National Library of Energy BETA

Sample records for waters beneath butte

  1. A Demonstration Project for Capturing Geothermal Energy from Mine Waters beneath Butte, MT

    Broader source: Energy.gov [DOE]

    Project objectives. Demonstrate performance of heat pumps in a large HVAC system in a heating-dominated climate.

  2. On the Turbulence Beneath Finite Amplitude Water Waves

    E-Print Network [OSTI]

    Babanin, Alexander V

    2015-01-01

    The paper by Beya et al. (2012, hereinafter BPB) has a general title of Turbulence Beneath Finite Amplitude Water Waves, but is solely dedicated to discussing the experiment by Babanin and Haus (2009, hereinafter BH) who conducted measurements of wave-induced non-breaking turbulence by particle image velocimetry (PIV). The authors of BPB conclude that their observations contradict those of BH. Here we argue that the outcomes of BPB do not contradict BH. In addition, although the main conclusion of BPB is that there is no turbulence observed in their experiment, it actually is observed.

  3. Economic Implications of Farmer Storage of Surface Water in Federal Projects: Elephant Butte Irrigahon District, Dona Ana and Sierra Counties, New Mexico 

    E-Print Network [OSTI]

    Ellis, J. R.; Teague, P. W.; Lacewell, R. D.

    1982-01-01

    This study estimated the expected regional impact and economic feasibility of a proposed water accumulation or water saving option for agricultural producers operating in the Elephant Butte Irrigation District in southern ...

  4. On isolated vorticity regions beneath the water surface

    E-Print Network [OSTI]

    Octavian G. Mustafa

    2011-03-12

    We present a class of vorticity functions that will allow for isolated, circular vorticity regions in the background of still water preceding the arrival of a tsunami wave at the shoreline.

  5. Understanding what lies beneath: Groundwater critical to Texas water 

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01

    of organizations and programs associated with groundwater in Texas: Aquifers: Geological formations that can store, transmit, and yield groundwater to a well or spring. Groundwater comes from nine major and 21 minor aquifers in Texas. Confined aquifer: Layer... of water that is held between two layers of clay. The recharge area is limited to land surface where the aquifer?s geologic material is exposed to the land surface. Unconfined aquifer: Layer of water that has a confining layer on bottom and a layer...

  6. Distribution of radionuclides and water in Bandelier Tuff beneath a former Los Alamos liquid waste disposal site after 33 years

    SciTech Connect (OSTI)

    Nyhan, J.W.; Drennon, B.J.; Abeele, W.V.; Trujillo, G.; Herrera, W.J.; Wheeler, M.L.; Booth, J.W.; Purtymun, W.D.

    1984-07-01

    The distribution of radionuclides and water in Bandelier Tuff beneath a former liquid waste disposal site at Los Alamos was investigated. The waste use history of the site was described, as well as several pertinent laboratory and field studies of water and radionuclide migration in Bandelier Tuff. The distribution of plutonium, /sup 241/Am, and water was determined in a set of about 800 tuff samples collected to sampling depths of 30 m beneath two absorption beds. These data were then related to site geohydrologic data. Water and radionuclide concentrations found after 33 years were compared with the results of similar studies previously performed at this site, and the implications of these comparisons are discussed relative to nuclear waste management. 19 references, 6 figures, 4 tables.

  7. A Serendipitous, Long-Term Infiltration Experiment: Water and Tritium Circulation Beneath the CAMBRIC Ditch at the Nevada Test Site

    SciTech Connect (OSTI)

    Maxwell, R M; Tompson, A B; Kollet, S J

    2008-11-20

    Underground nuclear weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used to characterize subsurface hydrologic transport processes in arid climates. A sixteen year pumping experiment designed to examine radionuclide migration away from the CAMBRIC nuclear test, conducted in groundwater beneath Frenchman Flat in 1965, gave rise to an unintended second experiment involving radionuclide infiltration through the vadose zone, as induced by seepage of pumping effluents beneath an unlined discharge trench. The combined experiments have been reanalyzed using a detailed, three-dimensional numerical model of transient, variably saturated flow and mass transport, tailored specifically for large scale and efficient calculations. Simulations have been used to estimate radionuclide travel and residence times in various parts of the system for comparison with observations in wells. Model predictions of mass transport were able to clearly demonstrate radionuclide recycling behavior between the ditch and pumping well previously suggested by isotopic age dating information; match travel time estimates for radionuclides moving between the ditch, the water table, and monitoring wells; and provide more realistic ways in which to interpret the pumping well elution curves. Collectively, the results illustrate the utility of integrating detailed numerical modeling with diverse observational data in developing accurate interpretations and forecasts of contaminant migration processes.

  8. Peakons arising as particle paths beneath small-amplitude water waves

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We present a new kind of particle path in constant vorticity water of finite depth, within the framework of small-amplitude waves.

  9. Ordovician carbonate formation waters in the Illinois Basin: Chemical and isotopic evolution beneath a regional aquitard

    SciTech Connect (OSTI)

    Stueber, A.M. ); Walter, L.M. . Dept. of Geological Sciences)

    1992-01-01

    Formation waters from carbonate reservoirs in the upper Ordovician Galena Group of the Illinois Basin have been analyzed geochemically to study origin of salinity, chemical and isotopic evolution, and relation to paleohydrologic flow systems. These carbonate reservoirs underlie the Maquoketa Shale Group of Cincinnatian age, which forms a regional aquitard. Cl-Br relations and Na/Br-Cl/Br systematics indicate that initial brine salinity resulted from subaerial evaporation of seawater to a point not significantly beyond halite saturation. Subsequent dilution in the subsurface by meteoric waters is supported by delta D-delta O-18 covariance. Systematic relations between Sr-87/Sr-86 and 1/Sr suggest two distinct mixing events: introduction of a Sr-87 enriched fluid from a siliciclastic source, and a later event which only affected reservoir waters from the western shelf of the basin. The second mixing event is supported by covariance between Sr-87/Sr-86 and concentrations of cations and anions; covariance between Sr and O-D isotopes suggests that the event is related to meteoric water influx. Systematic geochemical relations in ordovician Galena Group formation waters have been preserved by the overlying Maquoketa shale aquitard. Comparison with results from previous studies indicates that waters from Silurian-Devonian carbonate strata evolved in a manner similar to yet distinct from that of the Ordovician carbonate waters, whereas waters from Mississippian-Pennsylvanian strata that overlie the New Albany Shale Group regional aquitard are marked by fundamentally different Cl-Br-Na and Sr isotope systematics. Evolution of these geochemical formation-water regimes apparently has been influenced significantly by paleohydrologic flow systems.

  10. A penalization method for calculating the flow beneath travelling water waves of large amplitude

    E-Print Network [OSTI]

    Adrian Constantin; Konstantinos Kalimeris; Otmar Scherzer

    2014-08-08

    A penalization method for a suitable reformulation of the governing equations as a constrained optimization problem provides accurate numerical simulations for large-amplitude travelling water waves in irrotational flows and in flows with constant vorticity.

  11. Particle trajectories beneath small amplitude shallow water waves in constant vorticity flows

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We investigate the particle trajectories in a constant vorticity shallow water flow over a flat bed as periodic waves propagate on the water's free surface. Within the framework of small amplitude waves, we find the solutions of the nonlinear differential equations system which describes the particle motion in the considered case, and we describe the possible particle trajectories. Depending on the relation between the initial data and the constant vorticity, some particle trajectories are undulating curves to the right, or to the left, others are loops with forward drift, or with backward drift, others can follow some peculiar shapes.

  12. Small-amplitude capillary-gravity water waves: exact solutions and particle motion beneath such waves

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    Two-dimensional periodic surface waves propagating under the combined influence of gravity and surface tension on water of finite depth are considered. Within the framework of small-amplitude waves, we find the exact solutions of the nonlinear differential equation system which describes the particle motion in the considered case, and we describe the possible particle trajectories. The required computations involve elliptic integrals of the first kind, the Legendre normal form and a solvable Abel differential equation of the second kind. Some graphs of the results are included.

  13. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  14. Burley Butte | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformationAssessmentExplorationButte Jump to:

  15. Assessment of the Mechanical Stress Improvement Process for Mitigating Primary Water Stress Corrosion Cracking in Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.

    2013-01-01

    This report provides an assessment of the use of Mechanical Stress Improvement Process to reduce, or decrease, stress-driven degradation, i.e., primary water stress corrosion cracking.

  16. Red Butte, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy MarketingNewOpenRecycled EnergyButte, Wyoming:

  17. Predicting Groundwater Contamination beneath Stormwater Infiltration

    E-Print Network [OSTI]

    Clark, Shirley E.

    1 Predicting Groundwater Contamination beneath Stormwater Infiltration Activities Shirley E. Clark, Penn State Harrisburg Robert Pitt, University of Alabama Pollutants of Concern · Classes of stormwaterHighest Observed Concentration Metal Are these waters infiltration quality? Benefits of Urban Stormwater

  18. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy Resources Jump to: navigation, searchButte,

  19. Kac polymers Paolo Butt`a

    E-Print Network [OSTI]

    Procacci, Aldo

    Kac polymers Paolo Butt`a Aldo Procacci Benedetto Scoppola Abstract We show how a polymer in two- sidered on the appropriate scale. Key words: Polymers, Kac potentials, phase transition. Running title: Kac polymers Dedicated to a Marzio Cassandro's birthday. 1 Introduction In the last two decades

  20. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpenGilliam County, Oregon:GlacierGlasco,Glass Buttes

  1. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectric Jump to:GerGlacialGlacialGlass Buttes

  2. Horse Butte Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind Farm JumpHorse Butte

  3. Butte Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy Resources Jump to: navigation, search

  4. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  5. SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT 22 October 2013 ABSTRACT: The purpose of the Sutter Basin Project is to reduce overall flood risk to the Sutter Basin study area the risk to property damage due to flooding to the Sutter Basin area located in the Sutter and Butte

  6. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  7. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    2010-01-01

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  8. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  9. Crested Butte, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDP ClimatePublic SchoolsCrested Butte,

  10. CORRECTION OF BUTT-WELDING INDUCED DISTORTIONS BY LASER FORMING

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    CORRECTION OF BUTT-WELDING INDUCED DISTORTIONS BY LASER FORMING Peng Cheng, Andrew J. Birnbaum, Y Egland Technology and Solutions Division Caterpillar Inc. Peoria, IL KEYWORDS Welding, Distortion, Correction, Laser Forming ABSTRACT Welding-induced distortion is an intrinsic phenomenon arising due

  11. EIS-0077-S: Bonneville Power Administration Crow Butte Slough Crossing

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this SEIS to evaluate potential impacts resulting from construction of a 4,700-foot segment of the Ashe-Slatt transmission line at Crow Butte Slough, overhead on towers on the existing right-of-way. This SEIS is a supplement to DOE/EIS-0077, Ashe-Slatt (Pebble Springs) 500-kilovolt Transmission Line, originally filed as FES 75-79.

  12. Butts County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to: navigation,ButlerSouthJumpButts

  13. Butte County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy Resources Jump to: navigation, search Equivalent

  14. Analysis of pumping-induced unsaturated regions beneath aperennial river

    SciTech Connect (OSTI)

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.; Zhou, Q.

    2007-05-15

    The presence of an unsaturated region beneath a streambedduring groundwater pumping near streams reduces the pumping capacity whenit reaches the well screens, changes flow paths, and alters the types ofbiological transformations in the streambed sediments. Athree-dimensional, multi-phase flow model of two horizontal collectorwells along the Russian River near Forestville, California was developedto investigate the impact of varying the ratio of the aquifer tostreambed permeability on (1) the formation of an unsaturated regionbeneath the stream, (2) the pumping capacity, (3) stream-water fluxesthrough the streambed, and (4) stream-water travel times to the collectorwells. The aquifer to streambed permeability ratio at which theunsaturated region was initially observed ranged from 10 to 100. The sizeof the unsaturated region beneath the streambed increased as the aquiferto streambed permeability ratio increased. The simulations also indicatedthat for a particular aquifer permeability, decreasing the streambedpermeability by only a factor of 2-3 from the permeability wheredesaturation initially occurred resulted in reducing the pumpingcapacity. In some cases, the stream-water fluxes increased as thestreambed permeability decreased. However, the stream water residencetimes increased and the fraction of stream water that reached that thewells decreased as the streambed permeability decreased, indicating thata higher streambed flux does not necessarily correlate to greaterrecharge of stream water around the wells.

  15. DOI: 10.1002/cssc.201000032 The Immobility of CO2 in Marine Sediments Beneath 1500

    E-Print Network [OSTI]

    Schrag, Daniel

    -than-sea- water CO2 in deep-sea sediments is inherently more secure then storing buoyant supercritical CO2 with the mobility of supercritical CO2 that has been injected into geologically equivalent (i.e., identical porosityDOI: 10.1002/cssc.201000032 The Immobility of CO2 in Marine Sediments Beneath 1500 Meters of Water

  16. Effect of welding on impact toughness of butt-joints in a titanium alloy

    E-Print Network [OSTI]

    Zhou, Wei

    Effect of welding on impact toughness of butt-joints in a titanium alloy Wei Zhou a, *, K.G. Chew b Abstract Impact toughness of a gas tungsten arc welded TiÁ/6AlÁ/4V alloy butt-joint was evaluated at room located either in the parent metal, in the heat- affected zone (HAZ), or in the weld metal. Optical

  17. Modeling Zinc and Sodium Chloride Migration in Vadose Zone Soils Beneath Stormwater Infiltration Devices

    E-Print Network [OSTI]

    Clark, Shirley E.

    Modeling Zinc and Sodium Chloride Migration in Vadose Zone Soils Beneath Stormwater Infiltration in stormwater runoff and a decrease in groundwater recharge. Stormwater runoff contains pollutants (nutrients to the degradation of surface waters below stormwater pipe outfalls. Infiltrating stormwater has been shown

  18. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Welding M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.-F. Yen, and B.A. Cheeseman-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt of the workpiece and the weld temperature- dependent and by allowing the potential work of plastic deformation

  19. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding M. Grujicic yet a fairly comprehensive overview of the friction stir welding (FSW) process is provided-element procedure developed in our prior study. Particular attention is given to proper modeling of the welding work

  20. Anomalous shear wave attenuation in the shallow crust beneath...

    Open Energy Info (EERE)

    structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of eastern California. SV and P wave amplitudes were measured from...

  1. Inferences On The Hydrothermal System Beneath The Resurgent Dome...

    Open Energy Info (EERE)

    more vigorous and energetic fluid circulation beneath the resurgent dome. Although this system apparently died off as a result of mineral deposition and cooling (andor...

  2. Evidence For Gas And Magmatic Sources Beneath The Yellowstone...

    Open Energy Info (EERE)

    of magma beneath the Yellowstone caldera. Authors Stephan Husen, Robert B. Smith and Gregory P. Waite Published Journal Journal of Volcanology and Geothermal Research,...

  3. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles...

    Open Energy Info (EERE)

    Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera, New Mexico- Results from the Jemez Teleseismic Tomography Experiment Jump to: navigation, search OpenEI...

  4. Temporal Velocity Variations beneath the Coso Geothermal Field...

    Open Energy Info (EERE)

    Temporal Velocity Variations beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to:...

  5. Structure and Stratigraphy Beneath a Young Phreatic Vent: South...

    Open Energy Info (EERE)

    Structure and Stratigraphy Beneath a Young Phreatic Vent: South Inyo Crater, Long Valley Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  6. Mantle transition zone topography and structure beneath the Yellowstone hotspot

    E-Print Network [OSTI]

    Dueker, Ken

    Mantle transition zone topography and structure beneath the Yellowstone hotspot David Fee and Ken ± 1.6 km, with 36­40 km of peak to peak topography. This topography is spatially uncorrelated, providing no evidence for a lower mantle plume currently beneath the hotspot. The topography suggests

  7. Mapping bedrock beneath glacial till using CDP seismic reflection methods

    E-Print Network [OSTI]

    Keiswetter, Dean; Black, Ross A.; Steeples, Don W.

    1994-03-01

    This paper is a case history demonstrating the applicability of the common depth point (CDP) seismic reflection method to image bedrock beneath glacial till in northwestern Iowa. Reflections from the base of the 40-m thick ...

  8. Laboratory simulation of subsurface airflow beneath a building

    E-Print Network [OSTI]

    Corsello, Joseph William

    2014-01-01

    Vapor intrusion is the vapor-phase migration of volatile organic compounds (VOCs) into buildings due to subsurface soil or groundwater contamination. Oxygen replenishment rates beneath a building are significant for ...

  9. FMI Log At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion FlumeEventFAOFBASSESSMENTInformation

  10. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXA Corp. (Delaware)GalvestonWind

  11. Compound and Elemental Analysis At Glass Buttes Area (DOE GTP) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump to:TechnologyEnergyEnergy| Open

  12. EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates Ormat Nevada, Inc.’s (Ormat’s) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on private land located adjacent to the federal geothermal leases west of Glass Butte (Private Lands). DOE funding would be associated with three of the sixteen proposed wells. BLM is the lead agency and DOE is participating as a cooperating agency.

  13. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  14. Montana Water Center Annual Technical Report

    E-Print Network [OSTI]

    Directors from the University of Montana (Missoula) and Montana Tech (Butte) to coordinate state-wide water communications with the Center's Water Research Advisory Committee; 2. Developed and circulated an RFP for a new Engineering at Montana Tech, along with Dr. Colleen Elliott of Montana Tech and John La Fave, associate

  15. The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen and Hans Ziock

    E-Print Network [OSTI]

    1 The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen in this field. This memo explains why the development of a viable sequestration technology is a long term stra- tegic goal of utmost importance and why sequestration provides a goal worthy of the attention

  16. Imaging the mantle beneath Iceland using integrated seismological techniques

    E-Print Network [OSTI]

    Foulger, G. R.

    head, this study presents a tomographic image of the mantle structure beneath Iceland to 400 km depth of the body wave and surface wave information reveals a predominantly horizontal low-velocity anomaly extending from the Moho down to $250 km depth, interpreted as a plume head. Below the plume head a near

  17. Mantle structure beneath the western United States and its implications for convection processes

    E-Print Network [OSTI]

    Allen, Richard M.

    River Plain (ESRP) and the High Lava Plains, and a deep low velocity anomaly (>600 km) beneath the ESRP and dips toward the northwest; (3) shallow low velocity anomalies (upper 200 km) beneath the eastern Snake

  18. Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach

    E-Print Network [OSTI]

    Shen, Yang

    Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach Shu and S wave speeds extending from shallow mantle to 400 km depth beneath Iceland. In reality, seismic waves anomaly beneath Iceland and its geodynamic implications. We developed a tomographic method that utilizes

  19. The Hydrogeologic Character of the Lower Tuff Confining Unit and the Oak Springs Butte Confining Unit in the Tuff Pile Area of Central Yucca Flat

    SciTech Connect (OSTI)

    Drellack, Jr., Sigmund L.; Prothro, Lance B.; Gonzales, Jose L.; Mercadante, Jennifer M.

    2010-07-30

    The lower tuff confining unit (LTCU) in the Yucca Flat Corrective Action Unit (CAU) consists of a monotonous sequence of pervasively zeolitized volcanic tuff (i.e., mostly bedded with lesser nonwelded to poorly welded tuff; not fractured) (Bechtel Nevada, 2006). The LTCU is an important confining unit beneath Yucca Flat because it separates the alluvial and volcanic aquifers, where many underground nuclear tests were conducted, from the regional lower carbonate aquifer. Recent sub-CAU-scale modeling by Los Alamos National Laboratory in the Tuff Pile area of Yucca Flat (Boryta, et al., in review) includes postulated low-porosity, high-permeability zones (i.e., fractured welded-tuff aquifers) within the LTCU. This scenario indicates that such postulated low-porosity, high-permeability zones could provide fast-path lateral conduits to faults, and eventually to the lower carbonate aquifer. A fractured and faulted lower carbonate aquifer is postulated to provide a flow path(s) for underground test-derived contaminants to potential offsite receptors. The ramifications of such a scenario are obvious for groundwater flow and contaminant migration beneath Yucca Flat. This paper describes the reasoning for not including postulated low-porosity, high-permeability zones within the LTCU in the Tuff Pile area or within the LTCU in the Yucca Flat CAU-scale model. Both observational and analytical data clearly indicate that the LTCU in the Tuff Pile area consists of pervasively zeolitic, nonwelded to poorly welded tuffs that are classified as tuff confining units (i.e., high-porosity, low-permeability). The position regarding the LTCU in the Tuff Pile area is summarized as follows: • The LTCU in the Tuff Pile area consists of a monotonous sequence of predominantly zeolitic nonwelded to poorly welded tuffs, and thus is accurately characterized hydrogeologically as a tuff confining unit (aquitard) in the Yucca Flat-Climax Mine hydrostratigraphic framework model (Bechtel Nevada, 2006). • No welded-tuff (or lava-flow aquifers), referred to as low-porosity, high-permeability zones in Boryta et al. (in review), are present within the LTCU in the Tuff Pile area. • Fractures within the LTCU are poorly developed, a characteristic of zeolitic tuffs; and fracture distributions are independent of stratigraphic and lithologic units (Prothro, 2008). • Groundwater flow and radionuclide transport will not be affected by laterally extensive zones of significantly higher permeability within the LTCU in the Tuff Pile area. Although not the primary focus of this report, the hydrogeologic character of the Oak Spring Butte confining unit (OSBCU), located directly below the LTCU, is also discussed. The OSBCU is lithologically more diverse, and does include nonwelded to partially welded ash-flow tuffs. However, these older ash-flow tuffs are poorly welded and altered (zeolitic to quartzofeldspathic), and consequently, would tend to have properties similar to a tuff confining unit rather than a welded-tuff aquifer.

  20. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    SciTech Connect (OSTI)

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  1. Crustal and Uppermost Mantle Structure beneath the Western United States from USArray Regional Phase Analysis /

    E-Print Network [OSTI]

    Buehler, Janine Sylvia

    2013-01-01

    SN), Mojave (M), Snake River Plain. (SRP), Northern Rockysplitting beneath the Snake River Plain suggests a mantleSierra Nevada (SN), Snake River Plain (SRP), Northern Rocky

  2. A Methodology for the Assessment of Unconventional (Continuous) Resources with an Application to the Greater Natural Buttes Gas Field, Utah

    SciTech Connect (OSTI)

    Olea, Ricardo A.; Cook, Troy A.; Coleman, James L.

    2010-12-15

    The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of the main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes. A second approach illustrates the application of multiple-point simulation to assess a hypothetical frontier area for which there is no production information but which is regarded as being similar to Greater Natural Buttes.

  3. Plume-lithosphere interaction beneath a fast moving plate Catherine Thoraval,1

    E-Print Network [OSTI]

    Tommasi, Andrea

    , beneath Hawaii, towards Kauai, where the lithosphere is reduced by half [Li et al., 2004]. Heat flow data studies beneath Hawaii lead to opposite conclusions. Surface-wave dispersion as well as sP converted waves also lead to contradictory conclusions. Comparison of on-swell and off-swell data for the Hawaii

  4. Upper mantle Q and thermal structure beneath Tanzania, East Africa from teleseismic P wave spectra

    E-Print Network [OSTI]

    Ritsema, Jeroen

    Upper mantle Q and thermal structure beneath Tanzania, East Africa from teleseismic P wave spectra-focus earthquakes recorded at broadband seismic stations of the Tanzania network to estimate regional variation of sublithospheric mantle attenuation beneath the Tanzania craton and the eastern branch of the East African Rift

  5. Horizontal subduction and truncation of the Cocos Plate beneath central Mexico

    E-Print Network [OSTI]

    Clayton, Robert W.

    Horizontal subduction and truncation of the Cocos Plate beneath central Mexico Xyoli Pe from a trans-Mexico temporary broadband seismic network centered on Mexico City, we report that the subducting Cocos Plate beneath central Mexico is horizontal, and tectonically underplates the base

  6. Influence of tides on melting and freezing beneath FilchnerRonne Ice Shelf, Antarctica

    E-Print Network [OSTI]

    Holland, David

    Influence of tides on melting and freezing beneath FilchnerRonne Ice Shelf, Antarctica Keith doubles. With tidal forcing, the spatial pattern and magnitude of basal melting and freezing generally), Influence of tides on melting and freezing beneath FilchnerRonne Ice Shelf, Antarctica, Geophys. Res. Lett

  7. Thermal, hydrous, and mechanical states of the mantle transition zone beneath southern Africa

    E-Print Network [OSTI]

    Shen, Yang

    Thermal, hydrous, and mechanical states of the mantle transition zone beneath southern Africa John cratons in southern Africa; consequently, the mantle transition zone is 20 km thicker than beneath post: lithosphere; upper mantle; transition zone; cratoni convection; Southern Africa 1. Introduction The upper

  8. Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle

    E-Print Network [OSTI]

    Allen, Richard M.

    Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle G. R of Iceland, Bustadavegi 9, Reykjavik, Iceland 5 National Energy Authority, Grensasvegi 9, Reykjavik, Iceland of the highest-resolution teleseismic tomography study yet performed of the upper mantle beneath Iceland

  9. Belt-parallel mantle flow beneath a halted continental collision: The Western Alps Guilhem Barruol a,

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Belt-parallel mantle flow beneath a halted continental collision: The Western Alps Guilhem Barruol belts, is a particularly important objective of "mantle tectonics" that may bring a depth extent a coherent picture of upper mantle anisotropy beneath the belt. The large-scale anisotropy pattern

  10. Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Workers recently completed a multiyear project that removed more than 33,000 gallons of non-radioactive chemical solvents from beneath a portion of the Savannah River Site (SRS), preventing those pollutants from entering the local water table and helping the site avoid costs of more than $15 million.

  11. Above the Roof, Beneath the Law: Perceived Justice behind Disruptive Tactics of Migrant Wage Claimants in China

    E-Print Network [OSTI]

    He, X; Wang, L; Su, Y

    2013-01-01

    bs_bs_banner Above the Roof, Beneath the Law: Perceivedmigrant workers perch on roof tops or towering construction

  12. Grenville foreland thrust belt hidden beneath the eastern US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. (Cornell Univ., Ithaca, NY (United States))

    1993-01-01

    Grenville foreland thrust structures are observed beneath the eastern US midcontinent on COCORP (Consortium for Continental Reflection Profiling) line OH-1 and a short seismic line in southwest Ohio. These structures represent the first evidence for a significant Grenville foreland thrust belt preserved in eastern North America. On the COCORP lines, the structures include a thrust ramp anticline and an associated asymmetric syncline. The Grenville front tectonic zone appears to truncate these foreland structures, indicating a later, second phase expressed as a deeply penetrating, out-of-sequence thrust zone associated with the main uplift of the Grenville province on the east. A short, shallow seismic line in southwestern Ohio reveals an east-dipping sequence of prominently layered rocks that may lie above a footwall ramp to a deeper Grenville thrust fault. A drill hole into the less reflective top of this dipping sequence encountered unmetamorphosed sedimentary rocks like those increasingly reported from other drill holes in southwestern Ohio and adjacent states. Although possibly part of a late Precambrian (Keweenawan ) rift, these clastic sedimentary rocks may instead preserve evidence of a heretofore unrecognized Grenville foreland basin in eastern North America. Alternatively these Precambrian sedimentary rocks together with an underlying, but yet undrilled, strongly layered sequence may correlate with similarly layered rocks observed on COCORP and industrial seismic lines within the Middle Proterozoic granite-rhyolite province to the west in Indiana and Illinois and indicate that unmetamorphosed sedimentary material is an important constituent of the granite-rhyolite province. 25 refs., 6 figs.

  13. A Light-weight Approach to Reducing Energy Management Delays in Disks Guanying Wang, Ali R. Butt, Chris Gniady, Puranjoy Bhattacharjee

    E-Print Network [OSTI]

    Butt, Ali R.

    A Light-weight Approach to Reducing Energy Management Delays in Disks Guanying Wang, Ali R. Butt techniques such as turning machines off overnight and dynamic energy management during the business hours. Unfortunately, dynamic energy management, especially that for disks, introduces delays when an accessed disk

  14. The Passivity and Breakdown of Beryllium in Aqueous Solutions M.A. Hill, D.P. Butt, and R.S. Lillard

    E-Print Network [OSTI]

    The Passivity and Breakdown of Beryllium in Aqueous Solutions M.A. Hill, D.P. Butt, and R beryllium (Be) has been studied as a function of pH. Below pH 2, Be exhibited active dissolution at all, the presence of the fluoride increased the passive current density of beryllium, but had no effect

  15. OIL IN THE OPEN WATER Oil in the open water may a ect the health of

    E-Print Network [OSTI]

    OIL IN THE OPEN WATER Oil in the open water may a ect the health of microscopic plants and animals. Far beneath the surface, corals and other deepwater communities might also be a ected. OIL AND HUMAN AND SEDIMENTS · Water quality surveys · Transect surveys to detect submerged oil · Oil plume modeling · Sediment

  16. Imaging crust and upper mantle beneath Mount Fuji, Japan, by receiver functions

    E-Print Network [OSTI]

    Aoki, Yosuke

    , resulting in little knowledge about the seismic structure there. To gain more insight into the magma with magmatic differentiation is suppressed. Fujii [2007] concluded that the magma reservoir beneath Mount Fuji

  17. Layered rocks beneath the Phanerozoic platform of the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. (Cornell Univ., Ithaca, NY (United States))

    1991-03-01

    A thick sequence of layered rocks lies hidden beneath the Phanerozoic cover of the central US over large regions. A thick sequence of Precambrian layered rocks in imaged on the COCORP transect across southern Illinois and Indiana. The thickness of this layered sequence varies from 1-3 times the thickness of the overlying Phanerozoic section of the Illinois basin. The layered sequence is observed for close to 200 km in an east-west direction. Similar layered reflections are seen on the COCORP data from Hardeman Co., TX, and neighboring southwest Oklahoma. Both of these known occurrences lie within the region of the middle Proterozoic Granite/Rhyolite province of the US midcontinent, an area within which scattered wells to basement commonly encounter 1.3-1.5 Ga undeformed granite and/or compositionally similar rhyolite. Therefore, these layered assemblages may comprise a thick sequence of silicic volcanic and sedimentary rocks (perhaps also injected by mafic sills) between scattered volcanic-intrusive centers, such as exposed in the St. Francois Mountains of southeast Missouri. However, in places such as Illinois and Indiana, the near absence of deep wells leaves the possibility that the upper portion of these layered rocks may locally be of late Proterozoic or earliest Paleozoic age. The reprocessing of available industry data, analyzed in conjunction with the existing COCORP data, includes extended vibroseis correlation. These industry data are invaluable in the author's effort to expand the known distribution of these layered rocks (e.g., into north-central Illinois) and to map their structures.

  18. Temperatures at the Base of the Seismogenic Crust Beneath Long...

    Open Energy Info (EERE)

    flow for a given rock type, and it varies with both strain rate and water content. Earthquake activity and deformation accompanying recent unrest in Long Valley caldera,...

  19. Autosub missions beneath Polar Ice: Preparation and Experience

    E-Print Network [OSTI]

    Griffiths, Gwyn

    events implemented (up from 1); ordered sequences of events to trigger next mission element added. J and shelf ice. 4 - 12 kHz chirp sub-bottom profiler to obtain the stratigraphy within sediments Water

  20. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    SciTech Connect (OSTI)

    Garten Jr, Charles T [ORNL

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  1. Pressure in a deep-water Stokes wave David Henry

    E-Print Network [OSTI]

    Pressure in a deep-water Stokes wave David Henry School of Mathematical Sciences Dublin City description of the pressure distribution function for a deep-water Stokes wave. Keywords: Stokes wave, deep provide a qualitative description of the pressure distribution beneath the free surface of a deep-water

  2. Ground penetrating radar characterization of wood piles and the water table in Back Bay, Boston

    E-Print Network [OSTI]

    LeFrançois, Suzanne O'Neil, 1980-

    2003-01-01

    Ground penetrating radar (GPR) surveys are performed to determine the depth to the water table and the tops of wood piles beneath a residential structure at 122 Beacon Street in Back Bay, Boston. The area of Boston known ...

  3. Water Distribution System Monitoring and Decision Support Using a Wireless Sensor Network

    E-Print Network [OSTI]

    Allen, Michael

    Water distribution systems comprise labyrinthine networks of pipes, often in poor states of repair, that are buried beneath our city streets and relatively inaccessible. Engineers who manage these systems need reliable ...

  4. The entrainment of oil droplets in flow beneath an oil slick 

    E-Print Network [OSTI]

    Chao, Chien-Hwa

    1973-01-01

    THE ENTRAINMENT OF OIL DROPLETS IN PLOW BENEATH AN OIL SLICK A Thesis by CHIEN-HWA CHAO Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OP SCIENCE August 1973 Ma...)or Sub)ect: Mechanical Engineering THE ENTRAINMENT OF OIL DROPLETS IN FLOW BENEATH AN OIL SLICK A Thesis CHIEN-HWA CHAD Approved as to style and content by: ( hairman o Committee) (Head of De tment) C ( (Member) ber) (Member) August 1973...

  5. Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer

    E-Print Network [OSTI]

    Smith, Jerome A.

    Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface the wind) generates high- frequency internal waves in the stratified fluid below. The internal waves evolveKinnon, and A. E. Tejada-Marti´nez (2008), Rapid generation of high-frequency internal waves beneath a wind

  6. Exponential growth of ``snow molds'' at sub-zero temperatures: an explanation for high beneath-snow

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Exponential growth of ``snow molds'' at sub-zero temperatures: an explanation for high beneath organisms of the beneath-snow microbial community, ``snow molds'', exhibit robust exponential growth to -0.3°C for these snow molds vary from 22 to 330. Third, we derive an analytical equation

  7. Evidence from P-to-S mantle converted waves for a flat b660-kmQ discontinuity beneath Iceland

    E-Print Network [OSTI]

    Foulger, G. R.

    Evidence from P-to-S mantle converted waves for a flat b660-kmQ discontinuity beneath Iceland Z. Du; accepted 19 September 2005 Available online 22 November 2005 Editor: R.D. van der Hilst Abstract Iceland discontinuity beneath central Iceland is shallow relative to peripheral regions and this was interpreted

  8. P-wave velocity structure of the crust and uppermost mantle beneath Iceland from local earthquake tomography

    E-Print Network [OSTI]

    Shen, Yang

    P-wave velocity structure of the crust and uppermost mantle beneath Iceland from local earthquake and uppermost mantle beneath Iceland, the keys to understanding the magma plumbing system of the hotspot develop a three-dimensional P-wave velocity model of the Icelandic crust and uppermost mantle from

  9. Global warming of the mantle beneath continents back to the Archaean Nicolas Coltice a,

    E-Print Network [OSTI]

    Global warming of the mantle beneath continents back to the Archaean Nicolas Coltice a, , Hervé triggering melting events without the involvement of hot plumes. This model, called mantle global warming.R., Bertrand, H., Ricard, Y., Rey, P. (2007) Global warming of the mantle at the origin of flood basalts over

  10. Potential for storage of carbon dioxide in the rocks beneath the East Irish Sea

    E-Print Network [OSTI]

    Watson, Andrew

    Research and British Geological Survey Keyworth Nottingham NG12 5GG Email: klsh@bgs.ac.uk Tyndall CentrePotential for storage of carbon dioxide in the rocks beneath the East Irish Sea Karen Kirk February 2006 Tyndall Centre for Climate Change Research Working Paper 100 #12;Potential for storage

  11. Fossil flat-slab subduction beneath the Illinois basin, USA Heather Bedle , Suzan van der Lee

    E-Print Network [OSTI]

    van der Lee, Suzan

    .tecto.2006.06.003 #12;basin and mechanisms of basin formation, and interpret the Illinois basinFossil flat-slab subduction beneath the Illinois basin, USA Heather Bedle , Suzan van der Lee August 2006 Abstract The Illinois basin is one of several well-studied intracratonic sedimentary basins

  12. The electrical resistivity structure of the crust beneath the northern Main Ethiopian Rift

    E-Print Network [OSTI]

    The electrical resistivity structure of the crust beneath the northern Main Ethiopian Rift K- long profile crossing the NMER in an approxi- mately NW­SE direction, to image subsurface electrical plateau to try to understand the mechanism for plateau uplift. The MT method provides information

  13. The magmatic plumbing system beneath Santiaguito Volcano, Guatemala Jeannie A.J. Scott a,

    E-Print Network [OSTI]

    Rose, William I.

    The magmatic plumbing system beneath Santiaguito Volcano, Guatemala Jeannie A.J. Scott a, , Tamsin, Guatemala City, Guatemala a b s t r a c ta r t i c l e i n f o Article history: Received 9 September 2011 storage Ascent path The silicic dome complex of Santiaguito, Guatemala, has exhibited continuous extrusive

  14. Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained by

    E-Print Network [OSTI]

    McCaffrey, Robert

    Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained and Geophysical Agency, Jakarta, Indonesia R. McCaffrey, D. A. Wark, and S. W. Roecker Department of Earth@rpi.edu) Fauzi and G. Ibrahim Meteorological and Geophysical Agency, Jakarta, Indonesia (fauzi@bmg.go.id) Sukhyar

  15. Supplemental Figures Seismic imaging of the laterally varying D" region beneath the Cocos Plate

    E-Print Network [OSTI]

    Garnero, Ed

    Supplemental Figures Seismic imaging of the laterally varying D" region beneath the Cocos Plate-474-1882 Fax: 907-474-5618 Email: mthorne@gi.alaska.edu #12;Supplement A. Transverse component velocity.9982 at 80º. #12;Supplement B. Transverse component displacement synthetics are shown. Synthetics for PREM

  16. Distinctive upper mantle anisotropy beneath the High Lava Plains and Eastern Snake River Plain,

    E-Print Network [OSTI]

    Distinctive upper mantle anisotropy beneath the High Lava Plains and Eastern Snake River Plain and continuing with the still- ongoing volcanism in the High Lava Plains (HLP) and eastern Snake River Plain (SRP waves; shear wave splitting; high lava plains; Snake River Plain; Yellowstone. Index Terms: 8137

  17. Injection of carbon from the shelf to offshore beneath the euphotic zone in the California Current

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Injection of carbon from the shelf to offshore beneath the euphotic zone in the California Current concentrations of chlorophyll are found in the California Current System over 300 km offshore, far from the coast and transported offshore in the meandering California Current jet. Chlorophyll is forced downward

  18. On the vertical extent of the large low shear velocity province beneath the South Pacific Superswell

    E-Print Network [OSTI]

    Barruol, Guilhem

    , the southwestern Pacific events recorded by seismic arrays in southeastern Asia sample its western rim [Takeuchi et the western rim to the southern rim of the Pacific LLSVP is proposed as a result of forward modeling [HeOn the vertical extent of the large low shear velocity province beneath the South Pacific

  19. A Post-Perovskite Lens and D Heat Flux Beneath the Central Pacific

    E-Print Network [OSTI]

    Garnero, Ed

    A Post-Perovskite Lens and Dµ Heat Flux Beneath the Central Pacific Thorne Lay,1 * John Hernlund,2 are attributed to a phase change from perovskite to post-perovskite and then back to perovskite as the temperature increases with depth. Iron enrichment could explain the occurrence of post-perovskite several

  20. Hydrogeochemical niches associated with hyporheic exchange beneath an acid mine drainage-contaminated stream

    E-Print Network [OSTI]

    Burgos, William

    Hydrogeochemical niches associated with hyporheic exchange beneath an acid mine drainage can be used for remediation of acid mine drainage (AMD), however, as sediment depth increases, Fe that generate acidity, frequently referred to as acid mine drainage (AMD) or, more specifically, coal mine

  1. Seismic evidence for a tilted mantle plume and north^south mantle ow beneath Iceland

    E-Print Network [OSTI]

    Shen, Yang

    Seismic evidence for a tilted mantle plume and north^south mantle £ow beneath Iceland Yang Shen a.W., Washington, DC 20015, USA c Science Institute, University of Iceland, Reykjavik, Iceland d Department, Grensasvegi 9, Reykjavik, Iceland f Meteorological O/ce of Iceland, Bustadavegi 9, Reykjavik, Iceland g US

  2. Mantle upwellings and convective instabilities revealed by seismic tomography and helium isotope geochemistry beneath eastern Africa

    E-Print Network [OSTI]

    Montagner, Jean-Paul

    geochemistry beneath eastern Africa Jean-Paul Montagner,1 Bernard Marty,2 Ele´onore Stutzmann,1 De for North and East Africa using a high resolution three-dimensional anisotropic tomographic model derived from seismic data of a French experiment ``Horn of Africa'' and existing broadband data. The joint

  3. Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mrida Andes

    E-Print Network [OSTI]

    Niu, Fenglin

    Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mérida Andes University, Houston, TX, USA b Fundación de Investigaciones Simológicas (FUNVISIS), Caracas, Venezuela a b wave splitting from SKS data recorded by the national seismic network of Venezuela and a linear

  4. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    SciTech Connect (OSTI)

    Goldstein, N.E.; Flexser, S.

    1984-12-01

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  5. Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Lance Prothro

    2008-03-01

    The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

  6. NOTES ABOUT REAL WATER AND REAL AIR OC569a Experimenting with Fluids, Winter 2010 11jan2010

    E-Print Network [OSTI]

    .5%). Plots of fresh water density against temperature are shown in the figures below. Fresh water is most freezing can float on top of the denser, 40 water). This allows life to proceed in the quite winter beneath1 NOTES ABOUT REAL WATER AND REAL AIR OC569a Experimenting with Fluids, Winter 2010 11jan2010

  7. GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 13, PAGES 2485-2488, JUL 1, 2001 Tectospheric structure beneath southern Africa

    E-Print Network [OSTI]

    van der Lee, Suzan

    beneath southern Africa D. E. James,1 M. J. Fouch,1,2 J. C. VanDecar,1,3 S. van der Lee4 and Kaapvaal Seismic Group5 Abstract. P-wave and S-wave delay times from the broad- band data of the southern Africa in the mantle beneath southern Africa. High velocity mantle roots appear to extend to depths of at least 250 km

  8. Carderock Circulating Water Channel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy ResourcesRanchCirculating Water Channel Jump

  9. Busted Butte Unsaturated Zone Transport Test: Fiscal Year 1998 Status Report Yucca Mountain Site Characterization Program Deliverable SPU85M4

    SciTech Connect (OSTI)

    Bussod, G.Y.; Turin, H.J.; Lowry, W.E.

    1999-11-01

    This report describes the status of the Busted Butte Unsaturated Zone Transport Test (UZTT) and documents the progress of construction activities and site and laboratory characterization activities undertaken in fiscal year 1998. Also presented are predictive flow-and-transport simulations for Test Phases 1 and 2 of testing and the preliminary results and status of these test phases. Future anticipated results obtained from unsaturated-zone (UZ) transport testing in the Calico Hills Formation at Busted Butte are also discussed in view of their importance to performance assessment (PA) needs to build confidence in and reduce the uncertainty of site-scale flow-and-transport models and their abstractions for performance for license application. The principal objectives of the test are to address uncertainties associated with flow and transport in the UZ site-process models for Yucca Mountain, as identified by the PA working group in February 1997. These include but are not restricted to: (1) The effect of heterogeneities on flow and transport in unsaturated and partially saturated conditions in the Calico Hills Formation. In particular, the test aims to address issues relevant to fracture-matrix interactions and permeability contrast boundaries; (2) The migration behavior of colloids in fractured and unfractured Calico Hills rocks; (3) The validation through field testing of laboratory sorption experiments in unsaturated Calico Hills rocks; (4) The evaluation of the 3-D site-scale flow-and-transport process model (i.e., equivalent-continuum/dual-permeability/discrete-fracture-fault representations of flow and transport) used in the PA abstractions for license application; and (5) The effect of scaling from lab scale to field scale and site scale.

  10. CX-008225: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery Act: A Demonstration System for Capturing Geothermal Energy from Mine Waters Beneath Butte Montana CX(s) Applied: A9, B2.1, B5.19 Date: 04/18/2012 Location(s): Montana Offices(s): Golden Field Office

  11. Assessment of Weld Overlays for Mitigating Primary Water Stress Corrosion Cracking at Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    SciTech Connect (OSTI)

    Sullivan, Edward J.; Anderson, Michael T.

    2012-08-01

    This TLR provides an assessment of weld overlays as a mitigation strategy for PWSCC, and includes an assessment of the WOL-related inspection requirements of Code Case N-770-1, as conditioned in §50.55a.

  12. Tradeoffs in Brush Management for Water Yield and Habitat Management in Texas: Twin Buttes Drainage Area and Edwards Aquifer Recharge Zone 

    E-Print Network [OSTI]

    Narayanan, Christopher R.; Kreuter, Urs P.; Conner, J. Richard

    2002-08-14

    control planning, assessment, & feasibility study. 12 Edwards Aquifer Recharge Zone Data Table 1. EA Acreage EA Acreage 129 2 867.15 225.00 100.00 225.00 950.00 Valid Missing N Mean Median 25 50 75 Percentiles Table 2. Role at Property 109 83....2 83.8 83.8 8 6.1 6.2 90.0 4 3.1 3.1 93.1 2 1.5 1.5 94.6 7 5.3 5.4 100.0 130 99.2 100.0 1 .8 131 100.0 Make Most Management Decisions One of Key Decision Makers Spouse of Key Decision Maker Hired Manager Other Total Valid No ResponseMissing Total...

  13. Stratified precambrian rocks (sedimentary?) beneath the midcontinent region of the US. Final technical report

    SciTech Connect (OSTI)

    Hauser, E.C.

    1993-02-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence and its ultimate lateral extent are unknown. However, the occurrences of Precambrian layered rocks on both the COCORP profiles and reprocessed industry seismic reflection data from the region lie within regions of generally low amplitude and low frequency aeromagnetic anomaly, suggesting an even greater distribution. Unmetamorphosed Precambrian sedimentary rocks have been recovered from drill holes in southwest Ohio and adjacent northern Kentucky and southwesternmost Indiana. These Precambrian sedimentary rocks lie above and may be part of an underlying package of strongly layered rocks imaged on a short and shallow seismic profile in southwest Ohio. These Precambrian sedimentary rocks were originally viewed as part of a late Precambrian (Keweenawan?) rift; however, in light of Grenville foreland structures seen on the COCORP profile to the north in west central Ohio, these Precambrian strata may (1) be part of a heretofore unrecognized Grenville foreland basin, or (2) indicate that unmetamorphosed Precambrian sedimentary material may be an important constituent of the layered rocks observed on COCORP beneath southern Illinois and Indiana.

  14. Stratified precambrian rocks (sedimentary ) beneath the midcontinent region of the US

    SciTech Connect (OSTI)

    Hauser, E.C.

    1993-02-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence and its ultimate lateral extent are unknown. However, the occurrences of Precambrian layered rocks on both the COCORP profiles and reprocessed industry seismic reflection data from the region lie within regions of generally low amplitude and low frequency aeromagnetic anomaly, suggesting an even greater distribution. Unmetamorphosed Precambrian sedimentary rocks have been recovered from drill holes in southwest Ohio and adjacent northern Kentucky and southwesternmost Indiana. These Precambrian sedimentary rocks lie above and may be part of an underlying package of strongly layered rocks imaged on a short and shallow seismic profile in southwest Ohio. These Precambrian sedimentary rocks were originally viewed as part of a late Precambrian (Keweenawan ) rift; however, in light of Grenville foreland structures seen on the COCORP profile to the north in west central Ohio, these Precambrian strata may (1) be part of a heretofore unrecognized Grenville foreland basin, or (2) indicate that unmetamorphosed Precambrian sedimentary material may be an important constituent of the layered rocks observed on COCORP beneath southern Illinois and Indiana.

  15. Evidence for Gropun-Water Stratification Near Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    K. Futa; B.D. Marshall; Z.E. Peterman

    2006-03-24

    Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash.

  16. The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part I Lower Rio Grande Flood Control Model [LRGFCM] RiverWare Model Development 

    E-Print Network [OSTI]

    Tillery, Sue; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari; Srinivasan, Raghavan; Granados, Alfredo

    2009-01-01

    of Las Cruces, Elephant Butte Irrigation District, El Paso County Water Improvement District #1 (EPCWID No. 1), El Paso Water Utilities, New Mexico Water Resources Research Institute (NMWRRI, which also houses the Project on its data server), Project... ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 FIGURE 17. Correlations for Del Rio and La Mesa Drain s ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 F I G U R E 18. Correl a t i o n s for East and Montoy a Dr ain...

  17. Deep crustal sediment study: Widespread precambrian layered rocks (sedimentary ?) beneath the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. [Cornell Univ., Ithaca, NY (United States)

    1992-05-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the U.S. midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1-3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the U.S. midcontinent, and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  18. Deep crustal sediment study: Widespread Precambrian layered rocks (Sedimentary ) beneath the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C.

    1992-01-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the US midcontinent and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  19. Deep crustal sediment study: Widespread Precambrian layered rocks (Sedimentary ?) beneath the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C.

    1992-06-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the US midcontinent and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  20. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    SciTech Connect (OSTI)

    Liu, Fei; Wang, Hongyang; Liu, Liming, E-mail: liulm@dlut.edu.cn

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.

  1. Seismic structure and ultra-low velocity zones at the base of the Earth's mantle beneath Southeast Asia

    E-Print Network [OSTI]

    Wen, Lianxing

    Seismic structure and ultra-low velocity zones at the base of the Earth's mantle beneath Southeast t We constrain seismic structure and ultra-low velocity zones near the Earth's core-mantle boundary that the strong scatterers represent ultra-low velocity zones (ULVZs). We suggest that the seismic structure

  2. Soil nematode communities are ecologically more mature beneath late-than early-successional stage biological soil crusts

    E-Print Network [OSTI]

    Neher, Deborah A.

    Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts Brian J. Darby a,*, Deborah A. Neher a , Jayne Belnap b a Department of Plant and Soil; accepted 12 April 2006 Abstract Biological soil crusts are key mediators of carbon and nitrogen inputs

  3. Groundwatergroundwater Groundwater refers to the saturated layer of Earth's crust extending beneath the land surface to a depth

    E-Print Network [OSTI]

    Scott, Christopher

    Groundwatergroundwater Groundwater refers to the saturated layer of Earth's crust extending beneath. The widespread geographical distribution of groundwater and its usually high quality for human consumption and glaciers. The spatial occurrence and quality of groundwater are not uniform, which is the result of geology

  4. On soliton structure of higher order (2+1)-dimensional equations of a relaxing medium beneath high-frequency perturbations

    E-Print Network [OSTI]

    Kuetche Kamgang Victor; Bouetou Bouetou Thomas; Timoleon Crepin Kofane

    2007-09-27

    We investigate the soliton structure of novel (2+1)-dimensional nonlinear partial differential evolution(NLPDE) equations which may govern the behavior of a barothropic relaxing medium beneath high-frequency perturbations. As a result, we may derive some soliton solutions amongst which three typical pattern formations with loop-, cusp- and hump-like shapes.

  5. Seismic anisotropy in the wedge above the Philippine Sea slab beneath Kanto and southwest Japan derived from shear wave splitting

    E-Print Network [OSTI]

    Seno, Tetsuzo

    Seismic anisotropy in the wedge above the Philippine Sea slab beneath Kanto and southwest Japan generated by shallow and intermediate-depth earthquakes occurring in the subducting Philippine Sea are further divided into PHS1 and PHS2 (upper and lower planes of the double seismic zone in the Philippine

  6. Application of Gaussian-Beam Migration to Multiscale Imaging of the Lithosphere beneath the Hi-CLIMB Array in Tibet

    E-Print Network [OSTI]

    Nowack, Robert L.

    Application of Gaussian-Beam Migration to Multiscale Imaging of the Lithosphere beneath the Hi Tibet using data from the Hi-CLIMB experiment. We use teleseismic P waves from three groups of earthquakes to the southeast, northeast, and northwest of the Hi-CLIMB array, each within a narrow range

  7. Seismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault: Implications for strain localization

    E-Print Network [OSTI]

    ten Brink, Uri S.

    consisted of two wide-angle seismic reflection and refraction profiles: a 280-km-long profile along vertical 4.5 Hz geophone, buried, and placed at intervals of 0.65­0.75 km along the profile. The data wereSeismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault

  8. P-and S-Wave Receiver Function Images of Crustal Imbrication beneath the Cheyenne Belt in Southeast Wyoming

    E-Print Network [OSTI]

    Dueker, Ken

    P- and S-Wave Receiver Function Images of Crustal Imbrication beneath the Cheyenne Belt estimation to constrain the crustal structure across the Archean­Proterozoic Cheyenne belt suture of Proterozoic lower crust across the Chey- enne belt. Both P and S-wave receiver function images delineate

  9. Particle trajectories in linearized irrotational shallow water flows

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We investigate the particle trajectories in an irrotational shallow water flow over a flat bed as periodic waves propagate on the water's free surface. Within the linear water wave theory, we show that there are no closed orbits for the water particles beneath the irrotational shallow water waves. Depending on the strength of underlying uniform current, we obtain that some particle trajectories are undulating path to the right or to the left, some are looping curves with a drift to the right and others are parabolic curves or curves which have only one loop.

  10. Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-08-24

    We provide analytic solutions of the nonlinear differential equation system describing the particle paths below small-amplitude periodic gravity waves travelling on a constant vorticity current. We show that these paths are not closed curves. Some solutions can be expressed in terms of Jacobi elliptic functions, others in terms of hyperelliptic functions. We obtain new kinds of particle paths. We make some remarks on the stagnation points which could appear in the fluid due to the vorticity.

  11. GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 13,PAGES 2485-2488, JULY 1,2001 Tectospheric structure beneath southern Africa

    E-Print Network [OSTI]

    Gao, Stephen Shangxing

    beneath southern Africa D. E. James,1M. J. Fouch,1'2J. C. VanDecar, KaapvaalSeismicGroup5 S. van der Lee4 and Abstract. P-wave and S-wavedelay times from the broad- band data of the southern Africa seismicexperiment southern Africa. High velocity mantle roots appear to extend to depths of at least 250 km, and locally

  12. Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    Horton, Duane G.

    2007-03-16

    This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

  13. Mill Creek Summit Lovejoy Buttes

    E-Print Network [OSTI]

    -CDMG 10% in 50 yr WGCE 50% in 1000 yr Ward 2% in 50 yr Stirling & Wesnousky 2% in 50 yr in Brune (1996 Summit, previously classified as Engineering Rock "A" (>760 m/s 30-m average shear-wave velocity

  14. Gordon Butte | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma EnergyGoogle lends support to the

  15. Turbid water Clear water

    E-Print Network [OSTI]

    Jaffe, Jules

    Turbid water Clear water pixel position cameraresponsecameraresponse pixel position ABSTRACT: A new underwater laser scanning system, providing microbathymetric information in coastal waters is described the backscatter component resulting in enhanced performance in turbid waters. The system is expected to provide

  16. Exact solutions for small-amplitude capillary-gravity water waves

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We present explicit solutions for the ordinary differential equations system describing the motion of the particles beneath small-amplitude capillary-gravity waves which propagate on the surface of an irrotational water flow with a flat bottom. The required computations involve elliptic integrals of first kind, the Legendre normal form and a solvable Abel differential equation of the second kind.

  17. Deformation and hydration of the lithospheric mantle beneath the Kaapvaal craton, South Africa

    E-Print Network [OSTI]

    Tommasi, Andrea

    root. The vertical variation in water contents in olivine observed in the Kaapvaal peridotites may with magnetotelluric electrical conductivity data suggests, however, that the observed vertical variation of water lithosphere with cold geotherms (Boyd et al., 1985; Chevrot and Zhao, 2007; Evans et al., 2011; Jaupart

  18. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    SciTech Connect (OSTI)

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E

    2010-02-18

    The Cameroon Volcanic Line (CVL) is a major geologic feature that cuts across Cameroon from the south west to the north east. It is a unique volcanic lineament which has both an oceanic and a continental sector and consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. The oceanic sector includes the islands of Bioko (formerly Fernando Po) and Sao Tome and Principe while the continental sector includes the Etinde, Cameroon, Manengouba, Bamboutos, Oku and Mandara mountains, as well as the Adamawa and Biu Plateaus. In addition to the CVL, three other major tectonic features characterize the region: the Benue Trough located northwest of the CVL, the Central African Shear Zone (CASZ), trending N70 degrees E, roughly parallel to the CVL, and the Congo Craton in southern Cameroon. The origin of the CVL is still the subject of considerable debate, with both plume and non-plume models invoked by many authors (e.g., Deruelle et al., 2007; Ngako et al, 2006; Ritsema and Allen, 2003; Burke, 2001; Ebinger and Sleep, 1998; Lee et al, 1994; Dorbath et al., 1986; Fairhead and Binks, 1991; King and Ritsema, 2000; Reusch et al., 2010). Crustal structure beneath Cameroon has been investigated previously using active (Stuart et al, 1985) and passive (Dorbath et al., 1986; Tabod, 1991; Tabod et al, 1992; Plomerova et al, 1993) source seismic data, revealing a crust about 33 km thick at the south-western end of the continental portion of the CVL (Tabod, 1991) and the Adamawa Plateau, and thinner crust (23 km thick) beneath the Garoua Rift in the north (Stuart et al, 1985) (Figure 1). Estimates of crustal thickness obtained using gravity data show similar variations between the Garoua rift, Adamawa Plateau, and southern part of the CVL (Poudjom et al., 1995; Nnange et al., 2000). In this study, we investigate further crustal structure beneath the CVL and the adjacent regions in Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.

  19. Water Resources Water Quality and Water Treatment

    E-Print Network [OSTI]

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  20. The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part II Availability of Flow and Water Quality Data for the Rio Grande Project Area 

    E-Print Network [OSTI]

    Tillery, Sue; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari; Srinivasan, Raghavan; Granados, Alfredo

    2009-01-01

    of the Rio Grande flow between Elephant Butte Dam and American Dam by using data collected in the first development phase of the PdNWC/Corps Coor dinated Water Resources Database and to enhance the data portal capabilities of the PdNWC Coordinated... monitoring sites from associated canals, drains, and dams along the Rio Grande. Flow data for the years from 1908 through 2002 and water quality data for the years 1938 to 2005 collected periodically by different agencies include historic chemical...

  1. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    SciTech Connect (OSTI)

    Sorey, M.L.; Evans, W.C. [U.S. Geological Survey, Menlo Park, California (United States)] Kennedy, B.M. [Lawrence Berkeley National Laboratory, Berkeley, California (United States)] Farrar, C.D. [U.S. Geological Survey, Carnelian Bay, California (United States)] Hainsworth, L.J. [Chemistry Department, Emory and Henry College, Emory, Virginia (United States)] Hausback, B. [Geology Department, California State University, Sacramento

    1998-07-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source ({delta}thinsp{sup 13}C={minus}4.5 to {minus}5{per_thousand}, {sup 3}He/{sup 4}He=4.5 to 6.7 R{sub A}) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO{sub 2} discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills arc associated with CO{sub 2} concentrations of 30{endash}90{percent} in soil gas and gas flow rates of up to 31,000 gthinspm{sup {minus}2}thinspd{sup {minus}1} at the soil surface. Each of the tree-kill areas and one area of CO{sub 2} discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO{sub 2} flux from the mountain is approximately 520 t/d, and that 30{endash}50 t/d of CO{sub 2} are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO{sub 2} and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N{sub 2}/Ar ratios and nitrogen isotopic values indicate that the Mammoth Mountain gases are derived from sources separate from those that supply gas to the hydrothermal system within the Long Valley caldera. Various data suggest that the Mammoth Mountain gas reservoir is a large, low-temperature cap over an isolated hydrothermal system, that it predates the 1989 intrusion, and that it could remain a source of gas discharge for some time. {copyright} 1998 American Geophysical Union

  2. Water Clean Water Clean

    E-Print Network [OSTI]

    Ishida, Yuko

    Keep Our Water Clean Keep Our Water Clean Home and garden pesticides and fertilizers are polluting residues wash into gutters, storm drains, and streams by rain,garden watering,or cleaning up drinking water. Follow these tips to keep our rivers, creeks, and oceans clean. What can you do to protect

  3. Water, water everywhere,

    E-Print Network [OSTI]

    Eberhard, Marc O.

    1 Water, water everywhere, but is it safe to drink? An Inquiry-based unit investigating the journey of your drinking water from source to tap of drinking water will contain different contaminants, based on surrounding land uses (guided inquiry activity

  4. Water Resources Forests & Water

    E-Print Network [OSTI]

    Water Resources Forests & Water More than half of the nation's freshwater supply originates on forestland. Healthy and sustainable forests can help ensure a continuous supply of clean and abundant water. Not only does forestland provide the cleanest water of any land use, it also helps absorb rainfall

  5. Water balance report for the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    NONE

    1994-07-01

    The Y-12 Plant, which occupies approximately 800 acres, was built by the Army Corps of Engineers in 1943 as part of the Manhattan Project in Oak Ridge, Tennessee. Recently, Martin Marietta Energy Systems, who manages the Y-12 Plant, has been concerned with the effects of water consumption and losses at the plant facility, and the ability of ground water beneath the site to act as a source of water seepage into East Fork Poplar Creek or as a source of water infiltration into subsurface strata. This has prompted the need to perform a water balance study on the facility. Data regarding all uses of municipal water and sources of discharge from the plant were recorded and then water balance calculations were performed using a computer model developed in a multi-dimensional electronic spreadsheet. This report describes the results of this research and includes the flow data collected during the study.

  6. Geophysical (time domain electromagnetic model) delineation of a shallow brine beneath a freshwater lake,

    E-Print Network [OSTI]

    Gvirtzman, Haim

    groundwaters. It is hypothesized that salt transport is dominated by molecular diffusion in the central part streams entering the lake. This order of magnitude difference is a result of salt fluxes from two major cores and nineteen 0.5-m cores drilled to sediments within the lake basin (Figure 1). At the water

  7. Unsaturated Groundwater Flow Beneath Upper Mortandad Canyon, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    Dander, D.C.

    1998-10-15

    Mortandad Canyon is a discharge site for treated industrial effluents containing radionuclides and other chemicals at Los Alamos National Laboratory, New Mexico. This study was conducted to develop an understanding of the unsaturated hydrologic behavior below the canyon floor. The main goal of this study was to evaluate the hypothetical performance of the vadose zone above the water table. Numerical simulations of unsaturated groundwater flow at the site were conducted using the Finite Element Heat and Mass Transfer (FEHM) code. A two-dimensional cross-section along the canyon's axis was used to model flow between an alluvial groundwater system and the regional aquifer approximately 300 m below. Using recharge estimated from a water budget developed in 1967, the simulations showed waters from the perched water table reaching the regional aquifer in 13.8 years, much faster than previously thought. Additionally, simulations indicate that saturation is occurring in the Guaje pumice bed an d that the Tshirege Unit 1B is near saturation. Lithologic boundaries between the eight materials play an important role in flow and solute transport within the system. Horizontal flow is shown to occur in three thin zones above capillary barriers; however, vertical flow dominates the system. Other simulations were conducted to examine the effects of changing system parameters such as varying recharge inputs, varying the distribution of recharge, and bypassing fast-path fractured basalt of uncertain extent and properties. System sensitivity was also explored by changing model parameters with respect to size and types of grids and domains, and the presence of dipping stratigraphy.

  8. Hanford Site ground-water monitoring for 1992

    SciTech Connect (OSTI)

    Dresel, P.E.; Newcomer, D.R.; Evans, J.C.; Webber, W.D.; Spane, F.A. Jr.; Raymond, R.G.; Opitz, B.E.

    1993-06-01

    Monitoring activities were conducted to determine the distribution of radionuclides and hazardous chemicals present in ground water as a result of Hanford Site operations and, whenever possible, relate the distribution of these constituents to Site operations. A total of 720 wells were sampled during 1992 by all Hanford ground-water monitoring activities. The Ground-Water Surveillance Project prepared water-table maps of DOE`s Hanford Site for June 1992 from water-level elevations measured in 287 wells across the Hanford Site and outlying areas. These maps are used to infer ground-water flow directions and gradients for the interpretation of contaminant transport. Water levels beneath the 200 Areas decreased as much as 0.75 m (2.5 ft) between December 1991 and December 1992. Water levels in the Cold Creek Valley decreased approximately 0.5 m in that same period. The water table adjacent to the Columbia River along the Hanford Reach continues to respond significantly to fluctuations in river stage. These responses were observed in the 100 and 300 areas. The elevation of the ground-water mound beneath B Pond did not change significantly between December 1991 and December 1992. However, water levels from one well located at the center of the mound indicate a water-level rise of approximately 0.3 m (1 ft) during the last quarter of 1992. Water levels measured from unconfined aquifer wells north and east of the Columbia River in 1992 indicate that the primary source of recharge is from irrigation practices.

  9. Mass transfer during drying of colloidal film beneath a patterned mask that contains a hexagonal array of holes

    E-Print Network [OSTI]

    Tarasevich, Yuri Yu

    2015-01-01

    We simulated an experiment in which a thin colloidal sessile droplet is allowed to dry out on a horizontal hydrophilic surface when a mask just above the droplet predominantly allows evaporation from the droplet free surface directly beneath the holes in the mask [Harris D J, Hu H, Conrad J C and Lewis J A 2007 \\textit{Phys. Rev. Lett.} \\textbf{98} 148301]. We considered one particular case when centre-to-centre spacing between the holes is much less than the drop diameter. In our model, advection, diffusion, and sedimentation were taken into account. FlexPDE was utilized to solve an advection-diffusion equation using the finite element method. The simulation demonstrated that the colloidal particles accumulate below the holes as the solvent evaporates. Diffusion can reduce this accumulation.

  10. F A S T -T R A C K P A P E R The seismic anomaly beneath Iceland extends down to the mantle

    E-Print Network [OSTI]

    Foulger, G. R.

    of the upper mantle yet performed in Iceland, which reveals details of the morphology, temperature and melt distribution beneath the Iceland hotspot and the adjacent oceanic plate boundaries. T H E T O M O G R A P H Y E in size. Timing was provided by GPS, and the data were downloaded to SUN workstations. We hand

  11. Interannual Changes in Seasonal Ground Freezing and Near-surface Heat Flow Beneath Bottom-fast Ice in the Near-shore Zone, Mackenzie Delta, NWT, Canada

    E-Print Network [OSTI]

    Moorman, Brian

    Interannual Changes in Seasonal Ground Freezing and Near-surface Heat Flow Beneath Bottom-fast Ice Resources Canada, Dartmouth, Nova Scotia, Canada ABSTRACT Interannual changes in seasonal ground freezing. KEY WORDS: seasonal ground freezing; permafrost; bottom-fast ice; Mackenzie Delta INTRODUCTION Arctic

  12. F A S T -T R A C K P A P E R The seismic anomaly beneath Iceland extends down to the mantle

    E-Print Network [OSTI]

    Allen, Richard M.

    F A S T - T R A C K P A P E R The seismic anomaly beneath Iceland extends down to the mantle, NJ 08544±5807, USA 4 Meteorological Of®ce of Iceland, Bustadavegi 9, Reykjavik, Iceland 5 National Energy Authority, Grensasvegi 9, Reykjavik, Iceland Accepted 2000 June 15. Received 2000 June 8

  13. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    SciTech Connect (OSTI)

    Not Available

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs.

  14. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  15. Airflow-terrain interactions through a mountain gap, with an example of eolian activity beneath an atmospheric hydraulic jump

    SciTech Connect (OSTI)

    Gaylord, D.R.; Dawson, P.J.

    1987-09-01

    The integration of atmospheric soundings from a fully instrumented aircraft with detailed sedimentary and geomorphic analyses of eolian features in the Ferris dune field of south-central Wyoming lends insight into the manner in which topography interacts with airflow to modify eolian activity. Topographically modified airflow results in zones of airflow deceleration, acceleration, and enhanced atmospheric turbulence, all of which influence the surface morphology and sedimentology. Extreme lateral confluence of prevailing airflow produces accelerated, unidirectional winds. These winds correlate with unusually continuous and elongate parabolic dunes that extend into a mountain gap (Windy Gap). Persistently heightened winds produced at the entrance to Windy Gap have resulted in a concentration of active sand dunes that lack slipfaces. Common development of a strongly amplified atmospheric wave analogous to a hydraulic jump in the gap contributes to the formation of a variety of eolian features that mantle the surface of Windy Gap and the Ferris dune field tail. Heightened, unidirectional winds in this zone promote grain-size segregation, the formation of elongated and aligned sand drifts, climbing and falling dunes, elongate scour streaks, and parabolic dunes that have low-angle (< 20/sup 0/) cross-stratification. Deflation of bedrock and loose sediment has been enhanced in the zone of maximum turbulence beneath the hydraulic jump.

  16. Crustal structure beneath RSTN stations inferred from teleseismic P-waveforms: preliminary results at RSCP, RSSD, and RSNY

    SciTech Connect (OSTI)

    Owens, T.J.; Taylor, S.R.; Zandt, G.

    1983-08-08

    We have modeled teleseismic P-waveforms recorded at three Regional Seismic Test Network (RSTN) stations (RSCP, Cumberland Plateau Observatory, TN; RSSD, Black Hills, SD; RSNY, Adirondack Mtns, NY) to determine local crustal structures. After source effects are removed by deconvolution, seismograms from events clustered in both distance and back azimuth were stacked to enhance the signal and improve confidence in interpreting converted phases at each station. Preliminary analysis indicates that seismograms from RSCP and RSNY generally exhibit less well-developed converted and reflected phases from the crust-mantle boundary than are observed at RSSD and LLNL broadband station ELK (Elko, NV). These differences are likely due to a gradational crust-mantle boundary in the eastern United States. Comparisons of seismograms recorded at the RSTN stations indicate that the waveforms at RSSD and RSCP are much more complex than waveforms from RSNY. This complexity is largely due to low-velocity sedimentary layers at the RSSD and RSCP sites, whereas RSNY is located directly on crystalline basement. At RSCP, we find a crustal thickness of 41 km, which agrees with early refraction profiles in the area. Our data require a 10 km thick transition zone between the crust and upper mantle beneath RSCP. The crustal thickness determined at RSSD is 47 to 50 km. 14 references, 10 figures, 1 table.

  17. Investigating Water 

    E-Print Network [OSTI]

    Howard Jr., Ronald A.

    2002-01-02

    This 3-ring binder contains teaching plans for 12 lessons on topics such as "Water in Our Daily Lives," "The Water Cycle," "Amazing Aquifers," "Water and Soil," "Aquatic Ecosystems," and "Water Wise Use." Accompanying each lesson plan are activity...

  18. Method of draining water through a solid waste site without leaching

    DOE Patents [OSTI]

    Treat, R.L.; Gee, G.W.; Whyatt, G.A.

    1993-02-02

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  19. Method of draining water through a solid waste site without leaching

    DOE Patents [OSTI]

    Treat, Russell L. (Richland, WA); Gee, Glendon W. (Richland, WA); Whyatt, Greg A. (Richland, WA)

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  20. Real-Space Microscopic Electrical Imaging of n+-p Junction Beneath Front-Side Ag Contact of Multicrystalline Si Solar Cells

    SciTech Connect (OSTI)

    Jiang, C. S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.

    2012-04-15

    We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, which is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.

  1. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    LBNL collected water and waste water tariffs in Californiastate. Current water and waste water tariffs for these areaswas based on water and waste water tariffs in California

  2. Water Intoxication

    E-Print Network [OSTI]

    Lingampalli, Nithya

    2013-01-01

    2008, May 14). Too much water raises seizure risk in babies.id=4844 9. Schoenly, Lorry. “Water Intoxication and Inmates:article/246650- overview>. 13. Water intoxication alert. (

  3. Water Efficiency

    Energy Savers [EERE]

    Water Efficiency Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership Working Group...

  4. Anthracite-Crested butte folio, Colorado 

    E-Print Network [OSTI]

    Cross, Whitman, 1854-1949.; Eldridge, George Homans, 1854-1905.; Emmons, Samuel Franklin, 1841-1911.

    1894-01-01

    intake relationship to offspring age for black-tailed deer, elk, and white-tailed deer. 61 20 Scalar adjustment to milk energy concentration throughout lactation. 62 21 Scalar adjustment to milk production due to the milk requirement ratio. Milk... and likelihood of return at recreational areas (Swanson et al. 1989, Hastings 1986). Income from hunting operations is a major source of compensatory income for traditional farmers and ranchers (Haney 1983, Hill 1994). While deer are obviously an important...

  5. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi: EnergyS4263135°,Delbuoy Jump

  6. Butte Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEA CooperationSolar

  7. Square Butte Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpion

  8. Twin Buttes Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP) | OpenTrack WindTuvalu:

  9. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to: navigation,ButlerSouthJump to:

  10. Coffin Butte Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: EnergyEnergy InformationGeorgia:Coffey

  11. Mitchell Butte Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View New Pages Recent

  12. Green River Formation water flood demonstration project. Report for the period October 1992--March 1994

    SciTech Connect (OSTI)

    Pennington, B.I.; Lomax, J.D.; Neilson, D.L.; Deo, M.D.

    1994-12-01

    The current project targeted three fluvial deltaic reservoirs in the Uinta Basin, Utah. In primary recovery, the performance of the Monument Butte unit was typical of an undersaturated reservoir whose initial pressure was close to the bubble point pressure. The unit was producing at a rate of 40 stb/day when the water flood was initiated. The unit has been producing at more than 300 stb/day for the past four years. The reservoir characteristics of Monument Butte were established in the geologic characterization study. The reservoir fluid properties were measured in the engineering study. Results of a comprehensive reservoir simulation study using these characteristics provided excellent match with the field production data. Extended predictions using the model showed that it would be possible to recover a total of 20--25% of the oil in place. In the Travis unit, logs from the newly drilled 14a-28 showed extensively fractured zones. A new reservoir was discovered and developed on the basis of the information provided by the formation micro imaging logs. This reservoir also behaved in a manner similar to undersaturated reservoirs with initial reservoir pressures close to the reservoir fluid bubble point. The water flood activity was enhanced in the Travis unit. Even through the reservoir continued to be gradually pressurized, the water flood in the Travis unit appeared to be significantly affected by existing or created fractures. A dual-porosity, dual permeability reservoir model provided a good match with the primary production history. The well drilled in the Boundary unit did not intersect any producible zones, once again illustrating the unique challenges to developing fluvial deltaic reservoirs.

  13. Effects of coal fly-ash disposal on water quality in and around the Indiana Dunes National Lakeshore, Indiana. Water-resources investigations (final)

    SciTech Connect (OSTI)

    Hardy, M.A.

    1981-04-01

    Dissolved constituents in seepage from fly-ash settling ponds bordering part of the Indiana Dunes National Lakeshore (the Lakeshore) have increased trace elements, and gross alpha and gross beta radioactivity in ground water and surface water downgradient from the settling ponds. Data suggest that concentrations of some dissolved trace elements may be greater beneath interdunal pond 2 than in the pond. The soil system downgradient from the settling ponds seems to have affected the concentrations of dissolved ions in the settling-pond seepage. Calcium concentrations were greater in ground water downgradient from the settling ponds than in the ponds. Where organic material was present downgradient from the settling ponds, concentrations of arsenic, fluoride, molybdenum, potassium, sulfate, and strontium were greater in the ground water than in the ponds. In contrast, the concentrations of cadmium, copper, nickel, aluminum, cobalt, lead, and zinc were less.

  14. EXTENSION WATER SUMMIT PRIORITY: WATER CONSERVATION

    E-Print Network [OSTI]

    Slatton, Clint

    EXTENSION WATER SUMMIT PRIORITY: WATER CONSERVATION Leadership Team Subcommittee: Joan Bradshaw Michael Dukes Pierce Jones Kati Migliaccio #12;Water Conservation - Situation · Florida water supplies are used for agriculture, natural resources, salt water intrusion protection, drinking water, industry

  15. Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water

    E-Print Network [OSTI]

    Chen, Tsuhan

    Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

  16. Computerized Waters 

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01

    supply diversions, several hydroelectric plants and numerous environ- mental instream flow requirements. Each of these active permits is included in the datasets. Besides the commission using the WAM/WRAP modeling system in water rights permiting... actions be consistent with relevant regional plans. River authorities, water districts and other water management organizations are beginning to use the WRAP model in operational planning studies to optimize operations of their facilities...

  17. Adams-R-D, Thickness of the earth's crust beneath the Pacific-Antarctic ridge, New Zealand Journal of Geology and Geophysics. 7; 3, Pages 529-542. 1964.

    E-Print Network [OSTI]

    Menke, William

    Journal of Geology and Geophysics. 7; 3, Pages 529-542. 1964. Allen,-R-M., The mantle plume beneath-frequency traveltimes; I, Theory, Geophysical Journal International. 141; 1, Pages 157-174. 2000. Forsyth-D-W , Rayleigh Wave Phase Velocity Variations in a Regionalized Pacific, Eos, Transactions, American Geophysical Union

  18. flow beneath the East Pacific Rise. Nature 402, 282285 (1999). 14. Grove, T. L., Kinzler, R. J. & Bryan, W. B. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds

    E-Print Network [OSTI]

    1999-01-01

    flow beneath the East Pacific Rise. Nature 402, 282­285 (1999). 14. Grove, T. L., Kinzler, R. J. & Bryan, W. B. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Morgan, J. P., Blackman, D. K. Dick, H. J. B. in Magmatism in the Ocean Basins (eds Sounders, A. D. & Norry, M. J.) 71­105 (Geol. Soc

  19. Pore-Water Extraction Scale-Up Study for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Wietsma, Thomas W.; Last, George V.; Lanigan, David C.

    2013-01-15

    The phenomena related to pore-water extraction from unsaturated sediments have been previously examined with limited laboratory experiments and numerical modeling. However, key scale-up issues have not yet been addressed. Laboratory experiments and numerical modeling were conducted to specifically examine pore-water extraction for sediment conditions relevant to the vadose zone beneath the SX Tank Farm at Hanford Site in southeastern Washington State. Available SX Tank Farm data were evaluated to generate a conceptual model of the subsurface for a targeted pore-water extraction application in areas with elevated moisture and Tc-99 concentration. The hydraulic properties of the types of porous media representative of the SX Tank Farm target application were determined using sediment mixtures prepared in the laboratory based on available borehole sediment particle size data. Numerical modeling was used as an evaluation tool for scale-up of pore-water extraction for targeted field applications.

  20. TPCP: Black butt of Acacia mearnsii BLACK BUTT OF ACACIA MEARNSII

    E-Print Network [OSTI]

    . Limiting damage to the roots and bases of the trees is also advised. http://www.up.ac.za/academic/fabi/tpcp/pamphlets contact us. Back to INDEX of pamphlets... http://www.up.ac.za/academic/fabi/tpcp/pamphlets

  1. Water Privatisation 

    E-Print Network [OSTI]

    Zölls, Elisa

    2011-08-17

    This dissertation deals with the policy issues of large-scale, urban water privatisation projects in the face of uncertainty and variability. The main objective is to evaluate whether a single policy approach, namely privatisation associated...

  2. Grabbing Water

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    We introduce a novel technique for grabbing water with a flexible solid. This new passive pipetting mechanism was inspired by floating flowers and relies purely on the coupling of the elasticity of thin plates and the ...

  3. Hanford Site ground-water monitoring for July through December 1987

    SciTech Connect (OSTI)

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  4. Water Resources Policy & Economics

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Water Resources Policy & Economics FOR 4984 Selected Course Topics · Appropriative and riparian water institutions · Incentives for conservation · Water rights for in-stream environmental use · Surface water-groundwater management · Water quality regulations · Water markets · Economic and policy

  5. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    24 Figure 7. Comparison of Daily Water Heater28 Figure 8. Monitored Field Efficiency of Tankless Water28 Figure 9. Monitored Lab Efficiency of Tankless Water

  6. Arnold Schwarzenegger WATER HEATERS AND HOT WATER

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

  7. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    in order to reduce the water and energy wasted in hot waterhot water) and 17% if hot water energy is included. The datafrom the delivered hot water energy of 66% to provide the

  8. Marketing water 

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01

    stream_source_info Marketing water savings.pdf.txt stream_content_type text/plain stream_size 9143 Content-Encoding ISO-8859-1 stream_name Marketing water savings.pdf.txt Content-Type text/plain; charset=ISO-8859-1 tx H2... are partnering with federal and state agencies and universities to develop new programs or market existing ones. In North Central Texas, the city of McKin- ney and Texas AgriLife Research and Exten- sion Urban Solutions Center at Dallas recently began...

  9. Ground-water maps of the Hanford Site Separations Area, December 1987

    SciTech Connect (OSTI)

    Schatz, A.L.; Ammerman, J.J.

    1988-03-01

    The ground-water maps of the Separations Area are prepared by the Environmental Technology Section of the Defense Waste Management Division of Westinghouse Hanford Company. The Separations Area consists of the 200 East and 200 West Areas, where chemical processing activities are carried out. This set of ground-water maps consists of a water-table map of the unconfined aquifer, a depth-to-water map of the unconfined aquifer, and a potentiometric map of the uppermost confined aquifer (the Rattlesnake Ridge sedimentary interbed) in the area where West Lake, the deactivated Gable Mountain Pond, and the B Pond system are located. The Separations Area water-table map is prepared from water-level measurements made in June and December. For the December 1987 map approximately 200 wells were used for contouring the water table. The water-table mound beneath the deactivated U Pond has decreased in size since the June 1987 measurements were taken, reflecting the impact of shutting off flow to the pond in the fall of 1984. This mound has declined approximately 8 ft. since 1984. The water-table map also shows the locations of wells where the December 1987 measurements were made, and the data for these measurements are listed.

  10. Grabbing water

    E-Print Network [OSTI]

    P. M. Reis; J. Hure; S. Jung; J. W. M. Bush; C. Clanet

    2012-07-16

    We introduce a novel technique for grabbing water with a flexible solid. This new passive pipetting mechanism was inspired by floating flowers and relies purely on the coupling of the elasticity of thin plates and the hydrodynamic forces at the liquid interface. Developing a theoretical model has enabled us to design petal-shaped objects with maximum grabbing capacity.

  11. Water in the West

    E-Print Network [OSTI]

    Fahlund, Andrew; Choy, Min L. Janny; Szeptycki, Leon

    2014-01-01

    faced with the imperative that water is vital to all life onChoy* and Leon Szeptycki Water in the West Keywords: climategreen infrastructure; water; water-energy; water governance;

  12. Enabling better water management

    E-Print Network [OSTI]

    Greenslade, Diana

    CASE STUDY Enabling better water management Seasonal Streamflow Forecast Service influencing water decisions Water management decisions made with confidence Using the Bureau's streamflow forecasting, ACTEW Water confidently removed temporary water restrictions after the millennium drought. Millennium drought

  13. Clean Water Act Section 401 Water Quality Certification: A Water...

    Open Energy Info (EERE)

    Clean Water Act Section 401 Water Quality Certification: A Water Quality Protection Tool for States and Tribes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  14. Clean Water Act Section 401 Water Quality Certification A Water...

    Open Energy Info (EERE)

    Clean Water Act Section 401 Water Quality Certification A Water Quality Protection Tool for States and Tribes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  15. Colorado Division of Water Resources Substitute Water Supply Plans Webpage

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation,EnergyColorado Department of

  16. Cleaner, Safer Water through Water Safety Plans

    E-Print Network [OSTI]

    CS232615A Cleaner, Safer Water through Water Safety Plans National Center for Environmental Health (NCEH) Global Water, Sanitation, and Hygiene Team's Water Safety Plan Assistance 1.5 million deaths occur globally every year due to a lack of clean water, inadequate sanitation, and improper hygiene (1

  17. Ground water provides drinking water, irrigation for

    E-Print Network [OSTI]

    Saldin, Dilano

    they join tributaries to the Mississippi River. · The deep ground water divide is the underground boundary Deep ground water divide Racine Kenosha Walworth Waukesha Washington Ozaukee Milwaukee LAKE MICHIGANGround water provides drinking water, irrigation for crops and water for indus- tries. It is also

  18. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    8 Assess California’s Small Gas Storage Water HeaterAssess California’s Small Gas Storage Water Heater Marketassess California’s small gas storage water heater market.

  19. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos and Videos/01/2012 Page 1Water Power

  20. Efficient Water Use & Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy...

  1. Saving Water Saves Energy

    E-Print Network [OSTI]

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-01-01

    P. Potential Water and Energy Savings from Showerheads,Saving Water Saves Energy James E. McMahon, Camilla Dunhamavailable products. The energy savings associated with water

  2. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    paper describing produced water from production of crudeEmerging Issues Paper: Mine Water Pollution. Dep. Environ.40. Vine G. 2010. Cooling water issues and opportunities at

  3. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01

    with Subantarctic Mode Water. J. Geophys. Res. , 116,Global Climate] Stratospheric water vapor [in “State of the18 2. Total column water

  4. Storm Water Analytical Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Individual Permit Storm Water Analytical Period Storm Water Analytical Period The Individual Permit authorizes the discharge of storm water associated with historical industrial...

  5. Water in the West

    E-Print Network [OSTI]

    Fahlund, Andrew; Choy, Min L. Janny; Szeptycki, Leon

    2014-01-01

    connections between water and energy, advances in knowledgeimportant nexus between water and energy. The demand fortwo reports on the water and energy nexus highlighting the

  6. Saving Water Saves Energy

    E-Print Network [OSTI]

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-01-01

    P. Potential Water and Energy Savings from Showerheads,shorter showers). Water- and energy- conserving activitiesstress imposed on limited water (and energy) supplies from

  7. Ground-water surveillance at the Hanford Site for CY 1983

    SciTech Connect (OSTI)

    Prater, L.S.; Rieger, J.T.; Cline, C.S.; Jensen, E.J.; Liikala, T.L.; Oster, K.R.

    1984-07-01

    Operations at the Hanford Site have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents contain low level of radioactive and chemical substances. During 1983, 328 monitoring wells were sampled at various times for radioactive and chemical constituents. Three of these constituents, specifically tritium, nitrate, and gross beta activity, were selected for detailed discussion in this report because they are more readily transported in the ground water than some of the other constituents. Transport of these constituents in the ground water has resulted in the formation of plumes that can be mapped by contouring the analytical data obtained from the monitoring wells. This report describes recent changes in the configuration of the tritium, nitrate and gross beta plumes. Changes or trends in contaminant levels in wells located within both the main plumes (originating from the 200 Areas) and the smaller plumes are discussed in this report. Two potential pathways for radionuclide transport from the ground water to the environmental are discussed in this report, and the radiological impacts are examined. In addition to describing the present status of the ground water beneath the Hanford Site, this report contains the results of studies conducted in support of the ground-water surveillance effort during CY 1983. 21 references, 26 figures, 5 tables.

  8. Sulfur isotope evidence for regional recharge of saline water during continental glaciation, north-central United States

    SciTech Connect (OSTI)

    Siegel, D.I. )

    1990-11-01

    Sulfate concentrations in ground water from the Cambrian-Ordovician aquifer of south-eastern Wisconsin and northern Illinois increase up to hundreds of times where the aquifer is confined beneath the Maquoketa Shale. There is no sulfate source in the aquifer or overlying rocks except for minor amounts of finely disseminated pyrite. Coinciding with increasing sulfate concentrations, {delta}{sup 34}S of the dissolved sulfate increases from less than {minus}5{per thousand} in the unconfined part of the aquifer to a nearly constant value of +20{per thousand} where the aquifer is confined and where sulfate reduction is minimal. The most likely source for this isotopically heavy sulfate is ground water associated with Silurian evaporites under Lake Michigan. It is uncertain if the sulfate-rich water was emplaced in pulses or mostly during the last glaciation.

  9. Drinking Water Standards 

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.

    2006-04-26

    This publication explains the federal safety standards for drinking water provided by public water supply systems. It discusses the legal requirements for public water supplies, the maximum level allowed for contaminants in the water...

  10. Drinking Water Problems: Nitrates 

    E-Print Network [OSTI]

    Dozier, Monty; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Lesikar, Bruce J.

    2008-03-28

    at http://ag.arizona.edu/pubs/water/ az9420.pdf. ?Drinking Water Treatment: Distillation.? Nebraska Cooperative Extension. Available at http://ianrpubs. unl.edu/water/g1493.htm. ?Electrodyalisis.? GE Infrastructure Water & Process Technologies. General...

  11. Integrated regional water management: Collaboration or water politics as usual?

    E-Print Network [OSTI]

    Lubell, Mark N.; Lippert, Lucas

    2010-01-01

    the water quality and waste water elements. At the sameAll water supply, waste water, and flood control agenciesprovide services like waste water treatment and drinking

  12. Water watch

    SciTech Connect (OSTI)

    Not Available

    1991-02-01

    The Hydropower Generation Report provides generation figures for the largest hydropower producers in each of six regions in the US. The report compares, for each month, the amount of hydroelectricity generated (in thousands of megawatt-hours) by each producers in the last two years to the ten-year average for that month. This database is used to figure long-term generation averages and percent of averages. The producers regularly provide current generation data to update the database. This issue of [open quotes]Water Watch[close quotes] focuses on winter snow conditions across the US as of mid-January. In addition, the department provides an outlook of spring flood potential. The information presented is based on data from the US Geological Survey, the National Weather Service, and the Soil Conservation Service.

  13. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    Geothermal . 20 Energy Used for Water Services . 20 Transporting Water 21 Pumping Groundwater. 22 Treating Wastewater 23 Desalination ..

  14. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  15. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  16. EXTENSION WATER SUMMIT PRIORITY: WATER QUALITY

    E-Print Network [OSTI]

    Slatton, Clint

    EXTENSION WATER SUMMIT PRIORITY: WATER QUALITY Leadership Team Subcommittee: Mark Clark Karl Havens BJ Jarvis Kelly Morgan Ramesh Reddy #12;Water Quality ­ Situation (resources) Florida has extensive and diverse water resources 54,836 miles of rivers and streams 1.8 million acres of lakes, reservoirs

  17. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  18. Hanford Site ground-water monitoring for January through June 1988

    SciTech Connect (OSTI)

    Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

    1989-05-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

  19. Water Basins Civil Engineering

    E-Print Network [OSTI]

    Provancher, William

    Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

  20. Grains, Water Introduction

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Grains, Water & Wet Sand Onno Bokhove Introduction Dry Granular Chute Flows: Cantilever Water Waves: Bores Near the Shore Surf Induced Sand Dynamics Discussion Dry Granular Flows, Water Waves & Surf, Water & Wet Sand Onno Bokhove Introduction Dry Granular Chute Flows: Cantilever Water Waves: Bores Near

  1. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 9: Water in Agriculture () January 13, 2010 1 / 14 #12;Water in Agriculture Historically: Biggest consumer of water, in developed kilos of sugar. Though the source of water in all the three cases is usually different. Agriculture

  2. Household Water Quality Home Water Quality Problems

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Household Water Quality Home Water Quality Problems­ Causes and Treatments Blake Ross, Extension impurities can be corrected if they are a nuisance. Before beginning any treatment plan, have water tested select the most effective and economical treatment method. www.ext.vt.edu Produced by Communications

  3. Review: Globalization of Water

    E-Print Network [OSTI]

    Tennant, Matthew Aaron

    2009-01-01

    Review: Globalization of Water: Sharing the Planet’sAshok K. Globalization of Water: Sharing the Planet’s140) liters of virtual water (p. 15). This is one of the

  4. RETORT WATER PARTICULATES

    E-Print Network [OSTI]

    2011-01-01

    layer of retort water from the filter surface, (3) crystaldeep layer of retort water from the filter surface, from C02distilled water before placing the filter RETORT OPERATING

  5. Lawn Water Management 

    E-Print Network [OSTI]

    McAfee, James

    2006-06-26

    Water is a limited resource in Texas. This booklet explains how homeowners can establish a water management program for a home lawn that both maintains a healthy sod and also conserves water. The publication discusses soil types, grass varieties...

  6. Saving Water Saves Energy

    E-Print Network [OSTI]

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-01-01

    H. , Groves D. California Water 2030: An Efficient Future,Preemption of California’s Water Conservation Standards for2Epdf Biermayer P. Potential Water and Energy Savings from

  7. Landscape Plants: Fertilizing & Watering

    E-Print Network [OSTI]

    Ishida, Yuko

    Landscape Plants: Fertilizing & Watering Landscape Plants: Fertilizing & Watering Prevent runoff and shrubs, either through directly killing plants or making them more prone to disease. Fertilizer runoff into storm drains pollutes waterways. Maintain plant health and protect water quality by fertilizing

  8. Water Conservation Tips

    E-Print Network [OSTI]

    Brown, Martha

    2008-01-01

    Gardener Water Conservation Tips fo r t h e UCSC Farm &aware of the need to use water responsibly, whether or notcut landscape and garden water needs. Here we share some of

  9. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    2009. Thirsty Energy: Water and Energy in the 21st Century.Summary Points 1. Water and energy are strongly dependent onof bioenergy increases water and energy interdependence. 3.

  10. Carbon and Water Resource Management for Water Distribution Systems

    E-Print Network [OSTI]

    Hendrickson, Thomas Peter

    2013-01-01

    4 April, 2013. (4) 2010 Water Use Survey Summary Estimates –State Totals; Texas Water Development Board: Austin, TX,indicators for urban water systems. Urban Water. 2004, 4,

  11. Water Efficiency Goal Guidance

    Broader source: Energy.gov [DOE]

    The Council on Environmental Quality (CEQ) issued water efficiency goal guidance in Federal Agency Implementation of Water Efficiency and Management Provisions of Executive Order 13514. This...

  12. Drinking Water Problems: Copper 

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.; Lesikar, Bruce J.

    2006-01-25

    High levels of copper in drinking water can cause health problems. This publication explains the effects of copper in water and methods of removing it. 4 pp....

  13. Irrigation Water Quality Salinity Management

    E-Print Network [OSTI]

    and industrial waste water can impact water quality. In most irrigation situations, the primary water qual- ity

  14. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  15. Enhancing Drinking Water Supply by Better Understanding Surface Water Ground Water Interaction

    E-Print Network [OSTI]

    Rhode Island, University of

    Enhancing Drinking Water Supply by Better Understanding Surface Water ­ Ground Water Interaction Primary Investigators Thomas Boving Anne Veeger Patricia Logan #12;Enhancing Drinking Water Supply by Better Understanding Surface Water ­ Ground Water Interaction Thomas Boving, Anne Veeger & Patricia Logan

  16. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    E-Print Network [OSTI]

    McNeil, Michael

    2008-01-01

    Fixtures Market Overview: Water Savings Potential forNew Jersey. American Water Works Association ResearchResidential End Uses of Water (REUWS). 1999. American Water

  17. Irrigation Water Quality 

    E-Print Network [OSTI]

    McFarland, Mark L.; Lemon, Robert G.; Stichler, Charles

    2002-04-11

    Irrigation water quality is determined by the total amounts of salts and the types of salts the water contains. In this publication you'll learn why well water can be salty, what problems salty water can cause, what tests should be done...

  18. Landscape Design & Water Quality

    E-Print Network [OSTI]

    Ishida, Yuko

    drainage lines to allow water to filter into surrounding soils. Install gravel sumps or other percolationLandscape Design & Water Quality Landscape Design & Water Quality Create a landscape design that reduces pesticide and fertilizer runoff and conserves water. Good plant choices, proper site preparation

  19. Drinking Water Problems: Corrosion

    E-Print Network [OSTI]

    valves and other water control surfaces, creating leaks inside and outside of valves and faucetsDrinking Water Problems: Corrosion Mark L. McFarland, Tony L. Provin, and Diane E. Boellstorff* Professor and Extension Water Quality Coordinator, Professor and Extension Water Testing Laboratory Director

  20. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 8: Wells () August 28, 2012 project, utilizing enhanced ground-water. Water lifted from storage, to accumulate overnight from aquifer. Water from shallow aquifer, of about 7-8m thickness. accounts for about 30% of irrigation Unique

  1. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 2: Water cycle, stocks and flows () July 28, 2013 1 / 30 #12;The basic movement of water source: USGS. () July 28, 2013 2 / 30 #12, humidity and air flow. Formation of liquid-water in the Atmosphere-Cloud-Formation Coming Down Rain

  2. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 7: Regional Groundwater than the unit situations that we saw. Surface water/Groundwater interactions. lakes and streams springs (seepage) Ambient water-table movements Seasonal changes Inteference with other water end-users. Inherent

  3. Water Waves Roger Grimshaw

    E-Print Network [OSTI]

    Water Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves nonlinear waves. Throughout the theory is based on the traditional assumptions that water is inviscid

  4. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 5: Aquifer () August 16 above and below the ground, which affect the water balance. surface features affect infiltration parameters related to water: Porosity, specific yield n, Sy : the maximum volume fraction of water

  5. Vadose zone water fluxmeter

    DOE Patents [OSTI]

    Faybishenko, Boris A.

    2005-10-25

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  6. SUSTAINABLE URBAN WATER MANAGEMENT

    E-Print Network [OSTI]

    Das, Suman

    consumption Vehicle production 0.77 0.59 0.79 0.32 4.35 0.44 12.25 2.45 3.85 0.97 (Source: Harto, C; et al% Mining; 1% Decentralized Water Production (LID) Decentralized Energy Production Urban Farming #12;Water Footprint of Agricultural Products #12;`Water for Energy' and `Energy for Water' in US Water for Energy

  7. Water Management Best Practices 

    E-Print Network [OSTI]

    Hoffman, W.

    2011-01-01

    Municipal Manufacturing Mining Steam Electric Agriculture New Codes & Standards Green Certification& Labeling Programs ? Green Restaurants, Hotels, etc. ? Green Guide for Health Care ? LEED ? GBI ? EPA Water Sense ? EPA Energy Star US Green... of Assistance ? Texas Water Development Board ? www.twdb.state.tx.us ? California Urban Water Conservation Council ? www.cuwcc.org ? Alliance for Water Efficiency www.allianceforwaterefficiency.org ? EPA Water Sense and Energy Star Programs ? www...

  8. Ground water and energy

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  9. Innovative Water Reuse 

    E-Print Network [OSTI]

    Jaber, F. H.

    2011-01-01

    . Introduction 2. Water conservation indoors 1. Retrofit practices 2. Cooling towers 3. Education 3. Water conservation outdoors 1. Landscape practices 2. Irrigation 3. Rainwater harvesting 4.Greywater 4. Stormwater management 1.Rain... ? Plant selection ? Irrigation practices What Can We Do? (cont?d) ? Water Conservation ? New buildings ? Greywater reuse ? Efficient water towers ? A/C Condensate reuse Bathroom ? Faucet Aerators ? Aerators mix air and water together...

  10. Geology And A Working Conceptual Model Of The Obsidian Butte...

    Open Energy Info (EERE)

    conceptual model has been developed for the southwestern portion of the Salton Sea geothermal system, the region encompasing CalEnergy Operating Company's imnent 'Unit 6'...

  11. EA-1996: Glass Buttes Radio Station, Lake County, Oregon

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management (BLM), with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, is preparing an EA that will evaluate the potential environmental impacts of a proposal to construct two telecommunications facilities, one of which would provide BPA telecommunications services, on BLM land. Additional information is available at http://www.blm.gov/or/districts/prineville/plans/glassbuttes/.

  12. SRM 2372: Past, Present, Erica Butts, Margaret Kline,

    E-Print Network [OSTI]

    of absorbance and is traceable to the unit 1. The conventional conversion factor for aqueous DNA: dsDNA 1.0 D10.0) Certified for spectroscopic traceability in units of decadic attenuance, D10. The D10 scale is a measure absorbance of these dsDNA solutions had increased significantly, suggesting partial conversion to single

  13. How Can We Control Fomes Root and Butt Rot?

    E-Print Network [OSTI]

    Forest Area Is Distributed As Follows: · Cool Wet 40 · Cool Moist 17 · Warm Wet 06 · Warm Moist 27 · Warm Dry 10 (% Total High Forest Area) #12;How Do We Assess Hazard? 2. Soils Hazard Rating: · Brown earths soils #12;COOL AND WET 100% Low Hazard #12;51% Low 49% Medium COOL AND MOIST #12;12% Low 56% Medium 32

  14. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy InNovember 25, 2008InnovationDepartment of

  15. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy InNovember 25, 2008InnovationDepartment

  16. Sigurd Red Butte No2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for LowInformationShoshoneEnergyMountain, Tennessee:

  17. Box Butte County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to: navigation, search EquivalentOhio:Box

  18. Butte County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to: navigation,Butler

  19. Butte County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to: navigation,ButlerSouth Dakota:

  20. Butte Falls, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to: navigation,ButlerSouth

  1. Multispectral Imaging At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergy Information Martin, Et Al.,

  2. Aeromagnetic Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan UKRenewable2004)Information

  3. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCEPueblo, New Mexico | Department ofInnovative

  4. Dr. Calvin O. Butts, III | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan2 In theArunPlasmaCalvin

  5. Use and abandonment of surface impoundments for the disposal of oil-field produced waters

    SciTech Connect (OSTI)

    Johnson, D.S. (California Regional Water Quality Board, Fresno (USA))

    1990-05-01

    Surface impoundments, or sumps, are utilized for the disposal of oil-field produced water through percolation and evaporation in California's San Joaquin basin. Environmental concerns have resulted in increased regulation of sumps. Surface disposal of produced waters into unlined sumps is permitted where the quality of the produced water meets the stated criteria in the applicable basin plan as regulated by the local regional water quality control board. In the San Joaquin Basin, surface disposal is initially governed by the Tulare Lake basin plan (5D). A basin plan permits disposal into sumps of produced waters which do not exceed a maximum electrical conductivity, chlorides content, or boron content in areas which overlie useable groundwater. If the produced water exceeds any one of the maximum constituent levels, regulation of surface disposal passes to Title 23, California code of Regulations, sections 2,510-2,601 (subchapter 15). Subchapter 15 regulates the use and abandonment of lined surface impoundments designed to dispose of produced water through evaporation. Subchapter 15 requires the operator to conduct a site hydrogeologic characterization, install a groundwater monitoring system, and construct and enclose the surface impoundment in accordance with specified criteria. Sumps can be utilized in areas which do not meet the criteria of the appropriate basin plan, or subchapter 15, where the operator demonstrates that surface percolation of the produced waters will not degrade underlying useable groundwater. Abandonment of unlined sumps includes removal and disposal of all free liquids, analysis of sludges and soils beneath the sumps, removal of contaminated sludges and soils, analysis of soils after removal of contaminated sludges and soils, backfilling of the sump, and revegetation of the site.

  6. Distribution and geochemistry of contaminated subsurface waters in fissured volcanogenic bed rocks of the Lake Karachai Area, Chelyabinsk, Southern Urals

    SciTech Connect (OSTI)

    Solodov, I.N.; Belichkin, V.I.; Zotov, A.V.; Kochkin, B.T.; Drozhko, E.G.; Glagolev, A.V.; Skokov, A.N.

    1994-06-01

    The present investigation is devoted to the study of the distribution and geochemistry of contaminated subsurface waters, beneath the site of temporary storage of liquid radioactive waste known as Lake Karachai. For this purpose a method of hydrogeochemical logging (HGCL) together with standard hydrogeochemical and geophysical methods of uncased hole logging were used. The distribution of sodium nitrate brine plumes in the subsurface was determined by the physical and physico-chemical properties of these brines and by the petrochemical composition of enclosing rocks and the structural setting of the flow paths. The latter is represented by fractures and large faults in the bedrock of volcanogenic and volcanogenic-sedimentary rocks of intermediate-to-basic composition. The volcanogenic rocks are overlain in some places by a thin cover of unconsolidated sediments, i.e., by loams and relatively impermeable silts. Contaminated waters flow-in accordance with the eluvium bottom relief towards local areas of natural (Mishelyak and Techa rivers) and artificial (Novogomenskii water intake) discharge of subsurface waters. The large Mishelyak fault, southwest of Lake Karachai and under fluvial sediments of the Mishelyak, is assumed to significantly influence the flow pattern of contaminated waters, diverting them from an intake of drinking water.

  7. 40 CFR 265 interim status indicator-evaluation ground-water monitoring plan for the 216-B-63 trench

    SciTech Connect (OSTI)

    Bjornstad, B.N.; Dudziak, S.

    1989-03-01

    This document outlines a ground-water monitoring plan for the 216-B-63 trench located in the northeast corner of the 200-East Area on the Hanford Site in southeastern Washington State. It has been determined that hazardous materials (corrosives) were disposed of to the trench during past operations. Installation of an interim-status ground-water monitoring system is required to determine whether hazardous chemicals are leaching to the ground water from beneath the trench. This document summarizes the existing data that are available from near the 216-B-63 trench and presents a plan to determine the extent of ground-water contamination, if any, derived from the trench. The plan calls for the installation of four new monitoring wells located near the west end of the trench. These wells will be used to monitor ground-water levels and water quality immediately adjacent to the trench. Two existing RCRA monitoring wells, which are located near the trench and hydraulically upgradient of it, will be used as background wells. 46 refs., 15 figs., 12 tabs.

  8. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  9. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  10. Freeing up Water 

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01

    Freeing up Water Story by Kathy Wythe Freeing up Water Brush control efforts yield water tx H2O | pg. 15 For 10 years during the 1990s drought, H. R.Wardlaw, a West Texas rancher, watchedand waited. He watched as the Middle Concho River and Rocky... and Water Conservation Board and designed to increase water yield by removing or controlling water-con- suming plants such as mesquite, cedar and saltcedar. In 2004, just as he finished excavating cedar, aerially spraying mesquite and hand spraying...

  11. Water produced at the University of Iowa Water treatment plant

    E-Print Network [OSTI]

    Neiman, Maurine

    Water produced at the University of Iowa Water treatment plant meets or surpasses all federal and state drinking-water standards at this time. For information about the University of Iowa water supply, call us at 319-335-5168 Water Source The University of Iowa Water Plants' primary source of water

  12. Water Scarcity and Energy: Water and Power Efficiency of

    E-Print Network [OSTI]

    Scott, Christopher

    ) #12;Water Scarcity = Power Scarcity Lower water availability Lower hydro power availabilityWater Scarcity and Energy: Water and Power Efficiency of Recycled Water Arizona Hydrological and Population Growth · Types of Reuse · Water Efficiency of Reuse · Power Efficiency of Reuse #12;Water Scarcity

  13. Walking on water

    E-Print Network [OSTI]

    Bush, John W. M.

    The ingenious methods employed by insects and spiders to move across a water surface rely on microphysics that is of little use to larger water walkers but of considerable interest to the microfluidics community.

  14. Federal Water Use Indices

    Broader source: Energy.gov [DOE]

    FEMP provides water use indices as a guide for Federal agencies. Note that each is a rough estimate of water usage at different types of sites. Your site may vary considerably.

  15. Water Tower - 14 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Previous studies using tertiary amines to extract water from reagent-grade carboxylate salts (calcium acetate, propionate, and butyrate) have shown selectivity for water and not for the carboxylate salts. These results ...

  16. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Building Numerical Models () August of surface flow of water and infiltration which may include time to flow, movement of solids etc. () August

  17. A gathering of water

    E-Print Network [OSTI]

    Horowitz, Naomi Leah, 1970-

    2005-01-01

    The act of immersion is a powerful catalyst for the affirmation or transformation of identity. How we place ourselves in water expresses cultural valuations of our bodies, water, and social relations, as well as categories ...

  18. Water Conservation Tips

    E-Print Network [OSTI]

    Brown, Martha

    2008-01-01

    Water Needs breath. Adding compost to sandy soils helps thesoil retain water longer—the compost acts like a sponge,from applications of compost and other organic matter. For

  19. Water & Energy Conservation Plan

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Poornima Group of Colleges, Jaipur, Rajasthan, India #12;Executive Summary This document for Poornima Group's conservation efforts over the next eight years. PGC currently maintains an unsustainable method of water use Environmental Crisis Poornima Group of Colleges Water

  20. What's In My Water

    E-Print Network [OSTI]

    Provin, Tony; Pitt, John L.

    2003-04-21

    You can learn about the quality of your water by sending a sample to a laboratory for analysis. This publication will help you understand the lab report by explaining the properties, components and contaminants often found in water. It describes...

  1. Drinking Water Problems: Benzene 

    E-Print Network [OSTI]

    Dozier, Monty; Lesikar, Bruce J.

    2009-04-16

    , chlorine, radon and some metals. A typical water softener will not remove benzene from water. Home granular activated carbon systems are usu- ally simple. The activated charcoal is packaged in filter cartridges that are inserted into a purification...

  2. Drinking Water Problems: MTBE 

    E-Print Network [OSTI]

    Dozier, Monty; Lesikar, Bruce J.

    2008-08-28

    organic compounds, pesticides and benzene, and can also re- move some metals, chlorine and radon. A typical water softener will not remove MTBE from water. Home granular activated carbon filtering systems are usually simple. The activated charcoal...

  3. Drinking Water Problems: Arsenic 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Dozier, Monty

    2005-12-02

    High levels of arsenic in drinking water can poison and even kill people. This publication explains the symptoms of arsenic poisoning and common treatment methods for removing arsenic from your water supply....

  4. Indian Water 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Indian Water is a call to help plan a national water summit. This strategic session consist of a facilitated dialog with tribal leaders on important opportunities, challenges and tactics, which...

  5. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    Hydroelectricity for agriculture and hydroelectricity. Large volumes of waterElectricity Production Hydroelectricity The most common type

  6. Water in the West

    E-Print Network [OSTI]

    Fahlund, Andrew; Choy, Min L. Janny; Szeptycki, Leon

    2014-01-01

    hydraulic fracturing (or fracking) fluids, and limited waterEngelder, “Natural gas: Should fracking stop? ” Nature 477 (

  7. Technology in water conservation 

    E-Print Network [OSTI]

    Finch, Dr. Calvin

    2013-01-01

    ?? percent to ?? percent. Water reuse systems treat wastewater by various technologies including ?ltering, bioremediation and ozone exposure. ?ese technologies can involve billions of gallons of wastewater ? such as in a municipal recycling e... Column by Dr. Calvin Finch, Water Conservation and Technology Center director WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future It is not unusual for individuals to describe water conservation as a behavioral exercise and urge...

  8. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    into a water source—thermal pollution—has also led to theimpacts from this thermal pollution, including the

  9. Plugging Abandoned Water Wells 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2002-02-28

    is abandoned without proper plugging, upward flow of salty water from the deeper aquifer may cause contamination of the shallow, fresh water aquifer. Also, any pollu- tants that occur in one zone can migrate to another zone through a well. Unplugged abandoned... wells may deplete pres- sure within an aquifer. Pressure in artesian aquifers decreases as water discharges at land surface or to less pressurized aquifers. Eventually a drop in pres- sure causes flowing wells to stop flowing and the water level...

  10. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE...

  11. Integrated regional water management: Collaboration or water politics as usual?

    E-Print Network [OSTI]

    Lubell, Mark N.; Lippert, Lucas

    2010-01-01

    patterns, and implications." Water Policy 2 (3):175-99.A. K. 2004. "Integrated water resources management: areassessment." Water International 29 (2):248-56. Blomquist,

  12. Review: Water, Peace, and War: Confronting the Global Water Crisis

    E-Print Network [OSTI]

    Tans, Eric

    2014-01-01

    Review: Water, War, and Peace:Confronting the Global Water Crisis By Brahma ChellaneyUSA Chellaney, Brahma. Water, Peace, and War: Confronting

  13. STORM WATER Residential

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    STORM WATER QUALITY HOTLINE UCSC Residential Car Washing http THAT MAY CAUSE ENVIRONMENTAL HARM TO THE STORM WATER QUALITY HOTLINE: (831) 459-2553. LIKE US ON FACEBOOK AT UCSC STORM WATER MANAGEMENT PROGRAM! DID YOU KNOW? PRACTICAL SOLUTIONS > USE A COMMERCIAL CAR WASH

  14. Water treatment method

    DOE Patents [OSTI]

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  15. California's Water Energy Relationship

    E-Print Network [OSTI]

    1 CALIFORNIA ENERGY COMMISSION California's Water ­ Energy Relationship Prepared in Support The California's Water-Energy Relationship report is the product of contributions by many California Energy, Lorraine White and Zhiqin Zhang. Staff would also like to thank the members of the Water-Energy Working

  16. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 6: Mathematics, z). velocity vx (x, y, z, t) : in the x-direction. vx = Kx h/x saturated/water- table. Continuity Equation What is vx x + vy y + vz z ? It is the rate of accumulation of water at the point (x, y

  17. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 1: A Perspective () July 20, 2012 1 / 17 #12;Outline Two parts: The technical side to water. -M. Sohoni The basic hydrological cycle. The societal side to water. -N. C. Narayanan () July 20, 2012 2 / 17 #12;Texts Applied Hydrogeology, by C. W

  18. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 4: Groundwater () December in dried sample. Saturation: When these voids are fully filled with water. Specific Yield Sy : the ration of the colume of water that drains from a rock owing to gravity, to the total rock volumne. 00000000

  19. WATER ADVISORY PARTNERSHIP

    E-Print Network [OSTI]

    US Army Corps of Engineers

    COCONINO PLATEAU WATER ADVISORY COUNCIL& WATERSHED PARTNERSHIP 3624 E. Mesquite St. Gilbe~t, Arizona 85296" 1832 Participants: Arizona Department of Environmental Quality Arizona Department of Water City ofFlagstaff City of Page City of Sedona City of Williams Coconino County Doney Park Water Company

  20. Water Resources Research Center

    E-Print Network [OSTI]

    District of Columbia, University of the

    Water Resources Research Center WASHINGTON, DISTRICT Of COLUMBIA #12;ASSESSMENT OF THE STATE OF THE ART AND DEVELOPMENT OF PROPOSED IMPROVEMENTS IN RECREATION BENEFIT, VALUATION FOR WATER RESOURCES PLANNING conducted by Robert C. Waters Vassilios Moustakis Department of Engineering Administration School

  1. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 10: Minor Structures for Ground and Surface Water () March 23, 2010 1 / 31 #12;Classification by Purpose We may classify the velocity of water-flow (ii) increasing the infiltration coefficient (iii) explicit groundwater recharge

  2. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Analysis Framework for the 2009 / 16 #12;Vol II and Vol III Vol. II 1 Annexure I, Chap. 1: Bulk-water and tariffs-Principles. 2 Annexure I, Chap. 2: International Case Studies. 3 Annexure II: Report on water conservation technologies

  3. Saving Water Saves Energy

    SciTech Connect (OSTI)

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-06-15

    Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.

  4. Addressing Water Contamination

    E-Print Network [OSTI]

    Loewith, Robbie

    Addressing Water Contamination without Using Chemicals For more information contact WIPO at: World challenge Farmers and gardeners apply pesticides to their crops. Contaminated waters are released when-off contaminates local water supplies and pollutes the environment. As a consequence a range of pesticides may

  5. Water treatment method

    DOE Patents [OSTI]

    Martin, Frank S. (Farmersville, OH); Silver, Gary L. (Centerville, OH)

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  6. Flat Water Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flats 100k.pdf Jump to:WindP.pdfFireFirstFlag

  7. Colorado Water Courts | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation,EnergyColoradoBank andUniversity Jump

  8. Category:Water References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes Jump to: navigation,Category View

  9. Regional water planning Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    LOCATE: - Villages - Peri-urban area - Farmland - Roads - Stream - Small dam (KT bandhara) - Waste water for irrigation Percolation Fresh water supply Domestic and industrial use Waste water treatment Waste water Discharge waste water recycle Treat and discharge untreated Run-off #12;Urban water cycle DRINKING WATER

  10. What's your water footprint? 

    E-Print Network [OSTI]

    Jordan, Leslie

    2009-01-01

    stream_source_info What's your water footprint.pdf.txt stream_content_type text/plain stream_size 6622 Content-Encoding ISO-8859-1 stream_name What's your water footprint.pdf.txt Content-Type text/plain; charset=ISO-8859...-1 tx H2O | pg. 21 What?s your water footprint? When it comes to your water use, do you tread lightly or are you an H2O Sasquatch? How much water do you think you consume every day? You might initially consider the length of your daily shower...

  11. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01

    including delivered hot water and energy losses. Waterand 17% if hot water energy is included. INTRODUCTION Thedrawn, determines the hot water energy output. The current

  12. Planning Water Use in California

    E-Print Network [OSTI]

    Eisenstein, William; Kondolf, G. Mathias

    2008-01-01

    the University of Maryland Water Policy Collaborative, 2006.FURTH ER READ ING California Department of Water Resources.California Water Plan Update 2005: A Framework for Action.

  13. Super recycled water: quenching computers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Super recycled water: quenching computers Super recycled water: quenching computers New facility and methods support conserving water and creating recycled products. Using reverse...

  14. Groundwater and Terrestrial Water Storage, 

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01

    2003: Tracking fresh water from space. Science, 301, 1485–2007: Mea- suring surface water from space. Rev. Geophys. ,2011:, Stratospheric water vapor trends over Boulder, Colo-

  15. Mitigation, Adaptation, Uncertainty -- Growing Water

    E-Print Network [OSTI]

    Felsen, Martin; Dunn, Sarah

    2008-01-01

    Growing Water Martin Felsen andSarah Dunn The Growing Water project addresses a report fromin the world will face water shortages by 2025, a situation

  16. Toxoplasma gondii Oocysts in Water

    E-Print Network [OSTI]

    Wainwright, Katlyn E.

    2008-01-01

    M. Pavlo. 2005. Do iodine water purification tablets provideof Toxoplasma gondii in water from wells located on farms.Toxoplasma gondii oocysts in water. App. Environ. Micro. 73,

  17. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  18. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  19. Continuous Commissioning of a Central Chilled Water & Hot Water System 

    E-Print Network [OSTI]

    Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

    2000-01-01

    A central chilled water / hot water system provides cooling / heating energy from central utility plants to multiple customers (buildings) through campus distribution loops. To effectively transport the chilled water and hot water to the buildings...

  20. Water Data Report: An Annotated Bibliography

    E-Print Network [OSTI]

    Dunham Whitehead, Camilla; Melody, Moya

    2007-01-01

    Table 5: Public supply water withdrawals, 2000. water withdrawals, 2000. water withdrawals, 2000.

  1. Water Waves from General, Time-Dependent Surface Pressure Distribution in the Presence of a Shear Current

    E-Print Network [OSTI]

    Li, Yan

    2015-01-01

    We obtain a general solution for the water waves resulting from a general, time-dependent surface pressure distribution, in the presence of a shear current of uniform vorticity beneath the surface, in three dimensions. Linearized governing equations and boundary conditions including the effects of gravity, a distributed external pressure disturbance, and constant finite depth, are solved analytically, and particular attention is paid to classic initial value problems: an initial pressure impulse and a steady pressure distribution which appears suddenly. In the present paper, good agreement with previous results is demonstrated. We subsequently show both analytically and numerically how transient waves from a suddenly appearing steady pressure distribution vanis for large times, and steady ship waves remain. The transient contribution to wave resistance was derived. The results show that a shear current has significant impact on the transient wave motions, resulting in asymmetry between upstream and downstream...

  2. West Basin Municipal Water District, California; Water/Sewer

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Exhibit D #12;Summary: West Basin Municipal Water District, California; Water/Sewer Primary Credi90023!! #12;Sttmma1·y: West Basin Municipal Water District, California; Water/Sewer Credit Profile US$16.STANDARDANDPOORS.COM/RATJNGSDJRECT MAY31 2013 2 I126639 I 301008236 #12;Summary: West Basin Municipal Water District, California; Water/Sewer

  3. SA Water Centre for Water Management and Reuse

    E-Print Network [OSTI]

    Li, Jiuyong "John"

    SA Water Centre for Water Management and Reuse #12;2 The SA Water Centre for Water Management and Reuse was established in 2004 as a joint venture between the South Australian Water Corporation and the University of South Australia (UniSA), adding significant expertise to the water research capability in South

  4. SA Water Centre for Water Management and Reuse

    E-Print Network [OSTI]

    Li, Jiuyong "John"

    SA Water Centre for Water Management and Reuse #12;' Our Mission The SA Water Centre for Water Management and Reuse aims to advance the science and technology of sustainable water management through fundamental and applied research. Our Vision To be Australia's leading research centre for water reuse

  5. WATER RESOURCES PLANNING ACT Q:\\COMP\\WATER1\\WRPA

    E-Print Network [OSTI]

    US Army Corps of Engineers

    103 WATER RESOURCES PLANNING ACT Q:\\COMP\\WATER1\\WRPA December 29, 2000 #12;Q:\\COMP\\WATER1\\WRPA December 29, 2000 #12;105 WATER RESOURCES PLANNING ACT [As Amended Through P.L. 106­580, Dec. 29, 2000 planning of water and related land resources, through the establishment of a water resources council

  6. Water Management at UBC Okanagan Part 2: Water Features

    E-Print Network [OSTI]

    Water Management at UBC Okanagan Part 2: Water Features UBC Okanagan 2007 Angele Clarke A SEEDS and Objectives 2 Methods 3 The Symbolic and Cultural Values of Water 3 Landscape Aesthetics Relationship to Water 5 UBC-Okanagan Campus Landscape and Water Features 8 Water Features and the Built Environment Campus

  7. IWA Balkan Young Water Professionals

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    Networks Industrial Waste Treatment and Disposal River Basins Management Legislation in the Water those associated with cross-border water management issues, which require experience exchange among 2015 - Thessaloniki, Greece Topics Water Management (Water Loss ­ Mitigation Methods and Technologies

  8. UC Sustainable Water Systems Policy

    E-Print Network [OSTI]

    Gleeson, Joseph G.

    , or lubricating equipment. Purified Water: Water that is free of impurities such as microorganisms, particulate consumption because it contains objectionable pollution, contamination minerals or infective agents, including water quality standards for human consumption. Reclaimed or Recycled Water: Wastewater treated

  9. Water Heating | Department of Energy

    Energy Savers [EERE]

    Water Heating Water Heating September 2, 2015 - 11:07am Addthis Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo...

  10. Mitigation, Adaptation, Uncertainty -- Growing Water

    E-Print Network [OSTI]

    Felsen, Martin; Dunn, Sarah

    2008-01-01

    system for harvesting and returning clean water to Lakeharvesting for landscape and species health, and surface water and

  11. Water's Hydrogen Bond Strength

    E-Print Network [OSTI]

    Chaplin, Martin

    2007-01-01

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperature...

  12. Arsenic removal from water

    DOE Patents [OSTI]

    Moore, Robert C. (Edgewood, NM); Anderson, D. Richard (Albuquerque, NM)

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  13. WATER QUALITY MODELING OF THE

    E-Print Network [OSTI]

    Keller, Arturo A.

    WATER QUALITY MODELING OF THE STATE OF OHIO COMPONENT OF THE OHIO RIVER BASIN WATER QUALITY TRADING PROGRAM #12;Water Quality Modeling of the State of Ohio Component of the Ohio River Basin Water Quality Trading Program #12;2 Water Quality Modeling of the State of Ohio Component of the Ohio River Basin Water

  14. Selecting a new water heater

    SciTech Connect (OSTI)

    1995-03-01

    This fact sheet describes the types of water heaters available (storage water heaters, demand water heaters, heat pump water heaters, tankless coil and indirect water heaters, and solar water heaters). The criteria for selection are discussed. These are capacity, efficiency rating, and cost. A resource list is provided for further information.

  15. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 3: Watershed and Maps () July 23, 2013 1 / 18 #12;Domain Decomposition p1 p2 p3 p5 p4 surface water A1 A2 A3 A4 A5 salinity ingress water table q W(q) W(p2) The watershed W (x) of a point x is W (x) = {all points y from where

  16. The Mystery of Water

    SciTech Connect (OSTI)

    Nilsson, Anders

    2005-11-21

    Water is essential for our existence on this planet - critical to countless physical, biological, geological and chemical processes - it has defied scientific understanding. Exhibiting peculiar properties such as increased density upon melting and high surface tension, water is one of the most intriguing problems in condensed matter and chemical physics. Current research at SSRL, however, is illuminating the nature of H-bonding, presenting exciting new avenues of research and challenging existing models of water's structure.

  17. Surface Water Quality Standards 

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01

    Standards Team. This advisory group, with representation from water asso- ciations, the agricultural industry, engineering firms, environmental organizations, consumer groups and government entities, is working with TCEQ staff to review and possibly...SURFACE WATER QUALITY STANDARDS AAs part of the ongoing program to manage Texaswater quality, the Texas Commission onEnvironmental Quality (TCEQ) is currently review- ing the Texas Surface Water Quality Standards, including the standards...

  18. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard (Pittsburgh, PA)

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  19. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, a backward--bent duct buoy (BBDB) oscillating water column wave energy converter design. The team from HMRC included Tom Walsh, Brian Holmes, Florent Thiebaut, Neil...

  20. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Partnership, Renewable Energy, Systems Analysis, Systems Engineering, Water Power WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory...

  1. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    Nuclear plants use steam turbines, and cooling water asmajority is used for steam-driven turbines, which generatedelectricity using steam engines, gas turbines, or Stirling

  2. Alkali Soils, Irrigation Waters

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1910-01-01

    ............................................................................ Chloride of soda.. 101 This is an escellcnt water. WATER OF COLORADO RIVER, NEAB SEARON, TEXAS. TPater soluble solids, 1.245 parts per million. MISCELLANEOUS WATERS. The follomirlg ai~alyses give the amount of alkaline salts pre IRIETGITTON WATERS.- S....4LTS IN PARTS PER MILLION . Alkaline Alkaline Alkaline Carbonate Sulphate Chloride I I i 1. 895 ' 1. 558 180 21 112 302 ' 1. 964 703 775 6. 237 F . 934 . 2. 909 635 2. 124 1. 785 951 523 150 1. 788 1. 947 4. 031 1. 698 201...

  3. Cooperating for Cleaner Water 

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01

    . This TMDL plan will budget how much bacteria pollution from point sources (like wastewater treatment facilities) and nonpoint sources (runoff from land) can occur in a single day and still maintain water quality standards. Kerry Niemann, TCEQ project... of water on its 303(d) list (a list of water segments that do not meet water quality standards) and to develop a TMDL for each pollutant that impairs any segment, according to TCEQ docu- ments. TCEQ has adopted 63 TMDLs with EPA approving 60 of those...

  4. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

  5. Forecasting Water Quality & Biodiversity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability Platform Review Principle Investigator: Dr. Henriette I. Jager Organization: Oak Ridge National...

  6. Water Waves and Integrability

    E-Print Network [OSTI]

    Rossen I. Ivanov

    2007-07-12

    The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

  7. WATER TEMPERATURE RECORDS FROM

    E-Print Network [OSTI]

    ? WATER TEMPERATURE RECORDS FROM CALIFORNIA'S CENTRAL VALLEY 1939-1948 Marine Biological i STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE #12;#12;a WATER TEMPERATURE RECORDS FROM arid to avoid delay in publication. Washington D. CWATER TEMPERATURE RECORDS FROM

  8. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, J.E.; Williams, D.W.

    1995-01-01

    A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  9. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, Joao E. (North Augusta, SC); Williams, Daniel W. (Aiken, SC)

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  10. Arkansas Water Resources Center

    E-Print Network [OSTI]

    Soerens, Thomas

    Arkan- sas in order to determine the effect of local manganese, phosphate, pyrite, lead-zinc and uranium mineralization on the groundwater chemistry. Most of this study (75 springs) was concentrated in the Batesville .,.:;, Water Quality. 18 Comparison of Water Chemistry. 27 Geochemical Exploration. 30 Four Minera 1i zed Areas

  11. Achievements and Outlook 2012 SA Water Centre for Water

    E-Print Network [OSTI]

    Mayer, Wolfgang

    Achievements and Outlook 2012 SA Water Centre for Water Management and Reuse #12;Contents Our Breaking News 35 SA Water Centre for Water Management and Reuse University of South Australia Mawson Lakes Campus Mawson Lakes SA 5095 Telephone: +61 (08) 8302 3338 Fax: +61 (08) 8302 3386 Web: unisa.edu.au/water

  12. Headquarters Water Mission Area Water Science Field Team

    E-Print Network [OSTI]

    Headquarters Water Mission Area Water Science Field Team John Ho mann(Tucson, AZ) Chief William Guertal Deputy Associate Director for Water Katie Orsi Executive Assistant Harry House Senior Data Science Support Manager Water Business Operations Gene Summerhill O ce of Water Quality Donna Myers Chief Dave

  13. 1. Introduction Chilled water, a unique resource comprising water and

    E-Print Network [OSTI]

    Ahrendt, Wolfgang

    1. Introduction Chilled water, a unique resource comprising water and energy elements, is commonly the targeted buildings. In typical chilled water systems, chilled water is distributed throughout the building to provide air conditioning and equipment cooling. The chilled water system has been one of the most

  14. The floating water bridge The floating water bridge

    E-Print Network [OSTI]

    Podgornik, Rudolf

    The floating water bridge The floating water bridge Elmar C. Fuchs1 , Jakob Woisetschläger2 , Karl, a stable water connection forms spontaneously, giving the impression of a floating water bridge. A detailed this bridge. 1. Introduction Water undoubtedly is the most important chemical substance in the world. Many

  15. Sources of Water Surface water and groundwater are present throughout

    E-Print Network [OSTI]

    MacAdam, Keith

    Sources of Water Surface water and groundwater are present throughout Kentucky's 39,486 square miles. Surface water occurs as rivers, streams, ponds, lakes, and wetlands. Ground- water occurs underlain by soluble carbonate rocks (for example, limestone). Water Supply · Approximately 49 inches

  16. WATER-TRAPPED WORLDS

    SciTech Connect (OSTI)

    Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  17. Water's Hydrogen Bond Strength

    E-Print Network [OSTI]

    Martin Chaplin

    2007-06-10

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

  18. IRRIGATION WATER QUALITY FOR AGRICULTURE

    E-Print Network [OSTI]

    Radcliffe, David

    IRRIGATION WATER QUALITY FOR AGRICULTURE Irrigation Water Background In the past, there were minor of irrigation water in Georgia. This is because only a small amount of acreage under irrigated agriculture utilized potable (suitable for drinking) quality water. Thus, quality of irrigation water was not closely

  19. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1,2; basement) Pre-heats water so water heaters don't need to use as much energy Gas-powered, high efficiency

  20. WATER SUPPLY A Handbook on

    E-Print Network [OSTI]

    US Army Corps of Engineers

    WATER SUPPLY HANDBOOK A Handbook on Water Supply Planning and Resource Management Institute for Water Resources Water Resources Support Center U.S. Army Corps of Engineers 7701 Telegraph Road Studies Division December 1998 Revised IWR Report 96-PS-4 #12;U.S. Army Institute for Water Resources

  1. Water Rx - The Problem of Pharmaceuticals in Our Nation's Waters

    E-Print Network [OSTI]

    Leitman, Melanie

    2011-01-01

    collaboratively lead in our ef- forts to eliminate Water R.PHARMACEUTICALS IN OUR NATION'S WATERS wastes. 20 5 ThisPharmaceuticals in Surface Waters: Use of NEPA, NAT. Ri:s. &

  2. Water in Asbestos

    E-Print Network [OSTI]

    Fomin, Yu D; Tsiok, E N

    2015-01-01

    We present the molecular simulation study of the behavior of water and sodium chloride solution confined in lizardite asbestos nanotube which is a typical example of hydrophilic confinement. The local structure, orientational and dynamic properties are studied. It is shown that the diffusion coefficient drops about two orders of magnitude comparing to the bulk case, and water in lizardite asbestos tubes experiences vitrification rather then crystallization upon cooling in accordance with the results for some other hydrophilic confinements. The behavior of sodium chloride solutions also considered and the formation of double layer is observed. It is shower that both sodium and chlorine have larger diffusion coefficients then water.

  3. Wind/Water Nexus

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Nobel laureate Richard Smalley cited energy and water as among humanity's top problems for the next 50 years as the world's population increases from 6.3 billion to 9 billion. The U.S. Department of Energy's Wind and Hydropower Program has initiated an effort to explore wind energy's role as a technical solution to this critically important issue in the United States and the world. This four-page fact sheet outlines five areas in which wind energy can contribute: thermoelectric power plant/water processes, irrigation, municipal water supply, desalination, and wind/hydropower integration.

  4. Drinking Water Problems: Radionuclides 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Dozier, Monty

    2006-08-04

    that are radioactive. The most common radionu- clides in drinking water are radium, radon and uranium. Most of the radionuclides in drinking water occur nat- urally at very low levels and are not considered a pub- lic health concern. However, radionuclides can also...-rays, can pass through the human body and are best shielded by dense materials such as lead or thick concrete. levels no higher than 4,000 pCi/L. Because about 1/10,000th of radon in water transfers to air, this would contribute about 0.4 pCi/L of radon...

  5. Water | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos and Videos/01/2012 Page 1WaterWater forWater The

  6. Water | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobsMotionHeatEnergy Solar Training for8 Things YouAboutWater Water Water

  7. California State Water Resources Control Board 401 Water Quality...

    Open Energy Info (EERE)

    California State Water Resources Control Board 401 Water Quality Certification Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California State...

  8. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    Oil Production .quality water (2, 32). Oil Production In 2009, oil supplied90% of U.S. onshore oil production uses between 2.1 and 5.4

  9. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    produced water from production of crude oil, natural gas,the production and processing of each gallon of crude oil (production and processing of 1 gallon (3.8 liters) of crude oil

  10. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    water from production of crude oil, natural gas, and coaleach gallon (3.79 liters) of crude oil. When combined withto refine each gallon of crude oil, between 3.6 and 7.0

  11. UV water disinfector

    DOE Patents [OSTI]

    Gadgil, Ashok (El Cerrito, CA); Garud, Vikas (Bombay, IN)

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system, and an air-suspended bare UV lamp. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir.

  12. Contaminating Fresh Waters (Florida)

    Broader source: Energy.gov [DOE]

    It is illegal to discharge any dyestuff, coal tar, oil, sawdust, poison, or deleterious substances into any fresh running waters in Florida in quantities sufficient to injure, stupefy, or kill fish...

  13. Water Sample Concentrator

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  14. Cooling Water System Optimization 

    E-Print Network [OSTI]

    Aegerter, R.

    2005-01-01

    During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower...

  15. Energy and Water Act

    Broader source: Energy.gov (indexed) [DOE]

    Letter 2004-02 - FY 2004 Le2islation Provisions (dated March 1.2004) Energy and Water Act AL-2004-02 provides guidance regarding the implementation of Section 30 I. 304....

  16. Optimization of Cooling Water 

    E-Print Network [OSTI]

    Matson, J.

    1985-01-01

    A cooling water system can be optimized by operation at the highest possible cycles of concentration without risking sealing and fouling on heat exchanger surfaces. The way to optimize will be shown, with a number of examples of new systems....

  17. Electrolysis of Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis of Water Grades: 5-8 Topic: Hydrogen and Fuel Cells, Solar Owner: Florida Solar Energy Center This educational material is brought to you by the U.S. Department of...

  18. UV water disinfector

    DOE Patents [OSTI]

    Gadgil, A.; Garud, V.

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system and an air-suspended bare UV lamp are disclosed. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir. 7 figs.

  19. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H. (Concord, MA)

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  20. Purifying contaminated water

    DOE Patents [OSTI]

    Daughton, Christian G. (San Pablo, CA)

    1983-01-01

    Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  1. Water Quality Criteria Introduction ....................................................................................................................................798

    E-Print Network [OSTI]

    Pitt, Robert E.

    APPENDIX G Water Quality Criteria CONTENTS Introduction ....................................................................................................................................798 EPA's Water Quality Criteria and Standards Plan -- Priorities for the Future............................798 Compilation of Recommended Water Quality Criteria and EPA's Process for Deriving New

  2. Designing Water Smart Landscapes Activity

    E-Print Network [OSTI]

    Designing Water Smart Landscapes Activity Objective: Create a water smart home landscape. Materials://aggie-horticulture.tamu.edu/plantanswers/publications/publications.html Draw the plants, using tracing paper. Citizenship Activity Develop a water smart plan for a non

  3. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01

    B: Input Screens SCREEN D1: WATER HEATER SPECIFICATIONS 1.no baffle present SCREEN G: WATER SUPPLY AND DRAW PIPEfor EIDs (sec) 0.0 9. Supply Water Temperature (F) 58.00 10.

  4. Emergency Food and Water Supplies 

    E-Print Network [OSTI]

    Van Laanen, Peggy

    1999-05-14

    Creating an emergency supply of food and water, and knowing how to safely handle food and water after a disaster, can reduce stress, worry and inconvenience. This publication provides information on water supply storage and purification...

  5. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01

    forty gallon residential gas-fired storage water heater wasthat could replace a gas-fired storage water heater with adefined a baseline gas-fired storage water heater that meets

  6. Spatial Water Balance in Texas 

    E-Print Network [OSTI]

    Reed, Seann; Maidment, David; Patoux, Jerome

    1994-01-01

    different components of the hydrologic cycle - an atmospheric water balance, a soil-water balance, and a surface water balance. These models were constructed using a geographic information system (GIS). A GIS provides a framework for storing and manipulating...

  7. The Chilled Water and Hot Water Building Differential Pressure Setpoint Calculation - Chilled Water and Hot Water Pump Speed Control 

    E-Print Network [OSTI]

    Turner, W. D.; Bruner, H., Jr.; Claridge, D.; Liu, C.; Deng, S.

    2002-01-01

    Water and Hot Water Building Deferential Pressure Setpoint Calculation ? Chilled Water and Hot Water Pump Speed Control Chenggang Liu Research Associate Energy Systems Laboratory Texas A&M University College Station, TX Homer L. Bruner... of chilled water and hot water consumption with the leaking control valves on the cooling and heating coils. Variable speed pumps save cooling and heating energies. However, most of these advantages are lost when proper speed control is not maintained...

  8. Molded polymer solar water heater

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  9. Virgin Islands Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    , Recreation, Waste Water Descriptors: Water Quality Standards,Water Quality Monitoring, Water Quality, Viruses

  10. Turing Water into Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

  11. Water Network Design by MINLP

    E-Print Network [OSTI]

    2008-02-12

    We propose a solution method for a water-network optimization problem using a ... The optimal design of a WDN (Water Distribution Network) consists, in its ...

  12. Efficient Residential Water Heaters Webinar

    Broader source: Energy.gov [DOE]

    A webinar by Jerone Gagliano, director of Energy Engineering Performance Systems Development, about residential water heating technology and how to choose the right water heater.

  13. System for treating produced water

    DOE Patents [OSTI]

    Sullivan, Enid J. (Los Alamos, NM); Katz, Lynn (Austin, TX); Kinney, Kerry (Austin, TX); Bowman, Robert S. (Lemitar, NM); Kwon, Soondong (Kyungbuk, KR)

    2010-08-03

    A system and method were used to treat produced water. Field-testing demonstrated the removal of contaminants from produced water from oil and gas wells.

  14. Water for future Mars astronauts?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water for future Mars astronauts? Water for future Mars astronauts? Within its first three months on Mars, NASA's Curiosity Rover saw a surprising diversity of soils and sediments...

  15. Sandia Energy - Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sources and water distribution systems are protected from accidental of intentional contamination events and that reliable systems are in place should an event occur. As water...

  16. Mitigation, Adaptation, Uncertainty -- Growing Water

    E-Print Network [OSTI]

    Felsen, Martin; Dunn, Sarah

    2008-01-01

    intercept combined sewer and stormwater overflow in the citythat naturally manages stormwater and improves waterChicago’s wastewater and stormwater. Treated water would be

  17. Sandia Energy - Conventional Water Power: Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  18. Nanostructured Hematite for Photoelectrochemical Water Splitting

    E-Print Network [OSTI]

    Ling, Yichuan

    2014-01-01

    Photoelectrochemical water splitting: silicon photocathodesPhotoelectrochemical water splitting: silicon photocathodesfor photoelectrochemical water splitting” Ling Y. , Wang

  19. Water Data Report: An Annotated Bibliography

    E-Print Network [OSTI]

    Dunham Whitehead, Camilla; Melody, Moya

    2007-01-01

    Water Science Center: West Valley City, UT. USGS68. USGSUtah Water Science Center: West Valley City, UT. Water-Data

  20. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    also want to consider some less conventional storage water heaters -- heat pump water heaters and solar water heaters. These water heaters are usually more expensive but they...

  1. Sandia Energy - Water Availability, Cost, and Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Availability, Cost, and Use Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Energy and Water in the Western and Texas...

  2. Water Use Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Use Reduction Water Use Reduction Water Use Reduction Water Use Reduction The Federal Energy Management Program (FEMP) provides agencies with guidance and...

  3. Water Heaters (Tankless Electric) | Department of Energy

    Energy Savers [EERE]

    Tankless Electric) Water Heaters (Tankless Electric) Water Heater, Tankless Electric - v1.0.xlsx More Documents & Publications Tankless Gas Water Heaters Water Heaters (Storage...

  4. Water Heaters (Storage Oil) | Department of Energy

    Energy Savers [EERE]

    Oil) Water Heaters (Storage Oil) Water Heater, Storage Oil - v1.0.xlsx More Documents & Publications Water Heaters (Tankless Electric) Water Heaters (Storage Electric)...

  5. Water Research Institute Annual Technical Report

    E-Print Network [OSTI]

    District: WV 1 Research Category: Water Quality Focus Category: Waste Water, Treatment, Recreation Descriptors: post mining land use, waste water,water quality, site selection, waste reduction, parameter

  6. DRINKING WATER ON EMPTY RINK WATER ON EMPTY STOMACHD

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    DRINKING WATER ON EMPTY STOMACH RINK WATER ON EMPTY STOMACHD It is popular in Japan today to drink water immediately after waking up every morning. Furthermore, scientific tests have proven its value.. We publish below a description of use of water for our readers. For old and serious diseases as well

  7. Water in clay-water systems (1) Philip F. LOW

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Water in clay-water systems (1) Philip F. LOW Department of Agronomy, Purdue University. Agric. Exp. Stn., West Lafayette, IN 47907, U.S.A. SUMMARY The swelling of clay-water systems and the thermodynamic, hydrodynamic and spectroscopic properties of water in these systems are discussed. The swelling

  8. Reclaimed Water as an Alternative Water Source for Crop Irrigation

    E-Print Network [OSTI]

    Etxeberria, Edgardo

    Reclaimed Water as an Alternative Water Source for Crop Irrigation Lawrence R. Parsons1 University Francisco, CA 94114 Robert Holden Monterey Regional Water Pollution Control Agency, 5 Harris Court, Building D, Monterey, CA 93940 David W. York York Water Circle, 3158 S. Fulmer Circle, Tallahassee, FL 32303

  9. Resilience and Water Governance Addressing Fragmentation and Uncertainty in Water

    E-Print Network [OSTI]

    Control Act, commonly known as the Clean Water Act (CWA), to dean up point source discharges fromFIVE Resilience and Water Governance Addressing Fragmentation and Uncertainty in Water Allocation and Water Quality Law BARBARA A. COSENS AND CRAIG A. STOW The U.S. EPA reports that almost half

  10. Fresh Water Increased temperature means higher proportion of water

    E-Print Network [OSTI]

    Houston, Paul L.

    Fresh Water Increased temperature means higher proportion of water falling on surface higher evaporation higher rainfall greater intensity of floods and droughts. Water use has grown four on How much storage compared to average flow Demand as percentage of supply How much ground water is used

  11. Carbon and Water Resource Management for Water Distribution Systems

    E-Print Network [OSTI]

    Hendrickson, Thomas Peter

    2013-01-01

    consumption and 7% of global energy consumption, withglobal water and wastewater infrastructure energy consumption

  12. SCATTERING BY CRACKS BENEATH FLUIDSOLID INTERFACES

    E-Print Network [OSTI]

    Craster, Richard

    , and accurately determine the position of, cracks. The non­destructive testing of a solid to detect such flaws as the fluid coupling tends to zero is non­uniform, that is, the Rayleigh wave is not related to the Sch

  13. PhotobyMBrandon Beneath the Waves

    E-Print Network [OSTI]

    Griffiths, Gwyn

    Terschelling Autosub campaign March 00 Text message on cell phone #12;Phytoplankton analysis: Flow cytometry rating J 1000 litres payload J 700 km range J 3 - 4 kt speed J Primary cell battery #12;Fisheries radiated noise 40 50 60 70 80 90 100 110 120 130 140 150 100 1000 10000 Centre Frequency (Hz) Measured

  14. Microbes: Life Deep Beneath the Seafloor

    E-Print Network [OSTI]

    Smith, David C.

    to acceptor is captured to provide the energy to support basic metabolic functions. Microorganisms-dwelling organisms rely on oxygen, microbes use compounds of sulfur, manganese, iron, and carbon dioxide

  15. Long Fingers of Heat Beneath Earth's Surface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCenter (LMI-EFRC)Lodging LodgingLogistics Logistics TheAbout

  16. Water Scarcity, Climate Change, and Water Quality: Three Economic Essays 

    E-Print Network [OSTI]

    Cai, Yongxia

    2010-07-14

    ........................................................ 22 Figure 2-6. Marginal benefit curve when water demand is non-rival ............................. 22 Figure 2-7. Water shortage for major cities in Texas (thousand ac-ft) ........................... 47 Figure 2-8. Water surplus for major cities... (thousand ac-ft) ............................................ 49 Figure 2-9. Water shortage for major industrial counties (thousand ac-ft) ..................... 52 Figure 2-10. Water surplus for major industrial counties (thousand ac...

  17. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  18. Impact of Climate Change on Irrigation Water Availability, Crop Water Requirements and Soil Salinity in the SJV, CA

    E-Print Network [OSTI]

    Hopmans, Jan W; Maurer, Edwin P

    2008-01-01

    on Irrigation Water Availability, Crop Water Requirementsreduced surface water availability can be managed byrequirement and water availability (surface water and

  19. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  20. Water, law, science

    SciTech Connect (OSTI)

    Narasimhan, T.N.

    2007-10-17

    In a world with water resources severely impacted bytechnology, science must actively contribute to water law. To this end,this paper is an earth scientist s attempt to comprehend essentialelements of water law, and to examine their connections to science.Science and law share a common logical framework of starting with apriori prescribed tenets, and drawing consistent inferences. In science,observationally established physical laws constitute the tenets, while inlaw, they stem from social values. The foundations of modern water law inEurope and the New World were formulated nearly two thousand years ago byRoman jurists who were inspired by Greek philosophy of reason.Recognizing that vital natural elements such as water, air, and the seawere governed by immutable natural laws, they reasoned that theseelements belonged to all humans, and therefore cannot be owned as privateproperty. Legally, such public property was to be governed by jusgentium, the law of all people or the law of all nations. In contrast,jus civile or civil law governed private property. Remarkably, jusgentium continues to be relevant in our contemporary society in whichscience plays a pivotal role in exploiting vital resources common to all.This paper examines the historical roots of modern water law, followstheir evolution through the centuries, and examines how the spirit ofscience inherent in jus gentium is profoundly influencing evolving waterand environmental laws in Europe, the United States and elsewhere. In atechnological world, scientific knowledge has to lie at the core of waterlaw. Yet, science cannot formulate law. It is hoped that a philosophicalunderstanding of the relationships between science and law willcontribute to their constructively coming together in the service ofsociety.

  1. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    2015-04-13

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  2. February 2012 Towards Integrated Water

    E-Print Network [OSTI]

    US Army Corps of Engineers

    February 2012 Towards Integrated Water Resources Management A Conceptual Framework for U.S.Army Corps of Engineers Water and Related Land Resources Implementation Studies 2012-VSP-01 #12;Throughout its history, the Institute for Water Resources (IWR) has invited preeminent water resources

  3. Federal Incentives for Water Power

    SciTech Connect (OSTI)

    2013-04-05

    This factsheet lists the major federal incentives for water power technologies available as of April 2013.

  4. Water Resources People cand Issues

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Water Resources People cand Issues Interview With Professor Arthur Maass US Army Corps of Engineers Maass. (Water resources people and issues) 1. Water resources development--United States-- Planning--History. 2. Water resources development-- United States--Planning--History--Sources. I. Maass, Arthur. II

  5. Texas Water Pollution Control Officers 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    C. E. Jacob received patents in 1965 for a single location well doublet that would produce fresh water overlying salt-water without upconing of the heavier salt-water and pollution of the fresh water zone. No known evaluation of the concept...

  6. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  7. National Smart Water Grid

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-07-13

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

  8. A water film motor

    E-Print Network [OSTI]

    R. Shirsavar; A. Amjadi; N. Hamedani Radja; M. D. Niry; M. Reza Rahimi Tabar; M. R. Ejtehadi

    2006-05-01

    We report on electrically-induced rotations in water films, which can function at many length scales. The device consists of a two-dimensional cell used for electrolysis of water films, as simple as an insulator frame with two electrodes on the sides, to which an external in-plane electric field perpendicular to the mean electrolysis current density is applied. If either the external field or the electrolysis current exceeds some threshold (while the other one is not zero), the liquid film begins to rotate.

  9. Fresh Water Conservation 

    E-Print Network [OSTI]

    Huffman, L.

    2011-01-01

    Water for Future Generations ESL-KT-11-11-06 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 The demand for water in Texas will soon outstrip our supply. ESL-KT-11-11-06 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 Worst yearlong drought... in Texas history. ESL-KT-11-11-06 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 Record-breaking wildfires across the state. ESL-KT-11-11-06 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 We must plan for the future. ESL-KT-11-11-06 CATEE 2011, Dallas...

  10. Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStates andMeasures | Department ofWater Water

  11. Researching power plant water recovery

    SciTech Connect (OSTI)

    NONE

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  12. Nationwide water availability data for energy-water modeling.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Zemlick, Katie M.; Klise, Geoffrey Taylor

    2013-11-01

    The purpose of this effort is to explore where the availability of water could be a limiting factor in the siting of new electric power generation. To support this analysis, water availability is mapped at the county level for the conterminous United States (3109 counties). Five water sources are individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water (western U.S. only), municipal wastewater and brackish groundwater. Also mapped is projected growth in non-thermoelectric consumptive water demand to 2035. Finally, the water availability metrics are accompanied by estimated costs associated with utilizing that particular supply of water. Ultimately these data sets are being developed for use in the National Renewable Energy Laboratories' (NREL) Regional Energy Deployment System (ReEDS) model, designed to investigate the likely deployment of new energy installations in the U.S., subject to a number of constraints, particularly water.

  13. Cloud Liquid Water Measurements

    E-Print Network [OSTI]

    Delene, David J.

    of heat to vaporize drops. Power is supplied to coil to maintain a constant temperature. P ­ Total Power #12;Wet Power Term Energy is transferred to heat droplets to to the boiling point and vaporize;Liquid Water Content Formula Combine the Wet and Dry Power Terms PC Ts-TaPv x Mldv[Lvcw Tv-Ta] · M

  14. Modeling of Carbon Tetrachloride Flow and Transport in the Subsurface of the 200 West Disposal Sites: Large-Scale Model Configuration and Prediction of Future Carbon Tetrachloride Distribution Beneath the 216-Z-9 Disposal Site

    SciTech Connect (OSTI)

    Oostrom, Mart; Thorne, Paul D.; Zhang, Z. F.; Last, George V.; Truex, Michael J.

    2008-12-17

    Three-dimensional simulations considered migration of dense, nonaqueous phase liquid (DNAPL) consisting of CT and co disposed organics in the subsurface as a function of the properties and distribution of subsurface sediments and of the properties and disposal history of the waste. Simulations of CT migration were conducted using the Water-Oil-Air mode of Subsurface Transport Over Multiple Phases (STOMP) simulator. A large-scale model was configured to model CT and waste water discharge from the major CT and waste-water disposal sites.

  15. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    on water quality issues including water recycling, operation of wastewater treatment facilities, wind-powered

  16. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    Congressional District: Fifth Research Category: None Focus Category: Treatment, Waste Water, Surface Water

  17. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    District: 1 Research Category: Not Applicable Focus Category: Groundwater, Waste Water, Water Quality

  18. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    Supply, Waste Water Descriptors: nitrogen, aquaculture waste, membrane, reverse osmosis, water reuse

  19. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    District: Fifth Research Category: None Focus Category: Treatment, Waste Water, Surface Water Descriptors

  20. Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Sciences Focus Category #1 Toxic Substances Focus Category #2 Waste Water Focus Category #3 Water Quality

  1. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    SciTech Connect (OSTI)

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Dever, L.G.; O`Neill, L.J. [DOE Nevada Operations Office, Las Vegas, NV (United States). Waste Management Div.; Tyler, S.W. [Desert Research Institute, Reno, NV (United States). Water Resources Center; Chapman, J. [Desert Research Institute, Las Vegas, NV (United States). Water Resources Center

    1994-03-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement.

  2. Better Plants Water Pilot- Overview

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is expanding the Better Buildings Challenge to help partners demonstrate successful approaches to saving water and decrease their utility bills. The commercial and industrial sectors account for more than 25 percent of the withdrawals from public water supplies and many organizations in these sectors may have savings opportunities of 20 to 40%. The efficient use of water resources results in lower operating costs, a more reliable water supply, and improved water quality. Additionally, because energy is required to transport and treat water, saving water also saves energy. Through this pilot, DOE will work with a small, diverse group of Better Buildings Challenge Partners to expand their resource management strategies to include water in addition to energy, set water savings goals, track progress and showcase solutions.

  3. EXTENSION WATER SUMMIT DECEMBER 12 13, 2012

    E-Print Network [OSTI]

    Slatton, Clint

    EXTENSION WATER SUMMIT DECEMBER 12 ­ 13, 2012 GAINESVILLE, FLORIDA #12;Water Summit Introductions Facilitator role Participant Role Working together #12;Water Summit Planning Water Summit Extension Roadmap Water Initiative Extension Long Term Planning Administration Listening Teams, Stakeholders Program

  4. Institute of Water Resources Annual Technical Report

    E-Print Network [OSTI]

    Pollution, Surface Water, Water Quality Descriptors: Bacteria, Suspended Sediments, Water Quality Monitoring Pollution, Surface Water, WInstitute of Water Resources Annual Technical Report FY 2002 Introduction In fiscal year 2002

  5. Illinois Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    include: evaluation of water treatment technology, source water protection planning, mitigation of nitrate Research Category: Water Quality Focus Category: Nitrate Contamination, Non Point Pollution, SoluteIllinois Water Resources Center Annual Technical Report FY 2004 Introduction The Illinois Water

  6. The Relationship between Water and Energy: Optimizing Water and Energy 

    E-Print Network [OSTI]

    Finley, T.; Fennessey, K.; Light, R.

    2007-01-01

    In an effort to conserve water, drought-proof operating plants and control costs, the critical relationship of water and energy is clearly exposed. Five years of effort has transpired into countless studies, more than 100 projects and a clear...

  7. Water Works! Water Resources Engineering and Turbine Energy

    E-Print Network [OSTI]

    Barrash, Warren

    Water Works! Water Resources Engineering and Turbine Energy Facilitators: Dr. Jairo Hernandez. This energy can be used to generate electricity (dams and turbines), produce mechanical work (wells), as well

  8. Water Panel Discussion: Federal Reduction Update & Cooling Water...

    Energy Savers [EERE]

    Houston, TX November 3, 2015 Francis Wheeler Water Savers, LLC (713) 504-6684 fwheeler@watersaversllc.com Don Hofmann Hofmann Water Technologies (800) 289-1833 hofmann@hwt.com...

  9. Impact of Projected Biofuel Production on Water Use and Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Projected Biofuel Production on Water Use and Water Quality March 27-29, 2015 Analysis and Sustainability WBS:4.2.1.10 May Wu Argonne National Laboratory This...

  10. Regulated water production to control water coning in oil wells 

    E-Print Network [OSTI]

    Sim?ha, I?s?vara

    1975-01-01

    REGULATED WATER PRODUCTION TO CONTROL WATER CONING IN OIL WELLS A Thesis by ISHWAR SINGH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Petroleum Engineering REGULATED WATER PRODUCTION TO CONTROL WATER CONING IN OIL WELLS A Thesis by ISHWAR SINGH Approved as to style and content by (Chairman of Committee) (Membe ) (Head of Departmen lVlemb ) May 1975 ( I ABST RACT...

  11. Water soluble laser dyes

    DOE Patents [OSTI]

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  12. Drinking Water Problems: Perchlorate 

    E-Print Network [OSTI]

    Dozier, Monty; Melton, Rebecca; Hare, Michael; Porter, Dana; Lesikar, Bruce J.

    2005-11-18

    : Perchlorate Monty C. Dozier, Assistant Professor and Extension Specialist, Rebecca H. Melton, Extension Assistant, Texas Cooperative Extension, The Texas A&M University System Michael F. Hare, Senior Natural Resources Specialist, Pesticide Programs Division... concluded that present perchlorate envi- ronmental exposures levels do not appear to pro- duce harmful effects. Regulatory agencies and other groups are now trying to determine a safe level of perchlorate in water. Following recommendations in the NRC (2005...

  13. Be Water Smart 

    E-Print Network [OSTI]

    Swyden, Courtney

    2006-01-01

    highly maintained landscapes pollutes sensitive bays and bayous. Jacob said, ?Residential and commercial landscapes are a major source of polluted runoff in our bays and bayous, and they are perhaps the ?lowest hanging fruit? that we can pick... about runoff pollution and water conservation to the atten- tion of homeowners, garden clubs, environmental groups and city planners, and addresses coastal issues. Texas Cooperative Extension and Texas Sea Grant provide the leadership...

  14. Water Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950Department ofIntroductionDepartmentWasteWater Heating1

  15. QER- Comment of American Water

    Broader source: Energy.gov [DOE]

    Dear QER Team; Thank you for the opportunity to provide comments to the Quadrennial Energy Review Task Force to discuss the water and energy nexus, advances in water innovative technologies, and the impact of climate change on water issues. On behalf of American Water, I wish to submit the following White Papers which we have prepared on these critical issues: Innovations in Energy Use Sustainability and Resiliency Planning for Water Utilities One Water Water/Energy Correlation The Value of Water Challenges in the Water Industry: Climate Change Challenges in the Water Industry: Meeting Demand in the West Innovation Solutions Within the Water Industry: Desalination Innovation Solutions Within the Water Industry: Going Green Innovation Solutions Within the Water Industry: Water Reuse Bridging the Water Innovation Gap. Founded in 1886, American Water is the largest publicly traded U.S. water and wastewater utility company. With headquarters in Voorhees, NJ, the company employs approximately 6,600 dedicated professionals who provide drinking water, wastewater and other related services to an estimated 14 million people in more than 40 states. Please feel free to contact me if you have any questions or if there is any way American Water can be helpful to your mission. Respectfully Yours, Martin (See attached file: White Papers.pdf) Martin D. Kerckhoff Vice President and Divisional General Counsel Central Division American Water CONFIDENTIAL & PRIVILEGED COMMUNICATION This email and any attachments hereto constitute a legally confidential communication from the Legal Department of American Water. The information contained herein is subject to attorney-client privilege and is for the sole use of the intended original addressee. If you are not the intended original addressee, you are hereby notified that any reading, disclosure, copying, distribution, use, or taking of any action in reliance on the contents contained herein is strictly prohibited. If you have received this message in error, please immediately notify us at 314.966.2241 and delete this message from your system. WARNING: Although American Water has taken reasonable precautions to ensure that no viruses are present in this email, it is the responsibility of the recipient to ensure that it is virus free. No responsibility is accepted by American Water for any loss or damage arising in any way from the receipt and/or use of this email.

  16. Coins falling in water

    E-Print Network [OSTI]

    Heisinger, Luke; Kanso, Eva

    2013-01-01

    When a coin falls in water, its trajectory is one of four types determined by its dimensionless moment of inertia $I^\\ast$ and Reynolds number Re: (A) steady; (B) fluttering; (C) chaotic; or (D) tumbling. The dynamics induced by the interaction of the water with the surface of the coin, however, makes the exact landing site difficult to predict a priori. Here, we describe a carefully designed experiment in which a coin is dropped repeatedly in water, so that we can determine the probability density functions (pdf) associated with the landing positions for each of the four trajectory types, all of which are radially symmetric about the center-drop line. In the case of the steady mode, the pdf is approximately Gaussian distributed, with variances that are small, indicating that the coin is most likely to land at the center, right below the point it is dropped from. For the other falling modes, the center is one of the least likely landing sites. Indeed, the pdf's of the fluttering, chaotic and tumbling modes ar...

  17. Sustaining dry surfaces under water

    E-Print Network [OSTI]

    Paul R. Jones; Xiuqing Hao; Eduardo R. Cruz-Chu; Konrad Rykaczewski; Krishanu Nandy; Thomas M. Schutzius; Kripa K. Varanasi; Constantine M. Megaridis; Jens H. Walther; Petros Koumoutsakos; Horacio D. Espinosa; Neelesh A. Patankar

    2014-09-29

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  18. Water & Sewage Short Course - 1 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    In a water distribution system from groundwater supply, the bulk of energy consumption is expended at pump stations. These pumps pressurize the water and transport it from the aquifer to the distribution system and to ...

  19. Increasing Thermoelectric Generation Water Use

    E-Print Network [OSTI]

    Keller, Arturo A.

    Consumption by Plant Type 0 100 200 300 400 500 600 700 800 900 1000 Coal Gas Comb. Cycle Nuclear Plant Type Electric Power Research Institute, Inc. All rights reserved. Water Consumption by Plant Type Water

  20. Columbia Water & Light- Solar Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light electric customers are eligible for a $400 rebate for the purchase of a new solar water heater. To apply for this rebate, a customer submits a pre-approval application to...

  1. Central Multifamily Water Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  2. Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on

    E-Print Network [OSTI]

    Keller, Arturo A.

    , brackish groundwater, produced water, etc.produced water, etc. Advanced treatmentAdvanced treatment Water© Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on EnergyEnergy--Water LinkagesWater Linkages (The Water Utility Perspective)(The Water

  3. Balancing Water Projects and Wildlife: New Authority for the California Water Resources Control Board

    E-Print Network [OSTI]

    Gawthrop, Janet

    1986-01-01

    both environmental control and water use, the Board stillattorneys for the Water Resources Control Board describedWater Resources Control Board (Water Board) the authority to

  4. Planning for water efficient cities: Landscape, microclimate, and heterogeneity in residential water demand

    E-Print Network [OSTI]

    Lassiter, Allison

    2015-01-01

    Abundance: Economic Solutions to Water Scarcity. Kindle ed.and K. S. Jones. 2014. Water use Classification of Landscapearea-map. ———. . .2008. Water use during Water Shortage

  5. Groundwater and Terrestrial Water Storage, 

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  6. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  7. Water-Efficiency Program Prioritization

    Broader source: Energy.gov [DOE]

    Presentation outlines water-efficiency program requirements and priorities as presented to Federal agencies by the Federal Energy Management Program.

  8. Water-Using Equipment: Domestic

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

  9. COASTAL BATHING WATER HEALTH RISKS

    E-Print Network [OSTI]

    Bateman, Ian J.

    compliance of all UK beaches with the 1976 Directive. In 1991 the EC introduced the Urban Waste Water

  10. DESIGNER WATER Dr. Torleiv Bilstad

    E-Print Network [OSTI]

    Treatment #12;Produced Water: Separation and polishing Choke technology Separator technology Oil Droplet water - Produced by adjusting the ionic composition of the injected seawater thereby modifying = 34500 ppm F2. Produced Water with very high TDS as feed Type NF membrane ­ NANO - BW 4040 #12;Pictures

  11. Water Resources Working Group Report

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Water Resources Working Group Report This report provided content for the Wisconsin Initiative in February 2011. #12;Water Resources Working Group Wisconsin Initiative on Climate Change Impacts October 2010 #12;Water Resources Working Group Members ­ WICCI Tim Asplund (Co-Chair) - Wisconsin Department

  12. Water Resources Competitive Grants Program

    E-Print Network [OSTI]

    Virginia Tech

    Water Resources Competitive Grants Program Fiscal Year 2012 Request for Proposals Pursuant to Section 104 of the Water Resources Research Act of 1984, as Amended Closing Date 4:00 PM, Eastern Time, August 15, 2012 (Institutes) Institute for Water Resources National Institutes for U.S. Army Corps

  13. Water Resources Competitive Grants Program

    E-Print Network [OSTI]

    of Engineers Water Resources #12;i WATER RESOURCES REQUEST FOR PROPOSALS TABLE OF CONTENTS ABSTRACTWater Resources Competitive Grants Program Fiscal Year 2014 Request for Proposals Pursuant to Section 104 of the Water Resources Research Act of 1984, as Amended Closing Date 4:00 PM, Eastern Time

  14. REGIONAL WATER SUPPLY PLANNING AND

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 3 REGIONAL WATER SUPPLY PLANNING AND CAPACITY EXPANSION MODELS Messele Z. Ejeta California Department of Water Resources Sacramento, California Larry W. Mays Department of Civil and Environmental Engineering Arizona State University Tempe, Arizona 3.1 INTRODUCTION Water supply planning on a regional scale

  15. Water wave interactions Walter Craig

    E-Print Network [OSTI]

    Thomann, Laurent

    Water wave interactions Walter Craig Department of Mathematics & Statistics ´EquationsMaster University) Water wave interactions 25 janvier 2011 1 / 34 #12;Joint work with: Philippe Guyenne University, Killam Research Fellows Program, Fields Institute Walter Craig (McMaster University) Water wave

  16. Water and Development Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    Water and Development Milind Sohoni www.cse.iitb.ac.in/sohoni email: sohoni scientists on how water appears as a development need, its basic scientific and engineering processes NGOs, or want to pursue the study of the sector as a researcher. Our focus is largely on drinking water

  17. Water Resources Competitive Grants Program

    E-Print Network [OSTI]

    Anderson, Charles W.

    Water Resources Competitive Grants Program Fiscal Year 2015 Request for Proposals Pursuant to Section 104 of the Water Resources Research Act of 1984, as Amended Closing Date 4:00 PM, Eastern Time, July 17, 2015 (Institutes) Institute for Water Resources National Institutes for U.S. Army Corps

  18. THE WATAAH CHESTNUT! (Water Chestnut)

    E-Print Network [OSTI]

    Berkowitz, Alan R.

    grows in a dense bed, it dramatically decreases the amount of sunlight reaching the water below chestnut leaves float on top of the water, so they release oxygen into the atmosphere rather than puttingTHE WATAAH CHESTNUT! (Water Chestnut) ((Trapa natans)) Adam Levine, Chad Halson, Jonayed Ahmed

  19. Water Scarcity, Security and democracy

    E-Print Network [OSTI]

    Water Scarcity, Security and democracy: a Mediterranean Mosaic edited by Francesca de châtel, Gail holst-WarhaFt and taMMo steenhuis #12;#12;Water Scarcity, Security and democracy: a mediterranean moSaic #12;© 2014 by Global Water Partnership Mediterranean, Cornell University and the Atkinson Center

  20. Water-Walking Submitted by

    E-Print Network [OSTI]

    Bush, John W.M.

    Water-Walking Submitted by David L. Hu, Brian Chan, and John W. M. Bush, Massachusetts Institute of Technology The water strider Fig. 1 is an insect of characteristic length 1 cm and weight 10 dynes of hairs that render its legs effectively nonwetting.1 The water strider propels itself by driving its

  1. Water Resources: Hydraulics and Hydrology

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Water Resources: Hydraulics and Hydrology Interview with Margaret S. Petersen #12;This manuscript of History, Headquarters, U.S. Army Corps of Engineers, Alexandria, Virginia. MARGARET So PETERSEN WATER civilian and military engineers studied the behavior of rivers and the motion of water. They investigated

  2. Disinfecting Water after a Disaster 

    E-Print Network [OSTI]

    Dozier, Monty; Schoessow, Courtney

    2005-09-30

    , cleaning, brushing your teeth, washing your hands and bathing. If water is limited, use an alcohol-based hand sanitizer to wash your hands. How to disinfect water Boiling water is the best way to kill harmful organisms that can make you and your family...

  3. GRADUATE STUDY ENVIRONMENTAL AND WATER

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDY IN ENVIRONMENTAL AND WATER RESOURCES ENGINEERING 2011-2012 Academic Year COLLEGE Environmental and Water Resources Engineering Program 2011-2012 Page 1 of 22 PREFACE Since 1960 over 450 and Water Resources Engineering Program at the University of Massachusetts at Amherst. Many

  4. GRADUATE STUDY ENVIRONMENTAL AND WATER

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDY IN ENVIRONMENTAL AND WATER RESOURCES ENGINEERING 2013-2014 Academic Year COLLEGE Environmental and Water Resources Engineering Program 2013-2014 Page 1 of 22 PREFACE Since 1960 over 450 and Water Resources Engineering Program at the University of Massachusetts at Amherst. Many

  5. GRADUATE STUDY ENVIRONMENTAL AND WATER

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDY IN ENVIRONMENTAL AND WATER RESOURCES ENGINEERING 2012-2013 Academic Year COLLEGE Environmental and Water Resources Engineering Program 2012-2013 Page 1 of 22 PREFACE Since 1960 over 450 and Water Resources Engineering Program at the University of Massachusetts at Amherst. Many

  6. GRADUATE STUDY ENVIRONMENTAL AND WATER

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDY IN ENVIRONMENTAL AND WATER RESOURCES ENGINEERING 2010-2011 Academic Year COLLEGE UMass Environmental and Water Resources Engineering Program 2010-2011 Page 1 of 20 PREFACE Since 1960 the Environmental and Water Resources Engineering Program at the University of Massachusetts at Amherst. Many

  7. Surface Water Development in Texas. 

    E-Print Network [OSTI]

    McNeely, John G.; Lacewell, Ronald D.

    1977-01-01

    ................................. 30 Appendix Tables .......................................... 32 ......... Appendix A: Major Conservation Storage Reservoirs 40 endix B: Water Development Board Policy ............... 41 eferences ............................................... 43... of acre-feet. In Texas, 95 percent of the total conservation storage capacity is concentrated in 63 reservoirs. The Texas Water Development Board has not provided a published figure on average annual yield of surface water from these reservoirs...

  8. North City Water Reclamation Plant

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    -Site Cogeneration Methane Power Plant Methane piped in from: Miramar LandfillMiramar Landfill Metropolitan BiosolidsNorth City Water Reclamation Plant Maja Caroee Diana Lee Niko Salvador #12;What is Water% for plant operation 25% sold to local power grid #12;Technical Issues & Innovations COMNET Clean water

  9. Eugene Water and Electric Board | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion Flume Jump to:EthanolEudora High

  10. Geochemical Sampling of Thermal Waters in Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGemini SolarMichigan:Region, Nevada

  11. Geochemistry And Geothermometry Of Spring Water From The Blackfoot

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGemini SolarMichigan:Region,Reservoir Region,

  12. Geochemistry of Thermal Waters in Long Valley, Mono County, California |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGemini SolarMichigan:Region,Reservoir| OpenOpen

  13. Colorado Division of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation,EnergyColorado Department ofDivision of

  14. Colorado Water Quality Control Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation,EnergyColoradoBank andUniversity

  15. Colorado thermal spring water geothermometry (public dataset) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation,EnergyColoradoBank

  16. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGridDeepiSolar and

  17. Direct Power and Water Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queriesWind Farm Jump to:

  18. EPA - Ground Water Discharges (EPA's Underground Injection Control Program)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDoubleEERE - Energy DataEIQENELENrGwebpage |

  19. EPA - Source Water Protection webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDoubleEERE - EnergySPCC FAQs webpageEPA -

  20. EPA Section 401 Water Quality Certification Manual | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDoubleEERE - EnergySPCC FAQs