Powered by Deep Web Technologies
Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2X Incandescent Lamp Technology  

Science Conference Proceedings (OSTI)

The incandescent lamp was developed during the 1800s, largely reaching the design of the traditional incandescent lamp as we know it by the late 1800s.This lamp remained largely unchanged for years, providing most commercial and residential lighting demands into the 1950s and residential lighting into the 2000s. Asnew lighting technologies became available, the low efficacy, measured in lumens per watt, of the traditional incandescent lamp became an issue which many wanted to ...

2012-11-01T23:59:59.000Z

2

Energy Basics: Incandescent Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The three most common types of incandescent lamps are: Standard incandescent lamps Energy-Saving Incandescent (or Halogen) Reflector lamps Standard Incandescent Lamps Known as...

3

A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Bright Idea: New Efficiency Standards for Incandescent and A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights July 21, 2009 - 5:18pm Addthis John Lippert Pretty soon, lighting is going to get a lot more efficient. New standards for incandescent reflector bulbs, general purpose fluorescent bulbs, and regular incandescent bulbs are going into effect beginning in approximately three years. You may be curious about how these standards will affect the most popular types of incandescent bulbs we've all used for so long: the common non-reflector 40-watt, 60-watt, 75-watt, and 100-watt bulbs. The Energy Independence and Security Act of 2007 (also known as EISA) requires that these incandescent bulbs use 30% less energy than today's

4

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting August 16, 2013 - 10:00am Addthis Incandescent lighting is the most common type of lighting used in homes. Incandescent lamps operate...

5

Incandescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

6

Incandescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

7

Goodbye, Watts. Hello, LUMENS! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Goodbye, Watts. Hello, LUMENS! Goodbye, Watts. Hello, LUMENS! Goodbye, Watts. Hello, LUMENS! May 17, 2012 - 2:21pm Addthis John Chu John Chu Communications Specialist with the Office of Energy Efficiency and Renewable Energy For years, I bought light bulbs based on watts, or energy use. Like many light bulb consumers, I looked for a traditional 40, 60, 75, or 100 watt incandescent bulb. Now that stores today carry more and more energy efficient lighting choices, I wanted to replace my old incandescents with new bulbs to save energy and money on my electricity bill. But in shopping for the right bulb, I came across a challenge in looking for bulbs based on watts. Since these newer bulbs use less energy, I found bulbs that use 8, 15, or 26 watts. The wattages are pretty close to each other, but the

8

Photonically Engineered Incandescent Emitter  

DOE Patents (OSTI)

A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

2005-03-22T23:59:59.000Z

9

Incandescent | OpenEI  

Open Energy Info (EERE)

Incandescent Incandescent Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

10

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

11

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

12

Sales of specialty incandescent bulbs decline despite ...  

U.S. Energy Information Administration (EIA)

... and light-emitting diode (LED) bulbs. Several manufacturers offer CFL three-way bulbs to replace incandescent three-way bulbs. LEDs, ...

13

How Energy-Efficient Light Bulbs Compare with Traditional Incandescent...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents July 29, 2012 - 6:25pm Addthis...

14

Building Technologies Office: Fluorescent and Incandescent Lamps Public  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorescent and Fluorescent and Incandescent Lamps Public Meeting to someone by E-mail Share Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Facebook Tweet about Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Twitter Bookmark Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Google Bookmark Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Delicious Rank Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Digg Find More places to share Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

15

Definition: Watt | Open Energy Information  

Open Energy Info (EERE)

Watt Watt Jump to: navigation, search Dictionary.png Watt A unit of measure for power, which measures the rate of energy conversion; equal to one joule per second (or 1/746 horsepower); equivalent to one ampere under a pressure of one volt.[1][2] View on Wikipedia Wikipedia Definition The watt' is a derived unit of power in the International System of Units (SI), named after the Scottish engineer James Watt (1736-1819). The unit, defined as one joule per second, measures the rate of energy conversion or transfer. Also Known As W Related Terms Electricity, Power, Kilowatt References ↑ http://www.eia.gov/tools/glossary/index.cfm?id=W#watt ↑ http://needtoknow.nas.edu/energy/glossary/ Retri LikeLike UnlikeLike You like this.Sign Up to see what your friends like. eved from

16

Replacing Incandescent Lightbulbs and Ballasts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Replacing Incandescent Lightbulbs and Ballasts Replacing Incandescent Lightbulbs and Ballasts Replacing Incandescent Lightbulbs and Ballasts July 29, 2012 - 5:16pm Addthis Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. What does this mean for me? For the greatest energy efficiency, use new fixtures with new lightbulbs. Replace A-type lightbulbs with more energy-efficient options such as CFLs, LEDs, and energy-saving (halogen) incandescents. Matching replacement lightbulbs to existing fixtures and ballasts can be tricky, especially with older fixtures. Using new fixtures made for new

17

Replacing Incandescent Lightbulbs and Ballasts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lightbulbs and Ballasts Incandescent Lightbulbs and Ballasts Replacing Incandescent Lightbulbs and Ballasts July 29, 2012 - 5:16pm Addthis Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. What does this mean for me? For the greatest energy efficiency, use new fixtures with new lightbulbs. Replace A-type lightbulbs with more energy-efficient options such as CFLs, LEDs, and energy-saving (halogen) incandescents. Matching replacement lightbulbs to existing fixtures and ballasts can be tricky, especially with older fixtures. Using new fixtures made for new lightbulbs gives you the greatest energy savings, reliability, and

18

How Energy-Efficient Light Bulbs Compare with Traditional Incandescents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Light Bulbs Compare with Traditional Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents July 29, 2012 - 6:25pm Addthis Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home. Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home. Compared to traditional incandescents, energy-efficient lightbulbs such as energy-saving incandescents, compact fluorescent lamps (CFLs), and light emitting diodes (LEDs) have the following advantages: Typically use about 25%-80% less energy, saving you money

19

COST EFFECTIVENESS OF LONG LIFE INCANDESCENT LAMPS AND ENERGY BUTTONS  

E-Print Network (OSTI)

button, a 100 watt (130 volt) lamp, a 100 watt long lifeFluorescent Watt L I ltage (volts) cu ge ic in s) ative ( 1the diode energy button (83 volts) was obtained by dividing

Verderber, Rudy

2013-01-01T23:59:59.000Z

20

PlotWatt | Open Energy Information  

Open Energy Info (EERE)

PlotWatt PlotWatt Jump to: navigation, search Tool Summary LAUNCH TOOL Name: PlotWatt Agency/Company /Organization: PlotWatt Sector: Energy Focus Area: Energy Efficiency Resource Type: Software/modeling tools User Interface: Mobile Device Website: plotwatt.com/ Country: United States Web Application Link: plotwatt.com/ Cost: Free OpenEI Keyword(s): Green Button Apps Northern America Language: English PlotWatt Screenshot References: PlotWatt[1]PlotWatt FAQ[2] Logo: PlotWatt PlotWatt helps you to save money and energy, instead of getting hit with high energy bills every month. PlotWatt shows you exactly where to save. Overview PlotWatt's algorithms analyze home energy consumption to figure out spending at the appliance level and figure out how to cost effectively save

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

WattQuiz | Open Energy Information  

Open Energy Info (EERE)

WattQuiz WattQuiz Jump to: navigation, search Tool Summary LAUNCH TOOL Name: WattQuiz Agency/Company /Organization: Genability Sector: Energy Focus Area: Energy Efficiency Resource Type: Software/modeling tools User Interface: Website Website: www.wattquiz.com/ Country: United States Web Application Link: www.wattquiz.com/ Cost: Free Northern America Language: English WattQuiz Screenshot References: Genability[1] NYC Open Data[2] Donors Choose[3] Logo: WattQuiz A social quiz on energy usage that donates proceeds to charity via DonorsChoose.org. Questions are powered by Genability APIs. Overview WattQuiz is a simple social quiz, a la freerice.com, that asks you questions and educates you about your energy. Correct answers generate watts that are donated to worthy charities via DonorsChoose.org!

22

Denver Watts to Water | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Denver Watts to Water Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

23

Tennessee Nuclear Profile - Watts Bar Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

24

MegaWatt Solar | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name MegaWatt Solar Place North Carolina Sector Renewable Energy, Solar Product North Carolina-based, technology-centric renewable energy company...

25

Reducing Leaking Electricity to 1 Watt  

Science Conference Proceedings (OSTI)

In this study we examine some specific opportunities toreduce standby losses in electronic appliances. A review of powerconsumption levels for the major components responsible for standbyfunctions indicates that nearly all standby functions can be performedwith a total appliance standby power consumption of one watt or less. Wetherefore propose that standby losses be limited to one watt perappliance, a significant reduction from current levels for manyappliances. This target could be achieved with little or no extra cost tomanufacturers and could save over $2 billion in annual U.S. energy costs.Globally, a one-watt plan would lead to a significant reduction in carbonemissions.

Meier, A.K.; Huber, Wolfgang; Rosen, Karen

1998-08-01T23:59:59.000Z

26

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear...

27

A Bright Idea: New Efficiency Standards for Incandescent and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

out" of less-efficient bulbs will begin with 100 watt bulbs in 2012; lesser wattage light bulbs will then be gradually removed from distribution, ending with noncompliant 40...

28

TerraWatt Power | Open Energy Information  

Open Energy Info (EERE)

TerraWatt Power TerraWatt Power Jump to: navigation, search Name TerraWatt Power Place Schenectady, New York Zip 12305-1036 Product American manufacturer of micro-inverters, subsidiary of Advanced Energy Conversion. Coordinates 42.81226°, -73.941026° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.81226,"lon":-73.941026,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

AstroWatt | Open Energy Information  

Open Energy Info (EERE)

AstroWatt AstroWatt Jump to: navigation, search Name AstroWatt Place Austin, Texas Sector Solar Product Texas-based venture backed company developing a proprietary solar cell technology. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

AlphaWatt Ltd | Open Energy Information  

Open Energy Info (EERE)

AlphaWatt Ltd AlphaWatt Ltd Jump to: navigation, search Name AlphaWatt Ltd Place London, United Kingdom Zip EC1V 4PY Sector Solar Product Solar project developer, plans to become an independent power provider. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

GlobalWatt Inc | Open Energy Information  

Open Energy Info (EERE)

GlobalWatt Inc GlobalWatt Inc Jump to: navigation, search Name GlobalWatt Inc Place Dover, Delaware Zip 19801 Product Shell company, once planned to float on AIM to raise money in order to acquire the business of semiconductor and/or PV manufacturing equipment suppliers. Coordinates 42.67954°, -88.110374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.67954,"lon":-88.110374,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

EA-1911: Energy Conservation Standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Lamps  

Energy.gov (U.S. Department of Energy (DOE))

This EA will evaluate the environmental impacts of a proposal to amend energy conservation standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Lamps.

33

WASTE TO WATTS Waste is a Resource!  

E-Print Network (OSTI)

WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany BREFs and their BATs Next Generation of Waste Fired Power Plants: Getting the most out of your trash Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From

Columbia University

34

Watts, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Watts, Oklahoma: Energy Resources Watts, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1092487°, -94.5702202° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.1092487,"lon":-94.5702202,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Apparatus to facilitate lengthening the life of incandescent lamps  

SciTech Connect

An energizing circuit is described for an incandescent bulb comprising a transformer having a primary winding connectable to an AC mains source and first and second secondary windings for producing first and second voltages. The first secondary winding is connected to an input of a first full-wave rectifier means and the second secondary winding is connected to an input of a second full-wave rectifier means, the full-wave rectifier means having outputs connected in parallel across the bulb. The first voltage is sufficient to fully illuminate the bulb and the second voltage is sufficient to maintain the bulb warm but with little or no light output, a first switch being connected between the first secondary winding and the first rectifier means whereby, when the first switch is open, the bulb is energized solely by the second voltage.

Spissinger, F.H.

1987-03-17T23:59:59.000Z

36

Particulate measurement issues in diesel exhausts using laser induced incandescence  

DOE Green Energy (OSTI)

A number of studies in the recent past have identified Laser Induced Incandescence (LII) as a versatile technique for in-flame measurement of soot concentrations. Recently, a number of researchers have focused their attention in adapting this technique to measure particulate in diesel exhausts. However the agreement with established physical sampling techniques, such as the EPA recommended filter paper collection method, was found to be less than ideal. This paper reports the efforts to adapt this technique for diesel exhaust characterization. Many of the factors affecting LII signal were identified through computer modeling. Parameters that could not be determined through such a model were determined experimentally following a parametric study. Subsequently, LII measurements were performed in the exhaust of a modified lab burner, with conditions close to that of diesel engine exhausts. Such measurements show excellent agreement with those performed using the standard filter paper collection technique.

Gupta, S. B.; Poola, R. B.; Sekar, R.

2000-07-03T23:59:59.000Z

37

Shanghai Solar Watt Ltd | Open Energy Information  

Open Energy Info (EERE)

Solar Watt Ltd Solar Watt Ltd Jump to: navigation, search Name Shanghai Solar-Watt Ltd Place Shanghai, Shanghai Municipality, China Zip 200040 Sector Renewable Energy, Solar, Wind energy Product Providing photovoltaic systems, solar air heating systems, solar water pumping systems, wind energy systems (small), photovoltaic module manufacturing equipment and renewable energy system batteries. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Specification for strontium-90 500-watt(e) radioisotopic thermoelectric generator. Final report  

DOE Green Energy (OSTI)

A conceptual design for a demonstration 500-watt(e) radioisotopic thermoelectric generator has been created for the Department of Energy. The design effort was divided into two tasks, viz., create a design specification for a capsule strength member that utilizes a standard Strontium-90 fluoride-filled WESF inner liner, and create a conceptual design for a 500-watt(e) RTG. Both tasks have been accomplished. The strength-member specification was designed to survive an external pressure of 24,500 psi and meet the requirements of special-form radioisotope heat sources. Therefore the capsule can, if desired, be licensed for domestic and international transport. The design for the RTG features a radioisotopic heat source, an array of nine capsules in a tungsten biological shield, four current-technology series-connected thermoelectric-conversion modules, low-conductivity thermal insulation, and a passive finned-housing radiator for waste-heat dissipation. The preliminary RTG specification formulated previous to contract award has been met or exceeded. The power source will generate the required power for the required service period at 28 volts dc with a conversion efficiency of 8%, provided the existing in-pool capsules at WESF meet the assumed thermal-inventory requirements.

Hammel, T.; Himes, J.; Lieberman, A.; McGrew, J.; Owings, D.; Schumann, F.

1983-04-01T23:59:59.000Z

39

Whole Product Performance for 2X High-Efficiency Incandescent Lamps  

Science Conference Proceedings (OSTI)

FirstEnergy (FE) approached EPRIs Lighting Lab in 2011 to validate the performance of a newly developed 2X incandescent lighting technology developed by a manufacturing company in their service territory. This manufacturer claimed that their product was identical in light output, but twice (2X) as efficient as traditional 100W incandescent bulbs. In collaboration with FE, EPRI conducted a series of tests to independently verify the energy and photometric performance of this ...

2012-11-12T23:59:59.000Z

40

Trico Electric Cooperative - SunWatts Incentive Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trico Electric Cooperative - SunWatts Incentive Program Trico Electric Cooperative - SunWatts Incentive Program Trico Electric Cooperative - SunWatts Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV systems 10 kW or smaller: 30% of the total system cost Program Info State Arizona Program Type Utility Rebate Program Rebate Amount PV systems 10 kW or smaller: $0.10/watt DC PV greater than 10 kW up to 1 MW: Performance-Based Incentive (competitive bid process) Solar water heaters: $0.40 per expected first year kWh savings Provider Trico Electric Cooperative, Inc. Through the SunWatts Program, Trico Electric Cooperative offers residential and business customers a rebate for installing photovoltaic (PV) systems

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

How to upgrade your incandescent light bulbs Many people are choosing replacements for their standard incandescent light bulbs to save money or energy, because they've heard of new LED  

E-Print Network (OSTI)

How to upgrade your incandescent light bulbs Many people are choosing replacements for their standard incandescent light bulbs to save money or energy, because they've heard of new LED options for replacement light bulbs, you probably noticed that you have many options and the alternative bulbs are more

Bystroff, Chris

42

Kill-a-Watt Contest at UCF | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kill-a-Watt Contest at UCF Kill-a-Watt Contest at UCF Kill-a-Watt Contest at UCF April 2, 2010 - 5:16pm Addthis The University of Central Florida has created an innovative way to save energy and money on campus through a new dorm-based competition called "Kill-a-Watt". Students representing campus residence halls compete against each other to achieve energy savings and can receive up to $200 in scholarships. Watch how former DOE intern and current UCF DOE Campus Ambassador, Chris Castro, is spearheading this exciting effort and learn more about energy saving tips that students find useful like proper thermostat set points and reducing plug load. Read the DoE's press release about the video. Addthis Related Articles University of Central Florida Students' Energy Saving Work Showcased in New

43

Duncan Valley Electric Cooperative- SunWatts Rebate Program (Arizona)  

Energy.gov (U.S. Department of Energy (DOE))

Duncan Valley Electric Cooperative is providing rebates to for the purchase of renewable energy systems through its SunWatts program. Photovoltaic (PV) and wind energy systems 10 kilowatts (kW) or...

44

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts associated with the U.S. Department of Energy proposed action to conduct a lead test assembly program to confirm the viability of using a commercial light water reactor to produce tritium. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 22, 1997 EA-1210: Finding of No Significant Impact Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington July 22, 1997 EA-1210: Final Environmental Assessment

45

One watt initiative: A global effort to reduce leaking electricity  

E-Print Network (OSTI)

Watt when being OFF or on standby. The challenge may appearAction to Reduce Standby Power Waste of Electricalon www.iea.org/standby/ . 18 & 19 .01.99 Siderius Hans-Paul,

Meier, Alan K.; LeBot, Benoit

1999-01-01T23:59:59.000Z

46

VP 100: Retooling Michigan -- Yachts and Watts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP 100: Retooling Michigan -- Yachts and Watts VP 100: Retooling Michigan -- Yachts and Watts VP 100: Retooling Michigan -- Yachts and Watts June 18, 2010 - 4:13pm Addthis Energetx Composites was able to purchase equipment such as this mold for utility-scale wind turbine blades thanks to a Recovery Act grant that matched the company’s $3.5 million investment. | Photo Courtesy of Energetx | Energetx Composites was able to purchase equipment such as this mold for utility-scale wind turbine blades thanks to a Recovery Act grant that matched the company's $3.5 million investment. | Photo Courtesy of Energetx | Joshua DeLung Near the eastern shore of Lake Michigan, there's a shift taking place. Tiara Yachts makes fiber composite structures for boats. Now the Holland, Mich.-based company is transforming part of its factory and using its 30

47

L-Prize Competition Winner 60W Incandescent Replacement Lamp Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Interagency Technology Deployment Working Group L Prize ® Competition Winner 60W Incandescent Replacement Lamp Update James E. Rannels, Senior Advisor L Prize Competition D&R International March 15, 2012 Cost of electricity 1 cent per kilowatt-hour The Washington Post, March 8, 2012 Page One 2 Cost of electricity 11 cents per kilowatt-hour The Washington Post, March 9, 2012 Page Two 3 What Is the L Prize? * Technology competition to spur innovation and exceptional performance * Created by Energy Independence and Security Act (EISA 2007) Sec. 655 * Two key lamp replacements: 60W Incandescent and PAR 38 Halogen * Future focus: 21 st Century Lamp * Cash prizes, federal purchasing, utility programs 4 Philips Wins First L Prize * August 3, 2011: Philips

48

L-Prize Competition Winner 60W Incandescent Replacement Lamp Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interagency Technology Deployment Working Group L Prize ® Competition Winner 60W Incandescent Replacement Lamp Update James E. Rannels, Senior Advisor L Prize Competition D&R International March 15, 2012 Cost of electricity 1 cent per kilowatt-hour The Washington Post, March 8, 2012 Page One 2 Cost of electricity 11 cents per kilowatt-hour The Washington Post, March 9, 2012 Page Two 3 What Is the L Prize? * Technology competition to spur innovation and exceptional performance * Created by Energy Independence and Security Act (EISA 2007) Sec. 655 * Two key lamp replacements: 60W Incandescent and PAR 38 Halogen * Future focus: 21 st Century Lamp * Cash prizes, federal purchasing, utility programs 4 Philips Wins First L Prize * August 3, 2011: Philips

49

One watt initiative: A global effort to reduce leaking electricity  

SciTech Connect

Many domestic appliances and commercial equipment consume some electric power when they are switched off or not performing their primary purpose. The typical loss per appliance is low (from 1 to 25 W) but, when multiplied by the billions of appliances in houses and in commercial buildings, standby losses represent a significant fraction of total electricity use. Several initiatives to reduce standby losses have appeared in different parts of the world. One proposal, the 1-watt plan, seeks to harmonize these initiatives by establishing a single target for all appliances. This paper explains the background to the 1-watt plan, identifies some unresolved aspects, and gives some estimates of energy savings.

Meier, Alan K.; LeBot, Benoit

1999-05-30T23:59:59.000Z

50

Dealing with failed deregulation: what would price c. Watts do?  

SciTech Connect

There has been much thought given to ways that might fix deregulated markets, and there is still no agreement on the correct fix. The once-pseudonymous Price C. Watts thinks it is time to think seriously about ways to reregulate where deregulation has failed. Here are some steps to get us there. (author)

Rothkopf, Michael H.

2007-08-15T23:59:59.000Z

51

Denver Watts to Water | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Denver Watts to Water Denver Watts to Water Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate ENERGY STAR communications toolkit Bring Your Green to Work with ENERGY STAR

52

Watts Community, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Watts Community, Oklahoma: Energy Resources Watts Community, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.035006°, -94.5727598° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.035006,"lon":-94.5727598,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Energy Savings and NOx Emissions Reduction Potential from the 2012 Federal Legislation to Phase Out Incandescent Lamps in Texas  

E-Print Network (OSTI)

This report provides detailed information about the potential savings from the 2012 Federal Legislation to phase out incandescent lamps and the NOx emissions reduction from the replacement of incandescent bulbs with Compact Fluorescent Lamps (CFL). In Texas, this analysis includes the savings estimates from both the annual and Ozone Season Day (OSD) NOx reductions. The NOx emissions reduction in this analysis are calculated using estimated emissions factors for 2007 from the US Environmental Protection Agency (US EPA) eGRID database, which had been specially prepared for this purpose.

Liu, Zi; Baltazar, Juan Carlos; Haberl, Jeff; Soman, Rohit

2010-03-01T23:59:59.000Z

54

ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project  

Science Conference Proceedings (OSTI)

Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulness of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to find a Federal sponsor to continue with the project, the Watts Bar Dam Project was canceled and the Exploranium radiation monitors were removed from the doors of Watts Bar Dam in early 2006. The DHS Domestic Nuclear Detection Office decided to proceed with a Pilot building on the ORNL work performed at the TN and SC weigh stations in the highway sector of the Trusted Corridors project and eventually expanded it to other southern states under the name of Southeastern Corridor Pilot Project (SETCP). Many of the Phase I goals were achieved however real-world test data of private watercraft and barges was never obtained.

Walker, Randy M [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Hill, David E [ORNL

2011-11-01T23:59:59.000Z

55

Glassy Aging with Modified Kohlrausch-Williams-Watts Form  

E-Print Network (OSTI)

In this report we address the question whether aging in the non equilibrium glassy state is controlled by the equilibrium alpha-relaxation process which occur at temperatures above Tg. Recently Lunkenheimer et. al. [Phys. Rev. Lett. 95, 055702 (2005)] proposed a model for the glassy aging data of dielectric relaxation using a modified Kohlrausch-Williams-Watts (KWW) form. The aging time dependence of the relaxation time is defined by these authors through a functional relation involving the corresponding frequency but the stretching exponent is same as the alpha-relaxation stretching exponent. We present here an alternative functional form directly involving the relaxation time itself. The proposed model fits the data of Lunkenheimer et. al. perfectly with a stretching exponent different from the alpha-relaxation stretching exponent.

Bhaskar Sen Gupta; Shankar P. Das

2007-12-27T23:59:59.000Z

56

Quantitative laser-induced incandescence measurements of soot in turbulent pool fires.  

DOE Green Energy (OSTI)

Laser-induced incandescence measurements have recently been obtained from 10% and 30% toluene in methanol blended fuel pool fires of 2-m diameter. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner which allowed the extraction of absolute soot-volume-fractions from these images. Performance of the optical probe was characterized using the laminar diffusion flame and corrections were implemented for signal dependence upon detector gain, flat field, and location within the probe laser sheet when processing the images. Probability density functions of the soot-volume fraction were constructed for the blended fuels used in this study and the mean values were determined to be 0.0077 and 0.028 ppm for the 10% and 30% blended fuels, respectively. Signal trapping was estimated for the two types of blended fuel and it was determined to be negligible for the 10% toluene/methanol blend and require {approx}10% correction for the 30% toluene/methanol blend.

Frederickson, Kraig; Grasser, Thomas W.; Kearney, Sean Patrick

2009-12-01T23:59:59.000Z

57

University of Hawai`i Watt Watcher: Energy Consumption Data Analysis  

E-Print Network (OSTI)

, 2012 Prepared for: Forest City Military Communities Hawaii Prepared By: UH Watt Watcher Team Hawaii. In its first project, the UH Watt Watcher program teamed with Forest City Military Communities-Hawaii 69% of the monthly consumption. OBJECTIVES The objective of Phase I was to inform Forest City of key

58

Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)  

Science Conference Proceedings (OSTI)

Emission spectroscopy has been used to determine soot particle temperatures in an ethene diffusion flame both under normal combustion conditions and also after irradiation with an intense laser pulse. On the basis of these measurements, a check on the models and an improvement of parameters underlying time-resolved laser-induced incandescence (TIRE-LII) was performed. With this technique a two-dimensionally resolved measurement of soot primary particle sizes is feasible in a combustion process from the ratio of emission signals obtained at two delay times after a laser pulse, as the cooling behavior is characteristic of particle size. For accurate measurements, local gas temperatures must be known, which can be derived from the temperatures of the soot particles themselves. These have been measured by fitting full Planck curves to line-of-sight emission spectra after an inversion algorithm. The temperature and heat of vaporization of soot, which govern the energy and mass loss at high temperatures, were obtained by measurements of maximum particle temperature for various laser irradiances and a fit procedure to the theoretical dependence. Finally, the temperature decay of laser-heated soot was measured with high temporal resolution. Comparisons with model predictions show that soot temperatures are roughly 300 K higher than expected after the onset of vaporization, which indicates deficiencies in the present models of vaporization. It is demonstrated that the TIRE-LII performance is essentially unaffected by these shortcomings if LII signals are detected in a period where conductive heat transfer dominates and an appropriate correction is performed.

Schraml, S.; Dankers, S.; Bader, K.; Will, S.; Leipertz, A.

2000-03-01T23:59:59.000Z

59

Watch the Watts: Tips for Buying a New Television | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Watch the Watts: Tips for Buying a New Television Watch the Watts: Tips for Buying a New Television Watch the Watts: Tips for Buying a New Television March 8, 2011 - 6:30am Addthis Jeannie Saur Senior Communicator, National Renewable Energy Laboratory Buying a new television in a complex and feature-rich market can be a daunting experience. Sure there are lots of great choices with stunning picture quality and amazing features. And with so much competition, TV prices have fallen dramatically from even a year ago. But when my 1990-era television finally died, I was overwhelmed with choices for a flat screen TV. There are plasmas, liquid crystal displays (LCDs), and light-emitting diodes (LEDs). TVs can be Internet enabled so they can stream programming. And now there are a number of choices for 3D viewing. With so many things to consider, I decided the most important

60

The Kill-a-Watt Competition at University of Central Florida | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Kill-a-Watt Competition at University of Central Florida The Kill-a-Watt Competition at University of Central Florida The Kill-a-Watt Competition at University of Central Florida Addthis Description At the University of Central Florida, students have taken it upon themselves to create a culture of energy efficiency. Each year, different dorm buildings compete to see who can save the most. In 2009, the school saw a total savings of $27,000. As of March 2010, they've saved over $24,000 this year alone. Speakers Chris Castro, Alexandra Kennedy, Margaret Lo, David Norvell, Keith Coelho, John Hitt PhD Duration 5:40 Topic Energy Efficiency Commercial Heating & Cooling Consumption Credit Energy Department Video CHRIS CASTRO: Last summer, I was an intern at the Department of Energy Office of Energy Efficiency and Renewable Energy and I got a chance to

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High intensity discharge 400-watt sodium ballast. Phase I. Final report  

SciTech Connect

The results of a research and development program directed toward design, test, and evaluation of energy efficient High Intensity Discharge (HID) Solid State 400-Watt Ballast lighting system are reported. Phase I of the project which was designed to modify the existing Datapower ballast to LBL configuration, measure performance characteristics, and compare efficiency with a core/coil ballast including energy loss analysis is covered. In addition, Datapower was tasked to build six (6) prototype 400-Watt High Pressure Sodium Ballasts for verification tests by an independent test facility and follow-on performance and life tests at LBL.

Felper, G.

1980-06-01T23:59:59.000Z

62

A 5-WATT, 37-GHz MONOLITHIC GRID AMPLIFIER Blythe Deckman1  

E-Print Network (OSTI)

of the fabricated active grid. Thermal Management Previous grid amplifiers lacked a heat spreader, so Figure 1A 5-WATT, 37-GHz MONOLITHIC GRID AMPLIFIER Blythe Deckman1 , Donald S. Deakin, Jr.2 , Emilio Sovero has been demonstrated. The area of the grid am- plifier is 1 cm2, and there are 512 transistors

Rutledge, David B.

63

DIESEL AEROSOL SAMPLING IN THE David Kittelson, Jason Johnson, and Winthrop Watts  

E-Print Network (OSTI)

chemical composition of diesel particulate matter collected in laboratory and in wind tunnel #12;In OrderDIESEL AEROSOL SAMPLING IN THE ATMOSPHERE David Kittelson, Jason Johnson, and Winthrop Watts Center for Diesel Research University of Minnesota 10th CRC ON-ROAD VEHICLE EMISSIONS WORKSHOP San Diego, California

Minnesota, University of

64

University of Hawai`i Watt Watcher: Energy Consumption Data Analysis  

E-Print Network (OSTI)

Consumption Data Analysis Phase I Interim Report March 30, 2011 Prepared for: Forest City Military RECOMMENDATIONS TO FOREST CITY 12 ITEMS TO ADD TO FOREST CITY TURNOVER PUNCH LIST 17 APPENDIXUniversity of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Interim Report

65

400-Watt Electronic High-Bay Fixture for Metal-Halide High-Intensity Discharge Lighting  

Science Conference Proceedings (OSTI)

The product under assessment is an advanced lighting technology8212a 400-watt, metal-halide, electronic high-intensity discharge (HID) ballast technology designed to be operated as a stand-alone ballast or integrated as a fixture where the ballast becomes part of the fixture mechanical support system.

2008-06-12T23:59:59.000Z

66

Using Complete Machine Simulation for Software Power Estimation: The SoftWatt Approach  

E-Print Network (OSTI)

Using Complete Machine Simulation for Software Power Estimation: The SoftWatt Approach Sudhanva,anand,mji,vijay,kandemirg@cse.psu.edu Tao Li Lizy Kurian John Dept. of Electrical and Computer Engineering University of Texas at Austin of the SimOS infrastructure, uses validated analytical energy models to identify the power hotspots

John, Lizy Kurian

67

WattApp: an application aware power meter for shared data centers  

Science Conference Proceedings (OSTI)

The increasing heterogeneity between applications in emerging virtualized data centers like clouds introduce significant challenges in estimating the power drawn by the data center. In this work, we presentWattApp: an application-aware power meter for ... Keywords: power modeling

Ricardo Koller; Akshat Verma; Anindya Neogi

2010-06-01T23:59:59.000Z

68

Statistical analysis of wind energy in Chile David Watts a,b,*, Danilo Jara a  

E-Print Network (OSTI)

Data Bank Statistical analysis of wind energy in Chile David Watts a,b,*, Danilo Jara December 2010 Keywords: Wind Wind speed Energy Capacity factor Electricity Chile a b s t r a c t Bearing role in any future national energy generation matrix. With a view to understanding the local wind

Catholic University of Chile (Universidad Católica de Chile)

69

William Watts  

NLE Websites -- All DOE Office Websites (Extended Search)

for David Lorenzetti, and Tracy Thatcher. This Speaker's Seminars GE Nucleus for Residential Energy Use Education, Home Energy ManagementControl, Residential Energy Integration...

70

DOE/EA-1664: Environmental Assessment for 10 CFR 430 Energy Conservation Standards: Energy Conservation Standards for Fluorescent and Incandescent Lamps (June 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Environmental Assessment for 10 CFR Part 430 Energy Conservation Standards: Energy Conservation Standards for Fluorescent and Incandescent Lamps June 2009 16-i CHAPTER 16. ENVIRONMENTAL ASSESSMENT TABLE OF CONTENTS 16.1 INTRODUCTION ......................................................................................................... 16-1 16.2 AIR EMISSIONS ANALYSIS...................................................................................... 16-1 16.2.1 Air Emissions Descriptions............................................................................................ 16-1 16.2.2 Air Quality Regulation................................................................................................... 16-3 16.2.3 Global Climate Change..................................................................................................

71

The distribution of the electric current in a watt-balance coil  

E-Print Network (OSTI)

In the watt balance experiment, separate measurements of the Lorentz and electromotive forces in a coil in a radial magnetic field enable a virtual comparison between mechanical and electric powers to be carried out, which lead to an accurate measurement of the Planck constant. This paper investigates the effect of a spatially inhomogeneous distribution of the electric current in the coil due to the higher or lower resistance of the outer or inner paths.

Sasso, Carlo Paolo; Mana, Giovanni

2013-01-01T23:59:59.000Z

72

Soot particle sizing during high-pressure Diesel spray combustion via time-resolved laser-induced incandescence  

Science Conference Proceedings (OSTI)

Single-pulse time-resolved laser-induced incandescence (TiRe-LII) signal transients from soot particulates were acquired during unsteady high pressure Diesel combustion in a constant volume cell for typical top dead center conditions during a Diesel engine cycle. Measurements were performed for initial gas pressures between 1 and 3 MPa, injection pressures between 50 and 130 MPa and laser probe timings between 5 and 16 ms after start of fuel injection. In separate experiments and for the same cell operating conditions gas temperatures were deduced from spectrally resolved soot pyrometry measurements. Implementing the LII model of Kock et al. [Combust. Flame 147 (2006) 79-92] ensemble mean soot particle diameters were evaluated from least-squares fitting of theoretical cooling curves to experimental TiRe-LII signal transients. Since in the experiments the environmental gas temperature and the width of an assumed particle size distribution were not known, the effects of the initial choice of these parameters on retrieved particle diameters were investigated. It is shown that evaluated mean particle diameters are only slightly biased by the choice of typical size distribution widths and gas temperatures. For a fixed combustion phase mean particle diameters are not much affected by gas pressure, however they become smaller at high fuel injection pressure. At a mean chamber pressure of 1.39 MPa evaluated mean particle diameters increased by a factor of two for probe delays between 5 and 16 ms after start of injection irrespective of the choices of first-guess fitting variables, indicating a certain robustness of data analysis procedure. (author)

Ryser, R.; Gerber, T.; Dreier, T. [Reaction Analysis Group, Department of General Energy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

2008-11-15T23:59:59.000Z

73

Soot particle sizing during high-pressure Diesel spray combustion via time-resolved laser-induced incandescence  

Science Conference Proceedings (OSTI)

Single-pulse time-resolved laser-induced incandescence (TiRe-LII) signal transients from soot particulates were acquired during unsteady high pressure Diesel combustion in a constant volume cell for typical top dead center conditions during a Diesel engine cycle. Measurements were performed for initial gas pressures between 1 and 3 MPa, injection pressures between 50 and 130 MPa and laser probe timings between 5 and 16 ms after start of fuel injection. In separate experiments and for the same cell operating conditions gas temperatures were deduced from spectrally resolved soot pyrometry measurements. Implementing the LII model of Kock et al. [Combust. Flame 147 (20006) 79-92] ensemble mean soot particle diameters were evaluated from least-squares fitting of theoretical cooling curves to experimental TiRe-LII signal transients. Since in the experiments the environmental gas temperature and the width of an assumed particle size distribution were not known, the effects of the initial choice of these parameters on retrieved particle diameters were investigated. It is shown that evaluated mean particle diameters are only slightly biased by the choice of typical size distribution widths and gas temperatures. For a fixed combustion phase mean particle diameters are not much affected by gas pressure, however they become smaller at high fuel injection pressure. At a mean chamber pressure of 1.39 MPa evaluated mean particle diameters increased by a factor of two for probe delays between 5 and 16 ms after start of injection irrespective of the choices of first-guess fitting variables, indicating a certain robustness of data analysis procedure. (author)

Ryser, R.; Gerber, T.; Dreier, T. [Reaction Analysis Group, Department of General Energy, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

2009-01-15T23:59:59.000Z

74

Acoustic emission monitoring of hot functional testing: Watts Bar Unit 1 Nuclear Reactor  

Science Conference Proceedings (OSTI)

Acoustic emission (AE) monitoring of selected pressure boundary areas at TVA's Watts Bar, Unit 1 Nuclear Power Plant during hot functional preservice testing is described in this report. The report deals with background, methodology, and results. The work discussed here is a major milestone in a program supported by NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. The subject work demonstrated that anticipated problem areas can be overcome. Work is continuing toward AE monitoring during reactor operation.

Hutton, P.H.; Dawson, J.F.; Friesel, M.A.; Harris, J.C.; Pappas, R.A.

1984-06-01T23:59:59.000Z

75

Lumen Maintenance Testing of the Philips 60-Watt Replacement Lamp L Prize Entry  

Science Conference Proceedings (OSTI)

This paper describes testing conducted to evaluate the Philips' L Prize award winning 60-watt LED replacement product's ability to meet the lifetime/lumen maintenance requirement of the competition, which was: "having 70 percent of the lumen value under subparagraph (A) [producing a luminous flux greater than 900 lumens] exceeding 25,000 hours under typical conditions expected in residential use." A custom test apparatus was designed and constructed for this testing and a statistical approach was developed for use in evaluating the test results. This will be the only publicly available, third-party data set of long-term LED product operation.

Gordon, Kelly L.; Hafen, Ryan P.; Hathaway, John E.; McCullough, Jeffrey J.

2012-09-01T23:59:59.000Z

76

Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit  

SciTech Connect

This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR.

NONE

1995-03-01T23:59:59.000Z

77

Performance of electronic ballasts and other new lighting equipment: (Phase 2, The 34-watt F40 rapid start T-12 fluorescent lamp): Final report  

SciTech Connect

This study has measured the performance of energy-saving 34-watt F40, T-12, rapid-start, lite white fluorescent lamps being operated by solid-state ballasts and lighting control equipment. The performances of these lamp systems are compared with those of 40-watt F40, T-12 rapid-start cool white fluorescent lamp systems studied in the prior phase of this project. With the 34-watt F40 lamps and various solid-state ballasts, system efficacy ranged from 67 to 84 lumens per watt and ballast factor from 0.756 to 0.908. Average system efficacy using the 34-watt lamps exceeded that of systems using 40-watt lamps and the same solid-state ballasts by only 1 percent even though the 34-watt lamps is about 6 percent more efficacious than the 40-watt lamp. This apparent discrepancy is due to increased ballast losses when operating the 34-watt lamps. However, the systems efficacy of the 34-watt lamps used with a solid-state ballast exceeded that of a 34-watt, two-lamp system using the standard core-coil ballast by as much as 29 percent. A T-8 fluorescent lamp system with a smaller lamp diameter was also included in the study. Operating this lamp with a solid-state ballast produced a high system efficacy of 90 lumens per watt, a 39 percent improvement over the efficacy of a 40-watt F40 system using the standard core-coil ballast. The use of static controllers with 34-watt F40 lamps can result in excessive flickering (46 percent) and the generation of a second harmonic as high as 96 percent of the fundamental frequency. The dynamic controllers, when used to dim the 34-watt lamps generally cannot be dimmed as low as the 40-watt lamp system without flickering. In general, the 34-watt energy-saving lamps are appropriate as a retrofit to reduce illumination levels. However, for new construction, the 40-watt F40 argon filled lamps cost less, perform better, and provide a more reliable system. 5 refs., 27 figs., 9 tabs.

Verderber, R.R.; Morse, O.

1988-02-01T23:59:59.000Z

78

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network (OSTI)

efficiency, or luminous efficacy, of the technologies are incandescent, 10-20 lumens per watt (lum/W); CFL,

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

79

Narrow linewidth picosecond pulsed laser with mega-watt peak power at UV wavelength  

Science Conference Proceedings (OSTI)

We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system to generate 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser is based on a direct electro-optic modulation of a fiber laser output. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of macropulses with tunable pulse duration. The light output form the amplifier is converted to 355 nm and over 1 MW UV peak power is obtained when the laser is operating in a 5- s/10-Hz macropulse mode. The laser output has a transform limited spectrum bandwidth with a very narrow linewidth of individual laser mode. The immediate application of the laser system is the laser assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

Liu, Yun [ORNL; Huang, Chunning [ORNL; Deibele, Craig Edmond [ORNL

2013-01-01T23:59:59.000Z

80

Laser-induced incandescence and elastic-scattering measurements of particulate-matter volume fraction changes during passage through a dilution tunnel  

DOE Green Energy (OSTI)

Modern diesel engines produce far less mass of particulate matter than their predecessors, but this advance has been achieved at the expense of a significant increase in the number of sub-micron sized particles. This change in soot morphology has created the need for new instrumentation capable of measuring small volumes and sizes of particulate matter in a reasonable period of time, and preferably in real-time. Laser-induced incandescence and laser elastic scattering are complementary techniques suitable for this task. Optical measurements are presented for a diesel engine exhaust and compared with measurements performed using a scanning mobility particle sizer. This study investigates the effects of exhaust dilution and temperature control of the sampling system. It is also shown that laser-induced vaporization of low temperature volatile material is a potentially valuable technique for measuring the volatile component of exhaust particulate matter.

Robert M. Green; Peter O. Witze

2000-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"  

U.S. Energy Information Administration (EIA) Indexed Site

B39. Lighting Equipment, Floorspace, 1999" B39. Lighting Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Lit Buildings","Lighting Equipment (more than one may apply)" ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen" "All Buildings ................",67338,64321,38156,60344,20666,19223,17926 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5859,2946,5154,738,245,600 "5,001 to 10,000 ..............",8238,7464,4047,6722,1108,663,991 "10,001 to 25,000 .............",11153,10393,6055,9815,1759,1701,1996 "25,001 to 50,000 .............",9311,9053,5004,8344,2296,2224,1611

82

Energy-efficient H. I. D. solid-state ballast: Phase II final report. [150 watt high pressure sodium lamp  

SciTech Connect

The following report presents the results of Phase II, Development of Solid State 150 watt High Pressure Sodium Ballasts. Basically, the objectives of the development program were accomplished, i.e., greater than 90% efficiency, greater than 90% power factor, regulation equivalent to ferro-magnetic ballasts, and energy savings sufficient to warrant the further development of the solid-state HPS ballast for commercial production and marketing. 8 figs., 5 tabs.

1983-06-01T23:59:59.000Z

83

Results of Performance Tests Performed on the John Watts WW Casing Connection on 7" Pipe  

SciTech Connect

Stress Engineering Services (SES) was contracted by Mr. John Watts to test his ''WW'' threaded connection developed for oilfield oil and gas service. This work was a continuation of testing performed by SES as reported in August of 1999. The connection design tested was identified as ''WW''. The samples were all integral (no coupled connections) and contained a wedge thread form with 90{sup o} flank angles relative to the pipe centerline. The wedge thread form is a variable width thread that primarily engages on the flanks. This thread form provides very high torque capacity and good stabbing ability and makeup. The test procedure selected for one of the samples was the newly written ISO 13679 procedure for full scale testing of casing and tubing connections, which is currently going through the ISO acceptance process. The ISO procedure requires a variety of tests that includes makeup/breakout testing, internal gas sealability/external water sealability testing with axial tension, axial compression, bending, internal gas thermal cycle tests and limit load (failure) tests. This test procedure was performed with one sample. Four samples were tested to failure. Table 1 contains a summary of the tasks performed by SES. The project started with the delivery of test samples by Mr. Watts. Pipe from the previous round of tests was used for the new samples. Figure 1 shows the structural and sealing results relative to the pipe body. Sample 1 was used to determine the torque capacity of the connection. Torque was applied to the capacity of SES's equipment which was 28,424 ft-lbs. From this, an initial recommended torque range of 7,200 to 8,800 ft-lbs. was selected. The sample was disassembled and while there was no galling observed in the threads, the end of the pin had collapsed inward. Sample 2 received three makeups. Breakouts 1 and 2 also had collapsing of the pin end, with no thread galling. From these make/breaks, it was decided to reduce the amount of lubricant applied to the connection by applying it to the box or pin only and reducing the amount applied. Samples 3 and 4 received one makeup only. Sample 5 initially received two make/breaks to test for galling resistance before final makeup, No galling was observed. Later, three additional make/breaks were performed with no pin end collapse and galling over 1/2 a thread occurring on one of the breakouts. During the make/break tests, the stabbing and hand tight makeup of the WW connection was found to be very easy and trouble free. There was no tendency to crossthread, even when stabbed at an angle, and it screwed together very smoothly up to hand tight. During power tight makeup, there was no heat generated in the box (as checked by hand contact) and no jerkiness associated with any of the makeups or breakouts. Sample 2 was tested in pure compression. The maximum load obtained was 1,051 kips and the connection was beginning to significantly deform as the sample buckled. Actual pipe yield was 1,226 kips. Sample 3 was capped-end pressure tested to failure. The capped-end yield pressure of the pipe was 16,572 psi and the sample began to leak at 12,000 psi. Sample 4 was tested in pure tension. The maximum load obtained was 978 kips and the connection failed by fracture at the pin critical section. Actual pipe yield was 1,226 kips. Sample 5 was tested in combined tension/compression and internal gas pressure. The sample was assembled, setup and tested four times. The first time was with a torque of 7,298 ft-lbs and the connection leaked halfway to ISO Load Point 2 with loads of 693 kips and 4,312 psi. The second time the torque was increased to 14,488 ft-lbs and a leak occurred at 849 kips and 9,400 psi, which was ISO Load Point 2. The third time the makeup torque was again increased, to 20,456 ft-lbs, and a leak occurred at 716 kips and 11,342 psi, ISO Load Point 4. The fourth test was with the same torque as before, 20,617 ft-lbs, and the connection successfully tested up to load step 56, ISO Load Point 6 (second round) before leaking at 354 kips and 11,876 psi. At this point,

John D. Watts

2000-02-01T23:59:59.000Z

84

Hurdling barriers through market uncertainty: Case studies in innovative technology adoption  

E-Print Network (OSTI)

4.5-watt LED lamps replacing the incandescent bulbs. The LEDwatt incandescent bulbs to 4.5 watt LEDs will save 55 kW xLED lamps were compatible with the existing framework of lamp operation they could be used in the same way the incandescent bulbs

Payne, Christopher T.; Radspieler Jr., Anthony; Payne, Jack

2002-01-01T23:59:59.000Z

85

Evaluating aeroshell materials for the MJS/multi-hundred watt heat source. [Reentry survival from an aborted launch  

DOE Green Energy (OSTI)

In order to evaluate the possibility of improving upon an existing aeroshell design for the Multi-Hundred Watt power source, a trade-off study was conducted on a variety of candidate aeroshell materials. Mariner Jupiter/Saturn mission requirements and aeroshell material criteria were established to form a basis for the evaluation. Material data searches and reentry analyses were made to permit preparation of a quantitative comparison matrix. Depending upon the designer's constraints, either the well-known polycrystalline graphites (POCO-AXF-5Q, ATJS) or the more complex composite materials (AVCO 3D C/C, Pyrocarb-406) may be chosen.

Bennett, G.L.; Hagan, J.C.; Tantino, D.C.

1976-07-01T23:59:59.000Z

86

Development testing of the two-watt RTG heat source and Hastelloy-S/T-111 alloy compatibility studies  

DOE Green Energy (OSTI)

The two-watt radioisotope thermoelectric generator heat source capsules were tested to determine their survivability under extreme environmental conditions: high external pressure, high impact, and high internal pressure. Test results showed that the capsules could withstand external pressures of 1,000 bars and impacts at velocities near 150 meters per second. However, the results of the internal pressure tests (stress-rupture) were not so favorable, possibly because of copper contamination, leading to a recommendation for additional testing. A material compatibility study examined the use of Hastelloy-S as a material to clad the tantalum strength member of the two-watt radioisotopic heat source. Test capsules were subjected to high temperatures for various lengths of time, then cross sectioned and examined with a scanning electron microscope. Results of the study indicate that Hastelloy-S would be compatible with the underlying alloy, not only at the normal operating temperatures of the heat source, but also when exposed to the much higher temperatures of a credible accident scenario.

Howell, E.I.; Teaney, P.E.

1993-09-29T23:59:59.000Z

87

Task 5: TVA sediment-disturbing activities within the Watts Bar Reservoir and Melton Hill Reservoir areas of the Clinch River  

DOE Green Energy (OSTI)

The objectives of Task 5 of the Interagency Agreement No. DE-AI05-91OR22007 were to review: (1) the extent of dredging, construction, and other sediment-disturbing activities conducted by the Tennessee Valley Authority (TVA) in potentially contaminated areas of Watts Bar Reservoir, and (2) the disposition of the materials from these activities. This memorandum is the final report for Task 5. This memorandum describes major activities in the Watts Bar Reservoir and Melton Hill Reservoir areas of the Clinch River that possibly resulted in significant disturbance of potentially contaminated sediments. TVA records from the construction of Watts Bar Dam, Kingston Fossil Plant, and Melton Hill Dam were reviewed to facilitate qualitative description of the effect of these activities in disturbing potentially contaminated sediments. The critical period for these activities in disturbing contaminated sediments was during or after 1956 when the peak releases of radioactive contaminants occurred from the Oak Ridge Reservation.

NONE

1997-06-01T23:59:59.000Z

88

100-WATT CURIUM-242 FUELED THERMOELECTRIC GENERATOR--CONCEPTUAL DESIGN. SNAP Subtask 5.7 Final Report  

SciTech Connect

A thermoelectric generator which produces 100 watts of electrical power continuously over a six-month operational life in a space environment was designed. It employs the heat produced by the decay of Cm/sup 24/ as the source of power. Uniform output over the operational life of the generator is accomplished by means of a thermally actuated shutter which maintains the hot junction temperature of the thermoelectric conventer at a constunt figure by varying the amount of surplus heat which is radiated directly to space from the heat source. The isotopic heat source is designed to safely contain the Cm/sup 242/ under conditions of launch pad abont and rocket failure, but to burn up upon re-entry to the earth's atmosphere from orbital velocity. (W.L.H.)

Weddell, J.B.; Bloom, J.

1960-05-01T23:59:59.000Z

89

Incandescent Lighting | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

or pear-shaped A-19 lamps Energy-saving or halogen A-19 lamps Reflector or parabolic reflector (PAR) lamps, sometimes called "flood" or "spot" lamps Standard...

90

Part 70 License NRC Docket No. 70-07018 Subject: References: SUPPLEMENT TO APPLICATION FOR A SPECIAL NUCLEAR MATERIAL LICENSE FOR WATTS BAR NUCLEAR PLANT UNIT 2 IN ACCORDANCE  

E-Print Network (OSTI)

(TAC NO. ME0853)" As part of TVA's application for a Special Nuclear Material (SNM) License for Watts Bar Unit 2

Watts Bar; Nuclear Plant; Watts Bar; Nuclear Plant

2009-01-01T23:59:59.000Z

91

Summary report on water quality, sediment and water chemistry data for water and sediment samples collected from source areas to Melton Hill and Watts Bar reservoirs  

Science Conference Proceedings (OSTI)

Contamination of surface water and sediments in the Clinch River and Watts Bar Reservoir (CR/WBR) system as a result of past and present activities by the US Department of Energy (DOE) on the Oak Ridge Reservation (ORR) and also activities by non-ORR facilities are being studied by the Clinch River Environmental Restoration Program (CR-ERP). Previous studies have documented the presence of heavy metals, organics, and radionuclides in the sediments of reservoirs in the vicinity. In support of the CR-ERP, during the summer of 1991, TVA collected and evaluated water and sediment samples from swimming areas and municipal water intakes on Watts Bar Reservoir, Melton Hill Reservoir (which is considered part of the Clinch River and Watts Bar Reservoir System), and Norris Reservoir, which was considered a source of less-contaminated reference or background data. Results of this study indicated that the levels of contamination in the samples from the Watts Bar and Melton Hill Reservoir sites did not pose a threat to human health. Despite the numerous studies, until the current work documented by this report, relatively few sediment or water samples had been collected by the CR-ERP in the immediate vicinity of contaminant point sources. This work focused on water and sediment samples taken from points immediately downstream from suspected effluent point sources both on and off the ORR. In August and September, 1994, TVA sampled surface water and sediment at twelve locations in Melton Hill and Watts Bar Reservoirs. Eleven of the sampling sites were selected based on existence of pollutant discharge permits, known locations of hazardous waste sites, and knowledge of past practices. The twelfth sample site was selected as a relatively less contaminated reference site for comparison purposes.

Tomaszewski, T.M.; Bruggink, D.J.; Nunn, D.L.

1995-08-01T23:59:59.000Z

92

Lighting Market Sourcebook for the U.S.  

E-Print Network (OSTI)

direct rebates for CFL users, efficiency efforts shouldCFL produces three to four times more lumens per watt than an incandescent A-lamp; efficiency

Vorsatz, D.; Shown, L.; Koomey, J.; Moezzi, M.; Denver, A.; Atkinson, B.

1997-01-01T23:59:59.000Z

93

Energy-Efficient Lighting The typical American family spends more  

E-Print Network (OSTI)

fluorescent light bulbs (CFLs) saves you money in the long run with lower energy bills. CFLs are significant Typical incandescent 75-watt light bulb Compact Fluorescent 18-watt light bulb Purchase cost $0.60 $ 5 that incandescent bulbs use becomes heat while only 10 percent becomes light. CFLs create less heat because more

94

Safety Evaluation Report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). Supplement No. 12  

Science Conference Proceedings (OSTI)

Supplement No. 12 to the Safety Evaluation Report for the application filed by the Tennessee Valley Authority for license to operate Watts Bar Nuclear Plant, Units 1 and 2, Docket Nos. 50-390 and 50-391, located in Rhea County, Tennessee, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation of (1) additional information submitted by the applicant since Supplement No. 11 was issued, and (2) matters that the staff had under review when Supplement No. 11 was issued.

Tam, P.S.

1993-10-01T23:59:59.000Z

95

Energy Savings and Green Initiatives Project Grant  

SciTech Connect

This project entails retrofitting all four foot, 2, 3 and 4 bulb 40 watt T12 fixtures to T8 28 watt and 150 watt incandescent to 26 watt compact fluorescent bulbs. In total, 2,086 fixtures will be retrofitted

Kathy MacLennan

2011-11-21T23:59:59.000Z

96

Safety evaluation report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). Supplement No. 15  

Science Conference Proceedings (OSTI)

This report supplements the Safety Evaluation Report (SER), NUREG-0847 (June 1982), Supplement No. 1 (September 1982), Supplement No. 2 (January 1984), Supplement No. 3 (January 1985), Supplement No. 4 (March 1985), Supplement No. 5 (November 1990), Supplement No. 6 (April 1991), Supplement No. 7 (September 1991), Supplement No. 8 (January 1992), Supplement No. 9 (June 1992), Supplement No. 10 (October 1992), Supplement No. 11 (April 1993), Supplement No. 12 (October 1993), Supplement No. 13 (April 1994), and Supplement No. 14 (December 1994) issued by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by the Tennessee Valley Authority, as applicant and owner, for licenses to operate the Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). The facility is located in Rhea County, Tennessee, near the Watts Bar Dam on the Tennessee River. This supplement provides recent information regarding resolution of some of the outstanding and confirmatory items, and proposed license conditions identified in the SER.

Tam, P.S.

1995-06-01T23:59:59.000Z

97

Town of Reading, Massachusetts (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Reading, Massachusetts (Utility Company) Reading, Massachusetts (Utility Company) Jump to: navigation, search Name Reading Town of Place Massachusetts Utility Id 15748 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 WATT HPS Lighting 100 WATT MERCURY Lighting 100 WATT MERCURY UG Lighting 175 WATT MERCURY Lighting 250 WATT HPS Lighting 400 WATT HPS Lighting 400 WATT MERCURY Lighting 50 WATT HPS Lighting 58 WATT INCANDESCENT Commercial 92 WATT INCANDESCENT Commercial

98

,,,"Incandescent","Standard Fluorescent","Compact Fluorescent...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey." " Energy Information Administration 1999 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables 1" "RSEs for Table B38....

99

Sales of specialty incandescent bulbs decline despite ...  

U.S. Energy Information Administration (EIA)

Search EIA.gov. A-Z Index; ... like three-way bulbs and appliance bulbs, are exempted from congressionally-legislated energy efficiency standards.

100

Sales of specialty incandescent bulbs decline despite ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... This effect points to broader lighting market transformation beyond the target of the original legislation, ...

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Replacing Incandescent Lightbulbs and Ballasts | Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

as ellipsoidal reflectors (type-ER) in recessed fixtures. Use reflector (R)or parabolic reflector (PAR) CFLs for flood and spotlighting. Some CFL fixtures have built-in...

102

Suppression of spurious mode oscillation in mega-watt 77-GHz gyrotron as a high quality probe beam source for the collective Thomson scattering in LHD  

Science Conference Proceedings (OSTI)

Collective Thomson scattering (CTS) diagnostic requires a strong probing beam to diagnose a bulk and fast ion distribution function in fusion plasmas. A mega-watt gyrotron for electron cyclotron resonance heating is used as a probing beam in the large helical device. Spurious mode oscillations are often observed during the turning on/off phase of the modulation. The frequency spectra of the 77-GHz gyrotron output power have been measured, and then one of the spurious modes, which interferes with the CTS receiver system, is identified as the TE{sub 17,6} mode at the frequency of 74.7 GHz. The mode competition calculation indicates that the increase of the magnetic field strength at the gyrotron resonator can avoid such a spurious mode and excite only the main TE{sub 18,6} mode. The spurious radiation at the 74.7 GHz is experimentally demonstrated to be suppressed in the stronger magnetic field than that optimized for the high-power operation.

Ogasawara, S. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8463 (Japan); Kubo, S. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8463 (Japan); National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi 509-5292 (Japan); Nishiura, M.; Tanaka, K.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ito, S.; Takita, Y.; Kobayashi, S.; Mizuno, Y.; Okada, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi 509-5292 (Japan); Tatematsu, Y.; Saito, T. [Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507 (Japan); Minami, R.; Kariya, T.; Imai, T. [Plasma Research Center, University of Tsukuba, Tsukuba 305-8577 (Japan)

2012-10-15T23:59:59.000Z

103

eclipsePower : Watt daylightPower : Watt  

E-Print Network (OSTI)

Highly Scalable Distributed Dataflow Analysis Joseph L. Greathouse, Chelsea LeBlanc, Todd Austin- visor's page fault handler then checks the page number against a list of pages that contain shadowed timekeeping code in the timer interrupt handler and the scheduler code of dom0 and the hypervisor. We

de Weck, Olivier L.

104

Heat-source specification 500 watt(e) RTG  

DOE Green Energy (OSTI)

This specification establishes the requirements for a /sup 90/SrF/sub 2/ heat source and its fuel capsule for application in a 500 W(e) thermoelectric generator. The specification covers: fuel composition and quantity; the Hastelloy S fuel capsule material and fabrication; and the quality assurance requirements for the assembled heat source. (LCL)

Not Available

1983-02-01T23:59:59.000Z

105

NIST Pico-Watt ACR  

Science Conference Proceedings (OSTI)

... ACR the equivalence between the electrical and optical ... ACR cavity has significantly lower heat capacity ... Low frequency temperature noise of a TES ...

2013-04-10T23:59:59.000Z

106

Demand for Environmentally-Friendly Durables  

E-Print Network (OSTI)

dataset of weekly light bulb sales covering 210 stores in 13sales of incandescent light bulbs: sales of 100-watt bulbs5% of total light bulb sales; by 2006 CFL market share was

Martin, Leslie Aimee

2012-01-01T23:59:59.000Z

107

Supporting the Next Generation of White Lighting Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

per watt, it will be possible to achieve a low- cost LED competitive with incandescent light bulbs. We think it will take a ten-year sustained R&D investment to reach 160 lumens...

108

Demand for Environmentally-Friendly Durables  

E-Print Network (OSTI)

is Light-Emitting Diodes (LEDs). These bulbs are even more4 W LED for 15 W CFL replacing a 60 watt incandescent bulb),Diodes (LEDs). Characteristics of three generations of bulb

Martin, Leslie Aimee

2012-01-01T23:59:59.000Z

109

Energy Basics: Fluorescent Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent lamps to provide the same amount of illumination (efficacy of 30-110 lumens per watt). They...

110

Luminous Efficacy Standards for General Purpose Lights | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

output) per watt (measure of power input). The efficacy of a typical incandescent light bulb ranges between 12 lmW and 18 lmW. The efficacy of a typical compact fluorescent...

111

Energy-efficient compact screw-in fluorescent lamp. Final report  

SciTech Connect

A compact fluorescent lamp has been designed and constructed which can replace an incandescent lamp. The lamp is slightly larger than a standard lamp (8 3/4 in. x 3 1/4 in.), but is designed to fit a majority of portable lamp applications. This version, with a core-coil ballast, results in a system efficacy of 54 lumens per watt, with a light output of more than 1800 lumens. This compares favorably with a 100-watt incandescent (17.5 lumens per watt and 1750 lumens light output). The color temperature of 3000/sup 0/K is compatible with an incandescent lamp (2800/sup 0/K). The color rendition index (CRI) is 84. With a solid-state ballast, the efficacy and light output could be increased by 20% (65 l/w, 2200 lumens) and could provide a direct replacement for a three-way, 150-watt incandescent lamp (15 l/w, 2200 lumens).

Morton, E.W.

1982-11-01T23:59:59.000Z

112

Deep cuts in household greenhouse gas emissions Andrew Blakers  

E-Print Network (OSTI)

an electric light bulb with a power of 100 W for 10 hours then 1,000 watt-hours, or 1 kilowatt hour (k simple measure! 2. Incandescent light bulbs will be phased out over the next few years, but if you do frequently used incandescent light fittings with compact fluorescent lights will reduce your lighting bill

113

Molecular Physics, Vol. 104, Nos. 57, 10 March10 April 2006, 943955 Excited state intramolecular proton transfer  

E-Print Network (OSTI)

in the section "How are LCD Panels Driven?". FIGURE 9: CONTRAST vs. RMS VOLTAGE 100% 90% 10% VOFF VTH VON VRMS of surface on the back of the display requires 2 to 3 watts. FIGURE 10: RESPONSE vs.TEMPERATURE 300 Time LCD panels, such as, incandescent lamps, LEDs, and electrolumi- nescent lamps. Incandescent lamps

Minnesota, University of

114

Lighting Retrofit Workbook A PRACTICAL"HOW TO" GUIDE  

E-Print Network (OSTI)

comparison for incandescent, CFL, and LED exit signs Source Type Incandescent CFL LED Power 40 watts 10/year based on a comparison of a 40 W A-lamp, a 15 W CFL, and a 5W LED, 24 hours per day, 365 days a year output, etc. · Reduced maintenance and labor costs Improvements in lighting technologies have led

Diamond, Richard

115

Reducing Leaking Electricity to 1 Watt  

E-Print Network (OSTI)

energy savings, combined with the absence of incentives and information on both sides of the market,

Meier, A.K.; Huber, Wolfgang; Rosen, Karen

1998-01-01T23:59:59.000Z

116

Reducing Leaking Electricity to 1 Watt  

E-Print Network (OSTI)

England. Huber, W. 1997. "Standby Power Consumption in U.S.1997. "Study on miscellaneous standby power consumption ofC. Murakoshi. 1997. " Standby Electricity Consumption in

Meier, A.K.; Huber, Wolfgang; Rosen, Karen

1998-01-01T23:59:59.000Z

117

NIST Primary optical watt radiometer (POWR)  

Science Conference Proceedings (OSTI)

... better optimized for specific transfer wavelengths and power levels. Major Accomplishments: POWR impacts total solar irradiance measurements. ...

2012-11-16T23:59:59.000Z

118

Reducing Leaking Electricity to 1 Watt  

E-Print Network (OSTI)

such as refrigerators, dishwashers, and ranges. Ranging fromappliances, from VCRs to dishwashers, from remote-controlledSpeakers Receiver Tuner Dishwasher Microwave Oven Range

Meier, A.K.; Huber, Wolfgang; Rosen, Karen

1998-01-01T23:59:59.000Z

119

COST EFFECTIVENESS OF LONG LIFE INCANDESCENT LAMPS AND ENERGY BUTTONS  

E-Print Network (OSTI)

certain whether the electrical power is off or on, he may beof light. The electrical input (power, voltage and current)

Verderber, Rudy

2013-01-01T23:59:59.000Z

120

L Prize Competition Winner: 60W Incandescent Replacement Lamp  

NLE Websites -- All DOE Office Websites (Extended Search)

Prize Partners 14 15 Field Assessments: Retail Platte River Power Authority DTE Energy SMUD 16 Additional Opportunities: GATEWAY Demonstrations of LED Outdoor Lighting Reports...

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

COST EFFECTIVENESS OF LONG LIFE INCANDESCENT LAMPS AND ENERGY BUTTONS  

E-Print Network (OSTI)

placed into light bulb sockets (Edison sockets) and the lampbe inserted into the same Edison type socket that is usedto injury. In addition, Edison sockets that are hori~

Verderber, Rudy

2013-01-01T23:59:59.000Z

122

DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

90PAR38130 Addthis Related Articles DOE Requires Westinghouse to Cease Sales of Two Light Bulb Models and Allows Sale of Another Westinghouse and Fuzhou Permitted to Restart...

123

Underwater Lighting by Submerged Lasers and Incandescent Sources  

E-Print Network (OSTI)

cell having a plane window to That attachment was necessaryfor attachment to the measurement window by means of the

Duntley, Seibert Q

1971-01-01T23:59:59.000Z

124

Underwater Lighting by Submerged Lasers and Incandescent Sources  

E-Print Network (OSTI)

Techniques for long- range underwater photography usingon Resolving Power in Underwater Photography," J. Opt. Soc.A. R. , Tyler, J. E. , "Underwater Photometer," J. Opt. Soc.

Duntley, Seibert Q

1971-01-01T23:59:59.000Z

125

 

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

32 Traffic flow adjustments, existing roads 32 Traffic flow adjustments, existing roads While many of the traffic signals in Attleboro are on state highways and therefore the responsibility of MassHighway, there are a fewer number of traffic signals and pedestrian walk signals that are the responsibility of the City. Traffic signals are being illuminated with 116 watt incandescent traffic signal rated bulbs. Peds are being illuminated with 69 watt incandescent bulbs. These have a mean time to failure of 8000 hours or approximately 14 to 18 months at current operating cycles. Incandescent bulbs can be replaced with Light Emitting Diode lamps that use approximately 10 watts of electricity, have a five year warranty, and a design life up to 100,000 hours (typical operating life is seven to ten years).

126

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Proposed Rulemaking for Energy Conservation Standards for Certain Reflector, Elliptical Reflector, Notice of Proposed Rulemaking for Energy Conservation Standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Reflector Lamps (RIN: 1904-AC15) Program or Field Office:EERE - Buildings Technology Program Location(s} (City/County/State): Nationwide Proposed Action Description: In this NQPR, DOE proposes to adopt new standards for the large diameter Incandescent Reflector Lamps (which will hereafter be referred to as certain "R, ER, and BR IRLs") include: (1) lamps rated 50 watts or less that are ER30, BR30, BR40, or ER40; (2) lamps rated 65 watts that are BR30, BR40, or ER40 lamps; and (3) R20 incandescent reflector lamps rated 45 watts or less. DOE also presents analysis for small diameter lamps and requests further comment on an appropriate standard for these products. The proposed standards, if adopted, would apply to all the

127

CX-007850: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

850: Categorical Exclusion Determination 850: Categorical Exclusion Determination CX-007850: Categorical Exclusion Determination Notice of Proposed Rulemaking for Energy Conservation Standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Reflector Lamps CX(s) Applied: B5.1 Date: 01/09/2012 Location(s): Nationwide Offices(s): Energy Efficiency and Renewable Energy In this Notice of Proposed Rulemaking (NOPR), DOE proposes to adopt new standards for the large diameter Incandescent Reflector Lamps (which will hereafter be referred to as certain "R, ER, and BR IRLs") include: (1) lamps rated 50 watts or less that are ER30, BR30, BR40, or ER40; (2) lamps rated 65 watts that are BR30, BR40, or ER40 lamps; and (3) R20 incandescent reflector lamps rated 45 watts or less. DOE also presents analysis for

128

Energy efficient control for power management circuits operating from nano-watts to watts  

E-Print Network (OSTI)

Energy efficiency and form factor are the key driving forces in today's power electronics. All power delivery circuits, irrespective of the magnitude of power, basically consists of power trains, gate drivers and control ...

Bandyopadhyay, Saurav

2013-01-01T23:59:59.000Z

129

Energy Cost Calculator for Compact Fluorescent Lamps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Compact Fluorescent Lamps Compact Fluorescent Lamps Energy Cost Calculator for Compact Fluorescent Lamps October 8, 2013 - 2:18pm Addthis This tool calculates the payback period for your calc retrofit project. Modify the default values to suit your project requirements. Existing incandescent lamp wattage Watts Incandescent lamp cost dollars Incandescent lamp life 1000 hours calc wattage Watts calc cost dollars calc life (6000 hours for moderate use, 10000 hours for high use) 8000 hours Number of lamps in retrofit project Hours operating per week hours Average cost of electricity 0.06 $/kWh Relamper labor costs $/hr Time taken to retrofit all lamps in this project min Time taken to relamp one lamp min Type of Relamping Practiced: Group Relamping: Calculate Simple Payback Period months

130

The Power to Change: Sustainable Electricity Usage in  

E-Print Network (OSTI)

) Light Bulb Exchange program: replaces inefficient incandescent bulbs with integrated compact fluorescent Lighting Project - The UHC (University Housing Council) and the CCSC (Columbia College Student Council bulbs Watt and Woodbridge residence halls Bulbs - 15X longer, save $38,000 in energy cost and 446

Colorado at Boulder, University of

131

Fluorescent Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Fluorescent lamps use 25%-35% of the energy used by incandescent lamps to provide the same amount of illumination (efficacy of 30-110 lumens per watt). They also last about 10 times longer (7,000-24,000 hours).

132

Smart Spaces Industry/Academia Day | 02.08.2011 | Page 1 Dr. M.A.Stough | Research Solid-State Lighting  

E-Print Network (OSTI)

60 watt bulb with an equivalent lumens LED white light bulb for usage of 50,000 hours leads delay). As is increased, less power goes to incandescent bulb and brightness is reduced. Most LED lamps dimmers. Often on the LED bulb application notes or on the lamp's manufacturer web sites

Lü, James Jian-Qiang

133

Perception Thresholds of Flicker in Modern Lighting  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study reports the results of tests performed at the University of New Brunswick Department of Psychology to determine whether perception thresholds of humans to flicker in modern magnetic, electronic, and halogen lighting is significantly different from their reaction to flicker in a standard 60-watt incandescent lamp.

2003-12-31T23:59:59.000Z

134

Sulphur Springs Valley EC- SunWatts Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Sulphur Springs Valley Electric Cooperative (SSVEC) has a loan program that allows its members to finance a portion of a photovoltaic (PV) or small wind system. Loans are available in an amount of...

135

Design of a 50-watt air supplied turbogenerator  

E-Print Network (OSTI)

This thesis presents the design of a high-pressure-ratio, low-flow turbogenerator with 50 W electrical power output, designed to operate from a 5-bar air supply. The research shows that a MEMS-based silicon turbine in ...

Jovanovic, Stevan, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

136

City of Fort Lauderdale - Smart Watts Rebate Program (Florida...  

Open Energy Info (EERE)

Building Insulation, Central Air conditioners, Doors, Furnaces, Water Heaters, Windows, Photovoltaics, Solar Water Heat, Tankless Water Heaters Active Incentive No...

137

Sulphur Springs Valley EC - SunWatts Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating & Cooling Water Heating Wind Maximum Rebate Up-front incentive: 35% of project costs Performance based incentive: 40% Program Information Arizona Program Type Utility...

138

Duncan Valley Electric Cooperative - SunWatts Rebate Program...  

Open Energy Info (EERE)

Heat, Wind Active Incentive Yes Implementing Sector Utility Energy Category Renewable Energy Incentive Programs Amount PV and Wind (10 kW or less): 1.00W-DC PV and Wind...

139

One watt initiative: A global effort to reduce leaking electricity  

E-Print Network (OSTI)

National Laboratory - Leaking Electricity Web Site http://Effort to Reduce Leaking Electricity Alan MEIER* & Benotfraction of total electricity use. Several initiatives to

Meier, Alan K.; LeBot, Benoit

1999-01-01T23:59:59.000Z

140

NIST Improves Accuracy of 'Watt Balance' Method for Defining ...  

Science Conference Proceedings (OSTI)

... just as in an electric motor, electromagnetic forces ... vertically, and, like an electric generator, that ... between mechanical and electrical power, which ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Lighting in Residential and Commercial Buildings (1993 and 1995 Data)  

U.S. Energy Information Administration (EIA) Indexed Site

Types > 1995 CBECS Lighting Equipment Types > 1995 CBECS Lighting Equipment 1995 CBECS Lighting Equipment Profile Lighting Equipment - Type and Characteristics of Equipment Emits Found In Incandescent Incandescent Light Bulb Produces light by electrically heating a tungsten filament Includes energy-efficient incandescent bulbs, such as Reflector or R-Lamps (accent and task lighting), Parabolic Aluminized Reflector (PAR) lamps (flood and spot lighting), and Ellipsoidal Reflector (ER) lamps (recessed lighting) Highly inefficient because much of the energy is lost as heat 14-18 Lumens Per Watt (LPW) 14% of Lit Commercial Floorspace Standard Fluorescent Lighting with Magnetic Ballast Standard Fluorescent with Magnetic Ballast Produces light by passing electricity through mercury vapor, causing the fluorescent coating to glow or fluoresce

142

Data Center Rating Infrastructure Rating Development  

NLE Websites -- All DOE Office Websites (Extended Search)

DRAFT - November 2009 DRAFT - November 2009 No- and Low-Cost Energy-Saving Tips for Multifamily Housing Common Areas Utility costs are typically the largest controllable operating expense in multifamily housing communities. Strategic energy management practices can greatly reduce these costs, increasing net operating income. ENERGY STAR partners have found the following no- and low-cost measures to be effective in reducing energy consumption and operating expenses. Replace all incandescent bulbs, flood lights, and decorative spot lights with ENERGY STAR qualified compact fluorescents. Replacing one 60 watt incandescent bulb with a 13-watt CFL will save $56 in energy costs over the CFL's lifetime (at $0.12/kWh). In addition, CFLs reduce

143

Categorical Exclusion Determinations: A5 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A5 A5 Categorical Exclusion Determinations: A5 Existing Regulations A5: Interpretive rulemakings with no change in environmental effect Rulemakings interpreting or amending an existing rule or regulation that does not change the environmental effect of the rule or regulation being amended. DOCUMENTS AVAILABLE FOR DOWNLOAD August 2, 2013 CX-010755: Categorical Exclusion Determination Final Rule to Exempt 100 Watt R20 Short Incandescent Reflector Lamps from Energy Conversion Standards CX(s) Applied: A5 Date: 08/02/2013 Location(s): Nationwide Offices(s): Golden Field Office August 2, 2013 CX-010744: Categorical Exclusion Determination Final Rule to Exempt 100 Watt R20 Short Incandescent Reflector Lamps from Energy Conversion Standards CX(s) Applied: A5 Date: 08/02/2013

144

Categorical Exclusion Determinations: Nationwide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nationwide Nationwide Categorical Exclusion Determinations: Nationwide Location Categorical Exclusion Determinations issued for actions nationwide. DOCUMENTS AVAILABLE FOR DOWNLOAD August 2, 2013 CX-010755: Categorical Exclusion Determination Final Rule to Exempt 100 Watt R20 Short Incandescent Reflector Lamps from Energy Conversion Standards CX(s) Applied: A5 Date: 08/02/2013 Location(s): Nationwide Offices(s): Golden Field Office August 2, 2013 CX-010744: Categorical Exclusion Determination Final Rule to Exempt 100 Watt R20 Short Incandescent Reflector Lamps from Energy Conversion Standards CX(s) Applied: A5 Date: 08/02/2013 Location(s): Nationwide Offices(s): Golden Field Office July 9, 2013 CX-010765: Categorical Exclusion Determination Notice of Proposed Rulemaking for New Energy Conservation Standards for

145

South River EMC - Business Energy Efficient Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River EMC - Business Energy Efficient Lighting Rebate Program River EMC - Business Energy Efficient Lighting Rebate Program South River EMC - Business Energy Efficient Lighting Rebate Program < Back Eligibility Agricultural Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Complete Lighting Retrofit: $0.30/watt saved Incandescent to CFL or LED: $1/bulb Provider South River EMC South River EMC (SREMC) offers a rebate to eligible business customers who wish to upgrade the energy efficiency of lighting systems. The business must upgrade from an older, less efficient system to a high-efficiency system. An incentive of $0.30 per watt saved is available to eligible lighting projects. For commercial customers switching fron incandescent

146

San Miguel Power Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

San Miguel Power Assn, Inc San Miguel Power Assn, Inc Place Colorado Utility Id 16622 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes ISO Other Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Demand Commercial General Service Non-Demand Residential Outdoor Lighting Level I: 100 watt MV or HPS Lighting Outdoor Lighting Level I: 150 watt MV or HPS Lighting Outdoor Lighting Level I: 200 watt Incandescent Lighting Outdoor Lighting Level I: 250 watt MV or HPS Lighting

147

Incandescent bulbs still play a role in the future of lighting ...  

U.S. Energy Information Administration (EIA)

The Energy Independence and Security Act of 2007 (EISA) mandates longer lasting, more efficient light bulbs for general service. Detailed results from ...

148

DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent Reflector Lamps  

Energy.gov (U.S. Department of Energy (DOE))

DOE has issued Notices of Non-Compliance Determination to Westinghouse Lighting Corporation and Fuzhou Sunlight Lighting Electrical Appliance Company requiring that they halt the sale of 8 basic...

149

A Winning Light Bulb With the Potential to Save the Nation Billions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Winning Light Bulb With the Potential to Save the Nation Billions A Winning Light Bulb With the Potential to Save the Nation Billions A Winning Light Bulb With the Potential to Save the Nation Billions August 4, 2011 - 3:09pm Addthis This 10-watt alternative LED bulb (which glows white when turned on) could save the nation about 35 terawatt-hours of electricity or $3.9 billion in one year and avoid 20 million metric tons of carbon emissions if every 60-watt incandescent bulb in the U.S. was replaced with the L Prize winner. | Photo Courtesy of Philips Lighting North America This 10-watt alternative LED bulb (which glows white when turned on) could save the nation about 35 terawatt-hours of electricity or $3.9 billion in one year and avoid 20 million metric tons of carbon emissions if every 60-watt incandescent bulb in the U.S. was replaced with the L Prize winner.

150

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 4, 2011 August 4, 2011 This 10-watt alternative LED bulb (which glows white when turned on) could save the nation about 35 terawatt-hours of electricity or $3.9 billion in one year and avoid 20 million metric tons of carbon emissions if every 60-watt incandescent bulb in the U.S. was replaced with the L Prize winner. | Photo Courtesy of Philips Lighting North America A Winning Light Bulb With the Potential to Save the Nation Billions Thomas Edison would be amazed. The conventional light bulb is getting some serious competition from a 10-watt LED bulb -- the first winner of the Energy Department's L prize. August 4, 2011 Go Local on the New Energy.gov Want to learn how you can save money by saving energy? Check out our new and easy to use Tax Credits, Rebates and Savings feature for saving

151

OGE - Commercial Energy Efficiency Rebate Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OGE - Commercial Energy Efficiency Rebate Programs OGE - Commercial Energy Efficiency Rebate Programs OGE - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount T5/T8 Lamps (T12 Replacements): $4 - $8/fixture Fluorescent Fixtures (HID Replacements): $52/watt (400 watt fixture replaced); $102 (750 watt fixture replaced) Hardwired CFLs (Incandescent Lamp Replacement): $8 - $11/fixture LED Exit Signs: $5 Lighting Sensors/Controls: $160/kW of reduced peak demand New Construction Lighting: $160/kW of reduced peak demand Geothermal Heat Pump: $375/ton Standard Offer (HVAC, Motors, Compressed Air, Performance Contracting):

152

Data:42231654-9dc2-4239-9249-e2a3ebca96ae | Open Energy Information  

Open Energy Info (EERE)

54-9dc2-4239-9249-e2a3ebca96ae 54-9dc2-4239-9249-e2a3ebca96ae No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Reading, Massachusetts (Utility Company) Effective date: 2011/08/01 End date if known: Rate name: 92 WATT INCANDESCENT Sector: Commercial Description: *Note: Incandescent and Mercury lamps will no longer be supplied for new installations. Fixed Monthly Charge= Annual Rate divided by 12 months. Extra Pole Cost When an extra pole is required, specifically for street lighting, there will be an extra cost based upon pole size, including up to 100 feet of secondary. 30 foot or 35 foot Class 4 pole is $44.00 per year

153

DOE Solar Decathlon: News Blog » Solar Decathlon 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

1' 1' Technology Spotlight: Energy-Efficient Lighting Tuesday, October 8, 2013 By Solar Decathlon Upgrading your lighting is one of the most practical ways to increase your home's energy efficiency. Compact fluorescent lamps (CFLs) provide the same amount of light as incandescent bulbs but use about 75% less energy. CFLs fit into common household fixtures and are available at most hardware stores. And although CFLs cost slightly more than incandescent bulbs, they save money over time by lasting 15 times longer than their less-efficient counterparts. Light-emitting diodes (LEDs) offer proof that a lot of light can come in a small package. Typically less than 10 watts, LED lights are becoming more common in desk lamps and under-cabinet applications. This ultra-efficient

154

Untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Executive Summary Executive Summary Potential Savings The overwhelming majority of lights in residential households are incandescent--the least energy efficient of all light types (Figure ES1.). If households replaced the most intensively used bulbs with compact fluorescent bulbs, they would see a sizable savings in their electric bills. The total U.S. household energy that would be saved by replacing all incandescent bulbs used 4 or more hours per day would be 31.7 billion kilowatthours (kWh) annually, or 35 percent of all electricity used for residential lighting. The amount of time it takes for households to see a simple payback from compact fluorescent bulbs depends on the price of electricity. Assuming a 26-watt compact fluorescent bulb that costs 22 dollars, an average sized

155

DOE Solar Decathlon: News Blog » Tennessee  

NLE Websites -- All DOE Office Websites (Extended Search)

Tennessee Tennessee Below you will find Solar Decathlon news from the Tennessee archive, sorted by date. Technology Spotlight: Energy-Efficient Lighting Tuesday, October 8, 2013 By Solar Decathlon Upgrading your lighting is one of the most practical ways to increase your home's energy efficiency. Compact fluorescent lamps (CFLs) provide the same amount of light as incandescent bulbs but use about 75% less energy. CFLs fit into common household fixtures and are available at most hardware stores. And although CFLs cost slightly more than incandescent bulbs, they save money over time by lasting 15 times longer than their less-efficient counterparts. Light-emitting diodes (LEDs) offer proof that a lot of light can come in a small package. Typically less than 10 watts, LED lights are becoming more

156

DOE Solar Decathlon: News Blog » Solar Decathlon 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Below you will find Solar Decathlon news from the Solar Decathlon 2011 archive, sorted by date. Technology Spotlight: Energy-Efficient Lighting Tuesday, October 8, 2013 By Solar Decathlon Upgrading your lighting is one of the most practical ways to increase your home's energy efficiency. Compact fluorescent lamps (CFLs) provide the same amount of light as incandescent bulbs but use about 75% less energy. CFLs fit into common household fixtures and are available at most hardware stores. And although CFLs cost slightly more than incandescent bulbs, they save money over time by lasting 15 times longer than their less-efficient counterparts. Light-emitting diodes (LEDs) offer proof that a lot of light can come in a small package. Typically less than 10 watts, LED lights are becoming more

157

LED Update  

SciTech Connect

This article, which will appear in RESIDENTIAL LIGHTING MAGAZINE, interviews PNNL's Kelly Gordon and presents the interview in question and answer format. The topic is a light emitting diode (LED) lighting also known as solid state lighting. Solid state lighting will be a new category in an energy efficient lighting fixture design competition called Lighting for Tomorrow sponsored by the US Department of Energy Emerging Technologies Office, the American Institute for Lighting, and the Consortium for Energy Efficiency. LED technology has been around since the 60s, but it has been used mostly for indicator lights on electronics equipment. The big breakthrough was the development in the 1990s of blue LEDs which can be combined with the red and green LEDs that already existed to make white light. LEDs produce 25 to 40 lumens of light per watt of energy used, almost as much as a CFL (50 lumens per watt) and much more efficient than incandescent sources, which are around 15 lumens per watt. They are much longer lived and practical in harsh environments unsuitable for incandescent lighting. They are ready for niche applications now, like under-counter lighting and may be practical for additional applications as technological challenges are worked out and the technology is advancing in leaps and bounds.

Johnson, Mark L.; Gordon, Kelly L.

2006-09-01T23:59:59.000Z

158

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2012 (EIA)

incandescent bulbs. High-performance incandescent, compact fluorescent, and light-emitting diode (LED) lamps continue to replace low-efficacy incandescent lamps. In 2035,...

159

Potential Environmental Impacts from the Metals in Incandescent, Compact Fluorescent Lamp (CFL), and Light-Emitting Diode (LED)  

E-Print Network (OSTI)

), and Light-Emitting Diode (LED) Bulbs Seong-Rin Lim, Daniel Kang, Oladele A. Ogunseitan,,§ and Julie M sources with compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs that use about 70% and 85 lighting systems are transitioning from incandes- cent to compact fluorescent lamp (CFL) and light

Short, Daniel

160

PQ Hotline Call of the Month - September 2005: Life-Extension and Energy-Saving Devices for Incandescent Light Bulbs  

Science Conference Proceedings (OSTI)

The EPRI Power Quality Hotline is provided as a service to all Power Quality Knowledge funders. EPRI's Power Quality Knowledge program provides best-in-class information and resource tools needed to manage power quality in a competitive environment, and to understand and solve vexing power quality problems. The program offers a comprehensive collection of unbiased and actionable technical and informational publications and products, educational forums, technical support, and Web-based services to enable ...

2005-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Lighting Options for Homes.  

SciTech Connect

This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

Baker, W.S.

1991-04-01T23:59:59.000Z

162

The Kill-a-Watt Competition at University of Central Florida...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Solar PV Sec. Chu Online Town Hall Energy 101: Cool Roofs Energy 101: Geothermal Heat Pumps Why Cool Roofs? Chu at COP-16: Building a Sustainable Energy Future...

163

A fully-integrated multi-watt permanent-magnet turbine generator  

E-Print Network (OSTI)

The energy density available from batteries is increasingly becoming a limiting factor in the capabilities of portable electronics. As a result, there is a growing need for compact, high energy density sources. This thesis ...

Yen, Bernard Chih-Hsun, 1981-

2008-01-01T23:59:59.000Z

164

The Kill-a-Watt Competition at University of Central Florida...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pledge? Conversation on the Future of the Wind Industry Science Lecture: Talking the Higgs Boson with Dr. Joseph Incandela Bill Gates and Deputy Secretary Poneman Discuss the...

165

p Wide Temperature performance at full 2 Watt load, 40C to 85C  

E-Print Network (OSTI)

Newport Components NMH SERIES Isolated 2W Dual Output DC-DC Converters 1 Calculated using MIL-HDBK-217F

Wedeward, Kevin

166

The Kill-a-Watt Competition at University of Central Florida...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Assessments Faces of the Recovery Act: Sun Catalytix Investing in Clean, Safe Nuclear Energy Secretary Chu Speaks at the 2010 Washington Auto Show Faces of the Recovery...

167

Statistical analysis of wind energy in Chile David Watts a,b,*, Danilo Jara a  

E-Print Network (OSTI)

in electricity service (SEAB 1998). The power system must incorporate redundancy to guard against disturbances

Rudnick, Hugh

168

HIGH INTENSITY DISCHARGE 400-WATT SODIUM BALLAST PHASE I FINAL REPORT  

E-Print Network (OSTI)

Output as a f n of line volt volts, and the test terminated at77H312 LRL :nG. 18 LA)YLP VOLTS Unh~$$ otherwise stiHed J aU

Felper, G.

2010-01-01T23:59:59.000Z

169

WattProbe - Software-based Empirical Extraction of Hardware Energy Models  

E-Print Network (OSTI)

of the Thesis Software-based Empirical Extraction of Hardware Energy Models by Manish Prasad Master of Science in Computer Science Stony Brook University 2003 A compelling goal of portable computing is to make PCs as light as possible while adding enhanced features in the form of substantial processing power, storage and wireless networking capabilities in order to run demanding applications like multimedia. On the other hand battery technology hasn't improved significantly, which implies that lighter batteries mean lesser capacity. This demands that battery power be managed critically, which has resulted in the recent thrust in energy-aware computing research in the OS community as well as implementation of power saving mechanisms on state-of-the-art portables. However, there are various factors which impede power management research and hamper the effectiveness of power saving mechanisms. Firstly, energy measurement is hard and cumbersome as it requires special experimental setup comprising externally connected multimeters. This makes it very difficult to evaluate any proposed power management strategy across multiple platforms outside a laboratory setting. Since effectiveness of power management strategies vary largely with underlying platform energy consumption characteristics, it is essential to evaluate any such strategy across multiple platforms. Furthermore, large scale deployment of power saving schemes in production class OSes for state-of-the-art portables warrants a mechanism to incorporate the knowledge of underlying hardware energy models into such schemes. Due to substantial differences in power consumption of processors and I/O devices from different vendors, a cardinal requirement to achieve the above said goal is the ability to learn underlyin...

Manish Prasad; Manish Prasad

2003-01-01T23:59:59.000Z

170

AppFlow: Autonomic Performance-Per-Watt Management of Large-Scale Data Centers  

Science Conference Proceedings (OSTI)

The characteristic of dramatic fluctuation in the resource provisioning for real-time applications calls for an elastic delivery of computing services. Current data center deployment schemes, which feature a strong tie between servers and applications, ... Keywords: Autonomic Computing, Data Center, Power Management

Bithika Khargharia; Haoting Luo; Youssif Al-Nashif; Salim Hariri

2010-12-01T23:59:59.000Z

171

Commissioning and Start Up of a 110 MegaWatt Cogeneration Facility  

E-Print Network (OSTI)

"In December of 1987, Union Carbide successfully brought on line a 110,000 KVA combined cycle cogeneration facility. The construction, commissioning and start up of this complex facility was accomplished in a remarkably short twelve months. As with all projects of any magnitude, there were several technical challenges that developed during the course of the year. These challenges and the Project Team response will be discussed in some detail. Some areas include: 1. Procurement 2. Technical review of specs and drawings 3. Existing manufacturing facility constraints 4. Mechanical problems 5. Electrical problems 6. Control system / instrumentation problems The commissioning and start up had to be coordinated with existing Plant operations. As a result of the Project Team's efforts, the cogeneration facility achieved 100% of design output on December 22, 1987 without any significant impact on the manufacturing facility."

Good, R.

1988-09-01T23:59:59.000Z

172

WattDB: an energy-proportional cluster of wimpy nodes  

Science Conference Proceedings (OSTI)

The constant growth of data in all businesses leads to bigger database servers. While peak load times require fast and heavyweight hardware to guarantee performance, idle times are a waste of energy and money. Todays DBMSs have the ability to cluster ... Keywords: energy proportionality

Daniel Schall; Volker Hudlet

2011-06-01T23:59:59.000Z

173

"Watts in it for me?": design implications for implementing effective energy interventions in organisations  

Science Conference Proceedings (OSTI)

The design of technological interventions to motivate behaviour-based reductions in end-user energy consumption has recently been identified as a priority for the HCI community. Previous interventions have produced promising results, but have typically ... Keywords: behaviour change, energy, hci, organisations, sustainability

Derek Foster; Shaun Lawson; Jamie Wardman; Mark Blythe; Conor Linehan

2012-05-01T23:59:59.000Z

174

Thermal-hydraulic model of a solid-oxide fuel cell. [17. 5 watts  

DOE Green Energy (OSTI)

A mathematical model has been developed to simulate the electrochemistry and thermal hydraulics in a monolithic solid oxide fuel cell (MSOFC). Dividing a single cell layer into a number of nodes, the model sets up the steady-state heat and mass transfer equations for each node in a cell layer. Based on the average thermal and compositional conditions at each node and a specified cell voltage, the model calculates the Nernst potential and the resultant current, heat generation, and heat removal rates at each node. These calculations yield the temperature and the fuel and oxidant compositions and partial pressure matrices for the entire cell. The simulation also provides related performance data for the fuel cell stack, such as energy efficiency, fuel utilization, and power density. The model can be used to simulate operation with different fuel gases, such as hydrogen, coal gas, and methanol reformate. A mathematical model such as this can be used to examine the effects of changing one or more of the various design variables and to evaluate the effectiveness of fabrication improvements in technology development. In the design phase, the model can be used to determine the size of the stack that will be required for a given power rating and to make design decisions regarding structure-specific parameters, such as the thicknesses of the anode, electrolyte, cathode, and interconnect layers and dimensions of the flow channels in the anode and the cathode. The model can also be helpful to the fuel cell system operator. For example, given a particular stack, the most favorable operating conditions can be determined by determining a priori the effects of altering process variables, such as flow rates and feed conditions. 6 refs., 12 figs., 3 tabs.

Ahmed, S.; Kumar, R.

1990-01-01T23:59:59.000Z

175

Phase II report on energy efficient electronic ballasts for a two-40 watt fluorescent lamp system  

SciTech Connect

The Department of Energy (DOE) has established a project aimed at accelerating the commercialization of electronic ballasts. During the Phase I portion of the project a small quantity of ballasts and other hardware were delivered for independent testing. Results verified the claims for energy savings and other unique and advantageous features of the electronic ballast. Phase II, a large scale field demonstration, is reported. The demonstration is being conducted by LBL and the Pacific Gas and Electric Company in the PG and E headquarters building in downtown San Fracisco. The test demonstration hardware is being procured. Included are two models of energy saving ballasts; two dimmer systems that show the potential for additional power savings; and, two models of Automatic Emergency Light Systems. Installation of ballasts and the beginning of actual test operations were originally scheduled for February 1978. However, slippages in hardware deliveries have caused a three-month delay. Testing at PG and E is now scheduled to begin in June 1978. Even though broad scale results from the Phase II demonstration at PG and E are not yet available, performance and versatility advantages of the electronic ballast have been demonstrated. They offer a clear incentive to the industry for development and production of reliable hardware that will be competitively saleable on a long term cost-of-lighting basis.

1978-07-01T23:59:59.000Z

176

The Kill-a-Watt Competition at University of Central Florida...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Security & Safety -Emergency Response & Procedures or Search Energy.gov Search Clear Filters All Videos ARPA-E 2011 Keynote: Dr. Arun Majumdar ARPA-E 2011 Keynote: Ray Mabus,...

177

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network (OSTI)

T5 Incandescent CFL Halogen Other Total Equipment EfficiencyCFL replacement for incandescent bulbs, and high-efficiency

McNeil, Michael A

2008-01-01T23:59:59.000Z

178

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-City-Westminster CA-City-Westminster Location: City Westminster CA American Recovery and Reinvestment Act: Proposed Action or Project Description: 1) Conduct lighting retrofits in city buildings (City Hall, Council Chambers, Community Center/Senior Center, and Rose Center) which includes replacing some existing fluorescent fixtures with T8 lamps and low-watt electronic ballasts, replacing some 1st generation T8 fluorescent fixtures with T8 lamps and low- watt electronic ballasts, replacing some incandescent fixtures with compact fluorescent lamps or new PL- lamp fixtures, and adding occupancy sensor controls and daylight controls to interior lighting fixtures in some of the facilities; 2) replace tennis court light fixtures at Park West and Bolsa Chica Park; 3) furnish

179

Untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Footnotes Footnotes Residential Lighting: Use and Potential Savings 1. Among light bulbs used 4 or more hours per day, the average length of use is 6.7 hours. 2. Table 5.4 of Energy Information Administration, Household Energy Consumption and Expenditures 1993, DOE/EIA-0321(93). (Washington, DC, October 1995), p. 46. 3. This is according to The Lighting Pattern Book for Homes, 1993, Lighting Research Center, Rensselaer Polytechnic Institute. There is some uncertainty about this point. The lighting industry states that compact fluorescent bulbs need only one-fourth the wattage of incandescent bulbs. EIA compared the savings of both 26-watt, 22-dollar compact fluorescent bulbs and 20-watt, 20-dollar compact fluorescent bulbs. There is very little difference in overall savings between these two types

180

Baltimore Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Baltimore Gas & Electric Co Baltimore Gas & Electric Co Place Baltimore, Maryland Service Territory Maryland Website www.bge.com/Pages/default Green Button Committed Yes Utility Id 1167 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Baltimore Gas and Electric Company Smart Grid Project was awarded $200,000,000 Recovery Act Funding with a total project value of $451,814,234. Utility Rate Schedules Grid-background.png 100 watt Incandescent Lighting 100000 Lumen 1090 Watt MHR Lighting

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CX-008415: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15: Categorical Exclusion Determination 15: Categorical Exclusion Determination CX-008415: Categorical Exclusion Determination California-City-Westminster CX(s) Applied: B1.32, B2.5, B5.1 Date: 07/10/2012 Location(s): California Offices(s): Energy Efficiency and Renewable Energy Conduct lighting retrofits in city buildings (City Hall, Council Chambers, Community Center/Senior Center, and Rose Center) which includes replacing some existing fluorescent fixtures with T8 lamps and low-watt electronic ballasts, replacing some 1st generation T8 fluorescent fixtures with T8 lamps and low-watt electronic ballasts, replacing some incandescent fixtures with compact fluorescent lamps or new PL-lamp fixtures, and adding occupancy sensor controls and daylight controls to interior lighting fixtures in some of the facilities.

182

LED traffic lights: New technology signals major energy savings  

SciTech Connect

Using light-emitting diode technology to replace incandescent lamps in traffic signals promises energy savings upwards of 60 percent for each of the estimated quarter of a million controlled intersections in the United States. LED units use only 9 to 25 watts instead of the 67 to 150 watts used by each incandescent lamp. Though their first cost is relatively high, energy savings result in paybacks of 1 to 5 years. LED retrofit kits are available for red signal disks and arrows, and installations in several states have proven successful, although minor improvements are addressing concerns about varying light output and controller circuitry. Retrofitting green lamps is not yet feasible, because color standards of the Institute of Traffic Engineers cannot be met with existing LED technology. Yellow lamps have such low duty factors (they`re on only 3 percent of the time) that retrofitting with LED signals is not cost-effective. LEDs last much longer than incandescents, allowing municipalities to not only reduce their electricity bills, but to save on maintenance costs as well. As further incentive, some utilities are beginning to implement rebate programs for LED traffic signal retrofits. Full approval of LED units is still awaited from the Institute of Traffic Engineers (ITE), the standard-setting body for traffic safety devices. Local and state governments ultimately decide what specifications to require for traffic lights, and the growing body of successful field experience with LEDs appears to be raising their comfort level with the technology. The California Department of Transportation is developing an LED traffic light specification, and two California utilities, Southern California Edison and Pacific Gas and Electric, have provided rebates for some pilot installations.

Houghton, D.

1994-12-31T23:59:59.000Z

183

Energy Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 4, 2011 August 4, 2011 This 10-watt alternative LED bulb (which glows white when turned on) could save the nation about 35 terawatt-hours of electricity or $3.9 billion in one year and avoid 20 million metric tons of carbon emissions if every 60-watt incandescent bulb in the U.S. was replaced with the L Prize winner. | Photo Courtesy of Philips Lighting North America A Winning Light Bulb With the Potential to Save the Nation Billions Thomas Edison would be amazed. The conventional light bulb is getting some serious competition from a 10-watt LED bulb -- the first winner of the Energy Department's L prize. August 1, 2011 2009 Energy Expenditure Per Person July 29, 2011 President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton)

184

10-kJ Status and 100-kJ Future for NIF PetaWatt Technology  

Science Conference Proceedings (OSTI)

We discuss the status of the NIF ARC, an 8-beam 10-kJ class high-energy petawatt laser, and the future upgrade path of this and similar systems to 100-kJ-class with coherent phasing of multiple apertures.

Siders, C W; Crane, J K; Rushford, M C; Haefner, L C; Hernandez, J E; Dawson, J W; Beach, R J; Clark, W J; Trummer, D J; Tietbohl, G L; Barty, C J

2007-07-02T23:59:59.000Z

185

Resonant soft x-ray reflectivity of organic thin films Cheng Wang, Tohru Araki, and Benjamin Watts  

E-Print Network (OSTI)

were acquired at Beam- line X10B of the National Synchrotron Light Source NSLS , Brookhaven National, and 14.2 keV recorded at X10B, NSLS and fits solid line for 270, 280, and 283.4 eV. FIG. 7. Reflectance at X10B, NSLS--circle and fit solid line . The inset shows a Fourier analysis of the data. Note

Beichner, Robert J.

186

SPR-8 multi-mega watt space power system (MMW-SPS) concept description and concept refinement plan  

SciTech Connect

The SPR-8 MMW-SPS concept can satisfy both continuous and burst mode power requirements. At 10 MWe continuous mode power for 5 yr and 75 MWe burst mode power for 200 sec, the SPR-8 concept can power radar systems for detecting ballistic missile launchings and for discriminating between warheads and decoys. When enemy action is detected the SPR-8 MMW-SPS can power a rail gun, free electron laser, or particle beam and destroy the missile in the boost phase or warheads in space flight. The SPR-8 concept is based on the SPR-6 system (ref. 1) for providing continuous mode power. The system uses a fast UN-fueled, lithium-cooled reactor. Heat is transferred from the lithium coolant to potassium in a shell and tube heat exchanger-boiler. Potassium vapor is expanded through a turbine in a saturated Rankine cycle. After passing through the turbine the potassium is condensed in a compact heat exchanger by transferring heat to the radiator working fluid. An advanced radiator design is envisioned. Much work will be required in radiator technology to achieve low mass and plan form. For completeness of the SPR-8 system concept, a charged liquid droplet radiator is assumed but other types should be considered. Mechanical pumps are used for simplicity, but other types should be considered. A block diagram of the SPR-8 system is given.

Walter, C.E.

1985-04-15T23:59:59.000Z

187

Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon  

SciTech Connect

In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOEs Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics eW Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixtures light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.

Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

2008-11-10T23:59:59.000Z

188

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

in house lighting, where, when mixed with argon, the incandescent light emits a more blue light (typically incandescent bulbs have a yellowish tint). These bulbs are more...

189

Quality and Performance of LED Flashlights in Kenya: Common End User Preferences and Complaints  

E-Print Network (OSTI)

with torches? Failure of: ? LEDs/Bulb [1] ? Battery [2] ?to incandescent bulbs, and low cost LEDs have achieved pricepowered LED flashlights. Incandescent bulb flashlights are

Tracy, Jenny

2010-01-01T23:59:59.000Z

190

Restaurants | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

system Light your exit signs with incandescent bulbs Replace the bulbs with light emitting diode (LED) exit sign retrofit kits Light your parking area with incandescent or...

191

Data:1f0d9481-0fd0-46eb-b7d2-99f1f0049b21 | Open Energy Information  

Open Energy Info (EERE)

d9481-0fd0-46eb-b7d2-99f1f0049b21 d9481-0fd0-46eb-b7d2-99f1f0049b21 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: Incandescent Lighting-105 watts Sector: Lighting Description: Service under this rate is available for street and area lighting service installations, maintenance and use of energy, and traffic control lighting service provided the customer furnishes the equipment. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost. bundled TD&S monthly rate included

192

Data:45450755-c4f0-4248-9b1b-9a92923b547c | Open Energy Information  

Open Energy Info (EERE)

50755-c4f0-4248-9b1b-9a92923b547c 50755-c4f0-4248-9b1b-9a92923b547c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Delmarva Power Effective date: 2013/06/01 End date if known: Rate name: OL "Incandescent 103 Watt (Existing Pole) 35 Sector: Lighting Description: Source or reference: http://www.delmarva.com/_res/documents/DEMasterTariff.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

193

Data:7e0d8df3-e7e1-47c0-bc77-049a6efd324f | Open Energy Information  

Open Energy Info (EERE)

df3-e7e1-47c0-bc77-049a6efd324f df3-e7e1-47c0-bc77-049a6efd324f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: Periodic Incandescent Lighting-105 watts Sector: Lighting Description: Service under this rate is available for street and area lighting service installations, maintenance and use of energy, and traffic control lighting service provided the customer furnishes the equipment. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost.

194

Data:7b0e1af4-d59b-4700-9d74-39fc803f9b4d | Open Energy Information  

Open Energy Info (EERE)

e1af4-d59b-4700-9d74-39fc803f9b4d e1af4-d59b-4700-9d74-39fc803f9b4d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: Municipal Incandescent-295 watts Sector: Lighting Description: Energy service only to municipalities owning, operating, and maintaining a street lighting system and limited to locations where secondary service is available. Traffic control lighting service may be rendered under this rate providing the customer furnishes the equipment. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost.

195

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 12640 of 31,917 results. 31 - 12640 of 31,917 results. Download CX-010744: Categorical Exclusion Determination Final Rule to Exempt 100 Watt R20 Short Incandescent Reflector Lamps from Energy Conversion Standards CX(s) Applied: A5 Date: 08/02/2013 Location(s): Nationwide Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-010744-categorical-exclusion-determination Download CX-010745: Categorical Exclusion Determination America Saves! Energizing Main Street Small Businesses CX(s) Applied: A9, A11 Date: 08/16/2013 Location(s): CX: none Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-010745-categorical-exclusion-determination Download CX-010747: Categorical Exclusion Determination Advanced Commercial Buildings Initiative CX(s) Applied: A9, A11, B5.1 Date: 08/16/2013

196

Data:92b84ab0-66ab-46f2-a8af-fe33421c676e | Open Energy Information  

Open Energy Info (EERE)

4ab0-66ab-46f2-a8af-fe33421c676e 4ab0-66ab-46f2-a8af-fe33421c676e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: Incandescent Lighting-405 watts Sector: Lighting Description: Service under this rate is available for street and area lighting service installations, maintenance and use of energy, and traffic control lighting service provided the customer furnishes the equipment. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost. bundled TD&S monthly rate included

197

Data:D114c389-1fca-4856-a92e-f42e7c7286de | Open Energy Information  

Open Energy Info (EERE)

89-1fca-4856-a92e-f42e7c7286de 89-1fca-4856-a92e-f42e7c7286de No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Norris Public Power District Effective date: 2012/01/20 End date if known: Rate name: Schedule 19: Municipal Street Lighting: Incandescent: 133 watt Sector: Lighting Description: Available to towns, villages, and communities within the District's Service Area for street lighting service from dusk to dawn. Source or reference: http://www.norrisppd.com/downloads/Schedule%2019%20-%20Municiapl%20Street%20Lighting.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):

198

Data:5ca5eb18-7d66-4420-8028-ef2451e3e0e3 | Open Energy Information  

Open Energy Info (EERE)

ca5eb18-7d66-4420-8028-ef2451e3e0e3 ca5eb18-7d66-4420-8028-ef2451e3e0e3 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: Periodic Incandescent Lighting- 405 watts Sector: Lighting Description: Service under this rate is available for street and area lighting service installations, maintenance and use of energy, and traffic control lighting service provided the customer furnishes the equipment. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost.

199

Data:B94c6ee8-096a-4b98-a863-c8033f473bda | Open Energy Information  

Open Energy Info (EERE)

c6ee8-096a-4b98-a863-c8033f473bda c6ee8-096a-4b98-a863-c8033f473bda No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Reading, Massachusetts (Utility Company) Effective date: 2011/08/01 End date if known: Rate name: 100 WATT MERCURY Sector: Lighting Description: *Note: Incandescent and Mercury lamps will no longer be supplied for new installations. Fixed Monthly Charge= Annual Rate divided by 12 months. Extra Pole Cost When an extra pole is required, specifically for street lighting, there will be an extra cost based upon pole size, including up to 100 feet of secondary. 30 foot or 35 foot Class 4 pole is $44.00 per year

200

Data:Cee23602-3f12-416a-a2ba-74cd46c0f5d6 | Open Energy Information  

Open Energy Info (EERE)

Cee23602-3f12-416a-a2ba-74cd46c0f5d6 Cee23602-3f12-416a-a2ba-74cd46c0f5d6 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: Periodic Incandescent Lighting- 189 watts Sector: Lighting Description: Service under this rate is available for street and area lighting service installations, maintenance and use of energy, and traffic control lighting service provided the customer furnishes the equipment. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost.

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Data:9773c94a-a5f7-4d6c-9af2-528749d83386 | Open Energy Information  

Open Energy Info (EERE)

c94a-a5f7-4d6c-9af2-528749d83386 c94a-a5f7-4d6c-9af2-528749d83386 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Delmarva Power Effective date: 2013/06/01 End date if known: Rate name: OL "Incandescent 202 Watt (Existing Pole) 69 Sector: Lighting Description: Source or reference: http://www.delmarva.com/_res/documents/DEMasterTariff.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

202

Data:A02e2efc-da2e-462c-8a44-52c7b48b2c79 | Open Energy Information  

Open Energy Info (EERE)

e2efc-da2e-462c-8a44-52c7b48b2c79 e2efc-da2e-462c-8a44-52c7b48b2c79 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: Municipal Incandescent-105 watts Sector: Lighting Description: Energy service only to municipalities owning, operating, and maintaining a street lighting system and limited to locations where secondary service is available. Traffic control lighting service may be rendered under this rate providing the customer furnishes the equipment. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost.

203

Data:836c692f-dceb-4335-a851-56a482f47ec9 | Open Energy Information  

Open Energy Info (EERE)

92f-dceb-4335-a851-56a482f47ec9 92f-dceb-4335-a851-56a482f47ec9 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: Incandescent Lighting-189 watts Sector: Lighting Description: Service under this rate is available for street and area lighting service installations, maintenance and use of energy, and traffic control lighting service provided the customer furnishes the equipment. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost. bundled TD&S monthly rate included

204

Data:Eb91fbca-b665-4a3b-8c7b-218982b771a0 | Open Energy Information  

Open Energy Info (EERE)

Eb91fbca-b665-4a3b-8c7b-218982b771a0 Eb91fbca-b665-4a3b-8c7b-218982b771a0 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Baltimore Gas & Electric Co Effective date: 2013/02/23 End date if known: Rate name: 100 watt Incandescent Sector: Lighting Description: Source or reference: http://www.bge.com/myaccount/billsrates/ratestariffs/electricservice/pages/electric-services-rates-and-tariffs.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

205

Data:Adce7c69-e3c9-4984-9829-5e7ff0cc10eb | Open Energy Information  

Open Energy Info (EERE)

Adce7c69-e3c9-4984-9829-5e7ff0cc10eb Adce7c69-e3c9-4984-9829-5e7ff0cc10eb No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Norris Public Power District Effective date: 2012/01/20 End date if known: Rate name: Schedule 19: Municipal Street Lighting: Incandescent: 300 watt Sector: Lighting Description: Available to towns, villages, and communities within the District's Service Area for street lighting service from dusk to dawn. Source or reference: http://www.norrisppd.com/downloads/Schedule%2019%20-%20Municiapl%20Street%20Lighting.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW):

206

Data:4bfd510c-3f22-483c-a328-13250b69d47a | Open Energy Information  

Open Energy Info (EERE)

Data Data Edit with form History Facebook icon Twitter icon » Data:4bfd510c-3f22-483c-a328-13250b69d47a No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Sulphur Springs Valley E C Inc Effective date: 2013/03/18 End date if known: Rate name: Street Lighting: 150 Watt HPS - Single/Wood * Sector: Lighting Description: Customer provided Facilities and Cooperative Owned and Maintained Lighting Service. Applies only to lights presently installed. All new street lighting installed shall be H.P. Sodium. As ordinary replacement of Incandescent and Mercury Vapor fixtures is required, they shall be replaced with comparable Sodium fixtures. All fixtures installed shall be subject to meeting municipal or county lighting ordinances.

207

Data:D5f5af00-b065-41ed-a073-cec607a716ad | Open Energy Information  

Open Energy Info (EERE)

f5af00-b065-41ed-a073-cec607a716ad f5af00-b065-41ed-a073-cec607a716ad No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: Municipal Incandescent-189 watts Sector: Lighting Description: Energy service only to municipalities owning, operating, and maintaining a street lighting system and limited to locations where secondary service is available. Traffic control lighting service may be rendered under this rate providing the customer furnishes the equipment. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost.

208

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2013 22, 2013 History of the Light Bulb The History of the Light Bulb From incandescent bulbs to fluorescents to LEDs, we're exploring the long history of the light bulb. November 21, 2013 This week, the Energy Department's digital team has been focusing on the rivalry between two of history's most important energy-related engineers: Thomas Edison and Nikola Tesla. Edison and Tesla's developments in electric power generation and distribution made possible many later breakthroughs. This 1951 photo shows a simple string of four 100-watt light bulbs powered by the first useful electricity ever produced by nuclear power, generated on December 20, 1951, by Argonne's Experimental Breeder Reactor 1. | Photo courtesy of Argonne National Laboratory.

209

Information Resources: L Prize(tm): The Race for Super Efficient Light Bulbs  

NLE Websites -- All DOE Office Websites (Extended Search)

L Prize(tm): The Race for Super Efficient Light Bulbs L Prize(tm): The Race for Super Efficient Light Bulbs This September 23, 2008 webcast provided an overview of the Bright Tomorrow Lighting Prize (L Prize) technology competition. The L Prize calls for super-efficient SSL products to replace two of the most common light bulbs used today: the 60-watt incandescent and the PAR-38 halogen reflector. Kelly Gordon, Pacific Northwest National Laboratory, kicked off the webcast with an overview of the competition requirements, evaluation process, and opportunities for promotion of the winning products. Mary Matteson Bryan, Pacific Gas & Electric, and Liesel Whitney-Schulte, Wisconsin Focus on Energy, followed with a look at the role of L Prize partners and plans for their organizations to support the winning products through demonstrations, education, promotions, and other collaborative efforts.

210

Data:Ec18fec9-fa4f-4d8f-9b80-2be522cb8b2b | Open Energy Information  

Open Energy Info (EERE)

8fec9-fa4f-4d8f-9b80-2be522cb8b2b 8fec9-fa4f-4d8f-9b80-2be522cb8b2b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: Municipal Incandescent-405 watts Sector: Lighting Description: Energy service only to municipalities owning, operating, and maintaining a street lighting system and limited to locations where secondary service is available. Traffic control lighting service may be rendered under this rate providing the customer furnishes the equipment. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost.

211

Data:8ee939db-849a-4ae4-aece-a5c10deb1943 | Open Energy Information  

Open Energy Info (EERE)

ee939db-849a-4ae4-aece-a5c10deb1943 ee939db-849a-4ae4-aece-a5c10deb1943 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Norris Public Power District Effective date: 2012/01/20 End date if known: Rate name: Schedule 19: Municipal Street Lighting: Incandescent: 150 watt Sector: Lighting Description: Available to towns, villages, and communities within the District's Service Area for street lighting service from dusk to dawn. Source or reference: http://www.norrisppd.com/downloads/Schedule%2019%20-%20Municiapl%20Street%20Lighting.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW):

212

Data:86292828-2f51-4762-87e9-1d89693ca6b3 | Open Energy Information  

Open Energy Info (EERE)

Data Data Edit with form History Facebook icon Twitter icon » Data:86292828-2f51-4762-87e9-1d89693ca6b3 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Sulphur Springs Valley E C Inc Effective date: 2013/03/18 End date if known: Rate name: Street Lighting: 175 Watt MV - Double/Steel * Sector: Lighting Description: Customer provided Facilities and Cooperative Owned and Maintained Lighting Service. Applies only to lights presently installed. All new street lighting installed shall be H.P. Sodium. As ordinary replacement of Incandescent and Mercury Vapor fixtures is required, they shall be replaced with comparable Sodium fixtures. All fixtures installed shall be subject to meeting municipal or county lighting ordinances.

213

Energy Efficiency Wins Top Prize at EPA App Contest | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Wins Top Prize at EPA App Contest Efficiency Wins Top Prize at EPA App Contest Energy Efficiency Wins Top Prize at EPA App Contest November 23, 2011 - 11:11am Addthis The winner of best overall app at the Environmental Protection Agency's (EPA) Apps for the Environment. | Video courtesy of Light Bulb Finder. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this mean for me? Light Bulb Finder, a free smartphone app, can help save money on home lighting. Quick, if I want to replace a 60-watt incandescent light bulb with an energy efficient fluorescent or LED bulb, what wattage should I choose to keep the same level of illumination? If you don't know, there's now an app for that. The winner of best overall app at the Environmental Protection Agency's (EPA) Apps for the Environment is called Light Bulb

214

Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Basics Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting Low-pressure Sodium Lighting. Which type is best depends on the application. See the chart below for a comparison of lighting types. Lighting Comparison Chart Lighting Type Efficacy (lumens/watt) Lifetime (hours) Color Rendition Index (CRI) Color Temperature (K) Indoors/Outdoors Fluorescent Straight Tube 30-110 7000-24,000 50-90 (fair to good) 2700-6500 (warm to cold) Indoors/outdoors Compact Fluorescent 50-70 10,000 65-88 (good) 2700-6500 (warm to cold) Indoors/outdoors

215

Data:6b2d2af5-4bc3-403a-879a-9908906d620c | Open Energy Information  

Open Energy Info (EERE)

af5-4bc3-403a-879a-9908906d620c af5-4bc3-403a-879a-9908906d620c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Maui Electric Co Ltd Effective date: 2013/07/01 End date if known: Rate name: Maui-SCHEDULE F PUBLIC STREET LIGHTING-150/300 Watt Incandescent Sector: Lighting Description: Availability: Applicable to public street and highway lighting service supplied on the Island of Maui where the Company owns, maintains and operates the street lighting facilities. Minimum Charge: Fixture charge+$25.00 Source or reference: http://www.mauielectric.com/vcmcontent/FileScan/PDF/EnergyServices/Tarrifs/MECO/MauiRatesSchF.pdf

216

Data:D3f812da-815b-4586-9486-b29e0092bbd7 | Open Energy Information  

Open Energy Info (EERE)

Data Data Edit with form History Facebook icon Twitter icon » Data:D3f812da-815b-4586-9486-b29e0092bbd7 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Sulphur Springs Valley E C Inc Effective date: 2013/03/18 End date if known: Rate name: Street Lighting: 175 Watt MV - Single/Wood Sector: Lighting Description: Cooperative provided Facilities and Cooperative Owned and Maintained Lighting Service. Applies only to lights presently installed. All new street lighting installed shall be H.P. Sodium. As ordinary replacement of Incandescent and Mercury Vapor fixtures is required, they shall be replaced with comparable Sodium fixtures. All fixtures installed shall be subject to meeting municipal or county lighting ordinances.

217

Data:Dc5d06f3-dd89-4d36-bbe1-fd8b2a3981f7 | Open Energy Information  

Open Energy Info (EERE)

Data Data Edit with form History Facebook icon Twitter icon » Data:Dc5d06f3-dd89-4d36-bbe1-fd8b2a3981f7 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Sulphur Springs Valley E C Inc Effective date: 2013/03/18 End date if known: Rate name: Street Lighting: 175 Watt MV - Single/Steel Sector: Lighting Description: Customer provided Facilities and Cooperative Owned and Maintained Lighting Service. Applies only to lights presently installed. All new street lighting installed shall be H.P. Sodium. As ordinary replacement of Incandescent and Mercury Vapor fixtures is required, they shall be replaced with comparable Sodium fixtures. All fixtures installed shall be subject to meeting municipal or county lighting ordinances.

218

The Energy-Efficient Fixtures Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 The Energy-Efficient Fixtures Laboratory Replacing the incandescent bulb with a more efficient light source is only the first step in developing an energy-efficient lighting system. Improved fixtures can raise the system's efficiency even further. At LBL's Energy-Efficient Fixtures Laboratory, researchers in the Lighting Systems Group study the optical and thermal efficiency of luminaires, and work closely with fixture manufacturers to develop more efficient products. "Fifty to seventy percent efficiencies are now typical of fixtures," says senior research associate Chin Zhang, "and we're trying to improve them to eighty to ninety percent." Oliver Morse adjusts a centralized light guide system consisting of a 250-watt metal halide lamp, a high-efficiency beam splitter and four hollow

219

Data:Cef06c3c-d989-4239-a286-9e82977c9471 | Open Energy Information  

Open Energy Info (EERE)

Cef06c3c-d989-4239-a286-9e82977c9471 Cef06c3c-d989-4239-a286-9e82977c9471 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Norris Public Power District Effective date: 2012/01/20 End date if known: Rate name: Schedule 19: Municipal Street Lighting: Incandescent: 200 watt Sector: Lighting Description: Available to towns, villages, and communities within the District's Service Area for street lighting service from dusk to dawn. Source or reference: http://www.norrisppd.com/downloads/Schedule%2019%20-%20Municiapl%20Street%20Lighting.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW):

220

Energy Efficiency Wins Top Prize at EPA App Contest | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wins Top Prize at EPA App Contest Wins Top Prize at EPA App Contest Energy Efficiency Wins Top Prize at EPA App Contest November 23, 2011 - 11:11am Addthis The winner of best overall app at the Environmental Protection Agency's (EPA) Apps for the Environment. | Video courtesy of Light Bulb Finder. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this mean for me? Light Bulb Finder, a free smartphone app, can help save money on home lighting. Quick, if I want to replace a 60-watt incandescent light bulb with an energy efficient fluorescent or LED bulb, what wattage should I choose to keep the same level of illumination? If you don't know, there's now an app for that. The winner of best overall app at the Environmental Protection Agency's (EPA) Apps for the Environment is called Light Bulb

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Data:77c083d3-41b0-4e16-b7a8-f4287f69e308 | Open Energy Information  

Open Energy Info (EERE)

d3-41b0-4e16-b7a8-f4287f69e308 d3-41b0-4e16-b7a8-f4287f69e308 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Reading, Massachusetts (Utility Company) Effective date: 2011/08/01 End date if known: Rate name: 58 WATT INCANDESCENT Sector: Commercial Description: *Note: Incandescent and Mercury lamps will no longer be supplied for new installations. Fixed Monthly Charge= Annual Rate divided by 12 months. Extra Pole Cost When an extra pole is required, specifically for street lighting, there will be an extra cost based upon pole size, including up to 100 feet of secondary. 30 foot or 35 foot Class 4 pole is $44.00 per year

222

Estimate of federal relighting potential and demand for efficient lighting products  

SciTech Connect

The increasing level of electric utility rebates for energy-efficient lighting retrofits has recently prompted concern over the adequacy of the market supply of energy-efficient lighting products (Energy User News 1991). In support of the U.S. Department of Energy`s Federal Energy Management Program, Pacific Northwest Laboratory (PNL) has developed an estimate of the total potential for energy-efficient lighting retrofits in federally owned buildings. This estimate can be used to address the issue of the impact of federal relighting projects on the supply of energy-efficient lighting products. The estimate was developed in 1992, using 1991 data. Any investments in energy-efficient lighting products that occurred in 1992 will reduce the potential estimated here. This analysis proceeds by estimating the existing stock of lighting fixtures in federally owned buildings. The lighting technology screening matrix is then used to determine the minimum life-cycle cost retrofit for each type of existing lighting fixture. Estimates of the existing stock are developed for (1) four types of fluorescent lighting fixtures (2-, 3-, and 4-lamp, F40 4-foot fixtures, and 2-lamp, F96 8-foot fixtures, all with standard magnetic ballasts); (2) one type of incandescent fixture (a 75-watt single bulb fixture); and (3) one type of exit sign (containing two 20-watt incandescent bulbs). Estimates of the existing stock of lighting fixtures in federally owned buildings, estimates of the total potential demand for energy-efficient lighting products if all cost-effective retrofits were undertaken immediately, and total potential annual energy savings (in MWh and dollars), the total investment required to obtain the energy savings and the present value of the efficiency investment, are presented.

Shankle, S.A.; Dirks, J.A.; Elliott, D.B.; Richman, E.E.; Grover, S.E.

1993-11-01T23:59:59.000Z

223

PROJECTS IMPLEMENTED The City focused on improving the efficiency of  

E-Print Network (OSTI)

· Replacing incandescent exit signs with new light emitting diode signs · Replacing the existing chiller

224

Buildings Energy Data Book: 5.6 Lighting  

Buildings Energy Data Book (EERE)

9 9 Typical Efficacies and Lifetimes of Lamps (1) Current Technology CRI (2) Incandescent 10 - 19 97 Halogen 14 - 20 99 Fluorescent - T5 25 - 55 52 - 75 Fluorescent - T8 35 - 87 7,500 - 20,000 52 - 90 Fluorescent - T12 35 - 92 7,500 - 20,000 50 - 92 Compact Fluorescent 40 - 70 82 Mercury Vapor 25 - 50 15 - 50 Metal Halide 65 - 70 High-Pressure Sodium 22 Low-Pressure Sodium 0 Solid State Lighting 33-97 Note(s): Source(s): 18 - 180 18,000 20 - 100 15,000 - 50,000 1) Theoretical maximum luminous efficacy of white light is 220 lumens/Watt. 2) CRI = Color Rendering Index, which indicates a lamp's ability to show natural colors. 3) The DOE Solid State Lighting program has set an efficacy goal twice that of fluorescent lights (160 lumen per Watt). DOE, EERE, Building Technology Program/Navigant Consulting, U.S. Lighting Market Characterization, Volume I: National Lighting Inventory and Energy

225

Data:A8ad7f31-26ea-4da5-9c8f-2351a2db765a | Open Energy Information  

Open Energy Info (EERE)

ad7f31-26ea-4da5-9c8f-2351a2db765a ad7f31-26ea-4da5-9c8f-2351a2db765a No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Southeast Colorado Power Assn Effective date: 2012/01/01 End date if known: Rate name: Yard Lighting: Incandescent Lamps: 2500 Lumen (187 Watts) Lamp Sector: Lighting Description: One 2500 Lumen (187 Watts) Lamp ( 67 kWh/mo.) Source or reference: http://secpa.com/sites/rate-schedules.html Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

226

Data:22ce6869-0039-4fd6-9df6-a159d0e69de7 | Open Energy Information  

Open Energy Info (EERE)

ce6869-0039-4fd6-9df6-a159d0e69de7 ce6869-0039-4fd6-9df6-a159d0e69de7 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Southeast Colorado Power Assn Effective date: 2012/01/01 End date if known: Rate name: Yard Lighting: Incandescent Lamps: 4000 Lumen (295 Watts) Lamp Sector: Lighting Description: One 4000 Lumen (295 Watts) Lamp (106 kWh/mo.) Source or reference: http://secpa.com/sites/rate-schedules.html Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

227

Advanced Security Infrastructures for Grid Education Prof R.O. Sinnott, A.J. Stell, Dr J.P. Watt, Prof D.W. Chadwick,  

E-Print Network (OSTI)

, Prof D.W. Chadwick, National e-Science Centre, Information Systems Security Group, University://www.edina.ac.uk/projects/ties/ties_23-9.pdf [9] R.O. Sinnott, A.J. Stell, D.W. Chadwick, O.Otenko, Experiences of Applying Advanced Grid

Kent, University of

228

Multi-Hundred Watt Radioisotope Thermoelectric Generator Program, LES 8/9 Program, MJS Program. Bi-monthly progress report, 1 September--31 October 1974  

DOE Green Energy (OSTI)

Significant events, activities and achievements on the MHW LES 8/9 and MJS Programs for the reporting period are reported. Topics discussed include programmatic, safety, systems, isotope heat source, converter, product assurance, acceptance testing, and converter fabrication. (TFD)

Not Available

1974-01-01T23:59:59.000Z

229

Multi-Hundred Watt Radioisotope Thermoelectric Generator Program, LES 8/9 Program, MJS Program, Bi-monthly progress report, 1 November--31 December 1975  

DOE Green Energy (OSTI)

Significant events, activities and achievements on the MHW LES 8/9 and MJS Programs for the reporting period are reported. Topics discussed include safety systems, isotope heat source, converter, product assurance, hardware fabrication, acceptance testing, and ground support equipment. (TFD)

Not Available

1975-01-01T23:59:59.000Z

230

Multi-Hundred Watt Radioisotope Thermoelectric Generator Program, LES 8/9 Program, MJS Program. Bi-monthly progress report, 1 May--30 June 1975  

DOE Green Energy (OSTI)

Significant events, activities and achievements on the MHW LES 8/9 and MJS Programs for the reporting period are reported. Topics discussed include programmatic, safety, systems, isotope heat source, converter, product assurance, hardware fabrication, acceptance testing, and ground support equipment. (TFD)

Not Available

1975-01-01T23:59:59.000Z

231

Do it yourself lighting power survey: lighting power audit for use with the Massachusetts type watts per square foot method of calculating a building's lighting power budget  

SciTech Connect

Advantages of the self-audit approach to energy conservation are presented. These are that it is cheaper to do it yourself; the employees become part of the corporate conservation effect; and no one knows the building and its needs better than the occupant. Steps described in the lighting survey procedure are: (1) divide the building into categories; (2) determine the total square footage for each category; (3) assign a power allowance for each category; (4) multiply the total square footage for each category by the respective power allowances; (5) add the budget sub-totals for each category to determine total building budget; and (6) walk through the building room-by-room and calculate the connected lighting load fixture-by-fixture. Some worksheets are provided. (MCW)

Not Available

1980-06-01T23:59:59.000Z

232

50,000-Watt AM Stations IA | MB | MI | MN | NE | ND | ON | SD | WI | Station News | Owners | TV Captures | Links  

E-Print Network (OSTI)

2) and the concentration of 65Cu2+ estimated by the speciation model WHAM (1.0 (28)), we could]e^ equals zero and that [65 Cu2+ ] was constant (i.e., nominal [65 Cu2+ ] ) 5.2-µg L-1). That is, WHAM the speciation model WHAM (28) assuming that the lake water has a pH near 8 (30), a dissolved organic carbon

Allen, Gale

233

SNAP-21 program, Phase II. Deep sea radioisotope-fueled thermoelectric generator power supply system. Final design description, 10-watt system  

DOE Green Energy (OSTI)

The SNAP-21 10-W system provides electrical power for use under the surface of the sea. It functions by converting the heat from a decaying radioisotope fuel into useful electrical energy. This heat energy is converted into electrical energy by a thermoelectric generator. Semiconductor-type thermoelectric materials, maintained in a temperature gradient, accomplish the conversion. The isotopic fuel supplies heat to the thermoelectric materials and sea water acts as the heat sink to maintain the temperature gradient. Other components are employed to increase efficiency and condition the electrical output to the desired form. The components performing these functions are enclosed in a pressure vessel which protects them from sea water pressure and exposure. No external inputs are required to maintain operation of the system. With this type of mechanically-static, unsupported operation, long life with no maintenance is achieved.

Wickenberg, R.F.; Harris, W.W.

1969-10-01T23:59:59.000Z

234

Solid-State 17O NMR of Amino Acids K. J. Pike, V. Lemaitre,, A. Kukol,| T. Anupo~ld, A. Samoson, A. P. Howes, A. Watts,  

E-Print Network (OSTI)

Solid-State 17O NMR of Amino Acids K. J. Pike, V. Lemaitre,,§ A. Kukol,| T. Anupo~ld, A. Samoson, A Tee 23, Tallinn, Estonia ReceiVed: January 5, 2004; In Final Form: April 20, 2004 17O solid-state NMR are assigned using 1H-decoupled DOR. The NMR interaction parameters for amino acids show a wide variation of Q

Watts, Anthony

235

Multi-Hundred Watt Radioisotope Thermoelectric Generator Program, LES 8/9 Program, MJS Program. Bi-monthly progress report, 1 July--31 August 1975  

DOE Green Energy (OSTI)

Significant events, activities and achievements on the MHW LES 8/9 and MJS Programs for the reporting period are reported. Topics discussed include safety systems, isotope heat source, converter, product assurance, hardware fabrication, acceptance testing, and ground support equipment. (TFD)

Not Available

1975-01-01T23:59:59.000Z

236

Multi-hundred watt radioisotope thermoelectric generator program, LES 8/9 program, MJS program. Period from 1 September--31 October 1975  

DOE Green Energy (OSTI)

Significant activities performed or monitored by the General Electric Company on the MHW-RTG Program during Sept. and Oct. 1975 are reported. The work included safety, design, development, integration with ERDA and associate contractors, product assurance, hardware fabrication, and acceptance testing. (TFD)

Not Available

1975-01-01T23:59:59.000Z

237

CFLs in Recessed Downlights: Technical Challenges  

Science Conference Proceedings (OSTI)

Recessed downlights are the most popular residential lighting fixture in the United States representing about 12 percent of installed residential lighting fixtures and 15 percent of total lighting energy use nationwide. We estimate 400 million recessed downlights are currently installed in American homes, almost all using incandescent light sources. In the year 2000, only 0.44 percent of recessed cans sold were hard-wired for using pin-based CFLs. Recessed downlights consume energy in three ways. First, their incandescent light sources use energy directly, drawing 65 to 150 watts. Second, they consume energy indirectly by adding heat from their light sources to air-conditioning loads. Third, since most are not airtight, they also consume energy indirectly by allowing conditioned air to escape into unconditioned areas above the downlights, such as attics. PNNL calculated potential energy savings and found that if a 65W incandescent non-airtight downlight is replaced with a 26W CFL ICAT downlight operated at 3 hrs per day savings will be 126 kWh/yr. Early reflector CFLs have had high return rates primarily because of failure due to thermal related stress. A PNNL laboratory test of ten commercially available R-CFLs selected from retail store shelves showed almost all operated above their manufacturer rated maximum operating temperatures when they were installed and tested in ICAT downlights in a simulated insulated ceiling apparatus. DOE asked PNNL to investigate the development and introduction of both pin-based and screw-based CFLs for use in ICAT fixtures. PNNL invited manufacturers to submit lamps to a procurement program. PNNL conducted short- and long-term thermal testing of the lamps to measure performance parameters affected by elevated temperatures. 8 out of 10 R-CFLs (secrew-based lamps) failed the long-tem testing. Five out of nine CFL-ICAT (pin-based CFL) fixtures passed the long-term test, surviving a full year of operation in a simulated insulated ceiling apparatus, while maintaining at least 80% of initial lumens at 40% of rated life. Of those five products, two were withdrawn from the market due to poor sales, probably because of the high prices on the products. Three remain on the market. PNNL plans to initiate another R-CFL technology procurement in the winter of 2004/2005 to bring more high-quality R-CFL models to market. PNNL developed a number of design ideas for improving the thermal performance of pin-based CFL ICAT downlights for use in future activities.

Ledbetter, Marc R.; McCullough, Jeffrey J.; Dillon, Heather E.; Sandahl, Linda J.; Gordon, Kelly L.

2005-05-09T23:59:59.000Z

238

Funding Sustainable Initiatives: Should Williams Implement a Revolving Loan Fund?  

E-Print Network (OSTI)

to replace its incandescent light bulbs with more efficient compact fluorescent (CFL) light bulbs. These light bulbs use 2/3 less energy than #12;Terra 4 standard incandescent bulbs, but they are more

Aalberts, Daniel P.

239

Technical Report Documentation Page 1. Report No.  

E-Print Network (OSTI)

and solar panels. 17. Key Words Solar Energy, Light Emitting Diodes (LED), Intersections, Incandescent Bulbs to power our traffic signals as well as switching the traditional incandescent bulbs to LED. Since the city

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Zinc Oxide and Nitride Nanowire Based Light Emitting Diodes  

E-Print Network (OSTI)

lumens/W, the LED beats the incandescent bulb and is on thefor an LED as opposed to an incandescent light bulb as shownbulb, fluorescent lamp, and blue light emitting diode. (24) (25) 2.2 LED

Lai, Elaine Michelle

2009-01-01T23:59:59.000Z

242

b39.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings All Lit Buildings Energy Information Administration 1999 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables 121 Incandescent Standard...

243

Fabrication of Emissible Metallic Layer-by-Layer Photonic ...  

Iowa State University and Ames Laboratory researchers have developed a method for increasing the efficiency of conventional incandescent light bulbs.

244

Ames Laboratory Technology Marketing Summaries - Energy ...  

Innovative microstructures that can direct light in a manner similar to the way semiconductors can ... the efficiency of conventional incandescent ...

245

NIST Light Source Illuminates Fusion Power Diagnostics  

Science Conference Proceedings (OSTI)

... Their measurement tool also is used in incandescent light bulbsit's the element tungsten. Published with permission of ITER. ...

2012-06-05T23:59:59.000Z

246

1997 Glossary  

U.S. Energy Information Administration (EIA)

All types of light bulbs are included: incandescent, fluorescent, compact fluorescent, halogen, and high-intensity-discharge (HID). (See Appliances ...

247

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

efficiency motors Lighting Controls Replace metal halide HID with high-intensity Daylighting fluorescents Replace incandescent with fluorescent or CFL

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

248

After-hours power status of office equipment and energy use of miscellaneous plug-load equipment  

E-Print Network (OSTI)

industrial refrigerator, S freezer incandescent tracklight, 50 lamps each phone/PBX centrex system coffee maker, residential model microwave oven

Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret; Busch, John F.

2004-01-01T23:59:59.000Z

249

Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program  

E-Print Network (OSTI)

air conditioning, lighting, standby power, televisions,fluorescent and incandescent), standby power (for consumerair conditioners, televisions and standby power; commercial

Letschert, Virginie E.

2010-01-01T23:59:59.000Z

250

Energy Conversion: Solid-State Lighting  

E-Print Network (OSTI)

and global climate change. Historically, electric light bulbs have been of the incandescent type. Although this technology was developed more than 100 years ago, it is still in use today. Incandescent light bulbs operate, which allows the bulb to operate at a higher temperature. However, the efficiency of incandescent light

251

Mentoring New Visions Students Design Lab Sustainability Team  

E-Print Network (OSTI)

to power our traffic signals as well as switching the traditional incandescent bulbs to LED. Since the city and solar panels. 17. Key Words Solar Energy, Light Emitting Diodes (LED), Intersections, Incandescent Bulbs to power our traffic signals as well as switching the traditional incandescent bulbs to LED. Since the city

Linhardt, Robert J.

252

Data:4050eb53-f45d-4b0c-b852-8170f9d9251d | Open Energy Information  

Open Energy Info (EERE)

below are based on average billing period consumption, as follows: 100-watt fixture:47 kWhfixture 175-watt fixture:76 kWhfixture 250-watt fixture:110 kWhfixture 400-watt...

253

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: Metrology--Basic Units; Mass; Electronic Kilogram/Watt Balance Schematic. Description: In the NIST watt balance ...

254

Data:5d40a5e3-60e2-4da5-9a50-a530aabdad1b | Open Energy Information  

Open Energy Info (EERE)

a5e3-60e2-4da5-9a50-a530aabdad1b a5e3-60e2-4da5-9a50-a530aabdad1b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Norris Public Power District Effective date: 2012/01/20 End date if known: Rate name: Schedule 19: Municipal Street Lighting: Incandescent: 100 watt Sector: Lighting Description: Available to towns, villages, and communities within the District's Service Area for street lighting service from dusk to dawn. Source or reference: http://www.norrisppd.com/downloads/Schedule%2019%20-%20Municiapl%20Street%20Lighting.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):

255

Data:C8ed3516-2102-405f-bf94-b1ceb74da0ee | Open Energy Information  

Open Energy Info (EERE)

ed3516-2102-405f-bf94-b1ceb74da0ee ed3516-2102-405f-bf94-b1ceb74da0ee No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Duke Energy Ohio Inc Effective date: 2013/05/06 End date if known: Rate name: Rate NSU - Street Lighting Service For Non-Standard Units - Customer Owned on Steel Pole - 400 Watt incandescent Sector: Lighting Description: Applicable for outdoor lighting services on private property with Company owned fixtures in the Company's entire service area where secondary distribution lines are adjacent to the premises to be served. Not applicable for lighting public roadways which are dedicated, or anticipated to be dedicated, except to meet the occasional singular need of a customer who has obtained written approval from the proper governmental authority.

256

Data:D2ec604f-36b7-4681-a8f3-7115a341056a | Open Energy Information  

Open Energy Info (EERE)

ec604f-36b7-4681-a8f3-7115a341056a ec604f-36b7-4681-a8f3-7115a341056a No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Reading, Massachusetts (Utility Company) Effective date: 2011/08/01 End date if known: Rate name: 100 WATT MERCURY UG Sector: Lighting Description: *Note: Incandescent and Mercury lamps will no longer be supplied for new installations. Fixed Monthly Charge= Annual Rate divided by 12 months. Extra Pole Cost When an extra pole is required, specifically for street lighting, there will be an extra cost based upon pole size, including up to 100 feet of secondary. 30 foot or 35 foot Class 4 pole is $44.00 per year

257

How Much Energy does Your TV Set Use? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Much Energy does Your TV Set Use? Much Energy does Your TV Set Use? How Much Energy does Your TV Set Use? August 11, 2011 - 5:49am Addthis This week, Andrea compared the energy use of TVs with traditional incandescent light bulbs and talked about the heat coming off her TV set. We've talked about TV sets and the energy they use quite a bit on the blog: Stars on TV-ENERGY STARS®, That Is Say Hello to Stricter TV Standards New TV Guide - EnergyGuide, That Is Watch the Watts: Tips for Buying a New Television We're curious: Do you know how much energy your TV set uses? If it uses a lot of energy, do you do anything to minimize its energy usage such as using a power strip? Each week, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses

258

Data:Acea9e76-5f55-4dfb-ac34-9d8f23c51f5c | Open Energy Information  

Open Energy Info (EERE)

Acea9e76-5f55-4dfb-ac34-9d8f23c51f5c Acea9e76-5f55-4dfb-ac34-9d8f23c51f5c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Village of Springville, New York (Utility Company) Effective date: 2010/11/01 End date if known: Rate name: Street Light (295 Watt Incandescent Lamp) Sector: Commercial Description: Source or reference: Rate Binder #5B (Illinois State University) Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring:

259

Data:F46a9067-c5d8-44a0-9fc5-0a978f6a514e | Open Energy Information  

Open Energy Info (EERE)

a9067-c5d8-44a0-9fc5-0a978f6a514e a9067-c5d8-44a0-9fc5-0a978f6a514e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Maui Electric Co Ltd Effective date: 2013/07/01 End date if known: Rate name: Lanai-SCHEDULE "F" Public Street Lighting-150 or 300 Watt Incandescent Sector: Lighting Description: Availability: Applicable to public street and highway lighting service supplied on the Island of Lanai where the Company owns, maintains and operates the street lighting facilities. Minimum Charge: Fixture charge + $25.00 per month. Source or reference: http://www.mauielectric.com/vcmcontent/FileScan/PDF/EnergyServices/Tarrifs/MECO/LanaiRatesSchF.pdf

260

Data:3c64c1d7-62f1-4ae2-8df1-6d5f541501fd | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Data Edit with form History Facebook icon Twitter icon » Data:3c64c1d7-62f1-4ae2-8df1-6d5f541501fd No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Sulphur Springs Valley E C Inc Effective date: 2013/03/18 End date if known: Rate name: Street Lighting: 175 Watt MV - Double/Wood Sector: Lighting Description: Customer provided Facilities and Cooperative Owned and Maintained Lighting Service. Applies only to lights presently installed. All new street lighting installed shall be H.P. Sodium. As ordinary replacement of Incandescent and Mercury Vapor fixtures is required, they shall be replaced with comparable Sodium fixtures. All fixtures installed shall be subject to meeting municipal or county lighting ordinances.

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Data:C01b4dd9-ebe9-4bfa-b513-5a03f8165c65 | Open Energy Information  

Open Energy Info (EERE)

b4dd9-ebe9-4bfa-b513-5a03f8165c65 b4dd9-ebe9-4bfa-b513-5a03f8165c65 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: A & N Electric Coop Effective date: 2008/01/02 End date if known: Rate name: Former Delmarva Power Territory: Public Lighting Service-Incandescent Traffic and Pedestrian Signals 0-40 Watt Sector: Lighting Description: Estimated Monthly Average Usage: 6kWh Additional Monthly Charges: Ornamental or Decorative Luminaires, $2.12 Poles Wood 25ft - 40 ft, $4.23 Fiberglass or Aluminum, Embedded, less than 25 ft, $4.23 Fiberglass or Aluminum, Embedded,25 ft- 35 ft, $8.47 Fiberglass or Aluminum, Bolt Base, without foundation, 25 ft- 35 ft, $9.42

262

Data:09826a38-0518-4f07-93f0-a1ad87d946b2 | Open Energy Information  

Open Energy Info (EERE)

6a38-0518-4f07-93f0-a1ad87d946b2 6a38-0518-4f07-93f0-a1ad87d946b2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Central Maine Power Co Effective date: 2012/07/01 End date if known: Rate name: AL Discontinued Lighting-Incandescent Open 58 watts Sector: Lighting Description: This rate is available for area lighting service furnished on a dusk-to-dawn basis. The Company will furnish, install and maintain area lights in new locations as may be requested in writing for area lighting service, subject to the TERM OF SERVICE specified below. TERM OF SERVICE The term of service under this schedule shall be by service agreement for a period of fifteen (15) years and on a continuing basis thereafter. Requests for additions, changes or removals for area lighting service may require 90 days' advance written notice.

263

Data:706c5bdc-5353-4dee-a65c-947795c6877c | Open Energy Information  

Open Energy Info (EERE)

c5bdc-5353-4dee-a65c-947795c6877c c5bdc-5353-4dee-a65c-947795c6877c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Western Massachusetts Elec Co Effective date: 2013/06/01 End date if known: Rate name: Rate S-1 Street and Security Lighting-Incandescent 104 watt Sector: Lighting Description: This rate is applicable to street, highway, and off-street lighting for "Dusk to Dawn" or the "Midnight" lighting service. For lamp, luminaire, pole and accessory charges 2) LUMINAIRE CHARGE: a) Standard Street Lighting Luminaire No additional charge b) Luminaire furnished, installed and maintained by and at the expense of the customer No additional charge c) Decorative Luminaire installed after December 24, 1972: 4,000, 6,300, 8,000, 9,500, and 16,000 lumen sizes $ 3.09 27,500 and 50,000 lumen sizes $ 4.82 d) Flood Light or Spot Light Luminaire installed after December 24, 1972: 22,000, 22,500, 27,500, 36,000, 50,000, 60,000, 110,000, and 140,000 lumen sizes $ 2.63 e) Premium Decorative Luminaire Standard $ 8.06 Deluxe $11.50

264

Data:77cbc68c-c5d6-4274-9359-fe6ce217f3fc | Open Energy Information  

Open Energy Info (EERE)

cbc68c-c5d6-4274-9359-fe6ce217f3fc cbc68c-c5d6-4274-9359-fe6ce217f3fc No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Reading, Massachusetts (Utility Company) Effective date: 2011/08/01 End date if known: Rate name: 400 WATT MERCURY Sector: Lighting Description: *Note: Incandescent and Mercury lamps will no longer be supplied for new installations. Fixed Monthly Charge= Annual Rate divided by 12 months. Extra Pole Cost When an extra pole is required, specifically for street lighting, there will be an extra cost based upon pole size, including up to 100 feet of secondary. 30 foot or 35 foot Class 4 pole is $44.00 per year

265

Data:Cb261145-e85f-4486-acd9-52e820b7c316 | Open Energy Information  

Open Energy Info (EERE)

1145-e85f-4486-acd9-52e820b7c316 1145-e85f-4486-acd9-52e820b7c316 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: A & N Electric Coop Effective date: 2008/01/02 End date if known: Rate name: Former Delmarva Power Territory: Public Lighting Service-Incandescent Traffic and Pedestrian Signals 121-160 Watt Sector: Lighting Description: Estimated Monthly Average Usage: 38kWh Additional Monthly Charges: Ornamental or Decorative Luminaires, $2.12 Poles Wood 25ft - 40 ft, $4.23 Fiberglass or Aluminum, Embedded, less than 25 ft, $4.23 Fiberglass or Aluminum, Embedded,25 ft- 35 ft, $8.47 Fiberglass or Aluminum, Bolt Base, without foundation, 25 ft- 35 ft, $9.42

266

Data:32af6ce3-2092-487d-b41c-2296fb8a25b7 | Open Energy Information  

Open Energy Info (EERE)

ce3-2092-487d-b41c-2296fb8a25b7 ce3-2092-487d-b41c-2296fb8a25b7 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Western Massachusetts Elec Co Effective date: 2013/06/01 End date if known: Rate name: Rate S-1 Street and Security Lighting-Incandescent 104 watt - Basic service Sector: Lighting Description: This rate is applicable to street, highway, and off-street lighting for "Dusk to Dawn" or the "Midnight" lighting service. For lamp, luminaire, pole and accessory charges 2) LUMINAIRE CHARGE: a) Standard Street Lighting Luminaire No additional charge b) Luminaire furnished, installed and maintained by and at the expense of the customer No additional charge c) Decorative Luminaire installed after December 24, 1972: 4,000, 6,300, 8,000, 9,500, and 16,000 lumen sizes $ 3.09 27,500 and 50,000 lumen sizes $ 4.82 d) Flood Light or Spot Light Luminaire installed after December 24, 1972: 22,000, 22,500, 27,500, 36,000, 50,000, 60,000, 110,000, and 140,000 lumen sizes $ 2.63 e) Premium Decorative Luminaire Standard $ 8.06 Deluxe $11.50

267

Data:4ea4e19a-5667-4d77-b0c6-836c8667ebaa | Open Energy Information  

Open Energy Info (EERE)

e19a-5667-4d77-b0c6-836c8667ebaa e19a-5667-4d77-b0c6-836c8667ebaa No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Central Maine Power Co Effective date: 2012/07/01 End date if known: Rate name: AL Discontinued Lighting-Incandescent Open 105 watts Sector: Lighting Description: This rate is available for area lighting service furnished on a dusk-to-dawn basis. The Company will furnish, install and maintain area lights in new locations as may be requested in writing for area lighting service, subject to the TERM OF SERVICE specified below. TERM OF SERVICE The term of service under this schedule shall be by service agreement for a period of fifteen (15) years and on a continuing basis thereafter. Requests for additions, changes or removals for area lighting service may require 90 days' advance written notice.

268

Data:C8d7e02e-726a-4e37-b8e7-65fef0d3d393 | Open Energy Information  

Open Energy Info (EERE)

d7e02e-726a-4e37-b8e7-65fef0d3d393 d7e02e-726a-4e37-b8e7-65fef0d3d393 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: A & N Electric Coop Effective date: 2008/01/02 End date if known: Rate name: Former Delmarva Power Territory: Public Lighting Service-Incandescent Traffic and Pedestrian Signals 81-120 Watt Sector: Lighting Description: Estimated Monthly Average Usage: 30kWh Additional Monthly Charges: Ornamental or Decorative Luminaires, $2.12 Poles Wood 25ft - 40 ft, $4.23 Fiberglass or Aluminum, Embedded, less than 25 ft, $4.23 Fiberglass or Aluminum, Embedded,25 ft- 35 ft, $8.47 Fiberglass or Aluminum, Bolt Base, without foundation, 25 ft- 35 ft, $9.42

269

Data:2b268aa5-115c-43cd-b90b-e5f52620aee0 | Open Energy Information  

Open Energy Info (EERE)

68aa5-115c-43cd-b90b-e5f52620aee0 68aa5-115c-43cd-b90b-e5f52620aee0 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Frankfort, Indiana (Utility Company) Effective date: 1997/10/27 End date if known: Rate name: SL Public Street Lighting 295 watt Incandescent Sector: Lighting Description: Availability. Available for street lighting within the corporate limits of the city and highway lighting within the area served by the utility's distribution system. Character of service. Standard street lighting service using lamps available under this schedule. Source or reference: http://www.amlegal.com/nxt/gateway.dll/Indiana/frankfort_in/cityoffrankfortindianacodeofordinances?f=templates$fn=default.htm$3.0$vid=amlegal:frankfort_in

270

Data:227e0e55-2ad7-4ae2-8eb3-1a814b600b37 | Open Energy Information  

Open Energy Info (EERE)

e55-2ad7-4ae2-8eb3-1a814b600b37 e55-2ad7-4ae2-8eb3-1a814b600b37 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Norris Public Power District Effective date: 2012/01/20 End date if known: Rate name: Schedule 19: Municipal Street Lighting: Incandescent: 60 watt Sector: Lighting Description: Available to towns, villages, and communities within the District's Service Area for street lighting service from dusk to dawn. Source or reference: http://www.norrisppd.com/downloads/Schedule%2019%20-%20Municiapl%20Street%20Lighting.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):

271

Data:F1c7d4ea-11b1-4c11-8328-ec381efb4574 | Open Energy Information  

Open Energy Info (EERE)

c7d4ea-11b1-4c11-8328-ec381efb4574 c7d4ea-11b1-4c11-8328-ec381efb4574 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: A & N Electric Coop Effective date: 2008/01/02 End date if known: Rate name: Former Delmarva Power Territory: Public Lighting Service-Incandescent Traffic and Pedestrian Signals 41-80 Watt Sector: Lighting Description: Estimated Monthly Average Usage: 18kWh Additional Monthly Charges: Ornamental or Decorative Luminaires, $2.12 Poles Wood 25ft - 40 ft, $4.23 Fiberglass or Aluminum, Embedded, less than 25 ft, $4.23 Fiberglass or Aluminum, Embedded,25 ft- 35 ft, $8.47 Fiberglass or Aluminum, Bolt Base, without foundation, 25 ft- 35 ft, $9.42

272

Data:7f281dd1-f7f5-4fbb-b8f4-439ebec549d8 | Open Energy Information  

Open Energy Info (EERE)

1dd1-f7f5-4fbb-b8f4-439ebec549d8 1dd1-f7f5-4fbb-b8f4-439ebec549d8 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Burlington-Electric, Vermont (Utility Company) Effective date: 2010/03/01 End date if known: Rate name: Street Lighting (SL) Rate 189 Watt Incandescent Sector: Lighting Description: For municipal street lighting on city-accepted streets. Source or reference: https://www.burlingtonelectric.com/ELBO/assets/Tariff%20Sheets%20June%20262009%20revised-1.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh):

273

Data:1019e054-c2e3-45d1-8791-679e99c478f0 | Open Energy Information  

Open Energy Info (EERE)

e054-c2e3-45d1-8791-679e99c478f0 e054-c2e3-45d1-8791-679e99c478f0 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Reading, Massachusetts (Utility Company) Effective date: 2011/08/01 End date if known: Rate name: 175 WATT MERCURY Sector: Lighting Description: *Note: Incandescent and Mercury lamps will no longer be supplied for new installations. Fixed Monthly Charge= Annual Rate divided by 12 months. Extra Pole Cost When an extra pole is required, specifically for street lighting, there will be an extra cost based upon pole size, including up to 100 feet of secondary. 30 foot or 35 foot Class 4 pole is $44.00 per year

274

Data:F5d0e51a-d89a-412a-b6c6-f4bd842fecb8 | Open Energy Information  

Open Energy Info (EERE)

d0e51a-d89a-412a-b6c6-f4bd842fecb8 d0e51a-d89a-412a-b6c6-f4bd842fecb8 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: A & N Electric Coop Effective date: 2008/01/02 End date if known: Rate name: Former Delmarva Power Territory: Public Lighting Service-Incandescent Traffic and Pedestrian Signals 161-200 Watt Sector: Lighting Description: Estimated Monthly Average Usage: 42kWh Additional Monthly Charges: Ornamental or Decorative Luminaires, $2.12 Poles Wood 25ft - 40 ft, $4.23 Fiberglass or Aluminum, Embedded, less than 25 ft, $4.23 Fiberglass or Aluminum, Embedded,25 ft- 35 ft, $8.47 Fiberglass or Aluminum, Bolt Base, without foundation, 25 ft- 35 ft, $9.42

275

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

276

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

277

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

278

New River Light & Power Co | Open Energy Information  

Open Energy Info (EERE)

New River Light & Power Co New River Light & Power Co Place North Carolina Utility Id 13482 Utility Location Yes Ownership S NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt SV TOB Lighting 150 Watt SV TOB Lighting 150 Watt Sodium Vapor Lighting 175 Watt MV TOB Lighting 175 Watt Mercury Vapor Lighting 250 Watt Metal Halide Lighting 250 Watt SV TOB Lighting 250 Watt Sodium Vapor Lighting 400 Watt MV TOB Lighting 400 Watt Mercury Vapor Lighting 400 Watt Metal Halide Lighting 400 Watt SV TOB Lighting 750 Watt SV TOB Lighting

279

EA-1664: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Finding of No Significant Impact 4: Finding of No Significant Impact EA-1664: Finding of No Significant Impact Energy Conservation Standards: Energy Conservation Standards for Fluorescent and Incandescent Lamps The U.S. Department of Energy has determined that the adoption of energy conservation standards for General Service Fluorescent Lamps and Incandescent Reflector Lamps as described in the final rule titled the "energy Conservation Program: Energy Conservation Standards for General Service Fluorescent Lamps and Incandescent Reflector lamps," would not be a major federal action significantly affecting the quality of the human environment. Finding of No Significant Impact for 10 CFR Part 430 Energy Conservation Standards: Energy Conservation Standards for Fluorescent and Incandescent

280

EA-1664: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

64: Final Environmental Assessment 64: Final Environmental Assessment EA-1664: Final Environmental Assessment 10 CFR Part 430 Energy Conservation Standards: Energy Conservation Standards for Fluorescent and Incandescent Lamps The U.S. Department of Energy has determined that the adoption of energy conservation standards for General Service Fluorescent Lamps and Incandescent Reflector Lamps as described in the final rule titled the "energy Conservation Program: Energy Conservation Standards for General Service Fluorescent Lamps and Incandescent Reflector lamps," would not be a major federal action significantly affecting the quality of the human environment. Environmental Assessment for 10 CFR Part 430 Energy Conservation Standards: Energy Conservation Standards for Fluorescent and Incandescent Lamps,

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EA-1911: Energy Conservation Standards for Certain Reflector...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Energy Conservation Standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Lamps EA-1911: Energy Conservation Standards for Certain Reflector,...

282

Understanding Drooping Light Emitting Diodes CEEM | U.S. DOE...  

Office of Science (SC) Website

Impact Understanding "droop" may result in cheaper, more efficient LEDs; LEDs are more energy efficient, smaller, and longer-lived than incandescent lamps or fluorescent...

283

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Electric grid planners: demand response and energy efficiency to increase. March 23, 2011 Incandescent bulbs still play a role in the future of lighting. February 10 ...

284

Today in Energy - Archive - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Electric grid planners: demand response and energy efficiency to increase. March 23, 2011 Incandescent bulbs still play a role in the future of lighting. March 22, 2011

285

Top 8 Things You Didn't Know About Thomas Alva Edison | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cost-competitive incandescent lighting. 4. Back when the automobile was first introduced, electric cars outsold their internal combustion counterparts. Still, the lead-acid...

286

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

trends in residential space conditioning are affected byinto space heating, air conditioning, appliances, cookingSpace heating North Transition Ordinary efficient Highly efficient Incandescent Florescent CFL Air conditioning

Zhou, Nan

2010-01-01T23:59:59.000Z

287

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Light bulb standards begin taking effect in 2012. November 28, 2011 ... Incandescent bulbs still play a role in the future of lighting. February 10, ...

288

1  

NLE Websites -- All DOE Office Websites (Extended Search)

in the areas of efficiency, operating lifetime and the color quality of the emitted light," said Victor Klimov of Los Alamos. Incandescent bulbs, known for converting only 10...

289

DOE Solar Decathlon: News Blog Tennessee  

NLE Websites -- All DOE Office Websites (Extended Search)

home's energy efficiency. Compact fluorescent lamps (CFLs) provide the same amount of light as incandescent bulbs but use about 75% less energy. CFLs fit into common household...

290

Bicycle Generator Lightbar Indicator ----- Inventors William...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Shana Weber (Princeton University) This invention is a series of incandescent light bulbs that progressively brighten in response to a bicycler's physical effort. By...

291

The Better Buildings Neighborhood View - December 10, 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

traditional incandescent bulbs? Consider installing energy efficient compact fluorescent light bulbs (CFLs) in your basement lighting fixtures. Light Neighborhood View to Become...

292

DOE Solar Decathlon: News Blog  

NLE Websites -- All DOE Office Websites (Extended Search)

home's energy efficiency. Compact fluorescent lamps (CFLs) provide the same amount of light as incandescent bulbs but use about 75% less energy. CFLs fit into common household...

293

Nanoscale engineering boosts performance of quantum dot light...  

NLE Websites -- All DOE Office Websites (Extended Search)

provide many advantages over standard lighting technologies, such as incandescent bulbs, especially in the areas of efficiency, operating lifetime and the color quality of...

294

DOE Solar Decathlon: News Blog Blog Archive Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

home's energy efficiency. Compact fluorescent lamps (CFLs) provide the same amount of light as incandescent bulbs but use about 75% less energy. CFLs fit into common household...

295

1999 Commercial Buildings Characteristics--End-Use Equipment  

Annual Energy Outlook 2012 (EIA)

Energy Consumption Survey Lighting Equipment Standard fluorescent and incandescent light bulbs were the most widely used types of lighting equipment (Figure 3). The vast...

296

--No Title--  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for bathrooms of 42 residences. These retrofits would involve upgrading incandescent light fixtures to those that will accommodate compact fluorescent bulbs. It is estimated...

297

Expediting Home Energy Conservation through Innovative Marketing...  

NLE Websites -- All DOE Office Websites (Extended Search)

lives to address these issues. Besides driving a hybrid car and replacing incandescent light bulbs, many consumers find the options to improve the sustainability of their...

298

Have You Seen the Light? Nearly 1 Million Take Pledge to Make...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

accounts for about 20 percent of a home's electricity use. ENERGY STAR qualified light bulbs and fixtures use about 75 percent less energy than standard incandescent...

299

It's Elemental - The Element Tungsten  

NLE Websites -- All DOE Office Websites (Extended Search)

melting point of all metallic elements and is used to make filaments for incandescent light bulbs, fluorescent light bulbs and television tubes. Tungsten expands at nearly the...

300

Improved Photometric Standards and Calibration Procedures ...  

Science Conference Proceedings (OSTI)

... from the external source is incident at 45 while the light from the ... A group of twelve 40 W opal-bulb incandescent lamps, operated at ...

2013-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Scanning Electron Microscopy  

Science Conference Proceedings (OSTI)

... Bob Gordon of Hitachi explains that the electrons are produced by a tungsten filament, just like in an incandescent light bulb, but since the sample ...

2013-12-06T23:59:59.000Z

302

New Player in Electron Field Emitter Technology Makes for ...  

Science Conference Proceedings (OSTI)

... Thermionic sources use an electric current to boil electrons off the surface of a wire filament, similar to the way an incandescent light bulb uses an ...

2013-03-05T23:59:59.000Z

303

Technical Program  

Science Conference Proceedings (OSTI)

ity of replacing conventional incandescent bulbs and fluorescent lights with LED ... and exciting light sources as a commercial product with a high output.

304

U.S. Department of Energy NEPA Categorical Exclusion Determination...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

incentive program for citizens to exchange incandescent bulbs for compact fluorescent or light-emitting diode bulbs. Conditions: None Categorical Exclusion(s) Applied: A1, A9,...

305

CX-009174: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

incentive program for citizens to exchange incandescent bulbs for compact fluorescent or light-emitting diode bulbs. CX-009174.pdf More Documents & Publications CX-008898:...

306

Advanced Mailer - TMS  

Science Conference Proceedings (OSTI)

Sep 19, 2005 ... subsurface damage were evaluated by white light interferometery, ...... standard incandescent bulbs (~15 lm/W) and is similar to the very best...

307

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Light bulb standards begin taking effect in 2012. November 28, 2011 ... Incandescent bulbs still play a role in the future of lighting. March 15, 2011

308

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Light bulb standards begin taking effect in 2012. March 23, 2011 Incandescent bulbs still play a role in the future of lighting.

309

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Compact fluorescent bulbs: ... Many screw into a standard light socket, and most produce a similar color of light as a standard incandescent bulb.

310

--No Title--  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

These energy efficiency retrofits would include: (1) installation of compact fluorescent light bulbs, which use 75 percent less energy and last ten times longer than incandescent...

311

EPA_T1542_SECTOR_HigherEdA  

NLE Websites -- All DOE Office Websites (Extended Search)

bulb swap in the residence halls and replaced 400 incandescents with compact fluorescent light bulbs. When talking to colleges and universities about energy efficiency, it is...

312

Residential Energy Consumption Survey-Glossary  

U.S. Energy Information Administration (EIA)

This definition includes appliances and lights used in the home during the year, including ... All types of light bulbs are included: incandescent, ...

313

SSL Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

new jobs. For the most part, LEDs will displace point sources such as incandescent lamps (light- bulbs), while OLEDs will displace area sources such as fluorescent lamps. OLEDs...

314

Laser Extinction in Laminar Inverse Diffusion Flames  

E-Print Network (OSTI)

Diagnostics, Chapter 9: Laser-Induced Incandescence,Laser Extinction in Laminar Inverse Diffusion Flames WesternFoundation, Arlington, VA Laser Extinction in Laminar

Macko, Kevin; Mikofski, Mark A; Fernandez-Pello, Carlos; Blevins, Linda G; Davis, Ronald W.

2005-01-01T23:59:59.000Z

315

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Extension and expansion of efficiency programs could reduce U.S. total energy usage. June 6, 2012 ... Incandescent bulbs still play a role in the future of lighting.

316

An LED to Read By - Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Apr 27, 2009 ... LEDs convert 20 to 50 percent of their input energy into light. In contrast, a traditional incandescent bulb converts only about five percent of...

317

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

CEE Consortium for Energy Efficiency CFL Compact fluorescentEfficiency Measures Lighting Turning off lights in unoccupied areas Lighting level standards Lighting controls Daylighting Replace incandescent with CFL

Kermeli, Katerina

2013-01-01T23:59:59.000Z

318

Lighting Choices - White Background | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

All of these lightbulbs-CFLs, LEDs, and energy-saving incandescents-meet the new energy standards that take effect from 2012-2014. allbulbshiresweb.eps...

319

Lighting Group: Light Distribution Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Alternatives to Incandescent Downlights Hotel and Institutional Bathroom Lighting Portable Office Lighting Systems Low Glare Outdoor Retrofit Luminaire LED Luminaires...

320

--No Title--  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lighting retrofits at community facilities. Retrofits would consist of changing out fixtures to accommodate compact fluorescent bulbs instead of relying on incandescent bulbs....

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

--No Title--  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

providing lighting retrofits for as many residences and community facilities as the funding permits. Residences for the retrofits will be selected based on need. Incandescent bulbs...

322

Energy Tricks Lead to Cost-Saving Treats | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

replaced traditional incandescent street lights with brighter, longer-lasting light-emitting diode (LED) lights. Obviously, it's not just once a year that municipalities are...

323

#CleanTechNow: America's Clean Energy Revolution | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

they did 30 years ago -- and deployment is skyrocketing. LED Lighting: LED (light-emitting diode) lights are about 80 percent more efficient than traditional incandescent light...

324

Types of Lighting | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

selection. Types of lighting include: Fluorescent Incandescent Outdoor solar Light-emitting diode (LED) Also learn how energy-efficient lightbulbs compare to traditional...

325

Energy Basics: Fluorescent Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Cooling Water Heating Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent lamps to provide the same amount of illumination (efficacy of...

326

Fourteenth Semi-Annual Report to Congress on Appliance Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Society of North America IRL - Incandescent Reflector Lamp LED - Light-Emitting Diode MEF- Modified Energy Factor MV - Medium Voltage NEMA - National Electrical...

327

CX-000135: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

involve changing the Tribe's street lights from incandescent bulbs to LED (light-emitting diode) lighting fixtures. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-000135.pdf More...

328

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

of incandescent bulbs with more efficient compact fluorescent lighting and light-emitting diode (LED) lamps. Among electric end-use services in the residential sector,...

329

Stadiums and arenas use efficient, high wattage lamps - Today ...  

U.S. Energy Information Administration (EIA)

Other lighting types, such as light-emitting diode (LED), incandescent, and halogen lamps, are used in applications like signals, signage, ...

330

2010 Report to Congresss -- Implementation Report: Energy Conservation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Society of North America (or IESNA) IRL - Incandescent Reflector Lamp LED - Light-Emitting Diode NIA - National Impact Analysis NODA - Notice of Data Availability NOPD - Notice...

331

CX-006426: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Conservation Strategy, 2) replace incandescent traffic lights with light emitting diode (LED) traffic signals, 3) Energy Smart Homes Grant Program (financial incentive...

332

CX-004962: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

halide light fixtures in the City Hall and Community Center parking lots with light-emitting diode (LED) light fixtures; and 3) replace incandescent light bulbs on traffic...

333

CX-007832: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency and Conservation Block Grant Program. Upgrade incandescent bulbs to light-emitting diode bulbs at City Hall and Community Center. U.S. Department of Energy NEPA...

334

2010 Aug Report to Congress  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrotechnical Commission IRL - Incandescent Reflector Lamp LED - Light-Emitting Diode NODA - Notice of Data Availability NOPD - Notice of Proposed Determination NOPM...

335

Driver Circuit for White LED Lamps with TRIAC Dimming Control.  

E-Print Network (OSTI)

??An efficient Light Emitting Diode (LED) lamp driver circuit is proposed for retrofitting the conventionally used incandescent lamps with existing TRIAC dimmer. The dimming feature (more)

Weng, Szu-Jung

2012-01-01T23:59:59.000Z

336

Edison vs. Tesla: Toasting a Rivalry That Drove Innovation |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the history one of Thomas Edison's most important inventions -- the incandescent light bulb -- in our new interactive timeline. And test your knowledge of these two important...

337

Ames Laboratory Technology Marketing Summaries - Energy ...  

Innovative microstructures that can direct light in a manner similar to the way semiconductors can ... the efficiency of conventional incandescent light bulbs.

338

The Many Applications of Refractory Metals - Programmaster.org  

Science Conference Proceedings (OSTI)

From medical imaging to the classic incandescent light bulb, refractory metals are critical in the most high-tech, demanding applications to common everyday...

339

Gary Rozak  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... From medical imaging to the classic incandescent light bulb, refractory metals are critical in the most high-tech, demanding applications to...

340

Top 8 Things You Didn't Know About Thomas Alva Edison | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-- pioneered improvements to a variety of inventions, including the incandescent light bulb. 6. Edison left a profound impact on the nation's energy sector. Beyond inventing a...

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CX-002177: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

incandescent traffic signal heads and pedestrian displays to energy efficient light-emitting diode displays; and 3) improve traffic signal system operations and efficiency by...

342

NIST Goniophotometer for specular gloss calibrations  

Science Conference Proceedings (OSTI)

... The light source is a quartz-tungsten-halogen incandescent lamp rated at ... instrument but also to a considerable extent on the primary gloss standard ...

2012-10-02T23:59:59.000Z

343

Report to Congress on Appliance Energy Efficiency Rulemakings  

NLE Websites -- All DOE Office Websites (Extended Search)

discussed above). The seven products that have two backlogged standards cycles are direct heating equipment, pool heaters, mobile home furnaces, fluorescent lamps, incandescent...

344

10-04-2010 CA-B-10-0154  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

incandescence sensor to measure black carbon (BC) and brown carbon (BrC) organic aerosols and their optical and chemical characteristics. Fabrication and laboratory testing...

345

Light emitting polymers on flexible substrates for Naval firefighting applications .  

E-Print Network (OSTI)

??Display technologies in the current market range from the simple and cheap incandescent bulb behind a graphic overlay to the upwardly expensive flat panel high (more)

Brisar, Jon David

2005-01-01T23:59:59.000Z

346

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

General Service Fluorescent and Incandescent Reflector Lamps Energy Conservation Standard Sign up for e-mail updates on regulations for this and other products The Department of...

347

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

348

Property:PotentialRooftopPVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialRooftopPVCapacity PotentialRooftopPVCapacity Jump to: navigation, search Property Name PotentialRooftopPVCapacity Property Type Quantity Description The nameplate capacity technical potential from Rooftop PV for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

349

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

350

Dayton Power and Light - Business and Government Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lighting: 1.50bulb (32 watts) Delamping: 1.20-1.50ln. ft. or 0.05rated fixture watt Relamping: 1 - 1.25 Lighting Sensors: 15-60sensor, 0.04connected watt for...

351

NIST Guide to SI Units - Appendix B9. Conversion Factors  

Science Conference Proceedings (OSTI)

... horsepower (550 ft lbf/s), watt (W), 7.456 999, E+02. horsepower (boiler), watt (W), 9.809 50, E+03. horsepower (electric), watt (W), 7.46, E+02. ...

352

NIST Guide to SI Units - Appendix B8. Factors for Units  

Science Conference Proceedings (OSTI)

... horsepower (550 ft lbf/s) (hp), watt (W), 7.456 999, E+02. horsepower (boiler), watt (W), 9.809 50, E+03. horsepower (electric), watt (W), 7.46, E+02. ...

353

Property:PotentialBiopowerSolidCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerSolidCapacity PotentialBiopowerSolidCapacity Jump to: navigation, search Property Name PotentialBiopowerSolidCapacity Property Type Quantity Description The nameplate capacity technical potential from solid biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

354

Property:PotentialRuralUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialRuralUtilityScalePVCapacity PotentialRuralUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialRuralUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from rural utility-scale PV for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

355

Southwest Rural Elec Assn Inc | Open Energy Information  

Open Energy Info (EERE)

Oklahoma Oklahoma Utility Id 17681 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1-10 175 Watts Commercial 100 Watt HPS, No Energy Lighting 100 Watt HPS, Unmetered Lighting 1000 Watt HPS or MH, No Energy Lighting 1000 Watt HPS or MH, Unmetered Lighting 11-50 175 Watts Commercial 175 Watt MVL, No Energy Lighting 175 Watt MVL, Unmetered Lighting 250 Watt HPS or MH, No Energy Lighting 250 Watt HPS or MH, Unmetered Lighting 400 Watt HPS or MH, No Energy Lighting 400 Watt HPS or MH, Unmetered Lighting

356

Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialUrbanUtilityScalePVCapacity PotentialUrbanUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialUrbanUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from utility-scale PV in urban areas of a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

357

Property:PotentialEGSGeothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialEGSGeothermalCapacity PotentialEGSGeothermalCapacity Jump to: navigation, search Property Name PotentialEGSGeothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from EGS Geothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

358

Tri-County Elec Member Corp (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Corp (Kentucky) Corp (Kentucky) Jump to: navigation, search Name Tri-County Elec Member Corp Place Kentucky Utility Id 19162 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS Lighting 100 Watt Induction Lighting 1000 Watt MH Lighting 103 Watt LED Lighting 175 Watt MV Lighting 200 Watt HPS Lighting 250 Watt HPS Lighting 400 Watt HPS Lighting 400 Watt MH Lighting 400 Watt MV Lighting 51 Watt LED Lighting 85 Watt Induction Lighting GSA-Part 1 Commercial GSA-Part 2 Commercial GSA-Part 3 Industrial Residential Residential Average Rates Residential: $0.0941/kWh Commercial: $0.1050/kWh

359

Property:PotentialCSPCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialCSPCapacity PotentialCSPCapacity Jump to: navigation, search Property Name PotentialCSPCapacity Property Type Quantity Description The nameplate capacity technical potential from CSP for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

360

Tri-County Elec Member Corp (Tennessee) | Open Energy Information  

Open Energy Info (EERE)

Tri-County Elec Member Corp Tri-County Elec Member Corp Place Tennessee Utility Id 19162 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS Lighting 100 Watt Induction Lighting 1000 Watt MH Lighting 103 Watt LED Lighting 175 Watt MV Lighting 200 Watt HPS Lighting 250 Watt HPS Lighting 400 Watt HPS Lighting 400 Watt MH Lighting 400 Watt MV Lighting 51 Watt LED Lighting 85 Watt Induction Lighting GSA-Part 1 Commercial GSA-Part 2 Commercial GSA-Part 3 Industrial Residential Residential Average Rates

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

362

Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalCapacity PotentialGeothermalHydrothermalCapacity Jump to: navigation, search Property Name PotentialGeothermalHydrothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from Geothermal Hydrothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

363

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerCapacity PotentialHydropowerCapacity Jump to: navigation, search Property Name PotentialHydropowerCapacity Property Type Quantity Description The nameplate capacity technical potential from Hydropower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

364

Property:PotentialBiopowerGaseousCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousCapacity PotentialBiopowerGaseousCapacity Jump to: navigation, search Property Name PotentialBiopowerGaseousCapacity Property Type Quantity Description The nameplate capacity technical potential from gaseous biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

365

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

366

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

Siderius, and Carrie Webber. "Standby power use: How big isTechnology: Current standby power Description Increase inCurrent practice 1 watt standby 7 watt standby 1 watt

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

367

Buildings Energy Data Book: 5.6 Lighting  

Buildings Energy Data Book (EERE)

6 6 2010 Lamp Wattage, Number of Lamps, and Hours of Usage Lamp Wattage (Watts per lamp) Number of Lamps per Building Hours of Usage per Day Res Com Ind Other (1) Res Com Ind Res Com Ind Other Incandescent 56 53 46 68 32 14 1 2 10 13 9 General (A-type, Decorative) (2) 58 58 46 N/A 27 8 1 2 10 13 N/A Reflector 69 79 65 N/A 4 4 0 (3) 2 10 12 N/A Miscellaneous 45 7 0 68 1 3 N/A 2 11 0 9 Halogen 65 68 68 149 2 9 0 2 12 12 11 General 50 46 36 N/A 0 0 0 2 12 12 N/A Reflector 68 78 64 N/A 1 4 0 2 12 12 N/A Low Voltage Display 44 60 0 N/A 0 5 N/A 2 13 0 N/A Miscellaneous 82 99 145 149 0 0 0 2 10 12 11 Compact Fluorescent 16 19 31 22 12 39 1 2 10 13 9 General (Screw, Pin) 17 19 36 N/A 10 32 1 2 10 13 N/A Reflector 17 20 16 N/A 1 7 0 2 10 13 N/A Miscellaneous 18 0 0 22 1 N/A N/A 2 0 0 9 Linear Fluorescent 24 37 39 63 5 301 283 2 11 13 14 T5 19 36 58 N/A 0 20 20 2 12 13 N/A T8 26 31 32 N/A 1 181 182 2 11 13 N/A T12 28 50 53 N/A 3 98 79 2 11 12 N/A Miscellaneous 16 31 42 63 1 2 1

368

Data:Ed303712-3e06-47c0-8022-3df3ede28755 | Open Energy Information  

Open Energy Info (EERE)

Ed303712-3e06-47c0-8022-3df3ede28755 Ed303712-3e06-47c0-8022-3df3ede28755 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Western Massachusetts Elec Co Effective date: 2013/06/01 End date if known: Rate name: Rate S-1 Street and Security Lighting-Incandescent 691 watts Sector: Lighting Description: This rate is applicable to street, highway, and off-street lighting for "Dusk to Dawn" or the "Midnight" lighting service. http://nuwnotes1.nu.com/apps/wmeco/webcontent.nsf/AR/SummaryOfElectricRates/$File/Summary%20of%20Electric%20Rates.pdf 2) LUMINAIRE CHARGE: a) Standard Street Lighting Luminaire No additional charge b) Luminaire furnished, installed and maintained by and at the expense of the customer No additional charge c) Decorative Luminaire installed after December 24, 1972: 4,000, 6,300, 8,000, 9,500, and 16,000 lumen sizes $ 3.09 27,500 and 50,000 lumen sizes $ 4.82 d) Flood Light or Spot Light Luminaire installed after December 24, 1972: 22,000, 22,500, 27,500, 36,000, 50,000, 60,000, 110,000, and 140,000 lumen sizes $ 2.63 e) Premium Decorative Luminaire Standard $ 8.06 Deluxe $11.50

369

Data:A782fdbd-524f-4609-b13c-5535cd0cdeec | Open Energy Information  

Open Energy Info (EERE)

82fdbd-524f-4609-b13c-5535cd0cdeec 82fdbd-524f-4609-b13c-5535cd0cdeec No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Western Massachusetts Elec Co Effective date: 2013/06/01 End date if known: Rate name: Rate S-1 Street and Security Lighting-Incandescent 691 watts - Basic Service Sector: Lighting Description: This rate is applicable to street, highway, and off-street lighting for "Dusk to Dawn" or the "Midnight" lighting service. http://nuwnotes1.nu.com/apps/wmeco/webcontent.nsf/AR/SummaryOfElectricRates/$File/Summary%20of%20Electric%20Rates.pdf 2) LUMINAIRE CHARGE: a) Standard Street Lighting Luminaire No additional charge b) Luminaire furnished, installed and maintained by and at the expense of the customer No additional charge c) Decorative Luminaire installed after December 24, 1972: 4,000, 6,300, 8,000, 9,500, and 16,000 lumen sizes $ 3.09 27,500 and 50,000 lumen sizes $ 4.82 d) Flood Light or Spot Light Luminaire installed after December 24, 1972: 22,000, 22,500, 27,500, 36,000, 50,000, 60,000, 110,000, and 140,000 lumen sizes $ 2.63 e) Premium Decorative Luminaire Standard $ 8.06 Deluxe $11.50

370

Data:D0aee14b-addd-43c0-b0d4-1d81697713ed | Open Energy Information  

Open Energy Info (EERE)

aee14b-addd-43c0-b0d4-1d81697713ed aee14b-addd-43c0-b0d4-1d81697713ed No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Western Massachusetts Elec Co Effective date: 2013/06/01 End date if known: Rate name: Rate S-1 Street and Security Lighting-Incandescent-203 watt Sector: Lighting Description: This rate is applicable to street, highway, and off-street lighting for "Dusk to Dawn" or the "Midnight" lighting service http://nuwnotes1.nu.com/apps/wmeco/webcontent.nsf/AR/SummaryOfElectricRates/$File/Summary%20of%20Electric%20Rates.pdf 2) LUMINAIRE CHARGE: a) Standard Street Lighting Luminaire No additional charge b) Luminaire furnished, installed and maintained by and at the expense of the customer No additional charge c) Decorative Luminaire installed after December 24, 1972: 4,000, 6,300, 8,000, 9,500, and 16,000 lumen sizes $ 3.09 27,500 and 50,000 lumen sizes $ 4.82 d) Flood Light or Spot Light Luminaire installed after December 24, 1972: 22,000, 22,500, 27,500, 36,000, 50,000, 60,000, 110,000, and 140,000 lumen sizes $ 2.63 e) Premium Decorative Luminaire Standard $ 8.06 Deluxe $11.50

371

Data:94c85bab-94d8-4db0-81a4-6fda9d27676b | Open Energy Information  

Open Energy Info (EERE)

5bab-94d8-4db0-81a4-6fda9d27676b 5bab-94d8-4db0-81a4-6fda9d27676b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Richland, Washington (Utility Company) Effective date: 2013/01/01 End date if known: Rate name: Schedule 70: Security Lighting Area Lighting - Unmetered 1,000/1,500 Watt Incandescent Sector: Lighting Description: A. Availability: In all territory served by the City's electric utility. B. Applicability: To all property owners or long-term leasees of property. C. Contract Provisions: The rates in this schedule apply to facilities consisting of overhead construction with mast arms and luminaries mounted on wood poles with lumen output as shown. Lighting facilities supplied under this schedule shall remain the property of the City, and shall be supplied only pursuant to a contract with the customer, the term of which shall be a period of not less than three (3) years. Pole Rental: When an individual wood pole is required on a new installation, the following monthly charges apply: 40 feet or less $ 1.00 Over 40 feet $ 1.00 plus $0.05 per foot Additional charge will be made for lamps installed seventy-five (75) feet or more above the ground.

372

Data:1db4af91-28f4-4cda-b10d-15a876200a81 | Open Energy Information  

Open Energy Info (EERE)

af91-28f4-4cda-b10d-15a876200a81 af91-28f4-4cda-b10d-15a876200a81 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Western Massachusetts Elec Co Effective date: 2013/06/01 End date if known: Rate name: Rate S-1 Street and Security Lighting-Incandescent-203 watt - Basic Service Sector: Lighting Description: This rate is applicable to street, highway, and off-street lighting for "Dusk to Dawn" or the "Midnight" lighting service http://nuwnotes1.nu.com/apps/wmeco/webcontent.nsf/AR/SummaryOfElectricRates/$File/Summary%20of%20Electric%20Rates.pdf 2) LUMINAIRE CHARGE: a) Standard Street Lighting Luminaire No additional charge b) Luminaire furnished, installed and maintained by and at the expense of the customer No additional charge c) Decorative Luminaire installed after December 24, 1972: 4,000, 6,300, 8,000, 9,500, and 16,000 lumen sizes $ 3.09 27,500 and 50,000 lumen sizes $ 4.82 d) Flood Light or Spot Light Luminaire installed after December 24, 1972: 22,000, 22,500, 27,500, 36,000, 50,000, 60,000, 110,000, and 140,000 lumen sizes $ 2.63 e) Premium Decorative Luminaire Standard $ 8.06 Deluxe $11.50

373

Data:88a37557-7f54-477b-9f70-ef26282b4a5c | Open Energy Information  

Open Energy Info (EERE)

7557-7f54-477b-9f70-ef26282b4a5c 7557-7f54-477b-9f70-ef26282b4a5c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Richland, Washington (Utility Company) Effective date: 2013/01/01 End date if known: Rate name: Schedule 70: Security Lighting Area Lighting - Metered 1,000/1,500 Watt Incandescent Sector: Lighting Description: A. Availability: In all territory served by the City's electric utility. B. Applicability: To all property owners or long-term leasees of property. C. Contract Provisions: The rates in this schedule apply to facilities consisting of overhead construction with mast arms and luminaries mounted on wood poles with lumen output as shown. Lighting facilities supplied under this schedule shall remain the property of the City, and shall be supplied only pursuant to a contract with the customer, the term of which shall be a period of not less than three (3) years. Pole Rental: When an individual wood pole is required on a new installation, the following monthly charges apply: 40 feet or less $ 1.00 Over 40 feet $ 1.00 plus $0.05 per foot Additional charge will be made for lamps installed seventy-five (75) feet or more above the ground.

374

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

shall have a monthly estimated usage assigned for billing purposes as follows: 46-watt LED lighting purposes as follows: 46-watt LED light OpenEIUtilityRate...

375

Data:B73fdacd-eca4-49cb-bc90-c97865eb18d5 | Open Energy Information  

Open Energy Info (EERE)

date: 20120101 End date if known: Rate name: STREET LIGHTING-ASSOCIATION-OWNED: LED: 100 Watt Equivalent per Lamp Sector: Lighting Description: LED 100 Watt Equivalent per...

376

Data:2afd6900-e974-4471-961f-d979524856a3 | Open Energy Information  

Open Energy Info (EERE)

date: 20120101 End date if known: Rate name: STREET LIGHTING-ASSOCIATION-OWNED: LED: 250 Watt Equivalent per Lamp Sector: Lighting Description: LED 250 Watt Equivalent per...

377

Nuclear Reactor Technologies | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Technologies Nuclear Reactor Technologies TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority TVA Watts Bar Nuclear Power Plant | Photo...

378

Reading Municipal Light Department - Residential Renewable Energy...  

Open Energy Info (EERE)

Summary Reading Municipal Light Department (RMLD) offers rebates of 1.00watt for solar photovoltaic and small wind installations for residential customers. A 0.25watt...

379

Data:5b914612-dbeb-4f9a-bc2f-8f3e0211d28d | Open Energy Information  

Open Energy Info (EERE)

of Key West, Florida (Utility Company) Effective date: End date if known: Rate name: LED High Watt, Approx. 72 Watt (Street Light Schedule S-1) Sector: Lighting Description:...

380

Data:E1cfde67-c31d-4764-98a7-04731e833b9b | Open Energy Information  

Open Energy Info (EERE)

of Key West, Florida (Utility Company) Effective date: End date if known: Rate name: LED Low Watt, Approx 36 Watts (Area Lighting Schedule S-2) Sector: Lighting Description:...

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Data:3e7e083e-8abd-4f88-8dbb-9987cf9cf392 | Open Energy Information  

Open Energy Info (EERE)

of Key West, Florida (Utility Company) Effective date: End date if known: Rate name: LED High Watt, Approx. 72 Watts (Area Lighting Schedule S-2) Sector: Lighting Description:...

382

Data:Cc6c212f-5dd0-4ca4-b9d9-1e21b36ee811 | Open Energy Information  

Open Energy Info (EERE)

of Key West, Florida (Utility Company) Effective date: End date if known: Rate name: LED Medium Watt, Approx. 52 Watts (Street Light Schedule S-1) Sector: Lighting Description:...

383

Data:4433dcfe-1f72-4dcf-9d43-cba1ff401962 | Open Energy Information  

Open Energy Info (EERE)

of Key West, Florida (Utility Company) Effective date: End date if known: Rate name: LED Medium Watt, Approx. 52 Watts (Area Lighting Schedule S-2) Sector: Lighting...

384

Data:32be4ebb-aea6-4366-91f5-26dff15789e1 | Open Energy Information  

Open Energy Info (EERE)

of Key West, Florida (Utility Company) Effective date: End date if known: Rate name: LED Low Watt, Approx. 36 Watt (Street Light Schedule S-1) Sector: Lighting Description:...

385

Distributed generation capabilities of the national energy modeling system  

E-Print Network (OSTI)

Energy Information Administration Electricity Market Module of NEMS Geographic Information System(s) 10 9 (giga)watt 10 3 (kilo)watt Market Analysis

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

386

Choctaw Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Inc Electric Coop Inc Jump to: navigation, search Name Choctaw Electric Coop Inc Place Oklahoma Utility Id 3527 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS, Metered Lighting 100 Watt HPS, Unmetered Lighting 1000 Watt HPS, Metered Lighting 1000 Watt HPS, Unmetered Lighting 175 Watt MV ,Metered Lighting 175 Watt MV ,Unmetered Lighting 250 Watt HPS, Metered Lighting 250 Watt HPS, Unmetered Lighting 400 Watt HPS ,Metered Lighting 400 Watt HPS ,Unmetered Lighting 400 Watt MV,Metered Lighting

387

By Stanley Micklavzina, Asher Tubman, and Frank Vignola for the Meyer Fund for Sustainable Development and the University of Oregon Department of Physics and the Solar Radiation Monitoring Laboratory  

E-Print Network (OSTI)

) of light on the PV cell output current. To answer the question of why fluorescent bulbs are more voltmeter 2 Lamps Light Filters 60W Incandescent Bulb Compact Fluorescent Bulb (13W Comparable light of wavelength (color) of light on the output of a solar cell. Using an incandescent light bulb, the current

Oregon, University of

388

2009 Virginia Polytechnic Institute and State University 2901-9004 Virginia Cooperative Extension programs and employment are open to all, regardless of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, o  

E-Print Network (OSTI)

return on your investment when you replace your most frequently used incandescent light bulbs with CFLS and living rooms and kitchen. It is estimated that if every household in the U.S. changed just one light bulb" Light Bulbs Work? Incandescent bulbs or "regular" bulbs consist of finely coiled wire filaments

Liskiewicz, Maciej

389

Green Office Certificate Program (GOCP) Glossary Autoclave: Device to sterilize equipment and supplies by subjecting them to high  

E-Print Network (OSTI)

to produce the renewable energy source. Compact Fluorescent Lamps (CFLs): Energy-saving light bulbs, which last longer and use far less energy than traditional (or incandescent) light bulbs for the same level and the environment. Incandescent lamps: (Light bulbs) create light by running electricity through a thin filament

Yamamoto, Keith

390

THE UNIVERSITY OF CHICAGO SEARCH FOR THE RARE DECAY K0  

E-Print Network (OSTI)

Type=G41 Approx. $9.37 LED Bulb 40 Lumen equivalent (Sylvania) Lowe's or Home Depot Approx. $22.00 each spectrum with different light sources; compact fluorescent, LED, incandescent. 5. Discuss light bulb. Observe difference of color spectrum with different light sources; compact fluorescent, LED, incandescent

391

Electrical modulation of emissivity S. Vassant,1  

E-Print Network (OSTI)

, it is difficult to develop an efficient light emitting diode because the spontaneous emission rate is proportional emitting diodes. Yet, incandescent sources are often the only option in the infrared (IR). Indeed tens of Hz. Hence, for many applications, incandescent light sources can- not compete with light

Paris-Sud XI, Université de

392

Evaluation of Heat Stress and Strain in Electric Utility Workers  

E-Print Network (OSTI)

inside vaults or on overhead lines. Their typical activitiestogether or to overhead transmission lines. Installing watt-

Brown, Eric Nicholas

2013-01-01T23:59:59.000Z

393

Property:IdentifiedHydrothermalPotential | Open Energy Information  

Open Energy Info (EERE)

IdentifiedHydrothermalPotential IdentifiedHydrothermalPotential Jump to: navigation, search Property Name IdentifiedHydrothermalPotential Property Type Quantity Description Conventional hydrothermal electricity generation potential from identified hydrothermal sites, as determined by the USGS 2008 Geothermal Resource Assessment (Williams et al, 2008). Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS

394

Property:UndiscoveredHydrothermalPotential | Open Energy Information  

Open Energy Info (EERE)

UndiscoveredHydrothermalPotential UndiscoveredHydrothermalPotential Jump to: navigation, search Property Name UndiscoveredHydrothermalPotential Property Type Quantity Description Estimated conventional hydrothermal electricity generation potential from undiscovered hydrothermal sites, as determined by the USGS 2008 Geothermal Resource Assessment (Williams et al, 2008). Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS

395

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

396

Blue Grass Energy Coop Corp | Open Energy Information  

Open Energy Info (EERE)

Grass Energy Coop Corp Grass Energy Coop Corp Jump to: navigation, search Name Blue Grass Energy Coop Corp Place Kentucky Utility Id 1886 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS- Acorn Fixture Lighting 100 Watt HPS- Cobra Head Lighting 100 Watt HPS- Colonial Fixture Lighting 100 Watt HPS- Open Bottom Lighting 100 Watt HPS- Ornamental Lighting 100 Watt HPS- Shoe Box Fixture Lighting 175 Watt MV Lighting 200 Watt HPS-Cobra Head Lighting 250 Watt HPS- Open Bottom Lighting 250 Watt HPS- Ornamental Lighting

397

Washington Elec Member Corp | Open Energy Information  

Open Energy Info (EERE)

Washington Elec Member Corp Washington Elec Member Corp Place Georgia Utility Id 20146 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1,000 Watt HPS Cobra Lighting 1,000 Watt HPS Flood Lighting 1,000 Watt MH Flood Lighting 100 Watt HPS Lighting 175 Watt MV 250 Watt HPS Lighting 250 Watt HPS Cobra Head Lighting 250 Watt HPS Flood Lighting 400 Watt HPS Cobra Head Lighting 400 Watt HPS Flood Lighting Rate-01 (RS) Residential Rate-02 (GSND) Commercial Rate-07 (GSD) Commercial Rate-08 (GS) Primary

398

Property:GrossProdCapacity | Open Energy Information  

Open Energy Info (EERE)

GrossProdCapacity GrossProdCapacity Jump to: navigation, search Property Name GrossProdCapacity Property Type Quantity Description Sum of the property AvgAnnlGrossOpCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

399

Sulphur Springs Valley E C Inc | Open Energy Information  

Open Energy Info (EERE)

Valley E C Inc Valley E C Inc Jump to: navigation, search Name Sulphur Springs Valley E C Inc Place Arizona Utility Id 18280 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS Lighting 100 Watt HPS - Double/Steel Lighting 100 Watt HPS - Double/Steel Lighting 100 Watt HPS - Double/Wood Lighting 100 Watt HPS - Double/Wood Lighting 100 Watt HPS - Single/Steel Lighting 100 Watt HPS - Single/Steel Lighting 100 Watt HPS - Single/Wood Lighting 100 Watt HPS - Single/Wood Lighting 150 Watt HPS - Double/Steel Lighting

400

Indiana Michigan Power Co (Michigan) | Open Energy Information  

Open Energy Info (EERE)

Michigan Power Co (Michigan) Michigan Power Co (Michigan) Jump to: navigation, search Name Indiana Michigan Power Co Place Michigan Utility Id 9324 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COGEN/SPP - Cogeneration and/or Small Power Production Service CS-IRP - Contract Service - Interruptible Power ECLS - 100 Watt HPS Lighting ECLS - 100 Watt HPS - Open Access Lighting ECLS - 100 Watt MV Lighting ECLS - 100 Watt MV - Open Access Lighting ECLS - 1000 Watt MV Lighting ECLS - 1000 Watt MV - Open Access Lighting ECLS - 142 Watt LED Lighting ECLS - 142 Watt LED - Open Access Lighting ECLS - 150 Watt HPS Lighting

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

City of Elizabethton, Tennessee (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Elizabethton, Tennessee (Utility Company) Elizabethton, Tennessee (Utility Company) Jump to: navigation, search Name City of Elizabethton Place Tennessee Utility Id 5763 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt High Pressure Sodium Lighting 1000 Watt Mercury Vapor Lighting 1000 Watt Metal Halide Lighting 150 Watt High Pressure Sodium Lighting 175 Watt Mercury Vapor Lighting 250 Watt High Pressure Sodium Lighting 250 Watt Mercury Vapor Lighting 400 Watt Mercury Vapor Lighting 400 Watt Metal Halide Lighting

402

PUD No 3 of Mason County | Open Energy Information  

Open Energy Info (EERE)

3 of Mason County 3 of Mason County Jump to: navigation, search Name PUD No 3 of Mason County Place Washington Utility Id 15419 Utility Location Yes Ownership P NERC WECC Yes ISO Other Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1,000 Watt Commercial 200 WATT Commercial 300 WATT Commercial 400 WATT Commercial 500 WATT Commercial 600 WATT Commercial 700 WATT Commercial 800 WATT Commercial 900 WATT Commercial LOW INCOME AND SENIOR DISABILITY ACCOUNT Residential

403

Buildings Energy Data Book: 7.6 Efficiency Standards for Lighting  

Buildings Energy Data Book (EERE)

4 4 Lighting Standards for General Service Incandescent Lamps Prescribed by EISA 2007 General Service Incandescent Effective Date Maximum Wattage Rated Lumen Range Minimum Life Modified Spectrum General Service Incandescent Effective Date Maximum Wattage Rated Lumen Range Minimum Life By 2020, the minimum efficacy for general service incandescent will be 45 lm/W unless the Secretary of Energy has implemented another standard which saves as much or more energy than a 45 lm/W standard. Source(s): U. S. Government, Energy Independence and Security Act of 2007, January 2007, Section 321. 2014 43 563-787 1000 hrs. 2015 29 232-563 1000 hrs. 2012 72 1,118-1,950 1000 hrs. 2013 53 788-1,117 1000 hrs. 2014 43 750-1,049 1000 hrs. 2015 29 310-749 1000 hrs. 2012 72 1,490-2,600 1000 hrs. 2013 53 1,050-1,498

404

EERE Roofus' Solar and Efficient Home: Lights  

NLE Websites -- All DOE Office Websites (Extended Search)

by buying energy-saving light bulbs. I use these light bulbs to save energy in my solar house Most people have incandescent (IN-CAN-DE-SENT) light bulbs in their house. If...

405

ARM - Instrument - sp2  

NLE Websites -- All DOE Office Websites (Extended Search)

aerosol particles by laser-induced incandescence down to concentrations as low as 10 ngm3. The SP2 is part of the Aerosol Observing System (AOS). See Also Contact(s) Stephen...

406

Untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Lighting Profile Residential Lighting Profile This section contains a basic profile of lighting use in residential households. It includes brief discussions about the characteristics and location of lights used in residential households, as well as descriptions of the amount of electricity used for lighting and variations in households' consumption of electricity for lighting. Types of Lights Dominance of Incandescent Lights The majority of light bulbs in residential households are incandescent. According to the RECS Survey, 453 million lights out of a total of 523 million used one or more hours per day are incandescent (87 percent).[8] The Lighting Supplement also estimates that 87 percent of residential lights used 15 minutes or more per day are incandescent. Fluorescent Lights of All Types

407

Untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Potential for Savings Potential for Savings Household-Level Savings Households in the U. S. contain a total of 523 million lights that are on 1 or more hours a day--282 million of these are on 4 or more hours a day. The majority of these lights are incandescent--88 percent of those on 1 to 4 hours and 85 percent of those on 4 or more hours. Given the greater efficiency of compact fluorescent lights, how much would households save if they replaced their incandescent lights with compact fluorescents? Replacing incandescent lights that are on for a short period of time with compact fluorescents is not very cost effective, because compact fluorescents cost so much more than incandescents (about 22 dollars compared to 75 cents). However, at longer periods of use, compact fluorescents do become cost effective, in spite of their high initial cost.

408

High-Intensity Discharge Lighting  

Energy.gov (U.S. Department of Energy (DOE))

High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting.

409

TVA - Energy Right Solutions for Business (North Carolina) |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CeramicPulse Start Metal Halide Replacing HID: 13-30fixture Custom Lighting and HVAC: 200summer peak kW reduced CFL Replacing Incandescent: 3-34fixture LED Replacing...

410

U.S. Department of Energy NEPA Categorical Exclusion Determination...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and cooling system (<20 tons) for Fire Station 5; 5) retrofit lighting of city- owned parking garage; and 6) replace incandescent pedestrian-head assemblies with LED assemblies at...

411

--No Title--  

U.S. Energy Information Administration (EIA) Indexed Site

EEBLBP3 91- 93 F-2b Percent standard incandescent bulb STBLBP3 95- 97 F-2c Percent energy efficient fluorescent EEFLRP3 99- 101 F-2d Percent standard fluorescent light...

412

Nanofermentation induced nanomaterials under non-reducible ...  

The U.S. is currently spending 18% of total U.S. electricity consumption for ... 2010). Some 98% of the energy input to incandescent bulbs ends up as heat instead of ...

413

Find cost-effective investments | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

lamps and can save 10 per sign annually in electricity costs. Swap out incandescent light bulbs with ENERGY STAR certified CFLs or LEDs in your desk, task, and floor lamps....

414

Lighting Choices to Save You Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ten times longer than a comparable incandescent bulb that puts out the same amount of light. CFL bulbs are available in a range of light colors, including warm (white to...

415

Solid-State Lighting Issue 20: Selected Business & Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

doses of light bright enough to mimic dawn, between 2,500 to 10,000 lux. This amount of light is unattainable by incandescent bulbs, and largely inconvenient with fluorescent...

416

BOWLING GREEN STATE UNIVERSITY Easy ways you can help reduce our  

E-Print Network (OSTI)

when they are not in use! Replace incandescent light bulbs with energy saving compact fluorescent consumption. Lighting: Use natural light instead of artificial light whenever possible. Turn off the lights

Moore, Paul A.

417

It's Elemental - The Element Argon  

NLE Websites -- All DOE Office Websites (Extended Search)

used when an inert atmosphere is needed. It is used to fill incandescent and fluorescent light bulbs to prevent oxygen from corroding the hot filament. Argon is also used to form...

418

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4-epa-notice-availability-final-environmental-impact-statement Article The History of the Light Bulb From incandescent bulbs to fluorescents to LEDs, we're exploring the long...

419

"I'd Like to Check Out Two Books, One DVD, and One Electrical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

colors, and others standard incandescent lights. I ask passersby to guess which string uses the least amount of energy and which uses the most. Think it's easy? Not so fast....

420

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network (OSTI)

Energy kWh/cycle Total Energy Annual Usage kWh/yr Motor +Energy kWh/cycle Total Energy Annual Usage kWb/yr Motortotal incandescent lighting energy consumption attributable to each usage

Wenzel, T.P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Efficiency Energy Efficiency From the incandescent to CFLs to LEDs, we're exploring the long history of the light bulb and...

422

Untitled  

Gasoline and Diesel Fuel Update (EIA)

Incandescent Fluorescent Other Hours Used Total Low Medium High Unknown Short Long Compact Halogen Other Unknown Total 4,196 431 2,811 409 14 159 173 34 24 141 Unknown 104 11...

423

Tailoring optical properties of light-emitting diodes by nanostructuring with nanospheres.  

E-Print Network (OSTI)

???III-V nitride based light-emitting diodes (LEDs) have experienced rapid developments during past decade, proving their potential to substitute conventional incandescent bulbs and fluorescent lamps to (more)

??

2012-01-01T23:59:59.000Z

424

Lighting: Past, Present and Future 2010 IEEE Lester Eastman Conference  

E-Print Network (OSTI)

. Unlike incandescent bulbs, LEDs do not emit light in a full 360° radiation pattern. Instead, they emit that is quintessential to the research and development of LEDs. As LEDs move to dominance in the lighting market

Salama, Khaled

425

Estimate of Technical Potential for Minimum Efficiency Performance Standards in 13 Major World Economies  

E-Print Network (OSTI)

in practice current LED bulbs are generally no better thanof 100- lm/W LED general-purpose light bulbs is achievable,incandescent light bulbs. Although white LEDs can achieve

Letschert, Virginie

2013-01-01T23:59:59.000Z

426

Fluorescence Enhancement of White-Light Cadmium Selenide Nanocrystals.  

E-Print Network (OSTI)

??Advances are being made in lighting technology, as incandescent and fluorescent light bulbs become less efficient compared to solid-state lighting devices, especially light-emitting diodes (LEDs). (more)

Rosson, Teresa Ellen

2011-01-01T23:59:59.000Z

427

Use Patterns of LED Flashlights in Kenya and a One-Year Cost Analysis of Flashlight Ownership  

E-Print Network (OSTI)

with torches? Failure of: ? LEDs/Bulb [1] ? Battery [2] ?http://light.lbl.gov Component Bulb Type LED Incandescentto incandescent bulbs, and low-cost LEDs have achieved price

Tracy, Jennifer

2010-01-01T23:59:59.000Z

428

Achieving Extreme Efficiency: How to get the job done when energy is extremely expensive and scarce  

E-Print Network (OSTI)

include light-emitting diode (LED) bulbs, organic LED (OLED)60W incandescent bulb, is a LED bulb that is now GeneralBy comparison, basic LED bulbs generally have efficiencies

Brown, Rich

2013-01-01T23:59:59.000Z

429

DuraLamp USA: Order (2010-CE-0912)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered DuraLamp USA, Inc. to pay a $2,500 civil penalty after finding DuraLamp USA had failed to certify that model PAR 30, an incandescent reflector lamp, complies with the applicable energy conservation standards.

430

Lighting Choices - White Background | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lightingallbulbs.jpg Description All of these lightbulbs-CFLs, LEDs, and energy-saving incandescents-meet the new energy standards that take effect from 2012-2014....

431

Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China  

E-Print Network (OSTI)

go Blip in the Night Standby Power and how to Limit It.Electric Water Heaters Standby Power Induction Ranges GasMotors IncandescentLamps StandbyPower ElectricWater

McNeil, Michael A.

2012-01-01T23:59:59.000Z

432

Energy Basics: High-Intensity Discharge Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. HID lamps use an electric arc to produce...

433

Information Resources: LED Replacement Lamps: Current Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

incandescent lamps (e.g., A-lamps), and provided an update on ENERGY STAR criteria for LED integral replacement lamps - currently in its second draft. Robert Lingard of Pacific...

434

Microsoft Word - Korea Business Case with Appendix Final fixed...  

NLE Websites -- All DOE Office Websites (Extended Search)

for vehicles, a ban on sales of incandescent lights, and the promotion of light emitting diode (LED) lamps (UNEP 2010). Overall, this set of measures for the development and...

435

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ffing-analysis-instructions-blank-sheet-and-example-sheet Article The History of the Light Bulb From incandescent bulbs to fluorescents to LEDs, we're exploring the long history of...

436

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(2010-CE-1012) DOE alleged in a Notice of Proposed Civil Penalty that Aero-Tech Light Bulb Co. failed to certify a variety of incandescent reflector lamps as compliant with...

437

EPA_T1542D4488_SCTR_ResNewConst  

NLE Websites -- All DOE Office Websites (Extended Search)

and encouraged consumers to take the pledge to change at least one incandescent light bulb to an ENERGY STAR qualified CFL. Advanced techniques for sealing holes and cracks in...

438

NETL: Educational Initiatives  

NLE Websites -- All DOE Office Websites (Extended Search)

with double-ended alligator clips 1 - 6 volt lantern battery 1 - 6 volt incandescent light bulb and bulb holder 1 - strip of cardboard 2 - electric conducting tin strips 1 -...

439

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-rebuilding-green-homes-after-disaster-revised-fact-sheet Article The History of the Light Bulb From incandescent bulbs to fluorescents to LEDs, we're exploring the long history of...

440

Compliance Certification Enforcement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(2010-CE-1012) DOE alleged in a Notice of Proposed Civil Penalty that Aero-Tech Light Bulb Co. failed to certify a variety of incandescent reflector lamps as compliant with...

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

LuminAR: Portable robotic augmented reality interface design and prototype  

E-Print Network (OSTI)

In this paper we introduce LuminAR: a prototype for a new portable and compact projector-camera system designed to use the traditional incandescent bulb interface as a power source, and a robotic desk lamp that carries it, ...

Linder, Natan

442

Design and implementation of a solar power system in rural Haiti  

E-Print Network (OSTI)

This paper describes the design and implementation of a solar power system for a school and health center in Petit-Anse, Haiti. The end-use applications are lighting via a set of fluorescent and incandescent bulbs, and a ...

Hussam, Shaheer M. (Shaheer Muqtasid), 1981-

2004-01-01T23:59:59.000Z

443

Commercialization of gallium nitride nanorod arrays on silicon for solid-state lighting  

E-Print Network (OSTI)

One important component in energy usage is lighting, which is currently dominated by incandescent and fluorescent lamps. However, due to potentially higher efficiencies and thus higher energy savings, solid-state lighting ...

Wee, Qixun

2008-01-01T23:59:59.000Z

444

Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STAR Brand December 1, 2009 Save Money with LED Holiday Light Strings LED (or light emitting diode) light strings can use 90% less energy than regular incandescent light strings....

445

Using the genetic algorithm to design gallium indium nitride/gallium nitride light-emitting diodes with reduced efficiency droop and reduced spectral instability with respect to injection current  

Science Conference Proceedings (OSTI)

Today we are witnessing a fast growing trend that is redefining the concept of lighting. Numerous governments from all over the world have passed legislation to phase out incandescent light bulbs, with the objective of encouraging energy-efficient ...

Roya Mirhosseini / Partha S. Dutta

2010-01-01T23:59:59.000Z

446

Light Flicker in Compact Fluorescent Lamps Caused by Voltage Fluctuations  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents tests performed at the EPRI Power Electronics Applications Center (PEAC) Power Quality Test Facility to characterize the light output of an incandescent lamp and compact fluorescent lamps during voltage fluctuations.

2003-12-31T23:59:59.000Z

447

Compact Fluorescent Lamps  

Science Conference Proceedings (OSTI)

Electric lighting constitutes approximately 21-23 % of the electric grid load in the United States. The higher energy and maintenance costs of incandescent lamps, combined with the favorable economics of high-efficiency compact fluorescent lamps (CFLs), are making CFLs the increasingly popular choice for both residential and commercial lighting. Utility incentive and rebate programs to stimulate CFL use and the beginnings of a ban on incandescent lamps are enhancing CFL penetration levels in these enviro...

2009-12-17T23:59:59.000Z

448

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

449

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Certain Lamps Exempted from General Service Incandescent Lamp Standards Certain Lamps Exempted from General Service Incandescent Lamp Standards Sign up for e-mail updates on regulations for this and other products The information on this page pertains to the Department of Energy's (DOE) analysis of and unit sales forecast for five lamp types, which was mandated by the Energy Independence and Security Act of 2007 (EISA 2007). Among the requirements of subtitle B of title III of EISA 2007 were provisions directing DOE to evaluate and publish within 1 year a benchmark unit sales estimate for five types of incandescent lamps (rough service lamps, vibration service lamps, 3-way incandescent lamps, 2,601-3,300 lumen general service incandescent lamps, and shatter-resistant lamps). These lamp types were not made subject to the regulatory standards for general service incandescent lamps established by EISA 2007. Among the requirements of subtitle B of title III of EISA 2007 were provisions directing DOE to collect, analyze, and monitor unit sales of these five lamp types.

450

City of Danville Utilities - Business Energy Efficiency Rebates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Amount Lighting: 0.175watt reduced New Occupancy Sensors: 0.05watt controlled LED Exit Sign: 14unit Air ConditioningHeat Pump Units: 40 - 60 Room AC: 25 Attic...

451

Measured winter performance of storm windows  

E-Print Network (OSTI)

or Prime/Storm Replacement Window Thermal Watts Solar WattsFactor and Solar Heat Gain Coefficient Prime or Prime/Stormdesigned interior storm window. ) Solar Heat Gain One does

Klems, Joseph H.

2002-01-01T23:59:59.000Z

452

What is ITER  

NLE Websites -- All DOE Office Websites (Extended Search)

* Assumes 40% efficiency in the conversion of heat to electricity. Modern electric power plant*. 500 Million Watts 2,500 Million Watts 1975 1980 1995 ITER Demo PROGRESS IN...

453

Lecture 3 week 2/3 2012: Solar radiation, the greenhouse, global heat engine  

E-Print Network (OSTI)

... that would be like 13.68 one- hundred watt light bulbs illuminating a one-meter square surface, except that light bulbs put about 80% of their 100 watts of power into heat/infrared radiation. Given the distance

454

Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms  

E-Print Network (OSTI)

recent introduction of Duke Energys Save-a-Watt incentiverecent introduction of Duke Energys Save-a-Watt shareholdermechanism proposed by Duke Energy). 13 Program costs are not

Cappers, Peter

2010-01-01T23:59:59.000Z

455

Ashland Electric Utility- Photovoltaic Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Ashland Conservation Division offers electric customers installing photovoltaic systems a rebate of either $0.75 per watt (residential) or $1.00 per watt (commercial), up to a maximum...

456

Massachusetts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Rebates Reading Municipal Light Department (RMLD) offers rebates of 1.00watt for solar photovoltaic and small wind installations for residential customers. A 0.25watt...

457

Energy-Efficient Torchieres for Residential Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

up a consortium between large lamp, ballast and fixture companies to produce a dedicated CFL torchiere which uses only 55 Watts of power, but produces more light than its 300 Watt...

458

Battle of the Buildings EPA's National Building Competition 2011...  

NLE Websites -- All DOE Office Websites (Extended Search)

guests. During Phase II, the top deck of the garage was retrofitted with 16 Cooper LED 236 watt lights in place of the existing 400 watt HPS fixtures. Ultimately, the...

459

600 New Lights Bulbs to Improve Energy Efficiency at DOE | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

our Washington, D.C., Forrestal North Building canopy with state of the art Light Emitting Diode (LED) fixtures. Every new bulb now uses just 23 watts instead of 205 watts....

460

GPS (2003)  

NLE Websites -- All DOE Office Websites (Extended Search)

is about -160dBw (1x10 -16 Watts). This is roughly equivalent to viewing a 25-Watt light bulb in Japan from Los Angles, California. This weak signal can be effectively jammed by...

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Reading Municipal Light Department- Residential Renewable Energy Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Reading Municipal Light Department (RMLD) offers rebates of $1.00/watt for solar photovoltaic and small wind installations for residential customers. A $0.25/watt adder is available for using local...

462

Soldier power. Battery charging.  

E-Print Network (OSTI)

Soldier power. Marine. Battery charging. Advertising. Remote. SOFC (NanoDynamics, AMI) 60 watts q SOFC #12;

Hong, Deog Ki

463

Matrix SAYLR1  

Science Conference Proceedings (OSTI)

... Set Information. Set SAYLOR. Source: Richard Kendall, Don Peaceman, Herb Stone, and Bill Watts, Exxon. Discipline: Oil reservoir modeling. ...

2004-09-22T23:59:59.000Z

464

Matrix SAYLR3  

Science Conference Proceedings (OSTI)

... Set Information. Set SAYLOR. Source: Richard Kendall, Don Peaceman, Herb Stone, and Bill Watts, Exxon. Discipline: Oil reservoir modeling. ...

2004-09-22T23:59:59.000Z

465

Formalizing the dynamic semantics of Java  

E-Print Network (OSTI)

Watt,D.A. Proceedings of 3rd International Workshop on Action Semanrics pp 1-18 University of Aarhus

Watt, D.A.

466

OTD Technical Activities Report, 2007-2009  

Science Conference Proceedings (OSTI)

... The Division's Primary Optical Watt Radiometer ... by new research in source-based radiometry ... Such sources include correlatedphotons produced ...

2010-10-05T23:59:59.000Z

467

Photovoltaic Installations at Williams College Ruth Aronoff  

E-Print Network (OSTI)

of thumb that 10 Watts of power fit into every square foot of roof space (or 0.1 square meters). This means of the total array, panels cost between $7.50 and $10 per Watt of power installed; smaller systems cost slightly more to install per Watt, while larger systems cost less since they are bought in bulk

Aalberts, Daniel P.

468

Sign Lighting Overview Page 7-1 2008 Nonresidential Compliance Manual July 2010  

E-Print Network (OSTI)

prescriptive compliance options: Specific technology and watts per square foot approaches. The watt per square). There are no performance compliance options available for sign lighting. Table 7-1 below summarizes the watts per square feasible and cost effective. They set minimum control requirements, maximum allowable power levels

469

SSEELLFF--CCHHEECCKK HHOOMMEE IINNVVEENNTTOORRYY Name: _____________________________ Address: ___________________________________ Phone: _________________________  

E-Print Network (OSTI)

Ceiling Fan Lighting 60 Watt 75 Watt 100 Watt Fluorescent * CFLs #12;Exhaust Fans/Vents: (Exhaust fans and vents are designed to remove hot air and moisture from the interior of the home) How many of the following exhaust fans/vents in your home? Appliances/Electronics Appliances: Please circle and fill in all

Kammen, Daniel M.

470

Village of Davenport, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Davenport, Nebraska (Utility Company) Davenport, Nebraska (Utility Company) Jump to: navigation, search Name Village of Davenport Place Nebraska Utility Id 4914 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting HPS 100 Watt Metered Lighting Area Lighting HPS 100 Watt Unmetered Lighting Area Lighting HPS 250 Watt Metered Lighting Area Lighting HPS 250 Watt Unmetered Lighting Area Lighting MV 175 Watt Metered Lighting Area Lighting MV 175 Watt Unmetered Lighting Area Lighting MV 250 Watt Metered Lighting

471

Kenergy Corp | Open Energy Information  

Open Energy Info (EERE)

Kenergy Corp Kenergy Corp Jump to: navigation, search Name Kenergy Corp Place Kentucky Utility Id 9964 Utility Location Yes Ownership C NERC RFC Yes NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Environmental Surcharge Rider Fuel Adjustment Rider High Pressure Sodium - 200/250 Watts Lighting High Pressure Sodium - Flood Light 400 Watts Lighting LED NEMA Head - 60 Watt Lighting Light - 100 watt HPS Lighting Light - 100 watt HPS - Acorn Globe Lighting Light - 100 watt MH Lighting Light - 100 watt MH - Acorn Lighting

472

Pennyrile Rural Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Pennyrile Rural Electric Coop Pennyrile Rural Electric Coop Jump to: navigation, search Name Pennyrile Rural Electric Coop Place Kentucky Utility Id 14724 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt Metal Halide With Pole Lighting 100 Watt Metal Halide Without Pole Lighting 100 Watt Sodium With Pole Lighting 100 Watt Sodium Without Pole Lighting 175 Watt Metal Halide With Pole Lighting 175 Watt Metal Halide Without Pole Lighting 200 Watt Sodium With Pole Lighting

473

City of North Little Rock, Arkansas (Utility Company) | Open Energy  

Open Energy Info (EERE)

North Little Rock North Little Rock Place Arkansas Utility Id 13718 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png HPS- 100 Watt Lighting HPS- 1000 Watt (Floodlights) Lighting HPS- 150 Watt Lighting HPS- 250 Watt Lighting HPS- 250 Watt (Floodlights) Lighting HPS- 400 Watt (Floodlights) Lighting LCTOU Industrial LGS Industrial LPS Industrial MH- 1000 Watt (Floodlights) Lighting

474

People's Cooperative Services | Open Energy Information  

Open Energy Info (EERE)

People's Cooperative Services People's Cooperative Services Place Minnesota Utility Id 14468 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Controllable Seasonal Rate Industrial Dual Fuel Space Heating Residential Electric, Shared/Community Water Well and Septic Residential Light - 100 watt HPS Lighting Light - 110 watt LED Lighting Light - 135 watt LED Lighting Light - 150 watt HPS Lighting Light - 175 watt MV Lighting Light - 200 watt HPS Lighting Light - 250 watt HPS Lighting

475

Walton Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Walton Electric Member Corp Place Georgia Utility Id 20065 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 14' Aluminum Lighting 20' F/G Lighting 30' F/G Lighting 30-6 Wood Lighting Cobrahead- HPS 100 Watt Bronze (UG) Lighting Cobrahead- HPS 100 Watt Gray Lighting Cobrahead- HPS 100 Watt Gray (UG) Lighting Cobrahead- HPS 150 Bronze Watt (UG) Lighting Cobrahead- HPS 150 Watt Gray Lighting Cobrahead- HPS 150 Watt Gray (UG) Lighting Cobrahead- HPS 250 Watt Bronze (UG) Lighting

476

Jackson Purchase Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Purchase Energy Corporation Purchase Energy Corporation Jump to: navigation, search Name Jackson Purchase Energy Corporation Place Kentucky Utility Id 9605 Utility Location Yes Ownership C NERC Location SERC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1,000 watt - Metal Flood Lighting 100 watt - High Pressure Sodium Lighting 150 watt - Metal Halide Lighting 250 watt - High Pressure Sodium Lighting 250 watt - High Pressure Sodium Flood Lighting 400 watt - MV Lighting 400 watt - Metal Halide Lighting Commercial and Industrial - Schedule D Industrial Industrial Schedule I-E Industrial

477

City of Emerson, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Emerson, Nebraska (Utility Company) Emerson, Nebraska (Utility Company) Jump to: navigation, search Name City of Emerson Place Nebraska Utility Id 5850 Utility Location Yes Ownership M NERC Location MRO Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 watt High Pressure Sodium Lighting 150 watt High Pressure Sodium Lighting 175 watt Mercury Vapor Lighting 250 watt High Pressure Sodium Lighting 250 watt High Pressure Sodium Flood Lighting 250 watt Mercury Vapor Lighting 400 watt High Pressure Sodium Flood Lighting

478

Mountain Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Utility Id 13027 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 WATT HPS Lighting 1000 WATT METAL HALIDE FLOOD Lighting 175 WATT MERCURY VAPOR Lighting 250 WATT HPS STREET LIGHT Lighting 250 WATT HPS YARD LIGHT Lighting 400 WATT MERCURY VAPOR Lighting 400 WATT METAL HALIDE FLOOD Lighting Commercial GSA 1-Single-Phase transformer rated Commercial Commercial GSA 1-Three-Phase Self contained Commercial Commercial GSA 1-Three-Phase Transformer Rated Commercial

479

Hickman-Fulton Counties RECC | Open Energy Information  

Open Energy Info (EERE)

Hickman-Fulton Counties RECC Hickman-Fulton Counties RECC Jump to: navigation, search Name Hickman-Fulton Counties RECC Place Kentucky Utility Id 40305 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt High Pressure Sodium Lighting 100 Watt Metal Halide Light Lighting 175 Watt Mercury Vapor Light Lighting 175 Watt Metal Halide Light Lighting 200 Watt High Pressure Sodium Lighting 400 Watt High Pressure Sodium Lighting 400 Watt Mercury Vapor Light Lighting GSA Part 1 Commercial GSA Part 2 Industrial

480

Performance of electronic ballasts and lighting controllers with 34-W fluorescent lamps: Final report  

SciTech Connect

This study has measured the performance of energy-saving 34-watt F40, T-12, rapid-start, lite white fluorescent lamps being operated by solid-state ballasts and lighting control equipment. The performances of these lamps are compared with those of 40-watt F40, T-12 rapid-start cool white fluorescent lamp systems studied in the prior phase of this project. With the 34-watt F40 lamps and various solid-state ballasts, system efficacy ranged from 67 to 84 lumens per watt and ballast factor from 0.756 to 0.908. Average system efficacy using the 34-watt lamps exceeded that of systems using 40-watt lamps and the same solid-state ballasts by only 1 percent even though the 34-watt lamps is about 6 percent more efficacious than the 40-watt lamp. This apparent discrepancy is due to increased ballast losses when operating the 34-watt lamps. However, the system efficacy of the 34-watt lamps used with a solid-state ballast exceeded that of a 34-watt, two-lamp system using the standard core-coil ballast by as much as 29 percent. A T-8 fluorescent lamp system with a smaller lamp diameter was also included in the study. Operating this lamp with a solid-state ballast produced a high system efficacy of 90 lumens per watt, a 39 percent improvement over the efficacy of a 40-watt F40 system using the standard core-coil ballast. The use of static controllers with 34-watt F40 lamps can result in excessive flickering (46 percent) and the generation of a second harmonic as high as 96 percent of the fundamental frequency. The dynamic controllers, when used to dim the 34-watt lamps generally cannot be dimmed as low as the 40-watt lamp system without flickering. In general, the 34-watt energy-saving lamps are appropriate as a retrofit to reduce illumination levels. However, for new construction, the 40-watt F40 argon filled lamps cost less, perform better, and provide a more reliable system. 5 refs., 27 figs., 9 tabs.

Verderber, R.R.

1988-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "watt incandescent lighting-minimum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Getting CFLs Home in Longview, Texas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Getting CFLs Home in Longview, Texas Getting CFLs Home in Longview, Texas Getting CFLs Home in Longview, Texas August 25, 2010 - 10:00am Addthis Longview, TX has established a program that enables residents to swap out four incandescent light bulbs for four CFLs. | Department of Energy Photo | Government Work | Longview, TX has established a program that enables residents to swap out four incandescent light bulbs for four CFLs. | Department of Energy Photo | Government Work | Kevin Craft What does this mean for me? Residents can exchange four incandescent bulbs for four CFLs at no cost. A household that installs four CFLs is projected to save $242 on electricity bills over the course of the bulbs' lifetime. Inefficient light bulbs can drive up electricity bills and drain homeowners' wallets. With that in mind, government officials in the east Texas city of Longview

482

FAQ of Overview of Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

FREQUENTLY ASKED QUESTIONS 3 Leds FREQUENTLY ASKED QUESTIONS 3 Leds 1. What is solid-state lighting? 2. What is a semiconductor? 3. What is a semiconductor LED (light emitting diode)? 4. What is an organic LED (OLED)? 5. Where can I see LED lighting today? 6. How do you produce white light using LEDs? 7. How does solid-state lighting differ from conventional lighting? 8. What is the energy efficiency of solid-state lighting today? How does the energy efficiency compare with incandescent and fluorescent lamps? 9. What is the cost of solid-state lighting today? How does the cost compare with incandescent and fluorescent lamps? 10. What is the quality of the white light using solid-state lighting today? How does it compare with incandescent and fluorescent lamps?

483

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

721 - 730 of 9,640 results. 721 - 730 of 9,640 results. Download PARS II Training Schedule http://energy.gov/management/downloads/pars-ii-training-schedule Download CX-000849: Categorical Exclusion Determination 25A4083 - Shewanella as an Ideal Platform for Producing Hydrocarbon Biofuels CX(s) Applied: B3.6 Date: 01/19/2010 Location(s): Minnesota Office(s): Advanced Research Projects Agency - Energy http://energy.gov/nepa/downloads/cx-000849-categorical-exclusion-determination Article Incandescent Lighting Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. http://energy.gov/energysaver/articles/incandescent-lighting Page News http://energy.gov/em/news Download CX-009902: Categorical Exclusion Determination Agrivida - Conditionally Activated Enzymes Expressed in Cellulosic Energy

484

Energy Saver Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2009 3, 2009 Have You Used LED Light Strings? This week, you read about LED holiday light strings, which can use 90% less energy than regular incandescent light strings. December 1, 2009 Save Money with LED Holiday Light Strings LED (or light emitting diode) light strings can use 90% less energy than regular incandescent light strings. They also last about ten times longer, are cooler than incandescents (reducing fire hazards), and are more durable. November 30, 2009 Energy Efficiency Can Be at the Top of Your Shopping List I hope your holidays are filled with cool ways to fine-tune your life that will get you closer to the cutting edge of energy efficiency. November 24, 2009 Green Living, Green Technologies: Things to Be Thankful For We live in a time where improvements in technology make it possible to live

485

Parents and Kids: Energize Your Summer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parents and Kids: Energize Your Summer Parents and Kids: Energize Your Summer Parents and Kids: Energize Your Summer June 21, 2013 - 11:33am Addthis Did you know: Incandescent light bulbs only convert about 10 percent of the energy they consume into light and the rest is released as heat. The Energy Department's Energy Bike demonstrates the physical effort it takes to power incandescent, compact fluorescent and LED light bulbs. Students from Churchill Road Elementary School in Virginia recently pedaled for power at their Earth Day assembly, learning firsthand about energy efficiency. | Photo courtesy of the Energy Department. Did you know: Incandescent light bulbs only convert about 10 percent of the energy they consume into light and the rest is released as heat. The Energy Department's Energy Bike demonstrates the physical effort it takes to power

486

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

General Service Incandescent Lamps General Service Incandescent Lamps Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's (DOE) energy conservation standards for general service incandescent lamps (GSILs) since 2012. Most GSILs are the pear-shaped, screw-in light bulbs found in most homes. Most GSILs are currently sold as one of four wattages: 40, 60, 75, and 100. Starting in 2012, these will be replaced by more efficient lower wattage lamps. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates DOE published a final rule updating the test procedures for GSILs. 77 FR 4203 (Jan. 27, 2012).

487

New Lighting Facts Label: Takes the Guess Work Out of Shopping for Light  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Facts Label: Takes the Guess Work Out of Shopping for Lighting Facts Label: Takes the Guess Work Out of Shopping for Light Bulbs New Lighting Facts Label: Takes the Guess Work Out of Shopping for Light Bulbs January 25, 2012 - 5:52am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory If you're like me, it sometimes feels overwhelming standing at the store and staring at a big wall of light bulbs, trying to understand all the lighting choices. With new lighting standards taking effect this year, now's a great time switch to energy-saving incandescent, CFL, and LED light bulbs, which are available in most hardware and home improvement retailers. They all are more energy-efficient than traditional incandescent bulbs, and upgrading 15 of the inefficient incandescent light bulbs in your home could

488

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2012 9, 2012 Light quantity, energy consumption, and light quality are the basic principles of lighting. | Photo courtesy of Tadson Bussey. Lighting Principles and Terms Learn the basics of lighting principles and terms to choose the best energy-efficient lighting options for your home. July 29, 2012 Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. Replacing Incandescent Lightbulbs and Ballasts Buy new fixtures made for new lightbulbs for the greatest energy savings, reliability, and longevity. July 29, 2012 Lighting and Daylighting Products and Services Find product information and locate professional services for lighting and

489

Elkhorn Rural Public Pwr Dist | Open Energy Information  

Open Energy Info (EERE)

Rural Public Pwr Dist Rural Public Pwr Dist Jump to: navigation, search Name Elkhorn Rural Public Pwr Dist Place Nebraska Utility Id 5780 Utility Location Yes Ownership P NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Mercury Vapor Lamp 175 Watt Lighting Mercury Vapor Lamp 250 Watt Lighting Mercury Vapor Lamp 400 Watt Lighting Metal Halide 1000 Watt Lighting Metal Halide 1500 Watt Lighting Metal Halide 400 Watt Lighting RATE 1,3- Farm Residential, Commercial, Cabins, Seasonal--Single Phase Commercial RATE 12, 69- Urban Commercial Electric Space Heating, Single Phase

490

City of Detroit Lakes, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Minnesota (Utility Company) Minnesota (Utility Company) Jump to: navigation, search Name City of Detroit Lakes Place Minnesota Utility Id 5111 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lights - 100 Watt HPS (Unmetered) Lighting Area Lights - 100 Watt HPS (metered) Lighting Area Lights - 250 Watt HPS (Unmetered) Lighting Area Lights - 250 Watt HPS (metered) Lighting Area Lights - 400 Watt HPS (Unmetered) Lighting Area Lights - 400 Watt HPS (metered) Lighting

491

Williamstown Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Williamstown Utility Comm Williamstown Utility Comm Jump to: navigation, search Name Williamstown Utility Comm Place Kentucky Utility Id 20731 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt High Pressure Sodium Area Light Lighting 150 Watt High Pressure Sodium Floodlight Lighting 175 Watt Mercury Vapor Area Light Lighting 250 Watt High Pressure Sodium Area Light Lighting 250 Watt High Pressure Sodium Floodlight Lighting 400 Watt High Pressure Sodium Area Light Lighting

492

City of Frankfort, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Frankfort Frankfort Place Indiana Utility Id 6707 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A Residential Residential B Commercial Commercial C General Power Economic Development Rate OL Outdoor Lighting 100 watt Sodium Vapor Lighting OL Outdoor Lighting 150 watt Sodium Vapor Lighting OL Outdoor Lighting 175 watt Mercury Vapor Lighting OL Outdoor Lighting 250 watt Mercury Vapor Lighting OL Outdoor Lighting 250 watt Sodium Vapor Lighting OL Outdoor Lighting 400 watt Mercury Vapor Lighting

493

USBIA-San Carlos Project | Open Energy Information  

Open Energy Info (EERE)

Carlos Project Carlos Project Jump to: navigation, search Name USBIA-San Carlos Project Place Arizona Utility Id 19604 Utility Location Yes Ownership F NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 150 Watts Each 2 to 5 Commercial 150 Watts Each 6 or more Commercial 150 Watts Each First Commercial 250 Watts Each 2 to 5 Commercial 250 Watts Each 6 or more Commercial 250 Watts Each First Commercial

494

High West Energy, Inc (Nebraska) | Open Energy Information  

Open Energy Info (EERE)

Place Nebraska Place Nebraska Utility Id 27058 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A F Industrial Commercial & Small Power Commercial Security Lighting-150 - 175 watt M V/ HPS Lighting Security Lighting-200 - 250 watt M V/ HPS Lighting Security Lighting-400 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting Street Lighting-400 watt M V/ HPS Lighting Average Rates Residential: $0.1100/kWh Commercial: $0.1040/kWh Industrial: $0.1000/kWh The following table contains monthly sales and revenue data for High West Energy, Inc (Nebraska).

495

Slash Pine Elec Member Corp | Open Energy Information  

Open Energy Info (EERE)

Slash Pine Elec Member Corp Slash Pine Elec Member Corp Jump to: navigation, search Name Slash Pine Elec Member Corp Place Georgia Utility Id 17290 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting 100 Watt HPS Security Light Lighting Outdoor Lighting 1000 Watt HPS Flood Light* Lighting Outdoor Lighting 1000 Watt MH Flood Light* Lighting Outdoor Lighting 1500 Watt MH Flood Light* Lighting Outdoor Lighting 175 Watt HPS Security Light Lighting Outdoor Lighting 250 Watt HPS Security Light Lighting

496

City of Seneca, Kansas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Seneca Seneca Place Kansas Utility Id 16922 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Demand Light Commercial Commercial Residential Residential Rural Residential Residential Schools and Churches Spacelights 175 Watt with pole Lighting Spacelights 175 Watt without pole Lighting Spacelights 250 Watt with pole Lighting Spacelights 250 Watt without pole Lighting Spacelights 400 Watt without pole Lighting Spacelights 400 Watt with pole Lighting Average Rates Residential: $0.0764/kWh

497

La Plata Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Plata Electric Assn, Inc Plata Electric Assn, Inc (Redirected from LPEA) Jump to: navigation, search Name La Plata Electric Assn, Inc Address 45 Stewart St. P.O. Box 2750 Place Durango, Colorado Website www.lpea.com/ Utility Id 10539 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LPEA Contact[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100 watt Lighting Area Lighting 1000 watt Lighting Area Lighting 150 watt Lighting Area Lighting 175 watt Lighting Area Lighting 250 watt Lighting Area Lighting 400 watt Lighting Irrigation Commercial

498

Dalton Utilities | Open Energy Information  

Open Energy Info (EERE)

Dalton Utilities Dalton Utilities Jump to: navigation, search Name Dalton Utilities Place Georgia Utility Id 4744 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 - Watt Sodium Vapor Lighting 1000 - Watt Metal Halide Directional Type Lighting 150 Watt Mercury Vapor Underground Service Lighting 150 Watt Sodium Vapor Underground Service Lighting 175 - Watt Mercury Vapor Lighting 175 - Watt Sodium Vapor Lighting

499

Little Ocmulgee El Member Corp | Open Energy Information  

Open Energy Info (EERE)

Ocmulgee El Member Corp Ocmulgee El Member Corp Jump to: navigation, search Name Little Ocmulgee El Member Corp Place Georgia Utility Id 26218 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 watt HPS - open bottom, Metered Lighting 100 watt HPS - open bottom, Non-Metered Lighting 1000 watt HPS, MV, MH - Directional, Metered Lighting 1000 watt HPS, MV, MH - Directional, Non-Metered Lighting 1000 watt MH - Shoebox, Metered Lighting 1000 watt MH - Shoebox, Non-Metered Lighting

500

La Plata Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name La Plata Electric Assn, Inc Address 45 Stewart St. P.O. Box 2750 Place Durango, Colorado Website www.lpea.com/ Utility Id 10539 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LPEA Contact[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100 watt Lighting Area Lighting 1000 watt Lighting Area Lighting 150 watt Lighting Area Lighting 175 watt Lighting Area Lighting 250 watt Lighting Area Lighting 400 watt Lighting Irrigation Commercial Large Commercial, Three Phase Commercial