Powered by Deep Web Technologies
Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mercury Vapor Details Activities (23) Areas (23) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Anomalously high concentrations can indicate high permeability or conduit for fluid flow Hydrological: Field wide soil sampling can generate a geometrical approximation of fluid circulation Thermal: High concentration in soils can be indicative of active hydrothermal activity Dictionary.png Mercury Vapor: Mercury is discharged as a highly volatile vapor during hydrothermal

2

Category:Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Mercury Vapor page? For detailed information on Mercury Vapor as exploration techniques,...

3

Mercury Vapor (Kooten, 1987) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor (Kooten, 1987) Mercury Vapor (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor (Kooten, 1987) Exploration Activity Details Location Unspecified Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Surface soil-mercury surveys are an inexpensive and useful exploration tool for geothermal resources. ---- Surface geochemical surveys for mercury were conducted in 16 areas in 1979-1981 by ARCO Oil and Gas Company as part of its geothermal evaluation program. Three techniques used together have proved satisfactory in evaluating surface mercury data. These are contouring, histograms and cumulative frequency plots of the data. Contouring geochemical data and constructing histograms are standard

4

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

5

Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor At Kawaihae Area (Thomas, 1986) Mercury Vapor At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury concentrations toward both the north and south. There is no correlation apparent between the mercury patterns and either the resistivity sounding data or the surface geology in the area. The radon emanometry data (Fig.

6

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity Details...

7

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

8

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

9

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) Exploration Activity Details...

10

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Exploration Activity Details Location...

11

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Exploration...

12

Catalytic Reactor For Oxidizing Mercury Vapor  

DOE Patents (OSTI)

A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

Helfritch, Dennis J. (Baltimore, MD)

1998-07-28T23:59:59.000Z

13

Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy  

Open Energy Info (EERE)

Kooten, 1987) Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration Activity Details Location Medicine Lake Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury Geochemistry Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Medicine_Lake_Area_(Kooten,_1987)&oldid=386431" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

14

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

15

Sulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury uptake  

E-Print Network (OSTI)

promote the formation of organic sulfur and the presence of H2S during the cooling process increased in the presence of H2S was very effective towards Hg uptake in nitrogen. Corre- lation of mercury uptake capacitySulfurization of a carbon surface for vapor phase mercury removal ­ II: Sulfur forms and mercury

Borguet, Eric

16

Apparatus for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

1988-01-01T23:59:59.000Z

17

Apparatus and method for removing mercury vapor from a gas stream  

DOE Patents (OSTI)

A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

Ganesan, Kumar (Butte, MT)

2008-01-01T23:59:59.000Z

18

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and  

E-Print Network (OSTI)

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and HID (high-intensity discharge) lamps and all other mercury containing labeled for shipment to a recycling plant for mercury, glass and aluminum recovery. The beneficial re

Baker, Chris I.

19

Filter for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucestor, MA)

1989-01-01T23:59:59.000Z

20

Filter for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

A filter is described for enriching the [sup 196]Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The [sup 196]Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is, less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter. 9 figs.

Grossman, M.W.; George, W.A.

1989-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mokapu Penninsula Area (Thomas, 1986) Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The high degree of cultural activity (e.g. residential areas, streets, jet runways, etc.) on Mokapu both limited the extent of the soil geochemical surveys performed and rendered their interpretation much more difficult. Soil mercury concentrations and radon emanometry data on the peninsula showed a few localized high values (Figs 13, 14), but no consistent correlation between the anomalous zones and geologic features could be

22

Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Mercury Vapor Activity Date - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

23

Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil  

DOE Patents (OSTI)

The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

2014-07-08T23:59:59.000Z

24

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our environment from heavy  

E-Print Network (OSTI)

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our the environment by recycling universal wastes, contact EH&S at (949) 824-6200 or visit: www.ehs.uci.edu Mercury

George, Steven C.

25

Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Kilauea East Rift Area (Thomas, Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The sampling network for soil mercury concentrations undertaken by Cox (1981) identified a complicated pattern of mercury concentrations throughout the lower Puna area (Fig. 60). The highest soil mercury concentrations found were generally located within the rift zone, but an analysis of the data showed that soil type and soil pH also had a marked impact on mercury concentration. Making corrections for these effects improved the correspondence between the surface geological expression of the rift zone and the mercury concentrations observed; interpretation of

26

Mercury Source Zone Identification using Soil Vapor Sampling and Analysis  

SciTech Connect

Development and demonstration of reliable measurement techniqes that can detect and help quantify the nature and extent of elemental mercury (Hg(0)) in the subsurface are needed to reduce certainties in the decision making process and increase the effectiveness of remedial actions. We conducted field tests at the Y-12 National Security Complex (NSC) in Oak Ridge, TN, to determine if sampling and analysis of Hg(0) vapors in the shallow subsurface (<0.3 m depth) can be used to as an indicator of the location and extent of Hg(0) releases in the subsurface. We constructed a rigid PVC pushprobe assembly, which was driven into the ground. Soil gas samples were collected through a sealed inner tube of the assembly and analyzed immediately in the field with a Lumex and/or Jerome Hg(0) analyzer. Time-series sampling showed that Hg vapor concentrations were fairly stable over time suggesting that the vapor phase Hg(0) was not being depleted and that sampling results were not dependent on the soil gas purge volume. Hg(0) vapor data collected at over 200 pushprobe locations at 3 different release sites correlated well to areas of known Hg(0) contamination. Vertical profiling of Hg(0) vapor concentrations conducted at 2 locations provided information on the vertical distribution of Hg(0) contamination in the subsurface. We concluded from our studies that soil gas sampling and analysis can be conducted rapidly and inexpensively at a large scale to help identify areas contaminated with Hg(0).

Watson, David B [ORNL] [ORNL; Miller, Carrie L [ORNL] [ORNL; Lester, Brian P [ORNL] [ORNL; Lowe, Kenneth Alan [ORNL] [ORNL; Southworth, George R [ORNL] [ORNL; Bogle, Mary Anna [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Pierce, Eric M [ORNL] [ORNL

2014-01-01T23:59:59.000Z

27

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The soil mercury concentration and radon emanometry patterns observed for the Lahaina prospect were similar to those found in Olowalu. Several localized zones of high mercury concentration or enhanced radon emanation were observed, but showed little relationship to each other or to the recognized geologic structure in the area. The data were interpreted to suggest that there might be a small thermal anomaly to the northeast of the

28

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

29

An evaluation of elemental mercury vapor exposure to children due to silver-mercury dental amalgam restorations  

E-Print Network (OSTI)

AN EVALUATION OF ELEMENTAL MERCURY VAPOR EXPOSURE TO CHILDREN DUE TO SILVER-MERCURY DENTAL AMALGAM RESTORATIONS A Thesis By RONALD DALE TAYLOR Submitted to the Office of Graduate Studies College Texas A&M University in partial fulfillment.... . . . . 1X LIST OF FIGURES. I. INTRODUCTION. II ' LITERATURE REVIEW Dental Mercury Toxicology Body Burden. Inhalation Exposure. Childhood Exposure III. METHODOLOGY. . . . 3 5 . . . 8 . . . 10 . . . 14 . 16 Human Research Committee...

Taylor, Ronald Dale

1989-01-01T23:59:59.000Z

30

Feasibility of UV lasing without inversion in mercury vapor  

E-Print Network (OSTI)

We investigate the feasibility of UV lasing without inversion at a wavelength of $253.7$ nm utilizing interacting dark resonances in mercury vapor. Our theoretical analysis starts with radiation damped optical Bloch equations for all relevant 13 atomic levels. These master equations are generalized by considering technical phase noise of the driving lasers. From the Doppler broadened complex susceptibility we obtain the stationary output power from semiclassical laser theory. The finite overlap of the driving Gaussian laser beams defines an ellipsoidal inhomogeneous gain distribution. Therefore, we evaluate the intra-cavity field inside a ring laser self-consistently with Fourier optics. This analysis confirms the feasibility of UV lasing and reveals its dependence on experimental parameters.

Martin R. Sturm; Benjamin Rein; Thomas Walther; Reinhold Walser

2014-06-27T23:59:59.000Z

31

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989)  

Open Energy Info (EERE)

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes One-hundred twelve samples were collected from relatively unaltered air-fall ejecta along two Novarupta Basin traverse lines (Fig. 5). One hundred eighty-two samples were taken from active/fossil fumaroles in Novarupta Basin (22 sites, Fig. 5), fossil fumaroles (41 sites) and air-fall tephra (2 sites) within and immediately adjacent to the remainder of the VTTS (Fig. 6). In total, 294 samples were collected from 127 sites

32

Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys

33

Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Area (Thomas, 1986) Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=390060

34

Application of atomic vapor laser isotope separation to the enrichment of mercury  

SciTech Connect

Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the /sup 196/Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of approx. 1 billion dollars in the corresponding reduction of electrical power consumption. We will discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion will center around the results of spectroscopic measurements of excited state lifetimes, photoionization cross sections and isotope shifts. In addition, we will discuss the mercury separator and supporting laser mesurements of the flow properties of mercury vapor. We will describe the laser system which will provide the photoionization and finally discuss the economic details of producing enriched mercury at a cost that would be attractive to the lighting industry.

Crane, J.K.; Erbert, G.V.; Paisner, J.A.; Chen, H.L.; Chiba, Z.; Beeler, R.G.; Combs, R.; Mostek, S.D.

1986-09-01T23:59:59.000Z

35

Mercury Vapor At Akutan Fumaroles Area (Kolker, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Akutan Fumaroles Area (Kolker, Et Al., 2010) Akutan Fumaroles Area (Kolker, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Akutan Fumaroles Area (Kolker, Et Al., 2010) Exploration Activity Details Location Akutan Fumaroles Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Arsenic (As), mercury (Hg), and carbon dioxide (CO2) all appear in anomalously high concentrations near the hot springs and at the junction of the Fumarole Valley and the HSBV. This indicates either that Hg is being lost from a reservoir due to boiling and steam loss, probably northwest of the junction, or erosion has carried these elements in sediment from the higher elevation manifestations. The presence of such volatiles in

36

Inorganic, Organic, and Total Mercury in Blood and Urine: Cold Vapor Analysis with Automated Flow Injection Sample Delivery  

Science Journals Connector (OSTI)

......and blood and urine specimenswere placed in the dry block heater for 30 min. Di- gestion was considered completewhen foaming...for transfer of nanogram quan- tities of mercury vapor for flameless atomic absorption spec- trophotometry. Anal. Chem. 43......

David E. Nixon; Garry V. Mussmann; Thomas P. Moyer

1996-01-01T23:59:59.000Z

37

Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Klusman & Landress, 1979) Long Valley Caldera Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

38

The Luminosity of Mercury Vapor Distilled from the Arc in Vacuo.  

Science Journals Connector (OSTI)

Afterglow of Mercury Vapor from an Arc in Vacuum.(1) The effect of an electric field on the spectrum was studied. It was found that charged grids decreased the luminosity without changing the color; but when, under certain conditions, the luminosity was increased, there was a change in the relative intensity of the lines. (2) The velocity of the vapor was measured by a stroboscopic method. The luminosity was decreased intermittently at a known frequency and the resulting "puffs" as they moved along the tube, were observed stroboscopically. From this velocity and the rate of distillation, the density of the vapor was computed. (3) Decay of luminosity along the tube was observed. (4) Theoretical discussion of these results leads to the conclusion that recombination of the positive and negative ions produced by the discharge, is the most probable cause of the afterglow.

Norman H. Ricker

1921-02-01T23:59:59.000Z

39

Theory and Experiments Relating to the Striated Glow Discharge in Mercury Vapor  

Science Journals Connector (OSTI)

Theory of the glow discharge in a monatomic gas.For the case of parallel plane electrodes with a hot cathode as source of electrons, the potential distribution and ion concentration in the Crookes dark space, negative glow, Faraday dark space and positive column are shown to be predictable from considerations of space charge and of ionization and excitation of the gas. While with weak currents there is a negative space charge throughout, sufficiently intense ionization is shown to lead to a cathode drop, followed by a region of reversed electric field in which positive ions and electrons both move toward the anode by diffusion, owing to their large concentration gradient. Still farther from the cathode the field changes to its normal direction and increases up to the positive column. In the positive column the field and concentration are uniform unless atoms excited by electron impacts in certain layers are prevented from diffusing between the layers, when striations may be obtained with periodic changes of field and of concentration. The cathode edge of each striation has a positive space charge. The theory of the arc discharge is essentially the same, the arc being simply the negative glow of the longer glow discharge.Glow discharge in mercury vapor.Various predictions of the above theory were verified by experiments with Hg vapor in vacuum tubes provided with hot cathodes. (1) Potential distribution and ion concentration were investigated by Langmuir's modified probe method and found to agree with the theoretical deductions, except that the concentration of positive ions in the positive column comes out too large. This result indicates the presence of negative mercury ions. (2) The distribution of velocities of electrons is Maxwellian except between striations. (3) The emission of light seems associated more with excitation by electron collision than with ionization and recombination. (4) Conditions for existence of striations. Striations are not found in pure Hg vapor unless the current is small or some substance like H2 is introduced to remove excited atoms. (5) The presence of atomic hydrogen which should be produced in the process of removing excited Hg atoms was proved by use of tungsten oxide. (6) Introduction of He, which cannot remove excited atoms, does not tend to produce striations. (7) The relative concentrations of excited atoms was determined from the optical absorption of subordinate series Hg lines. It was found that excited atoms exist in striations but not in the regions between, and are more numerous if the amount of H2 impurity is reduced.Band spectrum of HgH seems associated with the action of excited Hg atoms on hydrogen, and is emitted as a result of inelastic collisions in striations.

K. T. Compton; Louis A. Turner; W. H. McCurdy

1924-12-01T23:59:59.000Z

40

Mercury Detection with Gold Nanoparticles  

E-Print Network (OSTI)

R. J. Warmack, Detection of mercury vapor using resonatingA surface acoustic wave mercury vapor sensor, Ieee Trans.N. E. Selin, Integrating mercury science and policy in the

Crosby, Jeffrey

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

William R. Henkle Jr., Wayne C. Gundersen, Thomas D. Gundersen (2005) Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal...

42

0 min 2 4 0 min 2 4 Watts Watts  

E-Print Network (OSTI)

0 min 2 4 0 min 2 4 Watts Watts Time 0 min 2 4 Watts Time TRADEOFFS POWER Jonathan Pearce Advisor D'load IDLE CPU WAVELAN 1.0 .43 1.3 Watts #12;

Smailagic, Asim

43

Application of atomic vapor laser isotope separation to the enrichment of mercury  

SciTech Connect

Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the /sup 196/Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of $450 million dollars in the corresponding reduction of electrical power consumption. We discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion centers around the results of spectroscopic measurements of excited-state lifetimes, photoionization cross sections, and isotope shifts.

Crane, J.; Erbert, G.; Paisner, J.; Chen, H.; Chiba, Z.; Beeler, R.; Combs, R.; Mostek, S.

1986-09-01T23:59:59.000Z

44

Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment  

DOE Patents (OSTI)

The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

Grossman, Mark W. (Belmont, MA)

1993-01-01T23:59:59.000Z

45

Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment  

DOE Patents (OSTI)

The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

Grossman, M.W.

1993-02-16T23:59:59.000Z

46

Argonne/EPA system captures mercury from air in gold shops |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Writing Internship Typical gold shop hood used to purify gold by superheating the goldmercury amalgam until the mercury vaporizes. The vaporized mercury is directed outside the...

47

GEORGE WATTS HILL ALUMNI CENTER  

E-Print Network (OSTI)

BR IN KH O U S- BU LLITT CHILLER BUILDING F KENAN STADIUM GEORGE WATTS HILL ALUMNI CENTER EHRINGHAUS

North Carolina at Chapel Hill, University of

48

SYNTHESIS AND CHARACTERIZATION OF NANO-STRUCTURED CHELATING ADSORBENTS FOR THE DIRECT REMOVAL OF MERCURY VAPOR FROM FLUE-GASES.  

E-Print Network (OSTI)

??Coal-Fired utility boilers are currently the largest single-known source of anthropogenic mercury emissions in the United States. In this research, the potential of gas-phase chelating (more)

ABU-DAABES, MALYUBA ALI

2005-01-01T23:59:59.000Z

49

Mercury Detection with Gold Nanoparticles  

E-Print Network (OSTI)

samples by cold vapor-atomic absorption spectrometry, J.S. Gucer, Direct atomic absorption determination of mercuryL. A. Vasilieva, Direct atomic absorption determination of

Crosby, Jeffrey

2013-01-01T23:59:59.000Z

50

Definition: Watt | Open Energy Information  

Open Energy Info (EERE)

Watt Watt Jump to: navigation, search Dictionary.png Watt A unit of measure for power, which measures the rate of energy conversion; equal to one joule per second (or 1/746 horsepower); equivalent to one ampere under a pressure of one volt.[1][2] View on Wikipedia Wikipedia Definition The watt' is a derived unit of power in the International System of Units (SI), named after the Scottish engineer James Watt (1736-1819). The unit, defined as one joule per second, measures the rate of energy conversion or transfer. Also Known As W Related Terms Electricity, Power, Kilowatt References ↑ http://www.eia.gov/tools/glossary/index.cfm?id=W#watt ↑ http://needtoknow.nas.edu/energy/glossary/ Retri LikeLike UnlikeLike You like this.Sign Up to see what your friends like. eved from

51

Symbolic Symbolic Computation Stephen M. Watt  

E-Print Network (OSTI)

Symbolic Symbolic Computation Stephen M. Watt University of Western Ontario London, Ontario, Canada www.csd.uwo.ca/watt Abstract Symbolic mathematical computation has become an important tool

Watt, Stephen M.

52

Mercury Spill Information and Response Guidance  

E-Print Network (OSTI)

Mercury Spill Information and Response Guidance Background Information Mercury can be found, plumbing traps and vacuum pumps. When mercury is spilled, it forms beads or droplets that can accumulate mercury vapors can be very dangerous, depending on the amount inhaled and the length of exposure

Holland, Jeffrey

53

PlotWatt | Open Energy Information  

Open Energy Info (EERE)

PlotWatt PlotWatt Jump to: navigation, search Tool Summary LAUNCH TOOL Name: PlotWatt Agency/Company /Organization: PlotWatt Sector: Energy Focus Area: Energy Efficiency Resource Type: Software/modeling tools User Interface: Mobile Device Website: plotwatt.com/ Country: United States Web Application Link: plotwatt.com/ Cost: Free OpenEI Keyword(s): Green Button Apps Northern America Language: English PlotWatt Screenshot References: PlotWatt[1]PlotWatt FAQ[2] Logo: PlotWatt PlotWatt helps you to save money and energy, instead of getting hit with high energy bills every month. PlotWatt shows you exactly where to save. Overview PlotWatt's algorithms analyze home energy consumption to figure out spending at the appliance level and figure out how to cost effectively save

54

Mercury Calibration System  

SciTech Connect

U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on actual capabilities of the current calibration technology. As part of the current effort, WRI worked with Thermo Fisher elemental mercury calibrator units to conduct qualification experiments to demonstrate their performance characteristics under a variety of conditions and to demonstrate that they qualify for use in the CEM calibration program. Monitoring of speciated mercury is another concern of this research. The mercury emissions from coal-fired power plants are comprised of both elemental and oxidized mercury. Current CEM analyzers are designed to measure elemental mercury only. Oxidized mercury must first be converted to elemental mercury prior to entering the analyzer inlet in order to be measured. CEM systems must demonstrate the ability to measure both elemental and oxidized mercury. This requires the use of oxidized mercury generators with an efficient conversion of the oxidized mercury to elemental mercury. There are currently two basic types of mercuric chloride (HgCl{sub 2}) generators used for this purpose. One is an evaporative HgCl{sub 2} generator, which produces gas standards of known concentration by vaporization of aqueous HgCl{sub 2} solutions and quantitative mixing with a diluent carrier gas. The other is a device that converts the output from an elemental Hg generator to HgCl{sub 2} by means of a chemical reaction with chlorine gas. The Thermo Fisher oxidizer system involves reaction of elemental mercury vapor with chlorine gas at an elevated temperature. The draft interim protocol for oxidized mercury units involving reaction with chlorine gas requires the vendors to demonstrate high efficiency of oxidation of an elemental mercury stream from an elemental mercury vapor generator. The Thermo Fisher oxidizer unit is designed to operate at the power plant stack at the probe outlet. Following oxidation of elemental mercury from reaction with chlorine gas, a high temperature module reduces the mercuric chloride back to elemental mercury. WRI conducted work with a custom laboratory configured stand-alone oxidized mercury generator unit prov

John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

2009-03-11T23:59:59.000Z

55

NSCU, September 2004 Duke's Milly Watt Project  

E-Print Network (OSTI)

1 NSCU, September 2004 Duke's Milly Watt Project Carla Ellis Faculty · Alvin Lebeck · Amin Vahdat-power hardware? Milly Watt Motivation #12;2 NSCU, September 2004 Energy should be a "first class" resource energy goals Milly Watt Vision NSCU, September 2004 Energy Management Spectrum · Re-examine interactions

Ellis, Carla

56

Oben: Die Station im Watt bei Spiekeroog.  

E-Print Network (OSTI)

Oben: Die Station im Watt bei Spiekeroog. Unten: Ausschnitt des innen begeh- baren Pfahlrohrs mit Ossietzky Universität Oldenburg Meeresdaten rund um die Uhr: Die Station im Watt Von Rainer Reuter In autumn Rückseiten- watt und offener Nordsee. Die Umwelt zu beobachten und verläss- liche Messungen zu gewinnen, ist

Oldenburg, Carl von Ossietzky Universität

57

WattQuiz | Open Energy Information  

Open Energy Info (EERE)

WattQuiz WattQuiz Jump to: navigation, search Tool Summary LAUNCH TOOL Name: WattQuiz Agency/Company /Organization: Genability Sector: Energy Focus Area: Energy Efficiency Resource Type: Software/modeling tools User Interface: Website Website: www.wattquiz.com/ Country: United States Web Application Link: www.wattquiz.com/ Cost: Free Northern America Language: English WattQuiz Screenshot References: Genability[1] NYC Open Data[2] Donors Choose[3] Logo: WattQuiz A social quiz on energy usage that donates proceeds to charity via DonorsChoose.org. Questions are powered by Genability APIs. Overview WattQuiz is a simple social quiz, a la freerice.com, that asks you questions and educates you about your energy. Correct answers generate watts that are donated to worthy charities via DonorsChoose.org!

58

Goodbye, Watts. Hello, LUMENS! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Goodbye, Watts. Hello, LUMENS! Goodbye, Watts. Hello, LUMENS! Goodbye, Watts. Hello, LUMENS! May 17, 2012 - 2:21pm Addthis John Chu John Chu Communications Specialist with the Office of Energy Efficiency and Renewable Energy For years, I bought light bulbs based on watts, or energy use. Like many light bulb consumers, I looked for a traditional 40, 60, 75, or 100 watt incandescent bulb. Now that stores today carry more and more energy efficient lighting choices, I wanted to replace my old incandescents with new bulbs to save energy and money on my electricity bill. But in shopping for the right bulb, I came across a challenge in looking for bulbs based on watts. Since these newer bulbs use less energy, I found bulbs that use 8, 15, or 26 watts. The wattages are pretty close to each other, but the

59

Mercury Replacement Program It is the policy of California State University, Fullerton to remove mercury containing  

E-Print Network (OSTI)

Mercury Replacement Program I. Policy It is the policy of California State University, Fullerton to remove mercury containing devices throughout campus, insofar as is reasonably possible, and provide, the University has an obligation to safeguard employees from the potential health effects of mercury vapor while

de Lijser, Peter

60

Tennessee Nuclear Profile - Watts Bar Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Award of James Watt International Medal  

Science Journals Connector (OSTI)

... THE Council of the Institution of Mechanical Engineers has unanimously awarded the James Watt International Medal to Mr. A. G. M. Michell, of ... the bicentenary of the birth of James Watt on January 19, 1736, and is awarded every two years to an engineer of any nationality who is deemed worthy of the ...

1942-06-06T23:59:59.000Z

62

MagLab - Pioneers in Electricity and Magnetism: James Watt  

NLE Websites -- All DOE Office Websites (Extended Search)

James Watt (1736-1819) James Watt The Scottish instrument maker and inventor James Watt had a tremendous impact on the shape of modern society. His improvements to the steam engine...

63

Data:99760b7a-6540-4145-ad9c-c25af6a93a26 | Open Energy Information  

Open Energy Info (EERE)

Incorporated (Alabama) Effective date: 20110319 End date if known: Rate name: 400 Watt Watt Mercury Vapor Sector: Lighting Description: Source or reference: https:...

64

Method and apparatus for controlling the flow rate of mercury in a flow system  

DOE Patents (OSTI)

A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

1991-01-01T23:59:59.000Z

65

Watt Does It Cost To Use It?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Watt Does It Cost to Use It? Grades: 5-8, 9-12 Topic: Energy Efficiency and Conservation Author: Mark Ziesmer Owner: Alliance to Save Energy This educational material is brought to...

66

Carbon Nanotube-Silver Composite for Mercury Capture and Analysis  

Science Journals Connector (OSTI)

The mechanisms of capturing mercury on a sorbent vary from amalgamation, chemical adsorption to simple physical adsorption. ... Untreated carbon-based sorbents and mineral-based sorbents capture mercury mainly via physical adsorption that allows release of captured mercury at slightly higher temperatures. ... This paper outlines the results of a systematic study on the capture of trace mercury vapor from simulated flue gases, using activated carbons. ...

Guangqian Luo; Hong Yao; Minghou Xu; Xinwei Cui; Weixing Chen; Rajender Gupta; Zhenghe Xu

2009-12-17T23:59:59.000Z

67

TerraWatt Power | Open Energy Information  

Open Energy Info (EERE)

TerraWatt Power TerraWatt Power Jump to: navigation, search Name TerraWatt Power Place Schenectady, New York Zip 12305-1036 Product American manufacturer of micro-inverters, subsidiary of Advanced Energy Conversion. Coordinates 42.81226°, -73.941026° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.81226,"lon":-73.941026,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

AstroWatt | Open Energy Information  

Open Energy Info (EERE)

AstroWatt AstroWatt Jump to: navigation, search Name AstroWatt Place Austin, Texas Sector Solar Product Texas-based venture backed company developing a proprietary solar cell technology. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

AlphaWatt Ltd | Open Energy Information  

Open Energy Info (EERE)

AlphaWatt Ltd AlphaWatt Ltd Jump to: navigation, search Name AlphaWatt Ltd Place London, United Kingdom Zip EC1V 4PY Sector Solar Product Solar project developer, plans to become an independent power provider. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

GlobalWatt Inc | Open Energy Information  

Open Energy Info (EERE)

GlobalWatt Inc GlobalWatt Inc Jump to: navigation, search Name GlobalWatt Inc Place Dover, Delaware Zip 19801 Product Shell company, once planned to float on AIM to raise money in order to acquire the business of semiconductor and/or PV manufacturing equipment suppliers. Coordinates 42.67954°, -88.110374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.67954,"lon":-88.110374,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

71

NETL: Mercury Emissions Control Technologies - Enhanced High Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced High Temperature Mercury Oxidation and Enhanced High Temperature Mercury Oxidation and In-Situ Active Carbon Generation for Low Cost Mercury Capture Mercury oxidation phenomenon and the studies of this phenomenon have generally focused on lower temperatures, typically below 650°F. This has been based on the mercury vapor equilibrium speciation curve. The baseline extents of mercury oxidation as reported in the ICR dataset and observed during subsequent tests has shown a tremendous amount of scatter. The objective of this project is to examine, establish and demonstrate the effect of higher temperature kinetics on mercury oxidation rates. Further, it is the objective of this project to demonstrate how the inherent mercury oxidation kinetics can be influenced to dramatically increase the mercury oxidation.

72

WASTE TO WATTS Waste is a Resource!  

E-Print Network (OSTI)

WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From Waste to Energy To Energy from Waste #12;9.00-9.30: Registration 9.30-9.40: Chairman Ella Stengler opens

Columbia University

73

PERFORMANCE RIGHTS FOR SOFTWARE Mark Perry Stephen M. Watt  

E-Print Network (OSTI)

1 PERFORMANCE RIGHTS FOR SOFTWARE Mark Perry Stephen M. Watt Department of Computer Science University of Western Ontario London Ontario, Canada N6A 5B7 {markp,watt}@csd.uwo.ca ABSTRACT As we use

Watt, Stephen M.

74

Symbolic Polynomials with Sparse Exponents Stephen M. Watt  

E-Print Network (OSTI)

Symbolic Polynomials with Sparse Exponents Stephen M. Watt Ontario Research Centre for Computer Algebra Department of Computer Science, University of Western Ontario London Ontario, CANADA N6A 5B7 watt

Watt, Stephen M.

75

Functional Decomposition of Symbolic Polynomials Stephen M. Watt  

E-Print Network (OSTI)

Functional Decomposition of Symbolic Polynomials Stephen M. Watt Ontario Research CentreB7 watt@uwo.ca Abstract Earlier work has presented algorithms to factor and compute GCDs of symbolic

Watt, Stephen M.

76

Improving Pen-Based Mathematical Interfaces Stephen Watt  

E-Print Network (OSTI)

Improving Pen-Based Mathematical Interfaces Stephen Watt Computer Science Department, The University of Western Ontario, Canada watt@scl.csd.uwo.ca Abstract Pen-based user interfaces offer

Watt, Stephen M.

77

Type Specialization in Aldor Laurentiu Dragan and Stephen M. Watt  

E-Print Network (OSTI)

Type Specialization in Aldor Laurentiu Dragan and Stephen M. Watt Computer Science Department The University of Western Ontario London, Canada {ldragan,watt}@csd.uwo.ca Abstract. Computer algebra

Watt, Stephen M.

78

Post Facto Type Extension for Mathematical Programming Stephen M. Watt  

E-Print Network (OSTI)

Post Facto Type Extension for Mathematical Programming Stephen M. Watt Department of Computer Science University of Western Ontario London ON, Canada N6A 5B7 watt@csd.uwo.ca Abstract We present

Watt, Stephen M.

79

Generalization in Maple Cosmin Oancea Clare So Stephen M. Watt  

E-Print Network (OSTI)

Generalization in Maple Cosmin Oancea Clare So Stephen M. Watt Ontario Research Centre for Computer {coancea,clare,watt}@orcca.on.ca Abstract We explore the notion of generalization in the setting

Watt, Stephen M.

80

BOUNDED PARALLELISM IN COMPUTER ALGEBRA Stephen Michael Watt  

E-Print Network (OSTI)

BOUNDED PARALLELISM IN COMPUTER ALGEBRA by Stephen Michael Watt A thesis presented in Computer Science Waterloo, Ontario, 1985 c S.M. Watt 1985 #12;Permission has been granted to the National

Watt, Stephen M.

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Garbage Collecting the World Wide Web Stephen M. Watt  

E-Print Network (OSTI)

Garbage Collecting the World Wide Web Stephen M. Watt Western University London, Ontario, Canada N6A 5B7 Stephen.Watt@uwo.ca Abstract The World Wide Web has grown over the past decade and a half from

Watt, Stephen M.

82

An Analytic Model for Colluding Processes Stephen M. Watt  

E-Print Network (OSTI)

An Analytic Model for Colluding Processes Stephen M. Watt University of Western Ontario London, Canada www.csd.uwo.ca/watt Abstract--We develop a quantitative framework in order to understand how

Watt, Stephen M.

83

Pivot-Free Block Matrix Inversion Stephen M. Watt  

E-Print Network (OSTI)

Pivot-Free Block Matrix Inversion Stephen M. Watt Ontario Research Centre for Computer Algebra Department of Computer Science University of Western Ontario London Ontario, CANADA N6A 5B7 watt

Watt, Stephen M.

84

PERFORMANCE RIGHTS FOR SOFTWARE Mark Perry & Stephen M. Watt  

E-Print Network (OSTI)

1 PERFORMANCE RIGHTS FOR SOFTWARE Mark Perry & Stephen M. Watt Department of Computer Science University of Western Ontario London Ontario, Canada N6A 5B7 {markp,watt}@csd.uwo.ca ABSTRACT As we use

Perry, Mark

85

Watts, Qian, and Tracey 1 Multivariate OI correlation functions  

E-Print Network (OSTI)

Watts, Qian, and Tracey 1 APPENDIX Multivariate OI correlation functions The optimal interpolation to indicate its dependent variable. #12; Watts, Qian, and Tracey 2 As an example of using this extension

Rhode Island, University of

86

James A. Spudich and Susan Watt PROTEOLYTIC FRAGMENTS OF  

E-Print Network (OSTI)

James A. Spudich and Susan Watt MYOSIN PROTEOLYTIC FRAGMENTS OF COMPLEX WITH ACTIN THE PROTEOLYTlC l?RAGMEKTS OF MYOSLN (Received for publication, March 19, 1971) JAMES h. SPUDICH* AXD Susm WATT

Spudich, James A.

87

Development of a 100-Watt High Temperature Thermoelectric Generator  

Energy.gov (U.S. Department of Energy (DOE))

Test results for low and high temperature thermoelectric generators (TEG) those for a 530-watt BiTe TEG; design and construction of a 100-watt high temperature TEG currently in fabrication.

88

Goodbye, Watts. Hello, Lumens. (High-Resolution EPS Billboard...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPS Billboard) Goodbye, Watts. Hello, Lumens. (High-Resolution EPS Billboard) High-resolution EPS of billboard reading, 'Goodbye Watts. Hello Lumens. The new way to shop for light....

89

Goodbye, Watts. Hello, Lumens. (High-Resolution JPG Billboard...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hello Lumens. The new way to shop for light. Energysaver.gov DoEBillboardGoodbyeWatts.jpg More Documents & Publications Goodbye, Watts. Hello, Lumens. (High-Resolution EPS...

90

Mercury Spills EHS Contact: Kate Lumley-Sapanski (kxl3@psu.edu) 814-865-6391  

E-Print Network (OSTI)

Mercury Spills EHS Contact: Kate Lumley-Sapanski (kxl3@psu.edu) 814-865-6391 Michael Burke (mjb7 Not Enter ­Mercury Spill" · Call EHS immediately When to Report: For large mercury spills (i.e. manometers) or spills in areas where loose mercury could be heated (>90 F degrees) and vapors released and call EHS

Maroncelli, Mark

91

Context Sensitive Mathematical Character Recognition Elena Smirnova Stephen M. Watt  

E-Print Network (OSTI)

Context Sensitive Mathematical Character Recognition Elena Smirnova Stephen M. Watt Ontario Research Centre for Computer Algebra The University of Western Ontario London Ontario, Canada {elena,watt handwritten mathematical expressions. Watt and Xie [5, 6] have studied methods to improve the performance

Watt, Stephen M.

92

GIDL User Guide Cosmin Oancea and Stephen M. Watt  

E-Print Network (OSTI)

GIDL User Guide Cosmin Oancea and Stephen M. Watt Ontario Research Centre for Computer Algebra one is "Parametric Polymorphism for Software Component Architectures", by Oancea and Watt [6 language bindings. The paper "Generic Library Extension in a Heterogeneous Environment", by Oancea and Watt

Watt, Stephen M.

93

Writing on Clouds Vadim Mazalov and Stephen M. Watt  

E-Print Network (OSTI)

Writing on Clouds Vadim Mazalov and Stephen M. Watt Department of Computer Science The University of Western Ontario London Ontario, Canada N6A 5B7 {vmazalov,Stephen.Watt}@uwo.ca Abstract. While writer. Watt In our classification paradigm, a character is represented by the coefficients of an approximation

Watt, Stephen M.

94

Watts Professorship of Psychology in association with Wolfson College  

E-Print Network (OSTI)

1 Watts Professorship of Psychology in association with Wolfson College Outline of the post The University intends to make an appointment to the Watts Professorship of Psychology with effect from 1 October Sciences Board's current expectation is that the incoming Watts Professor will become Head of Department

Oxford, University of

95

Watts, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Watts, Oklahoma: Energy Resources Watts, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1092487°, -94.5702202° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.1092487,"lon":-94.5702202,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Assessing the Risk of Mercury in Drinking Water after UV Lamp Breaks Page 1 Assessing the Risk of Mercury in Drinking Water after UV Lamp Breaks  

E-Print Network (OSTI)

Assessing the Risk of Mercury in Drinking Water after UV Lamp Breaks Page 1 Assessing the Risk of Mercury in Drinking Water after UV Lamp Breaks Heidi Borchers University of New Hampshire, Environmental Ultraviolet (UV) lamps generate ultraviolet light through the vaporization of elemental mercury, by using

97

Shanghai Solar Watt Ltd | Open Energy Information  

Open Energy Info (EERE)

Solar Watt Ltd Solar Watt Ltd Jump to: navigation, search Name Shanghai Solar-Watt Ltd Place Shanghai, Shanghai Municipality, China Zip 200040 Sector Renewable Energy, Solar, Wind energy Product Providing photovoltaic systems, solar air heating systems, solar water pumping systems, wind energy systems (small), photovoltaic module manufacturing equipment and renewable energy system batteries. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents (OSTI)

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

Grossman, Mark W. (Belmont, MA); Biblarz, Oscar (Swampscott, MA)

1991-01-01T23:59:59.000Z

99

Mercury Thermometer Replacement Alternatives Thermometer Description Non-Mercury Non-Mercury Non-Mercury  

E-Print Network (OSTI)

Mercury Thermometer Replacement Alternatives Length Thermometer Description Non-Mercury Non-Mercury Non-Mercury Range / Division VWR-Enviro-Safe® Fisherbrand® Brooklyn Thermometer Company Inc. Total/A #12;Mercury Thermometer Replacement Alternatives Length Thermometer Description Non-Mercury Non

100

Development of a 500 Watt High Temperature Thermoelectric Generator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat...

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development of a 500 Watt High Temperature Thermoelectric Generator  

Energy.gov (U.S. Department of Energy (DOE))

A low temperature TEG has been built and tested providing over 500 watts electric power at a ?T of 2000C

102

Development of a 100-Watt High Temperature Thermoelectric Generator...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric generators (TEG) those for a...

103

Lower Watts Bar Reservoir Clinch River/Poplar Creek  

Energy.gov (U.S. Department of Energy (DOE))

This document explains the cleanup activities and any use limitations for the land surrounding the Lower Watts Bar Reservoir Clinch River/Poplar Creek.

104

Watts, Qian, and Tracey 1 1. Leveling and Mapping  

E-Print Network (OSTI)

Watts, Qian, and Tracey 1 1. Leveling and Mapping Accurate maps of the daily pressure and current other sites, giving \\Delta s P 0 (s) = \\Delta s p(t; s) \\Gamma \\Delta s P 0 (t; s), (1) #12; Watts, Qian

Rhode Island, University of

105

Watt parameters for the Los Alamos Model : Subroutine getab  

E-Print Network (OSTI)

Many neutron transport Monte-Carlo codes can randomly sample fission neutron energies from a Watt spectrum. The quality of simulations depends on how well the Watt spectrum represents the true energy spectrum of the fission neutrons, and on one's choice of the Watt parameters a and b. The energy spectra of fission neutrons have been calculated and tabulated for the neutron induced fission of 235,238U and 239Pu as a function of incoming neutron energy by Madland using the Los Alamos Model. Each of these energy spectra are mapped into time-of-flight space and fitted with a Watt spectrum. A subroutine getab has been written to interpolate these results, so that Watt a and b parameters can be estimated for all incoming neutron energies up to ~16 MeV.

Lestone, J P

2014-01-01T23:59:59.000Z

106

Watt parameters for the Los Alamos Model : Subroutine getab  

E-Print Network (OSTI)

Many neutron transport Monte-Carlo codes can randomly sample fission neutron energies from a Watt spectrum. The quality of simulations depends on how well the Watt spectrum represents the true energy spectrum of the fission neutrons, and on one's choice of the Watt parameters a and b. The energy spectra of fission neutrons have been calculated and tabulated for the neutron induced fission of 235,238U and 239Pu as a function of incoming neutron energy by Madland using the Los Alamos Model. Each of these energy spectra are mapped into time-of-flight space and fitted with a Watt spectrum. A subroutine getab has been written to interpolate these results, so that Watt a and b parameters can be estimated for all incoming neutron energies up to ~16 MeV.

J. P. Lestone

2014-09-18T23:59:59.000Z

107

Trico Electric Cooperative - SunWatts Incentive Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trico Electric Cooperative - SunWatts Incentive Program Trico Electric Cooperative - SunWatts Incentive Program Trico Electric Cooperative - SunWatts Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV systems 10 kW or smaller: 30% of the total system cost Program Info State Arizona Program Type Utility Rebate Program Rebate Amount PV systems 10 kW or smaller: $0.10/watt DC PV greater than 10 kW up to 1 MW: Performance-Based Incentive (competitive bid process) Solar water heaters: $0.40 per expected first year kWh savings Provider Trico Electric Cooperative, Inc. Through the SunWatts Program, Trico Electric Cooperative offers residential and business customers a rebate for installing photovoltaic (PV) systems

108

New River Light & Power Co | Open Energy Information  

Open Energy Info (EERE)

New River Light & Power Co New River Light & Power Co Place North Carolina Utility Id 13482 Utility Location Yes Ownership S NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt SV TOB Lighting 150 Watt SV TOB Lighting 150 Watt Sodium Vapor Lighting 175 Watt MV TOB Lighting 175 Watt Mercury Vapor Lighting 250 Watt Metal Halide Lighting 250 Watt SV TOB Lighting 250 Watt Sodium Vapor Lighting 400 Watt MV TOB Lighting 400 Watt Mercury Vapor Lighting 400 Watt Metal Halide Lighting 400 Watt SV TOB Lighting 750 Watt SV TOB Lighting

109

MERCURY EXCESS  

Science Journals Connector (OSTI)

Congress and EPA probe possibility of long-term STORAGE of liquid metal CHERYL HOGUE, C&EN WASHINGTON ... Hazardous waste handlers keep mercury from polluting the environment by reclaiming the liquid metal from scrap electrical switches, thermometers, and fluorescent light bulbs. ...

2007-07-02T23:59:59.000Z

110

Mercury Continuous Emmission Monitor Calibration  

SciTech Connect

Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry (ID/ICP/MS) performed by NIST in Gaithersburg, MD. The outputs of mercury calibrators are compared to one another using a nesting procedure which allows direct comparison of one calibrator with another at specific concentrations and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define calibrator performance as affected by variables such as pressure, temperature, line voltage, and shipping. In 2007 WRI developed and conducted a series of simplified qualification experiments to determine actual calibrator performance related to the variables defined in the qualification portion of the interim protocol.

John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

2009-03-12T23:59:59.000Z

111

NETL: Mercury Emissions Control Technologies - Advanced Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Mercury Sorbents with Low Impact on Power Plant Operations Advanced Mercury Sorbents with Low Impact on Power Plant Operations Apogee Scientific, Inc. (Apogee) will lead a Team comprised of Southern Company Services, TXU, Tennessee Valley Authority, EPRI, URS Group, University of Illinois-Illinois State Geological Survey (ISGS), Southern Research Institute (SRI), Calgon Carbon, and TDA Research, Inc., to evaluate a number of advanced sorbents for removing vapor-phase mercury from coal-fired flue gas that have minimal impact on by-product utilization and/or on existing particulate collection devices (PCD). The main objective of this program is to evaluate several advanced sorbents for removing mercury from coal-fired flue gas while posing minimal impact on plant operations through three advanced sorbent concepts: 1) Sorbents which minimize impact on concrete production through selective chemical passivation of activated carbon and use of non-carbon material, 2) sorbents that minimize baghouse pressure drop and ESP emissions, and 3) sorbents that can be recovered and reused.

112

Probing Mercury's Partnering Preferences  

NLE Websites -- All DOE Office Websites (Extended Search)

Preferences Probing Mercury's Partnering Preferences Merc.gif Why it Matters: Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources....

113

Kill-a-Watt Contest at UCF | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kill-a-Watt Contest at UCF Kill-a-Watt Contest at UCF Kill-a-Watt Contest at UCF April 2, 2010 - 5:16pm Addthis The University of Central Florida has created an innovative way to save energy and money on campus through a new dorm-based competition called "Kill-a-Watt". Students representing campus residence halls compete against each other to achieve energy savings and can receive up to $200 in scholarships. Watch how former DOE intern and current UCF DOE Campus Ambassador, Chris Castro, is spearheading this exciting effort and learn more about energy saving tips that students find useful like proper thermostat set points and reducing plug load. Read the DoE's press release about the video. Addthis Related Articles University of Central Florida Students' Energy Saving Work Showcased in New

114

Goodbye, Watts. Hello, Lumens. (Low-Resolution Billboard) | Department...  

Energy Savers (EERE)

Hello Lumens. The new way to shop for light. Energysaver.gov DoEBillboardGoodbyeWattsweb.jpg More Documents & Publications Goodbye, Watts. Hello, Lumens. (High-Resolution JPG...

115

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts associated with the U.S. Department of Energy proposed action to conduct a lead test assembly program to confirm the viability of using a commercial light water reactor to produce tritium. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 22, 1997 EA-1210: Finding of No Significant Impact Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington July 22, 1997 EA-1210: Final Environmental Assessment

116

City of Elizabethton, Tennessee (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Elizabethton, Tennessee (Utility Company) Elizabethton, Tennessee (Utility Company) Jump to: navigation, search Name City of Elizabethton Place Tennessee Utility Id 5763 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt High Pressure Sodium Lighting 1000 Watt Mercury Vapor Lighting 1000 Watt Metal Halide Lighting 150 Watt High Pressure Sodium Lighting 175 Watt Mercury Vapor Lighting 250 Watt High Pressure Sodium Lighting 250 Watt Mercury Vapor Lighting 400 Watt Mercury Vapor Lighting 400 Watt Metal Halide Lighting

117

Microsoft Word - Vapor Phase Elemental Sulfur Tech Brief DRAFT bbl 08-24.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

AT A GLANCE AT A GLANCE  eliminates excavation expense  applicable to large or small sites  straightforward deployment  uses heat to distribute sulfur throughout a soil  mercury reacts with sulfur to form immobile and insoluble minerals  patent applied for TechBrief Vapor Phase Elemental Sulfur Amendment for Sequestering Mercury in Contaminated Soil Scientists at the Savannah River National Laboratory (SRNL) have identified a method of targeting mercury in contaminated soil zone by use of sulfur vapor heated gas. Background Mercury contamination in soil is a common problem in the environment. The most common treatment is excavation - a method that works well for small sites where the

118

Data:C0ad9b1a-3011-4536-a95a-96ef0c42f10e | Open Energy Information  

Open Energy Info (EERE)

End date if known: Rate name: Security Lighting- Decorative- Mercury Vapor 175 Watt (15 Foot pole) Sector: Lighting Description: *Traditional Fixture with 15 Foot Fiberglass...

119

Data:74836389-a133-4920-9da3-cc4a33b8b78c | Open Energy Information  

Open Energy Info (EERE)

(Ohio) Effective date: 20130101 End date if known: Rate name: Outdoor Lighting LED Alternative to 175 Watt Mercury Vapor Sector: Lighting Description: *Plus an up-front...

120

Data:49b1819b-f1f0-468d-b3a2-3012b2aa73d5 | Open Energy Information  

Open Energy Info (EERE)

(Indiana) Effective date: 20130101 End date if known: Rate name: Outdoor Lighting LED Alternative to 175 Watt Mercury Vapor Sector: Lighting Description: *Plus an up-front...

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Data:Da7116bd-e0a5-415f-8ebb-834ced0cfa54 | Open Energy Information  

Open Energy Info (EERE)

name: Wyrulec Company (Nebraska) Effective date: 20130701 End date if known: Rate name: STREET LIGHT SERVICE-400 Watt Mercury Vapor Lights Sector: Lighting Description:...

122

Data:59d7f092-5be7-4716-b173-48032693d553 | Open Energy Information  

Open Energy Info (EERE)

Utility name: Wyrulec Company Effective date: 20130701 End date if known: Rate name: STREET LIGHT SERVICE-175 Watt Mercury Vapor Lights Sector: Lighting Description:...

123

Data:4e2f5f67-df6c-41c7-9e82-8ed696761c16 | Open Energy Information  

Open Energy Info (EERE)

Utility name: Wyrulec Company Effective date: 20130701 End date if known: Rate name: STREET LIGHT SERVICE-400 Watt Mercury Vapor Lights Sector: Lighting Description:...

124

Data:8e68af09-d681-4079-ad2c-7167dc5f2828 | Open Energy Information  

Open Energy Info (EERE)

name: Wyrulec Company (Nebraska) Effective date: 20130701 End date if known: Rate name: STREET LIGHT SERVICE-175 Watt Mercury Vapor Lights Sector: Lighting Description:...

125

Mercury contamination extraction  

DOE Patents (OSTI)

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

126

Immunoassay for mercury in seafood and animal tissues  

SciTech Connect

Methylmercury accumulates to high levels in the tissues of fish and other animals through biomagnification. Since methylmercury is extremely toxic, it is important to identify fish or animal tissues with mercury levels too high for human consumption. Current methods for the analysis of mercury are expensive and time- consuming, and they must be performed in a laboratory setting. In this study, a rapid and inexpensive mercury-specific immunoassay developed by BioNebraska was used to measure total mercury in tissue following acid digestion and methylmercury decomposition. A good correlation was obtained between the immunoassay and cold vapor atomic absorption spectrophotometry (CVAAS). Use of the mercury immunoassay will facilitate the rapid screening of large numbers of tissue samples.

Carlson, L.; Holmquist, B.; Ladd, R.; Riddell, M. [BioNebraska, Inc., Lincoln, NE (United States)

1995-12-01T23:59:59.000Z

127

In situ mercury stabilization  

SciTech Connect

BNL Royalty Project Internal Status Report. The funds from the allotment of royalty income were used to experimentally explore feasibility of related, potential new techniques based on the Environmental Sciences Department successful technology licensed for the ex situ treatment of mercury. Specifically, this work is exploring the concept of using Sulfur Polymer Cement (SPC) in an in situ application to stabilize and/or remove mercury (Hg) from surficial soil. Patent disclosure forms have been filed for this process. Soil was artificially spiked with 500 ppm Hg and a series of experiments were set up in which SPC rods were placed in the center of a mass of this soil. Some experiments were conducted at 20 C and others at 50 C. After times ranging from 11 to 24 days, these experiments were opened, photographed and the soil was sampled from discrete locations in the containers. The soil and SPC samples were analyzed for Fe and Hg by x-ray fluorescence. The Hg profile in the soil was significantly altered, with concentrations along the outer edge of the soil reduced by as much as 80% from the starting concentration. Conversely, closer to the treatment rod containing SPC, concentrations of Hg were significantly increased over the original concentration. Preliminary results for elevated temperature sample are shown graphically in Figure 2. Apparently the Hg had migrated toward the SPC and reacted with sulfur to form Hg S. This appears to be a reaction between gaseous phases of both S and Hg, with Hg having a greater vapor pressure. The concentration of low solubility HgS (i.e., low leaching properties) developed within 11 days at 50 C and 21 days at 20 C, confirming the potential of this concept.

Fuhrmann, M.; Kalb, P.; Adams, J.

2004-09-01T23:59:59.000Z

128

VP 100: Retooling Michigan -- Yachts and Watts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP 100: Retooling Michigan -- Yachts and Watts VP 100: Retooling Michigan -- Yachts and Watts VP 100: Retooling Michigan -- Yachts and Watts June 18, 2010 - 4:13pm Addthis Energetx Composites was able to purchase equipment such as this mold for utility-scale wind turbine blades thanks to a Recovery Act grant that matched the company’s $3.5 million investment. | Photo Courtesy of Energetx | Energetx Composites was able to purchase equipment such as this mold for utility-scale wind turbine blades thanks to a Recovery Act grant that matched the company's $3.5 million investment. | Photo Courtesy of Energetx | Joshua DeLung Near the eastern shore of Lake Michigan, there's a shift taking place. Tiara Yachts makes fiber composite structures for boats. Now the Holland, Mich.-based company is transforming part of its factory and using its 30

129

Phytoremediation of Ionic and Methyl Mercury P  

SciTech Connect

Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants as an environmentally friendly alternative to physical remediation methods. We have focused this phytoremediation research on soil and water-borne ionic and methylmercury. Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. Methylmercury, produced by native bacteria at mercury-contaminated wetland sites, is a particularly serious problem due to its extreme toxicity and efficient biomagnification in the food chain. We engineered several plant species (e.g., Arabidopsis, tobacco, canola, yellow poplar, rice) to express the bacterial genes, merB and/or merA, under the control of plant regulatory sequences. These transgenic plants acquired remarkable properties for mercury remediation. (1) Transgenic plants expressing merB (organomercury lyase) extract methylmercury from their growth substrate and degrade it to less toxic ionic mercury. They grow on concentrations of methylmercury that kill normal plants and accumulate low levels of ionic mercury. (2) Transgenic plants expressing merA (mercuric ion reductase) extract and electrochemically reduce toxic, reactive ionic mercury to much less toxic and volatile metallic mercury. This metal transformation is driven by the powerful photosynthetic reducing capacity of higher plants that generates excess NADPH using solar energy. MerA plants grow vigorously on levels of ionic mercury that kill control plants. Plants expressing both merB and merA degrade high levels of methylmercury and volatilize metallic mercury. These properties were shown to be genetically stable for several generations in the two plant species examined. Our work demonstrates that native trees, shrubs, and grasses can be engineered to remediate the most abundant toxic mercury pollutants. Building on these data our working hypothesis for the next grant period is that transgenic plants expressing the bacterial merB and merA genes will (a) remove mercury from polluted soil and water and (b) prevent methylmercury from entering the food chain. Our specific aims center on understanding the mechanisms by which plants process the various forms of mercury and volatilize or transpire mercury vapor. This information will allow us to improve the design of our current phytoremediation strategies. As an alternative to volatilizing mercury, we are using several new genes to construct plants that will hyperaccumulate mercury in above-ground tissues for later harvest. The Department of Energy's Oak Ridge National Laboratory and Brookhaven National Laboratory have sites with significant levels of mercury contamination that could be cleaned by applying the scientific discoveries and new phytoremediation technologies described in this proposal. The knowledge and expertise gained by engineering plants to hyperaccumulate mercury can be applied to the remediation of other heavy metals pollutants (e.g., arsenic, cesium, cadmium, chromium, lead, strontium, technetium, uranium) found at several DOE facilities.

Meagher, Richard B.

1999-06-01T23:59:59.000Z

130

Mercury and Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury and Fish Mercury and Fish Name: donna Location: N/A Country: N/A Date: N/A Question: how does mercury get into fish in rivers. what is the ecological process involved which could produce toxic levels of mercury in fish and eventually get into humans? Replies: Hi Donna! Nowadays mercury or its compounds are used at a high scale in many industries as the manufacture of chemicals, paints, household itens, pesticides and fungicides. These products can contaminate humans (and mamals) by direct contact, ingestion or inhalation. Besides the air can become contaminated also, and since mercury compounds produce harmful effects in body tissues and functions, that pollution is very dangerous. Now for your question: Efluent wastes containing mercury in various forms sometimes are dropped in sea water or in rivers or lakes. There the mercury may be converted by bacteria, that are in the muddy sediments, into organic mercurial compounds particularly the highly toxic alkyl mercurials ( methyl and di-methyl mercury), which may in turn be concentrated by the fishes and other aquatic forms of life that are used as food by men. The fishes dont seem to be affected but they are able to concentrate mercury in high poisoning levels, and if human beings, mamals or birds eat these containing mercury fishes, algae, crabs or oysters they will be contaminated and poisoned.

131

Sulfur Impregnation on Activated Carbon Fibers through H2S Oxidation for Vapor Phase  

E-Print Network (OSTI)

Sulfur Impregnation on Activated Carbon Fibers through H2S Oxidation for Vapor Phase Mercury: Sulfur was impregnated onto activated carbon fibers ACFs through H2S oxidation catalyzed by the sorbent CE Database subject headings: Activated carbon; Sulfur; Mercury; Hydrogen sulfides; Oxidation

Borguet, Eric

132

A Note on the Functional Decomposition of Symbolic Polynomials Stephen M. Watt  

E-Print Network (OSTI)

A Note on the Functional Decomposition of Symbolic Polynomials Stephen M. Watt Ontario Research, CANADA N6A 5B7 watt@uwo.ca It often arises that the general form of a polynomial is known

Watt, Stephen M.

133

Online Recognition of Multi-Stroke Symbols with Orthogonal Series Oleg Golubitsky Stephen M. Watt  

E-Print Network (OSTI)

Online Recognition of Multi-Stroke Symbols with Orthogonal Series Oleg Golubitsky Stephen M. Watt Department of Computer Science University of Western Ontario London, Ontario, Canada N6A 5B7 {ogolubit,watt

Watt, Stephen M.

134

Content-Faithful Stylesheets for MathML Igor Rodionov Stephen M. Watt  

E-Print Network (OSTI)

Content-Faithful Stylesheets for MathML Igor Rodionov Stephen M. Watt Ontario Research Centre for Computer Algebra Department of Computer Science University of Western Ontario London Ontario, Canada {igor,watt

Watt, Stephen M.

135

Report on the SNAP minisymposium at Siam '98 Robert M. Corless and Stephen M. Watt  

E-Print Network (OSTI)

Report on the SNAP minisymposium at Siam '98 Robert M. Corless and Stephen M. Watt Department6A 5B7 Rob.Corless@uwo.ca, Stephen.Watt@uwo.ca July, 1998 1 Background In the essay [10], Nick

Watt, Stephen M.

136

SPARSE EXPONENTS IN SYMBOLIC POLYNOMIALS MATTHEW MALENFANT AND STEPHEN M. WATT  

E-Print Network (OSTI)

SPARSE EXPONENTS IN SYMBOLIC POLYNOMIALS MATTHEW MALENFANT AND STEPHEN M. WATT Abstract. We.M. WATT The algorithms fall into two families: algebraic extension methods and projec- tion methods

Watt, Stephen M.

137

Generic Library Extension in a Heterogeneous Environment Cosmin Oancea Stephen M. Watt  

E-Print Network (OSTI)

Generic Library Extension in a Heterogeneous Environment Cosmin Oancea Stephen M. Watt Department of Computer Science The University of Western Ontario London Ontario, Canada N6A 5B7 {coancea,watt

Watt, Stephen M.

138

Hybrid Mathematical Symbol Recognition using Support Vector Machines Birendra Keshari and Stephen M. Watt  

E-Print Network (OSTI)

. Watt Department of Computer Science University of Western Ontario London, Ontario, Canada N6A 5B7 {bkeshari,watt}@orcca.on.ca Abstract Recognition of mathematical symbols is a challenging task, with a large

Watt, Stephen M.

139

Aspects of Mathematical Expression Analysis in Arabic Handwriting Elena Smirnova and Stephen M. Watt  

E-Print Network (OSTI)

. Watt Ontario Research Centre for Computer Algebra The University of Western Ontario London, ON, N6A5B7, Canada e-smirnova@ti.com, watt@orcca.on.ca Abstract We address the question of recognizing handwritten

Watt, Stephen M.

140

Streaming-Archival InkML Conversion Birendra Keshari and Stephen M. Watt  

E-Print Network (OSTI)

Streaming-Archival InkML Conversion Birendra Keshari and Stephen M. Watt Dept. of Computer Science University of Western Ontario London, Ontario, Canada N6A 5B7 {bkeshari,watt}@csd.uwo.ca Abstract Ink Markup

Watt, Stephen M.

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

InkChat: A Collaboration Tool for Mathematics Rui Hu and Stephen M. Watt  

E-Print Network (OSTI)

InkChat: A Collaboration Tool for Mathematics Rui Hu and Stephen M. Watt The University of Western Ontario London Ontario, Canada N6A 5B7 {rhu8,Stephen.Watt}@uwo.ca Abstract. We investigate the question

Watt, Stephen M.

142

Digital Ink Compression via Functional Approximation Vadim Mazalov and Stephen M. Watt  

E-Print Network (OSTI)

Digital Ink Compression via Functional Approximation Vadim Mazalov and Stephen M. Watt University of Western Ontario London, Ontario, Canada vmazalov@csd.uwo.ca, watt@csd.uwo.ca Abstract Representing digital

Watt, Stephen M.

143

Linear Compression of Digital Ink via Point Selection Vadim Mazalov and Stephen M. Watt  

E-Print Network (OSTI)

Linear Compression of Digital Ink via Point Selection Vadim Mazalov and Stephen M. Watt Ontario, Canada vmazalov@uwo.ca, Stephen.Watt@uwo.ca Abstract--We present a method to compress digital ink based

Watt, Stephen M.

144

A Context for Pen-Based Mathematical Computing Elena Smirnova Stephen M. Watt  

E-Print Network (OSTI)

A Context for Pen-Based Mathematical Computing Elena Smirnova Stephen M. Watt Ontario Research, Canada N6A 5B7 {elena,watt}@orcca.on.ca Abstract We report on an investigation to determine

Watt, Stephen M.

145

Performance Analysis of Generics in Scientific Computing Laurentiu Dragan Stephen M. Watt  

E-Print Network (OSTI)

Performance Analysis of Generics in Scientific Computing Laurentiu Dragan Stephen M. Watt Ontario Research Centre for Computer Algebra University of Western Ontario London, Ontario, Canada N6A 5B7 {ldragan,watt

Watt, Stephen M.

146

A Structure for Adaptive Handwriting Recognition Vadim Mazalov and Stephen M. Watt  

E-Print Network (OSTI)

A Structure for Adaptive Handwriting Recognition Vadim Mazalov and Stephen M. Watt Department of Computer Science University of Western Ontario London, Canada {vmazalov, Stephen.Watt}@uwo.ca Abstract We

Watt, Stephen M.

147

A Collaborative Interface for Multimodal Ink and Audio Documents Amit Regmi and Stephen M. Watt  

E-Print Network (OSTI)

A Collaborative Interface for Multimodal Ink and Audio Documents Amit Regmi and Stephen M. Watt Department of Computer Science University of Western Ontario London, Ontario, Canada N6A 5B7 {aregmi,watt

Watt, Stephen M.

148

An Approach to Mathematical Notation Selection Elena Smirnova, Stephen M. Watt  

E-Print Network (OSTI)

An Approach to Mathematical Notation Selection Elena Smirnova, Stephen M. Watt Ontario Research Centre for Computer Algebra, The University of Western Ontario E-mail: {alena, watt}@orcca.on.ca (Demo

Watt, Stephen M.

149

RECOGNITION FOR LARGE SETS OF HANDWRITTEN MATHEMATICAL SYMBOLS Stephen M. Watt and Xiaofang Xie  

E-Print Network (OSTI)

RECOGNITION FOR LARGE SETS OF HANDWRITTEN MATHEMATICAL SYMBOLS Stephen M. Watt and Xiaofang Xie Dept. of Computer Science University of Western Ontario London Ontario, Canada N6A 5B7 {watt

Watt, Stephen M.

150

A Technique for Generic Iteration and Its Optimization Stephen M. Watt  

E-Print Network (OSTI)

A Technique for Generic Iteration and Its Optimization Stephen M. Watt Department of Computer Science University of Western Ontario London Ontario, Canada N6A 5B7 watt@csd.uwo.ca Abstract Software

Watt, Stephen M.

151

John C. Mitani David Watts The evolution of non-maternal caretaking among anthropoid primates  

E-Print Network (OSTI)

John C. Mitani · David Watts The evolution of non-maternal caretaking among anthropoid primates: do (1997) 40: 213 ­ 220 © Springer-Verlag 1997 J.C. Mitani (&) · David Watts1 Department of Anthropology

152

Processes Coupling the Upper and Deep Ocean on the Continental Slope D. Randolph Watts  

E-Print Network (OSTI)

Processes Coupling the Upper and Deep Ocean on the Continental Slope D. Randolph Watts Graduate-pronged approach has required a combination of expertise from R. Watts, G. Sutyrin, and I. Ginis (who have

Rhode Island, University of

153

Letter-based speech synthesis Oliver Watts, Junichi Yamagishi, Simon King  

E-Print Network (OSTI)

Letter-based speech synthesis Oliver Watts, Junichi Yamagishi, Simon King Centre for Speech Technology Research, University of Edinburgh, UK O.S.Watts@sms.ed.ac.uk jyamagis@inf.ed.ac.uk Simon

Edinburgh, University of

154

Name of the University: HeriotWatt University Names of the students: Katrn Emma Ammendrup  

E-Print Network (OSTI)

Name of the University: HeriotWatt University Names of the students: Katrín Emma Ammendrup Exchange semester: Fall, 2013 Faculty: At HeriotWatt: Built Environment, Civil Engineering. At RU: Science

Karlsson, Brynjar

155

Processes Coupling the Upper and Deep Ocean on the Continental Slope D. Randolph Watts  

E-Print Network (OSTI)

Processes Coupling the Upper and Deep Ocean on the Continental Slope D. Randolph Watts Graduate of expertise from R. Watts, G. Sutyrin, and I. Ginis (who have a coordinated ONR-supported study at URI

Rhode Island, University of

156

A Comparative Evaluation of Three Mobile Languages Heriot-Watt University  

E-Print Network (OSTI)

A Comparative Evaluation of Three Mobile Languages Zara Field Heriot-Watt University Edinburgh, Scotland E-mail: zf1@macs.hw.ac.uk P. W. Trinder Heriot-Watt University Edinburgh, Scotland E-mail: trinder

Trinder, Phil

157

Bruce G. Terrell, Gordon P. Watts & Timothy J. Runyan The Search For Planter  

E-Print Network (OSTI)

May 2014 Bruce G. Terrell, Gordon P. Watts & Timothy J. Runyan The Search For Planter The Ship Design & Layout: Matt McIntosh, ONMS; Liz.Liang, ONMS #12;May 2014 Bruce G. Terrell, Gordon P. Watts

158

Call for Presentations The GPGPU Continuum from mWatts to peta flops  

E-Print Network (OSTI)

Call for Presentations SAVE the DATE The GPGPU Continuum from mWatts to peta flops Organizing on using GPUs as part of mobile devices, which limits the power consumption of the GPU to mWatts. We

Schuster, Assaf

159

AVTA: GE Energy WattStation AC Level 2 Charging System Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GE Energy WattStation AC Level 2 Charging System Testing Results AVTA: GE Energy WattStation AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced...

160

Evidence of Bottom-Trapped Currents in the Kuroshio Extension Region STUART P. BISHOP AND D. RANDOLPH WATTS  

E-Print Network (OSTI)

. RANDOLPH WATTS Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island JAE trapping (Thompson and Luyten 1976; Hogg 1981; Johns and Watts 1986; Hogg 2000). Johns and Watts (1986

Rhode Island, University of

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: IEP - Mercury and Air Toxic Element Impacts of CCB Disposal and  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury and Air Toxic Element Impacts of CCB Disposal and Utilization Mercury and Air Toxic Element Impacts of CCB Disposal and Utilization The goal of the proposed effort is to evaluate the impact of mercury and other air toxic elements on the management of CCBs. Supporting objectives are to 1) determine the release potential of selected air toxic elements, including mercury and arsenic, from CCBs under specific environmental conditions; 2) increase the database of information on mercury and other air toxic element releases for CCBs; 3) develop comparative laboratory and field data; and 4) develop appropriate laboratory and field protocols. The specific mechanisms of air toxic element releases to be evaluated will be leaching releases, vapor releases to the atmosphere, and biologically induced leaching and vapor releases.

162

Online Stroke Modeling for Handwriting Recognition Oleg Golubitsky Stephen M. Watt  

E-Print Network (OSTI)

Online Stroke Modeling for Handwriting Recognition Oleg Golubitsky Stephen M. Watt Department of Computer Science University of Western Ontario London Ontario, Canada N6A 5B7 {oleg,watt Stephen M. Watt and Oleg Gol- ubitsky. Permission to copy is hereby granted provided the original

Watt, Stephen M.

163

Programming Language Concepts and Paradigms David A Watt 3-1 Solutions to Exercises 3  

E-Print Network (OSTI)

Programming Language Concepts and Paradigms © David A Watt 3-1 Solutions to Exercises 3 3 lifetime of p lifetime of i #12;Programming Language Concepts and Paradigms © David A Watt 3-2 3) call return #12;Programming Language Concepts and Paradigms © David A Watt 3-3 ** 3.7.2 A possible

Watt, David A.

164

Optimization of Point Selection on Digital Ink Curves Rui Hu and Stephen M. Watt  

E-Print Network (OSTI)

Optimization of Point Selection on Digital Ink Curves Rui Hu and Stephen M. Watt Computer Science Department University of Western Ontario London, Canada rhu8@uwo.ca, Stephen.Watt@uwo.ca Abstract Digital ink. In 2012, Mazalov and Watt [6] described a piecewise linear ap- proximation algorithm to compress digital

Watt, Stephen M.

165

Programming Language Concepts and Paradigms David A Watt 2-1 Solutions to Exercises 2  

E-Print Network (OSTI)

Programming Language Concepts and Paradigms © David A Watt 2-1 Solutions to Exercises 2 2 and Paradigms © David A Watt 2-2 function not (b: Boolean) return Boolean is begin if b then return false; else ::= ... | { Expression ( , Expression )* } #12;Programming Language Concepts and Paradigms © David A Watt 2-3 2

Watt, David A.

166

INVERTED ECHO SOUNDER DEVELOPMENT G. F. Chaplin and D. Randolph Watts  

E-Print Network (OSTI)

INVERTED ECHO SOUNDER DEVELOPMENT G. F. Chaplin and D. Randolph Watts Graduate School thermocline. Watts (1975), in discussing IES data from MODE I, showed that changes in dynamic height can evolving since its initial development. The first multi- instrument deployment was in MODE I (Watts

Rhode Island, University of

167

Cache Size in a Cost Model for Heterogeneous Skeletons Heriot-Watt University, Edinburgh,  

E-Print Network (OSTI)

Cache Size in a Cost Model for Heterogeneous Skeletons K.A. Armih Heriot-Watt University, Edinburgh, Scotland, UK kaa41@hw.ac.uk G.J. Michaelson Heriot-Watt University, Edinburgh, Scotland, UK G.Michaelson@hw.ac.uk P.W. Trinder Heriot-Watt University, Edinburgh, Scotland, UK P.W.Trinder@hw.ac.uk Abstract High

Trinder, Phil

168

Einzigartige energiesparende Lsungen mit einem Stromverbrauch von 0,0 Watt im Standby und  

E-Print Network (OSTI)

Einzigartige energiesparende Lösungen mit einem Stromverbrauch von 0,0 Watt im Standby und ECO,9 cm (22 Zoll) TFT Bildschirm 0-Watt-Energiesparmodus Datenblatt Ausgabedatum April 2009 Genie?en Sie Merkmale IPS (In Plane Switching), 0 Watt im Energiesparmodus, ECO-Taste, ECO-Status-LED: 3 Farben für 3

Ott, Albrecht

169

Name of the University: Heriot-Watt University Names of the student: Andri Mr Reynisson  

E-Print Network (OSTI)

Name of the University: Heriot-Watt University Names of the student: Andri Már Reynisson Exchange ­ very short Heriot-Watt University is based in Riccarton, just outside Edinburgh in Scotland. The school faculty divisions and special areas. These are the schools at Heriot-Watt Universtity: School

Karlsson, Brynjar

170

Einzigartige energiesparende Lsungen mit einem Stromverbrauch von 0,0 Watt im Standby und  

E-Print Network (OSTI)

Einzigartige energiesparende Lösungen mit einem Stromverbrauch von 0,0 Watt im Standby und ECO P Line mit 0-Watt-Energiesparmodus DaTEnBLaTT Ausgabedatum Oktober 2009 Genie?en Sie die perfekte dieses 66 cm (26 Zoll)-Widescreen-Displays der P Line. #12;P26W-5 ECO IPS Besondere Merkmale 0 Watt im

Ott, Albrecht

171

WattProbe: Automatic Learning of Hardware Energy Models Manish Prasad  

E-Print Network (OSTI)

WattProbe: Automatic Learning of Hardware Energy Models Manish Prasad CSE 629 Project Report be the ability to do so without the cumbersome use of externally connected measurement devices. Watt like multi­meters for measurement would be extremely desirable. WattProbe precisely tar­ gets this goal

Chiueh, Tzi-cker

172

Towards Better Performance Per Watt in Virtual Environments on Asymmetric Single-ISA Multi-core  

E-Print Network (OSTI)

Towards Better Performance Per Watt in Virtual Environments on Asymmetric Single-ISA Multi, performance-asymmetric multicore architec- tures, performance per watt 1. INTRODUCTION Asymmetric single performance per watt than homogeneous multicore proces- sors. As power consumption in data centers becomes

Fedorova, Alexandra

173

Clinical and Experimental Optometry 88.5 September 2005 Retinal remodelling Jones, Watt and Marc  

E-Print Network (OSTI)

Clinical and Experimental Optometry 88.5 September 2005 282 Retinal remodelling Jones, Watt defects). Even though all these INVITED REVIEW Retinal remodelling Bryan W Jones PhD Carl B Watt Ph and Experimental Optometry 88.5 September 2005 283 Retinal remodelling Jones, Watt and Marc dystrophies

Marc, Robert E.

174

Processes Coupling the Upper and Deep Ocean on the Continental Slope D. Randolph Watts  

E-Print Network (OSTI)

Processes Coupling the Upper and Deep Ocean on the Continental Slope D. Randolph Watts Graduate / modeling) approach requires a combination of expertise from R. Watts, G. Sutyrin, and I. Ginis (who have in a published journal article (Logoutov, Sutyrin and Watts, 2001). These results are being used by Ginis

Rhode Island, University of

175

Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device  

SciTech Connect

Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the application of this technology for removing elemental mercury from flue gas streams generated by utility boilers. On an absolute basis, the quantity of reagent required to accomplish the oxidation was small. For example, complete oxidation of mercury was accomplished using a 1% volume fraction of oxygen in a nitrogen stream. Overall, the tests with mercury validated the most useful aspect of the CR&E technology: Providing a method for elemental mercury removal from a gas phase by employing a specific plasma reagent to either increase reaction kinetics or promote reactions that would not have occurred under normal circumstances.

Charles Mones

2006-12-01T23:59:59.000Z

176

Denver Watts to Water | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Denver Watts to Water Denver Watts to Water Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate ENERGY STAR communications toolkit Bring Your Green to Work with ENERGY STAR

177

Watts Community, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Watts Community, Oklahoma: Energy Resources Watts Community, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.035006°, -94.5727598° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.035006,"lon":-94.5727598,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

White LED Benchmark of 65 Lumens Per Watt Achieved  

Energy.gov (U.S. Department of Energy (DOE))

Novel chip design and the balance of multiple interrelated design parameters have enabled Cree, Inc.'s Santa Barbara Technology Center to demonstrate white LEDs with efficacies greater than 65 lumens per watt at 350 mA. The results are particularly significant because they were achieved with a pre-production prototype chip using the same package used in Cree's commercially available XLamp 7090 high power LED, rather than a laboratory device.

179

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents (OSTI)

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

Grossman, M.W.; Biblarz, O.

1991-10-15T23:59:59.000Z

180

Superfund record of decision (EPA Region 4): USDOE Oak Ridge Reservation, Lower Watts Bar Reservoir Operable Unit, Oak Ridge, TN, September 29, 1995  

SciTech Connect

The decision document presents the selected remedial action for the Lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The selected remedy for the LWBR OU addresses the contamination of the Watts Bar Reservoir area from Tennessee River mile (TRM) 529.9 at Watts Bar Dam upstream to TRM 567.5 at the confluence of the Clinch and Tennessee Rivers. The response action was chosen from a full range of actions that could possibly address the two primary risks identified in the remedial investigation (RI). Risks to human health posed by LWBR include exposure to metals in deep sediment of the main river channel and to polychlorinated biphenyls (PCBs), chlordane, aldrin, arsenic, and mercury in fish tissue. The same response actions are applicable to reducing ecological risk in LWBR. The selected remedy uses existing institutional controls to reduce exposure to contaminated sediment; fish consumption advisories to reduce exposure to contaminants in fish tissue; and annual monitoring to detect changes in LWBR contaminant levels or mobility.

NONE

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Source-attribution for atmospheric mercury deposition: Where does the mercury in mercury deposition come from?  

E-Print Network (OSTI)

1 Source-attribution for atmospheric mercury deposition: Where does the mercury in mercury of the Mercury Working Group, Office of Air Quality, Indiana Department of Environmental Management (IDEM) April 21, 2005 #12;2 For mercury, how important is atmospheric deposition relative to other loading

182

NETL: Mercury Emissions Control Technologies - Low-Cost Options for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Options for Moderate Levels of Mercury Control Low-Cost Options for Moderate Levels of Mercury Control ADA- Environmental Solutions will test two new technologies for mercury control. The TOXECON II(tm) technology injects activated carbon directly into the downstream collecting fields of an electrostatic precipitator. The benefit of this technology is that the majority of the fly ash is collected in the upstream collecting fields which results in only a small portion of carbon-contaminated ash. Additionally, the TOXECON II(tm) technology requires minimal capital investment as only minor retrofits to the electrostatic precipitator are needed. The second technology is injection of novel sorbents for mercury removal on units with hot-side electrostatic precipitators (ESPs). Mercury removal from hot-side electrostatic precipitators is difficult as their high operating temperature range keeps the mercury in the vapor phase and prevents the mercury from adsorbing onto sorbents. The TOXECON II(tm) technology will be tested at Entergy's Independence Station which burns PRB coal. The novel sorbents for hot-side ESPs technology will be tested at MidAmerican's Council Bluffs Energy Center and MidAmerican's Louisa Station, both of which burn PRB coal. Additional project partners include EPRI, MidAmerican, Entergy, Alliant, ATCO Power, DTE Energy, Oglethorpe Power, Norit Americas Inc., Xcel Energy, Southern Company, Arch Coal, and EPCOR.

183

The Origin of the Mercury Bands at 2480A  

Science Journals Connector (OSTI)

The group of eight mercury bands near 2480A was photographed under varied excitation conditions with the purpose of determining their origin. The source was a discharge through mercury vapor produced in a quartz tube through external electrodes by a low-voltage Tesla coil. Five tubes containing distilled mercury and commercial mercury arc lamp showed this group of bands. These bands were weakened by heat along with known mercury bands. The origin is undoubtedly some form of mercury molecule. The most probable forms are Hg2+ and Hg2. Five observations favor Hg2+ over Hg2. (1) These bands have never been observed in fluorescence. (2) The 2476 band is more intense than the 2345 Hg2 band under strong field excitation but weaker than 2345 under low field excitation. (3) No other bands with properties like those of the 2480 group have been observed in the mercury spectrum and Rayleigh has shown that these bands do not occur in absorption. (4) The bands in this group may be classified as sequences v?-v??=0123, and a lower limit for D of 0.3 volts estimated. (5) In the v?-v??=0 sequence, emission is observed from state v?=41 indicating molecules with very high vibrational energy. This energy may be supplied by the electric field if the emitter is an ion but not if it is a neutral molecule.

J. Gibson Winans

1932-12-15T23:59:59.000Z

184

Process for low mercury coal  

DOE Patents (OSTI)

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01T23:59:59.000Z

185

Process for low mercury coal  

DOE Patents (OSTI)

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04T23:59:59.000Z

186

Farmers Rural Electric Coop Corp | Open Energy Information  

Open Energy Info (EERE)

Coop Corp Coop Corp Jump to: navigation, search Name Farmers Rural Electric Coop Corp Place Kentucky Utility Id 6194 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial - Industrial less than 50 kW Commercial Commercial - Industrial more than 50 kW Commercial Large Industrial Industrial Mercury Vapor - 1000 watt Lighting Mercury Vapor - 250 watt Lighting Mercury Vapor - 400 watt Lighting Mercury Vapor Lamp - 175 watt Lighting Mercury Vapor Lamp - 175 watt, shared Lighting

187

Mercury Chamber Considerations  

E-Print Network (OSTI)

Mercury Chamber Considerations V. Graves IDS-NF Target Studies July 2011 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Mercury Chamber Considerations, July 2011 Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment

McDonald, Kirk

188

MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM  

SciTech Connect

In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

V.K. Mathur

2003-02-01T23:59:59.000Z

189

City of Frankfort, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Frankfort Frankfort Place Indiana Utility Id 6707 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A Residential Residential B Commercial Commercial C General Power Economic Development Rate OL Outdoor Lighting 100 watt Sodium Vapor Lighting OL Outdoor Lighting 150 watt Sodium Vapor Lighting OL Outdoor Lighting 175 watt Mercury Vapor Lighting OL Outdoor Lighting 250 watt Mercury Vapor Lighting OL Outdoor Lighting 250 watt Sodium Vapor Lighting OL Outdoor Lighting 400 watt Mercury Vapor Lighting

190

Propagation of Kuroshio Extension Meanders between 143 and 149E KAREN L. TRACEY, D. RANDOLPH WATTS, AND KATHLEEN A. DONOHUE  

E-Print Network (OSTI)

WATTS, AND KATHLEEN A. DONOHUE Graduate School of Oceanography, University of Rhode Island, Narragansett

Rhode Island, University of

191

Dynamic duo captures mercury  

SciTech Connect

There is strong evidence that the combination of wet flue gas desulphurisation (FGD) scrubbers and selective catalytic reduction (SCR) can prove a viable and formidable combination for knocking out mercury. This article analyzes the capabilities and limitations of the SCR-FGD combination for mercury compliance, including applicability to different types of coal and issues with scrubber by-products. 3 figs.

Senior, C.; Adams, B. [Reaction Engineering International (United States)

2006-02-15T23:59:59.000Z

192

Mercury in the environment  

ScienceCinema (OSTI)

Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

Idaho National Laboratory - Mike Abbott

2010-01-08T23:59:59.000Z

193

NETL: Mercury Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Innovations for Existing Plants Mercury Emissions Control NETL managed the largest funded research program in the country to develop an in-depth understanding of fossil combustion-based mercury emissions. The program goal was to develop effective control options that would allow generators to comply with regulations. Research focus areas included measurement and characterization of mercury emissions, as well as the development of cost-effective control technologies for the U.S. coal-fired electric generating industry. Control Technologies Field Testing Phase I & II Phase III Novel Concepts APCD Co-benefits Emissions Characterization

194

DOE Mercury Control Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Research Mercury Control Research Air Quality III: Mercury, Trace Elements, and Particulate Matter September 9-12, 2002 Rita A. Bajura, Director National Energy Technology Laboratory www.netl.doe.gov 169330 RAB 09/09/02 2 Potential Mercury Regulations MACT Standards * Likely high levels of Hg reduction * Compliance: 2007 Clean Power Act of 2001 * 4-contaminant control * 90% Hg reduction by 2007 Clear Skies Act of 2002 * 3-contaminant control * 46% Hg reduction by 2010 * 70% Hg reduction by 2018 * Hg emission trading President Bush Announcing Clear Skies Initiative February 14, 2002 169330 RAB 09/09/02 3 Uncertainties Mercury Control Technologies * Balance-of-plant impacts * By-product use and disposal * Capture effectiveness with low-rank coals * Confidence of performance 169330 RAB 09/09/02 4

195

Mercury Jet Studies Tristan Davenne  

E-Print Network (OSTI)

Mercury Jet Studies Tristan Davenne Rutherford Appleton Laboratory Joint UKNF, INO, UKIERI meeting mercury target and reported a radial velocity at surface of mercury jet due to proton beam is 36m/s #12;Numerical simulation of Sievers & Pugnat Result Click on image above to watch video of 2cm mercury target

McDonald, Kirk

196

Mercury Effects, Sources and Control Measures  

E-Print Network (OSTI)

Mercury Effects, Sources and Control Measures Prepared by Alan B. Jones, Brooks Rand, Ltd., Seattle ................................................................................................................................1 MERCURY SOURCES....................................................................................................................................................................................8 Mercury dumping from naval vessels

197

Mercury Sensing with Optically Responsive Gold Nanoparticles  

E-Print Network (OSTI)

We assume that the mass of mercury adsorbed at saturation istactics, nanoparticle based mercury sensing should advancemost sensitive method for mercury sensing. References "1!

James, Jay Zachary

2012-01-01T23:59:59.000Z

198

Programming Language Concepts and Paradigms David A Watt 6-1 Solutions to Exercises 6  

E-Print Network (OSTI)

Programming Language Concepts and Paradigms © David A Watt 6-1 Solutions to Exercises 6 6;Programming Language Concepts and Paradigms © David A Watt 6-2 6.2.3 Date abstract type in ADA: (a) Possible and Paradigms © David A Watt 6-3 function "+" (r1, r2: Rat) return Rat is begin return (r1.num*r2.den + r2.num

Watt, David A.

199

Absolute Factorization of Bivariate Polynomials with Floating Point Coe cients Andr Galligo and Stephen M. Watt  

E-Print Network (OSTI)

and Stephen M. Watt University of Nice-Sophia Antipolis Given a polynomial px y of degree d and complex oating

Watt, Stephen M.

200

Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines  

Science Journals Connector (OSTI)

1 June 1971 research-article Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines W. A. Smeaton

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project  

SciTech Connect

Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulness of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to find a Federal sponsor to continue with the project, the Watts Bar Dam Project was canceled and the Exploranium radiation monitors were removed from the doors of Watts Bar Dam in early 2006. The DHS Domestic Nuclear Detection Office decided to proceed with a Pilot building on the ORNL work performed at the TN and SC weigh stations in the highway sector of the Trusted Corridors project and eventually expanded it to other southern states under the name of Southeastern Corridor Pilot Project (SETCP). Many of the Phase I goals were achieved however real-world test data of private watercraft and barges was never obtained.

Walker, Randy M [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Hill, David E [ORNL

2011-11-01T23:59:59.000Z

202

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

1995-09-26T23:59:59.000Z

203

Further testing and development of an 11-watt Stirling converter  

SciTech Connect

Three previous IECEC papers describe the development of an 11-watt Radioisotope Stirling Generator (RSG) intended for remote power applications. This paper describes more recent testing and development activities. Testing of the engineering model (EM) was performed to determine the effect of heat rejection temperature, thermal input and initial charge pressure on thermal efficiency. Shock testing of the generator included a drop test and 3 hours of testing in a random vibration environment where g{sup 2}/Hz = 0.04. Endurance testing of a complete Stirling converter continues, with over 15,000 maintenance-free operating hours. Endurance testing of critical subsystems and components has achieved 14,000 to 26,000 hours of operation without failure. Minor changes to the RSG prototype design, based on the development of the EM, are described.

Ross, B.A.; Montgomery, W.L. [Stirling Technology Co., Richland, WA (United States)

1995-12-31T23:59:59.000Z

204

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1989-01-01T23:59:59.000Z

205

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

Grossman, M.W.; George, W.A.

1991-06-18T23:59:59.000Z

206

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

207

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

208

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

Grossman, M.W.; George, W.A.

1989-11-07T23:59:59.000Z

209

Mercury Risk Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED WITH COAL-FIRED POWER PLANTS: IMPACTS OF LOCAL DEPOSITIONS *T.M. Sullivan 1 , F.D. Lipfert 2 , S.M. Morris 2 , and S. Renninger 3 1 Building 830, Brookhaven National Laboratory, Upton, NY 11973 2 Private Consultants 3 Department of Energy, National Energy Technology Laboratory, Morgantown, WV ABSTRACT The U.S. Environmental Protection Agency has announced plans to regulate emissions of mercury to the atmosphere from coal-fired power plants. However, there is still debate over whether the limits should be placed on a nationwide or a plant-specific basis. Before a nationwide limit is selected, it must be demonstrated that local deposition of mercury from coal-fired power plants does not impose an excessive local health risk. The principal health

210

Programming Language Concepts and Paradigms David A Watt 5-1 Solutions to Exercises 5  

E-Print Network (OSTI)

Programming Language Concepts and Paradigms © David A Watt 5-1 Solutions to Exercises 5 5.1.1 We;Programming Language Concepts and Paradigms © David A Watt 5-2 · Reference parameter mechanisms: v, w, and sum

Watt, David A.

211

New Aspects of InkML for Pen-Based Computing Stephen M. Watt  

E-Print Network (OSTI)

New Aspects of InkML for Pen-Based Computing Stephen M. Watt Department of Computer Science University of Western Ontario London, Ontario, Canada N6A 5B7 watt@csd.uwo.ca Abstract As pen-based computing

Watt, Stephen M.

212

Programming Language Concepts and Paradigms David A Watt 4-1 Solutions to Exercises 4  

E-Print Network (OSTI)

Programming Language Concepts and Paradigms © David A Watt 4-1 Solutions to Exercises 4 4 with a Nat in-parameter } #12;Programming Language Concepts and Paradigms © David A Watt 4-2 4.2.2 Static vs

Watt, David A.

213

Approximate Polynomial Decomposition Robert M. Corless Mark W. Giesbrecht David J. Jeffrey Stephen M. Watt  

E-Print Network (OSTI)

M. Watt Dept. of Computer Science and Dept. of Applied Mathematics University of Western Ontario London, ON, N6A 5B7, Canada email: Rob.Corless, Mark.Giesbrecht David.Jeffrey, Stephen.Watt @uwo.ca 1

Watt, Stephen M.

214

CS 115: Programming I Spring 2014 Instructors Dr. Suzanne Rivoire, Dr. Tia Watts, Noah Melcon  

E-Print Network (OSTI)

CS 115: Programming I ­ Spring 2014 Instructors Dr. Suzanne Rivoire, Dr. Tia Watts, Noah Melcon Meeting times Lecture: TTh 9:20­10:35 Darwin 102 Rivoire Lab (Sections 1/2): T 5:00­7:50 Darwin 25 Watts

Ravikumar, B.

215

Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton  

SciTech Connect

The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury being sorbed onto the CCB when exposed to ambient-temperature air. The environmental performance of the mercury captured on AC used as a sorbent for mercury emission control technologies indicated that current CCB management options will continue to be sufficiently protective of the environment, with the potential exception of exposure to elevated temperatures. The environmental performance of the other ATEs investigated indicated that current management options will be appropriate to the CCBs produced using AC in mercury emission controls.

David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

2007-03-31T23:59:59.000Z

216

Determination of mercury and organic mercury contents in Malaysian seafood  

Science Journals Connector (OSTI)

The contents of mercury and organic mercury in various types of seafood from various location in Malaysia were determined...Rastrelliger kanagurta), Spanish mackerel (Scomberomurus commersoni), shrimp (Peneaus sp...

S. A. Rahman; A. K. Wood; S. Sarmani

1997-03-01T23:59:59.000Z

217

NETL: Mercury Emissions Inactive Mercury Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Completed Mercury Projects Completed Mercury Projects View specific project information by clicking the state of interest on the map. Clickable U.S. Map ALABAMA Characterizing Toxic Emissions from Coal-Fired Power Plants Southern Research Institute The objective of this contract is to perform sampling and analysis of air toxic emissions at commercial coal-fired power plants in order to collect data that the EPA will use in their Congressionally mandated report on Hazardous Air Pollutants from Electric Utilities. CALIFORNIA Assessment of Toxic Emissions from a Coal-Fired Power Plant Utilizing an ESP Energy & Environmental Research Corporation – CA The overall objective of this project is to conduct comprehensive assessments of toxic emissions of two coal-fired electric utility power plants. The power plant that was assessed for toxic emissions during Phase I was American Electric Power Service Corporation's Cardinal Station Unit 1.

218

Free-hand Sketch Grouping for Video Retrieval J. P. Collomosse, G. McNeill, and L. Watts  

E-Print Network (OSTI)

Free-hand Sketch Grouping for Video Retrieval J. P. Collomosse, G. McNeill, and L. Watts Department of Computer Science, University of Bath, UK {jpc, g.mcneill, l.watts}@cs.bath.ac.uk Abstract We present

Collomosse, John

219

*s.watt@bangor.ac.uk Achieving near-correct focus cues in a 3-D display using multiple  

E-Print Network (OSTI)

*s.watt@bangor.ac.uk Achieving near-correct focus cues in a 3-D display using multiple image planes Simon J. Watt* a , Kurt Akeley b , Ahna R. Girshick c , Martin S. Banks c a School of Psychology

Banks, Marty

220

ARM Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Water Vapor IOP The SGP CART site will host the third ARM water vapor IOP on September 18-October 8, 2000. The CART site is home to a powerful array of instruments capable of...

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mercury-Related Materials Studies  

E-Print Network (OSTI)

Mercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 #12 Evaluation of Cavitation Resistance of Type 316LN Stainless Steel in Mercury Using a Vibratory Horn," J. Nucl Pump Impeller Materials for Mercury Service at the Spallation Neutron Source," Oak Ridge National

McDonald, Kirk

222

Bioaccumulation of Mercury in Sharks  

E-Print Network (OSTI)

Bioaccumulation of Mercury in Sharks Part 2 a Using a subset of data collected on RJD shark research trips, you will analyze the mercury levels found in the Florida Sharks we catch. Based on your analysis, you will be able to conclude which species have the highest levels of mercury contamination

Miami, University of

223

Bioaccumulation of Mercury in Sharks  

E-Print Network (OSTI)

Resources: EPA General Info on Mercury - http://www.epa.gov/mercury/about.htm FDA Mercury Levels in Seafood - http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ Seafood/ucm092041/en/index.html Monterey Bay Aquarium Sustainable Seafood Guide - http://www.montereybayaquarium.org/cr/Seafood

Miami, University of

224

Utilizing RF-I and Intelligent Scheduling for Better Throughput/Watt in a Mobile GPU Memory System  

E-Print Network (OSTI)

Utilizing RF-I and Intelligent Scheduling for Better Throughput/Watt in a Mobile GPU Memory System system is essential for the mobile GPU. In this article, we propose to improve throughput/watt are able to improve throughput 17% up to 66% while increasing throughput per watt by an average of 18% up

Cong, Jason "Jingsheng"

225

Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors  

SciTech Connect

This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

Gary Blythe; John Currie; David DeBerry

2008-03-31T23:59:59.000Z

226

Gas Mileage of 1994 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles 4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1994 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Capri 20 City 21 Combined 24 Highway 1994 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1994 Mercury Capri 21 City 23 Combined 26 Highway 1994 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1994 Mercury Capri 22 City 24 Combined 28 Highway 1994 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Cougar 17 City 19 Combined 24 Highway 1994 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Cougar 16 City 18 Combined 23 Highway 1994 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Grand Marquis 16

227

Gas Mileage of 1985 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1985 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 19 City 20 Combined 23 Highway 1985 Mercury Capri 4 cyl, 2.3 L, Manual 4-spd, Regular Gasoline Compare 1985 Mercury Capri 21 City 23 Combined 27 Highway 1985 Mercury Capri 6 cyl, 3.8 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 17 City 18 Combined 20 Highway 1985 Mercury Capri 8 cyl, 5.0 L, Manual 5-spd, Regular Gasoline Compare 1985 Mercury Capri 15 City 17 Combined 22 Highway 1985 Mercury Capri 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1985 Mercury Capri 15 City 17 Combined 22 Highway 1985 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 18 City

228

NETL: Mercury Emissions Control Technologies - Oxidation of Mercury Across  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels The objective of the proposed research is to assess the potential for the oxidation of mercury in flue gas across SCR catalysts in a coal fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. Results from the project will contribute to a greater understanding of mercury behavior across SCR catalysts. Additional tasks include: review existing pilot and field data on mercury oxidation across SCR catalysts and propose a mechanism for mercury oxidation and create a simple computer model for mercury oxidation based on the hypothetical mechanism. Related Papers and Publications: Final Report - December 31, 2004 [PDF-532KB]

229

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, Marshall G. (Woodside, CA)

1985-01-01T23:59:59.000Z

230

It's Elemental - The Element Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Gold Gold Previous Element (Gold) The Periodic Table of Elements Next Element (Thallium) Thallium The Element Mercury [Click for Isotope Data] 80 Hg Mercury 200.59 Atomic Number: 80 Atomic Weight: 200.59 Melting Point: 234.32 K (-38.83°C or -37.89°F) Boiling Point: 629.88 K (356.73°C or 674.11°F) Density: 13.5336 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Metal Period Number: 6 Group Number: 12 Group Name: none What's in a name? Named after the planet Mercury. Mercury's chemical symbol comes from the Greek word hydrargyrum, which means "liquid silver." Say what? Mercury is pronounced as MER-kyoo-ree. History and Uses: Mercury was known to the ancient Chinese and Hindus and has been found in 3500 year old Egyptian tombs. Mercury is not usually found free in nature

231

Third generation development of an 11-watt Stirling converter  

SciTech Connect

This paper describes recent design enhancements, performance results, and development of an artificial neural network (ANN) model related to the Radioisotope Stirling Generator (RSG), an 11-watt converter designed for remote power applications. Design enhancements include minor changes to improve performance, increase reliability, facilitate fabrication and assembly for limited production, and reduce mass. Innovative modifications were effected to increase performance and improve reliability of the vacuum foil insulation (VFI) package and linear alternator. High and low operating temperature acceptance testing of the Engineering Model (EM) demonstrated the robust system characteristics. These tests were conducted for 1 week of operation each, with rejector temperatures of 95 C and 20 C, respectively. Endurance testing continues for a complete Stirling converter, the Development Model (DM), with over 25,000 hours of maintenance-free operation. Endurance testing of flexures has attained over 540 flexure-years and endurance testing of linear motors/alternators has achieved nearly 27,000 hours of operation without failure. An ANN model was developed and tested successfully on the DM. Rejection temperatures were varied between 3 C and 75 C while load voltages ranged between engine stall and displacer overstroke. The trained ANN model, based solely on externally measured parameters, predicted values of piston amplitude, displacer amplitude, and piston-displacer phase angle within {+-}2% of the measured values over the entire operating regime. The ANN model demonstrated its effectiveness in the long-term evaluation of free-piston Stirling machines without adding the complexity, reduced reliability, and increased cost of sophisticated diagnostic instrumentation.

Montgomery, W.L.; Ross, B.A.; Penswick, L.B. [Stirling Technology Co., Kennewick, WA (United States)

1996-12-31T23:59:59.000Z

232

Gas Mileage of 1986 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Mercury Vehicles 6 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1986 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1986 Mercury Capri 18 City 20 Combined 23 Highway 1986 Mercury Capri 4 cyl, 2.3 L, Manual 4-spd, Regular Gasoline Compare 1986 Mercury Capri 21 City 23 Combined 26 Highway 1986 Mercury Capri 6 cyl, 3.8 L, Automatic 3-spd, Regular Gasoline Compare 1986 Mercury Capri 17 City 19 Combined 22 Highway 1986 Mercury Capri 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1986 Mercury Capri 15 City 18 Combined 24 Highway 1986 Mercury Capri 8 cyl, 5.0 L, Manual 5-spd, Regular Gasoline Compare 1986 Mercury Capri View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1986 Mercury Cougar 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline

233

Gas Mileage of 1991 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1991 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Capri 21 City 22 Combined 24 Highway 1991 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1991 Mercury Capri View MPG Estimates Shared By Vehicle Owners 21 City 23 Combined 26 Highway 1991 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1991 Mercury Capri 22 City 24 Combined 28 Highway 1991 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Cougar 17 City 20 Combined 24 Highway 1991 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 22 Highway 1991 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

234

Dalton Utilities | Open Energy Information  

Open Energy Info (EERE)

Dalton Utilities Dalton Utilities Jump to: navigation, search Name Dalton Utilities Place Georgia Utility Id 4744 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 - Watt Sodium Vapor Lighting 1000 - Watt Metal Halide Directional Type Lighting 150 Watt Mercury Vapor Underground Service Lighting 150 Watt Sodium Vapor Underground Service Lighting 175 - Watt Mercury Vapor Lighting 175 - Watt Sodium Vapor Lighting

235

A guide to web content for Heriot-Watt University websites  

E-Print Network (OSTI)

1 A guide to web content for Heriot-Watt University websites #12;2 Contents A guide to web content..........................................................................................................................3 Why is writing for the web different?..........................................................................................3 Planning your web content

Howie, Jim

236

WATTS TOWERS: THE EFFECTS OF THERMAL CYCLES ON THE FORMATION AND BEHAVIOR OF CRACKS  

E-Print Network (OSTI)

to make lasting repairs to the Watts Towers. 15 REFERENCES [1] LSTC. "LS-DYNA KEYWROD MANUAL." DYNA Support. Livermore Software Technology Corporation, n.d. Web. 5 Apr. 2013.

Spencer, Matthew T

2013-02-06T23:59:59.000Z

237

Solar-induced chemical vapor deposition of diamond-type carbon films  

DOE Patents (OSTI)

An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

1994-09-13T23:59:59.000Z

238

Solar-induced chemical vapor deposition of diamond-type carbon films  

DOE Patents (OSTI)

An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

Pitts, J. Roland (Lakewood, CO); Tracy, C. Edwin (Golden, CO); King, David E. (Lakewood, CO); Stanley, James T. (Beaverton, OR)

1994-01-01T23:59:59.000Z

239

Mercury control in 2009  

SciTech Connect

Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbon facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.

Sjostrom, S.; Durham, M.; Bustard, J.; Martin, C. [ADA Environmental Solutions, Littleton, CO (United States)

2009-07-15T23:59:59.000Z

240

Elkhorn Rural Public Pwr Dist | Open Energy Information  

Open Energy Info (EERE)

Rural Public Pwr Dist Rural Public Pwr Dist Jump to: navigation, search Name Elkhorn Rural Public Pwr Dist Place Nebraska Utility Id 5780 Utility Location Yes Ownership P NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Mercury Vapor Lamp 175 Watt Lighting Mercury Vapor Lamp 250 Watt Lighting Mercury Vapor Lamp 400 Watt Lighting Metal Halide 1000 Watt Lighting Metal Halide 1500 Watt Lighting Metal Halide 400 Watt Lighting RATE 1,3- Farm Residential, Commercial, Cabins, Seasonal--Single Phase Commercial RATE 12, 69- Urban Commercial Electric Space Heating, Single Phase

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Method and apparatus for monitoring the flow of mercury in a system  

DOE Patents (OSTI)

An apparatus and method for monitoring the flow of mercury in a system. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission.

Grossman, Mark W. (Belmont, MA)

1987-01-01T23:59:59.000Z

242

Vapor spill monitoring method  

DOE Patents (OSTI)

Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

243

Gas Mileage of 2002 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mercury Vehicles 2 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2002 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2002 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2002 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2002 Mercury Cougar 18 City 21 Combined 26 Highway 2002 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2002 Mercury Cougar 18 City 21 Combined 27 Highway 2002 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2002 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2002 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 2002 Mercury Mountaineer 2WD 14 City

244

Gas Mileage of 1989 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Mercury Vehicles 9 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1989 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 25 Highway 1989 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Premium Gasoline Compare 1989 Mercury Cougar 15 City 17 Combined 21 Highway 1989 Mercury Cougar 6 cyl, 3.8 L, Manual 5-spd, Premium Gasoline Compare 1989 Mercury Cougar 15 City 18 Combined 22 Highway 1989 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1989 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Grand Marquis Wagon 15

245

Gas Mileage of 1993 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Mercury Vehicles 3 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1993 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Capri 20 City 21 Combined 24 Highway 1993 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1993 Mercury Capri View MPG Estimates Shared By Vehicle Owners 21 City 23 Combined 26 Highway 1993 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1993 Mercury Capri View MPG Estimates Shared By Vehicle Owners 22 City 24 Combined 28 Highway 1993 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Cougar 17 City 19 Combined 24 Highway 1993 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15

246

Gas Mileage of 2008 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles 8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2008 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2008 Mercury Grand Marquis FFV Gas 15 City 18 Combined 23 Highway E85 11 City 13 Combined 16 Highway 2008 Mercury Mariner 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner 4WD 19 City 21 Combined 24 Highway 2008 Mercury Mariner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner 4WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 22 Highway 2008 Mercury Mariner FWD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner FWD 20 City 22 Combined 26 Highway 2008 Mercury Mariner FWD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner FWD

247

Gas Mileage of 1987 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1987 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Cougar 17 City 19 Combined 24 Highway 1987 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1987 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1987 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Grand Marquis Wagon 16 City 19 Combined 24 Highway 1987 Mercury Lynx 4 cyl, 1.9 L, Automatic 3-spd, Regular Gasoline Compare 1987 Mercury Lynx 23

248

Gas Mileage of 1990 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

90 Mercury Vehicles 90 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1990 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Premium Gasoline Compare 1990 Mercury Cougar 15 City 18 Combined 21 Highway 1990 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 24 Highway 1990 Mercury Cougar 6 cyl, 3.8 L, Manual 5-spd, Premium Gasoline Compare 1990 Mercury Cougar 15 City 18 Combined 22 Highway 1990 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1990 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Grand Marquis Wagon 15

249

Biosequence Similarity Search on the Mercury System  

E-Print Network (OSTI)

Biosequence Similarity Search on the Mercury System Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang, and Joseph Lancaster, "Biosequence Similarity Search on the Mercury on the Mercury System Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang

Chamberlain, Roger

250

Recovery of mercury from acid waste residues  

DOE Patents (OSTI)

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

Greenhalgh, Wilbur O. (Richland, WA)

1989-01-01T23:59:59.000Z

251

Recovery of mercury from acid waste residues  

DOE Patents (OSTI)

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

Greenhalgh, W.O.

1987-02-27T23:59:59.000Z

252

Structural Studies on the Hydration of L-Glutamic Acid in Solution Sylvia E. McLain,*,, Alan K. Soper, and Anthony Watts,  

E-Print Network (OSTI)

. Soper, and Anthony Watts, Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, Oxfordshire OX

Watts, Anthony

253

Structure and Hydration of L-Proline in Aqueous Solutions Sylvia E. McLain,*,, Alan K. Soper, Ann E. Terry, and Anthony Watts  

E-Print Network (OSTI)

. Terry, and Anthony Watts ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX

Watts, Anthony

254

Mercury Strategic Plan Outfall 200 Mercury Treatment Facility  

Office of Environmental Management (EM)

Partial LMR * Alpha-5 LMR & Bldg Characterization * S&M mercury removal * Hg waterfishsediment studies * Technology Development Plan * Debris treatability study * Fate and...

255

ARM - Water Vapor  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vapor Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global...

256

Final Report - Molecular Mechanisms of Bacterial Mercury Transformation - UCSF  

SciTech Connect

The bacterial mercury resistance (mer) operon functions in Hg biogeochemistry and bioremediation by converting reactive inorganic Hg(II) and organic [RHg(II)]1+ mercurials to relatively inert monoatomic mercury vapor, Hg(0). Its genes regulate operon expression (MerR, MerD, MerOP), import Hg(II) (MerT, MerP, and MerC), and demethylate (MerB) and reduce (MerA) mercurials. We focus on how these components interact with each other and with the host cell to allow cells to survive and detoxify Hg compounds. Understanding how this ubiquitous detoxification system fits into the biology and ecology of its bacterial host is essential to guide interventions that support and enhance Hg remediation. In the current overall project we focused on two aspects of this system: (1) investigations of the energetics of Hg(II)-ligand binding interactions, and (2) both experimental and computational approaches to investigating the molecular mechanisms of Hg(II) acquisition by MerA and intramolecular transfer of Hg(II) prior to reduction within the MerA enzyme active site. Computational work was led by Prof. Jeremy Smith and took place at the University of Tennessee, while experimental work on MerA was led by Prof. Susan Miller and took place at the University of California San Francisco.

Miller, Susan M. [UCSF

2014-04-24T23:59:59.000Z

257

Investigation of modified speciation for enhanced control of mercury  

SciTech Connect

Mercury was identified as a hazardous air pollutant in Title 3 of the 1990 Clean Air Act Amendments. It has been singled out for particular scrutiny because of its behavior in the environment (bioaccumulation) and its potential for deleterious effects on humans and wildlife. After studying the sources of mercury in the environment, the US Environmental Protection Agency has concluded that coal-fired boilers generate a significant fraction of the total anthropogenic emissions. Therefore, the agency is currently considering whether to impose mercury control requirements on coal-fired boilers in the electric utility industry. However, the costs for potential control measures (such as sorbent injection) can be extremely high. Mercury removal with chloric acid solutions was tested. The presence of NO increased Hg removal. It appeared that both gas-gas and gas-liquids reactions were operating, with the gas-phase reactions involving NO becoming increasingly important as the solute concentration was raised. From these studies, it was concluded that even higher Hg{sup 0} removals could be obtained if more of the reagent was made available for reaction in the gas phase. For this reason (and also to simulate a more real-world duct-injection process) a new series of tests was initiated in which an ultrasonic atomizer was used to inject small droplets of the oxidizing solutions into a flowing gas stream containing Hg{sup 0} vapors and other typical flue-gas components. The results of those tests are described in this paper.

Livengood, C.D.; Mendelsohn, M.H.

1998-08-01T23:59:59.000Z

258

Neutrino Factory Mercury Flow Loop  

E-Print Network (OSTI)

Neutrino Factory Mercury Flow Loop V. GravesV. Graves C. Caldwell IDS-NF Videoconference March 9, 2010 #12;Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94 2 liter/min 24 9 gpm)mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment showed that a pump

McDonald, Kirk

259

Permitted Mercury Storage Facility Notifications | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Waste Management Waste Disposition Long-Term Management and Storage of Elemental Mercury is in the Planning Stages Permitted Mercury Storage Facility...

260

Magnetoacoustic Effect in Mercury  

Science Journals Connector (OSTI)

Geometric resonances in the ultrasonic attenuations have been observed in high-purity mercury single crystals with longitudinal sound waves propagated along five crystallographic directions at frequencies up to 165 MHz. Of the five, only data for the (110), (110), and (112) directions are reported. The dominant resonance branches have been assigned to calipers of the second-band electron-lens surface, with three major symmetry calipers being obtained. The remainder of the resonance branches have been assigned to orbits on the first-band hole surface. Various breakthrough dimensions of the hole surface were determined from these orbits. The pseudopotential coefficients corresponding to the planes bounding the first Brillouin zone in mercury have been estimated by comparing the geometric resonance data with the results of a fourpseudowave calculation neglecting spin-orbit coupling.

Tommy E. Bogle; Julian B. Coon; Claude G. Grenier

1969-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Apparatus for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-07-16T23:59:59.000Z

262

Method for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-04-09T23:59:59.000Z

263

Data:1d5aab18-53ed-40f7-aabb-889fec1b89ff | Open Energy Information  

Open Energy Info (EERE)

Lighting Description: To any customer for lighting of outdoor areas on a dusk to dawn, photo-controlled. Norminal Watt Rating Mercury Vapor 400 Monthly kwh 151 Source or...

264

City of Morgan City, Louisiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Louisiana (Utility Company) Louisiana (Utility Company) Jump to: navigation, search Name Morgan City City of Place Louisiana Utility Id 12927 Utility Location Yes Ownership M NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1,000-watt mercury vapor Lighting 175-watt mercury vapor Lighting 250-watt mercury vapor Lighting 400-watt mercury vapor Lighting COMMERCIAL (EC) Commercial HOUSING AUTHORITY (EH) Residential INDUSTRIAL (EP) Industrial MUNICIPAL (EM) Commercial RESIDENTIAL (ER) Residential Average Rates Residential: $0.0945/kWh Commercial: $0.0902/kWh

265

Gas Mileage of 2000 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2000 Mercury Vehicles 2000 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2000 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2000 Mercury Cougar 21 City 25 Combined 31 Highway 2000 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2000 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2000 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2000 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2000 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2000 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2000 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

266

Gas Mileage of 2004 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles 4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2004 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2004 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2004 Mercury Marauder 8 cyl, 4.6 L, Automatic 4-spd, Premium Gasoline Compare 2004 Mercury Marauder View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 21 Highway 2004 Mercury Monterey Wagon FWD 6 cyl, 4.2 L, Automatic 4-spd, Regular Gasoline Compare 2004 Mercury Monterey Wagon FWD View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 21 Highway 2004 Mercury Mountaineer 2WD 8 cyl, 4.6 L, Automatic 5-spd, Regular Gasoline Compare 2004 Mercury Mountaineer 2WD 13 City 15 Combined 18 Highway 2004 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

267

Gas Mileage of 1997 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1997 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1997 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 12 City 14 Combined 17 Highway 1997 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

268

Gas Mileage of 1995 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1995 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Cougar 17 City 19 Combined 24 Highway 1995 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1995 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1995 Mercury Mystique 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Mystique View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 1995 Mercury Mystique 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline

269

Gas Mileage of 2001 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2001 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 27 Highway 2001 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2001 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

270

Gas Mileage of 1998 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles 8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1998 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1998 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1998 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 18 Highway 1998 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 2WD 12 City 14 Combined 17 Highway 1998 Mercury Mountaineer 4WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 4WD View MPG Estimates Shared By Vehicle Owners 14 City 15 Combined 18 Highway 1998 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

271

Gas Mileage of 2005 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2005 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 23 Highway 2005 Mercury Mariner 2WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 2WD View MPG Estimates Shared By Vehicle Owners 19 City 21 Combined 24 Highway 2005 Mercury Mariner 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 2WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 23 Highway 2005 Mercury Mariner 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 4WD 17 City 19 Combined 21 Highway 2005 Mercury Mariner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline

272

NETL: Mercury Emissions Control Technologies - Pilot Testing of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Oxidation Catalysts Project Summary Testing of Mercury Oxidation Catalysts Project Summary URS Group, Inc., Austin, TX, will demonstrate at the pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project's pilot tests, conducted at electric generating plants using wet flue gas desulfurization systems and particulate collection systems, will be conducted for periods up to 14 months to provide data for future, full-scale designs. Mercury-oxidation potential will be measured periodically to provide long-term catalyst life data. The project is applicable to about 90,000 megawatts of generation capacity. Project partners are the Electric Power Research Institute, Palo Alto, CA, which will co-manage and co-fund the pilot tests, and five utilities.

273

NETL: Mercury Emissions Control Technologies - Evaluation of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems CONSOL is evaluating the mercury removal co-benefits achieved by SCR-FGD combi nations. Specific issues that will be addressed include the effects of SCR, catalyst degradation, and load changes on mercury oxidation and capture. This objective will be achieved by measuring mercury removal achieved by SCR-FGD combinations at ten plants with such equipment configurations. These plants include five with wet limestone, three wet lime, and two with dry scrubbing. Material balance will be conducted. Related Papers and Publications: Final Report - April 2006 [PDF-377KB] Topical Report # 11 - January 2006 [PDF-19MB] Topical Report # 9 - January 2006 [PDF-6MB]

274

Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control  

SciTech Connect

Public Service Company of Colorado and ADA Technologies, Inc. have performed a study of the injection of activated carbon for the removal of vapor-phase mercury from coal-fired flue gas streams. The project was completed under contract to the US Department of Energy's National Energy Technology Laboratory, with contributions from EPRI and Public Service Company. The prime contractor for the project was Public Service Company, with ADA Technologies as the major subcontractor providing technical support to all aspects of the project. The research and development effort was conducted in two phases. In Phase I a pilot facility was fabricated and tests were performed using dry carbon-based sorbent injection for mercury control on a coal-fired flue gas slipstream extracted from an operating power plant. Phase II was designed to move carbon injection technology towards commercial application on coal-fired power plants by addressing key reliability and operability concerns. Phase II field work included further development work with the Phase I pilot and mercury measurements on several of PSCo's coal-fired generating units. In addition, tests were run on collected sorbent plus fly ash to evaluate the impact of the activated carbon sorbent on the disposal of fly ash. An economic analysis was performed where pilot plant test data was used to develop a model to predict estimated costs of mercury removal from plants burning western coals. Testing in the pilot plant was undertaken to quantify the effects of plant configuration, flue gas temperature, and activated carbon injection rate on mercury removal. All three variables were found to significantly impact the mercury removal efficiency in the pilot. The trends were clear: mercury removal rates increased with decreasing flue gas temperature and with increasing carbon injection rates. Mercury removal was much more efficient with reverse-gas and pulse-jet baghouse configurations than with an ESP as the particulate control device. The native fly ash of the host unit provided significant mercury removal capacity, so that the activated carbon sorbent served as an incremental mercury removal mechanism. Tests run to characterize the waste product, a combination of fly ash and activated carbon on which mercury was present, showed that mercury and other RCRA metals of interest were all below Toxic Characteristic Leaching Procedure (TCLP) regulatory limits in the leachate. The presence of activated carbon in the fly ash was shown to have an effect on the use of fly ash as an additive in the manufacture of concrete, which could limit the salability of fly ash from a plant where activated carbon was used for mercury control.

Jim Butz; Terry Hunt

2005-11-01T23:59:59.000Z

275

The Kill-a-Watt Competition at University of Central Florida | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Kill-a-Watt Competition at University of Central Florida The Kill-a-Watt Competition at University of Central Florida The Kill-a-Watt Competition at University of Central Florida Addthis Description At the University of Central Florida, students have taken it upon themselves to create a culture of energy efficiency. Each year, different dorm buildings compete to see who can save the most. In 2009, the school saw a total savings of $27,000. As of March 2010, they've saved over $24,000 this year alone. Speakers Chris Castro, Alexandra Kennedy, Margaret Lo, David Norvell, Keith Coelho, John Hitt PhD Duration 5:40 Topic Energy Efficiency Commercial Heating & Cooling Consumption Credit Energy Department Video CHRIS CASTRO: Last summer, I was an intern at the Department of Energy Office of Energy Efficiency and Renewable Energy and I got a chance to

276

Watch the Watts: Tips for Buying a New Television | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Watch the Watts: Tips for Buying a New Television Watch the Watts: Tips for Buying a New Television Watch the Watts: Tips for Buying a New Television March 8, 2011 - 6:30am Addthis Jeannie Saur Senior Communicator, National Renewable Energy Laboratory Buying a new television in a complex and feature-rich market can be a daunting experience. Sure there are lots of great choices with stunning picture quality and amazing features. And with so much competition, TV prices have fallen dramatically from even a year ago. But when my 1990-era television finally died, I was overwhelmed with choices for a flat screen TV. There are plasmas, liquid crystal displays (LCDs), and light-emitting diodes (LEDs). TVs can be Internet enabled so they can stream programming. And now there are a number of choices for 3D viewing. With so many things to consider, I decided the most important

277

Mercury-Related Materials Studies  

E-Print Network (OSTI)

. Pawel, "Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for MercuryMercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 ­ updated Feb 3, 2010 #12;ORNL Material Reports Reviewed · IDS-NF requested ORNL research any past SNS

McDonald, Kirk

278

Stanford University Mercury Thermometer Replacement  

E-Print Network (OSTI)

Stanford University Mercury Thermometer Replacement Program Instructions for Reuniting Separated Fluid Column of Non-Mercury Thermometer Heating Method Heat the thermometers bulb in an upright position of the thermometer. Note that over filling the expansion chamber will break the thermometer. Tap the thermometer

279

RMP Mercury Strategy 06-03-09.doc Page 1 of 5 RMP MERCURY STRATEGY  

E-Print Network (OSTI)

RMP Mercury Strategy 06-03-09.doc Page 1 of 5 RMP MERCURY STRATEGY Mercury is a pollutant of high the information most urgently needed by managers to find remedies to the Bay's mercury problem. The focus of total mercury in the Bay are expected to slowly decline over coming decades. The premise

280

Mercury Speciation in the Presence of Polysulfides  

E-Print Network (OSTI)

Mercury Speciation in the Presence of Polysulfides J E N N Y A Y L A J A Y , * , F R A N C¸ O I Environmental mercury methylation appears modulated by sulfide concentrations, possibly via changes in mercury, there has been much recent interest in quantifying the chemical speciation and lipid solubility of mercury

Morel, François M. M.

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Methods for dispensing mercury into devices  

DOE Patents (OSTI)

A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1987-04-28T23:59:59.000Z

282

Mercury and the Gold Country Angler Survey  

E-Print Network (OSTI)

#12;#12;Mercury and the Gold Rush #12;#12;#12;#12;#12;#12;#12;#12;#12;Gold Country Angler Survey A Pilot Study to Assess Mercury Exposure from Sport Fish Consumption in the Sierra Nevada Carrie Monohan, Ph.D. #12;Mercury and the Gold Rush Deer Creek 1908 Greenhorn Creek 2011 Mercury was used during

283

Methods for dispensing mercury into devices  

DOE Patents (OSTI)

A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

Grossman, M.W.; George, W.A.

1987-04-28T23:59:59.000Z

284

Collection of atomic mercury by electrostatic precipitators  

Science Journals Connector (OSTI)

... Flameless atomic absorption spectroscopy was used to measure the difference in the mercury concentration of gas ...

O. M. G. NEWMAN; D. J. PALMER

1978-10-12T23:59:59.000Z

285

Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury  

E-Print Network (OSTI)

activities that release mercury to the atmosphere include coal burning, industrial processes, waste incine

286

City of Lebanon, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Indiana Indiana Utility Id 9613 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CS - Electric Commercial Polyphase Commercial CS - Electric Commercial Single Phase Commercial MS - Electric Municipal OL - Outdoor Lighting 100 watt sodium vapor Lighting OL - Outdoor Lighting 150 watt sodium vapor Lighting OL - Outdoor Lighting 175 watt mercury vapor Lighting OL - Outdoor Lighting 200 watt sodium vapor Lighting OL - Outdoor Lighting 250 watt mercury vapor Lighting

287

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network (OSTI)

measurements of atomic mercury. Applied Physics B, 87(2),M. & Covelli, S. , 2000. Mercury speciation in sedimentsarea of the Idrija mercury mine, Slovenia. Environmental

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

288

Fluorescent sensor for mercury  

DOE Patents (OSTI)

The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

Wang, Zidong (Urbana, IL); Lee, Jung Heon (Evanston, IL); Lu, Yi (Champaign, IL)

2011-11-22T23:59:59.000Z

289

Mercury (Hg) and methyl mercury (MMHg) bioaccumulation in three fish species (sea food) from Persian Gulf  

Science Journals Connector (OSTI)

In this study, mercury (Hg) and methyl mercury (MMHg) were determined in three fish species including benthic, benthopelagic and pelagic fish from Arvand river, northwest of Persian Gulf. Mercury and methyl mercu...

Sajad Abdolvand; Sahar Kayedinejad Esfahani

2014-09-01T23:59:59.000Z

290

Town of Bargersville, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bargersville, Indiana (Utility Company) Bargersville, Indiana (Utility Company) Jump to: navigation, search Name Town of Bargersville Place Indiana Utility Id 1208 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Service Commercial Outdoor Lighting- 100 watt high pressure sodium Lighting Outdoor Lighting- 175 Watt Mercury Vapor Lighting Outdoor Lighting- 400 watt high pressure sodium Lighting Outdoor Lighting- 400 watt mercury vapor (directional) Lighting Outdoor Lighting- 400 watt mercury vapor (round) Lighting

291

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR  

E-Print Network (OSTI)

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR S. Das1 , D. P. Arnold2 presents the design, fabrication, and characterization of permanent-magnet (PM) generators for use, coupled to a transformer and rectifier, delivers 1.1 W of DC electrical power to a resistive load

292

HMM adaptation and voice conversion for the synthesis of child speech: a Oliver Watts1  

E-Print Network (OSTI)

, Junichi Yamagishi1 , Simon King1 , Kay Berkling2 1 Centre for Speech Technology Research, University of Edinburgh, UK 2 Inline Internet Online Dienste GmbH, Germany O.S.Watts@sms.ed.ac.uk jyamagis- netically balanced, consistently read, and cleanly recorded. The type of child speech typically available

Edinburgh, University of

293

La question du privilge en France pour la machine de Watt Paul Naegel,  

E-Print Network (OSTI)

;2 The steam engine, invented and patented in 1769 by James Watt, then marketed by him in association of very large diameter. Started in England, matters related to the new steam engines were obtained opportunities were based in France on already known applications, made with Newcomen fire engines

Paris-Sud XI, Université de

294

Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser  

E-Print Network (OSTI)

with cladding pumping for high average power. The laser generates 31 nJ chirped pulses at 70 MHz repetition rate of double-clad (DC) gain fiber is common, and there are a few reports of mode-locked lasers that employ DCSub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser K. Kieu,* W. H

Kieu, Khanh

295

University of Hawai`i Watt Watcher: Energy Consumption Data Analysis  

E-Print Network (OSTI)

: This material is based upon work supported by the United States Department of Energy under Award Number DE-FC-06 or reflect those of the United States Government or any agency thereof. #12; UH Watt Watcher: Energy A METHODS Background 18 Energy Use Measurement 19 Comfort Level Measurement

296

Statistical analysis of wind energy in Chile David Watts a,b,*, Danilo Jara a  

E-Print Network (OSTI)

Data Bank Statistical analysis of wind energy in Chile David Watts a,b,*, Danilo Jara December 2010 Keywords: Wind Wind speed Energy Capacity factor Electricity Chile a b s t r a c t Bearing role in any future national energy generation matrix. With a view to understanding the local wind

Catholic University of Chile (Universidad Católica de Chile)

297

A 5-WATT, 37-GHz MONOLITHIC GRID AMPLIFIER Blythe Deckman1  

E-Print Network (OSTI)

of the fabricated active grid. Thermal Management Previous grid amplifiers lacked a heat spreader, so Figure 1A 5-WATT, 37-GHz MONOLITHIC GRID AMPLIFIER Blythe Deckman1 , Donald S. Deakin, Jr.2 , Emilio Sovero has been demonstrated. The area of the grid am- plifier is 1 cm2, and there are 512 transistors

298

Rigid Deployable Solar Array A.M. Watt and S. Pellegrino  

E-Print Network (OSTI)

with the design of low-cost rigid-panel deployable solar arrays with self- locking tape-spring hinges. The reportRigid Deployable Solar Array A.M. Watt and S. Pellegrino CUED/D-STRUCT/TR214 Department on the deployment of a solar array wing are evaluated experimentally. #12;#12;Contents 1 Introduction 1 1.1 Layout

Pellegrino, Sergio

299

City of Emerson, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Emerson, Nebraska (Utility Company) Emerson, Nebraska (Utility Company) Jump to: navigation, search Name City of Emerson Place Nebraska Utility Id 5850 Utility Location Yes Ownership M NERC Location MRO Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 watt High Pressure Sodium Lighting 150 watt High Pressure Sodium Lighting 175 watt Mercury Vapor Lighting 250 watt High Pressure Sodium Lighting 250 watt High Pressure Sodium Flood Lighting 250 watt Mercury Vapor Lighting 400 watt High Pressure Sodium Flood Lighting

300

Mountain Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Utility Id 13027 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 WATT HPS Lighting 1000 WATT METAL HALIDE FLOOD Lighting 175 WATT MERCURY VAPOR Lighting 250 WATT HPS STREET LIGHT Lighting 250 WATT HPS YARD LIGHT Lighting 400 WATT MERCURY VAPOR Lighting 400 WATT METAL HALIDE FLOOD Lighting Commercial GSA 1-Single-Phase transformer rated Commercial Commercial GSA 1-Three-Phase Self contained Commercial Commercial GSA 1-Three-Phase Transformer Rated Commercial

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hickman-Fulton Counties RECC | Open Energy Information  

Open Energy Info (EERE)

Hickman-Fulton Counties RECC Hickman-Fulton Counties RECC Jump to: navigation, search Name Hickman-Fulton Counties RECC Place Kentucky Utility Id 40305 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt High Pressure Sodium Lighting 100 Watt Metal Halide Light Lighting 175 Watt Mercury Vapor Light Lighting 175 Watt Metal Halide Light Lighting 200 Watt High Pressure Sodium Lighting 400 Watt High Pressure Sodium Lighting 400 Watt Mercury Vapor Light Lighting GSA Part 1 Commercial GSA Part 2 Industrial

302

MESSENGER Observations of Magnetic Reconnection in Mercurys Magnetosphere  

Science Journals Connector (OSTI)

...Prague 14131, Czech Republic. Solar wind energy transfer to planetary magnetospheres...MP reconnection transfers solar wind energy into the magnetosphere, where...Mercury's magnetosphere. | Solar wind energy transfer to planetary magnetospheres...

James A. Slavin; Mario H. Acua; Brian J. Anderson; Daniel N. Baker; Mehdi Benna; Scott A. Boardsen; George Gloeckler; Robert E. Gold; George C. Ho; Haje Korth; Stamatios M. Krimigis; Ralph L. McNutt; Jr.; Jim M. Raines; Menelaos Sarantos; David Schriver; Sean C. Solomon; Pavel Trvn?ek; Thomas H. Zurbuchen

2009-05-01T23:59:59.000Z

303

Mercury's moment of inertia from spin and gravity data  

E-Print Network (OSTI)

2006), Evolution of Mercurys obliquity, Icarus, 181, 327longitude librations of Mercury, Icarus, 207, 11 of 11The free librations of Mercury and the size of its inner

2012-01-01T23:59:59.000Z

304

NETL: Mercury Emissions Control Technologies - Testing of Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Southern Research Institute, Birmingham, Alabama Subcontractor- ARCADIS Geraghty & Miller The overall goal of this project is to test the effectiveness of calcium-based sorbents and oxidizing agents for controlling mercury emissions from coal-fired power plant boilers. ARCADIS Geraghty & Miller, with EPA support, has developed calcium-based sorbents to remove SO2 and mercury simultaneously. The sorbents consist of hydrated lime (Ca(OH)2) and an added oxidant and a silica-modified calcium (CaSiO3) with an added oxidant. The mercury capacity in ug Hg/g sorbent for the two sorbents is 20 and 110-150, respectively, verses a mercury capacity for the current standard sorbent, activated carbon, of 70-100. The advantages of a lime based sorbent verses carbon is lower cost, simultaneous removal of sulfur, and allowance of ash to be utilized for a cement additive.

305

Trends in mercury concentrations in the hair of women of Nome, Alaska - Evidence of seafood consumption or abiotic absorption  

SciTech Connect

Eighty samples of hair from women of child-bearing age from Nome, Alaska, and seven control samples from women living in Sequim, Washington, were analyzed for mercury concentration by segmental analysis in an effort to determine whether seasonal fluctuations in mercury concentration in the hair samples can be correlated to seasonal seafood consumption. Full-length hair strands were analyzed in 1.1-cm segments representing 1 month's growth using a strong acid digestion and cold vapor atomic fluorescence analysis. It was assumed that the concentration of mercury in each segment is an indicator of the mercury body burden during the month in which the segment emerged from the scalp. Eighteen of the samples show seasonal variability, with five of the controls and one Nome resident showing winter highs while all Nome residents show summer highs. Twenty-six of the samples show an increase in mercury concentration toward the distal end of the strand regardless of month of growth. The trend of increasing mercury concentrations toward the distal end of the hair strand regardless of month of emergence, and the documented presence of elevated levels of elemental mercury in the Nome area suggest that these elevated levels may actually be due to external contamination of the hair strands by adsorption and not due to ingestion of contaminated foodstuffs such as seafood.

Lasorsa, B. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

1992-06-01T23:59:59.000Z

306

Trends in mercury concentrations in the hair of women of Nome, Alaska - Evidence of seafood consumption or abiotic absorption?  

SciTech Connect

Eighty samples of hair from women of child-bearing age from Nome, Alaska, and seven control samples from women living in Sequim, Washington, were analyzed for mercury concentration by segmental analysis in an effort to determine whether seasonal fluctuations in mercury concentration in the hair samples can be correlated to seasonal seafood consumption. Full-length hair strands were analyzed in 1.1-cm segments representing 1 month`s growth using a strong acid digestion and cold vapor atomic fluorescence analysis. It was assumed that the concentration of mercury in each segment is an indicator of the mercury body burden during the month in which the segment emerged from the scalp. Eighteen of the samples show seasonal variability, with five of the controls and one Nome resident showing winter highs while all Nome residents show summer highs. Twenty-six of the samples show an increase in mercury concentration toward the distal end of the strand regardless of month of growth. The trend of increasing mercury concentrations toward the distal end of the hair strand regardless of month of emergence, and the documented presence of elevated levels of elemental mercury in the Nome area suggest that these elevated levels may actually be due to external contamination of the hair strands by adsorption and not due to ingestion of contaminated foodstuffs such as seafood.

Lasorsa, B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1992-06-01T23:59:59.000Z

307

Gasoline vapor recovery  

SciTech Connect

In a gasoline distribution network wherein gasoline is drawn from a gasoline storage tank and pumped into individual vehicles and wherein the gasoline storage tank is refilled periodically from a gasoline tanker truck, a method of recovering liquid gasoline from gasoline vapor that collects in the headspace of the gasoline storage tank as the liquid gasoline is drawn therefrom, said method comprising the steps of: (a) providing a source of inert gas; (b) introducing inert gas into the gasoline storage tank as liquid gasoline is drawn therefrom so that liquid gasoline drawn from the tank is displaced by inert gas and gasoline vapor mixes with the inert gas in the headspace of the tank; (c) collecting the inert gas/gasoline vapor mixture from the headspace of the gasoline storage tank as the tank is refilled from a gasoline tanker truck; (d) cooling the inert gas/gasoline vapor mixture to a temperature sufficient to condense the gasoline vapor in the mixture to liquid gasoline but not sufficient to liquify the inert gas in the mixture; (e) separating the condensed liquid gasoline from the inert gas; and delivering the condensed liquid gasoline to a remote location for subsequent use.

Lievens, G.; Tiberi, T.P.

1993-06-22T23:59:59.000Z

308

Distributed Models of Thread-Level Speculation Cosmin E. Oancea, Jason W. A. Selby, Mark W. Giesbrecht and Stephen M. Watt  

E-Print Network (OSTI)

. Giesbrecht and Stephen M. Watt Department of Computer Science, University of Western Ontario, London, Ontario, Canada, N6A 5B7 coancea,watt@csd.uwo.ca School of Computer Science, University of Waterloo

Giesbrecht, Mark

309

Federated Authentication & Authorisation for e-Science J. Watt, R.O. Sinnott, J. Jiang, T. Doherty, A.J. Stell, D. Martin, G. Stewart  

E-Print Network (OSTI)

Federated Authentication & Authorisation for e-Science J. Watt, R.O. Sinnott, J. Jiang, T. Doherty, UK j.watt@nesc.gla.ac.uk Abstract The Grid and Web service community are defining a range of stan

Glasgow, University of

310

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

1983-02-08T23:59:59.000Z

311

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

1983-01-01T23:59:59.000Z

312

The Model 5000-16C 1000 WATT FEL Lamp Standard pro-vides absolute calibration of spectral irradiance from 250 nm to  

E-Print Network (OSTI)

The Model 5000-16C 1000 WATT FEL Lamp Standard pro- vides absolute calibration of spectral. It has been selected by the National Institute of Standards and Technology to replace the 1000 watt, DXW-pin 1000 watt lamp that is adapted by Gamma Scientific into a bi-post configuration. It is used

313

Wildlife Management: The Case of Bucks Only Hunting The model in Figure 1 is adapted from an example in Ken Watt's (1968) text on Ecology and  

E-Print Network (OSTI)

an example in Ken Watt's (1968) text on Ecology and Resource Management. It distinguishes between bucks that this population will grow, despite the aggressive hunting of the adult bucks. This diagram is adapted from Watt's description of a theoretical deer herd (Watt 1968, p. 127). He uses the numerical example to argue against

Ford, Andrew

314

IntroductionIntroduction Mercury: Monitoring Patients with ParkinsonMercury: Monitoring Patients with Parkinson''s Diseases Disease  

E-Print Network (OSTI)

IntroductionIntroduction Mercury: Monitoring Patients with ParkinsonMercury: Monitoring Patients's Disease EvaluationEvaluation Mercury ArchitectureMercury Architecture Mercury is a wireless sensor network and disconnections Node Behavior Hardware PlatformHardware Platform Usage Scenario InternetInternet http://fiji.eecs.harvard.edu/Mercury

Chen, Yiling

315

Mercury-Mercury Tunneling Junctions. 1. Electron Tunneling Across Symmetric and Asymmetric Alkanethiolate Bilayers  

E-Print Network (OSTI)

Mercury-Mercury Tunneling Junctions. 1. Electron Tunneling Across Symmetric and Asymmetric by bringing in contact two small (3 ? 10-3 cm2) mercury drop electrodes in a 5-20% (v/v) hexadecane solution incorporating alkanethiolate-type monolayer films. The results reported below convince us that the mercury

Majda, Marcin

316

JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas  

SciTech Connect

This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

Ye Zhuang; Christopher Martin; John Pavlish

2009-03-31T23:59:59.000Z

317

NETL: Mercury Emissions Control Technologies - Mercury Control For Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD URS Group, Inc., in collaboration with EPRI, Apogee Scientific, AEP, Texas Genco, and TXU Power, ADA-ES, will evaluate sorbent injection for mercury control in an 85/15 blend Texas lignite/PRB derived flue gas, upstream of a cold-side ESP – wet FGD combination. Full-scale sorbent injection tests conducted with various sorbents and combinations of fuel and plant air pollution control devices (APCD) have provided a good understanding of variables that affect sorbent performance. However, many uncertainties exist regarding long-term performance and data gaps remain for specific plant configurations. For example, sorbent injection has not been demonstrated at full-scale for plants firing Texas lignite, which represent approximately 10% of the annual U.S. power plant mercury emissions. The low and variable chloride content of Texas lignite may pose a challenge to achieving high levels of mercury removal with sorbent injection. Furthermore, activated carbon injection may render the fly ash unsuitable for sale, posing an economic liability to Texas lignite utilities. Alternatives to standard activated carbon, such as non-carbon sorbents and alternate injection locations (Toxecon II), have not been fully explored. Toxecon II involves sorbent injection in the middle field(s) of an ESP, thus preserving the integrity of the fly ash in the first fields.

318

Optimizing performance per watt on GPUs in High Performance Computing: temperature, frequency and voltage effects  

E-Print Network (OSTI)

The magnitude of the real-time digital signal processing challenge attached to large radio astronomical antenna arrays motivates use of high performance computing (HPC) systems. The need for high power efficiency (performance per watt) at remote observatory sites parallels that in HPC broadly, where efficiency is an emerging critical metric. We investigate how the performance per watt of graphics processing units (GPUs) is affected by temperature, core clock frequency and voltage. Our results highlight how the underlying physical processes that govern transistor operation affect power efficiency. In particular, we show experimentally that GPU power consumption grows non-linearly with both temperature and supply voltage, as predicted by physical transistor models. We show lowering GPU supply voltage and increasing clock frequency while maintaining a low die temperature increases the power efficiency of an NVIDIA K20 GPU by up to 37-48% over default settings when running xGPU, a compute-bound code used in radio...

Price, D C; Barsdell, B R; Babich, R; Greenhill, L J

2014-01-01T23:59:59.000Z

319

Mercury switch with non-wettable electrodes  

DOE Patents (OSTI)

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, Maurice M. (Albulquerque, NM); Yost, Frederick G. (Carlsbad, NM)

1987-01-01T23:59:59.000Z

320

Mercury Solar Systems | Open Energy Information  

Open Energy Info (EERE)

commercial and residential clients in the New York metrotri-state area. References: Mercury Solar Systems1 This article is a stub. You can help OpenEI by expanding it. Mercury...

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Mercury speciation in the Persian Gulf sediments  

Science Journals Connector (OSTI)

The concentrations of total mercury (Hg) and methyl mercury (MMHg) were determined in 78 marine sediments in the Iranian coastal waters of the Persian Gulf along nine transects perpendicular to the coastline....?...

Homira Agah; Marc Elskens

2009-10-01T23:59:59.000Z

322

A Cavity Ring-Down Spectroscopy Mercury Continuous Emission Monitor  

SciTech Connect

The Sensor Research & Development Corporation (SRD) has undertaken the development of a Continuous Emissions Monitor (CEM) for mercury based on the technique of Cavity Ring-Down Spectroscopy (CRD). The project involved building an instrument for the detection of trace levels of mercury in the flue gas emissions from coal-fired power plants. The project has occurred over two phases. The first phase concentrated on the development of the ringdown cavity and the actual detection of mercury. The second phase dealt with the construction and integration of the sampling system, used to carry the sample from the flue stack to the CRD cavity, into the overall CRD instrument. The project incorporated a Pulsed Alexandrite Laser (PAL) system from Light Age Incorporated as the source to produce the desired narrow band 254 nm ultra-violet (UV) radiation. This laser system was seeded with a diode laser to bring the linewidth of the output beam from about 150 GHz to less than 60 MHz for the fundamental beam. Through a variety of non-linear optics the 761 nm fundamental beam is converted into the 254 nm beam needed for mercury detection. Detection of the mercury transition was verified by the identification of the characteristic natural isotopic structure observed at lower cavity pressures. The five characteristic peaks, due to both natural isotopic abundance and hyperfine splitting, provided a unique identifier for mercury. SRD scientists were able to detect mercury in air down below 10 parts-per-trillion by volume (pptr). This value is dependent on the pressure and temperature within the CRD cavity at the time of detection. Sulfur dioxide (SO{sub 2}) absorbs UV radiation in the same spectral region as mercury, which is a significant problem for most mercury detection equipment. However, SRD has not only been able to determine accurate mercury concentrations in the presence of SO{sub 2}, but the CRD instrument can in fact determine the SO{sub 2} concentration as well. Detection of mercury down to the low hundreds of pptr has been accomplished in the presence of SO{sub 2} at concentration levels much higher than that found in typical flue gas emissions. SRD scientists extended the interferent testing to each individual component found in flue gas. It was found that only SO{sub 2} had a significant effect on the ring-down decay curve. Upon completion of testing the components of flue gas individually a simulated flue gas stream was used to test to the CRD instrument. The result showed accurate detection of mercury down to levels below 100 pptr in a simulated flue gas stream with the concentrations of the various components above that found in a typical untreated flue gas. A sampling system was designed and integrated into the CRD instrument to carry the sample from the flue gas stack to the CRD cavity. The sampling system was constructed so that it could be placed very close to the sampling port. SRD scientists were able to couple the UV laser light into an optical fiber, which is then sent to the sampling system. This allows the laser system to be isolated from the sampling system. Initial long-term testing revealed a couple of problems related to the stability of the output frequency of the laser system. These problems have been successfully dealt with by incorporating specific software solutions into the overall data acquisition program. The project culminated in a field test conducted at the DOE/NETL pilot plant facility in Pittsburgh, Pennsylvania. The object of the test was the evaluation of a cavity ringdown spectrometer constructed for the detection of TOTAL vapor phase mercury as a continuous emission monitor (CEM). Although there is the potential for the instrument to determine the amount of speciation between neutral elemental mercury (Hg{sup (o)}) and oxidized mercury (Hg{sup (+2)}), the initial test plan was to concentrate on the measurement of the total mercury. Another added benefit is that the measurements will report the sulfur dioxide (SO 2) concentration throughout the test. This report concludes the technical work asso

Christopher C. Carter

2004-12-15T23:59:59.000Z

323

Organic vapor jet printing system  

SciTech Connect

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

324

Zinc and cadmium residues in striped bass from Cherokee, Norris, and Watts Bar reservoirs  

SciTech Connect

Zinc and cadmium concentrations in muscle, liver, and kidney were measured in striped bass (Morone saxatilis) from Cherokee, Norris, and Watts Bar reservoirs in East Tennessee to determine if these metals had contributed to fish kills observed in Cherokee during the 1970's. The range of mean concentrations of zinc from collections of Cherokee striped bass (muscle 11-14, liver 98-106, kidney 88-105 mg Zn/kg dry weight) were comparable to ranges in fish from Norris and Watts Bar (muscle 12-13, liver 83-132, kidney 96-108 mg/kg dry weight). With the exception of concentrations in the kidneys of one collection, cadmium residues from Cherokee striped bass (muscle 0.02-0.09, liver 0.3-0.7, kidney 0.2-4.0 mg Cd/kg dry weight) were also similar to residues from Norris and Watts Bar fish (muscle 0.05-0.13, liver 0.3-2.1, kidney 0.3-0.5 mg Cd/kg dry weight). There were significant differences in tissue residues among seasons (summer 1979, spring 1980, summer 1980) in Cherokee Reservoir, as well as significant differences among the three reservoirs (Cherokee, Norris, Watts Bar) during the same season (spring 1980). All concentrations, however, were well below those reported for fish exposed to the maximum non-harmful concentrations of zinc and the lowest potentially harmful concentration of cadmium and moreover, were within the range typically reported for fish tissues. It is, therefore, believed that in at least the last two years, zinc and cadmium in the tissues of striped bass from Cherokee Reservoir have not been harmful to the fish.

Tisa, M.S.; Strange, R.J.

1981-10-01T23:59:59.000Z

325

A Tragic Reminder about Organic Mercury  

Science Journals Connector (OSTI)

...politically contentious. Mercury is used in industry primarily in the manufacture of batteries, latex paint, urethane, and polyvinyl chloride. Pollution of the environment by mercury occurs mainly through incinerators, fossil-fuel plants, leaching from mining waste, and municipal sewage systems. Industrial discharge... Exposure to mercury and its potential toxic effects is a subject that involves everyone, because we are all frequently exposed. The toxicologic literature has clearly established the dangers of excessive exposure to mercury. What is less clear is the dose ...

Kulig K.

1998-06-04T23:59:59.000Z

326

Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants  

SciTech Connect

The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

Alan Bland; Kumar Sellakumar; Craig Cormylo

2007-08-01T23:59:59.000Z

327

Acoustic Emission Monitoring of ASME Section III Hydrostatic Test: Watts Bar Unit 1 Nuclear Reactor  

SciTech Connect

Through the cooperation of the Tennessee Valley Authority, Pacific Northwest Laboratory has installed instrumentation on Watts Bar Nuclear Power Plant Unit 1 for the purpose of test and evaluation of acoustic emission (AE) monitoring of nuclear reactor pressure vessels and piping for flaw detection. This report describes the acoustic emission monitoring performed during the ASME Section III hydrostatic testing of Watts Bar Nuclear Power Plant Unit 1 and the results obtained. Highlights of the results are: Spontaneous AE was detected from a nozzle area during final pressurization. Evaluation of the apparent source of the spontaneous AE using an empirically derived AE/fracture mechanics relationship agreed within a factor of two with an evaluation by ASME Section XI Code procedures. AE was detected from a fracture specimen which was pressure coupled to the 10-inch accumulator nozzle. This provided reassurance of adequate system sensitivity. High background noise was observed when all four reactor coolant pumps were operating. Work is continuing at Watts Bar Unit 1 toward AE monitoring hot functional testing and subsequently monitoring during reactor operation.

Hutton,, P. H.; Taylor,, T. T.; Dawson,, J. F.; Pappas,, R. A.; Kurtz,, R. J.

1982-06-01T23:59:59.000Z

328

Parametric design study of ``mini-generator`` with 6-watt heat source  

SciTech Connect

The Fairchild study showed that generator designs based on a single 1-watt RHU had very poor thermal efficiencies. At their optimum operating point, more than half of the generated heat was lost through the thermal insulation. This resulted in system efficiency of only 2.2%, compared to 7.2% for current Radioisotope Thermoelectric Generators (RTGs). Moreover, there were serious doubts about the fabricability of the required multicouples, particularly of the series/parallel connections between the large number (900) of thermoelectric legs of very small cross-section (0.21 mm square). All in all, the preceding paper showed that neither JPL`s Power Stick design nor the Fairchild-generated derivatives based on the 1-watt heat source looked promising. The present paper describes a similar parametric study of a mini-generator based on a 6-watt heat source, and compares its performance and fabricability to that of the optimum Power Stick derivative and of the current RTG design for the same mission. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

Schock, A.; Or, C.T. [Orbital Sciences Corporation, 20301 Century Blvd., Germantown, Maryland 20874 (United States)

1995-01-20T23:59:59.000Z

329

2003 Mercury Computer Systems, Inc. Data Reorganization  

E-Print Network (OSTI)

© 2003 Mercury Computer Systems, Inc. Data Reorganization Interface (DRI) Data Reorganization Interface (DRI) Kenneth Cain Jr. Mercury Computer Systems, Inc. High Performance Embedded Computing (HPEC Mercury Computer Systems, Inc. Status update for the DRI-1.0 standard since Sep. 2002 publication Outline

Kepner, Jeremy

330

3, 35253541, 2003 Modelling of Mercury  

E-Print Network (OSTI)

ACPD 3, 3525­3541, 2003 Modelling of Mercury with the Danish Eulerian Hemispheric Model J. H and Physics Discussions Modelling of mercury with the Danish Eulerian Hemispheric Model J. H. Christensen, J Correspondence to: J. H. Christensen (jc@dmu.dk) 3525 #12;ACPD 3, 3525­3541, 2003 Modelling of Mercury

Paris-Sud XI, Université de

331

Constraining Mercury Oxidation Using Wet Deposition  

E-Print Network (OSTI)

Constraining Mercury Oxidation Using Wet Deposition Noelle E. Selin and Christopher D. Holmes mercury oxidation [Selin & Jacob, Atmos. Env. 2008] 30 60 90 120 150 30 60 90 120 150 30 60 90 120 150 30 Influences on Mercury Wet Deposition · Hg wet dep = f(precipitation, [Hg(II)+Hg(P)]) Correlation (r2) between

Selin, Noelle Eckley

332

Mercury: Recovering Forgotten Passwords Using Personal Devices  

E-Print Network (OSTI)

Mercury: Recovering Forgotten Passwords Using Personal Devices Mohammad Mannan1 , David Barrera2, and to allow forgotten passwords to be securely restored, we present a scheme called Mercury. Its primary mode and revealed to the user. A prototype implementation of Mercury is available as an Android application. 1

Van Oorschot, Paul

333

2003 Mercury Computer Systems, Inc. Delivered Performance  

E-Print Network (OSTI)

© 2003 Mercury Computer Systems, Inc. Delivered Performance Predictions and Trends for RISC Applications Luke Cico (lcico@mc.com) Mark Merritt (mmerritt@mc.com) Mercury Computer Systems, Inc. Chelmsford, MA 01824 #12;© 2003 Mercury Computer Systems, Inc. Goals of PresentationGoals of Presentation

Kepner, Jeremy

334

Mercury Pollution in the Marine Environment  

E-Print Network (OSTI)

Collaborative December 2012 SourceSto Seafood SourceSto Seafood #12;About the report In 2010, the Toxic Metals.P. Mason, L.R. Rardin, C.V. Schmitt, N.S. Serrell, and E.M. Sunderland. 2012. Sources to Seafood: Mercury. 2 Sources to Seafood: Mercury Pollution in the Marine Environment #12;Executive Summary Mercury

Shepherd, Simon

335

REPLACE YOUR MERCURY THERMOMETERS BEFORE THEY BREAK!  

E-Print Network (OSTI)

REPLACE YOUR MERCURY THERMOMETERS BEFORE THEY BREAK! Did you know, mercury from broken thermometers to the local environment, if broken thermometers in sinks eventually end at the sanitary sewer plant. Broken mercury thermometers create hazardous waste that is costly to clean up and costly to dispose of. Other

336

DFJ Mercury | Open Energy Information  

Open Energy Info (EERE)

DFJ Mercury DFJ Mercury Jump to: navigation, search Name DFJ Mercury Place Houston, Texas Zip 77046 Product Houston-based seed and early-stage venture capital firm that targets the information technology, advanced materials, and bioscience sectors. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Stratified vapor generator  

DOE Patents (OSTI)

A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

2008-05-20T23:59:59.000Z

338

Mercury capture in bench-scale absorbers  

SciTech Connect

This paper gives,a brief overview of research being conducted at Argonne National Laboratory on the capture of mercury by both dry sorbents and wet scrubbers. The emphasis in the research is on development of a better understanding of the key factors that control the capture of mercury. Future work is expected to utilize that information for the development of new or modified process concepts featuring enhanced mercury capture capabilities. The results and conclusions to date from the Argonne -research on dry sorbents can be summarized as follows: lime hydrates, either regular or high-surface-area, are `not effective in removing mercury; mercury removals are enhanced by the addition of activated carbon; mercury removals with activated carbon decrease with increasing temperature, larger particle size, and decreasing mercury concentration in the gas; and chemical pretreatment (e.g., with sulfur or (CaCl{sub 2}) can greatly increase the removal capacity of activated carbon. Preliminary results from the wet scrubbing research include: no removal of elemental mercury is obtained under normal scrubber operating conditions; mercury removal is improved by the addition of packing or production of smaller gas bubbles to increase the gas-liquid contact area; polysulfide solutions do not appear promising for enhancing mercury removal in typical FGC systems; stainless steel packing appears to have beneficial properties for mercury removal and should be investigated further; and other chemical additives may offer greatly enhanced removals.

Livengood, C.D.; Huang, H.S.; Mendelsohn, M.H.; Wu, J.M.

1994-08-01T23:59:59.000Z

339

Photo-Electric Ionization of Caesium Vapor  

Science Journals Connector (OSTI)

Measurement of photo-electric ionization in gases.The current from a filament, normally limited by space change, is increased by the presence of positive ions. As shown by Kingdon this effect may be greatly magnified if a small cathode is practically enclosed by the anode so that the ions are imprisoned. This method was used for the detection of photo-electric ionization. Besides possessing extreme sensitivity it is unaffected by photo-electric emission from the electrodes.Photo-electric effect in caesium vapor.The change in thermionic current with the unresolved radiation from a mercury arc was measured as functions of the applied voltage, filament temperature, and vapor pressure. Then the photo-electric effect as a function of wave-length was studied using a monochromatic illuminator to disperse light from the arc or a Mazda lamp. The ionization per unit flux was found to increase with increasing wave-length to a sharp maximum at the limit 1s=3184A of the principal series, as is required by the Bohr theory. For longer wave-lengths the ionization decreased to about 10 percent at 3400A. Photo-excitation. The simple theory does not admit of ionization by wave-lengths greater than 3184A but the data are in qualitative agreement with the hypothesis that such radiation produces excited atoms which upon collision with other atoms acquire sufficient additional energy to become ionized. Hence, unlike an x-ray limit, the photo-ionization effect for a valence electron is not sharply discontinuous at the true threshold for direct ionization.Photo-ionization photometer and intensitometer. A tube of the type described, with suitable gases for the range of wave-length involved, may be used as a photometer or may be calibrated to measure intensity of radiation directly.

Paul D. Foote and F. L. Mohler

1925-08-01T23:59:59.000Z

340

Village of Springville, New York (Utility Company) | Open Energy  

Open Energy Info (EERE)

York (Utility Company) York (Utility Company) Jump to: navigation, search Name Village of Springville Place New York Utility Id 17846 Utility Location Yes Ownership M NERC Location NPCC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Industrial Large Commercial Commercial Residential Residential Security Lighting (150 Watt Metal Halide) Commercial Security Lighting (175 Watt Mercury Vapor Vertical Burning) Commercial Security Lighting (400 Watt Mercury Vapor Horizontal Burning Flood fixture with mounting bracket Commercial Security Lighting (400 Watt Mercury Vapor Horizontal Burning Luminare

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Data:D32b9210-612f-484b-888b-4eb9cb43e3da | Open Energy Information  

Open Energy Info (EERE)

612f-484b-888b-4eb9cb43e3da 612f-484b-888b-4eb9cb43e3da No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Continental Divide El Coop Inc Effective date: End date if known: Rate name: STREET LIGHTING (Public)-400 W SV* Sector: Lighting Description: * As of Dec. 31, 1999, new mercury vapor fixtures are no longer available. The rates and adjustments set forth below are based on average billing period consumption, as follows: 100-watt fixture:47 kWh/fixture 175-watt fixture:76 kWh/fixture 250-watt fixture:110 kWh/fixture 400-watt mercury vapor fixture:166 kWh/fixture 400-watt sodium vapor fixture:176 kWh/fixture

342

Data:B1abc200-9467-4663-ad52-ef845d920429 | Open Energy Information  

Open Energy Info (EERE)

abc200-9467-4663-ad52-ef845d920429 abc200-9467-4663-ad52-ef845d920429 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Continental Divide El Coop Inc Effective date: End date if known: Rate name: STREET LIGHTING (Public)-100 W MV* Sector: Lighting Description: * As of Dec. 31, 1999, new mercury vapor fixtures are no longer available. The rates and adjustments set forth below are based on average billing period consumption, as follows: 100-watt fixture:47 kWh/fixture 175-watt fixture:76 kWh/fixture 250-watt fixture:110 kWh/fixture 400-watt mercury vapor fixture:166 kWh/fixture 400-watt sodium vapor fixture:176 kWh/fixture

343

Data:9b11a6a4-b93e-48bf-8860-1d22715f115f | Open Energy Information  

Open Energy Info (EERE)

-b93e-48bf-8860-1d22715f115f -b93e-48bf-8860-1d22715f115f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Continental Divide El Coop Inc Effective date: End date if known: Rate name: STREET LIGHTING (Public)-400 W MV* Sector: Lighting Description: * As of Dec. 31, 1999, new mercury vapor fixtures are no longer available. The rates and adjustments set forth below are based on average billing period consumption, as follows: 100-watt fixture:47 kWh/fixture 175-watt fixture:76 kWh/fixture 250-watt fixture:110 kWh/fixture 400-watt mercury vapor fixture:166 kWh/fixture 400-watt sodium vapor fixture:176 kWh/fixture

345

Vapor Barriers or Vapor Diffusion Retarders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Air Sealing for New Home Construction Insulation Types of Insulation Insulation and Air Sealing Products and Services External Resources Find a Local AirVapor Barrier...

346

An assessment of methyl mercury and volatile mercury in land-applied sewage sludge  

SciTech Connect

In 1993, the US Environmental Protection Agency issued regulations covering the land-application of municipal sewage sludge. These regulations established maximum pollutant concentrations and were based upon a risk assessment of human exposure. Mercury, assumed to be inorganic and non-volatile, was one pollutant evaluated. From April, 1995 through February, 1996, the authors studied the species of mercury contaminating municipal sludge applied to land, and the potential for volatilization of mercury from land-applied sludge. Methyl mercury was found at 0.1% of total mercury concentrations and was emitted from land-applied sludge to the atmosphere. Elemental mercury (Hg) was formed in land-applied sludge via the reduction of oxidized mercury and was also emitted to the atmosphere. Hg emission from land-applied sludge was significantly elevated over background soil emission. Methyl mercury is more toxic and more highly bioaccumulated than inorganic mercury, and warrants assessment considering these special criteria. Additionally, mercury emission from sludge-amended soil may lead to the contamination of other environmental media with significant concentrations of the metal. Although these pathways were not evaluated in the regulatory risk assessment, they are an important consideration for evaluating the risks from mercury in land-applied sludge. This presentation will summarize the results of a re-assessment of US EPA regulations regarding the land-application of municipal sewage sludge using data on methyl mercury toxicity and mercury transport in the atmosphere.

Carpi, A. [Cornell Univ., Ithaca, NY (United States); Lindberg, S.E. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

347

Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae  

SciTech Connect

Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H. (Saskatchewan)

2013-04-08T23:59:59.000Z

348

Acoustic emission monitoring of hot functional testing: Watts Bar Unit 1 Nuclear Reactor  

SciTech Connect

Acoustic emission (AE) monitoring of selected pressure boundary areas at TVA's Watts Bar, Unit 1 Nuclear Power Plant during hot functional preservice testing is described in this report. The report deals with background, methodology, and results. The work discussed here is a major milestone in a program supported by NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. The subject work demonstrated that anticipated problem areas can be overcome. Work is continuing toward AE monitoring during reactor operation.

Hutton, P.H.; Dawson, J.F.; Friesel, M.A.; Harris, J.C.; Pappas, R.A.

1984-06-01T23:59:59.000Z

349

Mercury emissions from municipal solid waste combustors  

SciTech Connect

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

350

Mercury-control technology-assessment study: D. F. Goldsmith Chemical and Metal Corporation, Evanston, Illinois. In-depth survey report for the site visit of May 4-6, 1982. Final report  

SciTech Connect

An in-depth survey was conducted at the D. F. Goldsmith Chemical and Metal Corporation in Evanston, Illinois; emphasis was placed on the recirculating air unit for control of mercury vapor. Major products were prime virgin mercury, precious metals, and rare inorganic chemicals. Mercury was poured into an open vessel which was subsequently covered, and the mercury treated by agitation with an acidic or caustic solution. Mercury was then transferred to the still where it was batch-distilled. After distillation, mercury was bottled in 1 or 5 pound quantities and packed and shipped. The ventilation system included local exhaust, dilution, and recirculation steps. Local exhaust ventilation was particularly important at the bottle-filling station. Personal protective equipment included respirators, disposable lab coats, vinyl coated cloth gloves, plastic shoe coverings, and barrier creams. Work practices were controlled, and biological and air monitoring were in place. The recirculating unit removed 76% of the mercury vapor in the air stream. The authors recommend that a study be made of the advisability of using a charcoal filter in addition to the manganese oxide precoat bag filter with post filtration.

Telesca, D.R.

1982-09-01T23:59:59.000Z

351

A Mercury orientation model including non-zero obliquity and librations  

E-Print Network (OSTI)

Long-period forcing of Mercurys libration in longitude.M. : Resonant forcing of Mercurys libration in longitude.A revised control network for Mercury. J. Geophys. Res. 104,

Margot, Jean-Luc

2009-01-01T23:59:59.000Z

352

ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS  

SciTech Connect

The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report.

Unknown

2001-06-01T23:59:59.000Z

353

Atmospheric Mercury Deposition during the Last 270 Years: A  

E-Print Network (OSTI)

Atmospheric Mercury Deposition during the Last 270 Years: A Glacial Ice Core Record of Natural, and U.S. Geological Survey, Wisconsin District Mercury Research Laboratory, Middleton, Wisconsin 53562 Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation

354

Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay  

E-Print Network (OSTI)

S, and Flegal AR 2008. Mercury in the San Francisco Estuary.may 2010 Mercury-Contaminated Hydraulic Mining Debris in Sancontaminants such as ele- mental mercury and cyanide used in

Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

2010-01-01T23:59:59.000Z

355

Mercury Surface, Space Environment, Geochemistry, and Ranging Mission  

E-Print Network (OSTI)

MESSENGER Mercury Surface, Space Environment, Geochemistry, and Ranging Mission Frequently Asked Mercury's characteristics and environment during two complementary mission phases. The mission's primary goal is to increase our understanding of Mercury's density, geologic history, magnetic field, core

Mojzsis, Stephen J.

356

Control of mercury methylation in wetlands through iron addition  

E-Print Network (OSTI)

Mason, R. P. ; Flegal, A. R. , Mercury speciation in the SanP. ; Flegal, A. R. , Decadal mercury trends in San FranciscoP. G. ; Nelson, D. C. , Mercury methylation from unexpected

Sedlak, David L; Ulrich, Patrick D

2009-01-01T23:59:59.000Z

357

Determination of Mercury in Soils by Flameless Atomic Absorption Spectrometry  

Science Journals Connector (OSTI)

...chemical analysis exploration flameless geochemical methods mercury...Determination of Mercury in Soils by Flameless Atomic Absorption Spectrometry...Determinationof Mercury in Soilsby Flameless Atomic AbsorptionSpectrometry...the mercuryre- RF Induction Heater work coils 1. Carriergas...

B. G. Weissberg

358

Vapor spill pipe monitor  

DOE Patents (OSTI)

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

359

A FIVE-WATTS G-M/J-T REFRIGERATOR FOR LHE TARGET AT BNL.  

SciTech Connect

A five-watts G-M/J-T refrigerator was built and installed for the high-energy physics research at Brookhaven National Laboratory in 2001. A liquid helium target of 8.25 liters was required for an experiment in the proton beam line at the Alternating Gradient Synchrotron (AGS) of BNL. The large radiation heat load towards the target requires a five-watts refrigerator at 4.2 K to support a liquid helium flask of 0.2 meter in diameter and 0.3 meter in length which is made of Mylar film of 0.35 mm in thickness. The liquid helium flask is thermally exposed to the vacuum windows that are also made of 0.35 mm thickness Mylar film at room temperature. The refrigerator uses a two-stage Gifford-McMahon cryocooler for precooling the Joule-Thomson circuit that consists of five Linde-type heat exchangers. A mass flow rate of 0.8 {approx} 1.0 grams per second at 17.7 atm is applied to the refrigerator cold box. The two-phase helium flows between the liquid target and liquid/gas separator by means of thermosyphon. The paper presents the system design as well as the test results including the control of thermal oscillation.

JIA,L.X.; WANG,L.; ADDESSI,L.; MIGLIONICO,G.; MARTIN,D.; LESKOWICZ,J.; MCNEILL,M.; YATAURO,B.; TALLERICO,T.

2001-07-16T23:59:59.000Z

360

COST OF MERCURY REMOVAL IN IGCC PLANTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost of Mercury Removal Cost of Mercury Removal in an IGCC Plant Final Report September 2002 Prepared for: The United States Department of Energy National Energy Technology Laboratory By: Parsons Infrastructure and Technology Group Inc. Reading, Pennsylvania Pittsburgh, Pennsylvania DOE Product Manager: Gary J. Stiegel DOE Task Manager: James R. Longanbach Principal Investigators: Michael G. Klett Russell C. Maxwell Michael D. Rutkowski PARSONS The Cost of Mercury Removal in an IGCC Plant Final Report i September 2002 TABLE OF CONTENTS Section Title Page 1 Summary 1 2 Introduction 3 3 Background 4 3.1 Regulatory Initiatives 4 3.2 Mercury Removal for Conventional Coal-Fired Plants 4 3.3 Mercury Removal Experience in Gasification 5 3.4 Variability of Mercury Content in Coal 6 4 Design Considerations 7 4.1 Carbon Bed Location

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Assessment of Low Cost Novel Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control Technologies Testing of Mercury Control Technologies for Coal-Fired Power Plants by Thomas J. Feeley, III 1. , Lynn A. Brickett 1. , B. Andrew O'Palko 1. , and James T. Murphy 2. 1. U.S. Department of Energy, National Energy Technology Laboratory 2. Science Applications International Corporation The U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research, development, and demonstration (RD&D) program directed at advancing the performance and economics of mercury control technologies for coal- fired power plants. The program also includes evaluating the fate of mercury in coal by-products and studying the transport and transformation of mercury in power plant plumes. This paper presents results from ongoing full-scale and slip-stream field testing of several mercury control

362

City of Greendale, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Greendale, Indiana (Utility Company) Greendale, Indiana (Utility Company) Jump to: navigation, search Name City of Greendale Place Indiana Utility Id 6907 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Flasher Signal Lighting Municipal street light service - 100 Watt Sodium Vapor Lighting Municipal street light service - 175 Watt Mercury Vapor Lighting Municipal street light service - 250 Watt Mercury Vapor Lighting Municipal street light service - 250 Watt Sodium Vapor Lighting

363

Java Collections 2001 D.A. Watt and D.F. Brown 6-1 Solutions to Exercises in Chapter 6  

E-Print Network (OSTI)

Java Collections © 2001 D.A. Watt and D.F. Brown 6-1 Solutions to Exercises in Chapter 6 6 from input to output, using spur: #12;Java Collections © 2001 D.A. Watt and D.F. Brown 6-2 1. For c = 1 `[' 2 depth=3 4 5After scanning `arg[': #12;Java Collections © 2001 D.A. Watt and D.F. Brown 6-3 Figure

Watt, David A.

364

Java Collections 2001 D.A. Watt and D.F. Brown 2-1 Solutions to Exercises in Chapter 2  

E-Print Network (OSTI)

Java Collections © 2001 D.A. Watt and D.F. Brown 2-1 Solutions to Exercises in Chapter 2 2 (non-recursive version): #12;Java Collections © 2001 D.A. Watt and D.F. Brown 2-2 static int factorial of program: #12;Java Collections © 2001 D.A. Watt and D.F. Brown 2-3 static void moveTower (int n, int source

Watt, David A.

365

Java Collections 2001 D.A. Watt and D.F. Brown 10-1 Solutions to Exercises in Chapter 10  

E-Print Network (OSTI)

Java Collections © 2001 D.A. Watt and D.F. Brown 10-1 Solutions to Exercises in Chapter 10 10 the subtree whose topmost node is top (recursive version): #12;Java Collections © 2001 D.A. Watt and D.max(depth(top.left), depth(top.right)); } #12;Java Collections © 2001 D.A. Watt and D.F. Brown 10-3 public static Object get

Watt, David A.

366

Java Collections 2001 D.A. Watt and D.F. Brown 13-1 Solutions to Exercises in Chapter 13  

E-Print Network (OSTI)

Java Collections © 2001 D.A. Watt and D.F. Brown 13-1 Solutions to Exercises in Chapter 13 13 E G A B C D E GF A D G D G D #12;Java Collections © 2001 D.A. Watt and D.F. Brown 13-2 Figure S13 Collections © 2001 D.A. Watt and D.F. Brown 13-3 public class UnsortedLinkedPriorityQueue implements Priority

Watt, David A.

367

P26W-5 eCo iPs P24W-5 eCo iPs special features In Plane Switching (IPS), 0 Watt  

E-Print Network (OSTI)

Watt in power save mode, ECO button, Auto Brightness Control (ABC), DisplayViewTM IT Suite In Plane Switching (IPS), 0 Watt in power save mode, ECO button, Auto Brightness Control (ABC), Display P22W-5 eCo iPs P19-5P eCo special features In Plane Switching (IPS), 0 Watt in power save mode, ECO

Ott, Albrecht

368

Process for removing mercury from aqueous solutions  

DOE Patents (OSTI)

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, John M. (Oak Ridge, TN); Napier, John M. (Oak Ridge, TN); Makarewicz, Mark A. (Knoxville, TN); Meredith, Paul F. (Knoxville, TN)

1986-01-01T23:59:59.000Z

369

Process for removing mercury from aqueous solutions  

DOE Patents (OSTI)

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

1985-03-04T23:59:59.000Z

370

Remediation of Mercury and Industrial Contaminants Applied Field...  

Office of Environmental Management (EM)

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

371

Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations  

E-Print Network (OSTI)

Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations Angel Lozano gives the power allocation policy, referred to as mercury/waterfilling, that maximizes the sum mutual

Verdú, Sergio

372

DOE Interim Guidance on Mercury Management Procedures and Standards...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Waste Management Waste Disposition Long-Term Management and Storage of Elemental Mercury is in the Planning Stages DOE Interim Guidance on Mercury Management...

373

Mercury: A Diode-Pumped Solid-State Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

with the development of the National Ignition Facility and its goal of achieving thermonuclear burn was another ambitious Livermore laser project named Mercury. The Mercury...

374

DOE Publishes Final Rule for the Request for Exclusion of 100 Watt R20 Short Incandescent Reflector Lamps from Energy Conservation Standards  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy has published a final rule regarding the request for exclusion of 100 Watt R20 short incandescent reflector lamps from energy conservation standards.

375

Hydrogen Cars and Water Vapor  

E-Print Network (OSTI)

. This cycle is currently under way with hydrogen fuel cells. As fuel cell cars are suggested as a solutionHydrogen Cars and Water Vapor D.W.KEITHANDA.E.FARRELL'S POLICY FORUM "Rethinking hydrogen cars" (18 misidentified as "zero-emissions vehicles." Fuel cell vehicles emit water vapor. A global fleet could have

Colorado at Boulder, University of

376

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

377

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

378

Mercury Sensing with Optically Responsive Gold Nanoparticles  

E-Print Network (OSTI)

1.1.5 Mercury detection Atomic absorption 19 and atomicsacrifices in simplicity. Atomic absorption or fluorescencedown to low nanogram masses. Atomic absorption/fluorescence

James, Jay Zachary

2012-01-01T23:59:59.000Z

379

Partitioning and chemical speciation of mercury, arsenic, and selenium during inert gas oil shale retorting  

SciTech Connect

A Green River shale from Colorado and a New Albany shale from Kentucky were retorted in the Pacific Northwest Laboratory 6-kg bench-scale retort at 1 to 2C/min and at 10C/min to maximum temperatures of 500 and 750C under a nitrogen sweep gas. The product streams were analyzed using a variety of methods including Zeeman atomic aabsortion spectroscopy, microwave-induced helium plasma spectroscopy, x-ray fluorescence, instrumental neutron activation analysis, high-pressure liquid and silica gel column chromatography, and mercury cold vapor atomic absorption. The results obtained using these analytical methods indicate the the distribution of mercury, arsenic, and selenium in the product stream is a function of oil shale type, heating rates, and maximum retorting temperatures. 23 refs., 15 figs., 5 tabs.

Olsen, K.B.; Evans, J.C.; Sklarew, D.S.; Girvin, D.C.; Nelson, C.L.; Lepel, E.A.; Robertson, D.E.; Sanders, R.W.

1985-12-01T23:59:59.000Z

380

Fuel vapor control device  

SciTech Connect

A fuel vapor control device is described having a valve opening and closing a passage connecting a carburetor and a charcoal canister according to a predetermined temperature. A first coil spring formed by a ''shape memory effect'' alloy is provided to urge the valve to open the passage when the temperature is high. A second coil spring urges the valve to close the passage. A solenoid is provided to urge an armature against the valve to close the passage against the force of the first coil spring when the engine is running. The solenoid heats the first coil spring to generate a spring force therein when the engine is running. When the engine is turned off, the solenoid is deactivated, and the force of the first spring overcomes the force of the second spring to open the passage until such time as the temperature of the first spring drops below the predetermined temperature.

Ota, I.; Nishimura, Y.; Nishio, S.; Yogo, K.

1987-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Dust Settles on Water Vapor Feedback  

Science Journals Connector (OSTI)

...To understand water vapor feedback...shifts in the atmospheric circulation...caused a positive water vapor feedback...temperature. Condensation, evaporation...shifts in the atmospheric circulation...caused a positive water vapor feedback...temperature. Condensation, evaporation...

Anthony D. Del Genio

2002-04-26T23:59:59.000Z

382

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

383

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward in Mercury Cleanup Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

384

Characterization of isothermal vapor phase epitaxial (Hg,Cd)Te  

Science Journals Connector (OSTI)

We report on the characterization of mercury cadmium telluride (Hg 1?x Cd x Te) film grown by the isothermal vapor phase epitaxial method (ISOVPE) and on the surface conversion of bulk Hg 1?xCd x Te to larger bandgap material. The crystal perfection is evaluated using defect etching electron beam and electrolyte electroreflectance (EBER and EER) and Rutherford backscattering spectrometry (RBS). Hall measurements are used to measure carrier densities and mobilities. Surface concentrations and concentration profiles are measured for the ISOVPE grown layers by transmission Fourier transform infrared spectroscopy (FTIR) and electron?probe microanalysis (EPMA) to establish quantitative informations about composition control. Metalinsulator?semiconductor (MIS) structures were made and the properties important to device performance such as compositional uniformity storage time and carrier concentration are measured. The ISOVPE layers are compared in quality to films grown by other methods and show promise for MIS devices.

S. B. Lee; L. K. Magel; M. F. S. Tang; D. A. Stevenson; J. H. Tregilgas; M. W. Goodwin; R. L. Strong

1990-01-01T23:59:59.000Z

385

Photochemical vapor deposition of amorphous silicon photovoltaic devices. Semiannual subcontract report, 1 May 1985-31 October 1985  

SciTech Connect

Intrinsic, p-type, and n-type hydrogenated amorphous silicon thin-films have been deposited by mercury-sensitized photochemical vapor deposition (photo-CVD) from disilane. The photochemical reactor design includes two chambers separated by a movable uv-transparent Teflon curtain to eliminate deposition on the reactor window. Glass/TCO/p-i-n/metal photovoltaic devices were fabricated by photo-CVD. The efficiency at 87.5 MW/cm/sup 2/(ELH) was 5.1%.

Baron, B.N.; Rocheleau, R.E.; Hegedus, S.S.

1986-06-01T23:59:59.000Z

386

2006 Mercury Control Technology Conference Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Technology Conference Mercury Control Technology Conference December 11-13, 2006 Table of Contents Disclaimer Papers and Presentations Introduction Sorbent Injection By-Product Characterization/Management Mercury Oxidation and Co-Removal with FGD Systems Other Mercury Control Technology Panel Discussions Posters New 2006 Phase III Mercury Field Testing Projects Sorbent Injection Pretreatment of Coal Oxidation of Mercury Environmental Studies on Mercury Mercury in CUBs Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

387

Isotope Effect of Mercury Diffusion in Air  

Science Journals Connector (OSTI)

Isotope fractionation describes the separation of a reservoir with one isotope composition into fractions with different isotope compositions due to small isotopic differences in equilibrium partitioning, rates of mass transfer, or rates of transformation. ... (29) ?202Hg is the value most frequently used to examine mass dependent fractionation of mercury isotopes as 202Hg is the heaviest mercury isotope without significant isobaric interferences. ...

Paul G. Koster van Groos; Bradley K. Esser; Ross W. Williams; James R. Hunt

2013-12-23T23:59:59.000Z

388

The influence of floodplains on mercury availability  

SciTech Connect

The floodplains of the German river Elbe affect the mercury distribution in the river system in two different ways: they act both as a medium-term sink and as a long-term source. The large amounts of mercury deposited onto the floodplains during annual floodings are first effectively fixed in the soils, rendering them basically unavailable. Sequential extraction experiments reveal that only a small fraction of the mercury (< 3%) is present in available forms, whereas the vast majority is associated with humic substances or present in sulfidic binding forms. After deposition, a small fraction of the total mercury is gradually remobilized into the aqueous phase bound passively to water-soluble humic acids. The availability of mercury in these complexes is still low, since environmental influences such as changes in pH or redox potential and competition with other cations do not cause any mercury liberation. In the next step, reactions in the aqueous phase lead to the formation of the highly available volatile species Hg{sup 0} and dimethylmercury (DMM). Their evaporation gives rise to a strong mercury flux from the floodplains into the atmosphere. Preliminary mass balances indicate that the majority of the deposited mercury stays bound in the floodplain soils, while small amounts are emitted back into the river`s ecosystem. Atmospheric emission is more important as a remobilization pathway than aquatic export.

Wallschlaeger, D.; Wilken, R.D. [GKSS Research Center, Geesthacht (Germany). Inst. of Physical and Chemical Analytics

1997-09-01T23:59:59.000Z

389

Mercury Chamber NF-IDS Meeting  

E-Print Network (OSTI)

-Battelle for the U.S. Department of Energy Mercury Chamber Update Oct 2011 Starting Point: Coil and Shielding Concept IDS120H #12;3 Managed by UT-Battelle for the U.S. Department of Energy Mercury Chamber Update Oct 2011 · Penetrations (ports) into chamber ­ Nozzle ­ Hg drains (overflow and maintenance) ­ Vents (in and out) ­ Beam

McDonald, Kirk

390

Lamar County Elec Coop Assn | Open Energy Information  

Open Energy Info (EERE)

Lamar County Elec Coop Assn Lamar County Elec Coop Assn Place Texas Utility Id 10649 Utility Location Yes Ownership C NERC Location TRE Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE COMMERCIAL Commercial LARGE COMMERCIAL PUBLIC BUILDINGS Commercial RESIDENTIAL & PUBLIC BUILDINGS Residential SMALL COMMERCIAL Commercial security light- 100 watt High Pressure Sodium Lighting security light- 400 watt Metal Halide Lighting security light-1000 watt Mercury Vapor Lighting security light-1000 watt Metal Halide Lighting security light-175 watt Mercury Vapor Lighting

391

Tippah Electric Power Assn | Open Energy Information  

Open Energy Info (EERE)

Tippah Electric Power Assn Tippah Electric Power Assn Place Mississippi Utility Id 18943 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSA 1 General Power Rate 1 Commercial GSA 2 General Power Rate 2 Commercial GSA 3 General Power Rate 3 Commercial LS Lighting High Pressure Sodium 100 Watts Lighting LS Lighting Mercury Vapor 175 Watts Lighting LS Lighting Mercury Vapor 400 Watts Lighting LS Lighting Metal Halide Cobrahead 400 Watts Lighting LS Lighting Metal Halide Floodlight 1000 Watts Lighting

392

City of Grand Haven, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Haven Grand Haven Place Michigan Utility Id 7483 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Space Lighting Service - 100 Watt Lighting Area Space Lighting Service - 1000 Watt Lighting Area Space Lighting Service - 175 Watt Mercury Vapor Lighting Area Space Lighting Service - 400 Watt Mercury Vapor Lighting Area Space Lighting Service - Metal Halide 175 Watt Lighting

393

Heart of Texas Electric Coop | Open Energy Information  

Open Energy Info (EERE)

of Texas Electric Coop of Texas Electric Coop Jump to: navigation, search Name Heart of Texas Electric Coop Place Texas Utility Id 55982 Utility Location Yes Ownership C NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt High Pressure Sodium Bulb Lighting 1000 Watt High Pressure Sodium Bulb (Closed Rate) Lighting 175 Watt Mercury Vapor Bulb (Closed Rate) Lighting 175 Watt Mercury Vapor Bulb (Closed Rate) - street lighting Lighting 400 Watt High Pressure Sodium Bulb (Closed Rate) Lighting Commercial Single Phase <24.99 KW Commercial

394

Milestone Project Demonstrates Innovative Mercury Emissions Reduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestone Project Demonstrates Innovative Mercury Emissions Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology January 12, 2010 - 12:00pm Addthis Washington, DC - An innovative technology that could potentially help some coal-based power generation facilities comply with anticipated new mercury emissions standards was successfully demonstrated in a recently concluded milestone project at a Michigan power plant. Under a cooperative agreement with the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), WE Energies demonstrated the TOXECON(TM) process in a $52.9million project at the Presque Isle Power Plant in Marquette, Mich. TOXECON is a relatively cost-effective option for achieving significant reductions in mercury emissions and increasing the

395

Effect of salinity on methylation of mercury  

SciTech Connect

Monomethyl and dimethylmercury are potent neurotoxins subject to biomagnification in food webs. This fact was tragically demonstrated by the Minamata and Niigata poisoning incidents in Japan in which 168 persons who ate seafood from mercury polluted waters were poisoned, 52 fatally. Shortly after these two incidents, work conducted in freshwater environments demonstrated the microbial conversion of inorganic and phenylmercury compounds to mono- and di-methylmercury. Consideration of some fragmentary evidence from the literature, however, indicates that the rate and the significance of microbial methylation of mercury in freshwater and saltwater environments may not be the same. A demonstrated relationship between mercury methylation rates and water salinity would greatly influence our thinking about mercury pollution effects in marine versus freshwater environments. Since we were unable to locate published reports on this subject, we are investigating the influence of salinity on the rate of mercury methylation in an estuarine sediment.

Blum, J.E.; Bartha, R.

1980-09-01T23:59:59.000Z

396

Java Collections 2001 D.A. Watt and D.F. Brown 3-1 Solutions to Exercises in Chapter 3  

E-Print Network (OSTI)

Java Collections © 2001 D.A. Watt and D.F. Brown 3-1 Solutions to Exercises in Chapter 3 3 the character array a[left...right] is a palindrome: #12;Java Collections © 2001 D.A. Watt and D.F. Brown 3-2 1

Watt, David A.

397

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network (OSTI)

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 Factory is a free-stream mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton

McDonald, Kirk

398

Thursday, March 15, 2007 POSTER SESSION II: MERCURY  

E-Print Network (OSTI)

Thursday, March 15, 2007 POSTER SESSION II: MERCURY 6:30 p.m. Fitness Center Dombard A. J. Hauck S. A. II Despinning Plus Global Contraction and the Orientation of Lobate Scarps on Mercury [#2026] We thermal models of Mercury. King S. D. A Possible Connection Between Convection in Mercury's Mantle

Rathbun, Julie A.

399

2003 Mercury Computer Systems, Inc. Optimizing System Compute  

E-Print Network (OSTI)

© 2003 Mercury Computer Systems, Inc. Optimizing System Compute Density for Deployed HPEC Electronics Engineering Mercury Computer Systems, Inc. rbanton@mc.com Richard Jaenicke, Director, Product Marketing Mercury Computer Systems, Inc. rjaenicke@mc.com #12;2 © 2002 Mercury Computer Systems, Inc.© 2003

Kepner, Jeremy

400

Laser Altimeter Observations from MESSENGER's First Mercury Flyby  

E-Print Network (OSTI)

REPORT Laser Altimeter Observations from MESSENGER's First Mercury Flyby Maria T. Zuber,1 * David E Barnouin-Jha,8 John K. Harmon10 A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part

Hauck II, Steven A.

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sources to Seafood: Mercury Pollution in the Marine Environment  

E-Print Network (OSTI)

Sources to Seafood: Mercury Pollution in the Marine Environment The Coastal and Marine Mercury a series of scientific papers on mercury pollution in the marine environment from sources to seafood and in June 2012 in Environmental Health Perspectives. The summary report, Sources to Seafood: Mercury

402

Four Current Meter Models Compared in Strong Currents in Drake Passage D. RANDOLPH WATTS, MAUREEN A. KENNELLY, KATHLEEN A. DONOHUE,  

E-Print Network (OSTI)

Four Current Meter Models Compared in Strong Currents in Drake Passage D. RANDOLPH WATTS, MAUREEN A February 2013, in final form 11 June 2013) ABSTRACT Seven current meters representing four models: two vector-measuring current meters (VMCMs), two Aanderaa recording current meter (RCM) 11s, two

Rhode Island, University of

403

Policy on the Moderation of Assessment: Approved by the Senate, 22 May 2013 Heriot-Watt University  

E-Print Network (OSTI)

1 Policy on the Moderation of Assessment: Approved by the Senate, 22 May 2013 Heriot-Watt University Policy on the Moderation of Assessment With diversity in form of assessment across multi in all disciplines, across all Schools and in all modes or locations of study. The University Policy

Painter, Kevin

404

Introduction The Fiber-Lite MI-150 is a 150 Watt quartz halogen fiber optic illuminator designed for general microscopy  

E-Print Network (OSTI)

Introduction ® The Fiber-Lite MI-150 is a 150 Watt quartz halogen fiber optic illuminator designed for general microscopy use. When used with specialty fiber optic cables the MI-150 illuminator can also Illuminator from the carton and retain the manual and any additional documents. ! Remove the fiber optic cable

Kleinfeld, David

405

Heriot-Watt University has consolidated and updated its various logos to form a single more distinctive identity.  

E-Print Network (OSTI)

Brand Identity USING THE LOGO It is essential that a consistent use of colour and positioning-Watt Brand Identity. The logo should always appear in Pantone 293 and 30% Pantone 293 with a white keyline, it is necessary to consider the printers normal image parameters. The logo should therefore be positioned using

Glasbey, Chris

406

Geothermal Exploration Using Surface Mercury Geochemistry | Open Energy  

Open Energy Info (EERE)

Surface Mercury Geochemistry Surface Mercury Geochemistry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Exploration Using Surface Mercury Geochemistry Details Activities (5) Areas (3) Regions (0) Abstract: Shallow, soil-mercury surveys can be used effectively in exploration for geothermal resources. Soil-mercury data from six areas in Nevada, California and New Mexico are analyzed using contour maps, histogram and probability graphs. Plotting on probability graphs allows background and anomalous populations to be resolved even when considerable overlap between populations is present. As is shown in several examples, separate soil-mercury populations can be plausibly interpreted. Mercury data can significantly enhance the structural understanding of a prospect

407

Vapor deposition of hardened niobium  

DOE Patents (OSTI)

A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

1983-04-19T23:59:59.000Z

408

Figure 2: The mercury jet target geometry. The proton beam and mercury jet cross at z=-37.5 cm.  

E-Print Network (OSTI)

Figure 2: The mercury jet target geometry. The proton beam and mercury jet cross at z=-37.5 cm. Figure 3: The layout of multiple proton beam entry directions relative to mercury jet at z=-75 cm. A PION of a free liquid mercury jet with an intense proton beam. We study the variation of meson production

McDonald, Kirk

409

Chemical vapor deposition sciences  

SciTech Connect

Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

NONE

1992-12-31T23:59:59.000Z

410

Development of an electromagnetically actuated mercury microvalve  

SciTech Connect

The development of microscale fluid handling components has been recognized as a crucial element in the design of microscale chemical detection systems. Recently, work has been undertaken at Sandia National Laboratories to construct a valve that uses a small mercury droplet to control the flow of gas through capillary passages. Electromagnetic forces that are provided by small permanent magnets and a current supply are used to drive the mercury into position. Driving the mercury droplet into a tapered passage halts gas flow through a capillary, while surface tension forces prevent the mercury from passing through the passage. Models have been developed to describe the movement of the mercury droplet and the sealing of the gas passage, and millimeter-scale units have been tested to explore design options. Predictions from the model show that a valve with 10 micron sized features can seal against pressures up to 1.5 atmospheres. Experiments have highlighted the promise of mercury valves and demonstrated problems that can arise from contamination of the mercury.

Adkins, D.R.; Wong, C.C.

1998-08-01T23:59:59.000Z

411

Yampa Valley Electric Assn Inc | Open Energy Information  

Open Energy Info (EERE)

Yampa Valley Electric Assn Inc Yampa Valley Electric Assn Inc Place Colorado Utility Id 21081 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL SERVICE Commercial IRRIGATION SERVICE Commercial LARGE POWER SERVICE Commercial OUTDOOR SECURITY LIGHTING SERVICE: 175 Watt Mercury Vapor Lamp Lighting OUTDOOR SECURITY LIGHTING SERVICE: 250 Watt Mercury Vapor Lamp Lighting OUTDOOR SECURITY LIGHTING SERVICE: 400 Watt Mercury Vapor Lamp Lighting RESIDENTIAL SERVICE Residential Average Rates Residential: $0.0960/kWh

412

Somerset Rural Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Somerset Rural Elec Coop, Inc Somerset Rural Elec Coop, Inc Jump to: navigation, search Name Somerset Rural Elec Coop, Inc Place Pennsylvania Utility Id 40167 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt Lamp(Mercury Vapor) Lighting 175 Watt Lamp(Mercury Vapor) Lighting 400 Watt Lamp(Mercury Vapor) Lighting Commercial Service Single-Phase Commercial Dairy Farm Water Heating-Schedule DF Commercial Electric Thermal Storage and Dual Fuel, Schedule EM Commercial Farm and Home Service-Space Heating Residential

413

Wheatland Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Place Kansas Utility Id 20510 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Lighting Lighting Domestic Cooling & Heating/Water Heating Residential General Service Industrial General Service Large Industrial Irrigation Commercial Non-Domestic Rural Industrial Private Lighting (unmetered) - 175 watt mercury vapor Lighting Private Lighting (unmetered) - 250 watt mercury vapor Lighting Private Lighting (unmetered) - 400 watt mercury vapor Lighting

414
415

The Vaporization Enthalpies and Vapor Pressures of Some Primary Amines of Pharmaceutical Importance by Correlation Gas  

E-Print Network (OSTI)

by Correlation Gas Chromatography Chase Gobble, Nigam Rath, and James Chickos* Department of Chemistry Information ABSTRACT: Vapor pressures, vaporization, and sublimation enthalpies of several pharmaceuticals and boiling temperatures when available. Sublimation enthalpies and vapor pressures are also evaluated for 1

Chickos, James S.

416

COSTBI-935; NO. OF PAGES 6 Please cite this article in press as: Oates J, Watts A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation, Curr Opin Struct Biol (2011), doi:10.1016/  

E-Print Network (OSTI)

COSTBI-935; NO. OF PAGES 6 Please cite this article in press as: Oates J, Watts A. Uncovering between lipids, cholesterol and GPCR activation Joanne Oates and Anthony Watts The membrane bilayer has, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK Corresponding author: Watts, Anthony

Watts, Anthony

417

Watts Bar Unit 1 Cycle Zero Power Physics Tests Analysis with VERA-CS  

SciTech Connect

The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications, including a core simulation capability called VERA-CS. A key milestone for this endeavor is to validate VERA against measurements from operating nuclear power reactors. The first step in validation against plant data is to determine the ability of VERA to accurately simulate the initial startup physics tests for Watts Bar Nuclear Power Station, Unit 1 (WBN1) cycle 1. VERA-CS calculations were performed with the Insilico code developed at ORNL using cross section processing from the SCALE system and the transport capabilities within the Denovo transport code using the SPN method. The calculations were performed with ENDF/B-VII.0 cross sections in 252 groups (collapsed to 23 groups for the 3D transport solution). The key results of the comparison of calculations with measurements include initial criticality, control rod worth critical configurations, control rod worth, differential boron worth, and isothermal temperature reactivity coefficient (ITC). The VERA results for these parameters show good agreement with measurements, with the exception of the ITC, which requires additional investigation. Results are also compared to those obtained with Monte Carlo methods and a current industry core simulator.

Gehin, Jess C [ORNL; Godfrey, Andrew T [ORNL; Evans, Thomas M [ORNL; Hamilton, Steven P [ORNL; Francheschini, F. [Westinghouse Electric Company, Cranberry Township

2014-01-01T23:59:59.000Z

418

Simulation of Watts Bar Unit 1 Initial Startup Tests with Continuous Energy Monte Carlo Methods  

SciTech Connect

The Consortium for Advanced Simulation of Light Water Reactors* is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications. One component of the testing and validation plan for VERA is comparison of neutronics results to a set of continuous energy Monte Carlo solutions for a range of pressurized water reactor geometries using the SCALE component KENO-VI developed by Oak Ridge National Laboratory. Recent improvements in data, methods, and parallelism have enabled KENO, previously utilized predominately as a criticality safety code, to demonstrate excellent capability and performance for reactor physics applications. The highly detailed and rigorous KENO solutions provide a reliable nu-meric reference for VERAneutronics and also demonstrate the most accurate predictions achievable by modeling and simulations tools for comparison to operating plant data. This paper demonstrates the performance of KENO-VI for the Watts Bar Unit 1 Cycle 1 zero power physics tests, including reactor criticality, control rod worths, and isothermal temperature coefficients.

Godfrey, Andrew T [ORNL; Gehin, Jess C [ORNL; Bekar, Kursat B [ORNL; Celik, Cihangir [ORNL

2014-01-01T23:59:59.000Z

419

Mercury cleanup efforts intensify | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury cleanup efforts ... Mercury cleanup efforts ... Mercury cleanup efforts intensify Posted: February 11, 2013 - 3:31pm | Y-12 Report | Volume 9, Issue 2 | 2013 Millions of pounds of mercury were required to support Y-12's post-World War II mission of separating lithium isotopes. Cleaning up the toxic heavy metal poses many challenges, but what Y-12 is learning could help conquer mercury pollution worldwide. There's a reason you won't find mercury in many thermometers these days. Mercury is a heavy metal that occurs in several chemical forms, all of which can produce toxic effects in high enough doses. Mercury was used in the column exchange process, which Y-12 employed to produce lithium-6 from 1953 to 1962. Through process spills, system leaks and surface runoff, some 700,000 pounds of mercury have been lost to the

420

NETL: News Release - Meeting Mercury Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

June 18, 2001 June 18, 2001 Meeting Mercury Standards DOE Selects 6 Projects to Develop Cost-Saving Technologies for Curbing Mercury Emissions from Coal Power Plants Power Plant with Fish - MORGANTOWN, WV - With President Bush's National Energy Plan calling for mandatory reductions in the release of mercury from electric power plants - part of the Plan's multi-pollutant reduction strategy - the U.S. Department of Energy today named six new projects to develop innovative technologies that can curb mercury emissions from coal plants more effectively and at a fraction of today's costs. The winning projects were submitted by the University of North Dakota's Energy & Environmental Research Center in Grand Forks; URS Group. Inc., of Austin, TX; CONSOL, Inc., of Library, PA; Southern Research Institute in

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ZZ Mercury Storage Book.indb  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Comment Response Document Environmental Impact Statement Final Final Environmental Impact Statement DOE/EIS-0423 January 2011 Long-Term Management and Storage of Elemental Mercury Long-Term Management and Storage of Elemental Mercury For additional information on this Final Mercury Storage EIS, contact: AVAILABILITY OF THIS FINAL LONG-TERM MANAGEMENT AND STORAGE OF ELEMENTAL MERCURY ENVIRONMENTAL IMPACT STATEMENT David Levenstein, Document Manager Office of Environmental Compliance (EM-41) U.S. Department of Energy Post Office Box 2612 Germantown, MD 20874 Website: http://www.mercurystorageeis.com Fax: 877-274-5462 Printed with soy ink on recycled paper Cover Sheet Lead Agency: U.S. Department of Energy (DOE) Cooperating Agencies: U.S. Environmental Protection Agency (EPA)

422

Mercury sorbent delivery system for flue gas  

DOE Patents (OSTI)

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

423

Future trends in environmental mercury concentrations: implications  

E-Print Network (OSTI)

Future trends in environmental mercury concentrations: implications for prevention strategies interactions among natural and human climate system components; objectively assess uncertainty in economic, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended

424

Remediation of Mercury and Industrial Contaminants  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

425

Mercury's Magnetosphere After MESSENGER's First Flyby  

Science Journals Connector (OSTI)

...IMF is unfavorable to dayside magnetic reconnection with Mercury's magnetic field and greatly limits the rate of solar wind energy transfer across the MP (2). The earlier southward IMF intervals before MESSENGER's entry into the magnetosphere...

James A. Slavin; Mario H. Acua; Brian J. Anderson; Daniel N. Baker; Mehdi Benna; George Gloeckler; Robert E. Gold; George C. Ho; Rosemary M. Killen; Haje Korth; Stamatios M. Krimigis; Ralph L. McNutt; Jr.; Larry R. Nittler; Jim M. Raines; David Schriver; Sean C. Solomon; Richard D. Starr; Pavel Trvn?ek; Thomas H. Zurbuchen

2008-07-04T23:59:59.000Z

426

Symplectic Integrator Mercury: Bug Report  

E-Print Network (OSTI)

We report on a problem found in MERCURY, a hybrid symplectic integrator used for dynamical problems in Astronomy. The variable that keeps track of bodies' statuses is uninitialised, which can result in bodies disappearing from simulations in a non-physical manner. Some FORTRAN compilers implicitly initialise variables, preventing simulations from having this problem. With other compilers, simulations with a suitably large maximum number of bodies parameter value are also unaffected. Otherwise, the problem manifests at the first event after the integrator is started, whether from scratch or continuing a previously stopped simulation. Although the problem does not manifest in some conditions, explicitly initialising the variable solves the problem in a permanent and unconditional manner.

K. de Souza Torres; D. R. Anderson

2008-08-04T23:59:59.000Z

427

Mercury bioaccumulation in Lavaca Bay, Texas  

E-Print Network (OSTI)

MERCURY BIOACCUMULATION IN LAVACA BAY, TEXAS A Thesis by SALLY JO PALMER Submitted to the Office of Graduate Studies of Texas ABM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1992 Major... Subject: Oceanography MERCURY BIOACCUMULATION IN LAVACA BAY, TEXAS A Thesis by SALLY JO PALMER Approved as to style and content by: obby J. Pr y (Chair of Committee) Robe J. Tayl (Member) owell (Member) Marvin W. Rowe (Member) Gi bert T. Rowe...

Palmer, Sally Jo

2012-06-07T23:59:59.000Z

428

VAPORIZATION THERMODYNAMICS OF KCl. COMBINING VAPOR PRESSURE AND GRAVIMETRIC DATA  

E-Print Network (OSTI)

.B. Department of Chemistry, Moscow State University, Moscow, 119899, Russia Bonnell D.W., Hastie J.W. National temperature chemistry situations, vapor pressures are typically less than 100 kPa. The molar volume is p = 101325 Pa). The subscript trs denotes that the changeisfor a transition, typically sublimation

Rudnyi, Evgenii B.

429

Detection of concealed mercury with thermal neutrons  

SciTech Connect

In the United States today, governments at all levels and the citizenry are paying increasing attention to the effects, both real and hypothetical, of industrial activity on the environment. Responsible modem industries, reflecting this heightened public and regulatory awareness, are either substituting benign materials for hazardous ones, or using hazardous materials only under carefully controlled conditions. In addition, present-day environmental consciousness dictates that we deal responsibly with legacy wastes. The decontamination and decommissioning (D&D) of facilities at which mercury was used or processed presents a variety of challenges. Elemental mercury is a liquid at room temperature and readily evaporates in air. In large mercury-laden buildings, droplets may evaporate from one area only to recondense in other cooler areas. The rate of evaporation is a function of humidity and temperature; consequently, different parts of a building may be sources or sinks of mercury at different times of the day or even the year. Additionally, although mercury oxidizes in air, the oxides decompose upon heating. Hence, oxides contained within pipes or equipment, may be decomposed when those pipes and equipment are cut with saws or torches. Furthermore, mercury seeps through the pores and cracks in concrete blocks and pads, and collects as puddles and blobs in void spaces within and under them.

Bell, Z.W.

1994-08-18T23:59:59.000Z

430

Measuring the pressure in ultrahigh-pressure mercury arcs  

SciTech Connect

Ultrahigh-pressure (UHP) mercury lamps are important as high-brightness light sources for digital projection. Hg pressures are usually above 20 MPa and difficult to measure. We have built special UHP lamps with a liquid Hg condensate in a temperature-controlled reservoir, allowing us to tune the Hg vapor pressure p between 14 and 30 MPa. As a simple measure for p, we recorded the width DELTAlambda of the 546 nm Hg line while varying p and also the lamp current I and voltage U. The data define a function p(DELTAlambda,I,U) that will deliver p to better than 3% from simple measurements of DELTAlambda, I, and U for most UHP lamps in the important 100-200 W power range. The method is applied to sample lamps, yielding pressures up to 26 MPa and demonstrating how filled Hg amount, burning position, arc gap, and lamp power affect the pressure. The effective temperature of typical UHP lamps is found to be 2400 K. We also derive an improved characteristic U(d,p,I) for the dependence of the arc voltage on arc gap, pressure, and current for electrode-stabilized Hg discharges in the UHP regime. Some aspects of the experiment are of general interest in the field of discharge lamps, such as a model for the heat balance of the Hg condensate under conductive, radiative, and evaporative cooling/heating, a short discussion of high-temperature vapor-pressure data for Hg, and an improved Hg equation of state for UHP conditions.

Hechtfischer, U.; Engelbrecht, B.; Carpaij, M.; Fischer, E.; Koerber, A. [Philips Research Laboratories, Weisshausstrasse 2, 52066 Aachen (Germany)

2009-09-01T23:59:59.000Z

431

Vacuum vapor deposition gun assembly  

DOE Patents (OSTI)

A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

Zeren, Joseph D. (Boulder, CO)

1985-01-01T23:59:59.000Z

432

LNG Vaporizer Utilizing Vacuum Steam Condensing  

Science Journals Connector (OSTI)

This report concerns the field test results of a new type of peak-shaving LNG vaporizer (VSV) whose heat source is ... heat of vacuum steam to vaporize and superheat LNG within heat transfer tubes. Prior to the.....

Y. Miyata; M. Hanamure; H. Kujirai; Y. Sato

1991-01-01T23:59:59.000Z

433

Running-Film Vaporizer for LNG  

Science Journals Connector (OSTI)

Advances in welding technology and steel fabrication techniques have permitted the development of a new concept in cryogenic vaporizersthe running-film plate vaporizer. Although similar in heat transfer philosop...

H. H. West; G. L. Puckett

1975-01-01T23:59:59.000Z

434

Vapor Retarder Classification- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes research in vapor retarders. Since 2006 the IRC has permitted Class III vapor retarders like latex paint (see list above) in all climate zones under certain conditions thanks to research by Building America teams.

435

Vapor phase modifiers for oxidative coupling  

DOE Patents (OSTI)

Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, Barbara K. (Charleston, WV)

1991-01-01T23:59:59.000Z

436

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

437

DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Issues Final Mercury Storage Environmental Impact Statement: DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage January 19, 2011 - 12:00pm Addthis Media Contact (202) 586-4940 WASHINGTON - The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations. Based on these factors, DOE identified the Waste Control Specialists, LLC, site near Andrews, Texas, as the preferred alternative for long-term management and storage of mercury. DOE will consider the environmental impact information presented in this

438

Dissolved gaseous mercury behavior in shallow water estuaries  

E-Print Network (OSTI)

The formation of dissolved gaseous mercury (DGM) can be an important pathway for mercury removal from an aquatic environment. DGM evasional fluxes from an aquatic system can account for up to 95% of atmospheric Hg and its deposition pathways. While...

Landin, Charles Melchor

2009-05-15T23:59:59.000Z

439

Mitigation and Remediation of Mercury Contamination at the Y...  

Office of Environmental Management (EM)

Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and...

440

Mercury in the sediments of the Pallanza Basin  

Science Journals Connector (OSTI)

... Pallanza Basin of Lago Maggiore, Italy, in 1970 have been analysed for mercury, using flameless atomic absorption spectrophotometry. The concentration of mercury in the Maggiore sediments proved to be ...

V. DAMIANI; R. L. THOMAS

1974-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Emission factor of mercury from coal-fired power stations  

Science Journals Connector (OSTI)

Mercury emission from coal-fired power stations, situated in Poland in the Silesian region ... mercury in the consumed coal and in combustion gas, used in this research, are described. ... the air from coal combu...

Wojciech Mniszek

1994-11-01T23:59:59.000Z

442

Seismic effects of the Caloris basin impact, Mercury  

E-Print Network (OSTI)

Striking geological features on Mercury's surface have been linked to tectonic disruption associated with the Caloris impact and have the potential to provide information on the interior structure of Mercury. The unusual ...

L, Jiangning

2011-01-01T23:59:59.000Z

443

Removal of mercury from coal via a microbial pretreatment process  

SciTech Connect

A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

2011-08-16T23:59:59.000Z

444

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

445

Vapor Pressures and Heats of Vaporization of Primary Coal Tars  

Office of Scientific and Technical Information (OSTI)

/ PC92544-18 / PC92544-18 VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS FINAL REPORT Grant Dates: August, 1992 - November, 1996 Principal Authors: Eric M. Suuberg (PI) and Vahur Oja Report Submitted: April, 1997 Revised: July, 1997 Grant Number: DE-FG22-92PC92544 Report Submitted by: ERIC M. SUUBERG DIVISION OF ENGINEERING BROWN UNIVERSITY PROVIDENCE, RI 02912 TEL. (401) 863-1420 Prepared For: U. S. DEPT. OF ENERGY FEDERAL ENERGY TECHNOLOGY CENTER P.O. BOX 10940 PITTSBURGH, PA 15236 DR. KAMALENDU DAS, FETC, MORGANTOWN , WV TECHNICAL PROJECT OFFICER "US/DOE Patent Clearance is not required prior to the publication of this document" ii United States Government Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any

446

Groundwater Discharge of Mercury to California Coastal Waters  

E-Print Network (OSTI)

leading to levels in some seafood that can be dangerous ifis all the mercury in seafood coming from? says Russell

Flegal, Russell; Paytan, Adina; Black, Frank

2009-01-01T23:59:59.000Z

447

Impact of Closing Canadas Largest Point-Source of Mercury Emissions on Local Atmospheric Mercury Concentrations  

Science Journals Connector (OSTI)

(29) Solar radiation measurements at the airport were initiated in August 2010. ... Steffen, A.; Schroeder, W. Standard Operating Procedures for Total Gaseous Mercury MeasurementsCanadian Atmospheric Mercury Measurement Network (CAMNet); Environment Canada: Toronto, Canada, 1999. ...

Chris S. Eckley; Matthew T. Parsons; Rachel Mintz; Monique Lapalme; Maxwell Mazur; Robert Tordon; Robert Elleman; Jennifer A. Graydon; Pierrette Blanchard; Vincent St Louis

2013-08-26T23:59:59.000Z

448

Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively  

E-Print Network (OSTI)

, such as paper mills, solid waste incineration, mining, and chlor-alkali production, the burning of fossil fuels

449

Mercury Vapor Release from Broken Compact Fluorescent Lamps and In Situ Capture by New Nanomaterial Sorbents  

Science Journals Connector (OSTI)

There is one report of Hg poisoning (acrodynia) in a child exposed to broken tube-type fluorescents in a detailed case study presented by Tunnessen et al. (6). ... Similar release patterns but lower amounts were seen for spent bulbs (example result 90 ?g in 24 h) or from the fracture site of a new bulb after glass removal to simulate cleanup. ... Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy ... ...

Natalie C. Johnson; Shawn Manchester; Love Sarin; Yuming Gao; Indrek Kulaots; Robert H. Hurt

2008-06-27T23:59:59.000Z

450

Mercury: Supporting Scalable Multi-Attribute Range Queries  

E-Print Network (OSTI)

Mercury: Supporting Scalable Multi-Attribute Range Queries Ashwin R. Bharambe Mukesh Agrawal 15213 Abstract This paper presents the design of Mercury, a scalable protocol for supporting multi-attribute range- based searches. Mercury differs from previous range-based query systems in that it supports mul

Keinan, Alon

451

Mercury/Waterfilling for Fixed Wireless OFDM Angel Lozano  

E-Print Network (OSTI)

Mercury/Waterfilling for Fixed Wireless OFDM Systems Angel Lozano Bell Labs (Lucent Technologies- mation is then given by the more general mercury/waterfilling policy. This paper illustrates the usance of mercury/waterfilling on frequency-selective OFDM channels with QAM constellations and it quantifies

Verdú, Sergio

452

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network (OSTI)

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER (IPAC12, WEPPD038) The target station a 15-20 T superconducting magnet. The target itself is a free mercury jet, moving at 20 m/s at an small angle to the magnetic axis, so as later to be collected in a mercury pool/beam dump. The replaceable

McDonald, Kirk

453

Powering Mercury's dynamo J.-P. Williams,1  

E-Print Network (OSTI)

Powering Mercury's dynamo J.-P. Williams,1 O. Aharonson,1 and F. Nimmo2 Received 6 July 2007 magnetic field of Mercury has implications for the interior structure of the planet and its thermal (2007), Powering Mercury's dynamo, Geophys. Res. Lett., 34, L21201, doi:10.1029/ 2007GL031164. 1

Nimmo, Francis

454

2003 Mercury Computer Systems, Inc. Session 5: Current &  

E-Print Network (OSTI)

© 2003 Mercury Computer Systems, Inc. Session 5: Current & Emerging Standards Session 5: Current & Emerging Standards Craig Lund, Chief Technology Officer Mercury Computer Systems, Inc. High Performance Embedded Computing (HPEC) Conference September 2003 #12;© 2003 Mercury Computer Systems, Inc. Agenda

Kepner, Jeremy

455

Wednesday, March 25, 2009 SPECIAL SESSION: MESSENGER AT MERCURY  

E-Print Network (OSTI)

Wednesday, March 25, 2009 SPECIAL SESSION: MESSENGER AT MERCURY: A GLOBAL PERSPECTIVE. T. MESSENGER's Newly Global Perspective on Mercury: Some Implications for Interior Evolution [#1750] MESSENGER's first two flybys of Mercury have revealed a planet with a richer history of magmatism

Rathbun, Julie A.

456

Exploring Mercury: Scientific Results from the MESSENGER Mission  

E-Print Network (OSTI)

#12;Exploring Mercury: Scientific Results from the MESSENGER Mission Larry R. Nittler Carnegie-Cahill · MESSENGER Science Team, Engineers, Mission Operations (APL) #12;Mars Mercury · Naked-eye planet, but very difficult to observe due to proximity to Sun May 12, 2011, from NZ (M. White, Flickr) Mercury Venus Jupiter

Rhoads, James

457

2003 Mercury Computer Systems, Inc. Beamforming for Radar  

E-Print Network (OSTI)

© 2003 Mercury Computer Systems, Inc. Beamforming for Radar Systems on COTS Heterogeneous ComputingHeterogeneous Computing PlatformsPlatforms Jeffrey A. Rudin Mercury Computer Systems, Inc. High Performance Embedded Computing (HPEC) Conference September 23, 2003 #12;2© 2003 Mercury Computer Systems, Inc. Outline

Kepner, Jeremy

458

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE  

E-Print Network (OSTI)

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE: Insights from a global 3D land.S. National Science Foundation Atmospheric Chemistry Program #12;FROM ATMOSPHERE TO FISH: MERCURY RISING Ice core from Wyoming [Schuster et al., ES&T 2002] Mercury deposition has increased by 300% since

Selin, Noelle Eckley

459

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta  

E-Print Network (OSTI)

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta STFC Rutherford Appleton Laboratory, UK 2nd Princeton-Oxford High Power Target Meeting 6-7 November-2008 #12;Mercury beam dump design from NUFACT Feasibility Study #12;Peter Loveridge, November-2008 Mercury beam dump design from NUFACT

McDonald, Kirk

460

Mercury Concentrations in Fish from the San Francisco Bay Area  

E-Print Network (OSTI)

Mercury Concentrations in Fish from the San Francisco Bay Area San Francisco Bay Regional Water on composite samples · Some mercury analysis on individual largemouth bass · Size targets #12;Tomales Bay Study chemical analyses (Hg and organics) conducted on composite samples · Some mercury analysis on individual

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Mercury's thermo-chemical evolution from numerical models constrained  

E-Print Network (OSTI)

Mercury's thermo-chemical evolution from numerical models constrained by MESSENGER observations Globe de Paris, France #12;Basics facts about Mercury · Semi-major axis: 0.39 AU · 3:2 spin Earth!) · Black body temperature: 440 K #12;Exploration of Mercury Mariner10 ·First spacecraft to use

Cerveny, Vlastislav

462

Mercury exosphere I. Global circulation model of its sodium component  

E-Print Network (OSTI)

Mercury exosphere I. Global circulation model of its sodium component Francois Leblanc a,*, R 2010 Accepted 27 April 2010 Available online 5 May 2010 Keywords: Mercury, Atmosphere Aeronomy a b s t r a c t Our understanding of Mercury's sodium exosphere has improved considerably in the last 5

Johnson, Robert E.

463

Mercury warning given to north state anglers By Ryan Sabalow  

E-Print Network (OSTI)

Mercury warning given to north state anglers By Ryan Sabalow Monday, June 7, 2010 A new study the highest levels of mercury contamination in the state. Although anglers arent being warned to wean,905 fish in 272 of Californias popular lakes and reservoirs for mercury, PCBs, DDT and other contaminants

464

Mercury reuses several external software tools developed by ORNL  

E-Print Network (OSTI)

Mercury reuses several external software tools developed by ORNL DAAC and other organizations-on,canopychemistryaccpclimatecollectionseoslandvalidationFIFEFIFEfollow-on fluxnethydroclimatologycollectionsmodelarchivenetprimaryproductivityNPPNBIIMAST- DCUSANPNIABINDataONEWENDI Mercury's architecture includes 1) a harvesting engine was packaged in such a way that all the Mercury projects will use the same harvester scripts, but each project

465

Mercury and Freon: Temperature Emulation and Management for Server Systems  

E-Print Network (OSTI)

Mercury and Freon: Temperature Emulation and Management for Server Systems Taliver Heath Dept by simulators and real measurements. In this paper, we introduce Mercury, a soft- ware suite that avoids data. Most importantly, Mercury runs the entire software stack natively, enables repeatable experiments

Bianchini, Ricardo

466

Thursday, March 26, 2009 POSTER SESSION II: MERCURY  

E-Print Network (OSTI)

Thursday, March 26, 2009 POSTER SESSION II: MERCURY 6:30 p.m. Town Center Exhibit Area Gómez-Perez N. Wicht J. Magnetic Field at Mercury: Effects of External Sources on Planetary Dynamos [#1634] In Mercury, magnetospheric currents induce a magnetic field at the top of the core. We study dynamo

Rathbun, Julie A.

467

Mercury: Supporting Scalable Multi-Attribute Range Ashwin R. Bharambe  

E-Print Network (OSTI)

Mercury: Supporting Scalable Multi-Attribute Range Queries Ashwin R. Bharambe ashu Carnegie Mellon University Pittsburgh, PA 15213 ABSTRACT This paper presents the design of Mercury, a scalable pro- tocol for supporting multi-attribute range-based searches. Mercury differs from previous

Krishnamurthy, Arvind

468

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta Chris Densham  

E-Print Network (OSTI)

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta Chris Densham STFC Rutherford Appleton Laboratory, UK 1st joint meeting of EUROnu WP2 (Superbeam) and NF-IDS target 15-17 December-2008 #12;Mercury beam dump design from NUFACT Feasibility Study #12;Peter Loveridge, November-2008 Mercury beam dump

McDonald, Kirk

469

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE  

E-Print Network (OSTI)

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE: Insights from global modeling Noelle Atmospheric Chemistry Program #12;FROM ATMOSPHERE TO FISH: MERCURY RISING Ice core from Wyoming [Schuster et al., ES&T 2002] Mercury deposition has increased by 300% since industrialization Major anthropogenic

Selin, Noelle Eckley

470

Tuesday, March 14, 2006 POSTER SESSION I: MERCURY  

E-Print Network (OSTI)

Tuesday, March 14, 2006 POSTER SESSION I: MERCURY 7:00 p.m. Fitness Center Helbert J. Moroz L. V for the MERTIS Instrument on the ESA BepiColombo Mission to Mercury [#1662] The MERTIS instrument on BepiColombo will study the surface of Mercury in the TIR. We will present a list of analog material compiled to support

Rathbun, Julie A.

471

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE  

E-Print Network (OSTI)

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE: Insights from Global Modeling Noelle #12;MERCURY IN THE ENVIRONMENT: OUTLINE 1. Deposition to the United States results from a mix of local and global sources, depending on the location 2. Historical and present releases of mercury will continue

Selin, Noelle Eckley

472

MESSENGER observations of magnetopause structure and dynamics at Mercury  

E-Print Network (OSTI)

MESSENGER observations of magnetopause structure and dynamics at Mercury Gina A. DiBraccio,1 James December 2012; accepted 10 January 2013; published 1 March 2013. [1] On 18 March 2011, MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) became the first spacecraft to orbit Mercury

Salzman, Daniel

473

Long-Term Management and Storage of Elemental Mercury  

Energy.gov (U.S. Department of Energy (DOE))

In addition to banning the export of elemental mercury from the United States as of January 1, 2013, the Mercury Export Ban Act of 2008 (MEBA) required DOE to establish a facility for the long-term management and storage of elemental mercury.

474

Optical frequency standards based on mercury and aluminum ions  

E-Print Network (OSTI)

Optical frequency standards based on mercury and aluminum ions W. M. Itano, J. C. Bergquist, A-16 . Keywords: aluminum, atomic clocks, frequency standards, ion traps, mercury 1. INTRODUCTION Optical frequency standards based on the mercury ion and, more recently, the aluminum ion are under devel- opment

475

Environmental and health aspects of lighting: Mercury  

SciTech Connect

Most discharge lamps, including fluorescent lamps, metal halide lamps, and high pressure sodium lamps, contain Mercury, a toxic chemical. Lighting professionals need to be able to respond to questions about the direct hazards of Mercury from accidentally breaking lamps, and the potential environmental hazards of lamp operation and disposal. We calculated the exposures that could occur from an accidental breakage of lamps. Acute poisoning appears almost impossible. Under some circumstances a sealed environment, such as a space station, could be contaminated enough to make it unhealthy for long-term occupation. Mercury becomes a potential environmental hazard after it becomes methylated. Mercury is methylated in aquatic environments, where it may accumulate in fish, eventually rendering them toxic to people and other animals. Lighting causes Mercury to enter the environment directly from lamp disposal, and indirectly from power plant emissions. The environmental tradeoffs between incandescent and discharge lamps depend upon the amounts released by these two sources, their local concentrations, and their probabilities of being methylated. Indirect environmental effects of lighting also include the release of other heavy metals (Cadmium, Lead and Arsenic), and other air pollutants and carbon dioxide that are emitted by fossil fuel power plants. For a given light output, the level of power plant emissions depends upon the efficacy of the light source, and is thus much larger for incandescent lamps than for fluorescent or discharge lamps. As disposal and control technologies change the relative direct and indirect emissions from discharge and incandescent lamps will change.

Clear, R.; Berman, S.

1993-07-01T23:59:59.000Z

476

Vapor deposition of tantalum and tantalum compounds  

SciTech Connect

Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition.

Trkula, M. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

1996-04-01T23:59:59.000Z

477

Bowie-Cass Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Bowie-Cass Electric Coop, Inc Bowie-Cass Electric Coop, Inc Jump to: navigation, search Name Bowie-Cass Electric Coop, Inc Place Texas Utility Id 2049 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Large Power Service Commercial Industrial Large Power Service Industrial Residential Service Residential Schedule ADD-250 Watt High Pressure Sodium Lighting Schedule ADD-400 Watt Mercury vapor. Lighting Schedule DD-100 Watt High Pressure Sodium Lighting Schedule DD-175 Watt Mercury Vapor Lighting

478

Village of Endicott, New York (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Village of Endicott Village of Endicott Place New York Utility Id 5875 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NY Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial, Professional and Small Power Installs Commercial Large Power and Light Installations Commercial Residential and Religious Customers Residential Security Lighting (100 Watt Glow) Lighting Security Lighting (175 Watt Mercury Vapor) Commercial Security Lighting (400 Watt Mercury Vapor) Commercial Security Lighting (400 Watt Sodium) Commercial

479

City of Westerville, Ohio (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

(Redirected from City of Westerville, OH) (Redirected from City of Westerville, OH) Jump to: navigation, search Name City of Westerville Place Westerville, Ohio Utility Id 20477 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. City of Westerville, OH Smart Grid Project was awarded $4,320,000 Recovery Act Funding with a total project value of $10,663,000. Utility Rate Schedules Grid-background.png 175 watt mercury vapor light/100 watt high pressure sodium light(pole in place) Lighting 175 watt mercury vapor light/100 watt high pressure sodium light(city

480

Southern Pine Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Elec Coop, Inc Elec Coop, Inc Jump to: navigation, search Name Southern Pine Elec Coop, Inc Place Alabama Utility Id 17646 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Light: 100 Watt High Pressure Sodium (HPS) Lighting Security Light: 175 Watt Mercury Vapor Lighting Security Light: 400 Watt High Pressure Sodium (HPS) Lighting Security Light: 400 Watt Mercury Vapor Lighting Average Rates Residential: $0.1140/kWh Commercial: $0.0956/kWh Industrial: $0.0928/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

Note: This page contains sample records for the topic "watt mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Bridger Valley Elec Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Utility Id 2215 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Irrigation Pumping Industrial Large General Service Single Phase Industrial Large Power (350 kVA or less) Industrial Large Power (350 kVA to 2000 kVA) Industrial Large Power (Over 2000 kVA) Industrial Lighting Service-100 watt High Pressure Sodium Lighting Lighting Service-175 watt Mercury Vapor Lamp Lighting Lighting Service-250 watt High Pressure Sodium Lighting Lighting Service-400 watt Mercury Vapor Lamp Lighting

482

City of Westerville, Ohio (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name City of Westerville Place Westerville, Ohio Utility Id 20477 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. City of Westerville, OH Smart Grid Project was awarded $4,320,000 Recovery Act Funding with a total project value of $10,663,000. Utility Rate Schedules Grid-background.png 175 watt mercury vapor light/100 watt high pressure sodium light(pole in place) Lighting 175 watt mercury vapor light/100 watt high pressure sodium light(city

483

Atchison-Holt Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Atchison-Holt Electric Coop Atchison-Holt Electric Coop Jump to: navigation, search Name Atchison-Holt Electric Coop Place Missouri Utility Id 942 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes ISO Other Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt Sodium Lighting 175 Watt Mercury Vapor Lighting 250 Watt Sodium Lighting 400 Watt Mercury Vapor Lighting Commercial Multi-Phase Commercial Commercial Single-Phase Commercial Industrial Multi-Phase Industrial Irrigation Multi-Phase Commercial

484

Mercury Absorption in Aqueous Oxidants Catalyzed by Mercury(II) Lynn L. Zhao and Gary T. Rochelle*  

E-Print Network (OSTI)

Mercury Absorption in Aqueous Oxidants Catalyzed by Mercury(II) Lynn L. Zhao and Gary T. Rochelle no immediate effect on mercury removal. In 0.8 M HNO3 with the addition of K2Cr2O7, the reaction is first at 25 °C. For mercury absorption in Hg(II) obtained by HgCl2 injection, the presence of HNO3 greatly

Rochelle, Gary T.

485

Surface properties of liquid mercury: a comparison of density-dependent and density-independent force fields  

E-Print Network (OSTI)

The surface properties of liquid mercury (Hg) at a temperature of 293 K are investigated by classical Molecular Dynamics simulation using density-independent (DI) and density-dependent (DD) force fields. The latter force fields were introduced to improve the description of surface properties. Both force fields yield lower values of the surface tension in comparison to experimental data. Moreover, the density-dependent force field results in an anomalous thermodynamic behavior. These findings are rationalized by liquid-state theory. An optimized, density-independent force field is proposed that yields a higher surface tension and, at the same time, provides an accurate description of the liquid-vapor coexistence.

A. Iakovlev; D. Bedrov; M. Mller

2014-12-08T23:59:59.000Z

486

Means and method for vapor generation  

DOE Patents (OSTI)

A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

Carlson, Larry W. (Oswego, IL)

1984-01-01T23:59:59.000Z

487

NETL: Mercury Emissions Control Technologies - Advanced Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

488

Geochemical, Genetic, and Community Controls on Mercury  

SciTech Connect

The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

Wall, Judy D.

2014-11-10T23:59:59.000Z

489

THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT  

SciTech Connect

We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities modify the frequencies, and can shift them into and out of resonance with either the planets' eigenfrequencies (forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed map (the 'map of the mean momenta'), and find good agreement between analytical and numerical results. This map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury's two free precession frequencies (in eccentricity and inclination) lie within {approx}25% of two other eigenfrequencies in the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode), secular resonances involving these four modes overlap and cause Mercury's chaos. We confirm this with N-body integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. The timescale for Mercury's chaotic diffusion depends sensitively on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale comparable to the lifetime of the solar system.

Lithwick, Yoram [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Wu Yanqin [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)

2011-09-20T23:59:59.000Z

490

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2008-10-14T23:59:59.000Z

491

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

2014-09-02T23:59:59.000Z

492

Method for high temperature mercury capture from gas streams  

DOE Patents (OSTI)

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

493

NETL: IEP - Mercury Emissions Control: Emissions Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Control Emissions Characterization In anticipation of the 1990 CAAAs, specifically the draft Title III regarding the characterization of potential HAPs from electric steam generating units, DOE initiated a new Air Toxics Program in 1989. The DOE Mercury Measurement and Control Program evolved as a result of the findings from the comprehensive assessment of hazardous air pollutants studies conducted by DOE from 1990 through 1997. DOE, in collaboration with EPRI, performed stack tests at a number of coal-fired power plants (identified on map below) to accurately determine the emission rates of a series of potentially toxic chemicals. These tests had not been conducted previously because of their cost, about $1 million per test, so conventional wisdom on emissions was based on emission factors derived from analyses of coal. In general, actual emissions were found to be about one-tenth previous estimates, due to a high fraction of the pollutants being captured by existing particulate control systems. These data resulted in a decision by EPA that most of these pollutants were not a threat to the environment, and needed no further regulation at power plants. This shielded the coal-fired power industry from major (tens of millions) costs that would have resulted from further controlling these emissions. However, another finding of these studies was that mercury was not effectively controlled in coal-fired utility boiler systems. Moreover, EPA concluded that a plausible link exists between these emissions and adverse health effects. Ineffective control of mercury by existing control technologies resulted from a number of factors, including variation in coal composition and variability in the form of the mercury in flue gases. The volatility of mercury was the main contributor for less removal, as compared to the less volatile trace elements/metals which were being removed at efficiencies over 99% with the fly ash. In addition, it was determined that there was no reliable mercury speciation method to accurately distinguish between the elemental and oxidized forms of mercury in the flue gas. These two forms of mercury respond differently to removal techniques in existing air pollution control devices utilized by the coal-fired utility industry.

494

FY09 assessment of mercury reduction at SNL/NM.  

SciTech Connect

This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

McCord, Samuel Adam

2010-02-01T23:59:59.000Z

495

NETL: Mercury Emissions Control Technologies - Full- Scale Testing of  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Testing of Enhanced Mercury Control in Wet FGD Full-Scale Testing of Enhanced Mercury Control in Wet FGD The goal of this project is to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The two specific objectives of this project are 1) ninety percent (90%) total mercury removal and 2) costs below 1/4 to 1/2 of today's commercially available activated carbon mercury removal technologies. Babcock and Wilcox and McDermott Technology, Inc's (B&W/MTI's) will demonstrate their wet scrubbing mercury removal technology (which uses very small amounts of a liquid reagent to achieve increased mercury removal) at two locations burning high-sulfur Ohio bituminous coal: 1) Michigan South Central Power Agency's (MSCPA) 55 MWe Endicott Station located in Litchfield, Michigan and 2) Cinergy's 1300 MWe Zimmer Station located near Cincinnati, Ohio.

496

NETL: News Release - Innovative Mercury Removal Technique Shows Early  

NLE Websites -- All DOE Office Websites (Extended Search)

August 5, 2003 August 5, 2003 Innovative Mercury Removal Technique Shows Early Promise Photochemical Process Developed in Federal Lab Removes Mercury from Flue Gas - NETL scientist Evan Granite prepares a lab test of the UV mercury removal process. - NETL scientist Evan Granite prepares for a lab test of the UV mercury removal process. MORGANTOWN, WV - A promising technology to remove mercury from coal-fired power plants -- dubbed the "GP-254 Process" -- has been developed and is currently being tested at the Department of Energy's National Energy Technology Laboratory (NETL). Newly patented, the GP-254 Process enhances mercury removal using ultraviolet light to induce various components of power plant stack gas to react with the mercury, and changes the

497

NETL: Mercury Emissions Control Technologies - Bench Scale Kinetics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench Scale Kinetics of Mercury Reactions in FGD Liquors Bench Scale Kinetics of Mercury Reactions in FGD Liquors When research into the measurement and control of Hg emissions from coal-fired power plants began in earnest in the early 1990s, it was observed that oxidized mercury can be scrubbed at high efficiency in wet FGD systems, while elemental mercury can not. In many cases, elemental mercury concentrations were observed to increase slightly across wet FGD systems, but this was typically regarded as within the variability of the measurement methods. However, later measurements have shown substantial re-emissions from some FGD systems. The goal of this project is to develop a fundamental understanding of the aqueous chemistry of mercury (Hg) absorbed by wet flue gas desulfurization (FGD) scrubbing liquors. Specifically, the project will determine the chemical reactions that oxidized mercury undergoes once absorbed, the byproducts of those reactions, and reaction kinetics.

498

NETL: Mercury Emissions Control Technologies - Development of Comprehensive  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Testing of Mercury Control Via Sorbent Injection Full-Scale Testing of Mercury Control Via Sorbent Injection DOE has identified technologies (based on past DOE and other R&D organizations' mercury measurement and control achievements) that are expected to be important in developing possible strategies on mercury control for the coal-fired electric utility industry. To address critical questions related to cost and efficiency of these mercury control technologies, DOE has funded the first of a kind large-scale initiative aimed at testing and evaluating large-scale mercury control technologies for coal-based power systems. These tests will collect cost and performance data with parametric and long term field experiments at power plants with existing air pollution control devices (APCDs) utilized to control other pollutants as well as mercury in hopes of providing the cheapest control options for the utility industry in mid-term application (5 to 10 years).

499

Global change and mercury cycling: Challenges for implementing a global mercury treaty  

E-Print Network (OSTI)

The Minamata Convention aims to protect human health and the environment from anthropogenic emissions and releases of mercury. In the present study, the provisions of the Minamata Convention are examined to assess their ...

Selin, Noelle Eckley

500

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

Brayton Point Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of the impacts of future mercury regulations to Brayton Point Unit 1, including performance, estimated cost, and operation data. This unit has variable (29-75%) native mercury removal, thus it was important to understand the impacts of process variables and activated carbon on mercury capture. The team responsible for executing this program included: (1) Plant and PG&E National Energy Group corporate personnel; (2) Electric Power Research Institute (EPRI); (3) United States Department of Energy National Energy Technology Laboratory (DOE/NETL); (4) ADA-ES, Inc.; (5) NORIT Americas, Inc.; (6) Apogee Scientific, Inc.; (7) TRC Environmental Corporation; (8) URS Corporation; (9) Quinapoxet Solutions; (10) Energy and Environmental Strategies (EES); and (11) Reaction Engineering International (REI). The technical support of all of these entities came together to make this program achieve its goals. Overall, the objectives of this field test program were to determine the impact of activated carbon injection on mercury control and balance-of-plant processes on Brayton Point Unit 1. Brayton Point Unit 1 is a 250-MW unit that fires a low-sulfur eastern bituminous coal. Particulate control is achieved by two electrostatic precipitators (ESPs) in series. The full-scale tests were conducted on one-half of the flue gas stream (nominally 125 MW). Mercury control sorbents were injected in between the two ESPs. The residence time from the injection grid to the second ESP was approximately 0.5 seconds. In preparation for the full-scale tests, 12 different sorbents were evaluated in a slipstream of flue gas via a packed-bed field test apparatus for mercury adsorption. Results from these tests were used to determine the five carbon-based sorbents that were tested at full-scale. Conditions of interest that were varied included SO{sub 3} conditioning on/off, injection concentrations, and distribution spray patterns. The original test plan called for parametric testing of NORIT FGD carbon at 1, 3, and 10 lbs/MMacf. These injection concentrations were estimated based on results from the Pleasant Prairie tests that showed no additional mercury removal when injection concentrations were increased above 10 lbs/MMacf. The Brayton Point parametric test data indicated that higher injection concentrations would achieve higher removal efficiencies and should be tested. The test plan was altered to include testing at 20 lbs/MMacf. The first test at this higher rate showed very high removal across the second ESP (>80%). Unlike the ''ceiling'' phenomenon witnessed at Pleasant Prairie, increasing sorbent injection concentration resulted in further capture of vapor-phase mercury. The final phase of field-testing was a 10-day period of continuous injection of NORIT FGD carbon. During the first five days, the injection concentration was held at 10 lbs/MMacf, followed by nominally five days of testing at an injection concentration of 20 lbs/MMacf. The mercury removal, as measured by the semi-continuous emission monitors (S-CEM), varied between 78% and 95% during the 10 lbs/MMacf period and increased to >97% when the injection concentration was increased to 20 lbs/MMacf. During the long-term testing period, mercury measurements following EPA's draft Ontario Hydro method were conducted by TRC Environmental Corporation at both 10 and 20 lbs/MMacf test conditions. The Ontario Hydro data showed that the particulate mercury removal was similar between the two conditions of 10 or 20 lbs/MMacf and removal efficiencies were greater than 99%. Elemental mercury was not detected in any samples, so no conclusions as to its removal can be drawn. Removal of oxidized mercury, on the other hand, increased from 68% to 93% with the higher injection concentration. These removal rates agreed well with the S-CEM results.

Michael D. Durham

2005-03-17T23:59:59.000Z