. High construction costs for nuclear plants, especially relative to natural-gas-fired plants, make

214

Nuclear | Open Energy Information  

Open Energy Info (EERE)

Nuclear Nuclear Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 82. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 9. Electricy Generating Capacity Table 96. Electricity Generation by Electricity Market Module Region and Source Table 97. Electricity Generation Capacity by Electricity Market Module Region and Source Market Trends In the AEO2011 Reference case, nuclear power capacity increases from 101.0 gigawatts in 2009 to 110.5 gigawatts in 2035 (Figure 82), including 3.8 gigawatts of expansion at existing plants and 6.3 gigawatts of new capacity. The new capacity includes completion of a second unit at the Watts Bar site, where construction on a partially completed plant has

215

Development of the Mathematics of Learning Curve Models for Evaluating Small Modular Reactor Economics  

SciTech Connect (OSTI)

The cost of nuclear power is a straightforward yet complicated topic. It is straightforward in that the cost of nuclear power is a function of the cost to build the nuclear power plant, the cost to operate and maintain it, and the cost to provide fuel for it. It is complicated in that some of those costs are not necessarily known, introducing uncertainty into the analysis. For large light water reactor (LWR)-based nuclear power plants, the uncertainty is mainly contained within the cost of construction. The typical costs of operations and maintenance (O&M), as well as fuel, are well known based on the current fleet of LWRs. However, the last currently operating reactor to come online was Watts Bar 1 in May 1996; thus, the expected construction costs for gigawatt (GW)-class reactors in the United States are based on information nearly two decades old. Extrapolating construction, O&M, and fuel costs from GW-class LWRs to LWR-based small modular reactors (SMRs) introduces even more complication. The per-installed-kilowatt construction costs for SMRs are likely to be higher than those for the GW-class reactors based on the property of the economy of scale. Generally speaking, the economy of scale is the tendency for overall costs to increase slower than the overall production capacity. For power plants, this means that doubling the power production capacity would be expected to cost less than twice as much. Applying this property in the opposite direction, halving the power production capacity would be expected to cost more than half as much. This can potentially make the SMRs less competitive in the electricity market against the GW-class reactors, as well as against other power sources such as natural gas and subsidized renewables. One factor that can potentially aid the SMRs in achieving economic competitiveness is an economy of numbers, as opposed to the economy of scale, associated with learning curves. The basic concept of the learning curve is that the more a new process is repeated, the more efficient the process can be made. Assuming that efficiency directly relates to cost means that the more a new process is repeated successfully and efficiently, the less costly the process can be made. This factor ties directly into the factory fabrication and modularization aspect of the SMR paradigmmanufacturing serial, standardized, identical components for use in nuclear power plants can allow the SMR industry to use the learning curves to predict and optimize deployment costs.

Harrison, T. J. [ORNL

2014-02-01T23:59:59.000Z

216

Microsoft Word - S07896_GW_MR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Groundwater Monitoring 1 Groundwater Monitoring Report, Central Nevada Test Area, Subsurface Corrective Action Unit 443 April 2012 Approved for public release; further dissemination unlimited LMS/CNT/S07896 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/bridge

217

Microsoft Word - S05935_GW.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

09 Groundwater 09 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443 September 2010 Approved for public release; further dissemination unlimited LMS/CNT/S05935 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 Phone: 865.576.8401

218

Microsoft Word - S06596_GW.doc  

Office of Legacy Management (LM)

10 10 This page intentionally left blank Upstream -- SW00-01 a _______________________________________________________________________________________________________________________________________________ Analyte Unit 04/18/00 07/17/00 10/20/00 04/17/01 07/11/01 10/09/01 04/07/05 10/05/05 04/28/06 10/02/06 04/11/07 10/08/07 04/09/08 g _______________________________________________________________________________________________________________________________________________ Field Measurements Alkalinity c mg/L -- -- -- -- -- -- -- -- -- -- -- -- -- Alkalinity b mg/L 196 130 263 218 196 98 145 202 228 183 227 186 213

219

Microsoft Word - S06596_GW.doc  

Office of Legacy Management (LM)

Groundwater Levels Groundwater Levels a ______________________________________________________________________________________________________ Well Id Collect Depth to Water Well Id Collect Depth to Water Date Water Elevation Date Water Elevation ______________________________________________________________________________________________________ 0200 10/05/04 7.27 6755.42 31SW93-197-3 04/24/00 144.60 6767.25 04/07/05 5.22 6757.47 07/26/00 144.81 6767.04 10/04/05 5.26 6757.43 04/10/01 144.57 6767.28 04/05/06 6.90 6755.79 07/09/01 144.76 6767.09

220

Microsoft Word - S07883_GW_2011  

Office of Legacy Management (LM)

0 Through April 2011 0 Through April 2011 August 2011 LMS/MNT/S07883 This page intentionally left blank LMS/MNT/S07883 Monticello Mill Tailings Site Operable Unit III Annual Groundwater Report May 2010 through April 2011 August 2011 This page intentionally left blank U.S. Department of Energy Monticello Mill Tailings Site OU III Annual Groundwater Report May 2010-April 2011 August 2011 Doc. No. S07883 Page i Contents Abbreviations ...................................................................................................................................v Executive Summary ...................................................................................................................... vii 1.0 Introduction ............................................................................................................................1

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Microsoft Word - S06596_GW.doc  

Office of Legacy Management (LM)

10 10 This page intentionally left blank Alluvial Groundwater -- Upgradient -- 92-05 a,b ______________________________________________________________ Analyte Unit 10/30/00 04/11/01 07/20/01 10/10/01 ______________________________________________________________ Field Measurements Alkalinity mg/L -- 270 321 303 Conductivity c μmhos/cm 1520 1250 1366 1350 DO c mg/L -- 7.7 -- -- ORP c mV 84 71 -- 38 pH c s.u. 7.05 7.66 6.42 6.99 Temperature c C 9.4 7.7 9.7 10 Turbidity c NTU 42.6 4.05 60.3 70.5 Common Ions Ca mg/L 266 214 206 207

222

Microsoft Word - S06596_GW.doc  

Office of Legacy Management (LM)

OU III Monitoring Wells Abandoned in 2005-2006 OU III Monitoring Wells Abandoned in 2005-2006 This page intentionally left blank Page D-1 LOCATION CODE BOREHOLE DEPTH SCREEN DEPTH SCREEN LENGTH ZONE_OF COMPLETION DECOMMISSIONED DATE ORIGINAL EASTING ORIGINAL NORTHING WELL DEPTH 31SW93-197-2 208.8 KB 21-Apr-06 23345.4 9691.6 207.85 31SW93-197-3 159 KD 21-Apr-06 23351.9 9713.9 159 31SW93-197-4 69 KM 21-Apr-06 23368.4 9671.3 69 31SW93-197-5 45 KM 21-Apr-06 23395.3 9731.8 44.3 31SW93-200-1 170 KB 18-Apr-06 20865.4 10218.9 170 31SW93-200-2 122 111.6 10 KD 18-Apr-06 20881.2 10243.3 122 31SW93-200-3 35 24.65 10 KM 18-Apr-06 20855.2 10234.9 35 31SW93-200-4 24.5 KM 07-Sep-05 20889.5 10228.3 24.5 82-07 20 9.5 3 QA 14-Sep-05 24669.3 10006 13 82-20 22.5 15.4 4 QA 07-Sep-05 20418.6 10089.6 21

223

Microsoft Word - S06596_GW.doc  

Office of Legacy Management (LM)

Appendix D Appendix D OU III Monitoring Wells Abandoned in 2005-2006 This page intentionally left blank Page D-1 LOCATION CODE BOREHOLE DEPTH SCREEN DEPTH SCREEN LENGTH ZONE_OF COMPLETION DECOMMISSIONED DATE ORIGINAL EASTING ORIGINAL NORTHING WELL DEPTH 31SW93-197-2 208.8 KB 21-Apr-06 23345.4 9691.6 207.85 31SW93-197-3 159 KD 21-Apr-06 23351.9 9713.9 159 31SW93-197-4 69 KM 21-Apr-06 23368.4 9671.3 69 31SW93-197-5 45 KM 21-Apr-06 23395.3 9731.8 44.3 31SW93-200-1 170 KB 18-Apr-06 20865.4 10218.9 170 31SW93-200-2 122 111.6 10 KD 18-Apr-06 20881.2 10243.3 122 31SW93-200-3 35 24.65 10 KM 18-Apr-06 20855.2 10234.9 35 31SW93-200-4 24.5 KM 07-Sep-05 20889.5 10228.3 24.5 82-07 20 9.5 3 QA 14-Sep-05 24669.3 10006 13 82-20 22.5 15.4 4 QA 07-Sep-05 20418.6 10089.6 21

224

Microsoft Word - S06596_GW.doc  

Office of Legacy Management (LM)

10 10 This page intentionally left blank Bedrock Groundwaters -- Upgradient -- 92-06 a,b ____________________________________________ Analyte Unit 10/30/00 10/10/01 ____________________________________________ Field Measurements Alkalinity mg/L 189 182 Conductivity c μmhos/cm 560 560 DO c mg/L 1.4 -- ORP c mV -51 -46 pH c s.u. 7.24 7.52 Temperature c C 11.3 11.6 Turbidity c NTU 0.84 4.3 Common Ions Ca mg/L 72.8 69.3 Chloride mg/L 2.15 2.44 Fluoride μg/L 124 242 Hardness mg/L 225 214 K mg/L 1.98 1.81

225

Microsoft Word - S06596_GW.doc  

Office of Legacy Management (LM)

OU III Groundwater Model-Predicted Uranium Concentrations OU III Groundwater Model-Predicted Uranium Concentrations This page intentionally left blank Page G-1 Table G-1. Uranium Concentration Variation: Background Locations Observations Loc 92-01 Loc 92-03 Loc 92-05 Loc MW00-01 Loc MW00-02 Date Sampled Uranium (mg/L) Uranium (mg/L) Uranium (mg/L) Uranium (mg/L) Uranium (mg/L) 11/12/1992 0.0058 0.0048 03/08/1993 0.0049 04/22/1993 0.0062 07/20/1993 0.0046 07/22/1993 0.0031 10/26/1993 0.0063 0.0053 10/27/1993 0.0028 05/02/1994 0.0053 0.0057 10/04/1994 0.006 0.0033 10/05/1994 0.0058 04/18/1995 0.0039 04/19/1995 0.005 0.0025 04/08/1996 07/23/1996 10/13/1997 0.0061 10/14/1997 04/21/1998

226

Microsoft Word - S06596_GW.doc  

Office of Legacy Management (LM)

Date Date Surface ID Calculated Flow (ft 3 /sec) Comments 1/14/2000 CARB POND TRENCH OUT 0.25 Carb Pond trench outfall 1/14/2000 MNT CR E OF HWY CULV 0.22 MONTEZUMA CREEK 100 FT EAST OF HIGHWAY CULVERT 1/14/2000 MC>CUTOFFTRENCH CLAY 0.19 Montezuma Creek above ground water cutoff trench, clay bottom. 4/14/2000 MIDPOND OUTFALL PIPE 0.26 Middle Pond outfall pipe (groundwater impoundment in old Van Pile area) 4/14/2000 >VANPILE-STEEP/LINED 0.38 Montezuma Creek above old Vanadium Pile, where gradient steepens/lined. 4/14/2000 SW00-01 0.44 MONTEZUMA CREEK 100 FT EAST OF HIGHWAY CULVERT 4/14/2000 SW00-02 0.74 Pipe outfall at east end of millsite 4/17/2000 SW94-01 2.11 4/17/2000 SW92-08 0.85 4/17/2000 SW00-04 0.95 4/18/2000 Sorenson 0.72 4/18/2000 SW00-03 0.58 6/21/2000 SW00-01 0.32 MONTEZUMA CREEK, culvert pair under road on millsite just east of highway.

227

Microsoft Word - S06596_GW.doc  

Office of Legacy Management (LM)

Annual Groundwater Report May 2009 through April 2010 September 2010 LMS/MNT/S06596 This page intentionally left blank LMS/MNT/S06596 Monticello Mill Tailings Site Operable Unit III Annual Groundwater Report May 2009 through April 2010 September 2010 This page intentionally left blank U.S. Department of Energy Monticello Mill Tailings Site OU III Annual Groundwater Report May 2009-April 2010 September 2010 Doc. No. S06596 Page i Contents Abbreviations.................................................................................................................................. v 1.0 Introduction......................................................................................................................... 1 1.1 Scope and Objectives....................................................................................................1

228

Microsoft Word - S10184_GW.docx  

Office of Legacy Management (LM)

2012 Mound, Ohio February 2014 This page intentionally left blank U.S. Department of Energy Sitewide Groundwater Monitoring Report, CY 2012, Mound, Ohio February 2014 Doc. No....

229

Technical evaluation report TMI action -- NUREG-0737 (II.D.1). Relief and safety valve testing, Watts Bar Nuclear Plant, Units 1 and 2 (Dockets 50-390 and 50-391)  

SciTech Connect (OSTI)

In the past, safety and relief valves installed in the primary coolant system of light water reactors have performed improperly. As a result, the authors of NUREG-0578 (TMI-2 Lessons Learned Task Force Status Report and Short-Term Recommendations) and, subsequently, NUREG-0737 (Clarification of TMI Action Plan Requirements) recommended development and completion of programs to do two things. First, they should reevaluate the functional performance capabilities of pressurized water reactor safety, relief, and block valves. Second, they should verify the integrity of the pressurizer safety and relief valve piping systems for normal, transient, and accident conditions. This report documents the review of those programs by Lockheed Idaho Technologies Company. Specifically, this report documents the review of the Watts Bar Nuclear Plant, Units 1 and 2, Applicant response to the requirements of NUREG-0578 and NUREG-0737. This review found the Applicant provided an acceptable response reconfirming they met General Design Criteria 14, 15, and 30 of Appendix A to 10 CFR 50 for the subject equipment. It should also be noted Lockheed Idaho performed this review for both Units 1 and 2. However, the applicability of this review to Unit 2 depends on verifying that the Unit 2 as-built system conforms to the Unit 1 design reviewed in this report.

Fineman, C.P.

1995-02-01T23:59:59.000Z

230

ERCOT's Dynamic Model of Wind Turbine Generators: Preprint  

SciTech Connect (OSTI)

By the end of 2003, the total installed wind farm capacity in the Electric Reliability Council of Texas (ERCOT) system was approximately 1 gigawatt (GW) and the total in the United States was about 5 GW. As the number of wind turbines installed throughout the United States increases, there is a greater need for dynamic wind turbine generator models that can properly model entire power systems for different types of analysis. This paper describes the ERCOT dynamic models and simulations of a simple network with different types of wind turbine models currently available.

Muljadi, E.; Butterfield, C. P.; Conto, J.; Donoho, K.

2005-08-01T23:59:59.000Z

231

Property:PotentialCSPGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialCSPGeneration PotentialCSPGeneration Jump to: navigation, search Property Name PotentialCSPGeneration Property Type Quantity Description The estimated potential energy generation from CSP for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialCSPGeneration" Showing 25 pages using this property. (previous 25) (next 25)

232

Property:PotentialBiopowerSolidGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerSolidGeneration PotentialBiopowerSolidGeneration Jump to: navigation, search Property Name PotentialBiopowerSolidGeneration Property Type Quantity Description The estimated potential energy generation from solid biopower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialBiopowerSolidGeneration" Showing 25 pages using this property. (previous 25) (next 25)

233

Property:PotentialHydropowerGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerGeneration PotentialHydropowerGeneration Jump to: navigation, search Property Name PotentialHydropowerGeneration Property Type Quantity Description The estimated potential energy generation from Hydropower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialHydropowerGeneration" Showing 25 pages using this property. (previous 25) (next 25)

234

Property:PotentialGeothermalHydrothermalGeneration | Open Energy  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalGeneration PotentialGeothermalHydrothermalGeneration Jump to: navigation, search Property Name PotentialGeothermalHydrothermalGeneration Property Type Quantity Description The estimated potential energy generation from Geothermal Hydrothermal for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialGeothermalHydrothermalGeneration"

235

Property:PotentialRuralUtilityScalePVGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialRuralUtilityScalePVGeneration PotentialRuralUtilityScalePVGeneration Jump to: navigation, search Property Name PotentialRuralUtilityScalePVGeneration Property Type Quantity Description The estimated potential energy generation from utility-scale PV in rural areas of a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialRuralUtilityScalePVGeneration"

236

Property:PotentialUrbanUtilityScalePVGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialUrbanUtilityScalePVGeneration PotentialUrbanUtilityScalePVGeneration Jump to: navigation, search Property Name PotentialUrbanUtilityScalePVGeneration Property Type Quantity Description The estimated potential energy generation from utility-scale PV in urban areas of a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialUrbanUtilityScalePVGeneration"

237

Property:PotentialEGSGeothermalGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialEGSGeothermalGeneration PotentialEGSGeothermalGeneration Jump to: navigation, search Property Name PotentialEGSGeothermalGeneration Property Type Quantity Description The estimated potential energy generation from EGS Geothermal for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialEGSGeothermalGeneration" Showing 25 pages using this property. (previous 25) (next 25)

238

Property:PotentialOnshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindGeneration PotentialOnshoreWindGeneration Jump to: navigation, search Property Name PotentialOnshoreWindGeneration Property Type Quantity Description The area of potential onshore wind in a place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOnshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

239

Property:PotentialRooftopPVGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialRooftopPVGeneration PotentialRooftopPVGeneration Jump to: navigation, search Property Name PotentialRooftopPVGeneration Property Type Quantity Description The estimated potential energy generation from Rooftop PV for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialRooftopPVGeneration" Showing 25 pages using this property. (previous 25) (next 25)

240

Property:PotentialOffshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindGeneration PotentialOffshoreWindGeneration Jump to: navigation, search Property Name PotentialOffshoreWindGeneration Property Type Quantity Description The estimated potential energy generation from Offshore Wind for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOffshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Property:PotentialBiopowerGaseousGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousGeneration PotentialBiopowerGaseousGeneration Jump to: navigation, search Property Name PotentialBiopowerGaseousGeneration Property Type Quantity Description The estimated potential energy generation from gaseous biopower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialBiopowerGaseousGeneration" Showing 25 pages using this property. (previous 25) (next 25)

242

7Name ________________________________ System Watts Energy source  

E-Print Network [OSTI]

of electricity they consume in order to operate. The most energy-consuming items involve an electrical motor lamp 100 Electric Utility Company Television 90 Electric Utility Company Computer 200 Electric Utility Company Refrigerator 500 Electric Utility Company Small House 1,000 Electric Utility Company Small town 5

243

Watt Carves Up Strip-Mining Policy  

Science Journals Connector (OSTI)

...70 percent of the nation's coal mining. Ad-ditional suggestions have...vice presi-dent of the Garland Coal and Mining Company in Arkansas, is one...R. JEFFREY SMITH *Surface Mining: Soil, Coal, and Society (Nation-al Research...

R. JEFFREY SMITH

1981-05-15T23:59:59.000Z

244

Watt Does It Cost To Use It?  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Students learn how electrical usage is counted and priced. They measure and evaluate energy use and cost of representative household and school electrical items.

245

Microsoft Word - S07535_2010_GW_Mon  

Office of Legacy Management (LM)

Phase I Groundwater Monitoring Phase I Groundwater Monitoring Report Calendar Year 2010 March 2011 LMS/MND/S07535 This page intentionally left blank LMS/MND/S07535 Mound Site Phase I Groundwater Monitoring Report Calendar Year 2010 March 2011 This page intentionally left blank U.S. Department of Energy Mound Site Phase I Groundwater Monitoring Report-CY 2010 March 2011 Doc. No. S07535 Page i Contents Abbreviations ................................................................................................................................. iii 1.0 Introduction ............................................................................................................................1 1.1 Purpose .........................................................................................................................1

246

Microsoft Word - Appendix B Bedrock GW Samples.doc  

Office of Legacy Management (LM)

Analytical Results for Bedrock Groundwater Samples, Analytical Results for Bedrock Groundwater Samples, January 2000 through April 2011 This page intentionally left blank Bedrock Groundwaters -- Upgradient -- 92-06 a,b ____________________________________________ Analyte Unit 10/30/00 10/10/01 ____________________________________________ Field Measurements Alkalinity mg/L 189 182 Conductivity c μmhos/cm 560 560 DO c mg/L 1.4 -- ORP c mV -51 -46 pH c s.u. 7.24 7.52 Temperature c C 11.3 11.6 Turbidity c NTU 0.84 4.3 Common Ions Ca mg/L 72.8 69.3 Chloride mg/L 2.15 2.44 Fluoride μg/L 124 242

247

Microsoft Word - S10163_MNT_GW2013.docx  

Office of Legacy Management (LM)

2 Through April 2013 2 Through April 2013 September 2013 LMS/MNT/S10163 This page intentionally left blank LMS/MNT/S10163 Monticello Mill Tailings Site Operable Unit III Annual Groundwater Report May 2012 through April 2013 September 2013 This page intentionally left blank U.S. Department of Energy Monticello Mill Tailings Site OU III Annual Groundwater Report May 2012-April 2013 September 2013 Doc. No. S10163 Page i Contents Abbreviations ................................................................................................................................. iv Executive Summary .........................................................................................................................v 1.0 Introduction ............................................................................................................................1

248

Microsoft Word - S08562_6_7_8_GW_021512  

Office of Legacy Management (LM)

Mound, Ohio, Site Mound, Ohio, Site Parcel 6, 7, and 8 Groundwater Monitoring Report Calendar Year 2011 September 2012 LMS/MND/S08562 This page intentionally left blank LMS/MND/S08562 Mound, Ohio, Site Parcel 6, 7, and 8 Groundwater Monitoring Report Calendar Year 2011 September 2012 This page intentionally left blank U.S. Department of Energy Mound, Ohio, Parcel 6, 7, and 8 Groundwater Monitoring Report CY 2011 September 2012 Doc. No. S08562 Page i Contents Abbreviations ................................................................................................................................. iii 1.0 Introduction ..........................................................................................................................1

249

Microsoft Word - S09647_GW_MR.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Groundwater Groundwater Monitoring Report Central Nevada Test Area, Subsurface Corrective Action Unit 443 April 2013 Approved for public release; further dissemination unlimited LMS/CNT/S09647 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 Phone: 865.576.8401

250

Microsoft Word - S04929_GW_Mon_NDEP_Final.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Groundwater Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443 March 2009 Rev. 1 LMS/CNT/S04929 This page intentionally left blank LMS/CNT/S04929 2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443 March 2009 Rev. 1 This page intentionally left blank U.S. Department of Energy 2008 Groundwater Monitoring Report-CNTA, CAU 443 March 2009 Doc. No. S04929 Rev. 1 Page i Contents 1.0 Introduction......................................................................................................................... 1 2.0 Site Location and Background............................................................................................ 1 3.0 Geologic and Hydrologic Setting........................................................................................

251

347-362 GW M-J 04  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

During the past two decades, stochastic studies have During the past two decades, stochastic studies have shown that inadequate and insufficient data limit the ability of ground water models to predict system behavior without substantial uncertainty (Pohll et al. 1999; Pohlmann et al. 2000; Hassan et al. 2001). Uncertainty is always inherent in the model prediction and is the result of the inability to characterize fully the subsurface environment and the processes controlling the system behavior. Full characteri- zation is limited by access to the subsurface, which requires extensive borehole drilling that can adversely affect the geologic integrity of the site or be prohibitively expensive. Regulators and the public must accept modeling results in order to close subsurface-contaminated sites. Acceptance is difficult to secure, given the wide range of

252

Microsoft Word - S05378_2009 GW Rpt.doc  

Office of Legacy Management (LM)

08 through April 2009 08 through April 2009 October 2009 LMS/MNT/S05378 This page intentionally left blank LMS/MNT/S05378 Monticello Mill Tailings Site Operable Unit III Annual Groundwater Report May 2008 through April 2009 October 2009 This page intentionally left blank U.S. Department of Energy Monticello Mill Tailings Site OU III Annual Groundwater Report May 2008-April 2009 October 2009 Doc. No. S05378 Page i Contents Abbreviations.................................................................................................................................. v 1.0 Introduction......................................................................................................................... 1 1.1 Scope and Objectives....................................................................................................1

253

Microsoft Word - Appendix A Alluvial GW Samples.doc  

Office of Legacy Management (LM)

Groundwater Samples, Groundwater Samples, January 2000 through April 2011 This page intentionally left blank Alluvial Groundwater -- Upgradient -- 92-05 a,b ______________________________________________________________ Analyte Unit 10/30/00 04/11/01 07/20/01 10/10/01 ______________________________________________________________ Field Measurements Alkalinity mg/L -- 270 321 303 Conductivity c μmhos/cm 1520 1250 1366 1350 DO c mg/L -- 7.7 -- -- ORP c mV 84 71 -- 38 pH c s.u. 7.05 7.66 6.42 6.99 Temperature c C 9.4 7.7 9.7 10 Turbidity c NTU 42.6 4.05 60.3 70.5

254

Microsoft Word - S08993_MNT_GW2012.docx  

Office of Legacy Management (LM)

Operable Unit III Operable Unit III Annual Groundwater Report May 2011 Through April 2012 December 2012 LMS/MNT/S08993 This page intentionally left blank LMS/MNT/S08993 Monticello Mill Tailings Site Operable Unit III Annual Groundwater Report May 2011 through April 2012 December 2012 This page intentionally left blank U.S. Department of Energy Monticello Mill Tailings Site OU III Annual Groundwater Report May 2011-April 2012 December 2012 Doc. No. S08993 Page i Contents Abbreviations ...................................................................................................................................v Executive Summary ...................................................................................................................... vii

255

Savannah River Site - Central Shops GW OU | Department of Energy  

Office of Environmental Management (EM)

Migration Under Control? No Current Human Exposure Acceptable? Yes Confirmed by Lead Regulator? Yes Confirmed by Lead Regulator? Yes Regulatory Decision Document Status?...

256

GW RESIDENCE HALL HEALTH AND SAFETY KNOW WHAT'S PROHIBITED...  

E-Print Network [OSTI]

heaters · Halogen lamps · Sandwich makers/grills, hot plates, rice cookers, crock-pots, waffle makers

Vertes, Akos

257

United States (48 Contiguous States) Wind Resource Potential Chart  

Wind Powering America (EERE)

Rated Capacity Above Indicated CF (GW) Rated Capacity Above Indicated CF (GW) United States (48 Contiguous States) - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

258

Development of a 100-Watt High Temperature Thermoelectric Generator  

Broader source: Energy.gov (indexed) [DOE]

Industry Amerigon Inc. Amerigon Inc. - - Europe Europe Sales, Technical Support Germany Sales, Technical Support Germany Amerigon Inc. Amerigon Inc. - - Europe Europe Sales,...

259

Working with Industry Heriot-Watt University has a  

E-Print Network [OSTI]

the wind farm, and electric load modelling software. I Green Logistics Green Logistics is a four year EPSRC

Painter, Kevin

260

Design of a 50-watt air supplied turbogenerator  

E-Print Network [OSTI]

This thesis presents the design of a high-pressure-ratio, low-flow turbogenerator with 50 W electrical power output, designed to operate from a 5-bar air supply. The research shows that a MEMS-based silicon turbine in ...

Jovanovic, Stevan, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development of a 500 Watt High Temperature Thermoelectric Generator  

Broader source: Energy.gov (indexed) [DOE]

fuel economy. A growing percentage of customers are demanding greener vehicles. Waste heat is an untapped source for electric power that could reduce CO 2 3% - 7% near term and...

262

Multi-watt 589nm fiber laser source  

SciTech Connect (OSTI)

We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

2006-01-19T23:59:59.000Z

263

Wind, Thermal, and Earthquake Monitoring of the Watts Towers  

E-Print Network [OSTI]

C Solar heating will introduce stresses into the towersTower. The LACMA weather station records additional variables such as humidity and solar

English, Jackson

2013-01-01T23:59:59.000Z

264

Nuclear Energy for Simultaneous Low-Carbon Heavy-Oil Recovery and Gigawatt-Year Heat Storage for Peak Electricity Production  

E-Print Network [OSTI]

In a carbon-constrained world or a world of high natural gas prices, the use of fossil-fueled power

Forsberg, Charles W.

265

NUCLEAR ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Research Institute FE DOE-Office of Fossil Energy GDP Gross domestic product GHG Greenhouse gas GWe Gigawatt (electric) GWe-yr Gigawatt-year (electric) HTGR...

266

Commitment accounting of CO2 emissions  

Science Journals Connector (OSTI)

The world not only continues to build new coal-fired power plants, but built more new coal plants in the past decade than in any previous decade. Worldwide, an average of 89 gigawatts per year (GW yr1) of new coal generating capacity was added between 2010 and 2012, 23 GW yr1 more than in the 20002009 time period and 56 GW yr1 more than in the 19901999 time period. Natural gas plants show a similar pattern. Assuming these plants operate for 40 years, the fossil-fuel burning plants built in 2012 will emit approximately 19 billion tons of CO2 (Gt CO2) over their lifetimes, versus 14 Gt CO2 actually emitted by all operating fossil fuel power plants in 2012. We find that total committed emissions related to the power sector are growing at a rate of about 4% per year, and reached 307 (with an estimated uncertainty of 192439) Gt CO2 in 2012. These facts are not well known in the energy policy community, where annual emissions receive far more attention than future emissions related to new capital investments. This paper demonstrates the potential for 'commitment accounting' to inform public policy by quantifying future emissions implied by current investments.

Steven J Davis; Robert H Socolow

2014-01-01T23:59:59.000Z

267

Energy Department Report Finds Major Potential to Increase Clean  

Broader source: Energy.gov (indexed) [DOE]

Report Finds Major Potential to Increase Clean Report Finds Major Potential to Increase Clean Hydroelectric Power Energy Department Report Finds Major Potential to Increase Clean Hydroelectric Power April 17, 2012 - 12:39pm Addthis Washington, D.C. -- As part of President Obama's all-out, all-of-the-above energy strategy, the Energy Department today released a renewable energy resource assessment detailing the potential to develop electric power generation at existing dams across the United States that aren't currently equipped to produce power. The report estimates that without building a single new dam, these available hydropower resources, if fully developed, could provide an electrical generating capacity of more than 12 gigawatts (GW), equivalent to roughly 15 percent of current U.S. hydropower capacity. These findings demonstrate one of the ways the nation

268

Capturing Carbon from Existing Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CEP April 2009 www.aiche.org/cep 33 CEP April 2009 www.aiche.org/cep 33 DOE's National Energy Technology Laboratory is spearheading R&D on a variety of post-combustion and oxy-combustion technologies to cost-effectively achieve 90% CO 2 capture. Jared P. Ciferno Timothy E. Fout U.S. Dept. of Energy, National Energy Technology Laboratory Andrew P. Jones James T. Murphy Science Applications International Corp. C oal-fi red power plants generate about half of the electricity in the United States today, and will con- tinue to be a major source of energy for the fore- seeable future. The U.S. Dept. of Energy's (DOE) Energy Information Administration (EIA) projects that the nation's 300+ gigawatts (GW) of coal-fi red electricity-generating capacity currently in operation will increase to more than

269

United States Wind Resource Potential Chart  

Wind Powering America (EERE)

18,000 18,000 Rated Capacity Above Indicated CF (GW) United States - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

270

Microsoft Word - S02459_2006Annual GW Rpt.doc  

Office of Legacy Management (LM)

Monitoring Wells Monitoring Wells Abandoned in 2005-2006 This page intentionally left blank LOCATION_CODE BOREHOLE_DEPTH SCREEN_DEPTH SCREEN_LENGTH ZONE_OF_COMPLETION DECOMMISSIONED_DATE ORIGINAL_EASTING ORIGINAL_NORTHING WELL_DEPTH 31SW93-197-2 208.8 KB 21-Apr-06 23345.4 9691.6 207.85 31SW93-197-3 159 KD 21-Apr-06 23351.9 9713.9 159 31SW93-197-4 69 KM 21-Apr-06 23368.4 9671.3 69 31SW93-197-5 45 KM 21-Apr-06 23395.3 9731.8 44.3 31SW93-200-1 170 KB 18-Apr-06 20865.4 10218.9 170 31SW93-200-2 122 111.6 10 KD 18-Apr-06 20881.2 10243.3 122 31SW93-200-3 35 24.65 10 KM 18-Apr-06 20855.2 10234.9 35 31SW93-200-4 24.5 KM 07-Sep-05 20889.5 10228.3 24.5 82-07 20 9.5 3 QA 14-Sep-05 24669.3 10006 13 82-20 22.5 15.4 4 QA 07-Sep-05 20418.6 10089.6 21 92-01 24.25 21.4 2.5 QA 19-Apr-06 16615.2 9169 24.25 92-02 216 185.4 30 KB 19-Apr-06 16596.2 9156.2 216 92-03 12.75 9.9 2.5 QA 19-Apr-06

271

Microsoft Word - S02459_2006Annual GW Rpt.doc  

Office of Legacy Management (LM)

Ground Water Model-Predicted Ground Water Model-Predicted Uranium Concentrations This page intentionally left blank U.S. Department of Energy Monticello Mill Tailings Site OU III Annual Ground Water Report October 2005-April 2006 September 2006 Doc. No. S0245900 Page G-3 Table G-1. Uranium Concentration Variation: Background Locations Observations Loc 92-01 Loc 92-03 Loc 92-05 Loc MW00-01 Loc MW00-02 Date Sampled Uranium (mg/L) Uranium (mg/L) Uranium (mg/L) Uranium (mg/L) Uranium (mg/L) 11/12/1992 0.0058 0.0048 03/08/1993 0.0049 04/22/1993 0.0062 07/20/1993 0.0046 07/22/1993 0.0031 10/26/1993 0.0063 0.0053 10/27/1993 0.0028 05/02/1994 0.0053 0.0057 10/04/1994 0.006 0.0033 10/05/1994 0.0058 04/18/1995 0.0039

272

Microsoft Word - S02459_2006Annual GW Rpt.doc  

Office of Legacy Management (LM)

Date Date Surface ID Calculated Flow (ft 3 /sec) Comments 1/14/2000 CARB POND TRENCH OUT 0.25 Carb Pond trench outfall 1/14/2000 MNT CR E OF HWY CULV 0.22 MONTEZUMA CREEK 100 FT EAST OF HIGHWAY CULVERT 1/14/2000 MC>CUTOFFTRENCH CLAY 0.19 Montezuma Creek above ground water cutoff trench, clay bottom. 4/14/2000 MIDPOND OUTFALL PIPE 0.26 Middle Pond outfall pipe (groundwater impoundment in old Van Pile area) 4/14/2000 >VANPILE-STEEP/LINED 0.38 Montezuma Creek above old Vanadium Pile, where gradient steepens/lined. 4/14/2000 SW00-01 0.44 MONTEZUMA CREEK 100 FT EAST OF HIGHWAY CULVERT 4/14/2000 SW00-02 0.74 Pipe outfall at east end of millsite 4/17/2000 SW94-01 2.11 4/17/2000 SW92-08 0.85 4/17/2000 SW00-04 0.95 4/18/2000 Sorenson 0.72 4/18/2000 SW00-03 0.58 6/21/2000 SW00-01 0.32 MONTEZUMA CREEK, culvert pair under road on millsite just east of

273

Microsoft Word - S02459_2006Annual GW Rpt.doc  

Office of Legacy Management (LM)

Page 1 Page 1 Upstream -- SW92-03 a ______________________________________________________________ Analyte Unit 10/30/00 04/17/01 07/12/01 10/09/01 ______________________________________________________________ Field Measurements Alkalinity b mg/L 225 216 177 103 Conductivity c µmhos/cm 839 777 678 650 pH c s.u. 7.58 8.25 7.88 7.83 Temperature c C 6.5 15.7 16.1 8.8 Common Ions Ca b mg/L 132 107 89.7 81.2 Chloride b mg/L 7.26 10.7 8.57 22.9 Fluoride b µg/L 196 148 132 449 Hardness b mg/L 412 335 286 250 K b mg/L 1.97 2.42 1.15 12.4

274

Microsoft Word - S02459_2006Annual GW Rpt.doc  

Office of Legacy Management (LM)

Page 1 Page 1 Bedrock Groundwaters -- Upgradient -- 92-06 a,b ____________________________________________ Analyte Unit 10/30/00 10/10/01 ____________________________________________ Field Measurements Alkalinity mg/L 189 182 Conductivity b µmhos/cm 560 560 DO b mg/L 1.4 -- ORP b mV -51 -46 pH b s.u. 7.24 7.52 Temperature b C 11.3 11.6 Turbidity b NTU 0.84 4.3 Common Ions Ca mg/L 72.8 69.3 Chloride mg/L 2.15 2.44 Fluoride µg/L 124 242 Hardness mg/L 225 214 K mg/L 1.98 1.81 Mg mg/L 10.5 9.99

275

Microsoft Word - S02459_2006Annual GW Rpt.doc  

Office of Legacy Management (LM)

________________________________________________________________________________________ ______________ a Numbers in parentheses indicate elevation of bottom of well for dry measurements. Page 1 ________________________________________________________________________________________ ______________ Well Id Collect Depth to Water Well Id Collect Depth to Water Date Water Elevation Date Water Elevation ________________________________________________________________________________________ ______________ 0200 10/05/04 7.27 6755.42 31SW93-197-5 07/11/02 43.95 6865.29 04/07/05 5.22 6757.47 10/09/02 44.04

276

Microsoft Word - DEC1387487110504 Dekker Reports Document DRAFT _GW,IP_.docx  

Broader source: Energy.gov (indexed) [DOE]

Guide, V 0.02 Guide, V 0.02 Tuesday, May 3, 2011 U.S. Department of Energy Project Assessment and Reporting System Reports Guide Version 0.02 This booklet describes each report in PARS II, including those created specifically for the DOE, and those that come standard with the Dekker PMIS(tm) software package. Each report description is followed by an image or images of the report. 2 Table of Contents - Folders I. Cost Performance ......................................................................................................................................................... 14 A. Cost Performance Reports - (CPR) ....................................................................................................................... 15

277

Microsoft Word - S02459_2006Annual GW Rpt.doc  

Office of Legacy Management (LM)

Baseline Surface Water and Sediment This page intentionally left blank Biomonitoring Data a Sediment Surface Location Date Sampled Se (mg/kg) Se (µg/L) Se b (µg/L) Alkalinity b (mg/L) Conductivity (µmhos/cm) pH (s.u.) Temperature (C) Turbidity (NTU) 10/06/04 3.3 3.7 3 273 1481 8.1 14.5 -- 10/06/04 -- 3.6 2.9 -- -- -- -- -- 04/05/05 1.3 2.9 2.2 170 810 7.92 12.08 38.5 10/11/05 1.9 3 2.8 -- -- -- -- -- 04/19/06 0.56 3.6EJ -- -- -- -- -- -- 10/06/04 3 1.6 1.2 292 1500 7.72 13.3 53.5 04/05/05 0.86 2.8 2.4 171 785 7.99 13.1 37.4 10/11/05 0.51 3.2E 2.8 -- -- -- -- -- 04/19/06 0.55 3.4J -- -- -- -- -- -- 10/06/04 2.2 2 1.6 306 1523 7.72 12.2 50.7 04/05/05 3.4 3 2.5 176 803 8.04 13.92 33.6 10/11/05 4.1 3.1 2.6 -- -- -- -- -- 04/19/06 1.4 3.4J -- -- -- -- -- -- 10/06/04 0.18 2.8 2.3 328 1830 6.6 9.9 1.91 04/05/05 0.14J 4.1 3.8 323 1606 6.84 10.89 1.57 10/11/05 0.033U 0.67 0.75 -- -- -- -- -- 04/19/06 0.13 0.56J

278

Microsoft Word - S04516_2008 GW Rpt Cover.doc  

Office of Legacy Management (LM)

October 2007 through April 2008 October 2007 through April 2008 September 2008 LMS/MNT/S04516 This page intentionally left blank LMS/MNT/S04516 Monticello Mill Tailings Site Operable Unit III Annual Groundwater Report October 2007 through April 2008 September 2008 This page intentionally left blank U.S. Department of Energy Monticello Mill Tailings Site OU III Annual Groundwater Report October 2007-April 2008 September 2008 Doc. No. S0451600 Page iii Contents 1.0 Introduction......................................................................................................................... 1 1.1 Scope and Objectives....................................................................................................1 2.0 Historical Information.........................................................................................................

279

Microsoft Word - S02459_2006Annual GW Rpt.doc  

Office of Legacy Management (LM)

312-2006 312-2006 Monticello Mill Tailings Site Operable Unit III Annual Ground Water Report October 2005 through April 2006 September 2006 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy, Grand Junction, Colorado This page intentionally left blank U.S. Department of Energy Monticello Mill Tailings Site OU III Annual Ground Water Report October 2005-April 2006 September 2006 Doc. No. S0245900 Page iii Contents 1.0 Introduction......................................................................................................................... 1 1.1 Report Scope and Objectives........................................................................................1

280

Microsoft Word - S07540_Parcel_6-8_GW_Report  

Office of Legacy Management (LM)

Parcel 6, 7, and 8 Parcel 6, 7, and 8 Groundwater Monitoring Report Calendar Year 2010 March 2011 LMS/MND/S07540 This page intentionally left blank LMS/MND/S07540 Mound Site Parcel 6, 7, and 8 Groundwater Monitoring Report Calendar Year 2010 March 2011 This page intentionally left blank U.S. Department of Energy Parcel 6, 7, and 8 Groundwater Monitoring Report CY 2010 March 2011 Doc. No. S07540 Page i Contents Abbreviations ................................................................................................................................. iii 1.0 Introduction ..........................................................................................................................1 1.1 Purpose .................................................................................................................... 1

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

E-Print Network 3.0 - ab initio gw Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New York University Collection: Chemistry 13 imageslogoetsf Introduction Electron Energy Loss Spectroscopy Applications: Nanotubes and Graphene Perspectives Summary:...

282

Tailoring Wavelets for Chaos Control G.W. Wei,1,2  

E-Print Network [OSTI]

of Mathematics, Michigan State University, East Lansing, Michigan 48824 2 Department of Computational Science), electronics (Chua-Matsumoto circuit), fluid dynamics (Rayleigh- Be´nard convention), meteorology, solar system

283

Microsoft Word - S02459_2006Annual GW Rpt.doc  

Office of Legacy Management (LM)

294 Conductivity b mhoscm 228 1926 1886 3533 1784 1932 1776 1802 1352 1584 1297 1415 1603 DO b mgL -- -- -- -- -- -- -- -- -- -- -- -- 2.41 ORP b mV -- 124 149 -- -- -- 97 61...

284

Microsoft Word - Annual GW Rpt_CY08_DOE.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

unlimited Issued by Sandia National Laboratories, operated for the U.S. Department of Energy (DOE) by Sandia Corporation. NOTICE: This report was prepared as an account of work...

285

Multimodal medical case retrieval using the Dezert-Smarandache theory Quellec Gw nol 1 2  

E-Print Network [OSTI]

history). Indeed, medical experts generally need varied sources of information, which might be incomplete on a classified diabetic retinopathy database. On this database, results are promising: the retrieval precision the retrieval of relevant cases in a case database. The retrieved cases are then used to help interpreting

Paris-Sud XI, Université de

286

Geometric Focusing of 20-GW Proton Beams with Use of a Magnetically Insulated Diode  

Science Journals Connector (OSTI)

We have obtained initial geometric-focusing results using a high-current (? 100 kA) magnetically insulated diode. At the line focus, current densities over 300 A/cm2 have been obtained with a radial compression of about 10. Results for propagation of the intense beams are in excellent agreement with geometric single-particle predictions.

M. Greenspan; S. Humphries; Jr.; J. Maenchen; R. N. Sudan

1977-07-04T23:59:59.000Z

287

Seismic topographic scattering in the context of GW detector site selection  

E-Print Network [OSTI]

In this paper, we present a calculation of seismic scattering from irregular surface topography in the Born approximation. Based on US-wide topographic data, we investigate topographic scattering at specific sites to demonstrate its impact on Newtonian-noise estimation and subtraction for future gravitational-wave detectors. We find that topographic scattering at a comparatively flat site in Oregon would not pose any problems, whereas scattering at a second site in Montana leads to significant broadening of wave amplitudes in wavenumber space that would make Newtonian-noise subtraction very challenging. Therefore, it is shown that topographic scattering should be included as criterion in the site-selection process of future low-frequency gravitational-wave detectors.

Michael Coughlin; Jan Harms

2011-11-28T23:59:59.000Z

288

Quasiparticle lifetimes in magnesium clusters modeled by self-consistent GW? calculations  

E-Print Network [OSTI]

Quasiparticle (QP) lifetimes in magnesium clusters are calculated using many-body Green's-function theory. We analyze the effect of the self-consistency of the one-particle Green's function G on the calculations and ...

He, Yi

289

Microsoft PowerPoint - GW4-07pres.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tc-99 pump & treat system * Central Plateau Deep Vadose Zone Integrated Project Team (HRR Peer Review) * River Corridor and Groundwater Integrated Project Team - 100 D Area...

290

GW-IntroCliff-notes.doc 1 of 4 Last Updated: GroupWise User Notes  

E-Print Network [OSTI]

name initial (or second initial of first name), full last name Website for WebAccess: wvugw.wvu.edu (no empties in 7 days; Auto-archives only "read" messages older than 180 days; WebAccess disconnects from

Mohaghegh, Shahab

291

Microsoft Word - S03660_GW Monitor Rpt CAU 443_Apr08.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Report Report Central Nevada Test Area, Corrective Action Unit 443 April 2008 Office of Legacy Management DOE M/1538 2008 - -L Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AM01-07LM00060 Approved for public release; distribution is unlimited. This page intentionally left blank DOE-LM/1538-2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443 April 2008 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AM01-07LM00060 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado This page intentionally left blank U.S. Department of Energy Groundwater Monitoring Report-CNTA, CAU 443

292

Supporting our students to get ahead in business... Heriot-Watt University  

E-Print Network [OSTI]

are very busy people, so to make the relationship work, you need to devote the necessary time and energy had learned over the years." "It has improved my objective-setting, counselling and facilitating

Painter, Kevin

293

The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System  

SciTech Connect (OSTI)

The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technologys Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results from a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)

Bowden, Gordon B.; Langton, Brian J.; Little, William A.; Powers, Jacob R; Schindler, Rafe H.; Spektor, Sam; /MMR-Technologies, Mountain View, CA

2014-05-28T23:59:59.000Z

294

The watt balance: determination of the Planck constant and redefinition of the kilogram  

Science Journals Connector (OSTI)

...aspect is that the future definition can...fundamental constant of quantum physics, which...example an electric motor lifting a mass...feasibility study for a future cryogenic experiment...electrostatic motor which is part...and for the future realization of...two macroscopic quantum effects, thus...

2011-01-01T23:59:59.000Z

295

Watts nickel and rinse water recovery via an advanced reverse osmosis system  

SciTech Connect (OSTI)

The report summarizes the results of an eight month test program conducted at the Hewlett Packard Printed Circuit Board Production Plant, Sunnyvale, CA (H.P.) to assess the effectiveness of an advanced reverse osmosis system (AROS). The AROS unit, manufactured by Water Technologies, Inc. (WTI) of Minneapolis, MN, incorporates membrane materials and system components designed to treat metal plating rinse water and produce two product streams; (1) a concentrated metal solution suitable for the plating bath, and (2) rinse water suitable for reuse as final rinse. Waste water discharge can be virtually eliminated and significant reductions realized in the need for new plating bath solution and rinse water.

Schmidt, C.; White, I.E.; Ludwig, R.

1993-08-01T23:59:59.000Z

296

0.6 cu. ft. (17 litre) capacity microwave 700 watts of cooking power  

E-Print Network [OSTI]

. Installation/yearly maintenance not included. Danby ENERGY STAR Mini Fridge (DCR88WDD) Danby Microwave (DMW608W

Lotze, Heike K.

297

University of Hawai`i Watt Watcher: Energy Consumption Data Analysis  

E-Print Network [OSTI]

, Medium and High use 6 Air Conditioning Observations 7 Relationship between Temperature and Air Conditioning 8 Relationships between Temperature, Humidity, Comfort, and Energy Consumption for Air from this data is the dominance of the air conditioning load in the overall energy consumption

298

Commissioning and Start Up of a 110 MegaWatt Cogeneration Facility  

E-Print Network [OSTI]

operations. As a result of the Project Team's efforts, the cogeneration facility achieved 100% of design output on December 22, 1987 without any significant impact on the manufacturing facility."...

Good, R.

299

Assessment of the characteristics of chitosan processed by spherical agglomeration / Abel Hermanus van der Watt.  

E-Print Network [OSTI]

??Chitosan, derived from the most abundant natural polymer available next to cellulose, lacks the micrometric properties a pharmaceutical excipient intended for direct compression has to (more)

Van der Watt, Abel

2005-01-01T23:59:59.000Z

300

Examples of MathML Stephen M. Watt and Xuehong Li  

E-Print Network [OSTI]

> ∫ mi> C mi> ⅆ mi> ? mi> = ∫ ∂ mi> C mi> mi> ? mi> 2. The law of quadratic reciprocity p q q

Watt, Stephen M.

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The contested legitimacy of investment arbitration and the human rights ordeal By Horatia Muir Watt  

E-Print Network [OSTI]

International Investment Protection and Human Rights, A. REINISCH & U. KRIEBAUM economy of international investment law and the way in which its arbitration; Marc Jacobs, "International Investment Agreements and Human Rights", INEF Research

Paris-Sud XI, Université de

302

Is the hourly data from the NREL PV Watts program adjusted for...  

Open Energy Info (EERE)

really need renewable energy storage? Women in STEM: Making a Cleaner Future A hungry brain slurps up a kid's energy Bioenergy Documentary Thank You. Much Appreciated. F... more...

303

AVTA: GE Energy WattStation AC Level 2 Charging System Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the GE Energy Wattstation AC Level 2 charging system for plug-in electric vehicles.

304

Michael J. Watts Winner, Netting Award, Cultural and Political Ecology Specialty Group,  

E-Print Network [OSTI]

social and historical explanation for food insecurity and famines in Africa and, with Amartya Sen's work

Batterbury, Simon

305

Watts2Share: Energy-Aware Traffic Consolidation Ekhiotz Jon Vergara, Simin Nadjm-Tehrani  

E-Print Network [OSTI]

of Computer and Information Science Link¨oping University, Sweden {ekhiotz.vergara, siminFi; SoftAP; I. INTRODUCTION With the advent of computationally powerful handsets we are finally entering by the WiFi access points. The growing wave of mobile data communication has two extreme consequences: (1

306

A fully-integrated multi-watt permanent-magnet turbine generator  

E-Print Network [OSTI]

The energy density available from batteries is increasingly becoming a limiting factor in the capabilities of portable electronics. As a result, there is a growing need for compact, high energy density sources. This thesis ...

Yen, Bernard Chih-Hsun, 1981-

2008-01-01T23:59:59.000Z

307

TKN -Telecommunication Networks Group -Prof. Wolisz The miniWatt Project  

E-Print Network [OSTI]

(ad hoc) multi-hop communication principles to reduce transmission power as a means to reduce electro of data to the receiver, using all available relay nodes. For all transmissions, a modulation type is fixed. The transmission power between any two nodes is set such that (for the given modulation

Wichmann, Felix

308

The Kill-a-Watt Competition at University of Central Florida  

ScienceCinema (OSTI)

At the University of Central Florida, students have taken it upon themselves to create a culture of energy efficiency. Each year, different dorm buildings compete to see who can save the most. In 2009, the school saw a total savings of $27,000. As of March 2010, they've saved over $24,000 this year alone. Hear more stories about energy efficiency and renewable energy at Energy Empowers: http://www.eereblogs.energy.gov/energyempowers/page/Home-Page.aspx

Castro, Chris; Lo, Margaret; Norvell, David; Coelho, Keith; Hitt, John

2013-05-29T23:59:59.000Z

309

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

solar having a combined 15,000 Gigawatts of potential capacity [1,2]. For the past 30 years, California

Hill, Steven Craig

2013-01-01T23:59:59.000Z

310

A Colorado Perspective: The New Energy Economy  

E-Print Network [OSTI]

B . Clean Coal. C. Napproved that plan. B. Clean Coal Another promisinggreenhouse gas emissions is clean coal. While 16 gigawatts

Martin, Jim; Brannon, Ginny

2009-01-01T23:59:59.000Z

311

M. Sales Dias et al. (Eds.): GW 2007, LNAI 5085, pp. 1323, 2009. Springer-Verlag Berlin Heidelberg 2009  

E-Print Network [OSTI]

]. The second class of studies is related to the analysis of human motion, which has become feasible segmentation. In particular, the two-third power law, expressing a power relation between velocity

Paris-Sud XI, Université de

312

Alignment of energy levels in dye/semiconductor interfaces by GW calculations: Effects due to coadsorption of solvent molecules  

Science Journals Connector (OSTI)

The performance of dye-sensitized solar cells is tightly linked to the relative energy level alignment of its constituents. In this paper the electronic properties of a model of dye-sensitized solar cell are studied by accurate first-principle calculations taking into account many-body effects beyond density-functional theory. The cell model includes one layer of co-adsorbed solvent (water or acetonitrile) molecules. Solvent molecules induce an upwards energy shift in the TiO2 bands; such a shift is larger in the case of acetonitrile. The accurate determination of the energy levels allows the theoretical estimation of the maximum attainable open circuit voltage (Voc).

Carla Verdi; Edoardo Mosconi; Filippo De Angelis; Margherita Marsili; P. Umari

2014-10-06T23:59:59.000Z

313

GSATodAy|ocTober2012 GSA Today, v. 22, no. 9, doi: 10.1130/GSATG154GW.1.  

E-Print Network [OSTI]

losses, like those resulting from the destruction of the Fukushima power plant. The probability (p, causing more than 15,000 deaths and US$210 billion damage (Normile, 2012) (Fig. 1). If and how the largest tsunamis expected every 200­300 years, augmented with land-use planning and warning and evacuation

Stein, Seth

314

Preclinical Pharmacology and Pharmacokinetics of GW433908, a Water-Soluble Prodrug of the Human Immunodeficiency Virus Protease Inhibitor Amprenavir  

Science Journals Connector (OSTI)

...stirred under a hydrogen atmosphere at below 35C until no...the following for 750-MHz, 1H nuclear magnetic...the determination of plasma APV concentrations...glass Vacutainer tube. Plasma was separated by refrigerated...glass Vacutainer tubes. Plasma was separated by refrigerated...

Eric S. Furfine; Christopher T. Baker; Michael R. Hale; David J. Reynolds; Jo A. Salisbury; Andy D. Searle; Scott D. Studenberg; Dan Todd; Roger D. Tung; Andrew Spaltenstein

2004-03-01T23:59:59.000Z

315

Power translation chart kWh/d each GW / UK TWh/y / UK Mtoe/y / UK  

E-Print Network [OSTI]

Photovoltaics: 12 Energy crops: 9 Tide: 2.4 Wave: 2.3 Hydroelectricity: 0.09 Transport 35% Hot air 26% Hot water'`Safe and fair' UK (1990) UK (2005) 60% target 80% target UK Electricity kWh thermal energy exchange rate: 1 kWh 250 g of CO2 (oil, petrol) kWh(e) electrical energy is more costly: 1 kWh(e) 445 g of CO2 (gas) (Coal

MacKay, David J.C.

316

PUBLICATIONS (REFEREED) Howat, C.S. III, and Swift, G.W., 1980. A New Correlation of  

E-Print Network [OSTI]

. Srinivasan, S., and Howat, C.S., 1999. Optimization of Propylene Purification System. Paper 8d, AIChE Annual.M., Mark, L.M. (presenter), and Howat, C.S., 1989. Purification of Butadiene Using Thermally Coupled Estimation for the Removal of Acetone and Benzene from Waste Water. Paper 170i, AIChE Annual Meeting, San

Howat, Colin S. "Chip"

317

GW-intro-notes-online.doc 1 of 4 Last Updated: Statler College GroupWise User Introductory Notes  

E-Print Network [OSTI]

for WebAccess: wvugw.wvu.edu (no www) Password: user defined using MyID.wvu.edu credentials for MyID More" messages older than 180 days; WebAccess disconnects from server after 60 minutes of inactivity 4. Mailbox

Mohaghegh, Shahab

318

@ GW Regulatory Studies Center | www.RegulatoryStudies.gwu.edu | Follow us @RegStudies DOE's Proposed Commercial Refrigeration  

E-Print Network [OSTI]

global greenhouse gas emissions, and reduce commercial customers' energy bills long-term. As DOE explains efficiency standards. First, energy use related to commercial refrigeration results in some greenhouse gas emissions. Because the social cost of greenhouse gas emissions may not be fully represented in the price

Schmitt, William R.

319

3.3 An Autonomous Inexpensive Robust CO Analyzer (AIRCOA)2 B. Stephens, A. Watt and G.Maclean  

E-Print Network [OSTI]

, leaks to ambient air, leaks of calibration gas through solenoid valves, and modification of CO mixing ratio by the drying system or plastic components (see Table 1). 2 2 2 2 3.3.2 Instrument Design As shown Engineering, CF and MLS series) before reaching a manifold of solenoid valves (Numatech, TM10 series

Stephens, Britton B.

320

Generation of Watt-Level Mid-Infrared Radiation by Wavelength-Conversion of an Eye-Safe Fiber Source  

Science Journals Connector (OSTI)

We obtained pulse average power in excess of 1W (at pulse repetition rate ~100 kHz) in the 3.8-4micron wavelength range by pumping a periodically-poled lithium niobate optical...

Di Teodoro, Fabio; Desmoulins, Sebastien

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

(1) What Industry Owes to Chemical Science (2) Some Problems of Modern Industry: Being the Watt University Lecture for 1918  

Science Journals Connector (OSTI)

... some directions in which improvements may be made. Messrs. Pilcher and Butler-Jones's handbook is a capital resume of the improvements made in metallurgy and in the manufacture of ... large how enormous the science has become, and how stupid it is to expect an electrician to be an authority on paraffin oils, or a genius in spectroscopic work on ...

1918-05-23T23:59:59.000Z

322

Flexibility Reserve Reductions from an Energy Imbalance Market with High Levels of Wind Energy in the Western Interconnection  

SciTech Connect (OSTI)

The anticipated increase in variable generation in the Western Interconnection (WI) over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Areas (BAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts (GW) of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive load make it attractive to consider ways in which Balancing Area Authorities (BAAs) can pool their variability and response resources, thus taking advantage of geographic and temporal diversity to increase overall operational efficiency. Our analysis considers several alternative forms of an Energy Imbalance Market (EIM) that have been proposed in the non-market areas of the WI. The proposed EIM includes two changes in operating practices that independently reduce variability and increase access to responsive resources: BAA cooperation and sub-hourly dispatch. As proposed, the EIM does not consider any form of coordinated unit commitment; however, over time it is possible that BAAs would develop formal or informal coordination plans. This report examines the benefits of several possible EIM implementations, both separately and in concert.

King, J.; Kirby, B.; Milligan, M.; S. Beuning

2011-10-01T23:59:59.000Z

323

Toward a 20% Wind Electricity Supply in the United States: Preprint  

SciTech Connect (OSTI)

Since the U.S. Department of Energy (DOE) initiated the Wind Powering America (WPA) program in 1999, installed wind power capacity in the United States has increased from 2,500 MW to more than 11,000 MW. In 1999, only four states had more than 100 MW of installed wind capacity; now 16 states have more than 100 MW installed. In addition to WPA's efforts to increase deployment, the American Wind Energy Association (AWEA) is building a network of support across the country. In July 2005, AWEA launched the Wind Energy Works! Coalition, which is comprised of more than 70 organizations. In February 2006, the wind deployment vision was enhanced by President George W. Bush's Advanced Energy Initiative, which refers to a wind energy contribution of up to 20% of the electricity consumption of the United States. A 20% electricity contribution over the next 20 to 25 years represents 300 to 350 gigawatts (GW) of electricity. This paper provides a background of wind energy deployment in the United States and a history of the U.S. DOE's WPA program, as well as the program's approach to increasing deployment through removal of institutional and informational barriers to a 20% wind electricity future.

Flowers, L.; Dougherty, P.

2007-05-01T23:59:59.000Z

324

Opportunities and barriers for implementing CO2 capture ready designs: A case study of stakeholder perceptions in Guangdong, China  

Science Journals Connector (OSTI)

China has been building at least 50 gigawatt (GW) of new coal-fired power plants every year since 2004. In the absence of CO2 capture ready (CCR) designs, a large fraction of new coal power plants built in the next decade could face carbon lock-in. Building on the existing engineering and economic literature on CO2 capture ready, the aim of this study is to understand the opportunities and challenges in implementing CCR in China. In early 2010, opinion-leaders perceptions towards implementing CCR in Guangdong with two empirical phases are presented: an online consultation of 31 respondents (out of a sample of 82), three face-to-face focus group discussions including 16 officials from five power plants and two oil companies in the Guangdong province. A majority of respondents in the online survey were engineers. The survey results are compared with an earlier study of stakeholders views on demonstrating CCS in China, conducted in April 2009 as part of the EUUKChina Near Zero Emissions Coal initiative (NZEC) project.

Jia Li; Xi Liang; Tim Cockerill; Jon Gibbins; David Reiner

2012-01-01T23:59:59.000Z

325

A Plan with a time-line Draft 3.2, July 21, 2009  

E-Print Network [OSTI]

are average outputs, not ca- pacities.) Wind: 30 GW; tide: 8 GW; waste-to-energy: 2.5 GW; "clean coal

MacKay, David J.C.

326

Use of wind power forecasting in operational decisions.  

SciTech Connect (OSTI)

The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

2011-11-29T23:59:59.000Z

327

Gyrokinetic particle-in-cell global simulations of ion-temperature-gradient and collisionless-trapped-electron-mode turbulence in tokamaks.  

E-Print Network [OSTI]

??The goal of thermonuclear fusion research is to provide power plants, that will be able to produce one gigawatt of electricity. Among the different ways (more)

Jolliet, Sbastien

2009-01-01T23:59:59.000Z

328

IEA: Renewable Energy to Grow During the Next 5 Years | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

renewable generation, while it identifies developments that may emerge in other important markets. Of the 710 gigawatts of new global renewable electricity capacity expected, China...

329

Unified Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unified Solar National Clean Energy Business Plan Competition 2014 24 likes Unified Solar Massachusetts Institute of Technology Globally, 7,800 gigawatt hours (GWh) of electricity...

330

SunShot Portfolio Technology Area Overviews | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

scenario of 100 gigawatts of solar interconnected on to the nation's grid, the challenges are quantified and addressed in the thrust areas of grid performance and...

331

Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients  

E-Print Network [OSTI]

and in solar-energy panels.8 With Tl doping PbTe may even exhibit superconductivity.9,10 The lead chalcogenides Laboratory, Los Alamos, New Mexico 87545, USA 4School of Materials, Arizona State University, Tempe, Arizona

Svane, Axel Torstein

332

Neutron-capture therapy of human cancer: in vivo results on tumor localization of boron-10-labeled antibodies to carcinoembryonic antigen in the GW-39 tumor model system  

Science Journals Connector (OSTI)

...results on tumor localization of boron-10-labeled antibodies to carcinoembryonic...their suitability for transporting boron-10 to tumors for use in neutron-capture...results on tumor localization of boron-10-labeled antibodies to carcinoembryonic...

D M Goldenberg; R M Sharkey; F J Primus; E Mizusawa; M F Hawthorne

1984-01-01T23:59:59.000Z

333

VP 100: Growth in solar means growth in Ohio | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Growth in solar means growth in Ohio Growth in solar means growth in Ohio VP 100: Growth in solar means growth in Ohio October 6, 2010 - 10:57am Addthis DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar panels. | Photo Courtesy of DuPont DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar panels. | Photo Courtesy of DuPont Lorelei Laird Writer, Energy Empowers Market research company Solarbuzz reports that global demand for solar power soared by 54 percent in the second quarter of 2010. The research firm reports that in the United States, the annual number of total watts installed moved from 485 MW in all of 2009 to 2.3 GW as of June -- and

334

Growth in Solar Means Growth in Ohio | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio October 6, 2010 - 2:26pm Addthis Lorelei Laird Writer, Energy Empowers Editor's Note: Yesterday Secretary Chu announced that solar panels and a solar hot water heater will be added to the White House by the end of next spring. This entry is cross-posted from the Energy Empowers blog and deals with how the continued growth of solar power is not only a boon for industry, but for local economies as well. The solar industry saw growth in 2010. Market research company Solarbuzz reports that global demand soared by 54 percent in the second quarter of 2010. The research firm reports that in the United States, the annual number of total watts installed moved from 485 MW in all of 2009 to 2.3 GW

335

Growth in Solar Means Growth in Ohio | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio October 6, 2010 - 2:26pm Addthis Lorelei Laird Writer, Energy Empowers Editor's Note: Yesterday Secretary Chu announced that solar panels and a solar hot water heater will be added to the White House by the end of next spring. This entry is cross-posted from the Energy Empowers blog and deals with how the continued growth of solar power is not only a boon for industry, but for local economies as well. The solar industry saw growth in 2010. Market research company Solarbuzz reports that global demand soared by 54 percent in the second quarter of 2010. The research firm reports that in the United States, the annual number of total watts installed moved from 485 MW in all of 2009 to 2.3 GW

336

Seven days: 612 July 2012  

Science Journals Connector (OSTI)

... Gorges Dam reaches full power Chinas Three Gorges Dam the worlds largest hydroelectric-power project is now running at full capacity (22.5 gigawatts) after its ... is now running at full capacity (22.5 gigawatts) after its 32nd and final turbine was connected to the electricity grid on 4 July. Construction of the 2.3- ...

2012-07-11T23:59:59.000Z

337

WHAT TO DO ABOUT CLIMATE CHANGE? Slowing the rate of carbon burning won't stop global warming  

E-Print Network [OSTI]

. Starting now, multiply solar power by 20 by 2054. Replace 700 gigawatts of coal-fired power plants by wind power. Starting now, multiply wind power by 7. Replace 700 gigawatts of coal power by nuclear power. Worldwide, growth of coal power now exceeds growth of renewables. In Europe, the biggest source of renewable

Baez, John

338

20% Wind Energy - Diversifying Our Energy Portfolio and Addressing Climate Change (Brochure)  

SciTech Connect (OSTI)

This brochure describes the R&D efforts needed for wind energy to meet 20% of the U.S. electrical demand by 2030. In May 2008, DOE published its report, 20% Wind Energy by 2030, which presents an in-depth analysis of the potential for wind energy in the United States and outlines a potential scenario to boost wind electric generation from its current production of 16.8 gigawatts (GW) to 304 GW by 2030. According to the report, achieving 20% wind energy by 2030 could help address climate change by reducing electric sector carbon dioxide (CO2) emissions by 825 million metric tons (20% of the electric utility sector CO2 emissions if no new wind is installed by 2030), and it will enhance our nation's energy security by diversifying our electricity portfolio as wind energy is an indigenous energy source with stable prices not subject to fuel volatility. According to the report, increasing our nation's wind generation could also boost local rural economies and contribute to significant growth in manufacturing and the industry supply chain. Rural economies will benefit from a substantial increase in land use payments, tax benefits and the number of well-paying jobs created by the wind energy manufacturing, construction, and maintenance industries. Although the initial capital costs of implementing the 20% wind scenario would be higher than other generation sources, according to the report, wind energy offers lower ongoing energy costs than conventional generation power plants for operations, maintenance, and fuel. The 20% scenario could require an incremental investment of as little as $43 billion (net present value) more than a base-case no new wind scenario. This would represent less than 0.06 cent (6 one-hundredths of 1 cent) per kilowatt-hour of total generation by 2030, or roughly 50 cents per month per household. The report concludes that while achieving the 20% wind scenario is technically achievable, it will require enhanced transmission infrastructure, streamlined siting and permitting regimes, improved reliability and operability of wind systems, and increased U.S. wind manufacturing capacity. To meet these challenges, the DOE Wind Energy Program will continue to work with industry partners to increase wind energy system reliability and operability and improve manufacturing processes. The program also conducts research to address transmission and grid integration issues, to better understand wind resources, to mitigate siting and environmental issues, to provide information to industry stakeholders and policy makers, and to educate the future generations.

Not Available

2008-05-01T23:59:59.000Z

339

Development and evaluation of a solid oral dosage form for an artesunate and mefloquine drug combination / Abel Hermanus van der Watt.  

E-Print Network [OSTI]

??Malaria affects about forty percent of the worlds population. Annually more than 1.5 million fatalities due to malaria occur and parasite resistance to existing antimalarial (more)

Van der Watt, Abel Hermanus

2014-01-01T23:59:59.000Z

340

The processes of planning and nutrient analyses of diets for controlled feeding trials in free-living subjects / Izette van der Watt.  

E-Print Network [OSTI]

??Motivation: There is an increased tendency in the field of nutrition research to conduct human feeding studies in order to test diet-disease hypotheses. Using well (more)

Van der Watt, Izette

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Experiences in Teaching Grid Computing to Advanced Level Students Dr R.O. Sinnott, A.J. Stell, Dr J. Watt  

E-Print Network [OSTI]

. In addition, the current way in which Grid security is supported and delivered has two key problems. Firstly. Secondly, the current security mechanisms used by the Grid community are not fine grained enough. 2. Virtual Organisations and Security One of the primary motivations for using or developing Grid

Glasgow, University of

342

Comparison of Advanced Authorisation Infrastructures for Grid A.J. Stell, Dr R.O. Sinnott, Dr J.P. Watt  

E-Print Network [OSTI]

and experiences of using the current standard for Grid authorisation with Globus - the Grid Security. The suitability of these security infrastructures for integration with regard to existing Grid technology. In this paper we present the implementation effort involved in setting up and using the Grid Security

Glasgow, University of

343

Derek Vigil-Fowler  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

When things go wrong! When things go wrong! Derek Vigil-Fowler 11/23/13 BerkeleyGW Workshop 2013 When things go wrong! Derek Vigil-Fowler 11/23/13 BerkeleyGW Workshop 2013 There are many ways in which GW and GW-BSE calculations can be performed incorrectly There are many ways in which GW and GW-BSE calculations can be performed incorrectly There are many ways in which GW and GW-BSE calculations can be performed incorrectly  Convergence with wavefunction cutoff, bands, dielectric cutoff, BZ sampling There are many ways in which GW and GW-BSE calculations can be performed incorrectly  Convergence with wavefunction cutoff, bands, dielectric cutoff, BZ sampling  Bad mean field There are many ways in which GW and GW-BSE calculations can be performed incorrectly  Convergence with wavefunction cutoff, bands, dielectric

344

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

of 2 GW), or 86 GW of hydropower capacity (compared to 2007capacity displayed above hydropower in this figure. 3.3.1.load factor 86 GW of hydropower capacity @ 50% load factor

Aden, Nathaniel

2010-01-01T23:59:59.000Z

345

New River Light & Power Co | Open Energy Information  

Open Energy Info (EERE)

New River Light & Power Co New River Light & Power Co Place North Carolina Utility Id 13482 Utility Location Yes Ownership S NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt SV TOB Lighting 150 Watt SV TOB Lighting 150 Watt Sodium Vapor Lighting 175 Watt MV TOB Lighting 175 Watt Mercury Vapor Lighting 250 Watt Metal Halide Lighting 250 Watt SV TOB Lighting 250 Watt Sodium Vapor Lighting 400 Watt MV TOB Lighting 400 Watt Mercury Vapor Lighting 400 Watt Metal Halide Lighting 400 Watt SV TOB Lighting 750 Watt SV TOB Lighting

346

Report: U.S. Military Accelerates Deployment of Clean Energy...  

Office of Environmental Management (EM)

(GW), enabling the military to meet its goal for the deployment of 3 GW of renewable energy by 2025. Currently, solar photovoltaic and biomass installations are forecast to...

347

Acknowledgment of Reviewers, 2012  

Science Journals Connector (OSTI)

...Stephanie Robert Brinton Roberta Alison Roberts Brent Roberts Charles...Detlef-M. Smilgies Berend Smit Alison Smith Andrew Smith Arnold Smith...Jr. Fiona Watt Gerald Watt Alison Watts Colin Watts David Watts...Dyann Wirth Denis Wirtz Richard Wise Steve Wiseman Sarah Wisseman...

2012-01-01T23:59:59.000Z

348

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Renewable Renewable Wind dominates renewable capacity growth, but solar and biomass gain market share figure data From 2010 to 2035, total nonhydropower renewable generating capacity more than doubles in the AEO2012 Reference case (Figure 100). Wind accounts for the largest share of that new capacity, increasing from 39 gigawatts in 2010 to 70 gigawatts in 2035. Both solar capacity and biomass capacity grow at faster rates than wind capacity, but they start from smaller levels. Excluding new projects already under construction, PV accounts for nearly all solar capacity additions both in the end-use sectors (where 11 gigawatts of PV capacity is added from 2010 to 2035) and in the electric power sector (8 gigawatts added from 2010 to 2035). While end-use solar capacity grows throughout the projection, the growth of solar capacity in

349

Huge Potential for Hydropower: Assessment Highlights New Possible Clean Energy Sources  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Departments New Stream-reach Development Assessment, conducted by Oak Ridge National Laboratory, has identified more than 65 gigawatts of untapped sustainable hydropower potential in U.S. rivers and streams.

350

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

Act Electric vehicle Feed-in Tariff Gigawatt U.S. Departmentinitiatives are the Feed-in Tariff (FIT) and the Renewablesuch as a revamped feed-in tariff ( FIT) or a utility-driven

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

351

Benjamin Phillips | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Phillips - SRA International Most Recent Q&A: FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy July 17 Gigawatts of Geothermal: JASON Study Highlights Huge Potential for EGS...

352

Design and evaluation of seasonal storage hydrogen peak electricity supply system  

E-Print Network [OSTI]

The seasonal storage hydrogen peak electricity supply system (SSHPESS) is a gigawatt-year hydrogen storage system which stores excess electricity produced as hydrogen during off-peak periods and consumes the stored hydrogen ...

Oloyede, Isaiah Olanrewaju

2011-01-01T23:59:59.000Z

353

Energy Department Invests $13 Million to Drive Innovative U.S...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

second largest quarter in solar installations in U.S. history. Cumulatively, solar capacity has already surpassed 10 gigawatts and by the end of the year more than 400,000 solar...

354

Articles about Grid Integration and Transmission | Department...  

Broader source: Energy.gov (indexed) [DOE]

solar power can affect those markets. September 11, 2014 Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 DOE recently funded a study that finds the...

355

U.S. Offshore Wind Port Readiness  

Broader source: Energy.gov [DOE]

Report that reviews the current capability of U.S. ports to support offshore wind project development and assesses the challenges and opportunities related to upgrading this capability to support as much as 54 gigawatts of offshore wind by 2030.

356

Secretary Chu: China's Clean Energy Successes Represent a New...  

Energy Savers [EERE]

and DC lines - including one capable of delivering 6.4 gigawatts to Shanghai from a hydroelectric plant nearly 1300 miles away in southwestern China. These lines are more efficient...

357

NREL Report Highlights Positive Economic Impact and Job Creation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011 that the NREL study examined added 13.5 gigawatts of renewable energy to America's electricity generation capacity - enough to power 3.4 million U.S. homes - and attracted...

358

The Outlook for Renewable Electricity in the United States  

Gasoline and Diesel Fuel Update (EIA)

U.S. annual electricity generation capacity additions gigawatts Source: EIA, Annual Energy Outlook 2014 0 10 20 30 40 50 60 1990 1995 2000 2005 2010 Other renewables Solar...

359

Southwest Rural Elec Assn Inc | Open Energy Information  

Open Energy Info (EERE)

Oklahoma Oklahoma Utility Id 17681 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1-10 175 Watts Commercial 100 Watt HPS, No Energy Lighting 100 Watt HPS, Unmetered Lighting 1000 Watt HPS or MH, No Energy Lighting 1000 Watt HPS or MH, Unmetered Lighting 11-50 175 Watts Commercial 175 Watt MVL, No Energy Lighting 175 Watt MVL, Unmetered Lighting 250 Watt HPS or MH, No Energy Lighting 250 Watt HPS or MH, Unmetered Lighting 400 Watt HPS or MH, No Energy Lighting 400 Watt HPS or MH, Unmetered Lighting

360

Tri-County Elec Member Corp (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Corp (Kentucky) Corp (Kentucky) Jump to: navigation, search Name Tri-County Elec Member Corp Place Kentucky Utility Id 19162 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS Lighting 100 Watt Induction Lighting 1000 Watt MH Lighting 103 Watt LED Lighting 175 Watt MV Lighting 200 Watt HPS Lighting 250 Watt HPS Lighting 400 Watt HPS Lighting 400 Watt MH Lighting 400 Watt MV Lighting 51 Watt LED Lighting 85 Watt Induction Lighting GSA-Part 1 Commercial GSA-Part 2 Commercial GSA-Part 3 Industrial Residential Residential Average Rates Residential: $0.0941/kWh Commercial: $0.1050/kWh

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Tri-County Elec Member Corp (Tennessee) | Open Energy Information  

Open Energy Info (EERE)

Tri-County Elec Member Corp Tri-County Elec Member Corp Place Tennessee Utility Id 19162 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS Lighting 100 Watt Induction Lighting 1000 Watt MH Lighting 103 Watt LED Lighting 175 Watt MV Lighting 200 Watt HPS Lighting 250 Watt HPS Lighting 400 Watt HPS Lighting 400 Watt MH Lighting 400 Watt MV Lighting 51 Watt LED Lighting 85 Watt Induction Lighting GSA-Part 1 Commercial GSA-Part 2 Commercial GSA-Part 3 Industrial Residential Residential Average Rates

362

The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings  

E-Print Network [OSTI]

Lighting power density equals 0.88 watts/square foot. Oldonly. Lighting power density is 1.4 watts/square foot. The

Rubinstein, Francis

2010-01-01T23:59:59.000Z

363

E-Print Network 3.0 - alma valiukait nomeda Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California, Irvine Collection: Physics 5 Alma User Guide Cosmin Oancea and Stephen M. Watt Summary: Alma User Guide Cosmin Oancea and Stephen M. Watt Ontario Research Centre for...

364

Data:8a72717d-0a11-48ac-a67b-3f4913277def | Open Energy Information  

Open Energy Info (EERE)

Incorporated (Alabama) Effective date: 20110319 End date if known: Rate name: 400 Watt Watt Metal Halide Sector: Lighting Description: Source or reference: https:...

365

E-Print Network 3.0 - aavo rtsep valdo Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appl. Opt. 29, 994 (1991). 7. N Source: Greenaway, Alan - Department of Physics, Heriot-Watt University; Harvey, Andy - School of Engineering and Physical Sciences, Heriot-Watt...

366

E-Print Network 3.0 - alma valiukait laimutis Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California, Irvine Collection: Physics 5 Alma User Guide Cosmin Oancea and Stephen M. Watt Summary: Alma User Guide Cosmin Oancea and Stephen M. Watt Ontario Research Centre for...

367

Data:99760b7a-6540-4145-ad9c-c25af6a93a26 | Open Energy Information  

Open Energy Info (EERE)

Incorporated (Alabama) Effective date: 20110319 End date if known: Rate name: 400 Watt Watt Mercury Vapor Sector: Lighting Description: Source or reference: https:...

368

Data:094ffb82-61cb-4671-a979-db93f4e85da7 | Open Energy Information  

Open Energy Info (EERE)

Incorporated (Alabama) Effective date: 20110319 End date if known: Rate name: 1000 Watt Watt Metal Halide Sector: Lighting Description: Source or reference: https:...

369

Energy Management A Program of Energy Conservation for the Community College Facility  

E-Print Network [OSTI]

whenever possible) Lamps Type (incandescent, fluorescent,are as follows: Lamp Type Incandescent FI uorescent Mercurylumens/watt lumens/watt Incandescent Mercury Metal Additive

Authors, Various

2011-01-01T23:59:59.000Z

370

Chemical and Biomolecular Engineering  

E-Print Network [OSTI]

700 Total Electricity Generation Renewable Nuclear Power Plant with CCS Fossil Fuel Power Plant and concentrated solar power plants (300 MW each) · 9% by water (1.1 TW) · 900 hydroelectric plants (1,300 MW each Biopower Theoretical Potential 206,000 GW (PV) 11,100GW (CSP) 8,000 GW (onshore) 2,200 GW (offshore to 50

Das, Suman

371

The 1973 Unesco Congress The Sun in The Service of Mankind  

E-Print Network [OSTI]

to 2013 · Wind Power, PV & Bio-power Capacities ­ World: · 510 GW now from 47 GW in 2000 ­ Europe: · 213 on PV and Wind Power in the United States (President Carter, California Governor Brown) #12;Nairobi 1981 ­ Globally: 2.4 GW annual production by 2010 · Wind Power: ­ 40 GW accumulated from 1 GW in 95 · Bio-Power

Canet, Léonie

372

Choctaw Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Inc Electric Coop Inc Jump to: navigation, search Name Choctaw Electric Coop Inc Place Oklahoma Utility Id 3527 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS, Metered Lighting 100 Watt HPS, Unmetered Lighting 1000 Watt HPS, Metered Lighting 1000 Watt HPS, Unmetered Lighting 175 Watt MV ,Metered Lighting 175 Watt MV ,Unmetered Lighting 250 Watt HPS, Metered Lighting 250 Watt HPS, Unmetered Lighting 400 Watt HPS ,Metered Lighting 400 Watt HPS ,Unmetered Lighting 400 Watt MV,Metered Lighting

373

A review of "The Arts of 17th-Century Science: Representations of the Natural World in European and North American Culture." by Claire Jowitt and Diane Watt, eds.  

E-Print Network [OSTI]

the ?introduction of the term nymphomania does 140 SEVENTEENTH-CENTURY NEWS not indicate the discovery of a new disease, rather it reflects changes in the perception of female genitalia?and helps to make visible a significant part of their history? (177..., but also in the poetry of John Milton. Thus, Gilbert does not separate science from art or from religion, but, instead, shows her readers how scientists like Harvey drew from Judeo- Christian imagery and Greek mythology to describe scientific pro...

Karol K. Weaver

2003-01-01T23:59:59.000Z

374

STATE OF CALIFORNIA TAILORED METHOD WORKSHEET  

E-Print Network [OSTI]

DESIGN WATTS Wall Display Length in (Linear Feet) Wall Display 2 Power (W / foot) Allowed Watts (C x D x Categories (Building Total from Column G from Tailored General Lighting Power Table below) Watts 2. Watts POWER A B C D E F G ROOM NUMBER PRIMARY FUNCTION TYPE 1 ILLUMINANCE CATEGORY 2 ROOM CAVITY RATIO 3 RCR

375

Distinguished Lecture Series - Balancing the Energy & Climate Budget  

ScienceCinema (OSTI)

The average American uses 11400 Watts of power continuously. This is the equivalent of burning 114 x100 Watt light bulbs, all the time. The average person globally uses 2255 Watts of power, or a little less than 23 x100 Watt light bulbs.

None

2010-09-01T23:59:59.000Z

376

CONTRACTORS STATE LICENSE BOARD 9821 Business Park Drive, Sacramento, CA 95827 STATE OF CALIFORNIA  

E-Print Network [OSTI]

, and require enhanced duct sealing, proper refrigerant charge, airflow, and fan watt draw. As you know

377

EA-1210: Final Environmental Assessment  

Broader source: Energy.gov [DOE]

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington

378

EA-1210: Finding of No Significant Impact  

Broader source: Energy.gov [DOE]

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington

379

Correlates of territorial boundary patrol behaviour in wild chimpanzees  

E-Print Network [OSTI]

; Watts & Mitani 2001). Patrol- ling chimpanzees are surreptitious; unless they encounter neighbours

380

Blue Grass Energy Coop Corp | Open Energy Information  

Open Energy Info (EERE)

Grass Energy Coop Corp Grass Energy Coop Corp Jump to: navigation, search Name Blue Grass Energy Coop Corp Place Kentucky Utility Id 1886 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS- Acorn Fixture Lighting 100 Watt HPS- Cobra Head Lighting 100 Watt HPS- Colonial Fixture Lighting 100 Watt HPS- Open Bottom Lighting 100 Watt HPS- Ornamental Lighting 100 Watt HPS- Shoe Box Fixture Lighting 175 Watt MV Lighting 200 Watt HPS-Cobra Head Lighting 250 Watt HPS- Open Bottom Lighting 250 Watt HPS- Ornamental Lighting

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Washington Elec Member Corp | Open Energy Information  

Open Energy Info (EERE)

Washington Elec Member Corp Washington Elec Member Corp Place Georgia Utility Id 20146 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1,000 Watt HPS Cobra Lighting 1,000 Watt HPS Flood Lighting 1,000 Watt MH Flood Lighting 100 Watt HPS Lighting 175 Watt MV 250 Watt HPS Lighting 250 Watt HPS Cobra Head Lighting 250 Watt HPS Flood Lighting 400 Watt HPS Cobra Head Lighting 400 Watt HPS Flood Lighting Rate-01 (RS) Residential Rate-02 (GSND) Commercial Rate-07 (GSD) Commercial Rate-08 (GS) Primary

382

Property:GrossProdCapacity | Open Energy Information  

Open Energy Info (EERE)

GrossProdCapacity GrossProdCapacity Jump to: navigation, search Property Name GrossProdCapacity Property Type Quantity Description Sum of the property AvgAnnlGrossOpCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

383

Sulphur Springs Valley E C Inc | Open Energy Information  

Open Energy Info (EERE)

Valley E C Inc Valley E C Inc Jump to: navigation, search Name Sulphur Springs Valley E C Inc Place Arizona Utility Id 18280 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS Lighting 100 Watt HPS - Double/Steel Lighting 100 Watt HPS - Double/Steel Lighting 100 Watt HPS - Double/Wood Lighting 100 Watt HPS - Double/Wood Lighting 100 Watt HPS - Single/Steel Lighting 100 Watt HPS - Single/Steel Lighting 100 Watt HPS - Single/Wood Lighting 100 Watt HPS - Single/Wood Lighting 150 Watt HPS - Double/Steel Lighting

384

Property:IdentifiedHydrothermalPotential | Open Energy Information  

Open Energy Info (EERE)

IdentifiedHydrothermalPotential IdentifiedHydrothermalPotential Jump to: navigation, search Property Name IdentifiedHydrothermalPotential Property Type Quantity Description Conventional hydrothermal electricity generation potential from identified hydrothermal sites, as determined by the USGS 2008 Geothermal Resource Assessment (Williams et al, 2008). Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS

385

Property:UndiscoveredHydrothermalPotential | Open Energy Information  

Open Energy Info (EERE)

UndiscoveredHydrothermalPotential UndiscoveredHydrothermalPotential Jump to: navigation, search Property Name UndiscoveredHydrothermalPotential Property Type Quantity Description Estimated conventional hydrothermal electricity generation potential from undiscovered hydrothermal sites, as determined by the USGS 2008 Geothermal Resource Assessment (Williams et al, 2008). Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS

386

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

387

Town of Reading, Massachusetts (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Reading, Massachusetts (Utility Company) Reading, Massachusetts (Utility Company) Jump to: navigation, search Name Reading Town of Place Massachusetts Utility Id 15748 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 WATT HPS Lighting 100 WATT MERCURY Lighting 100 WATT MERCURY UG Lighting 175 WATT MERCURY Lighting 250 WATT HPS Lighting 400 WATT HPS Lighting 400 WATT MERCURY Lighting 50 WATT HPS Lighting 58 WATT INCANDESCENT Commercial 92 WATT INCANDESCENT Commercial

388

Stochastic background of gravitational waves from cosmological sources  

E-Print Network [OSTI]

Gravitational waves (GW) can constitute a unique probe of the primordial universe. In many cases, the characteristic frequency of the emitted GW is directly related to the energy scale at which the GW source is operating in the early universe. Consequently, different GW detectors can probe different energy scales in the evolution of the universe. After a general introduction on the properties of a GW stochastic background of primordial origin, some examples of cosmological sources are presented, which may lead to observable GW signals.

Caprini, Chiara

2015-01-01T23:59:59.000Z

389

NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet)  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques to triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009.

Not Available

2011-07-01T23:59:59.000Z

390

City of Elizabethton, Tennessee (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Elizabethton, Tennessee (Utility Company) Elizabethton, Tennessee (Utility Company) Jump to: navigation, search Name City of Elizabethton Place Tennessee Utility Id 5763 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt High Pressure Sodium Lighting 1000 Watt Mercury Vapor Lighting 1000 Watt Metal Halide Lighting 150 Watt High Pressure Sodium Lighting 175 Watt Mercury Vapor Lighting 250 Watt High Pressure Sodium Lighting 250 Watt Mercury Vapor Lighting 400 Watt Mercury Vapor Lighting 400 Watt Metal Halide Lighting

391

PUD No 3 of Mason County | Open Energy Information  

Open Energy Info (EERE)

3 of Mason County 3 of Mason County Jump to: navigation, search Name PUD No 3 of Mason County Place Washington Utility Id 15419 Utility Location Yes Ownership P NERC WECC Yes ISO Other Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1,000 Watt Commercial 200 WATT Commercial 300 WATT Commercial 400 WATT Commercial 500 WATT Commercial 600 WATT Commercial 700 WATT Commercial 800 WATT Commercial 900 WATT Commercial LOW INCOME AND SENIOR DISABILITY ACCOUNT Residential

392

Indiana Michigan Power Co (Michigan) | Open Energy Information  

Open Energy Info (EERE)

Michigan Power Co (Michigan) Michigan Power Co (Michigan) Jump to: navigation, search Name Indiana Michigan Power Co Place Michigan Utility Id 9324 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COGEN/SPP - Cogeneration and/or Small Power Production Service CS-IRP - Contract Service - Interruptible Power ECLS - 100 Watt HPS Lighting ECLS - 100 Watt HPS - Open Access Lighting ECLS - 100 Watt MV Lighting ECLS - 100 Watt MV - Open Access Lighting ECLS - 1000 Watt MV Lighting ECLS - 1000 Watt MV - Open Access Lighting ECLS - 142 Watt LED Lighting ECLS - 142 Watt LED - Open Access Lighting ECLS - 150 Watt HPS Lighting

393

Derek Vigil-Fowler  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Convergence using BerkeleyGW Convergence using BerkeleyGW Derek Vigil-Fowler 11/22/13 BerkeleyGW Workshop 2013 A few facts A few facts  GW calculations are more expensive than DFT calculations A few facts  GW calculations are more expensive than DFT calculations  Much more if code is unoptimized A few facts  GW calculations are more expensive than DFT calculations  Much more if code is unoptimized  People don't want to waste time/resources doing proper convergence tests A few facts  GW calculations are more expensive than DFT calculations  Much more if code is unoptimized  People don't want to waste time/resources doing proper convergence tests  Many calculations are under-converged A few facts  GW calculations are more expensive than DFT calculations  Much more if code is unoptimized

394

Electric Storage in California's Commercial Buildings  

E-Print Network [OSTI]

or combined heat and power (CHP) in commercial buildings anda renewable energy source or CHP system at the commercialPV at (GW) microgrids adopted CHP and (GW) DG at microgrids

Stadler, Michael

2014-01-01T23:59:59.000Z

395

Jan 8 2012 RAP Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Timeframe: 25 to 35 years for Cr(VI), 30 to 80 years for nitrate, 90 to 150 years for strontium 90, and approximately 50 years for TCE - Cost: 36 Million 7 GW2: Year 1 GW2: Year...

396

Slide 1  

Open Energy Info (EERE)

Policy Act 2005 --- 7.5% by 2013 - 3GW --- Composed of 3 individual 1GW * Methods of Contracting - PPA --- 2922A authority - Enhanced Use Lease - ESPCUESC - Military Construction...

397

Exploring Chinese Graduate Students' Learner Identity in Group Work in Western Academia: Perceptions, Representations and Challenges  

E-Print Network [OSTI]

Group work (GW) is commonly used in many countries around the world. The emerging predominance of GW assignments represents a major trend in higher education (Burdett & Hastie, 2009) as employers highly value teamwork skills and seek the development...

Gao, Junfu

2014-05-31T23:59:59.000Z

398

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

i List of Acronyms ARRA AWEA BPA COD CREB CREZ DOE EESA EIAqueues include WAPA (14 GW), BPA (14 GW), California ISO (13Power Administration (BPA), PacifiCorp, Xcel Energy (

Bolinger, Mark

2010-01-01T23:59:59.000Z

399

Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges  

E-Print Network [OSTI]

Distribution Loss Peak demand contribution from room ACs (GW) Note that because of the daily variations in heat

Phadke, Amol

2014-01-01T23:59:59.000Z

400

A Simple Optimal Power Flow Model with Energy Storage K. Mani Chandy, Steven H. Low, Ufuk Topcu and Huan Xu  

E-Print Network [OSTI]

is motivated by the intensifying trend to deploy renewable energy such as wind or solar power. In the state of California, peak demand for power in 2003 reached 52 GW, with projections for the year 2030 exceeding 80 GW% reserve margin, an additional 60 GW of new generation capacity will be needed by 2030 [9]. In 2006

Xu , Huan

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear Instruments and Methods in Physics Research A 518 (2004) 236239 The AURIGA second scientific run and the dual detector of  

E-Print Network [OSTI]

We report on the present status of the AURIGA gravitational wave (gw) detector, which is entering its density of the total noise expressed in terms of gw amplitude at the detector input, ffiffiffiffiffiffiffi, the five acoustic bar detectors have been operated to search for gw bursts by the time coincidence analysis

402

How old are U.S. power plants?  

Reports and Publications (EIA)

The current fleet of electric power generators has a wide range of ages. About 530 gigawatts, or 51% of all generating capacity, were at least 30 years old at the end of 2010. Trends in generating capacity additions vary by fuel type, for coal, hydropower, natural gas, nuclear, petroleum, and wind.

2011-01-01T23:59:59.000Z

403

Testimony of R. E. Smalley to the Senate Committee on Energy and Natural Resources; Hearing on sustainable , low emission,  

E-Print Network [OSTI]

, for example, hundreds of gigawatts of electrical power to be transported from solar farms in New Mexico1 Testimony of R. E. Smalley to the Senate Committee on Energy and Natural Resources; Hearing on sustainable , low emission, electricity generation, April 27, 2004 Energy is the single most important

404

T E C H N O L O G Y A V E N U E Wave EnergyMohammad-Reza Alam  

E-Print Network [OSTI]

. Ocean wave energy has significant advantages over other renewable energy resources like wind and solar acceptable methods of generating power. The ocean is a large, relatively untapped renewable energy resource of energy in wind driven waves alone worldwide [1]. This may be compared to the 15 thousands gigawatts

Alam, Mohammad-Reza

405

Research on External Power Supplies Will Save  

E-Print Network [OSTI]

of energy used by 92,000 homes in one year, or about $90 million annually. External Power Supplies consoles, cordless tools, and computer printers and speakers. The average California home has at least. Estimated annual energy consumption of these devices is more than 5,500 gigawatts per hour, or about 2

406

Energy Choices That Europe Faces: A European View of Energy  

Science Journals Connector (OSTI)

...devoted to the production of electricity...of electricity per year. After 18...oil equivalent per day. [Source: Energieflu...Berghau-Forschung GmrbH (1973)] SCIENCE...of 18 gigawatts per year. The FBR's...of HTGR for the production of hydrogen becomes...

Wolf Hfele

1974-04-19T23:59:59.000Z

407

(Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2007. Indium-containing  

E-Print Network [OSTI]

were exported to Canada for processing. Two companies, one in New York and the other in Rhode Island for the recycling industry to handle because of large capital costs, environmental restrictions, and storage space gallium diselenide (CIGS) solar cells require approximately 50 metric tons of indium to produce 1 gigawatt

408

Climate policy: The Kyoto approach has failed  

Science Journals Connector (OSTI)

... capital invested in it, numerous subsequent Conference of the Parties (COP) meetings and considerable economic costs, it has had no noticeable impact on global carbon emissions. These remain on ... India will be twice their present size, requiring the addition of 400600 gigawatts of coal-fired generating capacity to their electricity systems. ...

Dieter Helm

2012-11-28T23:59:59.000Z

409

Stars as resonant absorbers of gravitational waves  

E-Print Network [OSTI]

Quadrupole oscillation modes in stars can resonate with incident gravitational waves (GWs), and grow non-linear at the expense of GW energy. Stars near massive black hole binaries (MBHB) can act as GW-charged batteries, cooling radiatively. Mass-loss from these stars can prompt MBHB accretion at near-Eddington rates. GW opacity is independent of amplitude, so distant resonating stars can eclipse GW sources. Absorption by the Sun of GWs from Galactic white dwarf binaries may be detectable with second-generation space-based GW detectors as a shadow within a complex diffraction pattern.

B. McKernan; K. E. S. Ford; B. Kocsis; Z. Haiman

2014-08-28T23:59:59.000Z

410

Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office  

E-Print Network [OSTI]

is 1.23 watts per square foot and the power density with allper square foot, and for most of the day, power levels arepower density (LPD)of 0.83 watts per square foot and a daily

Rubinstein, Francis

2010-01-01T23:59:59.000Z

411

Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility  

E-Print Network [OSTI]

Save-a-Watt mechanism: Example avoided costs of energy andSave-a-Watt mechanism example: Avoided costs of energy andRepresents forecasted avoided cost resource savings from EE

Cappers, Peter

2009-01-01T23:59:59.000Z

412

Reading Municipal Light Department- Residential Renewable Energy Rebates  

Broader source: Energy.gov [DOE]

Reading Municipal Light Department (RMLD) offers rebates of $1.00/watt for solar photovoltaic and small wind installations for residential customers. A $0.25/watt adder is available for using local...

413

502 SHORT COMMUNICATIONS (Speotyto cuniculuria) to a moving object when the  

E-Print Network [OSTI]

the window. A red, 7-watt incandescent bulb inside the box provided illumina- tion for viewing the owl conditions were provided by one and four `I-watt incandescent bulbs, respectively. The single bulb

Minnesota, University of

414

Demand for Environmentally-Friendly Durables  

E-Print Network [OSTI]

the replacement of short-lived incandescent bulbs with long-the replacement of short-lived incandescent bulbs with long-15 watt CFL for 60 watt incandescent bulb), durable (minimum

Martin, Leslie Aimee

2012-01-01T23:59:59.000Z

415

DOE Publishes Final Rule for the Request for Exclusion of 100...  

Broader source: Energy.gov (indexed) [DOE]

the Request for Exclusion of 100 Watt R20 Short Incandescent Reflector Lamps from Energy Conservation Standards DOE Publishes Final Rule for the Request for Exclusion of 100 Watt...

416

ACES ABA 79 Agbayani Construction 61  

E-Print Network [OSTI]

15-16 Walters & Wolf 87 Watt Stopper/Legrand 41 West Valley Staffing Group 96 Young's Market Company

Su, Xiao

417

E-Print Network 3.0 - aspekte bei der Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bei Raumsonden 12... Energiequellen: 4 40 Watt RTG's (RTG: Radioisotope thermoelectric generator) ... Source: Aste, Andreas - Institut fr Physik, Universitt Basel...

418

Investigations in intersection types: Confluence, and semantics of expansion  

E-Print Network [OSTI]

-Watt University School of Mathematical and Computer Sciences March 17, 2011 The copyright in this thesis is owned

419

THE 2009 CUT FLOWER TRIALS H.C. Wien, Department of Horticulture, Cornell University, Ithaca, NY 14853  

E-Print Network [OSTI]

a solarpowered landscape light with 6 LED's, or a 9 watt fluorescent bulb powered by the electric grid. Light

Pawlowski, Wojtek

420

". . . the essence of technology is by no means anything technological." --Martin Heidegger1  

E-Print Network [OSTI]

to millions of pupils.We learned about James Watt and the steam engine, Eli Whitney and the cotton gin

Nissenbaum, Helen

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A survey of controllability and stabilization results for partial differential equations  

E-Print Network [OSTI]

), which goes back to the invention by J. Watt of his steam engine, is well understood in a linear frame

Rosier, Lionel - Institut de Mathématiques ?lie Cartan, Université Henri Poincaré

422

Demonstration of Data Center Energy Use Prediction Software  

E-Print Network [OSTI]

power supply VFD variable frequency drive W watt WSE water-involve adding variable frequency drives to supply power to

Coles, Henry

2014-01-01T23:59:59.000Z

423

ABIKE COMMUTER has a lot to consider before leaving for work. What route to take, considering hills and traffic?  

E-Print Network [OSTI]

, merely requiring the driver to shift his foot from gas pedal to brake, perhaps change gears, and more than 100 watts of propulsion power, or about what it takes to power a reading lamp. At 100 watts generate far more power than that (up to perhaps 500 watts for a racing cyclist, equivalent to the amount

Fajans, Joel

424

The Increased Expansion of Steam Attainable in Steam Trubines1  

Science Journals Connector (OSTI)

... of steam discovered by James Watt, and to endeavour to trace their application in the engines constructed by him and by the firm of Bolton and Watt, then in the ... and Watt, then in the more highly developed forms of compound, triple, and quadruple reciprocating ...

1909-02-25T23:59:59.000Z

425

NATIONAL RADIO ASTRONOMY OBSERVATORY ELECTRONICS DIVISION TECHNICAL NOTE NO. 97  

E-Print Network [OSTI]

Load Temperature (Kelvins) A is the Receiver Power Out Hot Load On (watts) B is the Receiver Power Out Cold Load On (watts) and D is the Receiver Power Out Cold Load + Cal On (watts). #12;The calibration prints a list of the file numbers and the associated alpha-numeric identification; (2) LOAD DATA FILE

Groppi, Christopher

426

An edited version of this paper was published by AGU. EOS transactions FORUM, Vol. 89, No. 51, doi: 10.1029/2008EO510005, 16 December 2008. Copyright (2008)  

E-Print Network [OSTI]

primary energy consumption amounts to 15.5 TeraWatts (U.S. Energy Information Administration (EIA) base year 2005; see Table 1). The global average primary energy consumption (0.03 watts per square meter consumption per country in watts per square meter using the energy consumption estimates from EIA (table 1

Laat, Jos de

427

January 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research  

E-Print Network [OSTI]

14, 2014 MIT PSFC IAP Seminar Series 9 Units to measure energy and power "Joule" or "J" is a unit of Energy "Watt" or "W" is a unit of power Power is energy used per second 1 Watt = Your 60 Watt light bulbJanuary 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research Prospects

428

People's Cooperative Services | Open Energy Information  

Open Energy Info (EERE)

People's Cooperative Services People's Cooperative Services Place Minnesota Utility Id 14468 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Controllable Seasonal Rate Industrial Dual Fuel Space Heating Residential Electric, Shared/Community Water Well and Septic Residential Light - 100 watt HPS Lighting Light - 110 watt LED Lighting Light - 135 watt LED Lighting Light - 150 watt HPS Lighting Light - 175 watt MV Lighting Light - 200 watt HPS Lighting Light - 250 watt HPS Lighting

429

Walton Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Walton Electric Member Corp Place Georgia Utility Id 20065 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 14' Aluminum Lighting 20' F/G Lighting 30' F/G Lighting 30-6 Wood Lighting Cobrahead- HPS 100 Watt Bronze (UG) Lighting Cobrahead- HPS 100 Watt Gray Lighting Cobrahead- HPS 100 Watt Gray (UG) Lighting Cobrahead- HPS 150 Bronze Watt (UG) Lighting Cobrahead- HPS 150 Watt Gray Lighting Cobrahead- HPS 150 Watt Gray (UG) Lighting Cobrahead- HPS 250 Watt Bronze (UG) Lighting

430

Jackson Purchase Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Purchase Energy Corporation Purchase Energy Corporation Jump to: navigation, search Name Jackson Purchase Energy Corporation Place Kentucky Utility Id 9605 Utility Location Yes Ownership C NERC Location SERC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1,000 watt - Metal Flood Lighting 100 watt - High Pressure Sodium Lighting 150 watt - Metal Halide Lighting 250 watt - High Pressure Sodium Lighting 250 watt - High Pressure Sodium Flood Lighting 400 watt - MV Lighting 400 watt - Metal Halide Lighting Commercial and Industrial - Schedule D Industrial Industrial Schedule I-E Industrial

431

City of Emerson, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Emerson, Nebraska (Utility Company) Emerson, Nebraska (Utility Company) Jump to: navigation, search Name City of Emerson Place Nebraska Utility Id 5850 Utility Location Yes Ownership M NERC Location MRO Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 watt High Pressure Sodium Lighting 150 watt High Pressure Sodium Lighting 175 watt Mercury Vapor Lighting 250 watt High Pressure Sodium Lighting 250 watt High Pressure Sodium Flood Lighting 250 watt Mercury Vapor Lighting 400 watt High Pressure Sodium Flood Lighting

432

Mountain Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Utility Id 13027 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 WATT HPS Lighting 1000 WATT METAL HALIDE FLOOD Lighting 175 WATT MERCURY VAPOR Lighting 250 WATT HPS STREET LIGHT Lighting 250 WATT HPS YARD LIGHT Lighting 400 WATT MERCURY VAPOR Lighting 400 WATT METAL HALIDE FLOOD Lighting Commercial GSA 1-Single-Phase transformer rated Commercial Commercial GSA 1-Three-Phase Self contained Commercial Commercial GSA 1-Three-Phase Transformer Rated Commercial

433

Hickman-Fulton Counties RECC | Open Energy Information  

Open Energy Info (EERE)

Hickman-Fulton Counties RECC Hickman-Fulton Counties RECC Jump to: navigation, search Name Hickman-Fulton Counties RECC Place Kentucky Utility Id 40305 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt High Pressure Sodium Lighting 100 Watt Metal Halide Light Lighting 175 Watt Mercury Vapor Light Lighting 175 Watt Metal Halide Light Lighting 200 Watt High Pressure Sodium Lighting 400 Watt High Pressure Sodium Lighting 400 Watt Mercury Vapor Light Lighting GSA Part 1 Commercial GSA Part 2 Industrial

434

Village of Davenport, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Davenport, Nebraska (Utility Company) Davenport, Nebraska (Utility Company) Jump to: navigation, search Name Village of Davenport Place Nebraska Utility Id 4914 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting HPS 100 Watt Metered Lighting Area Lighting HPS 100 Watt Unmetered Lighting Area Lighting HPS 250 Watt Metered Lighting Area Lighting HPS 250 Watt Unmetered Lighting Area Lighting MV 175 Watt Metered Lighting Area Lighting MV 175 Watt Unmetered Lighting Area Lighting MV 250 Watt Metered Lighting

435

Kenergy Corp | Open Energy Information  

Open Energy Info (EERE)

Kenergy Corp Kenergy Corp Jump to: navigation, search Name Kenergy Corp Place Kentucky Utility Id 9964 Utility Location Yes Ownership C NERC RFC Yes NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Environmental Surcharge Rider Fuel Adjustment Rider High Pressure Sodium - 200/250 Watts Lighting High Pressure Sodium - Flood Light 400 Watts Lighting LED NEMA Head - 60 Watt Lighting Light - 100 watt HPS Lighting Light - 100 watt HPS - Acorn Globe Lighting Light - 100 watt MH Lighting Light - 100 watt MH - Acorn Lighting

436

Pennyrile Rural Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Pennyrile Rural Electric Coop Pennyrile Rural Electric Coop Jump to: navigation, search Name Pennyrile Rural Electric Coop Place Kentucky Utility Id 14724 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt Metal Halide With Pole Lighting 100 Watt Metal Halide Without Pole Lighting 100 Watt Sodium With Pole Lighting 100 Watt Sodium Without Pole Lighting 175 Watt Metal Halide With Pole Lighting 175 Watt Metal Halide Without Pole Lighting 200 Watt Sodium With Pole Lighting

437

City of North Little Rock, Arkansas (Utility Company) | Open Energy  

Open Energy Info (EERE)

North Little Rock North Little Rock Place Arkansas Utility Id 13718 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png HPS- 100 Watt Lighting HPS- 1000 Watt (Floodlights) Lighting HPS- 150 Watt Lighting HPS- 250 Watt Lighting HPS- 250 Watt (Floodlights) Lighting HPS- 400 Watt (Floodlights) Lighting LCTOU Industrial LGS Industrial LPS Industrial MH- 1000 Watt (Floodlights) Lighting

438

installed on all three resoitors. Between February 27 and necessary at a 1.2 m (4.0 it) depth for a reason-and May 15, 1980 all the time metern, the house watt-ably sized earth coil in this location.hour meter, and the indoor temperature as measured by Th  

E-Print Network [OSTI]

.hour meter, and the indoor temperature as measured by The design procedure for the length of the eartha glass. Thea the CROC5 heating seson werelyfth day from the running time meter. heat input QH(i) ist The second at by using a differnt set of "xperimental measurements (air handler time meter for B1, and house Q (i) " B

Oak Ridge National Laboratory

439

NERSC Jack Deslippe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BerkeleyGW at BerkeleyGW at NERSC Jack Deslippe Part 1: Intro to GW/BSE DFT Kohn-Sham Formulation Minimize Energy Functional By Solving Kohn Sham Eqns Total energy is exact so long as approximation for V xc is good. Commonly use Local Density Approximation (LDA) and Gradient Approximations (GGA) - Hybrid functionals etc... Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133. Interpretation of KS Eigenvalues

440

HOSPITAL ENERGY AUDITS: A BIBLIOGRAPHY  

E-Print Network [OSTI]

A.L. "Energy Conservation March; 19: 3-5. for HospitalsHichigan Hospitalsthe Hospital." Berg. G.W. "1976 Survey of Hospital's Use of

Pollack, R. I.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A Continuation Method for Nash Equilibria in Structured Games  

E-Print Network [OSTI]

polymatrix approximation (IPA) algorithm of GW. A polymatrix? is an equilibrium of G. The IPA procedure of Govindan andapproximate equilibrium. IPA is not guaranteed to converge.

Blum, Ben; Shelton, Christian R; Koller, Daphne

2006-01-01T23:59:59.000Z

442

Future personal attributes and job competencies needed by the Texas Department of State Health Services (DSHS), state hospital section, registered nurse managers: a Delphi study  

E-Print Network [OSTI]

OF TABLES TABLE Page 1 DSHS Competency Clusters Five-Point Likert-Type Scale ................ 40 2 Years of Experience in Nursing of the Panel Members ....................... 44 3 Years of Management Experience of the Panel Members ................... 45 4... University (GW) used a form of e-Delphi. GW used an interactive Web site that brought experts together online. The GW study, as described, was a blended method of research. GW used one round of Web data collection and combined it with other data capturing...

Harrison, Joseph, Jr.

2005-11-01T23:59:59.000Z

443

Space-Based Solar Power | Department of Energy  

Energy Savers [EERE]

conditions. Safely transmit power through air at intensities no greater than midday sun. Provide upwards of 1 GW of energy to terrestrial reciever, enough to power a large...

444

Gravitational waves from BBH-systems? A (doubly) vain quest  

E-Print Network [OSTI]

The theoretical reasons at the root of LIGO's experimental failure in searching gravitational waves (GW's) from binary black hole (BBH) inspirals.

A. Loinger

2006-02-06T23:59:59.000Z

445

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network [OSTI]

Livestock Fuel for Water Pumping Motor Efficiency GW EnergyRequired for Water Pumps Using Electric Motors (AdaptedGasoline motors typically used for water pumps are

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

446

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network [OSTI]

GW, predominantly from hydropower plants (Table 2). This isIf one excludes large hydropower, however, this figure dropsGeneration Technology Large Hydropower Small Hydropower Wind

Wiser, Ryan H

2010-01-01T23:59:59.000Z

447

Energy Department Announces Projects to Advance Cost-Effective...  

Energy Savers [EERE]

industry partners. When completed, these projects will provide a combined 1.26 GW of electricity, nearly quadrupling the preexisting CSP capacity in the United States with the...

448

Enhanced Geothermal Systems Demonstration Projects | Department...  

Broader source: Energy.gov (indexed) [DOE]

innovative technology development and deployment could facilitate access to 100+ GW of energy, exponentially more than today's current geothermal capacity. With EGS, we can tap...

449

Microsoft PowerPoint - 03.2010_Metering Billing MDM America.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Total from all renewables now 280GW - 75% increase - Includes large increase in small hydro, geothermal, & biomass generation * Solar heating now 145 GWth - 200% increase...

450

nuclei | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

doi:10.1016j.pep.2014.09.020 Authors: GW Buchko WJ Shaw Capabilities: NMR and EPR Spectroscopy and Diffraction Microscopy Deposition and Microfabrication Mass...

451

Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions  

E-Print Network [OSTI]

force additional pumped hydro storage in the system (i.e. ,6.33 GW of pumped hydro storage into the system, in addition

Darghouth, Naim

2014-01-01T23:59:59.000Z

452

Using Atomic Clocks to Detect Gravitational Waves  

E-Print Network [OSTI]

Atomic clocks have recently reached a fractional timing precision of $test masses separated by less than a GW wavelength, currently envisioned for the eLISA mission.

Loeb, Abraham

2015-01-01T23:59:59.000Z

453

United States (48 Contiguous States) Wind Resource Potential...  

Wind Powering America (EERE)

Rated Capacity Above Indicated CF (GW) United States (48 Contiguous States) - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates...

454

Functional study of SR splicing factors in a cellular genetic system  

E-Print Network [OSTI]

Cell 2004; 119:831-845. Fairbrother WG, Yeh RF, Sharp PA et2002; 297:1007-1013. Fairbrother WG, Yeo GW, Yeh R et al.

Lin, Shengrong

2007-01-01T23:59:59.000Z

455

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

the 1.45 GW of existing CANDU reactor capacity, the enrichedcurrently supplies the two CANDU reactors as well as some

Zheng, Nina

2012-01-01T23:59:59.000Z

456

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

4 4 Reference case Table A9. Electricity generating capacity (gigawatts) Energy Information Administration / Annual Energy Outlook 2013 Table A9. Electricity generating capacity (gigawatts) Net summer capacity 1 Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Electric power sector 2 Power only 3 Coal ..................................................................... 308.0 309.5 268.7 267.9 267.9 267.9 269.0 -0.5% Oil and natural gas steam 4 .................................. 105.6 101.9 86.4 78.3 69.1 66.6 64.0 -1.6% Combined cycle ................................................... 171.8 179.5 193.2 207.6 238.3 265.8 288.4 1.6% Combustion turbine/diesel ................................... 134.5 136.1 149.9 162.1 177.2 190.2 208.9 1.5%

457

Annual Energy Outlook 2006 with Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

Increases Increases in Natural Gas Use Are Moderated by High Prices Figure 71. Natural gas consumption by sector, 1990-2030 (trillion cubic feet) In the AEO2006 reference case, total natural gas con- sumption increases from 22.4 trillion cubic feet in 2004 to 26.9 trillion cubic feet in 2030. Most of the increase is seen before 2017, when total U.S. natural gas consumption reaches just under 26.5 trillion cubic feet. After 2017, high natural gas prices limit con- sumption to about 27 trillion cubic feet through 2030. Consequently, the natural gas share of total energy consumption drops from 23 percent in 2004 to 21 per- cent in 2030. Currently, high natural gas prices discourage the con- struction of new natural-gas-fired electricity genera- tion plants. As a result, only 130 gigawatts of new natural-gas-fired capacity is added from year-end 2004 through 2030, as compared with 154 gigawatts

458

NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Triples Previous Estimates of Triples Previous Estimates of U.S. Wind Power Potential The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques that triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009. Detailed state-by-state estimates of wind energy potential for the United States show the estimated average wind speeds at an 80-meter height. The wind resource maps and estimates

459

Capacity factors and solar job creation  

Science Journals Connector (OSTI)

We discuss two main job creation statistics often used by solar advocates to support increased solar deployment. Whilst overall solar technologies have a tendency to be labor-intensive, we find that the jobs per gigawatt hour statistic is relatively mis-leading as it has a tendency to reward technologies that have a low capacity factor. Ultimately the lower the capacity factor the more amplified the solar job creation number.

Matt Croucher

2011-01-01T23:59:59.000Z

460

Accelerating Geothermal Research (Fact Sheet)  

SciTech Connect (OSTI)

Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

Not Available

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Optical analysis and alignment applications using the infrared Smartt interferometer  

SciTech Connect (OSTI)

The possibility of using the infrared Smartt interferometer for optical analysis and alignment of infrared laser systems has been discussed previously. In this paper, optical analysis of the Gigawatt Test Facility at Los Alamos, as well as a deformable mirror manufactured by Rocketdyne, are discussed as examples of the technique. The possibility of optically characterizing, as well as aligning, pulsed high energy laser systems like Helios and Antares is discussed in some detail.

Viswanathan, V.K.; Bolen, P.D.; Liberman, I.; Seery, B.D.

1981-01-01T23:59:59.000Z

462

City of Seneca, Kansas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Seneca Seneca Place Kansas Utility Id 16922 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Demand Light Commercial Commercial Residential Residential Rural Residential Residential Schools and Churches Spacelights 175 Watt with pole Lighting Spacelights 175 Watt without pole Lighting Spacelights 250 Watt with pole Lighting Spacelights 250 Watt without pole Lighting Spacelights 400 Watt without pole Lighting Spacelights 400 Watt with pole Lighting Average Rates Residential: $0.0764/kWh

463

La Plata Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Plata Electric Assn, Inc Plata Electric Assn, Inc (Redirected from LPEA) Jump to: navigation, search Name La Plata Electric Assn, Inc Address 45 Stewart St. P.O. Box 2750 Place Durango, Colorado Website www.lpea.com/ Utility Id 10539 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LPEA Contact[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100 watt Lighting Area Lighting 1000 watt Lighting Area Lighting 150 watt Lighting Area Lighting 175 watt Lighting Area Lighting 250 watt Lighting Area Lighting 400 watt Lighting Irrigation Commercial

464

Dalton Utilities | Open Energy Information  

Open Energy Info (EERE)

Dalton Utilities Dalton Utilities Jump to: navigation, search Name Dalton Utilities Place Georgia Utility Id 4744 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 - Watt Sodium Vapor Lighting 1000 - Watt Metal Halide Directional Type Lighting 150 Watt Mercury Vapor Underground Service Lighting 150 Watt Sodium Vapor Underground Service Lighting 175 - Watt Mercury Vapor Lighting 175 - Watt Sodium Vapor Lighting

465

Little Ocmulgee El Member Corp | Open Energy Information  

Open Energy Info (EERE)

Ocmulgee El Member Corp Ocmulgee El Member Corp Jump to: navigation, search Name Little Ocmulgee El Member Corp Place Georgia Utility Id 26218 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 watt HPS - open bottom, Metered Lighting 100 watt HPS - open bottom, Non-Metered Lighting 1000 watt HPS, MV, MH - Directional, Metered Lighting 1000 watt HPS, MV, MH - Directional, Non-Metered Lighting 1000 watt MH - Shoebox, Metered Lighting 1000 watt MH - Shoebox, Non-Metered Lighting

466

La Plata Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name La Plata Electric Assn, Inc Address 45 Stewart St. P.O. Box 2750 Place Durango, Colorado Website www.lpea.com/ Utility Id 10539 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LPEA Contact[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100 watt Lighting Area Lighting 1000 watt Lighting Area Lighting 150 watt Lighting Area Lighting 175 watt Lighting Area Lighting 250 watt Lighting Area Lighting 400 watt Lighting Irrigation Commercial Large Commercial, Three Phase Commercial

467

Data:02f61829-2925-4f11-b100-0293cc8c4e12 | Open Energy Information  

Open Energy Info (EERE)

-2925-4f11-b100-0293cc8c4e12 -2925-4f11-b100-0293cc8c4e12 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: East Central Oklahoma Elec Coop Inc Effective date: 1995/12/01 End date if known: Rate name: Street Lighting - 401 Watts and Above Sector: Lighting Description: Available upon application to all consumers for illumination at desired points in developed areas served by the Cooperative. Rate Per Month: Up to 400 Watts of lighting installed on wooden pole = $9.50 fixed rate 401 to 1,000 Watts of connected lighting per pole = $0.020/Watt All over 1,000 Watts of connected lighting = $0.015/Watt

468

Grundy Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

7720 7720 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Light 100 Watt HPS Lighting Security Light 175 Watt MVL Lighting Single Phase Service Small Phase Service 150 kW or less Street Light 100 Watt HPS Lighting Street Light 100 Watt MVL Lighting Street Light 175 Watt MVL Lighting Street Light 250 Watt HPS Lighting Average Rates Residential: $0.1040/kWh Commercial: $0.0818/kWh Industrial: $0.0761/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

469

La Plata Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

(Redirected from La Plata Electric Association) (Redirected from La Plata Electric Association) Jump to: navigation, search Name La Plata Electric Assn, Inc Address 45 Stewart St. P.O. Box 2750 Place Durango, Colorado Website www.lpea.com/ Utility Id 10539 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LPEA Contact[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100 watt Lighting Area Lighting 1000 watt Lighting Area Lighting 150 watt Lighting Area Lighting 175 watt Lighting Area Lighting 250 watt Lighting Area Lighting 400 watt Lighting Irrigation Commercial

470

City of Monroe, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Georgia Georgia Utility Id 12800 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL DEMAND RATE Commercial COMMERCIAL NON DEMAND RATE Commercial Church Service Commercial City Electric Service Commercial Industrial Service Industrial RESIDENTIAL RATE Residential SECURITY LIGHT - 1000 Watt MH Lighting SECURITY LIGHT - 400 Watt HPS Lighting SECURITY LIGHT - 400 Watt MH Lighting SECURITY LIGHT - 150 Watt HPS Lighting SECURITY LIGHT - 150 Watt HPS (ornamental) Lighting SECURITY LIGHT - 175 Watt MV Lighting

471

Elkhorn Rural Public Pwr Dist | Open Energy Information  

Open Energy Info (EERE)

Rural Public Pwr Dist Rural Public Pwr Dist Jump to: navigation, search Name Elkhorn Rural Public Pwr Dist Place Nebraska Utility Id 5780 Utility Location Yes Ownership P NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Mercury Vapor Lamp 175 Watt Lighting Mercury Vapor Lamp 250 Watt Lighting Mercury Vapor Lamp 400 Watt Lighting Metal Halide 1000 Watt Lighting Metal Halide 1500 Watt Lighting Metal Halide 400 Watt Lighting RATE 1,3- Farm Residential, Commercial, Cabins, Seasonal--Single Phase Commercial RATE 12, 69- Urban Commercial Electric Space Heating, Single Phase

472

City of Detroit Lakes, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Minnesota (Utility Company) Minnesota (Utility Company) Jump to: navigation, search Name City of Detroit Lakes Place Minnesota Utility Id 5111 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lights - 100 Watt HPS (Unmetered) Lighting Area Lights - 100 Watt HPS (metered) Lighting Area Lights - 250 Watt HPS (Unmetered) Lighting Area Lights - 250 Watt HPS (metered) Lighting Area Lights - 400 Watt HPS (Unmetered) Lighting Area Lights - 400 Watt HPS (metered) Lighting

473

Williamstown Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Williamstown Utility Comm Williamstown Utility Comm Jump to: navigation, search Name Williamstown Utility Comm Place Kentucky Utility Id 20731 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt High Pressure Sodium Area Light Lighting 150 Watt High Pressure Sodium Floodlight Lighting 175 Watt Mercury Vapor Area Light Lighting 250 Watt High Pressure Sodium Area Light Lighting 250 Watt High Pressure Sodium Floodlight Lighting 400 Watt High Pressure Sodium Area Light Lighting

474

City of Frankfort, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Frankfort Frankfort Place Indiana Utility Id 6707 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A Residential Residential B Commercial Commercial C General Power Economic Development Rate OL Outdoor Lighting 100 watt Sodium Vapor Lighting OL Outdoor Lighting 150 watt Sodium Vapor Lighting OL Outdoor Lighting 175 watt Mercury Vapor Lighting OL Outdoor Lighting 250 watt Mercury Vapor Lighting OL Outdoor Lighting 250 watt Sodium Vapor Lighting OL Outdoor Lighting 400 watt Mercury Vapor Lighting

475

USBIA-San Carlos Project | Open Energy Information  

Open Energy Info (EERE)

Carlos Project Carlos Project Jump to: navigation, search Name USBIA-San Carlos Project Place Arizona Utility Id 19604 Utility Location Yes Ownership F NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 150 Watts Each 2 to 5 Commercial 150 Watts Each 6 or more Commercial 150 Watts Each First Commercial 250 Watts Each 2 to 5 Commercial 250 Watts Each 6 or more Commercial 250 Watts Each First Commercial

476

High West Energy, Inc (Nebraska) | Open Energy Information  

Open Energy Info (EERE)

Place Nebraska Place Nebraska Utility Id 27058 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A F Industrial Commercial & Small Power Commercial Security Lighting-150 - 175 watt M V/ HPS Lighting Security Lighting-200 - 250 watt M V/ HPS Lighting Security Lighting-400 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting Street Lighting-400 watt M V/ HPS Lighting Average Rates Residential: $0.1100/kWh Commercial: $0.1040/kWh Industrial: $0.1000/kWh The following table contains monthly sales and revenue data for High West Energy, Inc (Nebraska).

477

Slash Pine Elec Member Corp | Open Energy Information  

Open Energy Info (EERE)

Slash Pine Elec Member Corp Slash Pine Elec Member Corp Jump to: navigation, search Name Slash Pine Elec Member Corp Place Georgia Utility Id 17290 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting 100 Watt HPS Security Light Lighting Outdoor Lighting 1000 Watt HPS Flood Light* Lighting Outdoor Lighting 1000 Watt MH Flood Light* Lighting Outdoor Lighting 1500 Watt MH Flood Light* Lighting Outdoor Lighting 175 Watt HPS Security Light Lighting Outdoor Lighting 250 Watt HPS Security Light Lighting

478

Max Tech and Beyond: Fluorescent Lamps  

E-Print Network [OSTI]

varies by watts of power per foot of electrical arc in theFoot Linear Fluorescent Lamps Efficacy Life Lumens Type Base Power

Scholand, Michael

2012-01-01T23:59:59.000Z

479

Data:93fa20c8-fba6-4cfa-9665-41e450f96d0a | Open Energy Information  

Open Energy Info (EERE)

Vapor 175 Watt (24 Foot pole) Sector: Lighting Description: *Traditional Fixture with 24 Foot Fiberglass pole. All Decorative Lighting is subject to a ten year minimum contract...

480

Data:74c53d26-7282-470d-9c7e-774d73bff051 | Open Energy Information  

Open Energy Info (EERE)

if known: Rate name: Security Lighting- Decorative- HPS 100 Watt (Traditional Fixture- 15 Foot pole) Sector: Lighting Description: *Traditional Fixture with 15 Foot Fiberglass...

Note: This page contains sample records for the topic "watts gigawatt gw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Data:181f8a1a-06a5-4606-b7d4-21bc046ba6f1 | Open Energy Information  

Open Energy Info (EERE)

if known: Rate name: 100 Watt HPS with Black Post Top American Revolution Fixture on a 24-Foot Direct Buried Black Fiberglass Pole Sector: Lighting Description: Source or...

482

Data:C0b9a875-b24a-4a0b-a5f3-016daa11c0be | Open Energy Information  

Open Energy Info (EERE)

if known: Rate name: 100 Watt High Pressure Sodium with Bronze Shoebox Fixture on a 35-Foot Direct Buried Bronze Fiberglass Pole Sector: Lighting Description: Source or...

483

Data:898e47db-d45a-4017-bcf5-33c1739730b5 | Open Energy Information  

Open Energy Info (EERE)

if known: Rate name: Security Lighting- Decorative- HPS 100 Watt (Traditional Fixture- 24 Foot pole) Sector: Lighting Description: *Traditional Fixture with 24 Foot Fiberglass...

484

Data:C0ad9b1a-3011-4536-a95a-96ef0c42f10e | Open Energy Information  

Open Energy Info (EERE)

End date if known: Rate name: Security Lighting- Decorative- Mercury Vapor 175 Watt (15 Foot pole) Sector: Lighting Description: *Traditional Fixture with 15 Foot Fiberglass...

485

Data:6bb1ae8d-5a9f-4d16-b339-362f49fa2694 | Open Energy Information  

Open Energy Info (EERE)

known: Rate name: 250 Watt High Pressure Sodium with Bronze Floodlight Fixture on a 40 - Foot Wood Pole Sector: Lighting Description: Source or reference: http:...

486

Development of indium arsenide quantum dot solar cells for high conversion efficiency.  

E-Print Network [OSTI]

??Sunlight is the largest energy source available on earth. Under clear conditions there is approximately 1,000 watts per directly incident square meter, which reaches the (more)

El-Emawy, Mohamed

2009-01-01T23:59:59.000Z

487

These are the materials we used to complete this experiment  

E-Print Network [OSTI]

.47,000-Ohm, ½ watt resistor 12.3 clinch terminal blocks 13.Pro-Grade mini hack/chopping saw (and extra blades

Rosen, I. Gary

488

2010 E&O Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

selected team names: the C-Hawks and the Watt Watchers. Unlike traditional energy-efficiency programs that focus on the replacement of inefficient equipment such as...

489

Tax Credits, Rebates & Savings | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rebates & Savings Tax Credits, Rebates & Savings Austin Energy- Residential Solar PV Rebate Program Austin Energy's Solar Rebate Program offers a 1.50 per watt incentive to...

490

CEC-1038 R2 ( 11-2011) REBATE PAYMENT CLAIM FORM  

E-Print Network [OSTI]

CEC-1038 R2 ( 11-2011) R2 REBATE PAYMENT CLAIM FORM EMERGING RENEWABLES PROGRAM Mail complete: $____________ Date CFA: ___________ SRO watts: _______ Rebate @ ______ = $__________ 1. Confirmation of Reservation

491

2D monolayers could yield thinnest solar cells ever  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

have shown how using a different type of material could yield thinner, more lightweight solar panels that provide power densities - watts per kilogram of material - orders of...

492

Road to very large scale photovoltaic power generation systems  

Science Journals Connector (OSTI)

Groe Photovoltaiksysteme zur Energieerzeugung im Giga-Watt-Bereich stellen eine vielversprechende Lsung fr eine breite Weiterentwicklung der Photovoltaiktechnologie dar. Diese Systeme knnten in Zukunft auc...

K. Komoto

2009-08-01T23:59:59.000Z

493

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Usage Education Toolbox Search Education Toolbox Search Enter terms Search Retain current filters Showing 1 - 1 of 1 result. Download Watt Does It Cost To Use It?...

494

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Usage Energy Literacy Principle 5 Education Toolbox Search Education Toolbox Search Enter terms Search Retain current filters Showing 1 - 1 of 1 result. Download Watt...

495

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Usage Education Toolbox Search Education Toolbox Search Enter terms Search Retain current filters Showing 1 - 2 of 2 results. Download Watt Does It Cost To Use It?...

496

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Usage Energy Literacy Principle 6 Education Toolbox Search Education Toolbox Search Enter terms Search Retain current filters Showing 1 - 1 of 1 result. Download Watt Does It...

497

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Usage Energy Literacy Principle 5 Education Toolbox Search Education Toolbox Search Enter terms Search Retain current filters Showing 1 - 1 of 1 result. Download Watt Does It...

498

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Usage Energy Literacy Principle 1 Education Toolbox Search Education Toolbox Search Enter terms Search Retain current filters Showing 1 - 1 of 1 result. Download Watt Does It...

499

Shibboleth-based Access to and Usage of Grid Resources  

E-Print Network [OSTI]

Sinnott,R.O. Watt,J. Jiang,J. Ajayi,O. Proceedings of IEEE International Conference on Grid Computing, Barcelona, Spain, September 2006.

Sinnott, R.O.

500

E-Print Network 3.0 - aerobic endurance training Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sport throughout the competitive season is difficult; more so when your squad only trains on a part Source: Howie, Jim - Department of Mathematics, Heriot-Watt University...