Powered by Deep Web Technologies
Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The flashing ratchet: long time behavior and dynamical systems interpretation  

E-Print Network [OSTI]

The flashing ratchet: long time behavior and dynamical systems interpretation Jean Dolbeault@mcs.kent.edu December 11, 2002 Abstract. The flashing ratchet is a model for certain types of molecular motors as well then study the long time behavior of the flashing ratchet model. By entropy methods, we prove the existence

Dolbeault, Jean

2

Policy Flash 2013-71 AL 2013-11 NON M&O CONTRACTOR BUSINESS SYSTEMS...  

Broader source: Energy.gov (indexed) [DOE]

1 AL 2013-11 NON M&O CONTRACTOR BUSINESS SYSTEMS CLAUSES FOR SECTION H Policy Flash 2013-71 AL 2013-11 NON M&O CONTRACTOR BUSINESS SYSTEMS CLAUSES FOR SECTION H Policy Flash - AL...

3

The Forth Workshop on Flash-based Database Systems 60833005 2010 7 28  

E-Print Network [OSTI]

/O Scheduler for Database Systems GP-Deadline SSD SSD deadline SSD Linux DBMS benchmark PostgreSQL Postgre Replacement Algorithm for Flash Storage Devices ACR ACR SSD O(1) ACR LRU CF-LRU CFDC ACR 4 DBMS SSDSort: A New flash-aware external sorting algorithm SSDSort :SSDSort SSDSort SSDSort SSDSort 5 DBMS SSD SSD SSD #12

4

Policy Flash 2014-30 DOE Order 412.1a, Work Authorization System...  

Broader source: Energy.gov (indexed) [DOE]

0 DOE Order 412.1a, Work Authorization System Administrative Change Policy Flash 2014-30 DOE Order 412.1a, Work Authorization System Administrative Change Questions concerning this...

5

SDF: Software-Defined Flash for Web-Scale Internet Storage Systems  

E-Print Network [OSTI]

. To achieve this goal we propose software-defined flash (SDF), a hardware/software co-designed storage system.3.2 [Memory Struc- tures]: Design Styles - mass storage (e.g., magnetic, optical, RAID) Keywords including index- ing services, online/offline key-value storage, table storage, an advertisement system, my

Jiang, Song

6

Macro-modeling and energy efficiency studies of file management in embedded systems with flash memory  

E-Print Network [OSTI]

to the LART board from the host machine via the serial port. We follow the same energy measurement methodology as used in [5]. Since the processor and flash have separate power supplies, the processor and flash energy 12 LabView Console Trigger LART Board SCB... doesn?t support timestamps, hard links and 16/32 bit group/user ids. Since CRAMFS cannot be written to, the initial file system image is created using the ?mkcramfs? utility program. B. Macro-modeling This section discusses the overall methodology...

Goyal, Nitesh

2006-08-16T23:59:59.000Z

7

Model based methodology development for energy recovery in flash heat exchange systems  

E-Print Network [OSTI]

Model based methodology development for energy recovery in flash heat exchange systems Problem with a condensing heat exchanger can be used when heat exchange is required between two streams and where at leastH, consistency etc.). To increase the efficiency of heat exchange, a cascade of these units in series can be used

McCarthy, John E.

8

Studies on multi-phase equilibrium separation of hydrocarbon/water systems  

E-Print Network [OSTI]

-phase equilibria for systems containing water, and simplify the programming technique. This scheme checks the existence of three-phase flash at given reservoir conditions, and if three-phase flash (vapor-oleic-aqueous) doesn't exist, it automatically switches...

Chawla, Inderjit Singh

1995-01-01T23:59:59.000Z

9

Flashing ratchet  

E-Print Network [OSTI]

We prove that the flashing ratchet with any number of teeth performs unidirectional transport of matter.

Vorotnikov, Dmitry

2010-01-01T23:59:59.000Z

10

EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM  

E-Print Network [OSTI]

cost benefits are still evident. Currently, there are many solar power plants that have been announced Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because, power output from a solar field. At the right cost, a storage system can improve overall economics

11

Flash Memory Garbage Collection in Hard Real-Time Systems  

E-Print Network [OSTI]

collection and compare it to that of more proactive schemes. I develop formulas to assess the schedulability of hard real- time periodic task sets under simpli ed memory consumption models. Results show that I prove the proactive schemes achieve the larger... work in the area of ash memory management. Moreover, we review the previous research about garbage collection in real-time system. In Chapter III we will describe a simpli ed ash memory model that will be used throughout the rest of the thesis...

Lai, Chien-An

2012-10-19T23:59:59.000Z

12

Experimental Studies of NGNP Reactor Cavity Cooling System With Water  

SciTech Connect (OSTI)

This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

Michael Corradini; Mark Anderson; Yassin Hassan; Akira Tokuhiro

2013-01-16T23:59:59.000Z

13

Reactor water cleanup system  

DOE Patents [OSTI]

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

Gluntz, D.M.; Taft, W.E.

1994-12-20T23:59:59.000Z

14

Reactor water cleanup system  

DOE Patents [OSTI]

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

15

Purge water management system  

DOE Patents [OSTI]

A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

Cardoso-Neto, J.E.; Williams, D.W.

1995-01-01T23:59:59.000Z

16

Purge water management system  

DOE Patents [OSTI]

A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

Cardoso-Neto, Joao E. (North Augusta, SC); Williams, Daniel W. (Aiken, SC)

1996-01-01T23:59:59.000Z

17

Cooling water distribution system  

DOE Patents [OSTI]

A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

Orr, Richard (Pittsburgh, PA)

1994-01-01T23:59:59.000Z

18

Cooling Water System Optimization  

E-Print Network [OSTI]

During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower...

Aegerter, R.

2005-01-01T23:59:59.000Z

19

Green Systems Solar Hot Water  

E-Print Network [OSTI]

Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

Schladow, S. Geoffrey

20

Carbon and Water Resource Management for Water Distribution Systems  

E-Print Network [OSTI]

the embodied energy in drinking water supply systems: a caselosses to 5% of total drinking water supply for threeResearch Council. Drinking Water Distribution Systems:

Hendrickson, Thomas Peter

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

PNNL 331 Building Arc Flash Team Investigation Report  

SciTech Connect (OSTI)

On Friday, April 21, 2006, a PNNL electrician was performing repair of an electrical system for the 331 Building chilled water pump (CHWP) No.2, when an electrical arc flash occurred inside a 480V combination motor starter. The electrician was taken to the on-site medical provider for evaluation and was released for return to work without restriction. The electrician was not shocked, but did receive a minor, superficial (first degree) burn on the left wrist. This report, the result of a thorough review by the 331 Building Arc Flash Assessment Team, provides an in-depth look at the steps leading up to the arc-flash and recommendations and opportunities for improvement.

Deichman, Mark L.; Drewrey, John C.; Hodges, Hurtis; Madson, Vernon J.; Minton, Allen L.; Montgomery, Daniel M.; Olson, Marvin E.; Rojas, Pedro H.; Sanan, Sanjay K.; Sharp, Reed D.; Sparks, Bobby R.; Swearingen, Gary L.

2006-06-06T23:59:59.000Z

22

U-187: Adobe Flash Player Multiple Vulnerabilities  

Broader source: Energy.gov [DOE]

Adobe released security updates for Adobe Flash Player 11.2.202.235 and earlier versions for Windows, Macintosh and Linux, Adobe Flash Player 11.1.115.8 and earlier versions for Android 4.x, and Adobe Flash Player 11.1.111.9 and earlier versions for Android 3.x and 2.x. These updates address vulnerabilities that could cause a crash and potentially allow an attacker to take control of the affected system.

23

Policy Flash 2012-34 | Department of Energy  

Office of Environmental Management (EM)

2-34 Policy Flash 2012-34 Attached is Policy Flash 34-Waiver of Mandatory Use of the Strategic Integrated Procurement Enterprise System (STRIPES) for GSA Global Supply Service...

24

Policy Flash 2012-47 | Department of Energy  

Office of Environmental Management (EM)

7 Policy Flash 2012-47 Attached is Policy Flash 2012-47: Delay of Rollout of the System for Award Management (SAM) by the General Services Administration (GSA) Questions should be...

25

Policy Flash 2012-45 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

5 Policy Flash 2012-45 Attached is Policy Flash 2012-45 Rollout of the System for Award Management (SAM) by the General Services Administration (GSA) Questions should be directed...

26

Protected Water Area System (Iowa)  

Broader source: Energy.gov [DOE]

The Natural Resource Commission maintains a state plan for the design and establishment of a protected water area system and those adjacent lands needed to protect the integrity of that system. A...

27

Policy Flash 20 Acquisition Letter 2014-05/Financial Acquisition...  

Broader source: Energy.gov (indexed) [DOE]

Appropriations Committees Subject to Energy and Water Development and Related Agencies Policy Flash 20 Acquisition Letter 2014-05Financial Acquisition Letter 2014-02 Congressional...

28

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

24 Figure 7. Comparison of Daily Water Heater28 Figure 8. Monitored Field Efficiency of Tankless Water28 Figure 9. Monitored Lab Efficiency of Tankless Water

Lutz, Jim

2012-01-01T23:59:59.000Z

29

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

Gas-fired Storage Water Heater .. 418 Assess California’s Small Gas Storage Water Heaters Small Gas Storage Water Heater Market The objective of

Lutz, Jim

2012-01-01T23:59:59.000Z

30

N. Baboi, MDIN. Baboi, MDI FLASH Seminar, Dec. 8, 2009FLASH Seminar, Dec. 8, 2009 Status of FLASH-BPMsStatus of FLASH-BPMs  

E-Print Network [OSTI]

-BPMsStatus of FLASH-BPMs ·Status of BPM-system ·Maintenance work checked/adjusted trigger delay, zero-offset, calibration 6BYP: used by energy server ·BPM studies HERA (Neumann) electronics in TCA tested toroid in TCA tested BPM resolution for multibunch toroid resolution vs. charge ·FLASH Upgrade Changes in the BPM

31

Multi-stage flash degaser  

DOE Patents [OSTI]

A multi-stage flash degaser is incorporated in an energy conversion system having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger in order that the heat exchanger and a turbine and condenser of the system can operate at optimal efficiency.

Rapier, P.M.

1980-06-26T23:59:59.000Z

32

Carbon and Water Resource Management for Water Distribution Systems  

E-Print Network [OSTI]

Reliability Corporation Polyethylene Polyvinyl chloride Society of Environmental Toxicology and Chemistry Water Distribution System

Hendrickson, Thomas Peter

2013-01-01T23:59:59.000Z

33

Water in clay-water systems (1) Philip F. LOW  

E-Print Network [OSTI]

Water in clay-water systems (1) Philip F. LOW Department of Agronomy, Purdue University. Agric. Exp. Stn., West Lafayette, IN 47907, U.S.A. SUMMARY The swelling of clay-water systems and the thermodynamic, hydrodynamic and spectroscopic properties of water in these systems are discussed. The swelling

Paris-Sud XI, Université de

34

A better cooling water system  

SciTech Connect (OSTI)

To prepare their newly constructed reduced crude conversion (RCC) open recirculating cooling water system for the implementation of a corrosion and deposit control water treatment program, Ashland Petroleum, Catlettsburg, Ky., made plans for and carried out precleaning and passivation procedures. Here, the authors share the results, and some potential guidelines for one's own operations. Inspection of equipment after precleaning showed that the precleaning procedures was very effective in removing undesirable matter. After precleaning and passivation of the system, the recommended cooling water treatment program was started. Corrosion rates for mild steel specimens ranged from 0.5 to 1.5 mils per year (mpy), with an average of 1.0 mpy. The corrosion rates for admiralty specimens ranged from 0.1 to 0.2 mpy. Benefits of the precleaning and passivating programs greatly outweigh the costs, since the normal cooling water treatment program for corrosion and deposit control can then operate more effectively.

Gale, T.E.; Beecher, J.

1987-12-01T23:59:59.000Z

35

Milli-Q Reference Water Purification System  

E-Print Network [OSTI]

Milli-Q® Reference Water Purification System The reference for ultrapure water systems EMD water, the system produces ultrapure water adapted to your specific applications and exceeding the requirements of the most demanding norms. We've achieved all this with a new purification strategy. Water

Woodall, Jerry M.

36

Information Sources for Small Water Systems  

E-Print Network [OSTI]

Managers of small waters systems must have information about a variety of topics. This publication lists essential printed and electronic resources on disaster preparedness, national drinking water standards, private water well management, water...

Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

2007-02-19T23:59:59.000Z

37

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

heat loss testing; part load performance curves for instantaneous gas water heaters; and pressure loss calculationsheat loss testing; part load performance curves for instantaneous gas water heaters; and pressure loss calculations

Lutz, Jim

2012-01-01T23:59:59.000Z

38

Study of an interconnected flashing warning light system for work zone lane closures  

E-Print Network [OSTI]

of Transportation (TxDOT). Prior to full-scale field testing, proving ground studies were conducted at the TTI Proving Ground facility with 59 subjects to determine if this system encouraged motorists to leave a closed lane without causing confusion and its likely...

Finley, Melisa Dayle

2012-06-07T23:59:59.000Z

39

Policy Flashes | Department of Energy  

Energy Savers [EERE]

Policy Flashes Policy Flashes The following is a list of Policy Flashes issued by the Office of Procurement and Assistance Policy. These files are in PDF (Portable Document Files)...

40

Flash 2011-59 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash 2011-23 Federal and79 Flash

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Flash 2011-66 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash 2011-23 Federal and79 Flash66

42

Multi-stage flash degaser  

DOE Patents [OSTI]

A multi-stage flash degaser (18) is incorporated in an energy conversion system (10) having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger (22) in order that the heat exchanger (22) and a turbine (48) and condenser (32) of the system (10) can operate at optimal efficiency.

Rapier, Pascal M. (Richmond, CA)

1982-01-01T23:59:59.000Z

43

WATER DISTRIBUTION SYSTEM OPERATION: APPLICATION OF  

E-Print Network [OSTI]

CHAPTER 5 WATER DISTRIBUTION SYSTEM OPERATION: APPLICATION OF SIMULATED ANNEALING Fred E. Goldman Arizona State University, Tempe, Arizona 5.1 INTRODUCTION The operation of water distribution systems affects the water quality in these systems. EPA regulations require that water quality be maintained

Mays, Larry W.

44

Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects  

SciTech Connect (OSTI)

This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus,

Clark, Corrie E. [Environmental Science Division] [Environmental Science Division; Harto, Christopher B. [Environmental Science Division] [Environmental Science Division; Schroeder, Jenna N. [Environmental Science Division] [Environmental Science Division; Martino, Louis E. [Environmental Science Division] [Environmental Science Division; Horner, Robert M. [Environmental Science Division] [Environmental Science Division

2013-11-05T23:59:59.000Z

45

Water Resource System Optimization by Geometric Programming  

E-Print Network [OSTI]

Water resources planners and systems analysts are continually confronted with many complex optimization problems. Two major factors contribute to this problem. Firstly, mathematical modeling and system description capabilities in water resources...

Meier, W. L.; Shih, C. S.; Wray, D. J.

46

Rate Setting for Small Water Systems  

E-Print Network [OSTI]

in detail the many resources that are available to help managers of small water systems make wise business decisions....

Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

2007-03-28T23:59:59.000Z

47

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-11-25T23:59:59.000Z

48

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-01-21T23:59:59.000Z

49

Stealthy Deception Attacks on Water SCADA Systems  

E-Print Network [OSTI]

Stealthy Deception Attacks on Water SCADA Systems Saurabh Amin1 Xavier Litrico2 Alexandre M. Bayen1 The Gignac Water SCADA System Modeling of Cascade Canal Pools Attacks on PI Control Limits on Stability and Detectability #12;Recapitulation from last year The Gignac Water SCADA System Modeling of Cascade Canal Pools

Hu, Fei

50

T-607: Update: Adobe Acrobat, Reader, and Flash Player SWF File...  

Broader source: Energy.gov (indexed) [DOE]

PLATFORM: Adobe Flash Player versions prior to 10.2.153.1 for Microsoft Windows, Apple Macintosh, Linux, and Solaris systems Adobe Flash Player versions prior to 10.2.156.12...

51

Flash2004-17.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf Flash2004-17.pdf Flash2004-17.pdf

52

Flash2005-19.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf Flash2005-12.pdfFlash2005-19.pdf

53

Distrbuted Sensing Systems for Water Quality Assesment and Management  

E-Print Network [OSTI]

Sensing Systems for Water Quality Assessment and ManagementSensing Systems for Water Quality Assessment and ManagementSensing Systems for Water Quality Assessment and Management

2007-01-01T23:59:59.000Z

54

Annual Simulation Results for an Air-Cooled Binary Power Cycle Employing Flash Cooling Enhancement  

SciTech Connect (OSTI)

Objective is to perform detailed simulation of air cooled cycle with flash supplied cooling water using two types of evaporative enhancement, spray nozzels and evaporative media.

Buys, A.; Gladden, C.; Kutscher, C.

2006-01-01T23:59:59.000Z

55

Policy Flash 2015-14 Acquisition Letter 2015-03/Financial Acquisition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Subject to Energy and Water Development and Related Agencies Appropriations Act, 201 Policy Flash 2015-14 Acquisition Letter 2015-03Financial Acquisition Letter 2015-02...

56

Microfluidic Flow-Flash: Method for Investigating Protein Dynamics  

E-Print Network [OSTI]

Microfluidic Flow-Flash: Method for Investigating Protein Dynamics Michael W. Toepke, Scott H Institute, Troy, New York 12180 We report a new method, microfluidic flow-flash, for measuring protein reaction kinetics. The method couples a microscope imaging detection system with a microfluidic flow cell

Kenis, Paul J. A.

57

Flash 2011-23 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash 2011-23 Federal and

58

Flash 2011-33 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash 2011-23 Federal and7 OPAM33

59

Public Health Issues Associated with Small Drinking Water Systems  

E-Print Network [OSTI]

Public Health Issues Associated with Small Drinking Water Systems Not Regulated by the Safe Drinking Water Act From: Nonfederally Regulated Drinking Water Systems: State and Local Public Health ...........................................................................................5 Priority Environmental Public Health Challenges for Small Drinking Water Systems

60

Use a Vent Condenser to Recover Flash Steam Energy: Office of Industrial Technologies (OIT) Steam Energy Tips Fact Sheet  

SciTech Connect (OSTI)

BestPractices Steam tip sheet about using a vent condenser to recover flash steam energy in steam systems.

DOE Office of Industrial Technologies

2001-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Submersible purification system for radioactive water  

DOE Patents [OSTI]

A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

Abbott, Michael L. (Fort Collins, CO); Lewis, Donald R. (Pocatello, ID)

1989-01-01T23:59:59.000Z

62

Water turbine system and method of operation  

DOE Patents [OSTI]

A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

Costin, Daniel P.

2010-06-15T23:59:59.000Z

63

Water turbine system and method of operation  

DOE Patents [OSTI]

A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

Costin, Daniel P. (Montpelier, VT)

2011-05-10T23:59:59.000Z

64

Recovery News Flashes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office of Environmental Management 1000

65

[Waste water heat recovery system  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

66

Resources for Small Water Systems in Texas  

E-Print Network [OSTI]

supply and wastewater treatment projects through state bonds and federal grants. TWDB administers the Economically Distressed Areas Program (EDAP), which provides fi nancial assistance to eligible counties and communities. Some counties are eligible.... The U.S. Department of Agriculture Rural Utilities Service has a Water and Wastewater Disposal Program that gives loans and grants to water systems in rural areas and to towns with fewer than 10,000 people. Emergency Community Water Assistance...

Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

2007-03-28T23:59:59.000Z

67

Robot design for leak detection in water-pipe systems  

E-Print Network [OSTI]

Leaks are major problem that occur in the water pipelines all around the world. Several reports indicate loss of around 20 to 30 percent of water in the distribution of water through water pipe systems. Such loss of water ...

Choi, Changrak

2012-01-01T23:59:59.000Z

68

Passive safety injection system using borated water  

DOE Patents [OSTI]

A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

Conway, Lawrence E. (Allegheny, PA); Schulz, Terry L. (Westmoreland, PA)

1993-01-01T23:59:59.000Z

69

High temperature hot water systems: A primer  

SciTech Connect (OSTI)

The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

Govan, F.A. [NMD and Associates, Cincinnati, OH (United States)

1998-01-01T23:59:59.000Z

70

Use a Vent Condenser to Recover Flash Steam Energy (Revised)  

SciTech Connect (OSTI)

This revised ITP tip sheet on vent condenser to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-05-01T23:59:59.000Z

71

Renewable Energy Powered Water Treatment Systems   

E-Print Network [OSTI]

There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

Richards, Bryce S.; Schäfer, Andrea

2009-01-01T23:59:59.000Z

72

Energy Conservation for Boiler Water Systems  

E-Print Network [OSTI]

. This paper reviews methods to conserve energy in industrial boiler water systems. Both mechanical and chemical approaches for energy conservation are discussed. The important aspects of efficient combustion are covered as well as other mechanical factors...

Beardsley, M. L.

1981-01-01T23:59:59.000Z

73

Policy Flash 2005-53  

Broader source: Energy.gov (indexed) [DOE]

POLICY FLASH 2013-40 DATE: March 19, 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and...

74

Flash2003-25.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 FlashFlash2003-25.pdf

75

Flash2003-29.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 FlashFlash2003-25.pdf29.pdf

76

Flash2003-30.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 FlashFlash2003-25.pdf29.pdf30.pdf

77

Flash2004-19.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf Flash2004-17.pdf

78

Flash2004-20.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf Flash2004-17.pdf0.pdf

79

Flash2004-21.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf Flash2004-17.pdf0.pdf1.pdf

80

Flash2004-22.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf Flash2004-17.pdf0.pdf1.pdf2.pdf

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Flash2004-23.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf Flash2004-17.pdf0.pdf1.pdf2.pdf.pdf

82

Flash2004-23Attachment_2.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf2.pdf Flash2004-23Attachment_2.pdf

83

Flash2005-01.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf2.pdf1.pdf Flash2005-01.pdf

84

Flash2005-02.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf2.pdf1.pdf Flash2005-01.pdf2.pdf

85

Flash2005-05.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf2.pdf1.pdf5.pdf Flash2005-05.pdf

86

Flash2005-12.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf Flash2005-12.pdf More Documents

87

Flash2005-13.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf Flash2005-12.pdf More

88

Flash2005-14.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf Flash2005-12.pdf More4.pdf

89

Flash2005-15.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf Flash2005-12.pdf More4.pdf5.pdf

90

Flash2005-16.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf Flash2005-12.pdf

91

Flash2005-24.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf.pdf Flash2005-24.pdf

92

Flash2005-25.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf.pdf5.pdf Flash2005-25.pdf

93

Flash2005-27.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf.pdf5.pdf7.pdf Flash2005-27.pdf

94

Flash2005-44.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf Flash2005-44.pdf Flash2005-44.pdf More

95

Flash2005-45.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf Flash2005-44.pdf Flash2005-44.pdf More5.pdf

96

Flash2005-46.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf Flash2005-44.pdf Flash2005-44.pdf

97

Flash2005-47.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf Flash2005-44.pdf Flash2005-44.pdf7.pdf

98

Flash2005-48.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf Flash2005-44.pdf Flash2005-44.pdf7.pdf8.pdf

99

Flash2005-50.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf Flash2005-44.pdf0.pdf Flash2005-50.pdf

100

Flash2005-51.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf Flash2005-44.pdf0.pdf Flash2005-50.pdf1.pdf

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Flash2005-53.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdf Flash2005-53.pdf Flash2005-53.pdf More

102

Flash2005-56.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdf Flash2005-53.pdf Flash2005-53.pdf

103

Flash2005-58.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdf Flash2005-53.pdf8.pdf Flash2005-58.pdf

104

Flash pyrolysis and hydropyrolysis of biomass  

SciTech Connect (OSTI)

Process chemistry data on the flash pyrolysis and hydropyrolysis of wood is being obtained in a 1'' downflow entrained tubular reactor. The data indicates that at residence times of <1 second, and 900 to 1000/sup 0/C and 500 psi pressure, the flash hydropyrolysis of wood yields mainly methane and water. As the residence time increases to >3 seconds, the products are methane and CO. Almost complete conversion of the carbon to methane and CO are obtained in these experiments. At lower temperatures, in the order of 800/sup 0/C, 500 psi and residence times <4 seconds, significant amounts of benzene and ethane are produced. The experimental process chemistry data have been used to design and evaluate two processes in a preliminary manner. One process converts wood to high BTU pipeline gas and the other to methanol and chemical feedstocks consisting of benzene and ethylene. Reasonable plant investments which compare favorably with coal conversion plant estimates are derived.

Not Available

1982-08-01T23:59:59.000Z

105

Vacuum flash evaporated polymer composites  

DOE Patents [OSTI]

A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

Affinito, J.D.; Gross, M.E.

1997-10-28T23:59:59.000Z

106

New Water Booster Pump System Reduces Energy Consumption by 80...  

Broader source: Energy.gov (indexed) [DOE]

Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases...

107

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...  

Energy Savers [EERE]

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

108

Policy Flash 2013-70 Acqusition Guides 42.15 Contractor Performance...  

Office of Environmental Management (EM)

into Federal Awardee Performance and Integrity Infromation Systems (FAPIIS) Policy Flash 2013-70 Acqusition Guides 42.15 Contractor Performance Infromation and 42.16...

109

POLICY FLASH 2014-17 Revised Acquisition Letter 2013-11- Non...  

Energy Savers [EERE]

Contractor Business Systems Clauses for Section H - Earned Value Management Clause POLICY FLASH 2014-17 Revised Acquisition Letter 2013-11- Non-Management and Operating...

110

In-situ continuous water monitoring system  

DOE Patents [OSTI]

An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

Thompson, C.V.; Wise, M.B.

1998-03-31T23:59:59.000Z

111

High temperature hot water distribution system study  

SciTech Connect (OSTI)

The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

NONE

1996-12-01T23:59:59.000Z

112

Energy optimization of water distribution system  

SciTech Connect (OSTI)

In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

Not Available

1993-02-01T23:59:59.000Z

113

Water injected fuel cell system compressor  

DOE Patents [OSTI]

A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

Siepierski, James S. (Williamsville, NY); Moore, Barbara S. (Victor, NY); Hoch, Martin Monroe (Webster, NY)

2001-01-01T23:59:59.000Z

114

Introduction of Heat Recovery Chiller Control and Water System Design  

E-Print Network [OSTI]

The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

Jia, J.

2006-01-01T23:59:59.000Z

115

Hot Water Heating System Operation and Energy Conservation  

E-Print Network [OSTI]

Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

Shao, Z.; Chen, H.; Wei, P.

2006-01-01T23:59:59.000Z

116

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM  

E-Print Network [OSTI]

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California be obvious that large studies like these require the coordinated work of many people. We would first like from the Duke Energy South Bay and Morro Bay power plants and the PG&E Diablo Canyon Power Plant

117

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

Storage Water Heater .point for modeling storage water heaters. The algorithmsfired, natural draft storage water heater. Figure 1 shows a

Lutz, Jim

2014-01-01T23:59:59.000Z

118

Integrated Planning for Water and Energy Systems  

E-Print Network [OSTI]

Policy 2. Energy Intensity of Water 3. Water Intensity of Energy 1. Integrated Energy and Water Policy 2. Energy Intensity of Water 3. Water Intensity of Energy #12;Total Water Withdrawals, 2000Total Water at Edmonston #12;Energy Intensity of WaterEnergy Intensity of Water Energy intensity, or embedded energy

Keller, Arturo A.

119

Optimization of California's Water Supply System: Results and Insights  

E-Print Network [OSTI]

headings: Optimization; California; Water supply; Water shortage. Introduction Water is scarceOptimization of California's Water Supply System: Results and Insights Marion W. Jenkins1 ; Jay R-engineering optimization model of California's water supply system. The results of this 4-year effort illustrate the value

Pasternack, Gregory B.

120

Policy Flash 2014-34  

Broader source: Energy.gov [DOE]

Questions concerning this policy flash should be directed to A. Scott Geary, of the  Office of Acquisition and Project Management Policy at 202-287-1507 or at andrew.geary@hq.doe.gov.

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Containment system for supercritical water oxidation reactor  

DOE Patents [OSTI]

A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

Chastagner, P.

1994-07-05T23:59:59.000Z

122

Acid mine water aeration and treatment system  

DOE Patents [OSTI]

An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

Ackman, Terry E. (Finleyville, PA); Place, John M. (Bethel Park, PA)

1987-01-01T23:59:59.000Z

123

Modeling Water Resource Systems under Climate Change: IGSM-WRS  

E-Print Network [OSTI]

Through the integration of a Water Resource System (WRS) component, the MIT Integrated Global System Model (IGSM) framework has been enhanced to study the effects of climate change on managed water-resource systems. ...

Strzepek, K.

124

Army Energy and Water Reporting System Assessment  

SciTech Connect (OSTI)

There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating with other existing data sources, thus minimizing manually entered data.

Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

2011-09-01T23:59:59.000Z

125

Water and Energy Interactions  

E-Print Network [OSTI]

and operations of geothermal power plants. ANL/EVS/R-10/5,10,000 MW electric (87). Geothermal power plants use threeused geothermal system, is a flash steam power plant. Flash

McMahon, James E.

2013-01-01T23:59:59.000Z

126

V-090: Adobe Flash Player / AIR Multiple Vulnerabilities | Department...  

Broader source: Energy.gov (indexed) [DOE]

0: Adobe Flash Player AIR Multiple Vulnerabilities V-090: Adobe Flash Player AIR Multiple Vulnerabilities February 13, 2013 - 12:14am Addthis PROBLEM: Adobe Flash Player AIR...

127

New Advanced System Utilizes Industrial Waste Heat to Power Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

128

Continuous Commissioning of a Central Chilled Water & Hot Water System  

E-Print Network [OSTI]

the campus loops and the building loops. Some optimization of the plant chiller 1 boiler operation is also necessary and beneficial. In general, through Continuous Commissioning, chilled water and hot water loop temperature differences will be improved...

Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

2000-01-01T23:59:59.000Z

129

Clathrate hydrates in frozen confections : formation by carbon dioxide flash freezing and behavior during distribution and consumption  

E-Print Network [OSTI]

Carbonated frozen foods are not common on the market due to the limited liquid water available to dissolve CO? . CO? clathrate hydrates can change this because CO? is trapped in crystalline water. The CO? flash-freezing ...

Peters, Teresa Baker, 1981-

2009-01-01T23:59:59.000Z

130

Building America Webinar: Central Multifamily Water Heating Systems...  

Energy Savers [EERE]

Building America Webinar: Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 11:00AM to 12:30PM MST...

131

Building America Webinar: Central Multifamily Water Heating Systems...  

Energy Savers [EERE]

Building America Webinar: Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 3:00PM to 4:30PM EST This...

132

Managing Uncertainty in Operational Control of Water Distribution Systems  

E-Print Network [OSTI]

Managing Uncertainty in Operational Control of Water Distribution Systems A. Bargiela Department. There are system management decisions concerning the regulatory measures such as water pricing principles, effluent in water distribution systems con- cern reservoir(s) management with associated pump scheduling

Bargiela, Andrzej

133

STATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW)  

E-Print Network [OSTI]

STATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW) CEC- CF-6R-MECH-02 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-02 Solar Domestic Hot Water Systems (SDHW OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW) CEC- CF-6R-MECH-02 (Revised 08/09) CALIFORNIA ENERGY

134

Water-loop heat pump systems  

SciTech Connect (OSTI)

Water-loop heat pump (WLHP) systems are reliable, versatile, energy-efficient alternatives to conventional systems such as packaged rooftop or central chiller systems. These systems offer low installed costs, unparalleled design flexibility, and an inherent ability to recover heat in a variety of commercial and multifamily residential buildings for both new construction and retrofit markets. Southern California Edison Co. (SCE) teamed with EPRI to develop a comprehensive design guide for WLHP systems that incorporated recent research by EPRI, SCE, and others. The project team reviewed current literature, equipment data, and design guidelines from equipment manufacturers. They next discussed design and application practices with consulting engineers as well as design and building contractors. The team also ran extensive computer simulations on commercial and multifamily residential building models for Southern California, both to determine the sensitivity of energy use to WLHP system design parameters and to establish optimal design parameters. This information culminated in a comprehensive engineering guide. Volume 1 of this report, provides step-by-step technical design data for selection, application, and specification of WLHP systems. This guide emphasizes energy-efficient design principles and incorporates the findings of the computer simulations and research. For example, it recommends lowering the loop temperature in buildings dominated by internal loads. Reducing the loop temperature from 90 to 80[degrees]F provides a 7--10% savings in the total system energy in Southern California climate areas. Other recommendations include (1) installing a cooling tower with a propeller fan, which uses one fourth to one third of the energy of a cooling tower with a centrifugal fan; and (2) incorporating variable-speed pumps in conjunction with two-position valves in the heat pumps to reduce the system pump energy use by up to 50%.

Eley, C.; Hydeman, M. (Eley (Charles) Associates, San Francisco, CA (United States))

1992-12-01T23:59:59.000Z

135

The real science behind FlashForward  

ScienceCinema (OSTI)

Berkeley Lab nuclear physicist Peter Jacobs discusses the ALICE experiment, setting of the science fiction novel FlashForward.

Peter Jacobs

2010-01-08T23:59:59.000Z

136

The real science behind FlashForward  

SciTech Connect (OSTI)

Berkeley Lab nuclear physicist Peter Jacobs discusses the ALICE experiment, setting of the science fiction novel FlashForward.

Peter Jacobs

2009-09-17T23:59:59.000Z

137

The real science behind FlashForward  

ScienceCinema (OSTI)

Berkeley Lab nuclear physicist Peter Jacobs discusses the ALICE experiment, setting of the science fiction novel FlashForward.

Jacobs, Peter

2013-05-29T23:59:59.000Z

138

Sustaining Sherman Island: A Water Management and Agricultural Diversification System  

E-Print Network [OSTI]

Tank Production Systems: Aquaponics-Integrating Fish andand environmental resources. The Aquaponics Water Managementstorage zone. The aquaponics system is a bio- integrated

Fischer, Richard

2011-01-01T23:59:59.000Z

139

K West integrated water treatment system subproject safety analysis document  

SciTech Connect (OSTI)

This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

SEMMENS, L.S.

1999-02-24T23:59:59.000Z

140

Carbon and Water Resource Management for Water Distribution Systems  

E-Print Network [OSTI]

Buckley, C. A. ; Carbon footprint analysis for increasingeffectively reduce their carbon footprint. To accomplish7 February 2013. (8) The Carbon Footprint of Water; River

Hendrickson, Thomas Peter

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Conference Topic: Integrated Water Resources and Coastal Areas Management National Water Information Systems: A Tool to Support Integrated Water Resources  

E-Print Network [OSTI]

Conference Topic: Integrated Water Resources and Coastal Areas Management National Water Information Systems: A Tool to Support Integrated Water Resources Management in the Caribbean Marie-Claire St of Integrated Water Resources Management (IWRM) in the Caribbean and to address the problems

Barthelat, Francois

142

Onsite Wastewater Treatment Systems: Graywater Use and Water Quality  

E-Print Network [OSTI]

their homes in their landscapes. This reuse of graywater can reduce the amount of wastewater entering sewers or treatment systems, reduce the amount of fresh water used on landscapes and help preserve limited fresh water supplies. Onsite wastewater...-washing machines ? The code excludes water that has washed materials soiled with human waste, such as diapers, and water that has been in contact with toilet waste. This water, known as blackwater, includes flush water from toilets and urinals and wastewater...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-08-28T23:59:59.000Z

143

POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

V. King

2000-06-19T23:59:59.000Z

144

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

and Simulation of a Smart Water Heater. ” In Workshop inFreezers, Furnaces, Water Heaters, Room and Central AirNovember. ADL. 1982b. Water Heater Computer Model User’s

Lutz, Jim

2014-01-01T23:59:59.000Z

145

Design package for solar domestic hot water system  

SciTech Connect (OSTI)

Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

None

1980-09-01T23:59:59.000Z

146

Drinking water treatment and distribution systems must comply with US EPA water quality regula-  

E-Print Network [OSTI]

Drinking water treatment and distribution systems must comply with US EPA water quality regula trihalomethanes (THMs). Drinking water providers do frequent, costly testing for THMs. Field real-time sensors PROJECT GOALS The goal of this project was to bring a team of experts in drinking water, polymers

Fay, Noah

147

Flash 2011-27 OPAM | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash 2011-23 Federal and7 OPAM

148

Flash 2011-58-OPAM | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash 2011-23 Federal and7

149

Flash2003-01nisprule.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash 2011-23 Federal

150

Flash2003-17.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash 2011-23 Federal.pdf

151

Flash2003-17attachment.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash 2011-23

152

Flash2003-18attachment.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash 2011-238attachment.pdf

153

Flash2003-21.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash 2011-238attachment.pdf1.pdf

154

Flash2003-23.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash

155

Flash2003-32.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs32.pdf Flash2003-32.pdf

156

Flash2004-11.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs32.pdfFlash2004-11.pdf

157

Flash2004-23Attachment_1.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf

158

Flash2004-24.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf2.pdf

159

Flash2005-04.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf2.pdf1.pdf

160

Flash2005-06.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf2.pdf1.pdf5.pdf

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Flash2005-07.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf2.pdf1.pdf5.pdf7.pdf

162

Flash2005-08.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf2.pdf1.pdf5.pdf7.pdf8.pdf

163

Flash2005-09.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf2.pdf1.pdf5.pdf7.pdf8.pdf9.pdf

164

Flash2005-10.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007Flash2004-17.pdf2.pdf1.pdf5.pdf7.pdf8.pdf9.pdf0.pdf

165

Flash2005-21.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf

166

Flash2005-25attachment.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf.pdf5.pdf

167

Flash2005-28.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf.pdf5.pdf7.pdf

168

Flash2005-29.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf.pdf5.pdf7.pdf9.pdf

169

Flash2005-35.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf.pdf5.pdf7.pdf9.pdf35.pdf

170

Flash2005-41.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf.pdf5.pdf7.pdf9.pdf35.pdf1.pdf

171

Flash2005-42.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf.pdf5.pdf7.pdf9.pdf35.pdf1.pdf2.pdf

172

Flash2005-49.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf Flash2005-44.pdf

173

Flash2005-52.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf Flash2005-44.pdf0.pdf

174

Flash2005-52ATTACHMENT1.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf Flash2005-44.pdf0.pdfATTACHMENT1.pdf

175

Flash2005-56ATTACHMENT.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdf Flash2005-53.pdf

176

Flash2006-01.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdf Flash2005-53.pdf8.pdf

177

Flash2006-02.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdf Flash2005-53.pdf8.pdf.pdf

178

Flash2006-02ATTACHMENT.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdf Flash2005-53.pdf8.pdf.pdfATTACHMENT.pdf

179

Flash2006-03ATTACHMENT.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdfATTACHMENT.pdf Flash2006-03ATTACHMENT.pdf

180

Flash2006-05.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdfATTACHMENT.pdf5.pdf Flash2006-05.pdf

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Flash2006-08.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdfATTACHMENT.pdf5.pdf Flash2006-05.pdf8.pdf

182

Flash2006-11.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdfATTACHMENT.pdf5.pdf11.pdf Flash2006-11.pdf

183

Enhanced monitor system for water protection  

DOE Patents [OSTI]

An automatic, self-contained device for detecting toxic agents in a water supply includes an analyzer for detecting at least one toxic agent in a water sample, introducing a means for introducing a water sample into the analyzer and discharging the water sample from the analyzer, holding means for holding a water sample for a pre-selected period of time before the water sample is introduced into the analyzer, and an electronics package that analyzes raw data from the analyzer and emits a signal indicating the presence of at least one toxic agent in the water sample.

Hill, David E. (Knoxville, TN) [Knoxville, TN; Rodriquez, Jr., Miguel [Oak Ridge, TN; Greenbaum, Elias (Knoxville, TN) [Knoxville, TN

2009-09-22T23:59:59.000Z

184

Chilled Water Thermal Storage System and Demand Response at the University of California at Merced  

E-Print Network [OSTI]

Chilled Water Thermal Storage System and Demand Response atChilled Water Thermal Storage System and Demand Response atgallon chilled water storage system is charged daily during

Granderson, Jessica

2010-01-01T23:59:59.000Z

185

Installation package for a Sunspot Cascade Solar Water Heating System  

SciTech Connect (OSTI)

Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.

None

1980-09-01T23:59:59.000Z

186

ISSO Information Alert Multiple Vulnerabilities in Adobe Flash  

E-Print Network [OSTI]

SHARING AND ANALYSIS CENTER CYBER SECURITY ADVISORY MS-ISAC ADVISORY NUMBER: 2012-014 DATE(S) ISSUED: 3 to take complete control of affected systems. Adobe Flash Player is a widely distributed multimedia or URL and distributes that file or URL to unsuspecting users via e-mail or some other means. When

Dyer, Bill

187

Building America Webinar: Central Multifamily Water Heating Systems  

Broader source: Energy.gov [DOE]

Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

188

Method and apparatus for flash evaporation of liquids  

DOE Patents [OSTI]

A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

Bharathan, Desikan (Lakewood, CO)

1984-01-01T23:59:59.000Z

189

Method and apparatus for flash evaporation of liquids  

DOE Patents [OSTI]

A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

Bharathan, D.

1984-01-01T23:59:59.000Z

190

Outdoor Laboratory Water System Clemson, SC  

E-Print Network [OSTI]

show about it, and other things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control have strict standards for all the results of our water-quality analyses. Every regulated contaminant that was detected in the water, even

Duchowski, Andrew T.

191

Outdoor Laboratory Water System Clemson, SC  

E-Print Network [OSTI]

show about it, and other things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control have strict standards for all of our water-quality analyses. Every regulated contaminant that was detected in the water, even

Duchowski, Andrew T.

192

Slip stream apparatus and method for treating water in a circulating water system  

DOE Patents [OSTI]

An apparatus is described for treating water in a circulating water system that has a cooling water basin which includes a slip stream conduit in flow communication with the circulating water system, a source of acid solution in flow communication with the slip stream conduit, and a decarbonator in flow communication with the slip stream conduit and the cooling water basin. In use, a slip stream of circulating water is drawn from the circulating water system into the slip stream conduit of the apparatus. The slip stream pH is lowered by contact with an acid solution provided from the source thereof. The slip stream is then passed through a decarbonator to form a treated slip stream, and the treated slip stream is returned to the cooling water basin. 4 figs.

Cleveland, J.R.

1997-03-18T23:59:59.000Z

193

Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

Schroeder, Jenna N.

194

Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework  

SciTech Connect (OSTI)

This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

Schroeder, Jenna N.

2014-06-10T23:59:59.000Z

195

T-577: Security Advisory for Adobe Flash Player, Adobe Reader and Acrobat  

Broader source: Energy.gov [DOE]

A critical vulnerability exists in Adobe Flash Player 10.2.152.33 and earlier versions (Adobe Flash Player 10.2.154.13 and earlier for Chrome users) for Windows, Macintosh, Linux and Solaris operating systems, Adobe Flash Player 10.1.106.16 and earlier versions for Android, and the Authplay.dll component that ships with Adobe Reader and Acrobat X (10.0.1) and earlier 10.x and 9.x versions of Reader and Acrobat for Windows and Macintosh operating systems.

196

Sensor Networks for Monitoring and Control of Water Distribution Systems  

E-Print Network [OSTI]

Water distribution systems present a significant challenge for structural monitoring. They comprise a complex network of pipelines buried underground that are relatively inaccessible. Maintaining the integrity of these ...

Whittle, Andrew

197

Photoelectrochemical Water Systems for H2 Production (Presentation)  

SciTech Connect (OSTI)

This Photoelectrochemical Water Systems for Hydrogen Production presentation by the National Renewable Energy Laboratory's John Turner was given at the DOE Hydrogen Program's 2007 Annual Merit Review.

Turner, J. A.; Deutsch, T.; Head, J.; Vallett, P.

2007-05-17T23:59:59.000Z

198

Seismic Fragility of the LANL Fire Water Distribution System  

SciTech Connect (OSTI)

The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels. Assumptions are presented in Section 2.2 of this report.

Greg Mertz

2007-03-30T23:59:59.000Z

199

Challenges of Handling Storm Water Runoff Through Municipal Sewer Systems  

E-Print Network [OSTI]

cleaned and retained as a Best Management Practice (BMP). Receives only non-industrial storm water on storm water are leading municipalities to change permitting practices. As a result, facilitiesChallenges of Handling Storm Water Runoff Through Municipal Sewer Systems A South Carolina Case

Illinois at Urbana-Champaign, University of

200

DECISION SUPPORT SYSTEM FOR MANAGEMENT OF WATER SOURCES  

E-Print Network [OSTI]

DECISION SUPPORT SYSTEM FOR MANAGEMENT OF WATER SOURCES Nejc Trdin1, 2 , Marko Bohanec1 , Mitja.bohanec}@ijs.si, mitja.janza@geo-zs.si ABSTRACT Meeting the quality criteria for drinking water is one of the areas which of data collected while monitoring water adequacy, an expert carries a large burden and also his decisions

Bohanec, Marko

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Design of Hard Water Stable Emulsifier Systems for Petroleum-  

E-Print Network [OSTI]

Design of Hard Water Stable Emulsifier Systems for Petroleum- and Bio-based Semi for petroleum and bio-based MWFs that improve fluid lifetime by providing emulsion stability under hard water. The newly developed petroleum and bio-based formulations with improved hard water stability are competitive

Clarens, Andres

202

Rig-site system allows water reuse, cuts cleanup costs  

SciTech Connect (OSTI)

A new well-site treatment system is described which extends the use of solids control equipment to help solve the common drilling problems of water supply and/or wastewater disposal. The new closed-loop system combines water treatment with more conventional solids handling to continuously create clean water. The results include: re-use of water for rig cleaning, mud, and even cement makeup with no need to eject liquid to the environment; greatly reduced water-input requirements; and division of the conventional wastewater pit into an active treatment operations pit and an overflow reserve pit for emergency storage.

Neidhardt, D.

1985-03-04T23:59:59.000Z

203

Clemson University Water System Clemson, SC  

E-Print Network [OSTI]

. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental the results of our water-quality analyses. Every regulated contaminant that was detected in the water, even of such contamination, footnotes explaining our findings, and a key to units of measurement. Definitions of MCL and MCLG

Duchowski, Andrew T.

204

Fant's Grove Water System Clemson, SC  

E-Print Network [OSTI]

.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control have strict the results of our water-quality analyses. Every regulated contaminant that was detected in the water, even of such contamination, footnotes explaining our findings, and a key to units of measurement. Definitions of MCL and MCLG

Duchowski, Andrew T.

205

Homeland Security Challenges Facing Small Water Systems in Texas  

E-Print Network [OSTI]

with small water systems to develop volun- tary assessments of the homeland security threats that they face. EPA provides assistance to small systems through education work- shops and seminars, reports and guidelines, and tutorials on CD. In 2005 EPA...

Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

2007-05-31T23:59:59.000Z

206

Improving Heating System Operations Using Water Re-Circulation  

E-Print Network [OSTI]

In order to solve the imbalance problem of a heating system, brought about by consumer demand and regulation, and save the electricity energy consumed by a circulation pump, a water mixing and pressure difference control heating system is proposed...

Li, F.; Han, J.

2006-01-01T23:59:59.000Z

207

Minimizing Energy Consumption in a Water Distribution System: A Systems Modeling Approach  

E-Print Network [OSTI]

In a water distribution system from groundwater supply, the bulk of energy consumption is expended at pump stations. These pumps pressurize the water and transport it from the aquifer to the distribution system and to elevated storage tanks. Each...

Johnston, John

2011-08-08T23:59:59.000Z

208

FLASH predictions of the MB-2 steam line break tests  

SciTech Connect (OSTI)

If a main steam line from a pressurized water reactor (PWR) steam generator were to rupture, the effect would be a depressurization of the secondary side and a consequential overcooling transient on the primary side. Analyses must accurately predict the effects of the rapid cooldown of the reactor vessel coolant on positive nuclear-kinetic reactivity feedback to the core plus thermal shock to the reactor vessel and other primary system components. Many early studies of the steam line break (SLB) transient made extremely conservative assumptions to maximize the primary to secondary heat transfer which in turn maximized the reactor vessel cooldown rate. Among the more significant of these assumptions was that flow from the break was pure steam and that the tube bundle remained covered until the secondary mass inventory was significantly reduced. The Model F commercial PWR steam generator testing performed in the Model Boiler No. 2 (MB-2) facility located at the Westinghouse Engineering Test Facility in Tampa, Florida provided data to better qualify the actual variation in these key parameters. A conclusion of this analysis is that the MB-2 steam line break data base is accurate and of sufficient detail to provide a valuable basis for making comparisons relative to code predictions. Results obtained using the FLASH transient safety analysis code were found to be in excellent agreement with the data.

Lincoln, F.W.; Coffield, R.D.; Johnson, E.G.

1992-12-31T23:59:59.000Z

209

Analysis Model for Domestic Hot Water Distribution Systems: Preprint  

SciTech Connect (OSTI)

A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

Maguire, J.; Krarti, M.; Fang, X.

2011-11-01T23:59:59.000Z

210

Water Rights Analysis Package (WRAP) Daily Modeling System  

E-Print Network [OSTI]

-2011) Contract 582-12-10220 (2011-2013) Technical Report No. 430 Texas Water Resources Institute The Texas A&M University System College Station, Texas 77843-2118 August 2012 ii iii TABLE OF CONTENTS Chapter 1 Water Rights Analysis... Package (WRAP) Modeling System .......................... 1 WRAP Documentation ..................................................................................................... 1 WRAP Programs...

Wurbs, R.; Hoffpauir, R.

2012-10-01T23:59:59.000Z

211

Fourteenth Service Water System Reliability Improvement Seminar Proceedings  

SciTech Connect (OSTI)

This report contains information presented at the Fourteenth Service Water System Reliability Improvement (SWSRI) Seminar held June 24-25, 2002, in San Diego, California. The bi-annual seminar--sponsored by EPRI--provided an opportunity for participants to exchange technical information and experiences regarding the monitoring, repair, and replacement of service water system components.

None

2002-06-01T23:59:59.000Z

212

Flash2005-24Attachment1SingleIntegratedInfrastructure.pdf | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf.pdf Flash2005-24.pdfEnergy

213

Multiscale modeling of clay-water systems  

E-Print Network [OSTI]

The engineering properties of soils are highly affected by clay content and clay-water interactions. However, existing macro-scale continuum models have no length scale to describe the evolution of the clay microstructure ...

Ebrahimi, Davoud

2014-01-01T23:59:59.000Z

214

Flash2011-41.pdf  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdf Flash2010-07.pdf28v1.pdf2.pdf4.pdf1.pdf30 OPAM

215

Policy Flash 2005-53  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 FronteraMarijuana use | DepartmentPOLICY FLASH

216

Flash Center for Computational Science The University of Chicago  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flash Center for Computational Science The University of Chicago What are Type Ia supernovae? Supernova Cosmology Project Flash Center for Computational Science The University...

217

Policy Flash: 2013-52 Contractor Legal Management Requirements...  

Broader source: Energy.gov (indexed) [DOE]

Flash: 2013-52 Contractor Legal Management Requirements: Final Rule Policy Flash: 2013-52 Contractor Legal Management Requirements: Final Rule Questions concerning this policy...

218

Policy Flash 2013-24 Fee Determinations: Requirement to Obtain...  

Office of Environmental Management (EM)

Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition Executive's Input Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition Executive's...

219

Policy Flash 2014-19 Electronic Products Environmental Assessment...  

Broader source: Energy.gov (indexed) [DOE]

19 Electronic Products Environmental Assessment Tool (EPEAT) Policy Flash 2014-19 Electronic Products Environmental Assessment Tool (EPEAT) Questions concerning this policy flash...

220

Type B Accident Investigation of the Arc Flash at Brookhaven...  

Broader source: Energy.gov (indexed) [DOE]

Arc Flash at Brookhaven National Laboratory, April 14, 2006 Type B Accident Investigation of the Arc Flash at Brookhaven National Laboratory, April 14, 2006 February 10, 2006 An...

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Performance Monitoring of Residential Hot Water Distribution Systems  

SciTech Connect (OSTI)

Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

2014-08-11T23:59:59.000Z

222

Clemson University Water System System No, SC3910006  

E-Print Network [OSTI]

, and other things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control have strict standards for all drinking water contaminant that was detected in the water, even in the most minute traces, is listed here. The table contains

Duchowski, Andrew T.

223

Fant's Grove Water System System No, SC390112  

E-Print Network [OSTI]

, and other things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control have strict standards for all drinking water contaminant that was detected in the water, even in the most minute traces, is listed here. The table contains

Duchowski, Andrew T.

224

Clemson University Water System System No, SC3910006  

E-Print Network [OSTI]

things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control (DHEC) have strict standards for all drinking water contaminant that was detected in the water, even the most minute trace, is listed here. The table contains

Duchowski, Andrew T.

225

Ceramic coating system or water oxidation environments  

DOE Patents [OSTI]

A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.

Hong, Glenn T. (Tewksbury, MA)

1996-01-01T23:59:59.000Z

226

Clemson University Water System Clemson, SC  

E-Print Network [OSTI]

. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental-quality analyses. Every regulated contaminant that was detected in the water, even in the most minute traces), the ideal goals for public health, the amount detected, the usual sources of such contamination, footnotes

Duchowski, Andrew T.

227

Fant's Grove Water System Clemson, SC  

E-Print Network [OSTI]

.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control have strict-quality analyses. Every regulated contaminant that was detected in the water, even in the most minute traces), the ideal goals for public health, the amount detected, the usual sources of such contamination, footnotes

Duchowski, Andrew T.

228

Optimal water quality management in surface water systems and energy recovery in water distribution networks.  

E-Print Network [OSTI]

??Two of the most important environmental challenges in the 21st century are to protect the quality of fresh water resources and to utilize renewable energy… (more)

Telci, Ilker Tonguc

2012-01-01T23:59:59.000Z

229

EA-1093: Surface Water Drainage System, Golden, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to correct deficiencies in, and then to maintain, the surface water drainage system serving the U.S. Department of Energy's Rocky Flats...

230

Water Rights Analysis Package (WRAP) Modeling System Reference Manual  

E-Print Network [OSTI]

. Basin-wide impacts of water resources development projects and management strategies may be evaluated. The software package is generalized for application to any river/reservoir/use system, with input files being developed for the particular river basin...

Wurbs, Ralph A.

231

Water Rights Analysis Package (WRAP) Modeling System Users Manual  

E-Print Network [OSTI]

of concern. The model is documented by reference and users manuals that may be downloaded from this site along with the software. WRAP is incorporated in the Texas Commission on Environmental Quality (TCEQ) Water Availability Modeling (WAM) System....

Wurbs, R

2012-10-01T23:59:59.000Z

232

Water Distribution and Wastewater Systems Operators (North Dakota)  

Broader source: Energy.gov [DOE]

All public water supply and wastewater disposal systems are subject to classification and regulation by the State of North Dakota, and must obtain certification from the State Department of Health.

233

Strategic indicators for characterization of water system infrastructure and management  

E-Print Network [OSTI]

Shifts in the US water industry are characteristic of the flux found across all infrastructure sectors. Economic, environmental, market, regulatory and systemic forces are pushing the industry toward a different future ...

Garvin, Michael J. (Michael Joseph)

2001-01-01T23:59:59.000Z

234

Economic Representation of Agricultural Activities in Water Resources Systems Engineering  

E-Print Network [OSTI]

i Economic Representation of Agricultural Activities in Water Resources Systems Engineering. #12;iii Guilherme Fernandes Marques January 2004 Civil and Environmental Engineering Economic of DOCTOR OF PHILOSOPHY in Engineering in the OFFICE OF GRADUATE STUDIES of the UNIVERSITY OF CALIFORNIA

Lund, Jay R.

235

Clemson University Water System System No, SC3910006  

E-Print Network [OSTI]

, and other things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control (DHEC) have strict standards for all drinking-quality analyses. Every regulated contaminant that was detected in the water, even in the most minute traces

Duchowski, Andrew T.

236

Clemson University Water System System No, SC3910006  

E-Print Network [OSTI]

, and other things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control (DHEC) have strict standards for all drinking-quality analyses. Every regulated contaminant that was detected in the water, even the most minute trace, is listed

Duchowski, Andrew T.

237

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

SciTech Connect (OSTI)

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

238

Water oxidation reaction in natural and artificial photosynthetic systems  

SciTech Connect (OSTI)

Understanding the structure and mechanism of water oxidation catalysts is an essential component for developing artificial photosynthetic devices. In the natural water oxidation catalyst, the geometric and electronic structure of its inorganic core, the Mn{sub 4}CaO{sub 5} cluster, has been studied by spectroscopic and diffraction measurements. In inorganic systems, metal oxides seem to be good candidates for water oxidation catalysts. Understanding the reaction mechanism in both natural and oxide-based catalysts will helpin further developing efficient and robust water oxidation catalysts.

Yano, Junko; Yachandra, Vittal [Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 (United States)

2013-12-10T23:59:59.000Z

239

Drinking Water Systems, Hydrology, and Childhood GastrointestinalIllnessinCentralandNorthernWisconsin  

E-Print Network [OSTI]

water monitoring and surface water treatment. Com- munity municipal water systems without water treatment tend to have higher rates of water- borne disease.4,5 Water treatment refers to multiple methods, pathogens that survive treatment or infiltrate finished water distribution systems cause a sizeable GI

Wisconsin at Madison, University of

240

Flash2011-40 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdf Flash2010-75.pdf1.pdf0 Flash2011-40 Issue a New

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Flash2011-41 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdf Flash2010-75.pdf1.pdf0 Flash2011-40 Issue a

242

Flash2011-56 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdf Flash2010-75.pdf1.pdf0 Flash2011-40 Issue5

243

Flash2011-64 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdf Flash2010-75.pdf1.pdf0 Flash2011-40 Issue5734

244

Flash2011-79 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdf Flash2010-75.pdf1.pdf0 Flash2011-409 OPAM2789

245

Retrofitting Combined Space and Water Heating Systems: Laboratory Tests  

SciTech Connect (OSTI)

Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

2012-10-01T23:59:59.000Z

246

Water augmented indirectly-fired gas turbine systems and method  

DOE Patents [OSTI]

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

1992-01-01T23:59:59.000Z

247

Energy Conservation in Process Chilled Water Systems  

E-Print Network [OSTI]

The energy consumption of the chiller and cooling tower in a process cooling application was analyzed using the TRNSYS computer code. The basic system included a constant speed centrifugal chiller and an induced-draft, counterflow cooling tower...

Ambs, L. L.; DiBella, R. A.

248

Mechanistic model for void distribution in flashing flow  

SciTech Connect (OSTI)

A problem of discharging of an initially subcooled liquid from a high pressure condition into a low pressure environment is quite important in several industrial systems such as nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites is used. The model predictions in terms of the void fraction are compared to Moby Dick and BNL experimental data. It shows that satisfactory agreements could be obtained from the present model without any floating parameter to be adjusted with data. This result indicates that, at least for the experimental conditions considered here, the mechanistic prediction of the flashing phenomenon is possible based on the present wall nucleation based model. 43 refs., 4 figs.

Riznic, J.; Ishii, M.; Afgan, N.

1987-01-01T23:59:59.000Z

249

Small angle x-ray scattering study of fluctuations in 1-propanol-water and 2-propanol-water systems  

SciTech Connect (OSTI)

Small-angle x-ray scattering (SAXS) measurements have been carried out on the 1-propanol (NPA)-water system and on the 2-propanol (IPA)-water system at 20{degree}C. In the NPA-water system, the zero angle intensity, the concentration fluctuation, the Kirkwood-Buff parameters, and Debye's correlation lengths have been determined at various concentrations. In the IPA-water system, the zero angle intensity and Debye's correlation lengths have also been determined. In both the NPA-water and IPA-water systems, all obtained parameters have maxima at about 0.2 of the mole fraction of alcohol. In terms of these parameters, the mixing state of the NPA-water and IPA-water systems is discussed and compared with that of the TBA-water system.

Hayashi, Hisashi; Nishikawa, Keiko; Iijima, Takao (Gakushuin Univ., Tokyo (Japan))

1990-10-18T23:59:59.000Z

250

The water megamaser in the merger system Arp299  

E-Print Network [OSTI]

We present preliminary results of an interferometric study of the water megamaser in the merger system Arp299. This system is composed of two main sources: IC694 and NGC3690. There is clear evidence that most of the water maser emission is associated with the nucleus of the latter, confirming the presence of an optically obscured AGN as previously suggested by X-ray observations. Furthermore, emission arises from the inner regions of IC694, where an OH megamaser is also present. The velocity of the water maser line is blueshifted w.r.t. the optically determined systemic velocity and is consistent with that of the OH megamaser line. This finding might then indicate that both masers are associated with the same (expanding) structure and that, for the first time, strong 22 GHz water and 1.67 GHz OH maser emission has been found to coexist.

A. Tarchi; P. Castangia; C. Henkel; K. M. Menten

2006-10-30T23:59:59.000Z

251

New mud system produces solids-free, reusable water  

SciTech Connect (OSTI)

The Corpus Christi, Texas, based Cameron Equipment Co., Inc., has developed a closed-loop mud treating system that removes solids from water-based systems and leaves the separated fluid clean and chemical free enough to be re-used directly on the rig. The system has been successfully applied by a Gulf of Mexico operator in areas where zero discharge is required. The alternative mud conditions program offered by the developers is called the Cameron Fluid Recycling System. Designed for closed-loop water-based fluids, the system is a new method of removing solids from normally discharged fluids such as drilling mud, waste and wash water, or any other water-based fluid that contains undesirable solids. The patented method efficiently produces end products that are (1) dry solids; and (2) essentially 100% solids-free fluid that can be re-used in the same mud system. All excess drilling mud, and all wash water that would normally go to the reserve pit or a cuttings barge are collected in a tank. Recycled fluid is compatible with the mud system fluid, no harmful chemicals are used, and pH is not altered.

NONE

1996-02-01T23:59:59.000Z

252

Mining Gold from your Cooling Water System  

E-Print Network [OSTI]

to be achieved. GPM 2 /GPM 1 = RPM 2 /RPM 1 Equation (1) (RPM 2 /RPM 1 ) 3 = HP 2 /HP 1 Equation (2) ESL-IE-07-05-25 Proceedings from the Twenty-ninth Industrial Energy Technology Conference, New Orleans, LA, May 8-11, 2007. COOLING WATER PUMPING Pumping... Apr May Jun Jul Aug Sep Oct Nov Months Ri ver l eve l ( f t ) 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 T e mp er at ur e ( F) Average River Level Average River Temperature ESL-IE-07-05-25 Proceedings from the Twenty...

Mendez, T.

253

General approach to automation of FLASH subsystems  

E-Print Network [OSTI]

General approach to automation of FLASH subsystems Boguslaw Kosda #12;Agenda Motivation Nature of automation software for high energy experiments. Ultimate role of the automation software: Maximization of lasers availability. Automation of routine activities as startup, shutdown ... Continuous monitoring

254

EELE408 Photovoltaics Lecture 22: Grid Tied Systems  

E-Print Network [OSTI]

City Hall 11 Two inverters in this systems Photovoltaic & Solar Heating 12 Hot water tilted for winter panels: Kyrocera 210 ­ Inverter: Fronius IG 5.0 · 5000 W · Price Estimate ­ Solar Modules (24) $20k anchors Installed Anchor System Fl hi dd d h f i hi l d 4 Flashing added as the roof is shingled Solar

Kaiser, Todd J.

255

New Diagnostics in the FLASH Dump Line  

E-Print Network [OSTI]

Line Status Aug. 2009 BPM 9DUMP BPM 15DUMP BPM 5DUMP Toroid 9DUMP OTR screen 9DUMP BLM 14DUMP BLM 13 at the dump #12;N. Baboi, MDIN. Baboi, MDI FLASH Seminar, Dec. 1, 2009FLASH Seminar, Dec. 1, 2009 Old BPM 15DUMPOld BPM 15DUMP ·Strange behavior of BPM signals measured impedance from end of cable (in bld. 49): L

256

Stealthy Deception Attacks on Water SCADA Systems Saurabh Amin  

E-Print Network [OSTI]

]: Security and Protection--physical security, unau- thorized access; J.2 [Physical Sciences and Engineer- ing]: Earth and atmospheric sciences General Terms Security Permission to make digital or hard copies of all such as waste-water treatment plants, oil and gas distribution, and process control systems. SCADA systems

257

E-Print Network 3.0 - auxiliary water systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

including drinking water distribution systems (esp. in small rural communities... ), wastewater treatment, storm runoff, irrigation systems, dams, levees, and canals. 9. Water...

258

Detection of the Water Reservoir in a Forming Planetary System  

E-Print Network [OSTI]

Icy bodies may have delivered the oceans to the early Earth, yet little is known about water in the ice-dominated regions of extra-solar planet-forming disks. The Heterodyne Instrument for the Far-Infrared on-board the Herschel Space Observatory has detected emission from both spin isomers of cold water vapor from the disk around the young star TW Hydrae. This water vapor likely originates from ice-coated solids near the disk surface hinting at a water ice reservoir equivalent to several thousand Earth Oceans in mass. The water's ortho-to-para ratio falls well below that of Solar System comets, suggesting that comets contain heterogeneous ice mixtures collected across the entire solar nebula during the early stages of planetary birth.

Hogerheijde, Michiel R; Brinch, Christian; Cleeves, L Ilsedore; Fogel, Jeffrey K J; Blake, Geoffrey A; Dominik, Carsten; Lis, Dariusz C; Melnick, Gary; Neufeld, David; Panic, Olja; Pearson, John C; Kristensen, Lars; Yildiz, Umut A; van Dishoeck, Ewine F

2011-01-01T23:59:59.000Z

259

Hot Water Distribution System Model Enhancements  

SciTech Connect (OSTI)

This project involves enhancement of the HWSIM distribution system model to more accurately model pipe heat transfer. Recent laboratory testing efforts have indicated that the modeling of radiant heat transfer effects is needed to accurately characterize piping heat loss. An analytical methodology for integrating radiant heat transfer was implemented with HWSIM. Laboratory test data collected in another project was then used to validate the model for a variety of uninsulated and insulated pipe cases (copper, PEX, and CPVC). Results appear favorable, with typical deviations from lab results less than 8%.

Hoeschele, M.; Weitzel, E.

2012-11-01T23:59:59.000Z

260

Solar space and water heating system installed at Charlottesville, Virginia  

SciTech Connect (OSTI)

The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

Greer, Charles R.

1980-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design of a high temperature hot water central heating system  

SciTech Connect (OSTI)

The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

1981-11-01T23:59:59.000Z

262

Design manual for high temperature hot water and steam systems  

SciTech Connect (OSTI)

The author presents aspects of high temperature hot water and steam generating systems. It covers all the calculations that must be made for sizing and then selecting the equipment that will make up an energy system. The author provides essential information on loan analysis, types of fuel, storage requirements, handling facilities, waste disposal, HVAC needs, and back-up systems. Also included are the calculations needed for determining the size of compressors, air pollution devices, fans, filters, and other supplementary equipment.

Cofield, R.E. Jr.

1984-01-01T23:59:59.000Z

263

Lessons and Measures Learned from Continuous Commissioning(SM) of Central Chilled/Hot Water Systems  

E-Print Network [OSTI]

water and hot water system operation. It can be performed before, during, or after building side continuous commissioning. Successful central chilled/hot water system CC not only results in improved production and distribution, but also achieves...

Deng, S.; Turner, W. D.; Claridge, D. E.; Bruner, H.; Chen, H.; Wei, G.

2001-01-01T23:59:59.000Z

264

OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water...

265

Biofuels, land and water : a systems approach to sustainability.  

SciTech Connect (OSTI)

There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

Gopalakrishnan, G.; Negri, M. C.; Wang, M.; Wu, M.; Snyder, S. W.; LaFreniere, L.

2009-08-01T23:59:59.000Z

266

Water Use in Agricultural Watersheds Derrel Martin, Professor, Irrigation and Water Resources Engineer, Dept. of Biological Systems  

E-Print Network [OSTI]

Water Use in Agricultural Watersheds Derrel Martin, Professor, Irrigation and Water Resources Engineer, Dept. of Biological Systems Engineering, UNL Background Concerns about water use have intensified and Republican River Basins, and the implementation of LB 962. To understand water use it is helpful to consider

Nebraska-Lincoln, University of

267

Integrated system dynamics toolbox for water resources planning.  

SciTech Connect (OSTI)

Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

2006-12-01T23:59:59.000Z

268

EA-1905: Double Eagle Water System, Carlsbad, New Mexico  

Broader source: Energy.gov [DOE]

This EA, prepared by the U.S. Department of the Interior’s Bureau of Land Management Carlsbad Field Office and adopted by DOE, evaluates the expansion and upgrade of the City of Carlsbad’s Double Eagle Water System.

269

Reduction of Vinyl Chloride in Metallic Iron-Water Systems  

E-Print Network [OSTI]

Reduction of Vinyl Chloride in Metallic Iron-Water Systems B A O L I N D E N G * Department to groundwater and soil contamination. In particular, VC can be produced as an intermediate in the reductive). Remediation of groundwater contaminated with chlori- nated ethylenes, including vinyl chloride, has been chal

Deng, Baolin

270

System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)  

SciTech Connect (OSTI)

This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

DERUSSEAU, R.R.

2000-04-18T23:59:59.000Z

271

Flow Analysis on a Limited Volume Chilled Water System  

SciTech Connect (OSTI)

LANL Currently has a limited volume chilled water system for use in a glove box, but the system needs to be updated. Before we start building our new system, a flow analysis is needed to ensure that there are no high flow rates, extreme pressures, or any other hazards involved in the system. In this project the piping system is extremely important to us because it directly affects the overall design of the entire system. The primary components necessary for the chilled water piping system are shown in the design. They include the pipes themselves (perhaps of more than one diameter), the various fitting used to connect the individual pipes to form the desired system, the flow rate control devices (valves), and the pumps that add energy to the fluid. Even the most simple pipe systems are actually quite complex when they are viewed in terms of rigorous analytical considerations. I used an 'exact' analysis and dimensional analysis considerations combined with experimental results for this project. When 'real-world' effects are important (such as viscous effects in pipe flows), it is often difficult or impossible to use only theoretical methods to obtain the desired results. A judicious combination of experimental data with theoretical considerations and dimensional analysis are needed in order to reduce risks to an acceptable level.

Zheng, Lin [Los Alamos National Laboratory

2012-07-31T23:59:59.000Z

272

A void distribution model-flashing flow  

SciTech Connect (OSTI)

A new model for flashing flow based on wall nucleations is proposed here and the model predictions are compared with some experimental data. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites was used. Thus it was possible to avoid the usual assumption of a constant bubble number density. Comparisons of the model with the data shows that the model based on the nucleation site density correlation appears to be acceptable to describe the vapor generation in the flashing flow. For the limited data examined, the comparisons show rather satisfactory agreement without using a floating parameter to adjust the model. This result indicated that, at least for the experimental conditions considered here, the mechanistic predictions of the flashing phenomenon is possible on the present wall nucleation based model.

Riznic, J.; Ishii, M.; Afgan, N.

1987-01-01T23:59:59.000Z

273

Intellectual property strategy : analysis of the flash memory industry  

E-Print Network [OSTI]

This thesis studies the intellectual property strategy of companies in the flash memory industry, with special emphasis on technology and the development of nitride-based flash, a new and emerging type of memory technology. ...

Ogura, Tomoko H

2006-01-01T23:59:59.000Z

274

Policy Flash 2013-26 Guidance for tracking inquiries related...  

Broader source: Energy.gov (indexed) [DOE]

Questions concerning this policy flash should be directed to Karina Edmonds, Technology Transfer Coordinator, at (202) 586-2678 or at karina.edmonds@hq.doe.gov. Flash 2013-26...

275

Policy Flash 2013-23 Department of Energy Acquisition Regulation...  

Energy Savers [EERE]

Policy Flash 2013-23 Department of Energy Acquisition Regulation (DEAR) Final Rule for changes to Parts 908, 945, 952, and 970 regarding Government Property Policy Flash 2013-23...

276

Policy Flash 2009-01 Tips for Processing Financial Assistance...  

Office of Environmental Management (EM)

09-01 Tips for Processing Financial Assistance Actions in STRIPES Policy Flash 2009-01 Tips for Processing Financial Assistance Actions in STRIPES Attached is Policy Flash 2009-01...

277

Policy Flash 2013-57 New Strategic Sourcing Acquisition Guide...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Policy Flash 2013-57 New Strategic Sourcing Acquisition Guide Chapter 7.2 Policy Flash 2013-57 New Strategic Sourcing Acquisition Guide Chapter 7.2 Questions concerning this policy...

278

Policy Flash 2014-38 Federal Acquisition Circular (FAC) 2005...  

Broader source: Energy.gov (indexed) [DOE]

8 Federal Acquisition Circular (FAC) 2005-76 Policy Flash 2014-38 Federal Acquisition Circular (FAC) 2005-76 Questions concerning this policy flash should be directed to Jason...

279

Policy Flash 2013-41 Contracts Periods of Performance Exceeding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

41 Contracts Periods of Performance Exceeding 5 Years Policy Flash 2013-41 Contracts Periods of Performance Exceeding 5 Years Attached is Policy Flash 2013-41 Contracts Periods of...

280

Policy Flash 2012-44 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

44 Policy Flash 2012-44 Attached is POLICY FLASH 2012-44 Congressional Notifications- Acquisition Guide Chapter 5.1 and Guide to Financial Assistance Chapter 2 Section 2.6.1...

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Policy Flash 2013-36 Update to Congressional Notifications -...  

Office of Environmental Management (EM)

Policy Flash 2013-36 Update to Congressional Notifications - Acquisition Guide Chapter 5.1 and Guide to Financial Assistance Chapter 2, Section 2.6.1 Policy Flash 2013-36 Update to...

282

POLICY FLASH 2014-31 Federal Acquisition Circulars (FACs) 2005...  

Office of Environmental Management (EM)

POLICY FLASH 2014-31 Federal Acquisition Circulars (FACs) 2005-73 and 2005-74 POLICY FLASH 2014-31 Federal Acquisition Circulars (FACs) 2005-73 and 2005-74 Questions concerning...

283

T-569: Adobe Flash SWF File Processing Memory Corruption Remote...  

Broader source: Energy.gov (indexed) [DOE]

at the following links: Update Adobe Flash Player 10.2.152.32 Flash Player 10.2 FreeBSD Ports Collection Index Addthis Related Articles T-607: Update: Adobe Acrobat, Reader, and...

284

Type B Accident Investigation of the January 10, 2006, Flash...  

Broader source: Energy.gov (indexed) [DOE]

10, 2006, Flash Fire and Injury at the Savannah River National Laboratory Type B Accident Investigation of the January 10, 2006, Flash Fire and Injury at the Savannah River...

285

Analyzing risk and uncertainty for improving water distribution system security from malevolent water supply contamination events  

E-Print Network [OSTI]

. Fig. 4.11. Tank level time series. Initial Storage Tank Level 0.00 0.05 0.10 0.15 0.20 0.25 30 31 32 33 34 35 36 37 Head (m) PDF Val u e Tank Level Time Series 104 105 106 107 108 109 110 111 112 0 10203040506070 Hours H ead ( m ) 29 In the case... ANALYZING RISK AND UNCERTAINTY FOR IMPROVING WATER DISTRIBUTION SYSTEM SECURITY FROM MALEVOLENT WATER SUPPLY CONTAMINATION EVENTS A Thesis by JACOB MANUEL TORRES Submitted to the Office of Graduate Studies of Texas A&M...

Torres, Jacob Manuel

2009-05-15T23:59:59.000Z

286

INTEC CPP-603 Basin Water Treatment System Closure: Process Design  

SciTech Connect (OSTI)

This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

2002-09-01T23:59:59.000Z

287

Construction and operation of a flash distillation apparatus  

E-Print Network [OSTI]

, Calibration Data of Orifioe ~, i, . ~ ~ ~ . ~ ~ . ~ 13 III. Equilibrium Data of Ethanol-Eater Mixtures . ~ * ~ ~ , 17 IV, . Flash Vaporieation Data of Ethanol Hater hIlxtures& + , 18 VI ~ Hempel Distillation of Oklahoma City Crude ~ . . . Flash... Vaporiration of Oklahoma City Crude ~ . ~ 21 22 VII' Hempel Distillations of Flash Distillates of Oklahoma City Crude . ~ ~ ~ ~ ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ ~ 24 VIII+ Hompel Distillations of Flash Residuums of Oklahoma City Crude ~ ~ ~ ~ ~ i ~ ~ o...

Knezevich, Milan

2012-06-07T23:59:59.000Z

288

Flash 2011-09 OPAM | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs FindofMathematicianDepartmentFixed09

289

Flash 2011-10 OPAM | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs

290

Flash2003-31.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3

291

Flash2004-04.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs32.pdf

292

Flash2004-13.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007

293

Flash2005-11.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY

294

Flash2005-43.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf

295

Flash2005-52ATTACHMENT2.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf

296

Flash2006-03.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdf

297

Flash2006-04.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdfATTACHMENT.pdf

298

Flash2006-09.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdfATTACHMENT.pdf5.pdf

299

Flash2006-12.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdfATTACHMENT.pdf5.pdf11.pdf

300

Flash2006-12ATTACHMENT.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf4.pdf3.pdfATTACHMENT.pdf5.pdf11.pdfATTACHMENT.pdf

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

September 2011 Comparison of PCIe SLC Flash cards  

E-Print Network [OSTI]

PC CPU, 3= FPGA, 4=450 usable Flash (650 raw), 5=RAM, 6=Super capacitors Each flash memory chip contains of the lower data access time compared to Flash. Large capacitors on the card protect the data as it moves

302

Policy Flash 2012-27 | Department of Energy  

Energy Savers [EERE]

7 Policy Flash 2012-27 Below is Policy Flash 2012-27 and an attachment, a summary of Federal Acquisition Circular 2005-56. PolicyFlash2012-27.pdf AttachmentFAC2005-56Summary.p...

303

The Development of an Energy Evaluation Tool for Chilled Water Systems  

E-Print Network [OSTI]

An energy evaluation tool for chilled water systems was developed. This tool quantifies the energy usage of various chilled water systems and typical energy conservation measures that are applied to these systems. It can be used as a screening tool...

Stocki, M.; Kosanovic, D.; Ambs, L.

304

Physical Modeling of Scaled Water Distribution System Networks.  

SciTech Connect (OSTI)

Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3

O'Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson

2005-10-01T23:59:59.000Z

305

Application of a water rights analysis program to reservoir system yield calculations  

E-Print Network [OSTI]

corrected to approximate naturalized flows. As water management becomes more critical, it is necessary to gage the effect of governmental institutions on reservoir yields. In Texas and elsewhere, water users are governed by a system of water rights.... The effect of this system on firm yields must be quantified in order to provide effective water management. This thesis documents research into the effect of the Texas water rights system on the Brazos River Authority reservoir system. A new generalized...

Walls, William Brian

1988-01-01T23:59:59.000Z

306

Portable water filtration system for oil well fractionation  

SciTech Connect (OSTI)

The invention comprises a portable, multi-stage filtration system utilized in filtering water for an oil and gas stimulation process commonly known as fracking. Three stages are used, the first being a straining operation reducing the size of particulate matter in the water to about three-eighths of an inch. The second stage is a centrifugal separator, reducing the particle size to about 50 microns. The final stage utilizes a cartridge-type filter giving a final particle size in the water of about 5 microns. In this manner, water which is injected into the well head during the fracking process and which is obtained from readily available sources such as ponds, streams and the like is relatively free of particulate matter which can foul the fracking process. The invention, by virtue of being mounted on a trailer, is portable and thus can be easily moved from site to site. Water flow rates obtained using the invention are between 250 and 300 gallons per minute, sufficient for processing a small to medium sized well.

Seibert, D. L.

1985-08-13T23:59:59.000Z

307

POLICY FLASH 2014-16 In September 2012, DOE issued Policy Flash...  

Broader source: Energy.gov (indexed) [DOE]

6 In September 2012, DOE issued Policy Flash 2012-67, Acquisition Savings Reporting Template Guidance to fully comply with reporting requirements. This is an update to that Policy...

308

Water: Challenges at the Intersection of Human and Natural Systems  

SciTech Connect (OSTI)

There is a growing recognition about the critical role water plays in sustaining people and society. This workshop established dialog between disciplinary scientists and program managers from diverse backgrounds in order to share perspectives and broaden community understanding of ongoing fundamental and applied research on water as a complex environmental problem. Three major scientific themes emerged: (1) coupling of cycles and process, with emphasis on the role of interfaces; (2) coupling of human and natural systems across spatial and temporal scales; and (3) prediction in the face of uncertainty. In addition, the need for observation systems, sensors, and infrastructure; and the need for data management and synthesis were addressed. Current barriers to progress were noted as educational and institutional barriers and the integration of science and policy.

Futrell, J.H.; Gephart, R. E.; Kabat-Lensch, E.; McKnight, D. M.; Pyrtle, A.; Schimel, J. P.; Smyth, R. L.; Skole, D. L. Wilson, J. L.; Gephart, J. M.

2005-09-01T23:59:59.000Z

309

Characterizing Flash Memory: Anomalies, Observations, and Applications  

E-Print Network [OSTI]

), and reliability of flash memory. In addition, we must understand how different usage patterns affect char- acteristics and show how we can use them to improve responsive- ness and energy consumption begun to make the transi- tion from embedded devices to laptops, desktops, and data cen- ters

Wang, Deli

310

Stormwater and Urban Water Systems Modeling Conference. In: Models and Applications to Urban Water Systems, Vol. 12 (edited by W. James). CHI. Guelph, Ontario, pp. 257 294. 2004.  

E-Print Network [OSTI]

Stormwater and Urban Water Systems Modeling Conference. In: Models and Applications to Urban Water AND EXAMINATION OF A MUNICIPAL SEPARATE STORM SEWER SYSTEM DATABASE Robert Pitt, Alex Maestre, Renee Morquecho of Water 104(b)3 grant in 2001 to collect and evaluate stormwater data from a representative number

Pitt, Robert E.

311

Water Rights Analysis Package (WRAP) Modeling System Programming Manual  

E-Print Network [OSTI]

WRAP interface program was developed as a Fortran QuickWin application. SIM simulates the river/reservoir water allocation/management/use system for input sequences of monthly naturalized flows and net evaporation rates. (Chapter 2) SIMD (D for daily... management, and other utility functions. Many different Fortran compiler/IDE packages are sold by various companies. The WRAP programs are in standard Fortran that can be compiled with the various compilers. The compiler, linker, and development...

Wurbs, R.; Hoffpauir, R.

2012-10-01T23:59:59.000Z

312

Vulnerability assessment of water supply systems for insufficient fire flows  

E-Print Network [OSTI]

VULNERABILITY ASSESSMENT OF WATER SUPPLY SYSTEMS FOR INSUFFICIENT FIRE FLOWS A Thesis by LUFTHANSA RAHMAN KANTA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Kelly Brumbelow Committee Members, Francisco Olivera Sergiy Butenko Head of Department...

Kanta, Lufthansa Rahman

2009-05-15T23:59:59.000Z

313

Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China  

E-Print Network [OSTI]

This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

Chen, H.; Li, D.; Dai, X.

2006-01-01T23:59:59.000Z

314

Solar hot water system installed at Mobile, Alabama. Final report  

SciTech Connect (OSTI)

This final report describes the solar energy hot water system installed at LaQuinta Motor Inn Inc., at Mobile, Alabama. The building is a 122 unit motel. The system consists of six rows of ten collectors and three rows of eleven collectors (1990 square feet) mounted on the roof. Griswald flow control valves were installed to regulate the flow to each row. Two Heliotrope electronic thermometers with a combined capability of measuring the temperatures of 22 different locations were installed for monitoring purposes. Engineering drawings, component specifications, and operator instructions are included.

None

1980-10-01T23:59:59.000Z

315

Water spray ventilator system for continuous mining machines  

DOE Patents [OSTI]

The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

Page, Steven J. (Pittsburgh, PA); Mal, Thomas (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

316

Flash2003-01fac2001-11.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs3 Flash 2011-23 Federal and79

317

Flash2005-24Attachment2TransitionImplementationMemo.pdf | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY2.pdf Flash2005-12.pdf.pdf

318

CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT  

SciTech Connect (OSTI)

The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during the first season of growth of each system. Sediment samples after the first and third years of operation indicated that copper was being bound in the sediments very rapidly after entering the treatment system. The design of the system encourages low redox and sulfide production in the sediments. The objective is to stabilize metals, including mercury, as sulfide compounds in the sediments. Costs for maintenance and operation of the systems are minimal, consisting primarily of ensuring that the pipes are not clogged and that water is flowing through the system. The treatment cost per thousand gallons is many times less than conventional wastewater treatment facilities. Life expectancy and function of the biological system is based on the life of the engineering aspects and not the wetland ecology.

Nelson, E.

2010-07-19T23:59:59.000Z

319

PURPOSE: This product provides simulation capabilities to allow water resource managers to meet operational and water quality objectives in a basin wide approach under the System-Wide  

E-Print Network [OSTI]

Manage- ment System (CWMS). ERDC TN-SWWRP-11-2 February 2011 Meeting Water Quality and Water Control operational and water quality objectives in a basin wide approach under the System-Wide Water Resources the impact of water quality in reservoir operations system decision-making. As a result, integration

US Army Corps of Engineers

320

SYSTEM OPTIMIZTION OF HOT WATER CONCENTRATED SOLAR THERMOELECTRIC GENERATION  

E-Print Network [OSTI]

In this report, we describe the design of a concentrated solar thermoelectric (TE) system which can provide both electricity and hot water. Today’s thermoelectric materials have a relatively low efficiency (~6 % for temperature difference across the thermoelement on the order of 300 o C). However since thermoelectrics don’t need their cold side to be near room temperature, (in another word, one can chose the particular thermoelectric material to match to the operational temperature) it is possible to use the waste heat to provide hot water and this makes the overall efficiency of the combined system to be quite high. A key factor in the optimization of the thermoelectric module is the thermal impedance matching with the incident solar radiation, and also with the hot water heat exchanger on the cold side of the thermoelectric module. We have developed an analytic model for the whole system and optimized each component in order to minimize the material cost. TE element fill factor is found to be an important parameter to optimize at low solar concentrations (generated per mass of the thermoelectric elements. Similarly the co-optimization of the microchannel heat exchanger and the TE module can be used to minimize the amount of material in the heat exchanger and the pumping power required for forced convection liquid cooling. Changing the amount of solar concentration, changes the input heat flux and this is another parameter that can be optimized in order to reduce the cost of heat exchanger (by size), the tracking requirement and the whole system. A series of design curves for different solar concentration are obtained. It is shown that the overall efficiency of the system can be more than 80 % at 200x concentration which is independent of the material ZT (TE figure-of-merit). For a material with ZThot~0.9, the electrical conversion efficiency is ~10%. For advanced materials with ZThot ~ 2.8, the electrical conversion efficiency could reach ~21%. 1.

Kazuaki Yazawa; Ali Shakouri

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Coordinated Control of a Central Air Conditioning System Based on Variable Chilled Water Temperature and Variable Chilled Water Flow  

E-Print Network [OSTI]

At present, regulation of water flow by means of pump frequency conversion is one of the major methods for power-saving in central air conditioning systems. In this article, optimization regulation for central air conditioning system on the basis...

Liu, J.; Mai, Y.; Liu, X.

2006-01-01T23:59:59.000Z

322

Modeling Integrated Decisions for a Municipal Water System with Recourse and Uncertainties  

E-Print Network [OSTI]

for a municipal water system to cost-effectively accommodate a distribution of water shortages. Alternative robust in action costs, life spans, water volumes gained or saved, shortage levels, and shortage probabilities make water shortages pressing or impending realities for Amman, Jordan and many other urban water

Pasternack, Gregory B.

323

A three-phase K-value study for pure hydrocarbons/water and crude oil/water systems  

E-Print Network [OSTI]

Steam distillation, or vaporization of crude oil in porous media is on of the major mechanisms responsible for high oil recovery by steamflooding from heavy oil as well as light oil reservoir systems. Several authors have reported steam dsitillation...-phase equilibrium data for hydrocarbon/water systems ranging from light to heavy crude oil fractions. ! Experimental data describing the phase behavior and the hydrocarbon/water separation process for multi-component hydrocarbon/water and crude oil...

Lanclos, Ritchie Paul

1990-01-01T23:59:59.000Z

324

EVALUATION OF THE RECTANGULAR RAPID FLASH BEACON AT A PINELLAS TRAIL CROSSING IN ST. PETERSBURG, FLORIDA  

E-Print Network [OSTI]

rectangular yellow LED indicators which flash rapidly in a wig-wag sequence. It is solar-powered, radio controlled, and activated by trail users. The experimental design was to collect data of trail users before of more benefit would be periodic police enforcement operations, or the development of a passive system

North Carolina at Chapel Hill, University of

325

Using Quasi-EZ-NAND Flash Memory to Build Large-Capacity Solid-State  

E-Print Network [OSTI]

-NAND flash, and both can reduce the average SSD response time by over 90 percent compared with conventional system data storage integrity and maintain sufficient PE cycling endurance and data retention postcompensation/predistortion [5] for compensating cell-to-cell interference) may demand fine-grained memory cell

Zhang, Tong

326

Design Method and Automation of Comparator Generation for Flash A/D Converter  

E-Print Network [OSTI]

processing system demands high- speed operation and less power consumption. A new flash ADC design. The threshold inverter quantization (TIQ) based A/D converters require 2n , 1 comparators, each one different, 3] rate. It consumes more power and occupies larger chip area in comparison to the other types

Choi, Kyusun

327

The ASME handbook on water technology for thermal power systems  

SciTech Connect (OSTI)

The idea that a handbook on water technology be developed was initially put forth in 1978 by the ASME Research Committee on Water in Thermal Power Systems. A prospectus was issued in 1979 to solicit funding from industry and government. The preparation of the handbook began in 1980 under the direct control of a Handbook Steering Subcommittee established by the Research Committee and an editor reporting to that subcommittee. Handbook content was carefully monitored by an editorial committee of industry experts and by a special honorary editorial committee from the Chemistry Committee of the Edison Electric Institute. This handbook summarizes the current state of the art of water technology for steam power plant cycles. It is intended to serve both as a training text and a reference volume for power station chemists, engineers, manufacturers, and research and development institutions. While the primary emphasis is on Electric Utility Power Generation cycles (fossil and nuclear), the book will also serve as a valuable reference on high pressure industrial steam system technology.

Cohen, P. (ed.)

1989-01-01T23:59:59.000Z

328

Promising freeze protection alternatives in solar domestic hot water systems  

SciTech Connect (OSTI)

Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

Bradley, D.E.

1997-12-31T23:59:59.000Z

329

Policy Flash 2012-7  

Broader source: Energy.gov [DOE]

The Administration continues its emphasis on sustainable acquisition, emphasizing the importance of the program and forecasting changes in the Federal Procurement Data System and details regarding...

330

Electrical Safety and Arc Flash Protections  

SciTech Connect (OSTI)

Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

R. Camp

2008-03-04T23:59:59.000Z

331

Validation of 3D Radiative Transfer in Coastal-Ocean Water Systems as Modeled by DIRSIG  

E-Print Network [OSTI]

Validation of 3D Radiative Transfer in Coastal-Ocean Water Systems as Modeled by DIRSIG FOR IMAGING SCIENCE Title of Dissertation: Validation of 3D Radiative Transfer in Coastal-Ocean Water Systems. Signature Date 3 #12;Validation of 3D Radiative Transfer in Coastal-Ocean Water Systems as Modeled by DIRSIG

Salvaggio, Carl

332

Flash flooding events in south central Texas  

E-Print Network [OSTI]

. Heights in Peters. (Fran Henry, 1981 I. TABLE 1. Station information for Del Rio, Stephenville, and Victoria (from Henry, 1981). Station Name Station Number Call Elevation Letters m Latitude Lon itude Del Rio 72261 Stephenville 72Z60 Victoria... Totals Index (TTI) was computed for each rawinsonde station using the following formula: 16 TABLE 5. Neteorological elements used to determine the state of the atmosphere orior to flash flooding events over South Central Texas in a triangular area...

Utley, Tom Wilson

2012-06-07T23:59:59.000Z

333

Recovery News Flashes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office of Environmental Management

334

Graduate Opportunities in Earth Systems Modeling and Climate Impacts on Hydrology and Water Resources  

E-Print Network [OSTI]

Graduate Opportunities in Earth Systems Modeling and Climate Impacts on Hydrology and Water research assistantships available in the general area of earth systems modeling and climate impacts

335

Thermal Decomposition of Molecules Relevant to Combustion and Chemical Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass Spectrometry  

E-Print Network [OSTI]

of Small Molecules by Flash Pyrolysis, University ofwas performed using flash pyrolysis vacuum-ultraviolet time-Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass

Lemieux, Jessy Mario

2013-01-01T23:59:59.000Z

336

Long-Term Succession of Structure and Diversity of a Biofilm Formed in a Model Drinking Water Distribution System  

E-Print Network [OSTI]

formation in a model drinking water distribution system. J.and activity in drinking water distribution networks underbacterial species from drinking water biofilms and proof of

Martiny, A. C; Jorgensen, T. M; Albrechtsen, H.-J.; Arvin, E.; Molin, S.

2003-01-01T23:59:59.000Z

337

Solar Water Splitting: Photocatalyst Materials Discovery and Systems Development  

SciTech Connect (OSTI)

Hydrogen promises to be an attractive transportation fuel in the post-fossil fuel era. Relatively abundant and clean burning (water being the principal byproduct), hydrogen offers the potential to significantly reduce greenhouse gas emissions. However, there are significant technical barriers that require solutions before hydrogen can be implemented in large scale. These are: · Sources (e.g. hydrocarbon, water) · Transportation · Storage Each of the aforementioned barriers carries with it important considerations. First, would a hydrocarbon-based hydrogen source be of any benefit compared to conventional fossil fuels? Second, will a system based on centralized generation and distribution be viable? Finally, methods of on-board storage, whether they are liquefaction, adsorption, or intercalation, are far from optimized. The scope of this program is limited to hydrogen generation, specifically generation using solarinitiated water electrolysis. Though concept of making hydrogen using water and sunlight may sound somewhat far-fetched, in reality the concept is very real. Since the discovery of solar-generated hydrogen, termed photoelectrochemical hydrogen, nearly 30 years ago by Fujishima and Honda, significant advances in both fundamental understanding and technological capability have been made. Using solar radiation to generate hydrogen in a fashion akin to using solar to generate electricity offers many advantages. First, hydrogen can be generated at the point of use, reducing the importance of transportation. Second, using water as the hydrogen source eliminates greenhouse gas evolution and the consequences that come with it. Finally, because the process uses very little electricity (pumps and compressors predominantly), the quantity of chemical fuel produced far exceeds the amount of electricity consumed. Consequently, there is some level of truth to the notion that photoelectrochemically-derived hydrogen offers the potential to nearly eliminate greenhouse gas emissions from the transportation landscape. This report focuses primarily on the technical issues inherent to developing an economically viable photoelectrochemical hydrogen system. This involves research intended to address technology gaps as well as research to address commercial feasibility. Though a firm cost target is not identified explicitly, much of the economics are presented in terms of “dollars per gallon of gasoline equivalent” ($/gge). Obviously this is a moving target, but it is important to understand cost in terms of current gasoline pricing, since the intended target is gasoline replacement. However, this does put the cost contribution into a perspective that at least allows for a reasonable assessment of technological viability. It also allows for the identification of need areas beyond the obvious technology gaps.

McNulty, Thomas F.

2008-05-02T23:59:59.000Z

338

Automation of Pivot Sprinkler Irrigation Systems to More Efficiently Utilize Rainfall and Irrigation Water  

E-Print Network [OSTI]

A study was conducted to develop automated pivot sprinkler irrigation systems and determine if such systems use less water and energy than manually operated systems. The study was conducted near Earth, Texas, using irrigation systems located...

Wendt, C. W.; Runkles, J. R.; Gerst, M. D.; Harbert, H. P. III; Hutmacher, R. B.

339

Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation  

E-Print Network [OSTI]

2003. Improving irrigation water management of alfalfa. In:number, sensor number and water arrival time. Wire meshplate Terminals Fig. 1. The water-arrival, or wetting-front,

Saha, Rajat; Raghuwanshi, Narendra S; Upadhyaya, Shrinivasa K; Wallender, Wesley W.; Slaughter, David C

2011-01-01T23:59:59.000Z

340

The Full Water Disposal Ways and Study on Central Air-conditioning Circulation Cooling Water System  

E-Print Network [OSTI]

with automatic inspection, control the condense times and installing toroidal swirl type filtering water purifier. We have solved the water quality fundamentally of the circulation cooling water. This way will make the chem..with medicine more reliable...

Zhang, J.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dolomitization by ground-water flow systems in carbonate platforms  

SciTech Connect (OSTI)

Dolomite occurs throughout the subsurface of modern carbonate platforms such as the Bahamas. Groundwater flow systems must be responsible for delivery of reactants needed for dolomitization. Reflux, freshwater lens flows, and thermal convection are large-scale flow systems that may be widespread in active platforms. The author has evaluated some aspects of the dynamics and characteristics of these processes with ground-water flow theory and by scaled sandbox experiments. Reflux is not restricted to hypersaline brines, but can occur with bankwaters of only slightly elevated salinity such as those found on the Bahama Banks today (42%). The lack of evaporites in a stratigraphic section, therefore, does not rule out the possibility that reflux may have operated. Flows associated with freshwater lenses include flow in the lens, in the mixing zone, and in the seawater beneath and offshore of the lens. Upward transfer of seawater through the platform margins occurs when surrounding cold ocean water migrates into the platform and is heated. This type of thermal convection (Kohout convection) has been studied by Francis Kohout in south Florida. The ranges of mass flux of magnesium in these processes are all comparable and are all sufficient to account for young dolomites beneath modern platforms. Each process yields dolomitized zones of characteristic shape and location and perhaps may be distinguishable in ancient rocks. The concepts presented here may have application to exploration for dolomite reservoirs in the Gulf Coast and elsewhere.

Simms, M.

1984-09-01T23:59:59.000Z

342

Acceptance test procedure for High Pressure Water Jet System  

SciTech Connect (OSTI)

The overall objective of the acceptance test is to demonstrate a combined system. This includes associated tools and equipment necessary to perform cleaning in the 105 K East Basin (KE) for achieving optimum reduction in the level of contamination/dose rate on canisters prior to removal from the KE Basin and subsequent packaging for disposal. Acceptance tests shall include necessary hardware to achieve acceptance of the cleaning phase of canisters. This acceptance test procedure will define the acceptance testing criteria of the high pressure water jet cleaning fixture. The focus of this procedure will be to provide guidelines and instructions to control, evaluate and document the acceptance testing for cleaning effectiveness and method(s) of removing the contaminated surface layer from the canister presently identified in KE Basin. Additionally, the desired result of the acceptance test will be to deliver to K Basins a thoroughly tested and proven system for underwater decontamination and dose reduction. This report discusses the acceptance test procedure for the High Pressure Water Jet.

Crystal, J.B.

1995-05-30T23:59:59.000Z

343

Water Rights Analysis Package (WRAP) Modeling System Reference Manual  

E-Print Network [OSTI]

The Texas Water Resources Institute (TWRI), and many other agencies and organizations, have worked with Ralph Wurbs over the years to develop WRAP (the Water Rights Analysis Package). The WRAP model simulates management of the water resources of a...

Wurbs, R.

2012-10-01T23:59:59.000Z

344

Performance Testing of Window Installation and Flashing Details  

E-Print Network [OSTI]

and proposed installation practices incorporating new flashing materials. This paper focuses specifically on the installation practices relating to windows with mounting fins or flanges. REVIEW OF CURRENT PRACTICES AND ATTITUDES Interviews with builders... into two categories based on the how the flashing and the rough opening is treated. g167g32 2-Dimensional Methods: using flashing to extend protection around the perimeter of the window flanges on to the face of the sheathing, and g167g32 3...

Weston, T. A.; Herrin, J.

2002-01-01T23:59:59.000Z

345

Aging study of boiling water reactor high pressure injection systems  

SciTech Connect (OSTI)

The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-03-01T23:59:59.000Z

346

Reduction of Water Use in Wet FGD Systems  

SciTech Connect (OSTI)

Cooperative Agreement DE-FC26-06NT42726 was established in January 2006, and is current through Amendment 2, April 2006. The current reporting period, April 1, 2008 through June 30, 2008, is the eighth progress-reporting period for the project. However, this report will be the final report (instead of a quarterly report) because this project is being terminated. Efforts to bring this project to a close over the past several months focused on internal project discussions, and subsequent communications with NETL, regarding the inherent difficulty with completing this project as originally scoped, and the option of performing an engineering study to accomplish some of the chief project objectives. However, NETL decided that the engineering study did indeed constitute a significant scope deviation from the original concepts, and that pursuit of this option was not recommended. These discussions are summarized in the Results and Discussion, and the Conclusion sections. The objective of this project by a team lead by URS Group was to demonstrate the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption in wet flue gas desulphurization (FGD) systems on coal-fired boilers. Furthermore, the project intended to demonstrate that regenerative heat exchange to cool flue gas upstream of the electrostatic precipitator (ESP) and reheat flue gas downstream of the FGD system would result in the following benefits to air pollution control (APC) systems on coal-fired power plants: (1) Improve ESP performance due to reduced gas volume and improved ash resistivity characteristics, (2) Control SO3 emissions through condensation on the fly ash, and (3) Avoid the need to install wet stacks or to provide flue gas reheat. Finally, operation at cooler flue gas temperatures offered the potential benefit of increasing mercury (Hg) removal across the ESP and FGD systems. This project planned to conduct pilot-scale tests of regenerative heat exchange to determine the reduction in FGD water consumption that can be achieved and assess the resulting impact on APC systems. An analysis of the improvement in the performance of the APC systems and the resulting reduction in capital and operating costs were going to be conducted. The tests were intended to determine the impact of operation of cooling flue gas temperatures on FGD water consumption, ESP particulate removal, SO{sub 3} removal, and Hg removal, and to assess the potential negative impact of excessive corrosion rates in the regenerative heat exchanger. Testing was going to be conducted on Columbian coal (with properties similar to low-sulfur Eastern bituminous coal) and SO{sub 3} will be spiked onto the flue gas to simulate operation with higher SO{sub 3} concentrations resulting from firing a higher sulfur coal, or operating with a selective catalytic reduction (SCR) unit. The project was also going to include associate planning, laboratory analytical support, reporting, and management activities. The URS project team finalized a conceptual alternative approach to demonstrate, via an engineering study, the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption. This idea was presented in summary format to NETL for consideration. NETL determined that this alternative approach deviated from the original project objectives, and that it would be in the best interest of all parties involved to cancel the project.

David Rencher

2008-06-30T23:59:59.000Z

347

Policy Flash 2013-65 Procurement Evaluation & Re-Engineering...  

Broader source: Energy.gov (indexed) [DOE]

5 Procurement Evaluation & Re-Engineering Team (PERT) and Establishment of a 5-year Cycle with Corresponding Schedule Policy Flash 2013-65 Procurement Evaluation & Re-Engineering...

348

Policy Flash 2013-30 Acquisition Letter on Acquisition Planning...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Letter on Acquisition Planning Considerations for Management and Operating Contracts Policy Flash 2013-30 Acquisition Letter on Acquisition Planning Considerations for Management...

349

Policy Flash 2014-04 Continuing Appropriations Act, 2014 -- Congressio...  

Office of Environmental Management (EM)

2014 -- Congressional Notification of Pending Contract or Financial Assistance Actions Policy Flash 2014-04 Continuing Appropriations Act, 2014 -- Congressional Notification of...

350

Policy Flash 2014-05 Continuing Appropriations Act, 2014 -- Implementa...  

Energy Savers [EERE]

G, Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No. 113-6 Policy Flash 2014-05 Continuing Appropriations Act, 2014 -- Implementation of Division F,...

351

Policy Flash 2014-29 Acquisition Letter 07 - Benchmark Compensation...  

Office of Environmental Management (EM)

Letter 07 - Benchmark Compensation Amount for Individual Executive Salary Actions Policy Flash 2014-29 Acquisition Letter 07 - Benchmark Compensation Amount for Individual...

352

POLICY FLASH 2014-15 Determination of Benchmark Compensation...  

Broader source: Energy.gov (indexed) [DOE]

of Benchmark Compensation Amount for Certain Executives and Employees (Update) POLICY FLASH 2014-15 Determination of Benchmark Compensation Amount for Certain Executives...

353

Policy Flash 2014-06 Affirmative procurement of biobased products...  

Broader source: Energy.gov (indexed) [DOE]

of biobased products under service and construction contracts (FAR clause 52.223-2) Policy Flash 2014-06 Affirmative procurement of biobased products under service and...

354

POLICY FLASH 2014-15 Determination of Benchmark Compensation...  

Broader source: Energy.gov (indexed) [DOE]

5 Determination of Benchmark Compensation Amount for Certain Executives and Employees POLICY FLASH 2014-15 Determination of Benchmark Compensation Amount for Certain Executives and...

355

Policy Flash 2015-12 Service Contracts Reporting (SCR) Requirements  

Broader source: Energy.gov [DOE]

Questions concerning this policy flash should be directed to Carol Jenkins at 202-287-1827 or carol.jenkins@hq.doe.gov.

356

Policy Flash 2014-06 Affirmative procurement of biobased products...  

Office of Environmental Management (EM)

06 Affirmative procurement of biobased products under service and construction contracts (FAR clause 52.223-2) Policy Flash 2014-06 Affirmative procurement of biobased products...

357

U-104: Adobe Flash Player Multiple Vulnerabilities | Department...  

Broader source: Energy.gov (indexed) [DOE]

have been reported in Adobe Flash Player, which can be exploited by malicious people to conduct cross-site scripting attacks, bypass certain security restrictions, and...

358

Flash2006-52.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf Flash2006-52.pdf More Documents

359

Flash2006-52Attachment.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf Flash2006-52.pdf More

360

Flash2006-53.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf Flash2006-52.pdf More3.pdf

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Flash2006-54.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf Flash2006-52.pdf More3.pdf4.pdf

362

Flash2006-54Attachment.rtf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf Flash2006-52.pdf

363

Flash2006-55.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf Flash2006-52.pdf5.pdf

364

Flash2006-56.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf Flash2006-52.pdf5.pdf6.pdf

365

Flash2006-60.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf Flash2006-52.pdf5.pdf6.pdf0.pdf

366

Flash2006-62.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf2.pdf Flash2006-62.pdf

367

Flash2007-01.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf2.pdf Flash2006-62.pdf1.pdf

368

Flash2007-02.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf2.pdf Flash2006-62.pdf1.pdf.pdf

369

Flash2007-03.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf2.pdf3.pdf Flash2007-03.pdf

370

Flash2007-04.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf2.pdf3.pdf4.pdf Flash2007-04.pdf

371

Flash2007-10.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf Flash2007-10.pdf More

372

Flash2007-10Attachment1.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf Flash2007-10.pdf

373

Flash2007-12.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf Flash2007-10.pdf2.pdf

374

Flash2007-14.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf Flash2007-10.pdf2.pdf4.pdf

375

Flash2007-16.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf6.pdf Flash2007-16.pdf

376

Flash2007-18.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf6.pdf Flash2007-16.pdf8.pdf

377

Flash2007-20.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf6.pdf.pdf Flash2007-20.pdf

378

Flash2007-36.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf Flash2007-36.pdf Flash2007-36.pdf More

379

Flash2007-39.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf Flash2007-36.pdf Flash2007-36.pdf

380

Flash2007-40.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf Flash2007-36.pdf Flash2007-36.pdf0.pdf

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Flash2007-46.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf Flash2007-36.pdf6.pdf Flash2007-46.pdf

382

Flash2008-18.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf8.pdf Flash2008-18.pdf Flash2008-18.pdf

383

Policy Flash 2014-32 General Accountability Office Report (GAO...  

Energy Savers [EERE]

Policy Flash 2014-32 General Accountability Office Report (GAO) final report entitled National Laboratories: DOE needs to Improve Oversight of Work performed for non-DOE Entities...

384

Fourier transform microwave spectrum of the propane-water complex: A prototypical water-hydrophobe system  

E-Print Network [OSTI]

structure has all four heavy atoms coplanar, with the water center of mass lying on or near the C, axisFourier transform microwave spectrum of the propane-water complex: A prototypical water) The Fourier transform microwave spectrum of the propane-water complex (C3H,-H,O) has been observed

Cohen, Ronald C.

385

Charles J. Vrsmarty & the UNH Water Systems Analysis Group  

E-Print Network [OSTI]

and environmental flows? Pollution? Poor governance? #12;Provision of Clean Water and Sanitation: A Millennium #12;Food security Global Water Resource Challenges "Engineered" water Sanitation and access to clean.1 billion people lack clean drinking water 2.6 billion people lack basic sanitation

Slatton, Clint

386

Policy Flash 2013-68 Acquisition Guide 42.101 | Department of...  

Energy Savers [EERE]

Policy Flash 2013-68 Acquisition Guide 42.101 Policy Flash 2013-68 Acquisition Guide 42.101 Questions concerning this policy flash should be directed to Michael Righi of the...

387

Policy FLash 2013-72 Acqusition Guide 43.2 Change Order ADministration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FLash 2013-72 Acqusition Guide 43.2 Change Order ADministration Policy FLash 2013-72 Acqusition Guide 43.2 Change Order ADministration Questions concerning this policy flash should...

388

Department of Mechanical and Nuclear Engineering Spring 2012 Automatic Plant Watering System  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Automatic Plant Watering System Overview The goal of this project was to design an automatic plant watering system for commercial in the soil of household plants and delivery water to those plants on a need-only basis. The overall design

Demirel, Melik C.

389

Pressurized water nuclear reactor system with hot leg vortex mitigator  

DOE Patents [OSTI]

A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

Lau, Louis K. S. (Monroeville, PA)

1990-01-01T23:59:59.000Z

390

Feasibility study and roadmap to improve residential hot water distribution systems  

SciTech Connect (OSTI)

Residential building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include: the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy to reheat water that was already heated once before. A feasibility study and an action plan for a proposed research project involving residential hot water distribution systems is being developed. The feasibility study will use past work to estimate of hot water and energy loses caused by current hot water distribution systems in residences. Proposed research project, or roadmap, will develop recommendations for improvements to residential hot water distribution systems. The roadmap addresses the technical obstacles and gaps in our knowledge that prevent water and energy reductions and market adoption of water- and energy-efficient technologies. The initial results of the feasibility study are presented here along with a discussion of a roadmap to improve the efficiency of residential hot water distribution systems.

Lutz, James D.

2004-03-31T23:59:59.000Z

391

Complex Adaptive Systems Simulation-Optimization Framework for Adaptive Urban Water Resources Management  

E-Print Network [OSTI]

Population growth, urbanization and climate change threaten urban water systems. The rise of demands caused by growing urban areas and the potential decrease of water availability caused by the increase of frequency and severity of droughts...

Giacomoni, Marcio

2012-10-19T23:59:59.000Z

392

Modeling the Global Water Resource System in an Integrated Assessment Modeling Framework: IGSM-WRS  

E-Print Network [OSTI]

The availability of water resources affects energy, agricultural and environmental systems, which are linked together as well as to climate via the water cycle. As such, watersheds and river basins are directly impacted ...

Strzepek, Kenneth M.

393

Flash2006-23Attachment.doc  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverviewEnergyCORRECTION NOTICE FLASH

394

Microsoft Word - Flash2007-43.doc  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE Tribalthe Native HawaiianDepartment7-43 POLICY FLASH 200

395

Ionization Chambers in the FLASH Dump Line  

E-Print Network [OSTI]

. 7, 2010FLASH Seminar, Dec. 7, 2010 BPM 13DUMP Dump Line Upgrade 2009Dump Line Upgrade 2009 BPM 9DUMP BPM 5DUMP Toroid 9DUMP OTR screen 9DUMP BLM 14DUMP BLM 13.1DUMP 13.2DUMP BLM 9DUMP BLM 6DUMP BLM 1.1DUMP 1.2DUMP BPM 10DUMP BPM 16DUMP 8 x BHM 16DUMP BLM 14R.DUMP 14L.DUMP 14U.DUMP 14D.DUMP Ionization

396

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to:Siting.pdfFiskdale,Five StarFlash Steam Power Plant

397

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to:Siting.pdfFiskdale,Five StarFlash Steam Power

398

Recovery News Flashes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office of Environmental ManagementJune 7, 2011

399

Recovery News Flashes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office of Environmental ManagementJune 7,

400

Policy Flash 2015-06 Energy Star and Electronic Products Environmental...  

Energy Savers [EERE]

Policy Flash 2015-06 Energy Star and Electronic Products Environmental Assessment Tool (EPEAT) Policy Flash 2015-06 Energy Star and Electronic Products Environmental Assessment...

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Policy Flash 2015-02 INCREMENTALLY FUNDING FIXED-PRICE ACTIONS...  

Office of Environmental Management (EM)

02 INCREMENTALLY FUNDING FIXED-PRICE ACTIONS Policy Flash 2015-02 INCREMENTALLY FUNDING FIXED-PRICE ACTIONS Questions concerning this policy flash should be directed to Michael...

402

Policy Flash 2015-11 Implementation of Steps Outlined in OFPP...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Policy Flash 2015-11 Implementation of Steps Outlined in OFPP Memorandum dated July 10, 2014, "Making Better Use of Contractor Performance Information" Policy Flash 2015-11...

403

POLICY FLASH 2014-23 Acquisition Guide 13.3 Simplified Acquisition...  

Energy Savers [EERE]

3 Acquisition Guide 13.3 Simplified Acquisition Procedures POLICY FLASH 2014-23 Acquisition Guide 13.3 Simplified Acquisition Procedures Questions concerning this policy flash...

404

Thermo-fluid Dynamics of Flash Atomizing Sprays and Single Droplet Impacts  

E-Print Network [OSTI]

in two-phase flashing propane jets. Part one: velocitymeasurements in two-phase propane releases . in Proceedingsin two-phase flashing propane jets. Part one: velocity

Vu, Henry

2010-01-01T23:59:59.000Z

405

Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

1993-07-01T23:59:59.000Z

406

Reservoir/River System Reliability Considering Water Rights and Water Quality  

E-Print Network [OSTI]

Effective management of the highly variable water resources of a river basin requires an understanding of the amount of suitable quality water that can be provided under various conditions within institutional constraints. Although much research has...

Wurbs, Ralph A.; Sanchez-Torres, Gerardo; Dunn, David D.

407

Front-flash thermal imaging characterization of continuous fiber ceramic composites.  

SciTech Connect (OSTI)

Infrared thermal imaging has become increasingly popular as a nondestructive evaluation method for characterizing materials and detecting defects. One technique, which was utilized in this study, is front-flash thermal imaging. We have developed a thermal imaging system that uses this technique to characterize advanced material systems, including continuous fiber ceramic composite (CFCC) components. In a front-flash test, pulsed heat energy is applied to the surface of a sample, and decay of the surface temperature is then measured by the thermal imaging system. CFCC samples with drilled flat-bottom holes at the back surface (to serve as ''flaws'') were examined. The surface-temperature/time relationship was analyzed to determine the depths of the flaws from the front surface of the CFCC material. Experimental results on carbon/carbon and CFCC samples are presented and discussed.

Deemer, C.

1999-04-23T23:59:59.000Z

408

Flash Device Support for Database Management Philippe Bonnet  

E-Print Network [OSTI]

a DBMS to explicitly control IO behavior. We believe that these approaches are natural evolutions have a reference DBMS design nor a performance model for flash devices: database researchers devices should support database management. We ad- vocate that flash devices should provide DBMS with more

409

Modeling the water consumption of Singapore using system dynamics  

E-Print Network [OSTI]

Water resources are essential to life, and in urban areas, the high demand density and finite local resources often engender conditions of relative water scarcity. To overcome this scarcity, governments intensify infrastructure ...

Welling, Karen Noiva

2011-01-01T23:59:59.000Z

410

Solar Water Heating with Low-Cost Plastic Systems (Brochure)  

SciTech Connect (OSTI)

Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

Not Available

2012-01-01T23:59:59.000Z

411

Systematization of water allocation systems: an engineering approach  

E-Print Network [OSTI]

Analysis Package (WRAP) model in supporting water allocation efforts. The Lower Rio Grande WAS was used as a case study to demonstrate how the principles presented in the conceptual framework can be used to assess water allocation issues and identify...

Santos Roman, Deborah Matilde

2007-04-25T23:59:59.000Z

412

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network [OSTI]

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler...

Bloom, D.

413

Water Supply Planning Using an Expert Geographic Information System  

E-Print Network [OSTI]

supply and demand data; and a network flow solver, to balance the flows in networks developed by the expert GIS with input from a water resource analyst. Commonly available water demand forecasts and water supply data are used in this new planning tool...

McKinney, Daene C.; Burgin, John F.; Maidment, David R.

414

The design and evaluation of a water delivery system for evaporative cooling of a proton exchange membrane fuel cell  

E-Print Network [OSTI]

An investigation was performed to demonstrate system design for the delivery of water required for evaporative cooling of a proton exchange membrane fuel cell (PEMFC). The water delivery system uses spray nozzles capable of injecting water directly...

Al-Asad, Dawood Khaled Abdullah

2009-06-02T23:59:59.000Z

415

The development of a solar thermal water purification, heating, and power generation system: A case study.  

E-Print Network [OSTI]

The development of a solar thermal water purification, heating, and power generation system: A case, none of the existing concentrated solar power systems (trough, dish, and tower) that have been the potential of an invention directed to a water purification system that also recovers power from generated

Wu, Mingshen

416

Arizona law now requires that community water systems record and submit an Annual Water Use Report and Sys-  

E-Print Network [OSTI]

of this project was to develop an online drought trigger analysis tool and supporting guidance materials to help community water systems more effectively assess their drought risk and make informed decisions to prevent systems need indicators and triggers for each stage. No such tool was previously available. PROJECT TEAM

Fay, Noah

417

Hydrogen from Water in a Novel Recombinant Cyanobacterial System  

SciTech Connect (OSTI)

Photobiological processes are attractive routes to renewable H2 production. With the input of solar energy, photosynthetic microbes such as cyanobacteria and green algae carry out oxygenic photosynthesis, using sunlight energy to extract protons and high energy electrons from water. These protons and high energy electrons can be fed to a hydrogenase system yielding H2. However, most hydrogen-evolving hydrogenases are inhibited by O2, which is an inherent byproduct of oxygenic photosynthesis. The rate of H2 production is thus limited. Certain photosynthetic bacteria are reported to have an O2-tolerant evolving hydrogenase, yet these microbes do not split water, and require other more expensive feedstocks. To overcome these difficulties, the goal of this work has been to construct novel microbial hybrids by genetically transferring O2-tolerant hydrogenases from other bacteria into a class of photosynthetic bacteria called cyanobacteria. These hybrid organisms will use the photosynthetic machinery of the cyanobacterial hosts to perform the water-oxidation reaction with the input of solar energy, and couple the resulting protons and high energy electrons to the O2-tolerant bacterial hydrogenase, all within the same microbe (Fig. 1). The ultimate goal of this work has been to overcome the sensitivity of the hydrogenase enzyme to O2 and address one of the key technological hurdles to cost-effective photobiological H2 production which currently limits the production of hydrogen in algal systems. In pursuit of this goal, work on this project has successfully completed many subtasks leading to a greatly increased understanding of the complicated [NiFe]-hydrogenase enzymes. At the beginning of this project, [NiFe] hydrogenases had never been successfully moved across wide species barriers and had never been heterologously expressed in cyanobacteria. Furthermore, the idea that whole, functional genes could be extracted from complicated, mixed-sequence meta-genomes was not established. In the course of this work, we identified a new hydrogenase from environmental DNA sequence and successfully expressed it in a variety of hosts including cyanobacteria. This was one of the first examples of these complicated enzymes being moved across vastly different bacterial species and is the first example of a hydrogenase being “brought to life” from no other information than a DNA sequence from metagenomic data. The hydrogenase we identified had the molecular signature of other O2-tolerant hydrogenases, and we discovered that the resulting enzyme had exceptionally high oxygen- and thermo-tolerance. The new enzyme retained 80% of its activity after incubation at 80° C for 2 hours and retained 20% activity in 1% O2. We performed detailed analysis on the maturation genes required for construction of a functional enzyme of this class of hydrogenase, and found that seven additional maturation genes were required for minimal activity and a total of nine genes besides the hydrogenase were required for optimal maturation efficiency. Furthermore, we demonstrated that the maturation genes are functional on closely-related hydrogenase enzymes such as those from Alteromonas macleodii and Thiocapsa roseopersicina. Finally, we have extensively modified the hydrogenase to engineer new traits including higher H2 production and better interaction with electron donors. For example, combining two strategies increased hydrogenase activity in cyanobacteria by at least 20-fold over our initial expression level. The activity of this combined strain is almost twice that of the native hydrogenase activity in S. elongatus. This work validates the idea that these enzymes are broadly tolerant to modifications that may help integrate them into a successful photobiological H2 production system. While we did not achieve our ultimate goal of integrating the functional hydrogenase with the cyanobacterial photosynthetic apparatus, the work on this project has led to significant advances in the understanding of these complicated enzymes. This work will greatly benefit future

Weyman, Philip D [J. Craig Venter Institute; Smith, Hamillton O.

2014-12-03T23:59:59.000Z

418

Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems  

Broader source: Energy.gov [DOE]

This project will improve the capability of engineers to design heat pump systems that utilize surface water or standing column wells (SCW) as their heat sources and sinks.

419

OPTIMIZED CONTROL STRATEGIES FOR A TYPICAL WATER LOOP HEAT PUMP SYSTEM.  

E-Print Network [OSTI]

??Water Loop Heat Pump (WLHP) System has been widely utilized in the Heating, Ventilating and Air Conditioning (HVAC) industry for several decades. There is no… (more)

Lian, Xu

2011-01-01T23:59:59.000Z

420

Integrated Water Treatment System (IWTS) Process Flow Diagram Mass Balance Calculations for K West Basin  

SciTech Connect (OSTI)

The purpose of this calculation is to develop the rational for the material balances that are documented in the KW Basin water system Level 1 process flow diagrams.

REED, A.V.

2000-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district  

E-Print Network [OSTI]

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district heating system ­ and makes a proposal for a technical and economic improvement. Monitoring of water quality in district heating systems is necessary

422

Page-Differential Logging: An Efficient and DBMS-independent Approach for Storing Data into Flash Memory  

E-Print Network [OSTI]

Flash memory is widely used as the secondary storage in lightweight computing devices due to its outstanding advantages over magnetic disks. Flash memory has many access characteristics different from those of magnetic disks, and how to take advantage of them is becoming an important research issue. There are two existing approaches to storing data into flash memory: page-based and log-based. The former has good performance for read operations, but poor performance for write operations. In contrast, the latter has good performance for write operations when updates are light, but poor performance for read operations. In this paper, we propose a new method of storing data, called page-differential logging, for flash-based storage systems that solves the drawbacks of the two methods. The primary characteristics of our method are: (1) writing only the difference (which we define as the page-differential) between the original page in flash memory and the up-to-date page in memory; (2) computing and writing the pag...

Kim, Yi-Reun; Song, Il-Yeol

2010-01-01T23:59:59.000Z

423

Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models  

SciTech Connect (OSTI)

A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

Weitzel, E.; Hoeschele, M.

2014-09-01T23:59:59.000Z

424

MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS  

SciTech Connect (OSTI)

This report describes work performed during the first year of the project ''Modified Reverse Osmosis System for Treatment of Produced Waters.'' This research project has two objectives. The first objective is to test the use of clay membranes in the treatment of produced waters by reverse osmosis. The second objective is to test the ability of a system patented by the New Mexico Tech Research Foundation to remove salts from reverse osmosis waste streams as a solid. We performed 12 experiments using clay membranes in cross-flow experimental cells. We found that, due to dispersion in the porous frit used adjacent to the membrane, the concentration polarization layer seems to be completely (or nearly completely) destroyed at low flow rates. This observation suggests that clay membranes used with porous frit material many reach optimum rejection rates at lower pumping rates than required for use with synthetic membranes. The solute rejection efficiency decreases with increasing solution concentration. For the membranes and experiments reported here, the rejection efficiency ranged from 71% with 0.01 M NaCl solution down to 12% with 2.3 M NaCl solution. More compacted clay membranes will have higher rejection capabilities. The clay membranes used in our experiments were relatively thick (approximately 0.5 mm). The active layer of most synthetic membranes is only 0.04 {micro}m (0.00004 mm), approximately 1250 times thinner than the clay membranes used in these experiments. Yet clay membranes as thin as 12 {micro}m have been constructed (Fritz and Eady, 1985). Since Darcy's law states that the flow through a material of constant permeability is inversely proportional to it's the material's thickness, then, based on these experimental observations, a very thin clay membrane would be expected to have much higher flow rates than the ones used in these experiments. Future experiments will focus on testing very thin clay membranes. The membranes generally exhibited reasonable stable rejection rates over time for chloride for a range of concentrations between 0.01 and 2.5 M. One membrane ran in excess of three months with no apparent loss of usability. This suggests that clay membranes may have a long useable life. Twenty different hyperfiltration-induced solute precipitation experiments were either attempted or completed and are reported here. The results of these experiments suggest that hyperfiltration-induced solute precipitation is possible, even for very soluble substances such as NaCl. However, the precipitation rates obtained in the laboratory do not appear to be adequate for commercial application at this time. Future experiments will focus on making the clay membranes more compact and thinner in order to obtain higher flux rates. Two alternative methods of removing solutes from solution, for which the New Mexico Tech Research Foundation is preparing patent applications, are also being investigated. These methods will be described in the next annual report after the patent applications are filed. Technology transfer efforts included two meetings (one in Farmington NM, and one in Hobbs, NM) where the results of this research were presented to independent oil producers and other interested parties. In addition, members of the research team gave seven presentations concerning this research and because of this research project T. M. (Mike) Whitworth was asked to sit on the advisory board for development of a new water treatment facility for the City of El Paso, Texas. Several papers are in preparation for submission to peer-reviewed journals based on the data presented in this report.

T.M. Whitworth; Liangxiong Li

2002-09-15T23:59:59.000Z

425

University of Arizona Geography and Regional Development 696O Adaptation and Resilience in Water Resources Systems  

E-Print Network [OSTI]

, urban growth, energy demand, and global food trade alter water in coupled human-natural systemsUniversity of Arizona Geography and Regional Development 696O 1 Adaptation and Resilience in Water syllabus] As we enter an era of drastically heightened pressure on water resources combined with greater

Scott, Christopher

426

Simulation of energy use in residential water heating systems Carolyn Dianarose Schneyer  

E-Print Network [OSTI]

around BC: Kamloops, Victoria and Williams Lake. Electric and gas-fired tank water heaters of various The resulting data is presented from a variety of angles, including the relative impacts of water heater ratingSimulation of energy use in residential water heating systems by Carolyn Dianarose Schneyer B

Victoria, University of

427

Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation  

E-Print Network [OSTI]

T. 2003. Improving irrigation water management of alfalfa.In: Proc California Alfalfa and Forage Symposium, Dec. 17–easily be removed during alfalfa field operations. http://

Saha, Rajat; Raghuwanshi, Narendra S; Upadhyaya, Shrinivasa K; Wallender, Wesley W.; Slaughter, David C

2011-01-01T23:59:59.000Z

428

Water Rights Analysis Package (WRAP) Modeling System Users Manual  

E-Print Network [OSTI]

may vary with reservoir storage content and/or stream flow. Chapters 3 and 4 of the Reference Manual describe the component features of the SIM simulation model, which are organized in two categories. • River basin hydrology includes... naturalized stream flows, reservoir net evaporation- precipitation, and channel losses (Chapter 3 of the Reference Manual). • Water rights include all aspects of water management including water supply diversions, return flows, environmental instream flow...

Wurbs, Ralph A.

429

Measurements of remanent fields in TQG quadrupoles by means of beam position measurements in FLASH  

E-Print Network [OSTI]

. 2 und. 3 Q5UND3 und. 4 Q5UND4 und. 5 Q5UND5 und. 6 Q5UND6 . BPM 21SEED BPM 5UND1 BPM 5UND2 BPM 5UND3 BPM 5UND4 BPM 5UND5 BPM 5UND6 . Figure 1: Schematic layout (not to scale) of the undulator system in FLASH. The electron beam enters from the left side. Quadrupole names begin with 'Q'. BPM stands for beam

430

Distrbuted Sensing Systems for Water Quality Assesment and Management  

E-Print Network [OSTI]

for environmental management, and in particular, waterenvironmental management efforts at the Environmental Protection Agency (EPA), with a special focus on water-

2007-01-01T23:59:59.000Z

431

Watts nickel and rinse water recovery via an advanced reverse osmosis system  

SciTech Connect (OSTI)

The report summarizes the results of an eight month test program conducted at the Hewlett Packard Printed Circuit Board Production Plant, Sunnyvale, CA (H.P.) to assess the effectiveness of an advanced reverse osmosis system (AROS). The AROS unit, manufactured by Water Technologies, Inc. (WTI) of Minneapolis, MN, incorporates membrane materials and system components designed to treat metal plating rinse water and produce two product streams; (1) a concentrated metal solution suitable for the plating bath, and (2) rinse water suitable for reuse as final rinse. Waste water discharge can be virtually eliminated and significant reductions realized in the need for new plating bath solution and rinse water.

Schmidt, C.; White, I.E.; Ludwig, R.

1993-08-01T23:59:59.000Z

432

MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS  

SciTech Connect (OSTI)

This final report of ''Modified Reverse Osmosis System for Treatment of Produced Water,'' DOE project No. DE-FC26-00BC15326 describes work performed in the third year of the project. Several good results were obtained, which are documented in this report. The compacted bentonite membranes were replaced by supported bentonite membranes, which exhibited the same salt rejection capability. Unfortunately, it also inherited the clay expansion problem due to water invasion into the interlayer spaces of the compacted bentonite membranes. We noted that the supported bentonite membrane developed in the project was the first of its kind reported in the literature. An {alpha}-alumina-supported MFI-type zeolite membrane synthesized by in-situ crystallization was fabricated and tested. Unlike the bentonite clay membranes, the zeolite membranes maintained stability and high salt rejection rate even for a highly saline solution. Actual produced brines from gas and oil fields were then tested. For gas fields producing brine, the 18,300 ppm TDS (total dissolved solids) in the produced brine was reduced to 3060 ppm, an 83.3% rejection rate of 15,240 ppm salt rejection. For oilfield brine, while the TDS was reduced from 181,600 ppm to 148,900 ppm, an 18% rejection rate of 32,700 ppm reduction, the zeolite membrane was stable. Preliminary results show the dissolved organics, mainly hydrocarbons, did not affect the salt rejection. However, the rejection of organics was inconclusive at this point. Finally, the by-product of this project, the {alpha}-alumina-supported Pt-Co/Na Y catalytic zeolite membrane was developed and demonstrated for overcoming the two-step limitation of nonoxidation methane (CH{sub 4}) conversion to higher hydrocarbons (C{sub 2+}) and hydrogen (H{sub 2}). Detailed experiments to obtain quantitative results of H{sub 2} generation for various conditions are now being conducted. Technology transfer efforts included five manuscripts submitted to peer-reviewed journals and five conference presentations.

Robert L. Lee; Junghan Dong

2004-06-03T23:59:59.000Z

433

VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM  

E-Print Network [OSTI]

(for water: the SPC-, SPC/E-, and TIP4P-potential models; for carbon dioxide: the EPM2 potential model dioxide are calculated. For water, the SPC- and TIP4P-models give superior results for the vapor pressure when compared to the SPC/E-model. The vapor liquid equilibrium of the binary mixture carbon dioxide

434

Flash photolysis-shock tube studies  

SciTech Connect (OSTI)

Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

Michael, J.V. [Argonne National Laboratory, IL (United States)

1993-12-01T23:59:59.000Z

435

Coherence properties of the radiation from FLASH  

E-Print Network [OSTI]

FLASH is the first free electron laser user facility operating in the vacuum ultraviolet and soft x-ray wavelength range. Many user experiments require knowledge of the spatial and temporal coherence properties of the radiation. In this paper we present an analysis of the coherence properties of the radiation for the fundamental and for the higher odd frequency harmonics. We show that temporal and spatial coherence reach maximum close to the FEL saturation but may degrade significantly in the post-saturation regime. We also find that the pointing stability of short FEL pulses is limited due to the fact that non-azimuthal FEL eigenmodes are not sufficiently suppressed. We discuss possible ways for improving the degree of transverse coherence and the pointing stability.

Schneidmiller, E A

2015-01-01T23:59:59.000Z

436

Scannerless loss modulated flash color range imaging  

DOE Patents [OSTI]

Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

Sandusky, John V. (Albuquerque, NM); Pitts, Todd Alan (Rio Rancho, NM)

2008-09-02T23:59:59.000Z

437

Scannerless loss modulated flash color range imaging  

DOE Patents [OSTI]

Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

Sandusky, John V. (Albuquerque, NM); Pitts, Todd Alan (Rio Rancho, NM)

2009-02-24T23:59:59.000Z

438

Article coated with flash bonded superhydrophobic particles  

DOE Patents [OSTI]

A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

Simpson, John T (Clinton, TN) [Clinton, TN; Blue, Craig A (Knoxville, TN) [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

2010-07-13T23:59:59.000Z

439

15 KJ FLASH LAMP, POWER CONDITIONING UNIT DESIGNED FOR SAFTY, RELIABILITY & MANUFACTURABILITY*  

SciTech Connect (OSTI)

A 15kJoule, Flash Lamp Power Conditioning Unit has been successfully designed, developed, and deployed in the National Ignition Facility (NIF) Preamplifier Modules (PAM). The primary design philosophy of this power conditioning unit (PCU) is safety, reliability, and manufacturability. Cost reduction over commercially equivalent systems was also achieved through an easily manufactured packaging design optimized to meet NIF requirements. While still maintaining low cost, the PCU design includes a robust control system, fault diagnostic system, and safety features. The pulsed power design includes 6 PFN modules, each including a dual series injection trigger transformer, that drive a total of 12 flash lamp loads. The lamps are individually triggered via a 20kV pulse produced by a 1kV, MCT switched capacitive discharge unit on the primary side of the trigger transformer. The remote control interface includes an embedded controller that captures flash lamp current wave forms and fault status for each shot. The embedded controller provides the flexibility of remotely adjusting both the main drive voltage from 1.6 to 2.5 kV and the trigger voltage from 0 to 20 kV.

James, G; Merritt, B; Dreifuerst, G; Strickland, S

2007-08-07T23:59:59.000Z

440

Observations of englacial water passages: a fracture-dominated system  

E-Print Network [OSTI]

hydraulics of glaciers have focused on the subglacial regime. In temperate alpine glaciers and ice caps controls the spatial distribution of water at the bed, which may affect local ice movement. These passages and the outward melting of the ice walls due to the frictional heat produced by the flowing water. The processes

Jacobel, Robert W.

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The impact of passive safety systems on desirability of advanced light water reactors  

E-Print Network [OSTI]

This work investigates whether the advanced light water reactor designs with passive safety systems are more desirable than advanced reactor designs with active safety systems from the point of view of uncertainty in the ...

Eul, Ryan C

2006-01-01T23:59:59.000Z

442

Performance Evaluation of Hot Water Efficiency Plumbing System Using Thermal Valve  

E-Print Network [OSTI]

In Korea two popular water distribution systems—the branch type and the separate type systems—have serious drawbacks. The branch type suffers from temperature instability while the separate type suffers from excessive piping. Neither of them re...

Cha, K. S.; Park, M. S.; Seo, H. Y.

443

Water Distribution System Monitoring and Decision Support Using a Wireless Sensor Network  

E-Print Network [OSTI]

Water distribution systems comprise labyrinthine networks of pipes, often in poor states of repair, that are buried beneath our city streets and relatively inaccessible. Engineers who manage these systems need reliable ...

Allen, Michael

444

Passive decay heat removal system for water-cooled nuclear reactors  

DOE Patents [OSTI]

A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

Forsberg, Charles W. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

445

Questions About Your Cooling Water System That You Need To Ask  

E-Print Network [OSTI]

TO BE TREATED? Yes, yes, yes. Two bad th ings happen to water in cooling systems. The impurities in the water concentrate due to evaporation, and the impurities in the air are scrubbed into the water. These impurities, without treatment, would foul... and corrode the system rapidly. HOW CAN I DETERMINE WHAT TREATMENT I NEED? First, you must have tests performed on the water. The chemical constituents must be identified. Your system must be defined in terms of its sca1 ing and foul ing tendencies by a...

Matson, J. V.

1984-01-01T23:59:59.000Z

446

Flash2011-76 OPAM | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdf Flash2010-57.pdf Flash2010-57.pdf More3 OPAM Flash2011-73 OPAM

447

Flash2010-23.pdf | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdf Flash2010-07.pdf Flash2010-07.pdf.pdf Flash2010-23.pdf

448

Flash2010-25.pdf | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdf Flash2010-07.pdf Flash2010-07.pdf.pdfFlash2010-25.pdf

449

Flash_2010_-24.pdf | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdf Flash_2010_-24.pdf Flash_2010_-24.pdf

450

Flash2006-17.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf More Documents &17.pdf Flash2006-17.pdf

451

Flash2006-20.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf More Documents &17.pdf Flash2006-17.pdf0.pdf

452

Flash2006-22.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf More Documents &17.pdf Flash2006-17.pdf0.pdf2.pdf

453

Flash2006-43.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf MoreAttachment2.doc&#0;3.pdf Flash2006-43.pdf

454

Flash2006-44.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf MoreAttachment2.doc&#0;3.pdf Flash2006-43.pdf4.pdf

455

Flash2006-46.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf MoreAttachment2.doc&#0;3.pdf6.pdf Flash2006-46.pdf

456

Flash2006-61.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf

457

Flash2007-02Attachment.doc | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf2.pdf

458

Flash2007-03Attachment.doc | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf2.pdf3.pdf

459

Flash2007-05.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf2.pdf3.pdf4.pdf

460

Flash2007-06.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf2.pdf3.pdf4.pdf.pdf

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Flash2007-06Attachment.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf Flash2006-52.pdf2.pdf3.pdf4.pdf.pdfAttachment.pdf

462

Flash2007-15.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf

463

Flash2007-19.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf6.pdf

464

Flash2007-20Attachment.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf6.pdf.pdf

465

Flash2007-21.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf6.pdf.pdf1.pdf

466

Flash2007-23.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf6.pdf.pdf1.pdf3.pdf

467

Flash2007-24.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf6.pdf.pdf1.pdf3.pdf4.pdf

468

Flash2007-25.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf Flash2007-10.pdf6.pdf.pdf1.pdf3.pdf4.pdf5.pdf

469

Flash2007-41.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf Flash2007-36.pdf

470

Flash2007-49.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf Flash2007-36.pdf6.pdf

471

Flash2008-01.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf Flash2007-36.pdf6.pdf1.pdf

472

Flash2008-02.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf Flash2007-36.pdf6.pdf1.pdf2.pdf

473

Flash2008-03.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf Flash2007-36.pdf6.pdf1.pdf2.pdf3.pdf

474

Flash2008-19.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf8.pdf Flash2008-18.pdf

475

Flash2008-20.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf8.pdf Flash2008-18.pdf0.pdf

476

Flash2008-21.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf8.pdf Flash2008-18.pdf0.pdf1.pdf

477

Flash2008-25.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf8.pdf Flash2008-18.pdf0.pdf1.pdf5.pdf

478

Flash2008-27.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf8.pdf Flash2008-18.pdf0.pdf1.pdf5.pdf7.pdf

479

Flash2008-29.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf8.pdf9.pdf Flash2008-29.pdf

480

Flash2008-30.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf8.pdf9.pdf Flash2008-29.pdf.pdf

Note: This page contains sample records for the topic "watering systems flashing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Flash2008-31.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdf Flash2006-14.pdf.pdf.pdf6.pdf8.pdf9.pdf.pdf Flash2008-31.pdf

482

Flash2008-39attachment.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf Flash2008-39attachment.pdf Flash2008-39attachment.pdf

483

Flash2008-41.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf Flash2008-39attachment.pdf.pdf Flash2008-41.pdf

484

Flash2008-42.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf Flash2008-39attachment.pdf.pdf2.pdf Flash2008-42.pdf

485

Flash2008-43.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf Flash2008-39attachment.pdf.pdf2.pdf Flash2008-42.pdf3.pdf

486

Flash2008-47.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf Flash2008-39attachment.pdf.pdf2.pdf7.pdf Flash2008-47.pdf

487

Flash2008-56.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf Flash2008-56.pdf Flash2008-56.pdf More Documents

488

Flash2008-57.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf Flash2008-56.pdf Flash2008-56.pdf More Documents.pdf

489

Flash2008-57Attachment1.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf Flash2008-56.pdf Flash2008-56.pdf More

490

Flash2008-57Attachment_2.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf Flash2008-56.pdf Flash2008-56.pdf

491

Flash2008-59.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf Flash2008-56.pdf Flash2008-56.pdf9.pdf

492

Flash2008-60.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf Flash2008-56.pdf Flash2008-56.pdf9.pdf60.pdf

493

Flash2008-61.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf Flash2008-56.pdf Flash2008-56.pdf9.pdf60.pdf1.pdf

494

Flash2008-65.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf Flash2008-56.pdf5.pdf Flash2008-65.pdf

495

Flash2008-67.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf Flash2008-56.pdf5.pdf Flash2008-65.pdf.pdf

496

Flash2010-13.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf Flash2008-56.pdf5.pdf10-13.pdf Flash2010-13.pdf

497

Flash2010-75.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdf Flash2010-75.pdf Flash2010-75.pdf More

498

Flash2010-76.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdf Flash2010-75.pdf Flash2010-75.pdf More6.pdf

499

Flash2010-77.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdf Flash2010-75.pdf Flash2010-75.pdf

500

Flash2010-78.pdf | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdf Flash2010-75.pdf Flash2010-75.pdf8.pdf