Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM  

E-Print Network [OSTI]

(for water: the SPC-, SPC/E-, and TIP4P-potential models; for carbon dioxide: the EPM2 potential model dioxide are calculated. For water, the SPC- and TIP4P-models give superior results for the vapor pressure when compared to the SPC/E-model. The vapor liquid equilibrium of the binary mixture carbon dioxide

2

Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.  

SciTech Connect (OSTI)

Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

2009-07-01T23:59:59.000Z

3

ARM - Water Vapor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmr DocumentationProductsaodsasheniraodAlaskaVisiting theWater Vapor

4

Tropospheric water vapor and climate sensitivity  

SciTech Connect (OSTI)

Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO{sub 2}) using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO{sub 2} is found as the difference between the equilibrium responses for control and doubled CO{sub 2} cases. Clouds are specified to isolate the water vapor feedback. Experiments in which the water vapor distribution is specified rather than internally calculated are used to find the contribution of water vapor in various layers and latitude belts to the sensitivity. The contribution of water vapor in layers of equal mass to the climate sensitivity varies by about a factor of 2 with height, with the largest contribution coming from layers between 450 and 750 mb, and the smallest from layers above 230 mb. The positive feedback on the global mean surface temperature response to doubled CO{sub 2} from water vapor above 750 mb is about 2.6 times as large as that from water vapor below 750 mb. The feedback on global mean surface temperature due to water vapor in the extratropical free troposphere is about 50% larger than the feedback due to the lower-latitude free troposphere water vapor. Several important sources of nonlinearity of the radiative heating rates were identified in the process of constructing the specified cloud and water vapor fields. These are (1) the interaction of clouds and solar radiation, which produces much more reflection of solar radiation for time mean clouds than for the instantaneous clouds; (2) the correlation of clouds and water vapor, which produces less downward longwave radiation at the ground for correlated clouds and water vapor than when these fields are independent; and (3) the interaction of water vapor with long wave radiation, which produces less downward longwave radiation at the ground of the average over instantaneous water vapor distributions than of the time mean water vapor distribution.

Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)] [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

1999-06-01T23:59:59.000Z

5

ARM Water Vapor IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARM Participation in SuomiNet The ARM62ARM Water Vapor IOP

6

Water Vapor Experiment Concludes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 Water Vapor Experiment Concludes The

7

Hydrogen Cars and Water Vapor  

E-Print Network [OSTI]

misidentified as "zero-emissions vehicles." Fuel cell vehicles emit water vapor. A global fleet could have, with discernible effects on people and ecosystems. The broad environmental effects of fuel cell vehicles. This cycle is currently under way with hydrogen fuel cells. As fuel cell cars are suggested as a solution

Colorado at Boulder, University of

8

ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

Cadeddu, Maria

9

Chem. Mater. 1995, 7, 2269-2272 2269 Water Vapor Adsorption on Chemically Treated  

E-Print Network [OSTI]

Chem. Mater. 1995, 7, 2269-2272 2269 Water Vapor Adsorption on Chemically Treated Activated Carbon August 25, 1995@ Water vapor adsorption on activated carbon cloth (ACCBO)which has been oxidized% Cl), and ACCBO (4% N), exhibits sigmoidal isotherms with hysteresis loops of varying magnitudes

Cal, Mark P.

10

Optical monitor for water vapor concentration  

DOE Patents [OSTI]

A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

Kebabian, Paul (Acton, MA)

1998-01-01T23:59:59.000Z

11

Cobalt Ultrathin Film Catalyzed Ethanol Chemical Vapor Deposition of Single-Walled Carbon Nanotubes  

E-Print Network [OSTI]

Cobalt Ultrathin Film Catalyzed Ethanol Chemical Vapor Deposition of Single-Walled Carbon Nanotubes (SWNTs) using a cobalt ultrathin film (1 nm) as the catalyst and ethanol as carbon feedstock flow during the growth. The trace amount of self-contained water (0.2-5 wt %) in ethanol may act

Hone, James

12

Towards improved spinnability of chemical vapor deposition generated multi-walled carbon nanotubes  

E-Print Network [OSTI]

P. J. F. 1999 Carbon nanotubes and related structures: newof vapor grown carbon nanotubes and single wall nanotubes, Eto Carbon Materials in Carbon Nanotubes: Preparation and

McKee, Gregg Sturdivant Burke

2008-01-01T23:59:59.000Z

13

Phase effects for electrons in liquid water and water vapor  

SciTech Connect (OSTI)

The objective of these studies is to compare transport, energy loss, and other phenomena for electrons in water in the liquid and vapor phases. Understanding the differences and similarities is an interesting physics problem in its own right. It is also important for applying the relatively large body of experimental data available for the vapor to the liquid, which is of greater relevance in radiobiology. This paper presents a summary of results from a series of collaborative studies carried out by the authors at Oak Ridge National Laboratory (ORNL) and the Gesellschaft fuer Strahlen- und Umweltforschung (GSF). 14 figs.

Turner, J.E.; Paretzke, H.G.; Wright, H.A.; Hamm, R.N.; Ritchie, R.H.

1988-01-01T23:59:59.000Z

14

Isotopic composition of stratospheric water vapor: Measurements and photochemistry  

E-Print Network [OSTI]

of magnitude between the surface and the tropopause, and isotopically heavy water is pref- erentially removedIsotopic composition of stratospheric water vapor: Measurements and photochemistry David G. Johnson composition of stratospheric water vapor that result from methane oxidation and reactions with O( ¢¡ ). We

15

Metalorganic chemical vapor deposition of carbon-free ZnO using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metalorganic chemical vapor deposition of carbon-free ZnO using the bis(2,2,6,6-tetramethyl-3,5-heptanedionato)zinc precursor. Metalorganic chemical vapor deposition of carbon-free...

16

Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phasehydrodeoxy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of...

17

CVD CNT CNT (Vapor-grown carbon fiber, VGCF)  

E-Print Network [OSTI]

CNT CNT CVD CNT CNT (Vapor-grown carbon fiber, VGCF) 10001300 CNT CVD Smalley CO 24 CCVD 1 #12; 27 mm 3% 200 sccm 800 10 10 Torr 300 sccm Ethanol tank Hot bath boat Ar/H2 Ar or Ethanol tank Hot bath Ethanol tank Hot bath Pressure gauge Maindraintube Subdraintube

Maruyama, Shigeo

18

Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat A. Zahab,* L. Spina, and P. Poncharal  

E-Print Network [OSTI]

of physico-chemical adsorption of gases in nanotubes have been reported.11­14 One of the most excit- ing was then carefully out- gassed by heating the sample up to 220 °C at a constant rate of about 3 °C/mn. The sample lower than 0.1 °C during water injection and pumping cycle was negli- gible when compared

Demouchy, Sylvie

19

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS  

E-Print Network [OSTI]

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from such as cloud mask, atmos- pheric profiles, aerosol properties, total precipitable water, and cloud properties vapor amount, aerosol particles, and the subsequently formed clouds [9]. Barnes et al. [2] provide

Sheridan, Jennifer

20

Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers  

SciTech Connect (OSTI)

We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs.

Li Jiangling; Su Shi; Kundrat, Vojtech; Abbot, Andrew M.; Ye, Haitao [School of Engineering and Applied Science, Aston University, Birmingham B4 7ET (United Kingdom); Zhou Lei [Department of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); Mushtaq, Fajer [Department of Mechanical Engineering, ETH Zurich, Zurich 8092 (Switzerland); Ouyang Defang [School of Life and Health Science, Aston University, Birmingham B4 7ET (United Kingdom); James, David; Roberts, Darren [Thermo Fisher Scientific, Stafford House, Hemel Hempstead HP2 7GE (United Kingdom)

2013-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Isothermal vapor-liquid equilibria for methanol + ethanol + water, methanol + water, and ethanol + water  

SciTech Connect (OSTI)

Isothermal vapor-liquid equilibria were measured for the ternary system methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. The apparatus that was used made it possible to control the measured temperature and total pressure by computer. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

Kurihara, Kiyofumi; Takeda, Kouichi; Kojima, Kazuo [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry; Minoura, Tsuyoshi [Mitui Engineering and Shipbuilding Co., Ltd., Tokyo (Japan)

1995-05-01T23:59:59.000Z

22

Experimental Study of Water Vapor Adsorption on Geothermal  

E-Print Network [OSTI]

Geothermal Program under Department of Energy Grant No. DE-FG07-90IDI2934,and by the Department of PetroleumSGP-TR-148 Experimental Study of Water Vapor Adsorption on Geothermal Reservoir Rocks Shubo Shang Engineering, Stanford University Stanford Geothermal Program Interdisciplinary Research in Engineering

Stanford University

23

Fatigue Resistance of Asphalt Mixtures Affected by Water Vapor Movement  

E-Print Network [OSTI]

This dissertation has two key objectives: the first objective is to develop a method of predicting and quantifying the amount of water that can enter into a pavement system by vapor transport; the second objective is to identify to which extent...

Tong, Yunwei

2013-11-08T23:59:59.000Z

24

High-resolution terahertz atmospheric water vapor continuum measurements  

E-Print Network [OSTI]

High-resolution terahertz atmospheric water vapor continuum measurements David M. Slocum,* Thomas M such as pollution monitoring and the detection of energetic chemicals using remote sensing over long path lengths through the atmosphere. Although there has been much attention to atmospheric effects over narrow

Massachusetts at Lowell, University of

25

Balance of atmospheric water vapor over the Gulf of Mexico  

E-Print Network [OSTI]

/ / / / I / o. i + B CAP C BBJ V S TPA PZA EHA Fig. 5. Vertical distribution of the average water-vapor flux normal to the perimeter of the Gulf of Nexico during Oct-Kov-Dec 1959. Plus values are inflow in kgm/sec-mb-. m. -o-I Pi C4 I / ~-o, i...BALANCE OF ATMOSPHERIC HATER VAPOR OVER THE GULF OF MEXICO A Thesis By RALPH MORGAN HUGHES Captain, USAF Submitted to the Graduate College of the Texas A&M University in partial fulf-'llment of the rec;uirements for the degree of MASTER...

Hughes, Ralph Morgan

1967-01-01T23:59:59.000Z

26

E-Print Network 3.0 - airs water vapor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water vapor Search Powered by Explorit Topic List Advanced Search Sample search results for: airs water vapor Page: << < 1 2 3 4 5 > >> 1 A laboratory experiment from the Little...

27

Correlation for the Vapor Pressure of Heavy Water From the Triple Point to the Critical Point  

E-Print Network [OSTI]

Correlation for the Vapor Pressure of Heavy Water From the Triple Point to the Critical Point Allan the vapor pressure of heavy water (D2O) from its triple point to its critical point. This work takes Institute of Physics. Key words: D2O; heavy water; ITS-90; vapor pressure. Contents 1. Introduction

Magee, Joseph W.

28

ARM - Field Campaign - Water Vapor IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX) govCampaignsVerification ofgovCampaignsWater

29

Carbon and Water Resource Management for Water Distribution Systems  

E-Print Network [OSTI]

Buckley, C. A. ; Carbon footprint analysis for increasingeffectively reduce their carbon footprint. To accomplish7 February 2013. (8) The Carbon Footprint of Water; River

Hendrickson, Thomas Peter

2013-01-01T23:59:59.000Z

30

ESA DUE GlobVapour water vapor products: Validation  

SciTech Connect (OSTI)

The main objective of the European Space Agency (ESA) Data User Element (DUE) GlobVapour project was the development of multi-annual global water vapor data sets. Since water vapour is a key climate variable it is important to have a good understanding of its behavior in the climate system. The ESA DUE GlobVapour project provides water vapor data, including error estimates, based on carefully calibrated and inter-calibrated satellite radiances in response to user requirements for long time series satellite observations. ESA DUE GlobVapour total columnar water vapor (TCWV) products derived from GOME/SCIA/GOME-2 (1996-2008) and SSM/I+MERIS (2003-2008) have been validated for the mentioned period, using satellite-based (AIRS, ATOVS) and ground-based measurements (radiosondes and microwave radiometer). The validation results are discussed in the following. The technical specifications on bias (1 kg/m{sup 2} for SSMI+MERIS and 2 kg/m{sup 2} for GOME/SCIA/GOME-2) are generally met. For more information, documents and data download follow the link: www.globvapour.info.

Schneider, Nadine; Schroeder, Marc; Stengel, Martin [Deutscher Wetterdienst (DWD), KU22, Frankfurter Str. 135, 63067 Offenbach a. M (Germany); Lindstrot, Ramus; Preusker, Rene [Freie Universitaet Berlin (FUB), Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin (Germany); Collaboration: ESA DUE GlobVapour Consortium

2013-05-10T23:59:59.000Z

31

Water vapor and the dynamics of climate changes  

E-Print Network [OSTI]

Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus climate. Here we present an overview of how latent heat release affects atmosphere dynamics in a broad range of climates, ranging from extremely cold to extremely warm. Contrary to widely held beliefs, atmospheric circulation statistics can change non-monotonically with global-mean surface temperature, in part because of dynamic effects of water vapor. For example, the strengths of the tropical Hadley circulation and of zonally asymmetric tropical circulations, as well as the kinetic energy of extratropical baroclinic eddies, can be lower than they presently are both in much warmer climates and in much colder climates. We discuss how latent heat release is implicated in such circulation changes, particularly through its effect on the atmospheric static stability, and we illustrate the circul...

Schneider, Tapio; Levine, Xavier

2009-01-01T23:59:59.000Z

32

Sulfur Impregnation on Activated Carbon Fibers through H2S Oxidation for Vapor Phase  

E-Print Network [OSTI]

Sulfur Impregnation on Activated Carbon Fibers through H2S Oxidation for Vapor Phase Mercury: Sulfur was impregnated onto activated carbon fibers ACFs through H2S oxidation catalyzed by the sorbent CE Database subject headings: Activated carbon; Sulfur; Mercury; Hydrogen sulfides; Oxidation

Borguet, Eric

33

Optimization of the chemical vapor deposition process for carbon nanotubes fabrication  

E-Print Network [OSTI]

Optimization of the chemical vapor deposition process for carbon nanotubes fabrication M. Grujicica-phase chemistry and surface chemistry model is developed to analyze, at the reactor length scale, chemical vapor (carrier gas) in the presence of cobalt catalytic particles in a cylindrical reactor. The model allows

Grujicic, Mica

34

CO-CATALYTIC ABSORPTION LAYERS FOR CONTROLLED LASER-INDUCED CHEMICAL VAPOR DEPOSITION OF CARBON NANOTUBES  

E-Print Network [OSTI]

The concept of co-catalytic layer structures for controlled laser-induced chemical vapor deposition of carbon nanotubes is established, in which a thin Ta support layer chemically aids the initial Fe catalyst reduction. This enables a significant...

Michaelis, F.B.; Weatherup, R.S.; Bayer, B.C.; Bock, M.C.D; Sugime, H.; Caneva, S.; Robertson, J.; Baumberg, J.J.; Hofmann, S.

2014-02-24T23:59:59.000Z

35

Role of oxygen vacancies in water vapor chemisorption and CO oxidation on titania  

SciTech Connect (OSTI)

Titanium dioxide is widely used as support for various important catalysts. Although nonstoichiometric titania behaves as an n-type semiconductor, the nature of the defect sites is not yet fully understood. In the present investigation the water vapor adsorption and carbon monoxide oxidation on TiO[sub 2] is explained considering oxygen vacancies as the major defect. It is also shown that incorporation of an Al[sup 3+] ion in TiO[sub 2] reduces the concentration of oxygen ion vacancies and inhibits the transformation of anatase to rutile.

Sengupta, G.; Chatterjee, R.N.; Maity, G.C. (Project and Development India Ltd. Sindri, Dhanbad, Bihar (India)); Satyanarayna, C.V.V. (RSIC, Bombay (India). Indian Inst. of Tech. Powai)

1995-03-01T23:59:59.000Z

36

Final Report for ARM Project Measuring 4-D Water Vapor Fields with GPS  

SciTech Connect (OSTI)

Water vapor is a primary element in the Earths climate system. Atmospheric water vapor is central to cloud processes, radiation transfer, and the hydrological cycle. Using funding from Department of Energy (DOE) grant DE-FG03-02ER63327, the University Corporation for Atmospheric Research (UCAR) developed new observational techniques to measure atmospheric water vapor and applied these techniques to measure four dimensional water vapor fields throughout the United States Southern Great Plains region. This report summarizes the development of a new observation from ground based Global Positioning System (GPS) stations called Slant Water Vapor (SW) and its utilization in retrieving four dimensional water vapor fields. The SW observation represents the integrated amount of water vapor between a GPS station and a transmitting satellite. SW observations provide improved temporal and spatial sampling of the atmosphere when compared to column-integrated quantities such as preciptitable water vapor (PW). Under funding from the DOE Atmospheric Radiation Measurement (ARM) program, GPS networks in the Southern Great Plains (SGP) region were deployed to retrieve SW to improve the characterization of water vapor throughout the region. These observations were used to estimate four dimensional water vapor fields using tomographic approaches and through assimilation into the MM5 numerical weather model.

Braun, John

2006-02-06T23:59:59.000Z

37

An optical water vapor sensor for unmanned aerial vehicles  

SciTech Connect (OSTI)

The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

1998-12-01T23:59:59.000Z

38

Moisture burst structure in satellite water vapor imagery  

E-Print Network [OSTI]

The moisture burst is a tropical synoptic-scale weather event that typically originates along the ITCZ and has been defined previously in window-channel infrared imagery. This research uses 6. 7-micrometer water vapor absorption band imagery to composite 35... moisture burst events during the North Pacific cool season of 1983-1984. Composite maps are constructed at four times, each 24 h apart, during the life cycle of the moisture burst. A comparative baseline is provided by an additional composite of 35 dates...

Ulsh, David Joel

1988-01-01T23:59:59.000Z

39

enhanced) in water vapor. The distribution of water ice throughout the solar nebula may  

E-Print Network [OSTI]

enhanced) in water vapor. The distribution of water ice throughout the solar nebula may have varied Solar System (Univ. of Arizona Press, Tucson, AZ, 1988), p. 348. The time scale for settling of solids that are a few hundred times greater than that of the canonical solar nebula (14). Turbulent

Utrecht, Universiteit

40

The Water Vapor Abundance in Orion KL Outflows  

E-Print Network [OSTI]

We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O formation in the outflow is dominated by in-situ evaporation of grain water-ice mantles and/or (iii) H2O was formed in the innermost and warmer regions (e.g. the hot core) and was swept up in ~1000 yr, the dynamical timescale of the outflow.

J. Cernicharo; J. R. Goicoechea; F. Daniel; M. R. Lerate; M. J. Barlow; B. M. Swinyard; E. van Dishoeck; T. L. Lim; S. Viti; J. Yates

2006-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes  

E-Print Network [OSTI]

An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes M Growth of carbon nanotubes during transition-metal particles catalytically-assisted thermal decomposition of various nanotube surface and edge reactions (e.g. adsorption of hydrocarbons and hydrogen onto the surface

Grujicic, Mica

42

Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer  

SciTech Connect (OSTI)

Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR?¢????s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument?¢????s robustness in a real-world situation.

Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

2012-05-01T23:59:59.000Z

43

Cold Water Vapor in the Barnard 5 Molecular Cloud  

E-Print Network [OSTI]

After more than 30 years of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds, however, there is only one region where cold (~10 K) water vapor has been detected - L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work -- likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 1_10 - 1_01) at 556.9360 GHz toward two positions in the cold molecular cloud Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

Wirstrm, E S; Persson, C M; Buckle, J V; Cordiner, M A; Takakuwa, S

2014-01-01T23:59:59.000Z

44

Trading Water for Carbon with Biological Carbon Sequestration  

E-Print Network [OSTI]

Trading Water for Carbon with Biological Carbon Sequestration Robert B. Jackson,1 * Esteban G. Farley,1 David C. le Maitre,5 Bruce A. McCarl,6 Brian C. Murray7 Carbon sequestration strategies plantations feature prominently among tools for carbon sequestration (1­8). Plantations typi- cally combine

Nacional de San Luis, Universidad

45

Does water dope carbon nanotubes?  

SciTech Connect (OSTI)

We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 , highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup ?4}?e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

Bell, Robert A.; Payne, Michael C. [Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge (United Kingdom); Mostofi, Arash A. [Department of Materials and Department of Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

2014-10-28T23:59:59.000Z

46

Continuous growth of single-wall carbon nanotubes using chemical vapor deposition  

DOE Patents [OSTI]

The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

2014-09-23T23:59:59.000Z

47

Continuous growth of single-wall carbon nanotubes using chemical vapor deposition  

DOE Patents [OSTI]

The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

Grigorian, Leonid (Raymond, OH); Hornyak, Louis (Evergreen, CO); Dillon, Anne C (Boulder, CO); Heben, Michael J (Denver, CO)

2008-10-07T23:59:59.000Z

48

Water, Vapor, and Salt Dynamics in a Hot Repository  

SciTech Connect (OSTI)

The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

Bahrami, Davood; Danko, George [Department of Mining Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557 (United States); Walton, John [Department of Civil Engineering, University of Texas at El Paso, 500 W. University, El Paso, TX, 79968 (United States)

2007-07-01T23:59:59.000Z

49

Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

1993-07-01T23:59:59.000Z

50

Millimeter-wave Radiometer for High Sensitivity Water Vapor Profiling in Arid Regions  

SciTech Connect (OSTI)

Abstract - ProSensing Inc. has developed a G-band (183 GHz) water Vapor Radiometer (GVR) for long-term, unattended measurements of low concentrations of atmospheric water vapor and liquid water. Precipitable water vapor and liquid water path are estimated from zenith brightness temperatures measured from four double-sideband receiver channels, centered at 183.31 1, 3 and 7, and 14 GHz. A prototype ground-based version of the instrument was deployed at the DOE ARM program?s North Slope of Alaska site near Barrow AK in April 2005, where it collected data continuously for one year. A compact, airborne version of this instrument, packaged to operate from a standard 2-D PMS probe canister, has been tested on the ground and is scheduled for test flights in the summer of 2006. This paper presents design details, laboratory test results and examples of retrieved precipitable water vapor and liquid water path from measured brightness temperature data.

Pazmany, Andrew

2006-11-09T23:59:59.000Z

51

Measurements of water vapor adsorption on the Geysers rocks  

SciTech Connect (OSTI)

The ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quantity of water retained by rock samples taken from three different wells of The Geysers was measured at 150 C and at 200 C as a function of pressure in the range 0.00 ? p/p0 ? 0.98, where p0 is the saturated water vapor pressure. The rocks were crushed and sieved into three fractions of different grain sizes (with different specific surface areas). Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and extent of the hysteresis. Additionally, BET surface area analyses were performed by Porous Materials Inc. on the same rock samples using nitrogen or krypton adsorption measurements at 77 K. Specific surface areas and pore volumes were determined. These parameters are important in estimating water retention capability of a porous material. The same laboratory also determined the densities of the samples by helium pycnometry. Their results were then compared with our own density values obtained by measuring the effect of buoyancy in compressed argon. One of the goals of this project is to determine the dependence of the water retention capacity of the rocks as a function of temperature. The results show a significant dependence of the adsorption and desorption isotherms on the grain size of the sample. The increase in the amount of water retained with temperature observed previously (Shang et al., 1994a, 1994b, 1995) between 90 and 130C for various reservoir rocks from The Geysers may be due to the contribution of slow chemical adsorption and may be dependent on the time allowed for equilibration. In contrast with the results of Shang et al. (1994a, 1994b, 1995), some closed and nearly closed hysteresis loops on the water adsorption/desorption isotherms (with closing points at p/p0 ? 0.6) were obtained in this study. In these cases the effects of activated processes were not present, and no increase in water adsorption with temperature was observed

Gruszkiewicz, Miroslaw S.; Horita, Juske; Simonson, John M.; Mesmer, Robert E.

1996-01-24T23:59:59.000Z

52

Sulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury uptake  

E-Print Network [OSTI]

promote the formation of organic sulfur and the presence of H2S during the cooling process increased in the presence of H2S was very effective towards Hg uptake in nitrogen. Corre- lation of mercury uptake capacitySulfurization of a carbon surface for vapor phase mercury removal ­ II: Sulfur forms and mercury

Borguet, Eric

53

ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 24, NO. 3, 2007, 509526 Variational Assimilation of GPS Precipitable Water Vapor and  

E-Print Network [OSTI]

Precipitable Water Vapor and Hourly Rainfall Observations for a Meso- Scale Heavy Precipitation Event During Atmospheric water vapor plays a significant role in numerical weather predictions (NWP) of heavy rain- fall of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated

54

Latitudinal survey of middle atmospheric water vapor revealed by shipboard microwave spectroscopy. Master's thesis  

SciTech Connect (OSTI)

Water vapor is one of the most important greenhouse gases and is an important tracer of atmospheric motions in the middle atmosphere. It also plays an important role in the chemistry of the middle atmosphere and through its photodissociation by solar radiation, it is the major source of hydrogen escaping to space. Ground-based microwave measurements conducted in the 1980s have provided a fair understanding of the seasonal variation of mesospheric water vapor in the northern hemisphere mid-latitudes, but the global distribution of water vapor in the middle atmosphere is only beginning to be revealed by space-based measurements.

Schrader, M.L.

1994-05-01T23:59:59.000Z

55

Solar-induced chemical vapor deposition of diamond-type carbon films  

DOE Patents [OSTI]

An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

1994-09-13T23:59:59.000Z

56

Solar-induced chemical vapor deposition of diamond-type carbon films  

DOE Patents [OSTI]

An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

Pitts, J. Roland (Lakewood, CO); Tracy, C. Edwin (Golden, CO); King, David E. (Lakewood, CO); Stanley, James T. (Beaverton, OR)

1994-01-01T23:59:59.000Z

57

Liquid-phase and vapor-phase dehydration of organic/water solutions  

DOE Patents [OSTI]

Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

Huang, Yu (Palo Alto, CA); Ly, Jennifer (San Jose, CA); Aldajani, Tiem (San Jose, CA); Baker, Richard W. (Palo Alto, CA)

2011-08-23T23:59:59.000Z

58

An Analysis of Cloud Cover and Water Vapor for the ALMA Project  

E-Print Network [OSTI]

(Chile), Chalviri (Bolivia) and Five Sites in Argentina using Satellite Data and a Verification and water vapor at Chajnantor (Chile), Chalviri (Bolivia) and four sites in Argentina. Since time

59

DESCRIPTIVE TEXT SEA WATER INORGANIC CARBON DATABASE  

E-Print Network [OSTI]

DESCRIPTIVE TEXT SEA WATER INORGANIC CARBON DATABASE for the CARBON DIOXIDE INFORMATION OF OCEANOGRAPHY (SIO) I. GENERAL DESCRIPTION The database consists of tables presenting oceanic inorganic carbon, titration (total) alkalinity (database abbreviation: "ALK"), and the 13 C / 12 C isotopic ratio

60

Models of the atmospheric water vapor budget for the Texas HIPLEX area: by Steven Francis Williams.  

E-Print Network [OSTI]

co:erage cf. convective activ' ty, Thus, the em&unt of convection seems to be more important than the type oz pr"se. . ce of convective activi!y. An increased tran:port of water vapor near ti e surface is -hown to be an important factor... of watc-. z vapor tnrough each later, l boundary shown in Fig. 1 can be comput d by substituting Eqs. (16) ? (19), reaper tively, into Eq. (14) . Th ' net transport of water vapor 'nt the volume through la+eral oouccdaries or t?:e net horizontal tran:;port...

Williams, Steven Francis

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Final report on the project entitled "The Effects of Disturbance & Climate on Carbon Storage & the Exchanges of CO2 Water Vapor & Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites"  

SciTech Connect (OSTI)

This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture in spring and early summer. A multi-year drought (2001-2003) led to a significant reduction of net ecosystem exchange due to carry-over effects in soil moisture and carbohydrate reserves in plant-tissue. In the same forest, the interannual variability in the rate carbon is lost from the soil and forest floor is considerable and related to the variability in tree growth as much as it is to variability in soil climatic conditions. Objective (3): Flux data from the mature ponderosa pine site support a physical basis for filtering nighttime data with friction velocity above the canopy. An analysis of wind fields and heat transport in the subcanopy at the mesic 40-year old Douglas site yielded that the non-linear structure and behavior of spatial temperature gradients and the flow field require enhanced sensor networks to estimate advective fluxes in the subcanopy of forest to close the surface energy balance in forests. Reliable estimates for flux uncertainties are needed to improve model validation and data assimilation in process-based carbon models, inverse modeling studies and model-data synthesis, where the uncertainties may be as important as the fluxes themselves. An analysis of the time scale dependence of the random and flux sampling error yielded that the additional flux obtained by increasing the perturbation timescale beyond about 10 minutes is dominated by random sampling error, and therefore little confidence can be placed in its value. Artificial correlation between gross ecosystem productivity (GEP) and ecosystem respiration (Re) is a consequence of flux partitioning of eddy covariance flux data when GEP is computed as the difference between NEE and computed daytime Re (e.g. using nighttime Re extrapolated into daytime using soil or air temperatures). Tower-data must be adequately spatially averaged before comparison to gridded model output as the time variability of both is inherently different. The eddy-covariance data collected at the mature ponderosa pine site and the mesic Douglas fir site were used to develop and evaluate a new method to extra

Beverly E. Law (PI), Christoph K. Thomas (CoI)

2011-09-20T23:59:59.000Z

62

Tunable carbon nanotube-tungsten carbide nanoparticles heterostructures by vapor deposition  

SciTech Connect (OSTI)

A simple, versatile route for the synthesis of carbon nanotube (CNT)-tungsten carbide nanoparticles heterostructures was set up via vapor deposition process. For the first time, amorphous CNTs (?-CNTs) were used to immobilized tungsten carbide nanoparticles. By adjusting the synthesis and annealing temperature, ?-CNTs/amorphous tungsten carbide, ?-CNTs/W{sub 2}C, and CNTs/W{sub 2}C/WC heterostructures were prepared. This approach provides an efficient method to attach other metal carbides and other nanoparticles to carbon nanotubes with tunable properties.

Xia, Min; Guo, Hongyan; Ge, Changchun [Institute of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing (China); Institute of Powder Metallurgy and Advanced Ceramics, Southwest Jiaotong University, 111, 1st Section, Northern 2nd Ring Road, Chengdu (China); Yan, Qingzhi, E-mail: qzyan@ustb.edu.cn; Lang, Shaoting [Institute of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing (China)

2014-05-14T23:59:59.000Z

63

Effect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice sheets  

E-Print Network [OSTI]

temperature and the abundance of heavy isotopes of water found in water vapor and precipitation as functionsEffect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice fractionation model is developed to investigate postdepositional modification of stable isotopes of water

Walden, Von P.

64

Micromodel Investigations of CO2 Exsolution from Carbonated Water...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micromodel Investigations of CO2 Exsolution from Carbonated Water in Sedimentary Rocks. Micromodel Investigations of CO2 Exsolution from Carbonated Water in Sedimentary Rocks....

65

Removal of Carbon Tetrachloride from a Layered Porous Medium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Tetrachloride from a Layered Porous Medium by Means of Soil Vapor Extraction Enhanced by Desiccation and Water Removal of Carbon Tetrachloride from a Layered Porous Medium...

66

Removal of carbon tetrachloride from a layered porous medium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

carbon tetrachloride from a layered porous medium by means of soil vapor extraction enhanced by desiccation and water Removal of carbon tetrachloride from a layered porous medium...

67

GEOSTAR-II: A PROTOTYPE WATER VAPOR IMAGER/SOUNDER FOR THE PATH Todd Gaier1  

E-Print Network [OSTI]

GEOSTAR-II: A PROTOTYPE WATER VAPOR IMAGER/SOUNDER FOR THE PATH MISSION Todd Gaier1 , Bjorn Lambrigtsen1 , Pekka Kangaslahti1 , Boon Lim1 , Alan Tanner1 , Dennis Harding1 , Heather Owen1 , Mary Soria1 GHz water line. The preferred concept to meet this requirement is an interferometric imager

Ruf, Christopher

68

Raman lidar profiling of water vapor and aerosols over the ARM SGP Site  

SciTech Connect (OSTI)

The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

Ferrare, R.A.

2000-01-09T23:59:59.000Z

69

RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.  

SciTech Connect (OSTI)

We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

FERRARE,R.A.

2000-01-09T23:59:59.000Z

70

Carbon impurities on graphene synthesized by chemical vapor deposition on platinum  

SciTech Connect (OSTI)

We report nanocrystalline carbon impurities coexisting with graphene synthesized via chemical vapor deposition on platinum. For certain growth conditions, we observe micron-size island-like impurity layers which can be mistaken for second graphene layers in optical microscopy or scanning electron microscopy. The island orientation depends on the crystalline orientation of the Pt, as shown by electron backscatter diffraction, indicating growth of carbon at the platinum surface below graphene. Dark-field transmission electron microscopy indicates that in addition to uniform single-crystal graphene, our sample is decorated with nanocrystalline carbon impurities with a spatially inhomogeneous distribution. The impurity concentration can be reduced significantly by lowering the growth temperature. Raman spectra show a large D peak, however, electrical characterization shows high mobility (?8000?cm{sup 2}/Vs), indicating a limitation for Raman spectroscopy in characterizing the electronic quality of graphene.

Ping, Jinglei; Fuhrer, Michael S., E-mail: michael.fuhrer@monash.edu [Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742-4111, USA and School of Physics, Monash University, 3800 Victoria (Australia)

2014-07-28T23:59:59.000Z

71

The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers  

E-Print Network [OSTI]

Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

2013-01-01T23:59:59.000Z

72

Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere  

DOE Patents [OSTI]

We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

Allendorf, Mark D; Robinson, Alex L

2014-12-09T23:59:59.000Z

73

A NORMETEX MODEL 15 M3/HR WATER VAPOR PUMPING TEST  

SciTech Connect (OSTI)

Tests were performed using a Model 15 m{sup 3}/hr Normetex vacuum pump to determine if pump performance degraded after pumping a humid gas stream. An air feed stream containing 30% water vapor was introduced into the pump for 365 hours with the outlet pressure of the pump near the condensation conditions of the water. Performance of the pump was tested before and after the water vapor pumping test and indicated no loss in performance of the pump. The pump also appeared to tolerate small amounts of condensed water of short duration without increased noise, vibration, or other adverse indications. The Normetex pump was backed by a dual-head diaphragm pump which was affected by the condensation of water and produced some drift in operating conditions during the test.

Klein, J.; Fowley, M.; Steeper, T.

2010-12-20T23:59:59.000Z

74

FIRST DETECTION OF WATER VAPOR IN A PRE-STELLAR CORE  

SciTech Connect (OSTI)

Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory, we report on the first detection of water vapor at high spectral resolution toward a dense cloud on the verge of star formation, the pre-stellar core L1544. The line shows an inverse P-Cygni profile, characteristic of gravitational contraction. To reproduce the observations, water vapor has to be present in the cold and dense central few thousand AU of L1544, where species heavier than helium are expected to freeze out onto dust grains, and the ortho:para H{sub 2} ratio has to be around 1:1 or larger. The observed amount of water vapor within the core (about 1.5 Multiplication-Sign 10{sup -6} M{sub Sun }) can be maintained by far-UV photons locally produced by the impact of galactic cosmic rays with H{sub 2} molecules. Such FUV photons irradiate the icy mantles, liberating water vapor in the core center. Our Herschel data, combined with radiative transfer and chemical/dynamical models, shed light on the interplay between gas and solids in dense interstellar clouds and provide the first measurement of the water vapor abundance profile across the parent cloud of a future solar-type star and its potential planetary system.

Caselli, Paola; Douglas, Thomas [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Keto, Eric [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bergin, Edwin A. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Tafalla, Mario [Observatorio Astronomico Nacional (IGN), Calle Alfonso XII, 3, E-28014 Madrid (Spain); Aikawa, Yuri [Department of Earth and Planetary Sciences, Kobe University, Nada, 657-8501 Kobe (Japan); Pagani, Laurent [LERMA and UMR 8112 du CNRS, Observatoire de Paris, 61 Av. de l'Observatoire, F-75014 Paris (France); Yildiz, Umut A.; Kristensen, Lars E.; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Van der Tak, Floris F. S. [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV, Groningen (Netherlands); Walmsley, C. Malcolm; Codella, Claudio [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Nisini, Brunella, E-mail: p.caselli@leeds.ac.uk [INAF-Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone (Italy)

2012-11-10T23:59:59.000Z

75

Time domain measurement of the THz refractivity of water vapor  

E-Print Network [OSTI]

region," Metrologia 18(2), 49­52 (1982). 7. R. J. Hill and R. S. Lawrence, "Refractive index of water

Oklahoma State University

76

IUPAC critical evaluation of the rotationalvibrational spectra of water vapor. Part I--Energy levels and transition wavenumbers  

E-Print Network [OSTI]

Keywords: Water vapor Transition wavenumbers Atmospheric physics Energy levels MARVEL Information systemIUPAC critical evaluation of the rotationalvibrational spectra of water vapor. Part I--Energy levels and transition wavenumbers for H2 17 O and H2 18 O Jonathan Tennyson a,, Peter F. Bernath b

Chance, Kelly

77

Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora  

E-Print Network [OSTI]

aurora Lorenz Rotha,b,1 , Kurt D. Retherforda , Joachim Saurc , Darrell F. Strobeld,e , Paul D. Feldmane that the discovery of a water vapor aurora in Decem- ber 2012 by local hydrogen (H) and oxygen (O) emissions by our 2014 STIS observations. Europa | Hubble Space Telescope | aurora | water vapor plumes | Jupiter

Nimmo, Francis

78

The role of water vapor and solar radiation in determining temperature changes and trends measured at Armagh, 18812000  

E-Print Network [OSTI]

The role of water vapor and solar radiation in determining temperature changes and trends measured in atmospheric circulation, are discussed. Citation: Stanhill, G. (2011), The role of water vapor and solar radiation in determining temperature changes and trends measured at Armagh, 1881­2000, J. Geophys. Res., 116

79

Water vapor on supergiants. The 12 micron TEXES spectra of mu Cephei  

E-Print Network [OSTI]

Several recent papers have argued for warm, semi-detached, molecular layers surrounding red giant and supergiant stars, a concept known as a MOLsphere. Spectroscopic and interferometric analyses have often corroborated this general picture. Here, we present high-resolution spectroscopic data of pure rotational lines of water vapor at 12 microns for the supergiant mu Cephei. This star has often been used to test the concept of molecular layers around supergiants. Given the prediction of an isothermal, optically thick water-vapor layer in Local Thermodynamic Equilibrium around the star (MOLsphere), we expected the 12 micron lines to be in emission or at least in absorption but filled in by emission from the molecular layer around the star. Our data, however, show the contrary; we find definite absorption. Thus, our data do not easily fit into the suggested isothermal MOLsphere scenario. The 12 micron lines, therefore, put new, strong constraints on the MOLsphere concept and on the nature of water seen in signatures across the spectra of early M supergiants. We also find that the absorption is even stronger than that calculated from a standard, spherically symmetric model photosphere without any surrounding layers. A cool model photosphere, representing cool outer layers is, however, able to reproduce the lines, but this model does not account for water vapor emission at 6 microns. Thus, a unified model for water vapor on mu Cephei appears to be lacking. It does seem necessary to model the underlying photospheres of these supergiants in their whole complexity. The strong water vapor lines clearly reveal inadequacies of classical model atmospheres.

N. Ryde; M. J. Richter; G. M. Harper; K. Eriksson; D. L. Lambert

2006-03-15T23:59:59.000Z

80

investigating the source, transport, and isotope fractionation of water vapor in the atmospheric boundary layer  

E-Print Network [OSTI]

investigating the source, transport, and isotope fractionation of water vapor in the atmospheric-portable mixing ratio generator and Rayleigh distillation device, Agricultural and Forest Meteorology, 150, 1607 ratio generator. Incom- ing dry air passes through a molecular sieve and then a stainless steel frit (a

Minnesota, University of

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Water Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles OLIVIER PAULUIS  

E-Print Network [OSTI]

by the corresponding Carnot cycle. The Carnot and steam cycles can be combined into a mixed cycle that is forcedWater Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles OLIVIER PAULUIS Center in the atmosphere is discussed here by comparing two idealized heat engines: the Carnot cycle and the steam cycle

Pauluis, Olivier M.

82

Water Vapor Radiometry : Outline of Goals and Tasks for the Spring Semester 2001  

E-Print Network [OSTI]

that can accu­ rately measure the spectrum of the water vapor emis­ sion. The current receivers follow, as in a conventional re­ ceiver, the correlation receiver splits the rf signal into two with a splitter that follows the feed horn. Both branches are mixed with a carefully controlled ther­ mal load. A 180 ffi phase shift

Backer, Don

83

Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor transfer  

E-Print Network [OSTI]

Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor of transpiration). The boundary layer conductance to heat transfer is small enough that leaf temperature can become diffusion, the boundary layer around a leaf also provides resistance to the transfer of heat between a leaf

Martin, Timothy

84

2.1 RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE  

E-Print Network [OSTI]

with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors with the use of narrowband (~0.4 nm bandpass) filters, reduces the background skylight and, therefore

85

IUPAC critical evaluation of the rotationalvibrational spectra of water vapor, Part III: Energy levels and transition  

E-Print Network [OSTI]

rotational vibrational line positions, transition intensities, and energy levels, with associated critically. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H2 16 O and p-H2IUPAC critical evaluation of the rotationalvibrational spectra of water vapor, Part III: Energy

Chance, Kelly

86

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

SciTech Connect (OSTI)

The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

Turner, David, D.; Ferrare, Richard, A.

2011-07-06T23:59:59.000Z

87

Forced Dispersion of Liquefied Natural Gas Vapor Clouds with Water Spray Curtain Application  

E-Print Network [OSTI]

.............................................................................................................................. 211 xv LIST OF FIGURES Page Fig. 1. Densities of methane (vapor) and air at different temperatures. .......................... 2 Fig. 2. Temperature and specific gravity of methane, air and methane-air mixture at atmospheric... on methane concentration downwind of the LNG pool ..................................................................................................... 37 Fig. 10. Methane concentrations downwind of the LNG pool, with and without water spray...

Rana, Morshed A.

2011-02-22T23:59:59.000Z

88

Water vapor variability in the tropics and its links to dynamics and precipitation  

E-Print Network [OSTI]

dioxide doubling [e.g., Intergovernmental Panel on Climate Change (IPCC), 2001]. This uncertainty stems P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia Richard P. Allan to understanding feedbacks and processes operating within the climate system. Column-integrated water vapor (CWV

Allan, Richard P.

89

Measurement of Water Vapor Concentration using Tunable Diode Laser Absorption Spectroscopy  

E-Print Network [OSTI]

Tunable diode laser spectroscopy and the Beer-Lambert relation has been used to measure the absorption of water vapor both in an absorption cell and in a shock tube. The purpose of this thesis is to develop a laser diagnostic capable of determining...

Barrett, Alexander B.

2010-07-14T23:59:59.000Z

90

Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds  

SciTech Connect (OSTI)

The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of this contract, we participated in another ARM-sponsored experiment at the NSA during February-March 2007. This experiment is called the Radiative Heating in Underexplored Bands Campaign (RHUBC) and the GSR was operated successfully for the duration of the campaign. One of the principal goals of the experiment was to provide retrievals of water vapor during PWV amounts less than 2 mm and to compare GSR data with ARM radiometers and radiosondes. A secondary goal was to compare the radiometric response of the microwave and millimeter wavelength radiometers to water and ice clouds. In this final report, we will include the separate progress reports for each of the three years of the project and follow with a section on major accomplishments of the project.

Westwater, Edgeworth

2011-05-06T23:59:59.000Z

91

Energy and water vapor transport across a simplified cloud-clear air interface  

E-Print Network [OSTI]

We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...

Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela

2015-01-01T23:59:59.000Z

92

Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

Mun, S.Y.; Lee, H.

1999-12-01T23:59:59.000Z

93

Regeneration of Carbon Aerogel Exhausted in Water Purification  

E-Print Network [OSTI]

Carbon has been used electrochemically in various forms for water treatment and the carbon aerogel is one of them. Carbon Aerogels (CA) are used as electrodes due to their high surface capacity and high electrical conductivity. They are also known...

Tewari, Sanjay

2012-02-14T23:59:59.000Z

94

Remote sensing of total integrated water vapor, wind speed, and cloud liquid water over the ocean using the Special Sensor Microwave/Imager (SSM/I)  

E-Print Network [OSTI]

A modified D-matrix retrieval method is the basis of the refined total integrated water vapor (TIWV), total integrated cloud liquid water (CLW), and surface wind speed (WS) retrieval methods that are developed. The 85 GHZ polarization difference...

Manning, Norman Willis William

2012-06-07T23:59:59.000Z

95

Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)  

SciTech Connect (OSTI)

This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

2012-10-01T23:59:59.000Z

96

The Effects of Water Vapor and Hydrogen on the High-Temperature Oxidation of Alloys  

SciTech Connect (OSTI)

Essentially all alloys and coatings that are resistant to corrosion at high temperature require the formation of a protective (slowly-growing and adherent) oxide layer by a process known as selective oxidation. The fundamental understanding of this process has been developed over the years for exposure in pure oxygen or air. However, the atmospheres in most applications contain significant amounts of water vapor which can greatly modify the behavior of protective oxides. The development of oxy-fuel combustion systems in which fossil fuels are burned in a mixture of recirculated flue gas and oxygen, rather than in air, has caused renewed interest in the effects of water vapor and steam on alloy oxidation. The focus of this paper is on the ways the presence of water vapor can directly alter the selective oxidation process. The paper begins with a brief review of the fundamentals of selective oxidation followed by a description of recent experimental results regarding the effect of water vapor on the oxidation of a variety of chromia-forming alloys (Fe- and Ni-base) in the temperature range 600 to 700 C. The atmospheres include air, air-H{sub 2}O, Ar-H{sub 2}O and Ar-H{sub 2}O-O{sub 2}. Then the behavior of alumina-forming alloys in H{sub 2}O-containing atmospheres is briefly described. As hydrogen is produced during oxidation of alloys in H{sub 2}O, it can be released back into the gas phase or injected into the metal (where it can diffuse through to the other side). Experiments in which hydrogen concentrations have been measured on both sides of thin specimens during oxidation by H{sub 2}O on only one side are described. Finally, it is attempted to catalogue the various experimental observations under a few general principles.

Mu, N.; Jung, K.; Yanar, N. M.; Pettit, F. S; Holcomb, G. R.; Howard, B. H.; Meier, G. H.

2013-06-01T23:59:59.000Z

97

Coal water suspensions involving carbon black  

SciTech Connect (OSTI)

This patent describes a composition comprising: about 65 to 80% by weight of coal particulates with a particle size distribution within 10% of the value calculated in accordance with a Funk distribution which assumes a maximum coal particle size of about 300 microns and minimum coal particle size of about 0.5 microns; about 0.2 to 2% by weight, as based upon the total weight of dry coal, of carbon black having a primary carbon particle size in the range of about 200 to about 900 Angstroms which primary carbon particles are simultaneously bound together to form primary reticulated chains having lengths in the range of about 500 to 30,000 Angstroms; a carrier liquid comprising 20 to 35 wt % water; and from 0.2 to 2.0 wt % of a dispersant selected from the group consisting of ammonium naphthalene sulfonic acid, hexadecyltrimethylammonium bromide, and ammonium lignosulfonate.

Malone, D.P.; Thompson, D.G.

1988-10-25T23:59:59.000Z

98

Short-range precipitation forecasts using assimilation of simulated satellite water vapor profiles and column cloud liquid water amounts  

SciTech Connect (OSTI)

These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation.

Wu, X.; Diak, G.R.; Hayden, C.M.; Young, J.A. [Univ. of Wisconsin, Madison, WI (United States)] [Univ. of Wisconsin, Madison, WI (United States)

1995-02-01T23:59:59.000Z

99

Response of water vapor to interannual variations of SST: Results from NCAR Community Climate Model (CCM2)  

SciTech Connect (OSTI)

This paper very briefly documents the response of water vapor to interannual changes in sea surface temperature (SST) in two of the most frequently used climate models: the National Center for Atmospheric Research (NCAR) community climate model (CCM2) and the GFDL spectral model (R30). The corresponding results from radiosonde data are also presented for reference. A simple linear regression model is used to quantify the response of water vapor to changes in SST in the two simulations. Except for the negative response of water vapor over Australia, CCM2 simulates the major characteristics in the horizontal structure of the water vapor response shown in the radiosonde data. The negative response of water over Australia is also not well simulated by GFDL R30. In addition, GFDL R30 significantly underestimates the positive response over the Indian Ocean. The horizontal contrasts between the negative response over the western Pacific and the positive response over the central and eastern Pacific in the model simulations are larger than in the radiosonde data. The negative response in the subtropical region in CCM2 is more pronounced than in R30. Averaged over the tropics, CCM2 has a larger water vapor response in both the boundary layer and the upper troposphere than R30. The correlations between variations of water vapor in the upper troposphere and those at the surface level are also stronger in CCM2 than in R30. 2 refs., 5 figs.

Sun, De-Zheng [National Center For Atmospheric Research, Boulder, CO (United States)

1997-11-01T23:59:59.000Z

100

Orographic Precipitation and Water Vapor Fractionation over the Southern Andes RONALD B. SMITH AND JASON P. EVANS  

E-Print Network [OSTI]

Orographic Precipitation and Water Vapor Fractionation over the Southern Andes RONALD B. SMITH (Smith and Barstad 2004) to predict the patterns of orographic pre- Corresponding author address: Ronald B. Smith, Depa

Evans, Jason

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses: Evidence  

E-Print Network [OSTI]

Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses inorganic carbon (d13 C-DIC) were carried out in shallow water carbonate sediments of the Great Bahamas Bank (GBB) to further examine sediment­seagrass relationships and to more quantitatively describe the cou

Burdige, David

102

Calculation of the Dimer Equilibrium Constant of Heavy Water Saturated Vapor  

E-Print Network [OSTI]

Water is the most common substance on Earth.The discovery of heavy water and its further study have shown that the change of hydrogen for deuterium leads to the significant differences in their properties.The triple point temperature of heavy water is higher,at the same time the critical temperature is lower.Experimental values of the second virial coefficient of the EOS for the vapor of normal and heavy water differ at all temperatures.This fact can influence the values of the dimerization constant for the heavy water vapor.The equilibrium properties of the dimerization process are described with the methods of chemical thermodynamics.The chemical potentials for monomers (m) and dimers (d)are the functions of their concentrations.The interactions of monomer-dimer and dimer-dimer types are taken into account within the solution of equation for chemical potentials.The obtained expression for the dimerization constant contains the contributions of these types.The averaged potentials are modeled by the Sutherlan...

Bulavin, L A; Makhlaichuk, V N

2015-01-01T23:59:59.000Z

103

Effect of calcium nitrate on the vapor-liquid equilibria of ethanol + water and 2-propanol + water  

SciTech Connect (OSTI)

The effect of calcium nitrate on the vapor-liquid equilibria of ethanol + water and 2-propanol + water was studied using a Swietoslawski ebulliometer. The measurements were performed for two constant salt molalities (1 and 2 mol[center dot]kg[sup [minus]1]) under isobaric conditions at 50.66 kPa. Strong salting-out of the alcohol was observed in all cases, leading to a complete elimination of the azeotropic point at relatively low salt concentrations. The results were correlated using an extension of the NRTL equation for mixed solvent electrolyte systems proposed by Mock, Evans, and Chen.

Polka, H.M.; Gmehling, J. (Univ. of Oldenburg (Germany). Chair of Industrial Chemistry)

1994-07-01T23:59:59.000Z

104

Coupled Carbon/Water Fluxes in Complex Terrain, Water-Limited Forests Investigators  

E-Print Network [OSTI]

Coupled Carbon/Water Fluxes in Complex Terrain, Water-Limited Forests Investigators: Karen Humes of quantifying the magnitude, timing, distribution and coupling of carbon and water fluxes in mountainous forestlands. This includes one segment of the continuum of carbon and water flow from the "forest to the sea

Walden, Von P.

105

Thickness limitations in carbon nanotube reinforced silicon nitride coatings synthesized by vapor infiltration  

SciTech Connect (OSTI)

Chemical vapor infiltration is a convenient method for synthesizing carbon nanotube (CNT)-reinforced ceramic coatings. The thickness over which infiltration is relatively uniform is limited by gas phase diffusion in the pore structure. These effects were investigated in two types of silicon nitride matrix composites. With CNTs that were distributed uniformly on the substrate surface dense coatings were limited to thicknesses of several microns. With dual structured CNT arrays produced by photolithography coatings up to 400 gm thick were obtained with minimal residual porosity. Gas transport into these dual structured materials was facilitated by creating micron sized channels between "CNT pillars" (i.e. each pillar consisted of a large number of individual CNTs). The experimental results are consistent with basic comparisons between the rates of gas diffusion and silicon nitride growth in porous structures. This analysis also provides a general insight into optimizing infiltration conditions during the fabrication of thick CNT-reinforced composite coatings. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Eres, Gyula [ORNL

2012-01-01T23:59:59.000Z

106

Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol  

SciTech Connect (OSTI)

Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene, phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 C, and by approximately a factor of two (83.2% versus 43.3%) at 450 C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.

Sun, Junming; Karim, Ayman M.; Zhang, He; Kovarik, Libor; Li, Xiaohong S.; Hensley, Alyssa; McEwen, Jean-Sabin; Wang, Yong

2013-10-01T23:59:59.000Z

107

Oxidation of zirconium alloys in 2.5 kPa water vapor for tritium readiness.  

SciTech Connect (OSTI)

A more reactive liner material is needed for use as liner and cruciform material in tritium producing burnable absorber rods (TPBAR) in commercial light water nuclear reactors (CLWR). The function of these components is to convert any water that is released from the Li-6 enriched lithium aluminate breeder material to oxide and hydrogen that can be gettered, thus minimizing the permeation of tritium into the reactor coolant. Fourteen zirconium alloys were exposed to 2.5 kPa water vapor in a helium stream at 300 C over a period of up to 35 days. Experimental alloys with aluminum, yttrium, vanadium, titanium, and scandium, some of which also included ternaries with nickel, were included along with a high nitrogen impurity alloy and the commercial alloy Zircaloy-2. They displayed a reactivity range of almost 500, with Zircaloy-2 being the least reactive.

Mills, Bernice E.

2007-11-01T23:59:59.000Z

108

Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor  

SciTech Connect (OSTI)

Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34-1.47 {mu}m spectral region (2v1and v1+ v3overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations.

Liu, Jonathan T.C.; Rieker, Gregory B.; Jeffries, Jay B.; Gruber, Mark R.; Carter, Campbell D.; Mathur, Tarun; Hanson, Ronald K

2005-11-01T23:59:59.000Z

109

Trace water vapor determination in nitrogen and corrosive gases using infrared spectroscopy  

SciTech Connect (OSTI)

The generation of particles in gas handling systems as a result of corrosion is a major concern in the microelectronics industry. The corrosion can be caused by the presence of trace quantities of water in corrosive gases such as HCl or HBr. FTIR spectroscopy has been shown to be a method that can be made compatible with corrosive gases and is capable of detecting low ppb levels of water vapor. In this report, the application of FTIR spectroscopy combined with classical least squares multivariate calibration to detect trace H{sub 2}O in N{sub 2}, HCl and HBr is discussed. Chapter 2 discusses the gas handling system and instrumentation required to handle corrosive gases. A method of generating a background spectrum useful to the measurements discussed in this report, as well as in other application areas such as gas phase environmental monitoring, is discussed in Chapter 3. Experimental results obtained with the first system are presented in Chapter 4. Those results made it possible to optimize the design options for the construction of a dedicate system for low ppb water vapor determination. These designs options are discussed in Chapter 5. An FTIR prototype accessory was built. In addition, a commercially available evacuable FTIR system was obtained for evaluation. Test results obtained with both systems are discussed in Chapter 6. Experiments dealing with the interaction between H{sub 2}O-HCl and potential improvements to the detection system are discussed in Chapter 7.

Espinoza, L.H.; Niemczyk, T.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemistry; Stallard, B.R.; Garcia, M.J. [Sandia National Labs., Albuquerque, NM (United States)

1997-06-01T23:59:59.000Z

110

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

SciTech Connect (OSTI)

Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

Richard A. Ferrare; David D. Turner

2011-09-01T23:59:59.000Z

111

In-reactor oxidation of zircaloy-4 under low water vapor pressures  

SciTech Connect (OSTI)

Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 C). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr- 4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

Walter G. Luscher; David J. Senor; Keven K. Clayton; Glen R. Longhurst

2015-01-01T23:59:59.000Z

112

Method of condensing vaporized water in situ to treat tar sands formations  

DOE Patents [OSTI]

Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. Heat may be allowed to transfer from the heaters to at least a first portion of the formation. Conditions may be controlled in the formation so that water vaporized by the heaters in the first portion is selectively condensed in a second portion of the formation. At least some of the fluids may be produced from the formation.

Hsu, Chia-Fu (Rijswijk, NL)

2010-03-16T23:59:59.000Z

113

Breath is a mixture of nitrogen, oxygen, carbon dioxide, water  

E-Print Network [OSTI]

12 SCIENCE Breath is a mixture of nitrogen, oxygen, carbon dioxide, water vapour, inert gases. On the basis of proton affinity, the major constituents of air and breath (nitrogen, oxygen, carbon dioxide

114

Carbon and Water Resource Management for Water Distribution Systems  

E-Print Network [OSTI]

in the projections, reducing the carbon intensity of theprojections use renewable energy as a means of reducing the carbon intensity

Hendrickson, Thomas Peter

2013-01-01T23:59:59.000Z

115

Carbon promoted water electrolysis to produce hydrogen at room temperature.  

E-Print Network [OSTI]

??The objective of the work was to conduct water electrolysis at room temperature with reduced energy costs for hydrogen production. The electrochemical gasification of carbons (more)

Ranganathan, Sukanya.

2007-01-01T23:59:59.000Z

116

Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle  

SciTech Connect (OSTI)

Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerants pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development of the cycle and have gained an in-depth understanding of the governing fundamental knowledge, based on the laws of physics and thermodynamics and verified with our testing results. Through this research, we are identifying optimal working fluid and operating conditions to eventually demonstrate the core technology for space cooling or other applications.

Hosni, Mohammad H.

2014-03-30T23:59:59.000Z

117

Electrical, optical, and material characterizations of blue InGaN light emitting diodes submitted to reverse-bias stress in water vapor condition  

SciTech Connect (OSTI)

In this paper, we investigate degradation of InGaN/GaN light emitting diodes (LEDs) under reverse-bias operations in water vapor and dry air. To examine failure origins, electrical characterizations including current-voltage, breakdown current profiles, optical measurement, and multiple material analyses were performed. Our findings indicate that the diffusion of indium atoms in water vapor can expedite degradation. Investigation of reverse-bias stress can help provide insight into the effects of water vapor on LEDs.

Chen, Hsiang, E-mail: hchen@ncnu.edu.tw; Chu, Yu-Cheng; Chen, Yun-Ti; Chen, Chian-You [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, No. 1, University Road, Puli, Nantou County 54561, Taiwan (China); Shei, Shih-Chang [Department of Electrical Engineering, National University of Tainan, No.33, Sec. 2, Shulin St., West Central Dist., Tainan City 70005, Taiwan (China)

2014-09-07T23:59:59.000Z

118

Comparison of Atmospheric Water Vapor in Observational and Model Data Sets  

SciTech Connect (OSTI)

The global water vapor distribution for five observational based data sets and three GCM integrations are compared. The variables considered are the mean and standard deviation values of the precipitable water for the entire atmospheric column and the 500 to 300 hPa layer for January and July. The observationally based sets are the radiosonde data of Ross and Elliott, the ERA and NCEP reanalyses, and the NVAP blend of sonde and satellite data. The three GCM simulations all use the NCAR CCM3 as the atmospheric model. They include: a AMIP type simulation using observed SSTs for the period 1979 to 1993, the NCAR CSM 300 year coupled ocean--atmosphere integration, and a CSM integration with a 1% CO2 increase per year. The observational data exhibit some serious inconsistencies. There are geographical patterns of differences related to interannual variations and national instrument biases. It is clear that the proper characterization of water vapor is somewhat uncertain. Some conclusions about these data appear to be robust even given the discrepancies. The ERA data are too dry especially in the upper levels. The observational data evince much better agreement in the data rich Northern Hemisphere compared to the Southern. Distinct biases are quite pronounced over the Southern Ocean. The mean values and particularly the standard deviations of the three reanalyses are very dependent upon the GCM used as the assimilation vehicle for the analyses. This is made clear by the much enhanced tropical variability in the NCEP/DOE/ AMIP reanalyses compared the initial NCEP/NCAR Reanalysis. The NCAR CCM3 shows consistent evidence of a dry bias. The 1% CO2 experiment shows a very similar pattern of disagreement with the sonde data as the other integrations, once account is taken of the warming trend. No new modes of difference are evident in the 1% CO2 experiment. All the CCM3 runs indicated too much Tropical variability especially in the western Tropical Pacific and Southeast Asia. A EOF analysis of the interannual variations of the zonally averaged precipitable water and the 500 to 300 hPa layer reveals fundamental differences in the structure of the variations. The impact of ENSO and variations of the ITCZ have only a low level of correspondence between the observed data, much less the simulations. It is apparent that an adequate characterization of the climatology of the global water vapor distribution is not yet at hand.

Boyle, J.S.

2000-03-01T23:59:59.000Z

119

Aligned Carbon Nanotube Reinforced Silicon Carbide Composites by Chemical Vapor Infiltration  

SciTech Connect (OSTI)

Owing to their exceptional stiffness and strength1 4, carbon nanotubes (CNTs) have long been considered to be an ideal reinforcement for light-weight, high-strength, and high-temperature-resistant ceramic matrix composites (CMCs)5 10. However, the research and development in CNT-reinforced CMCs have been greatly hindered due to the challenges related to manufacturing including poor dispersion, damages during dispersion, surface modification, densification and sintering, weak tube/matrix interfaces, and agglomeration of tubes at the matrix grain boundaries5,11. Here we report the fabrication of high-quality aligned CNT/SiC composites by chemical vapor infiltration (CVI), a technique that is being widely used to fabricate commercial continuous-filament CMCs12 15. Using the CVI technique most of the challenges previously encountered in the fabrication of CNT composites were readily overcome. Nanotube pullouts, an important toughening mechanism for CMCs, were consistently observed on all fractured CNT/SiC samples. Indeed, three-point bending tests conducted on individual CNT/SiC nanowires (diameters: 50 200 nm) using an atomic force microscope show that the CNT-reinforced SiC nanowires are about an order of magnitude tougher than the bulk SiC. The tube/matrix interface is so intimate and the SiC matrix is so dense that a ~50-nm-thick SiC coating can effectively protect the inside nanotubes from being oxidized at 1600 C in air. The CVI method may be extended to produce nanotube composites from a variety of matrix

Gu, Zhan Jun [University of Georgia, Athens, GA; Yang, Ying Chao [University of South Carolina, Columbia; Li, Kai Yuan [University of Georgia, Athens, GA; Tao, Xin Yong [University of South Carolina, Columbia; Eres, Gyula [ORNL; Howe, Jane Y [ORNL; Zhang, Li Tong [Northwestern Polytechnical University, Xi'an, China; Li, Xiao Dong [University of South Carolina, Columbia; Pan, Zhengwei [ORNL

2011-01-01T23:59:59.000Z

120

Formation of etch pits during carbon doping of gallium arsenide with carbon tetrachloride by metalorganic vapor-phase epitaxy  

E-Print Network [OSTI]

Formation of etch pits during carbon doping of gallium arsenide with carbon tetrachloride to examine the effects of carbon tetrachloride concentration and temperature on the morphology of carbon with increasing carbon tetrachloride concentration. Step bunching and pinning was observed at a IV/III ratio

Li, Lian

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A model of vapor-liquid equilibria for acid gas-alkanolamine-water systems  

SciTech Connect (OSTI)

A physico-chemical model was developed for representing liquid phase chemical equilibria and vapor-liquid (phase) equilibria of H{sub 2}SCO{sub 2}-alkanolamine-water systems. The equilibrium composition of the liquid phase is determined by minimization of the Gibbs free energy. Activity coefficients are represented with the Electrolyte-NRTL equation treating both long-range electrostatic interactions and short-range binary interactions between liquid phase species. Vapor phase fugacity coefficients are calculated using the Redlich-Kwong-Soave Equation of State. Adjustable parameters of the model, binary interaction parameters and carbamate stability constants, were fitted on published binary system alkanolamine-water and ternary system (H{sub 2}S-alkanolamine-water, CO{sub 2}-alkanolamine-water) VLE data. The Data Regression System of ASPEN PLUS, based upon the Maximum Likelihood Principle, was used to estimate adjustable parameters. Ternary system measurements used in parameter estimation ranged in temperature from 25 to 120{degree}C in alkanolamine concentration from 1 to 5 M, in acid gas loading from 0 to 1.5 moles per mole alkanolamine, and in acid gas partial pressure from 0.1 to 1,000 kPa. Maximum likelihood estimates of ternary system H{sub 2} or CO{sub 2} equilibrium partial pressures and liquid phase concentrations were found to be in good agreement with measurements for aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), diglycolamine (DGA), and methyldiethanolamine (MDEA) indicating that the model successfully represents ternary system data. The model was extended to represent CO{sub 2} solubility in aqueous mixtures of MDEA with MEA or DEA. The solubility was measured at 40 and 80{degree}C over a wide range of CO{sub 2} partial pressures. These measurements were used to estimate additional binary parameters of the mixed solvent systems.

Austgen, D.M. Jr.

1989-01-01T23:59:59.000Z

122

Moisture effects in low-slope roofs: Drying rates after water addition with various vapor retarders  

SciTech Connect (OSTI)

Tests have been conducted in the Large Scale Climate Simulator (LSCS) of the US. Building Envelope Research Center at the Oak Ridge National Laboratory (ORNL) to investigate downward drying rates of various unvented, low-slope roof systems. A secondary objective was to study heat flow patterns so as to understand how to control latent heat effects on impermeable heat flux transducers. Nine test sections were tested simultaneously. The sections had a p deck above fibrous-glass insulation and were examples of cold-deck systems. These five sections had various vapor retarder systems on a gypsum board ceiling below the insulation. The other four sections had a lightweight insulating concrete deck below expanded polystyrene insulation and the same vapor retarder systems, and were examples of warm-deck systems. The cold-deck systems had materials that were relatively permeable to water vapor, while the materials in the warm-deck systems were less permeable. All test sections were topped by an impermeable roofing membrane. The test sections were instrumented with thermocouples between all layers and with small heat flux transducers at the bottom and top of the fibrous-glass insulation and in the middle of the expanded polystyrene insulation. Two different kinds of moisture probes were used to qualitatively monitor the movement of the moisture. The heat flux measurements showed that heat conduction dominates the system using impermeable insulation materials, with only a slight increase due to increased thermal conductivity of wet expanded polystyrene. There was significant transfer of latent heat in the test sections with permeable insulation, causing the peak heat fluxes to increase by as much as a factor of two. With temperatures imposed that are typical of summer days, latent heat transfer associated with condensation and evaporation of moisture in the test sections was measured to be as important as the heat transfer by conduction.

Pedersen, C.R. [Technical Univ. of Denmark, Lyngby (Denmark); Petrie, T.W. [Marquette Univ., Milwaukee, WI (United States). Dept. of Mechanical Engineering; Courville, G.E.; Desjarlais, A.O.; Childs, P.W.; Wilkes, K.E. [Oak Ridge National Lab., TN (United States)

1992-10-01T23:59:59.000Z

123

Third Annual Report The Climate, Water, and Carbon Program  

E-Print Network [OSTI]

i Third Annual Report The Climate, Water, and Carbon Program A Targeted Investment in Excellence, Water, and Carbon Program (CWC) is pleased to provide this Third Annual Report for review by OAA and OR the CWC. These groups include: CWC Advisory Board: Heather Allen, Department of Chemistry, MPS, allen

Howat, Ian M.

124

A comparison of water vapor quantities from model short-range forecasts and ARM observations  

SciTech Connect (OSTI)

Model evolution and improvement is complicated by the lack of high quality observational data. To address a major limitation of these measurements the Atmospheric Radiation Measurement (ARM) program was formed. For the second quarter ARM metric we will make use of new water vapor data that has become available, and called the 'Merged-sounding' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Darwin Australia (DAR) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both DAR and NSA. The merged-sounding data have been interpolated to 37 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3 hourly data for direct comparison to our model output.

Hnilo, J J

2006-03-17T23:59:59.000Z

125

The Effect of Water Vapor on Cr Depletion in Advanced Recuperator Alloys  

SciTech Connect (OSTI)

Durable alloy foils are needed for gas turbine recuperators operating at 650--700 C. It has been established that water vapor in the exhaust gas causes more rapid consumption of Cr in austenitic stainless steels leading to a reduction in operating lifetime of these thin-walled components. Laboratory testing at 650--800 C of commercial and model alloys is being used to develop a better understanding of the long-term rate of Cr consumption in these environments. Results are presented for commercial alloys 709, 120 and 625. After 10,000h exposures at 650 C and 700 C in humid air, grain boundary Cr depletion was observed near the surface of all these materials. In the Fe-base alloys, 709 and 120, this depletion led to localized Fe-rich nodule formation. This information then can be used to develop low-cost alternatives to currently available candidate materials.

Pint, Bruce A [ORNL

2005-01-01T23:59:59.000Z

126

Thermodynamics of Water Entry in Hydrophobic Channels of Carbon Nanotubes  

E-Print Network [OSTI]

Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermody- namic understanding of this phenomenon, we use the recently developed Two Phase Thermodynamics (2PT) method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rotational entropy. The confined water is in equilibrium with the bulk wa- ter and the Helmholtz free energy per water molecule of confined water is the same as that in the bulk within the accuracy of the simulation results. A comparison of translational and rotational spectra of water molecules confined in carbon nanotubes with that of bulk water shows significant shifts in the positions of the spectral peaks that are directly related to the tube radius.

Hemant Kumar; Biswaroop Mukherjee; Shiang-Tai Lin Chandan Dasgupta; A. K. Sood; Prabal K. Maiti

2011-08-19T23:59:59.000Z

127

Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System  

SciTech Connect (OSTI)

Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during air sparging. To this end, we conducted batch and column laboratory SMZ and VPB experiments with synthetic and actual produced waters. Based on the results of the laboratory testing, a pilot scale study was designed and conducted to evaluate the combined SMZ/VPB process. An economic and regulatory feasibility analysis was also completed as part of the current study to assess the viability of the process for various water re-use options.

Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

2006-01-31T23:59:59.000Z

128

Ten Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part I: Climatology, Variability, Transport, and Relation to  

E-Print Network [OSTI]

the International Satellite Cloud Climatology Project (ISCCP). 1. Introduction Water vapor is the key atmosphericTen Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part I: Climatology, Variability, Transport, and Relation to Deep Convection ZHENGZHAO LUO, DIETER KLEY,* AND RICHARD H. JOHNSON

Lombardi, John R.

129

The influence of midlatitude and tropical overturning circulation on the isotopic composition of atmospheric water vapor and  

E-Print Network [OSTI]

coordinates. In this depiction, poleward transport of air and water vapor is non-diffusive, in a way for an open distillation. Model experiments that simulate a wide range of circulation strengths show to the polar region exceeds the rate at which surface sources replenish the poleward moving air stream. Across

Noone, David

130

Isothermal vapor-liquid equilibria for water + 2-aminoethanol + dimethyl sulfoxide and its constituent three binary systems  

SciTech Connect (OSTI)

Isothermal vapor-liquid equilibria were measured for the ternary system water + 2-aminoethanol + dimethyl sulfoxide and its three constituent binary mixtures at 363.15 K. The apparatus used was a modified Rogalski-Malanoski equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

Tochigi, Katsumi; Akimoto, Kentarou; Ochi, Kenji [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry] [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry; Liu, Fangyhi; Kawase, Yasuhito [Nippon Refine Co., Ltd., Tokyo (Japan)] [Nippon Refine Co., Ltd., Tokyo (Japan)

1999-05-01T23:59:59.000Z

131

TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREATOR SYSTEM  

SciTech Connect (OSTI)

Co-produced water from the oil and gas industry is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. An efficient, cost-effective treatment technology is needed to remove these constituents. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from March 2003 through September 2003. We have continued our investigation of SMZ regeneration from our previous DOE project. Ten saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. The results suggest that BTEX sorption capacity is not lost after ten saturation/regeneration cycles. The composition of produced water from a site operated by Crystal Solutions Ltd. in Wyoming has been characterized and was used to identify key semi-volatile components. Isotherms with selected semi-volatile components have been initiated and preliminary results have been obtained. The experimental vapor phase bioreactors for this project have been designed and assembled to treat the off-gas from the SMZ regeneration process. These columns will be used both in the laboratory and in the proposed field testing to be conducted next year. Innocula for the columns that degrade all of the BTEX columns have been developed.

LYNN E. KATZ; KERRY A. KINNEY; R.S. BOWMAN; E.J. SULLIVAN

2003-10-01T23:59:59.000Z

132

A three-beam water vapor sensor system for combustion diagnostics using a 1390 nm tunable diode laser  

SciTech Connect (OSTI)

H{sub 2}O(v) is an important species in combustion and hypersonic flow measurements because it is a primary combustion product. Measurements of water vapor can be used to determine performance parameters, such as extent and efficiency of combustion in propulsion and aerodynamics facilities. Water vapor concentration measurement in these high-temperature hypervelocity combustion conditions requires very high sensitivity and fast time response. A three-beam diode laser H{sub 2}O(v) measurement system for nonintrusive combustion diagnostics has been developed at NASA Langley Research Center and successfully tested and installed at GASL NASA HYPULSE facility for routine operation. The system was built using both direct laser absorption spectroscopy and frequency modulation laser spectroscopy. The output beam from a distributed feedback (DFB) InGaAsP diode laser (emitting around 1.39 {micro}m) is split into three equal-powered equal-distanced parallel beams with separation of 9 mm. With three beams, the authors are able to obtain water vapor number densities at three locations. Frequency modulation spectroscopy technique is used to achieve high detection sensitivity. The diode laser is modulated at radio frequency (RF), while the wavelength of the diode laser is tuned to scan over a strong water vapor absorption line. The detected RF signal is then demodulated at the fundamental frequency of the modulation (one-F demodulation). A working model and a computer software code have been developed for data process and data analysis. Water vapor number density measurements are achieved with consideration of temperature dependence. Experimental results and data analysis will be presented.

Wang, L.G. [Coll. of William and Mary, Williamsburg, VA (United States). Dept. of Physics; Vay, S. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

1995-12-31T23:59:59.000Z

133

Carbon and Water Resource Management for Water Distribution Systems  

E-Print Network [OSTI]

the embodied energy in drinking water supply systems: a caselosses to 5% of total drinking water supply for threeResearch Council. Drinking Water Distribution Systems:

Hendrickson, Thomas Peter

2013-01-01T23:59:59.000Z

134

Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water  

SciTech Connect (OSTI)

Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria, E-mail: Valeria.Molinero@utah.edu [Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)

2014-11-14T23:59:59.000Z

135

Bundles of carbon nanotubes generated by vapor-phase growth Maohui Ge and Klaus Sattler  

E-Print Network [OSTI]

show that another hollow carbon structure is possible to form under such high density conditions. We report the observation of assemblies of carbon nano- tubes in the form of bundles. The bundles. It is located horizontally on the flat graphite substrate. It is separated from other deposited carbon nano

Sattler, Klaus

136

Two Stage Vapor Compression Heat Pump with Solution Circuits: Catering to Simultaneous Chilling and Water Heating Needs  

E-Print Network [OSTI]

results indicate that the two stage VCHSC can achiev~ cooling coefficient of performances as high as 1.04 while pumping heat through a lift of 194?F (10S0C). Comparison is made with a system consisting of a vapor compressor chiller and a gas fired... conditioning and hot water for various uses will be assessed. comparison is made with a system consisting of a vapor compressor chiller and a gas fired furnace (option 2). The basis for comparison being: a) the total primary energy usage, b) the cost...

Rane, M. V.; Radermacher, R.

137

Charge transfer effects of ions at the liquid water/vapor interface  

SciTech Connect (OSTI)

Charge transfer (CT), the movement of small amounts of electron density between non-bonded pairs, has been suggested as a driving force for a variety of physical processes. Herein, we examine the effect of CT on ion adsorption to the water liquid-vapor interface. Using a CT force field for molecular dynamics, we construct a potential of mean force (PMF) for Na{sup +}, K{sup +}, Cl{sup ?}, and I{sup ?}. The PMFs were produced with respect to an average interface and an instantaneous interface. An analysis of the PMF relative to the instantaneous surface reveals that the area in which the anions experience a free energy minimum is quite narrow, and the cations feel a steeply repulsive free energy near the interface. CT is seen to have only minor effects on the overall free energy profiles. However, the long-ranged effects of ions are highlighted by the CT model. Due to CT, the water molecules at the surface become charged, even when the ion is over 15 away from the surface.

Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148 (United States)

2014-05-14T23:59:59.000Z

138

Numerical modeling of water injection into vapor-dominated geothermal reservoirs  

E-Print Network [OSTI]

Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

Pruess, Karsten

2008-01-01T23:59:59.000Z

139

A study of oil displacement by carbonated water  

E-Print Network [OSTI]

A STUDY OF OIL DISPLACEMENT BY CARBONATED WATER A Thesis by Roohollah Partovi-N. Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1988... Major Subject: Petroleum Fn ineerin A STUDY OF OIL DISPLACEMENT BY CARBONATED WATER A Thesis by Roohollah Partovi-N. Approved as to style and content by: ( irman of mmittee) M mber) (Head of partment) (Member) January 1968 CP9292...

Partovi-Najafabadi, Roohollah

1968-01-01T23:59:59.000Z

140

Mass Spectroscopy and Reaction Studies of Laser-Vaporized Clusters from Metal-Doped Carbon Materials  

E-Print Network [OSTI]

C50 + LaC60 + (40) 30 40 50 60 70 Number of Carbon Atoms Intensity(arb.units) (a) Positive La Number of Carbon Atoms Intensity(arbitrary) C43 ­ C44 ­ Mass (amu) LaC32 ­ (a) (b) Fig. 2 Even distribution. 440 460 480 500 36 38 40 42 Number of Carbon Atoms Intensity(arbitrary) (a) as injected (b

Maruyama, Shigeo

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Desktop systems for manufacturing carbon nanotube films by chemical vapor deposition  

E-Print Network [OSTI]

Carbon nanotubes (CNTs) exhibit exceptional electrical, thermal, and mechanical properties that could potentially transform such diverse fields as composites, electronics, cooling, energy storage, and biological sensing. ...

Kuhn, David S. (David Scott)

2007-01-01T23:59:59.000Z

142

Multiwalled Carbon Nanotube Forest Grown via Chemical Vapor Deposition from Iron Catalyst Nanoparticles, by XPS  

SciTech Connect (OSTI)

Carbon nanotubes (CNTs) have unique chemical and physical properties. Herein, we report an XPS analysis of a forest of multiwalled CNTs using monochromatic Al K? radiation. Survey scans show only one element: carbon. The carbon 1s peak is centered 284.5 eV. The C 1s envelope also shows the expected ? ? ?* shake-up peak at ca. 291 eV. The valence band and carbon KVV Auger signals are presented. When patterned, the CNT forests can be used as a template for subsequent deposition of metal oxides to make thin layer chromatography plates.1-3

Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

2013-09-25T23:59:59.000Z

143

Corrosion of aluminum-uranium alloys in water vapor at 200 C  

SciTech Connect (OSTI)

Specimens of aluminum-uranium alloys at 10 and 18 wt.% uranium were exposed to a saturated water vapor condition at 200 C up to about 12 weeks and compared to previous results for aluminum 1100. The aluminum-uranium materials exhibited a range of initial corrosion rates and approached similar rates with the formation of a passive film of boehmite (Al{sub 2}O{sub 3}{center{underscore}dot}H{sub 2}O). The initial corrosion rates of the aluminum-uranium materials were one to four times higher than that for aluminum 1100. It is postulated that a micro-galvanic coupling between the large UAl{sub 4} particles and the aluminum matrix has caused this difference. Sectioning the exposed specimens shows different characteristics of the oxide layers. In the oxide on the aluminum-10% uranium alloy (Al-10%U), small uranium aluminide particles can be seen in a boehmite matrix and do not seem to be corroded. The oxide film on the aluminum-18% uranium alloy (Al-18%U) appears to have two distinct oxide layers. The outer layer has mass aggregates in a boehmite matrix, while the inner layer contains UAl{sub 4} particles as in the case of Al-10%U.

Lam, P.S.; Sindelar, R.L.; Barrett, K.Y.

1999-07-01T23:59:59.000Z

144

Corrosion of Aluminum-Uranium Alloys in Water Vapor at 200\\260C  

SciTech Connect (OSTI)

Coupons of aluminum-uranium alloys at 10 and 18 weight percent were exposed to a saturated water vapor condition at 200 degrees C up to about 1500 hours and compared to previous results for aluminum 1100. The aluminum-uranium materials exhibited a range of initial corrosion rates and approached similar rates with the formation of a passive film of boehmite (Al2O3oH2O). The cast and extruded 10 percent uranium, having a primary aluminum-eutectic microstructure, was more corrosion resistant than the 18% cast and extruded. The initial corrosion rates of the aluminum-uranium materials were one to four times higher than that for aluminum 1100. It is postulated that a micro-galvanic coupling between the large UAl4 particles and the aluminum matrix has caused the variation. Sectioning the exposed specimens shows different characteristics of the oxide layers. In the case of the cast and extruded Al-10 percent U alloy, small uranium aluminide particles can be seen in the boehmite matrix and do not seem to be corroded. The oxide film of the Al-18 percent U alloy appears to have two distinct oxide layers. The outer layer has mass aggregates formed in the aluminum oxide matrix, while the inner layer contains UAl4 particles as in the case of Al-10 percent U

Lam, P.S.

1998-11-25T23:59:59.000Z

145

3708 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 11, NOVEMBER 2009 Retrieval of Atmospheric Water Vapor Density With  

E-Print Network [OSTI]

3708 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 11, NOVEMBER 2009 Retrieval, remote sensing, water vapor. Manuscript received November 1, 2008; revised May 2, 2009 and August 8, 2009 the latent heat of vaporization is a principal mechanism for the transport of energy from the equatorial

Reising, Steven C.

146

Carbon and Water Resource Management for Water Distribution Systems  

E-Print Network [OSTI]

Reliability Corporation Polyethylene Polyvinyl chloride Society of Environmental Toxicology and Chemistry Water Distribution System

Hendrickson, Thomas Peter

2013-01-01T23:59:59.000Z

147

Selecting activated carbon for water and wastewater treatability studies  

SciTech Connect (OSTI)

A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C. [East China University of Chemical Technology, Shanghai (China)

2007-10-15T23:59:59.000Z

148

Method and apparatus for simulating atomospheric absorption of solar energy due to water vapor and CO.sub.2  

DOE Patents [OSTI]

A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.

Sopori, Bhushan L. (Denver, CO)

1995-01-01T23:59:59.000Z

149

Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}  

DOE Patents [OSTI]

A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

Sopori, B.L.

1995-06-20T23:59:59.000Z

150

Glass softening, crystallization, and vaporization of nano-aggregates of Amorphous Solid Water: Fast Scanning Calorimetry studies  

E-Print Network [OSTI]

Fast scanning calorimetry (FSC) was employed to investigate glass softening dynamics in amorphous solid water (ASW) nano-aggregates with thicknesses ranging from 2 to 20 nm. ASW nano-aggregates were prepared by vapor-deposition on the surface of a tungsten filament near 141 K and then heated at a rate of 100 kK/s. The resulting thermogram complex endo- and exothermal features were analyzed using a simple model. The results of the analysis show that glass softening of ASW nano-aggregates takes place at 160 K and vaporization of ASW nano-aggregates can take place at temperatures as low as 185 K. The results of these studies are discussed in conjunction with results of past studies of glass softening dynamics in water in various confining geometries.

Deepanjan Bhattacharya; Liam OReilly; Vlad Sadtchenko

2014-10-31T23:59:59.000Z

151

Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures  

DOE Patents [OSTI]

A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

Aines, Roger D.; Bourcier, William L.; Viani, Brian

2013-01-29T23:59:59.000Z

152

Isobaric vapor-liquid equilibria of the water + 1-propanol system at 30, 60, and 100 kPa  

SciTech Connect (OSTI)

Isobaric vapor-liquid equilibria for the water + 1-propanol system are reported at 30, 60, and 100 kPa. The results were found to be thermodynamically consistent according to Van Ness-Byer-Gibbs, Kojima, and Wisniak methods. The system shows a minimum boiling azeotrope, and the azeotropic composition is scarcely shifted with pressure. Results were compared with literature values. The data were correlated with Margules, Van Laar, Wilson, NRTL, and UNIQUAC liquid-phase activity coefficient models.

Gabaldon, C.; Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica] [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica

1996-09-01T23:59:59.000Z

153

PROGRESS REPORT OF FY 2004 ACTIVITIES: IMPROVED WATER VAPOR AND CLOUD RETRIEVALS AT THE NSA/AAO  

SciTech Connect (OSTI)

The basic goals of the research are to develop and test algorithms and deploy instruments that improve measurements of water vapor, cloud liquid, and cloud coverage, with a focus on the Arctic conditions of cold temperatures and low concentrations of water vapor. The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement Program. Although several technologies have been investigated to measure these column amounts, microwave radiometers (MWR) have been used operationally by the ARM program for passive retrievals of these quantities: precipitable water vapor (PWV) and integrated water liquid (IWL). The technology of PWV and IWL retrievals has advanced steadily since the basic 2-channel MWR was first deployed at ARM CART sites Important advances are the development and refinement of the tipcal calibration method [1,2], and improvement of forward model radiative transfer algorithms [3,4]. However, the concern still remains that current instruments deployed by ARM may be inadequate to measure low amounts of PWV and IWL. In the case of water vapor, this is especially important because of the possibility of scaling and/or quality control of radiosondes by the water amount. Extremely dry conditions, with PWV less than 3 mm, commonly occur in Polar Regions during the winter months. Accurate measurements of the PWV during such dry conditions are needed to improve our understanding of the regional radiation energy budgets. The results of a 1999 experiment conducted at the ARM North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO) site during March of 1999 [5] have shown that the strength associated with the 183 GHz water vapor absorption line makes radiometry in this frequency regime suitable for measuring low amounts of PWV. As a portion of our research, we conducted another millimeter wave radiometric experiment at the NSA/AAO in March-April 2004. This experiment relied heavily on our experiences of the 1999 experiment. Particular attention was paid to issues of radiometric calibration and radiosonde intercomparisons. Our theoretical and experimental work also supplements efforts by industry (F. Solheim, Private Communication) to develop sub-millimeter radiometers for ARM deployment. In addition to quantitative improvement of water vapor measurements at cold temperature, the impact of adding millimeter-wave window channels to improve the sensitivity to arctic clouds was studied. We also deployed an Infrared Cloud Imager (ICI) during this experiment, both for measuring continuous day-night statistics of the study of cloud coverage and identifying conditions suitable for tipcal analysis. This system provided the first capability of determining spatial cloud statistics continuously in both day and night at the NSA site and has been used to demonstrate that biases exist in inferring cloud statistics from either zenith-pointing active sensors (lidars or radars) or sky imagers that rely on scattered sunlight in daytime and star maps at night [6].

E. R. Westwater; V. V. Leuskiy; M. Klein; A. J. Gasiewski; and J. A. Shaw

2004-11-01T23:59:59.000Z

154

Water and Carbon Dioxide Adsorption at Olivine Surfaces  

SciTech Connect (OSTI)

Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

2013-11-14T23:59:59.000Z

155

LNG fire and vapor control system technologies  

SciTech Connect (OSTI)

This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

1982-06-01T23:59:59.000Z

156

Plasma Kinetics in Electrical Discharge in Mixture of Air, Water and Ethanol Vapors for Hydrogen Enriched Syngas Production  

E-Print Network [OSTI]

The complex theoretical and experimental investigation of plasma kinetics of the electric discharge in the mixture of air and ethanol-water vapors is carried out. The discharge was burning in the cavity, formed by air jets pumping between electrodes, placed in aqueous ethanol solution. It is found out that the hydrogen yield from the discharge is maximal in the case when ethanol and water in the solution are in equal amounts. It is shown that the hydrogen production increases with the discharge power and reaches the saturation at high value. The concentrations of the main stable gas-phase components, measured experimentally and calculated numerically, agree well in the most cases.

Shchedrin, A I; Ryabtsev, A V; Chernyak, V Ya; Yukhymenko, V V; Olszewski, S V; Naumov, V V; Prysiazhnevych, I V; Solomenko, E V; Demchina, V P; Kudryavtsev, V S

2008-01-01T23:59:59.000Z

157

Mesoporous Carbon for Capacitive Deionization of Saline Water  

SciTech Connect (OSTI)

Self-assembled mesoporous carbon (MC) materials have been synthesized and tested for application in capacitive deionization (CDI) of saline water. MC was prepared by self-assembly of a triblock copolymer with hydrogen-bonded chains via a phenolic resin, such as resorcinol or phloroglucinol in acidic conditions, followed by carbonization and, in some cases, activation by KOH. Carbon synthesized in this way was ground into powder, from which activated MC sheets were produced. In a variation of this process, after the reaction of triblock copolymer with resorcinol or phloroglucinol, the gel that was formed was used to coat a graphite plate and then carbonized. The coated graphite plate in this case was not activated and was tested to serve as current collector during the CDI process. The performance of these MC materials was compared to that of carbon aerogel for salt concentrations ranging between 1000 ppm and 35,000 ppm. Resorcinol-based MC removed up to 15.2 mg salt per gram of carbon, while carbon aerogel removed 5.8 mg salt per gram of carbon. Phloroglucinol-based MC-coated graphite exhibited the highest ion removal capacity at 21 mg of salt per gram of carbon for 35,000 ppm salt concentration.

Tsouris, Costas [ORNL; Mayes, Richard T [ORNL; Kiggans, Jim [ORNL; Sharma, Ms. Ketki [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; DePaoli, David W [ORNL; Dai, Sheng [ORNL

2011-01-01T23:59:59.000Z

158

Displacement of oil from porous material with carbonated water  

E-Print Network [OSTI]

in the field. Although carbonated water gives good sweep efficiency, laboratory tests have shown that additional oil recoveries are not comparable to those with carbon dioxide gas slug process. In this investigation displacement tests were made with a low... and gas for pressure maintenance and secondary recovery has been common for years and has increased oil recoveries from many existing fields. Of late, several other processes have been proposed and investigated. Among them are thermal processes...

Yadav, Jagjit Singh

1967-01-01T23:59:59.000Z

159

Water injection as a means for reducing non-condensible andcorrosive gases in steam produced from vapor-dominated reservoirs  

SciTech Connect (OSTI)

Large-scale water injection at The Geysers, California, hasgenerated substantial benefits in terms of sustaining reservoir pressuresand production rates, as well as improving steam composition by reducingthe content of non-condensible gases (NCGs). Two effects have beenrecognized and discussed in the literature as contributing to improvedsteam composition, (1) boiling of injectate provides a source of "clean"steam to production wells, and (2) pressurization effects induced byboiling of injected water reduce upflow of native steam with large NCGconcentrations from depth. In this paper we focus on a possibleadditional effect that could reduce NCGs in produced steam by dissolutionin a condensed aqueous phase.Boiling of injectate causes pressurizationeffects that will fairly rapidly migrate outward, away from the injectionpoint. Pressure increases will cause an increase in the saturation ofcondensed phase due to vapor adsorption on mineral surfaces, andcapillary condensation in small pores. NCGs will dissolve in theadditional condensed phase which, depending upon their solubility, mayreduce NCG concentrations in residual steam.We have analyzed thepartitioning of HCl between vapor and aqueous phases, and have performednumerical simulations of injection into superheated vapor zones. Oursimulations provide evidence that dissolution in the condensed phase canindeed reduce NCG concentrations in produced steam.

Pruess, Karsten; Spycher, Nicolas; Kneafsey, Timothy J.

2007-01-08T23:59:59.000Z

160

A logical extension of the ASTM Standard E96 to determine the dependence of water vapor transmission on relative humidity  

SciTech Connect (OSTI)

It is well known that the water vapor transmission properties of hygroscopic building materials depend on the local relative humidities(rh). Traditionally, the ASTM Standard E96 specifies only two conditions of rh. The dry cup method in the standard corresponds to a mean rh of 25% and the wet cup to 75%. This information is not enough to describe the behavior of the material through the entire range of rh. European Standards have already proposed an extension of the existing standard to address this issue. ASTM standard should follow this change. A logical extension of the E96 standard to include the effect of rh on water vapor transmission properties has been proposed and is being discussed by one of the C16 Committee Task Groups. This paper presents the application of the proposed extension to several common building materials. The details include the operating principles of a constant temperature-rh chamber and the effects on the test results, of the vapor resistance offered by still air inside the cup, the surface resistances and buoyancy. The experimental data were used to critically assess the above effects. The data as well as the analyses of the data are expected to provide guidance to refine the existing ASTM Standard.

Lackey, J.C.; Marchand, R.G.; Kumaran, M.K. [National Research Council of Canada, Ottawa, Ontario (Canada). Inst. for Research in Construction

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Numerical Simulation of Hydrodynamics of a Heavy Liquid Drop Covered by Vapor Film in a Water Pool  

SciTech Connect (OSTI)

A numerical study on the hydrodynamics of a droplet covered by vapor film in water pool is carried out. Two level set functions are used as to implicitly capture the interfaces among three immiscible fluids (melt-drop, vapor and coolant). This approach leaves only one set of conservation equations for the three phases. A high-order Navier-Stokes solver, called Cubic-Interpolated Pseudo-Particle (CIP) algorithm, is employed in combination with level set approach, which allows large density ratios (up to 1000), surface tension and jump in viscosity. By this calculation, the hydrodynamic behavior of a melt droplet falling into a volatile coolant is simulated, which is of great significance to reveal the mechanism of steam explosion during a hypothetical severe reactor accident. (authors)

Ma, W.M.; Yang, Z.L.; Giri, A.; Sehgal, B.R. [Royal Institute of Technology (KTH), Drottning Kristinas vaeg 33 A, 100 44, Stockholm (Sweden)

2002-07-01T23:59:59.000Z

162

Isobaric vapor-liquid equilibria of the water + 2-propanol system at 30, 60, and 100 kPa  

SciTech Connect (OSTI)

Distillation is perhaps the separation process most widely used in the chemical processing industry. The correct design of distillation columns requires the availability of accurate and, if possible, thermodynamically consistent vapor-liquid equilibria (VLE) data. The present work is part of a project studying the effect of pressure on the behavior of the azeotropic point in mixtures in which at least one component is an alcohol. Isobaric vapor-liquid equilibria were obtained for the water + 2-propanol system at 30, 60, and 100 kPa. The activity coefficients were found to be thermodynamically consistent by the methods of Van Ness-Byer-Gibbs, Kojima, and Wisniak. The data were correlated with five liquid phase activity coefficient models (Margules, Van Laar, Wilson, NRTL, and UNIQUAC).

Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Departamento de Ingenieria Quimica] [Univ. de Valencia (Spain). Departamento de Ingenieria Quimica

1996-05-01T23:59:59.000Z

163

Water and Carbon Dioxide Adsorption at Olivine Surfaces. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 Water Vapor Experiment Concludes

164

Thermodynamic Models for Vapor-Liquid Equilibria of Nitrogen+Oxygen+Carbon Dioxide at Low Temperatures  

E-Print Network [OSTI]

For the design and optimization of CO2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N2+O2+CO2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N2 and O2 in CO2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO2-rich region.

Vrabec, J; Buchhauser, U; Meyer-Pittroff, R; Hasse, H

2009-01-01T23:59:59.000Z

165

Vapor spill monitoring method  

DOE Patents [OSTI]

Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

166

Carbon and Greenhouse Gas Dynamics in Annual Grasslands: Effects of Management and Potential for Climate Change Mitigation  

E-Print Network [OSTI]

2004. Carbon dioxide and water vapor exchange in a warmProgram. Land, Air, and Water Resources Paper 100028, Davis,effects. Journal of Soil and Water Conservation 62:77-85.

Ryals, Rebecca

2012-01-01T23:59:59.000Z

167

A Fixed Point Charge Model for Water Optimized to the Vapor-Liquid Coexistence Properties  

E-Print Network [OSTI]

the temperature range of the liquid. Results were compared to the SPC, SPC/E, and MSPC/E models, vapor pressures, critical parameters, and the second virial coefficient. It is inferior to the SPC interactions. Models of this type include the Bernal-Fowler1 , ST22 , TIPS23 , TIP4P4 , SPC5 , SPC/E6

168

MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2)  

SciTech Connect (OSTI)

This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

Gaustad, KL; Turner, DD; McFarlane, SA

2011-07-25T23:59:59.000Z

169

Collaborative Research: The Influence of Cloud Microphysics and Radiation on the Response of Water Vapor and Clouds to Climate Change  

SciTech Connect (OSTI)

Uncertainties in representing the atmospheric water cycle are major obstacles to an accurate prediction of future climate. This project focused on addressing some of these uncertainties by implementing new physics for convection and radiation into the NCAR climate model. To better understand and eventually better represent these processes, we modified CAM3.5 to use the convection and cloud schemes developed by the Massachusetts Institute of Technology (MIT) and the RRTMG rapid radiation code for global models developed by Atmospheric and Environmental Research, Inc. (AER). The impact of the new physics on the CAM3.5 simulation of convection on diurnal and intra-seasonal scales, intra-seasonal oscillations and the distribution of water vapor has been investigated. The effect of the MIT and AER physics also has been tested in the Weather Research and Forecasting (WRF) regional forecast model. It has been found that the application of the AER radiation and MIT convection produces significant improvements in the modeled diurnal cycle of convection, especially over land, in the NCAR climate model. However, both the standard CAM3.5 (hereinafter STD) and the modified CAM3.5 with the new physics (hereinafter MOD) are still unable to capture the proper spectrum and propagating characteristics of the intra-seasonal oscillations (ISOs). The new physics methods modify, but do not substantially improve, the distribution of upper tropospheric water vapor relative to satellite measurements.

Dr. Kerry Emanuel; Michael J. Iacono

2011-06-28T23:59:59.000Z

170

Characterization of amorphous hydrogenated carbon nitride films prepared by plasma-enhanced chemical vapor deposition using a helical resonator discharge  

SciTech Connect (OSTI)

Amorphous hydrogenated carbon nitride thin films (a-CN{sub x}:H) have been prepared by plasma-enhanced chemical vapor deposition of N{sub 2} and CH{sub 4} gases using a helical resonator discharge. The structural and optical properties of the deposited a-CN{sub x}:H films have been systematically studied as a function of the substrate temperature and radio frequency (rf) substrate bias. The chemical structure and elemental composition of the a-CN{sub x}:H films were characterized by Fourier transform infrared spectroscopy (FT-IR), x-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The optical properties of the films were evaluated using transmission ultraviolet{endash}visible spectroscopy. The morphology of the films was investigated by scanning electron microscopy and atomic force microscopy. The FT-IR and XPS studies demonstrate the presence of carbon{endash}nitrogen bonds with hydrogenated components in the films. The film composition ratio N/C was found to vary from 0.127 to 0.213 depending on the deposition conditions. The Raman spectra, showing the G and D bands, indicate that the a-CN{sub x}:H films have a graphitic structure. It can be found that the optical band-gap E{sub g} of a-CN{sub x}:H films is associated with graphitic clusters, while the decrease in E{sub g} is correlated with an increase in the size and number of graphitic clusters. Combining the results of Raman and optical measurements, it can be concluded that a progressive graphitization of the films occurs with increasing the substrate temperature and rf substrate bias power, corresponding to bias voltage. {copyright} {ital 1997 American Institute of Physics.}

Kim, J.H.; Ahn, D.H. [LG Electronics Research Center, 16 Woomyeon-Dong, Seocho-Gu, Seoul 137-140 (Korea)] [LG Electronics Research Center, 16 Woomyeon-Dong, Seocho-Gu, Seoul 137-140 (Korea); Kim, Y.H.; Baik, H.K. [Department of Metallurgical Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-ku, Seoul 120-749 (Korea)] [Department of Metallurgical Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-ku, Seoul 120-749 (Korea)

1997-07-01T23:59:59.000Z

171

Water vapor and temperature inversions near the 0 deg C level over the tropical western Pacific. Master's thesis  

SciTech Connect (OSTI)

During the Intensive Observation Period (IOP), several periods of water vapor and temperature inversions near the 0 deg C level were observed. Satellite and radiosonde data from TOGA COARE are used to document the large-scale conditions and thermodynamic and kinematic structures present during three extended periods in which moisture and temperature inversions near the freezing level were very pronounced. Observations from each case are synthesized into schematics which represent typical structures of the inversion phenomena. Frequency distributions of the inversion phenomena along with climatological humidity and temperature profiles are calculated for the four-month IOP.

Hart, K.A.

1994-01-01T23:59:59.000Z

172

Ocean Sciences 2006 An Estimate of Carbon Sequestration via Antarctic Intermediate Water Formation in the  

E-Print Network [OSTI]

Ocean Sciences 2006 An Estimate of Carbon Sequestration via Antarctic Intermediate Water Formation traditional deep water formation via entrainment of carbon dioxide and other greenhouse-active species collected for oxygen, total carbon, alkalinity, nutrients, and CFCs. The alkalinity and total carbon data

Talley, Lynne D.

173

THE USE OF VAPOR EXTRACTION SYSTEM AND ITS SUBSEQUENT REDUCTION OF WORKER EXPOSURE TO CARBON TETRACHLORIDE DURING RETRIEVAL OF HANFORDS LEGACY WASTE  

SciTech Connect (OSTI)

The Hanford Site is a decommissioned nuclear productions complex located in south eastern Washington and is operated by the Department of Energy (DOE). From 1955 to 1973, carbon tetrachloride (CCl{sub 4}), used in mixtures with other organic compounds, was used to recover plutonium from aqueous streams at Z Plant located on the Hanford Site. The aqueous and organic liquid waste that remained at the end of this process was discharged to soil columns in waste cribs located near Z Plant. Included in this waste slurry along with CCl{sub 4} were tributyl phosphate, dibutyl butyl phosphate, and lard oil. (Truex et al., 2001). In the mid 1980's, CCl{sub 4} was found in the unconfined aquifer below the 200 West Area and subsequent ground water monitoring indicated that the plume was widespread and that the concentrations were increasing. It has been estimated that approximately 750,000 kg (826.7 tons) of CCl{sub 4} was discharged to the soil from 1955 to 1973. (Truex et al., 2001). With initial concentration readings of approximately 30,000 parts per million by volume (ppmv) in one well field alone, soil vapor extraction began in 1992 in an effort to remove the CCl{sub 4} from the soil. (Rohay, 1999). Since 1992, approximately 78,607.6 kg (86.65 tons) of CCl{sub 4} have been extracted from the soil through the process of soil vapor extraction and 9,409.8 kg (10.37 tons) have been removed from the groundwater. (EPA, 2006). The success of this environmental cleanup process benefited not only the environment but also workers who were later involved in the retrieval of solid waste from trenches that were in or near the CCl{sub 4} plume. Solid waste was buried in trenches near Z Plant from 1967 to 1990. The solid waste, some of which was chemically and/or radioactively contaminated, was buried in trenches in steel or fiber drums, fiberboard boxes, fiberglass-reinforced plywood boxes, and steel, concrete, or wooden boxes. Much of this waste was buried with the intention of retrieving it later for permanent disposal and storage. Removal of this solid waste would disturb the soil that was potentially contaminated with CC4 and thereby pose a risk to workers involved in the retrieval effort. However, with the success of the VES, worker exposure did not occur.

PITTS DA

2008-03-18T23:59:59.000Z

174

The Influence of Cloud Microphysics and Radiation on the Response of Water Vapor and Clouds to Climate Change  

SciTech Connect (OSTI)

Uncertainties in representing the atmospheric water cycle are major obstacles to the accurate prediction of future climate. This project focused on addressing some of these uncertainties by implementing new physics for convection and radiation into the NCAR Community Atmosphere Model (CAM). To better understand and eventually better represent these processes in this major national climate model, we modified CAM3.5 to use the convection and cloud schemes developed by the Massachusetts Institute of Technology (MIT) and the RRTMG rapid radiation code for global climate models developed by Atmospheric and Environmental Research, Inc. (AER). The impact of the new physics on the CAM3.5 simulation of convection on diurnal and intra-seasonal scales, on intra-seasonal oscillations and on the distribution of water vapor has been investigated. In addition, the MIT and AER physics packages have been incorporated and tested in combination within the Weather Research and Forecasting (WRF) regional forecast model for the purpose of evaluating and improving convective and radiative processes on time scales appropriate to weather simulations. It has been found that the application of the AER radiation and MIT convection produces significant improvements in the modeled diurnal cycle of convection, especially over land, in the NCAR climate model. However, both the standard CAM3.5 and the modified CAM3.5 with the new physics are unable to capture the proper spectrum and propagating characteristics of dynamical intra-seasonal oscillations such as the Madden-Julian Oscillation. In addition, it has been shown that the new physics methods modify, but do not substantially improve, the distribution of upper tropospheric water vapor in CAM as established through the comparison of modeled and observed satellite radiances. This suggests that continuing regional discrepancies in water vapor amounts in the climate model may not be solely related to convective or radiative processes. The major results of this project have been described in more detail in a journal article titled ??The Impacts of AER Radiation and MIT Convection on the Water Cycle Simulated by CAM3.5? that will be submitted for publication during Fall 2010.

Emanuel, Kerry; Iacono, Michael J.

2010-11-11T23:59:59.000Z

175

Oxidation of Slurry Aluminide Coatings on Cast Stainless Steel Alloy CF8C-Plus at 800oC in Water Vapor  

SciTech Connect (OSTI)

A new, cast austenitic stainless steel, CF8C-Plus, has been developed for a wide range of high temperature applications, including diesel exhaust components, turbine casings and turbocharger housings. CF8C-Plus offers significant improvements in creep rupture life and creep rupture strength over standard CF8C steel. However, at higher temperatures and in more aggressive environments, such as those containing significant water vapor, an oxidation-resistant protective coating will be necessary. The oxidation behavior of alloys CF8C and CF8C-Plus with various aluminide coatings were compared at 800oC in air plus 10 vol% water vapor. Due to their affordability, slurry aluminides were the primary coating system of interest, although chemical vapor deposition (CVD) and pack cementation coatings were also compared. Additionally, a preliminary study of the low cycle fatigue behavior of aluminized CF8C-Plus was conducted at 800oC. Each type of coating provided substantial improvements in oxidation behavior, with simple slurry aluminides showing very good oxidation resistance after 4,000 h testing in water vapor. Preliminary low cycle fatigue results indicated that thicker aluminide coatings degraded high temperature fatigue properties of CF8C-Plus, whereas thinner coatings did not. Results suggest that appropriately designed slurry aluminide coatings are a viable option for economical, long-term oxidation protection of austenitic stainless steels in water vapor.

Haynes, James A [ORNL; Armstrong, Beth L [ORNL; Dryepondt, Sebastien N [ORNL; Kumar, Deepak [ORNL; Zhang, Ying [Tennessee Technological University

2013-01-01T23:59:59.000Z

176

In Situ Infrared Spectroscopic Study of Brucite Carbonation in Dry to Water-Saturated Supercritical Carbon Dioxide  

SciTech Connect (OSTI)

In geologic carbon sequestration, while part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated super critical CO2 (scCO2) near the well bore and at the caprock, especially in the short-term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO2 containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)2) in situ over a 24 hr reaction period with scCO2 containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO2. Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 C was nesquehonite (MgCO3 3H2O). Mixtures of nesquehonite and magnesite (MgCO3) were detected at 50 C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.

Loring, John S.; Thompson, Christopher J.; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T.; Rosso, Kevin M.

2012-04-25T23:59:59.000Z

177

REMOVAL OF ORGANIC POLLUTANTS FROM SUBCRITICAL WATER WITH ACTIVATED CARBON  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has demonstrated that controlling the temperature (and to a lesser extent, the pressure) of water can dramatically change its ability to extract organics and inorganics from matrices ranging from soils and sediments to waste sludges and coal. The dielectric constant of water can be changed from about 80 (a very polar solvent) to <5 (similar to a nonpolar organic solvent) by controlling the temperature (from ambient to about 400 C) and pressure (from about 5 to 350 bar). The EERC has shown that hazardous organic pollutants such as pesticides, PACS (polycyclic aromatic hydrocarbons), and PCBs (polychlorinated biphenyls) can be completely removed from soils, sludges, and sediments at temperatures (250 C) and pressures (<50 atm) that are much milder than typically used for supercritical water processes (temperature >374 C, pressure >221 atm). In addition, the process has been demonstrated to be particularly effective for samples containing very high levels of contaminants (e.g., part per thousand). Current projects include demonstrating the subcritical water remediation process at the pilot scale using an 8-liter system constructed under separate funding during 1997. To date, subcritical water has been shown to be an effective extraction fluid for removing a variety of organic pollutants from soils and sludges contaminated with fossil fuel products and waste products, including PACS from soil (e.g., town gas sites), refining catalysts, and petroleum tank bottom sludges; PCBs from soil and sediments; toxic gasoline components (e.g., benzene) from soil and waste sludge; and phenols from petroleum refinery sludges. The obvious need to clean the wastewater from subcritical water processes led to preliminary experiments with activated carbon placed in line after the extractor. Initial experiments were performed before and after cooling the extractant water (e.g., with water at 200 C and with water cooled to 25 C). Surprisingly, the ability of activated carbon to remove organics from the water is better at a high temperature than at room temperature. These initial results are opposite to those expected from chromatographic theory, since the solubility of the organics is about 100,000-fold higher in the hot water than in ambient water. At present, the physicochemical mechanism accounting for these results is unknown; however, it is possible that the lower surface tension and lower viscosity of subcritical water (compared to water at ambient conditions) greatly increases the available area of the carbon by several orders of magnitude. Regardless of the mechanism involved, the optimal use of activated carbon to clean the wastewater generated from subcritical water remediation will depend on obtaining a better understanding of the controlling parameters. While these investigations focused on the cleanup of wastewater generated from subcritical water remediation, the results also apply to cleanup of any wastewater contaminated with nonpolar and moderately polar organics such as wastewaters from coal and petroleum processing.

Steven B. Hawthorne; Arnaud J. Lagadec

1999-08-01T23:59:59.000Z

178

Management of water extracted from carbon sequestration projects  

SciTech Connect (OSTI)

Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods for managing very large volumes of water most of which will contain large quantities of salt and other dissolved minerals. Produced water from oil and gas production also typically contains large quantities of dissolved solids. Therefore, many of the same practices that are established and used for managing produced water also may be applicable for extracted water. This report describes the probable composition of the extracted water that is removed from the formations, options for managing the extracted water, the pros and cons of those options, and some opportunities for beneficial use of the water. Following the introductory material in Chapter 1, the report is divided into chapters covering the following topics: (Chapter 2) examines the formations that are likely candidates for CO{sub 2} sequestration and provides a general evaluation of the geochemical characteristics of the formations; (Chapter 3) makes some preliminary estimates of the volume of water that could be extracted; (Chapter 4) provides a qualitative review of many potential technologies and practices for managing extracted water and for each technology or management practice, pros and cons are provided; (Chapter 5) explores the potential costs of water management; and (Chapter 6) presents the conclusions.

Harto, C. B.; Veil, J. A. (Environmental Science Division)

2011-03-11T23:59:59.000Z

179

DOE/SC-ARM/TR-122 G-Band Vapor Radiometer Precipitable Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision2 G-Band Vapor

180

DOE/SC-ARM/TR-128 Tower Water-Vapor Mixing Ratio Value-Added  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision2 G-Band Vapor48

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wick for metal vapor laser  

DOE Patents [OSTI]

An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

Duncan, David B. (Livermore, CA)

1992-01-01T23:59:59.000Z

182

Water-in-carbon dioxide emulsions: Formation and stability  

SciTech Connect (OSTI)

Stable water-in-carbon dioxide (W/C) emulsions, for either liquid or supercritical CO{sub 2} containing up to 70 vol % water, are formed with various molecular weight perfluoropolyether ammonium caroxylate surfactants. Water droplet sizes ranging from 3 to 10 {micro}m were determined by optical microscopy. From conductivity measurements, an inversion to C/W emulsions results from a decrease in CO{sub 2} density or salinity at constant pressure, a decrease in surfactant molecular weight, or an increase in temperature. Emulsions become more stable with a change in any of these formulation variables away from the balanced state, which increases interfacial tensions and interfacial tension gradient enhancing Marangoni-Gibbs stabilization. This type of stability is enhanced with an increase in the molecular weight of the surfactant tails, which increases the thickness of the stabilizing films between droplets. W/C emulsions formed with the 7,500 molecular weight surfactant were stable for several days.

Lee, C.T. Jr.; Psathas, P.A.; Johnston, K.P.; Grazia, J. de; Randolph, T.W.

1999-09-28T23:59:59.000Z

183

Analysis and forecast improvements from simulated satellite water vapor profiles and rainfall using a global data assimilation system  

SciTech Connect (OSTI)

The potential improvements of analyses and forecasts from the use of satellite-observed rainfall and water vapor measurements from the Defense Meteorological Satellite Program Sensor Microwave (SSM) T-1 and T-2 instruments are investigated in a series of observing system simulation experiments using the Air Force Phillips Laboratory (formerly Air Force Geophysics Laboratory) data assimilation system. Simulated SSM radiances are used directly in a radiance retrieval step following the conventional optimum interpolation analysis. Simulated rainfall rates in the tropics are used in a moist initialization procedure to improve the initial specification of divergence, moisture, and temperature. Results show improved analyses and forecasts of relative humidity and winds compared to the control experiment in the tropics and the Southern Hemisphere. Forecast improvements are generally restricted to the first 1-3 days of the forecast. 27 refs., 11 figs.

Nehrkorn, T.; Hoffman, R.N.; Louis, J.F.; Isaacs, R.G.; Moncet, J.L. (Atmospheric and Environmental Research, Inc., Cambridge, MA (United States))

1993-10-01T23:59:59.000Z

184

FOREST-AIR FLUXES OF CARBON, WATER AND ENERGY OVER NON-FLAT TERRAIN  

E-Print Network [OSTI]

FOREST-AIR FLUXES OF CARBON, WATER AND ENERGY OVER NON-FLAT TERRAIN XUHUI LEE and XINZHANG HU-air exchange of carbon, water, and energy was conducted at a mid-latitude, mixed forest on non-flat terrain to address this question, we conducted a field experiment on energy and carbon exchanges in a mixed forest

Lee, Xuhui

185

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network [OSTI]

and HB 90:Carbon capture and sequestration, http://legisweb.6th annual conference on carbon capture and sequestration,7th annual conference on carbon capture & seques- tration,

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

186

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network [OSTI]

and HB 90:Carbon capture and sequestration, http://legisweb.conference on carbon capture and sequestration, Pittsburgh,The DOEs Regional Carbon Sequestration Partnerships are

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

187

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. D24, PAGES 29,737-29,745, DECEMBER 26, 1997 Atmospheric aerosol and water vapor characteristics over north  

E-Print Network [OSTI]

Atmospheric aerosol and water vapor characteristics over north central Canada during BOREAS B. L. Markham, J typically0.09 and 0.34 cm, respectively.Size distributionsderivedfrom solar almucantarmeasurementsshowtheHughesSTXCorporation,Greenbelt,Maryland. 2Formerlyat HSTX/GSFC-NASA,Greenbelt,Maryland. Copyright1997by the American

188

Interaction of wide-band-gap single crystals with 248-nm excimer laser radiation. XI. The effect of water vapor and temperature on laser desorption  

E-Print Network [OSTI]

. Significantly, introducing water vapor lowers the particle velocities and thus the effective surface temperature systems, simultaneous electronic excitation and exposure to aggressive chemicals can acceler- ate etching-induced neutral particle desorption and surface erosion on single- crystal sodium chloride in the presence of low

Dickinson, J. Thomas

189

Vaporization of zinc from scrap  

SciTech Connect (OSTI)

The rate of zinc vaporization from galvanized scrap was measured using a thermogravimetric apparatus along with chemical analysis. It is found that the rate of zinc vaporization is very fast in nitrogen and carbon monoxide atmospheres at temperatures higher than 950 C. At lower temperature rate decreases with decreasing temperature and is controlled by the gas phase mass transport. The simultaneous oxidation and vaporization of zinc occurs when the samples were heated in carbon dioxide and air. The current experimental results indicate that almost all of the zinc from scrap vaporizes during the heating process in a very short period of time after the temperature reaches above 850 C.

Ozturk, B.; Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

1996-12-31T23:59:59.000Z

190

Ocean Water Vapor and Cloud Burden Trends Derived from the Topex Microwave Radiometer  

E-Print Network [OSTI]

algorithm is a log-linear regression algorithm with coefficients that are stratified by wind speed and water. TMR OBSERVATIONS The TMR flew in a 10-day non-sun-synchronous exact repeat orbit with an inclination

Ruf, Christopher

191

Isobaric vapor-liquid equilibria for binary and ternary systems composed of water, 1-propanol, and 2-propanol at 100 kPa  

SciTech Connect (OSTI)

Isobaric vapor-liquid equilibria data were obtained for the 2-propanol + 1-propanol binary system and the water + 1-propanol + 2-propanol ternary system at 100 kPa. The data were found to be thermodynamically consistent according to the Van Ness-Byer-Gibbs method for the binary system and according to the McDermott-Ellis method for the ternary one. The binary system is well represented by assuming ideal behavior. The binary interaction parameters obtained from this and previous work are used to predict the vapor-liquid equilibrium for the ternary system using the UNIQUAC, NRTL, and Wilson models. The ternary system is well predicted from binary data.

Gabaldon, C.; Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica] [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica

1996-11-01T23:59:59.000Z

192

Water transport inside a single-walled carbon nanotube driven by temperature gradient  

E-Print Network [OSTI]

Water transport inside a single-walled carbon nanotube driven by temperature gradient J. Shiomi mass transport of a water cluster inside a single-walled carbon nanotube (SWNT) with the diameter of about 1.4 nm. The influence of the non-equilibrium thermal environment on the confined water cluster has

Maruyama, Shigeo

193

Intraparticle heat and mass transfer characteristics of silica-gel/water vapor adsorption  

SciTech Connect (OSTI)

Recently, highly efficient energy utilization systems which extensively employ adsorption phenomena such as pressure swing adsorption, heat storage, adsorption heat pump, etc. are being regarded as one of the countermeasures for environmental issues such as green house effect and ozone layer destruction. An Adsorption Heat Pump (AHP) has been investigated as one of the important techniques via which cold heat energy is obtained from waste thermal energy below 373K without using electricity and CFCs. An AHP normally consists of an adsorber and an evaporator/condenser and cold heat energy is generated by latent heat of evaporation during adsorption process. For realizing the AHP technology, it has been pointed out that the development of an adsorber with optimum heat and mass transfer characteristics is essentially important. In this study, experimental studies were carried out which was based on the data of temperature inside the adsorbent particle and adsorptivity profiles at the adsorption/desorption process by volumetric method. To clarify adsorption mechanism relatively large silica-gel particle (7 mm f) was used. Temperature distribution in the particle is determined at the center, at one half radius in the radial direction and at the surface by using very thin (30 mm f) thermocouples. The temperatures at these points simultaneously increase/decrease as soon as the adsorption/desorption started, reached their respective maximum/minimum values and then return to initial temperature. The temperature profiles for the adsorption process show that the temperature at the surface is initially slightly higher than the other two points. All three points reached their respective maximum temperature at the same time with the temperature at the center point the highest and at the surface the lowest. The temperature profiles during the desorptive process are almost exactly the opposite to that of the adsorption process. This shows that the adsorption phenomena can take place not only at the surface but inside the adsorbent particle, implying that intraparticle vapor diffusion has a great influence on adsorptivity.

Yamamoto, Eri; Watanabe, Fujio; Hasatani, Masanobu

1999-07-01T23:59:59.000Z

194

Extremely Luminous Water Vapor Emission from a Type 2 Quasar at Redshift z = 0.66  

E-Print Network [OSTI]

A search for water masers in 47 Sloan Digital Sky Survey Type 2 quasars using the Green Bank Telescope has yielded a detection at a redshift of z = 0.660. This maser is more than an order of magnitude higher in redshift than any previously known and, with a total isotropic luminosity of 23,000 L_sun, also the most powerful. The presence and detectability of water masers in quasars at z ~ 0.3-0.8 may provide a better understanding of quasar molecular tori and disks, as well as fundamental quasar and galaxy properties such as black hole masses. Water masers at cosmologically interesting distances may also eventually provide, via direct distance determinations, a new cosmological observable for testing the reality and properties of dark energy, currently inferred primarily through Type 1a supernova measurements.

Richard Barvainis; Robert Antonucci

2005-06-10T23:59:59.000Z

195

Hydrogen Ingress in Steels During High-Temperature Oxidation in Water Vapor  

SciTech Connect (OSTI)

It is well established that hydrogen derived from water vapour can penetrate oxidizing alloys with detrimental effect. However, the complexities of tracking hydrogen in these materials have prevented the direct profiling of hydrogen ingress needed to understand these phenomena. Here we report hydrogen profiles in industrially-relevant alumina- and chromia- forming steels correlated with the local oxide-metal nano/microstructure by use of SIMS D2O tracer studies and experimental protocols to optimize D retention. The D profiles unexpectedly varied markedly among the alloys examined, which indicates mechanistic complexity but also the potential to mitigate detrimental water vapour effects by manipulation of alloy chemistry.

Brady, Michael P [ORNL; Fayek, Mostafa [ORNL; Keiser, James R [ORNL; Meyer III, Harry M [ORNL; More, Karren Leslie [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL

2011-01-01T23:59:59.000Z

196

Wavelength-modulation laser hygrometer for ultrasensitive detection of water vapor in  

E-Print Network [OSTI]

- bines wavelength-modulation absorption spectros- copy WMS 12­16 that uses near-infrared InGaAsP diode is measured by use of a near-infrared diode laser and wavelength-modulation absorption spectroscopy. Humidity in the spectral regions of strongest water absorption. Sensitive single-mode cavity ring-down techniques based

197

Assessment of terrigenous organic carbon input to the total organic carbon in sediments from Scottish transitional waters Hydrology and Earth System Sciences, 6(6), 959970 (2002) EGS  

E-Print Network [OSTI]

Assessment of terrigenous organic carbon input to the total organic carbon in sediments from of terrigenous organic carbon input to the total organic carbon in sediments from Scottish transitional waters This paper addresses the assessment of terrestrially derived organic carbon in sediments from two Scottish

Paris-Sud XI, Université de

198

Improved Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300 219 255Retrievals of Temperature and Water

199

Water Use Efficiency in Plant Growth and Ambient Carbon Dioxide Level  

E-Print Network [OSTI]

TR-42 1972 Water Use Efficiency in Plant Growth and Ambient Carbon Dioxide Level C.H. M. van Bavel Texas Water Resources Institute Texas A&M University ...

van Bavel, C. H. M.

200

Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide  

SciTech Connect (OSTI)

This project involves the use of an innovative new invention ? Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. The term ?globule? refers to the water or liquid carbon dioxide droplets sheathed with ultrafine particles dispersed in the continuous external medium, liquid CO{sub 2} or H{sub 2}O, respectively. The key to obtaining very small globules is the shear force acting on the two intermixing fluids, and the use of ultrafine stabilizing particles or nanoparticles. We found that using Kenics-type static mixers with a shear rate in the range of 2700 to 9800 s{sup -1} and nanoparticles between 100-300 nm produced globule sizes in the 10 to 20 ?m range. Particle stabilized emulsions with that kind of globule size should easily penetrate oil-bearing formations or saline aquifers where the pore and throat size can be on the order of 50 ?m or larger. Subsequent research focused on creating particle stabilized emulsions that are deemed particularly suitable for Permanent Sequestration of Carbon Dioxide. Based on a survey of the literature an emulsion consisting of 70% by volume of water, 30% by volume of liquid or supercritical carbon dioxide, and 2% by weight of finely pulverized limestone (CaCO{sub 3}) was selected as the most promising agent for permanent sequestration of CO{sub 2}. In order to assure penetration of the emulsion into tight formations of sandstone or other silicate rocks and carbonate or dolomite rock, it is necessary to use an emulsion consisting of the smallest possible globule size. In previous reports we described a high shear static mixer that can create such small globules. In addition to the high shear mixer, it is also necessary that the emulsion stabilizing particles be in the submicron size, preferably in the range of 0.1 to 0.2 ?m (100 to 200 nm) size. We found a commercial source of such pulverized limestone particles, in addition we purchased under this DOE Project a particle grinding apparatus that can provide particles in the desired size range. Additional work focused on attempts to generate particle stabilized emulsions with a flow through, static mixer based apparatus under a variety

Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

2011-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests  

E-Print Network [OSTI]

have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests E D W Institute of Technology, IMK-IFU, Garmisch-Partenkirchen 82467, Germany, 4 USDA Forest Service ­ SilvaCarbon

Phillips, Richard P.

202

* Corresponding author -kfingerman@berkeley.edu 1 Integrating Water Sustainability into the Low Carbon Fuel Standard  

E-Print Network [OSTI]

it to Average Fuel Carbon Intensity (AFCI) (c) Charge a tax on water use for biofuel production (d) Establish Carbon Fuel Standard Kevin Fingerman1* , Daniel Kammen1,2 , and Michael O'Hare2 1 Energy & Resources (Chapagain and Hoekstra, 2004). As the State of California implements the Low Carbon Fuel Standard (LCFS

Kammen, Daniel M.

203

Passive vapor extraction feasibility study  

SciTech Connect (OSTI)

Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft{sup 3}/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft{sup 3}/min air flow rates, passive vapor extraction is more cost effective below 100 ppm.

Rohay, V.J.

1994-06-30T23:59:59.000Z

204

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plains Climate Study Site  

SciTech Connect (OSTI)

There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Department of Energy, Atmospheric Radiation Measurement program, Southern Great Plains CART (Cloud and Radiation Testbed) site in northern Oklahoma. Research conducted at several laboratories has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We have developed and installed a ruggedized Raman lidar system that resides permanently at the CART site, and that is computer automated to eliminate the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar provides quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

Goldsmith, J.E.M.; Blair, F.H.; Bisson, S.E.

1997-12-31T23:59:59.000Z

205

Vapor deposition of hardened niobium  

DOE Patents [OSTI]

A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

1983-04-19T23:59:59.000Z

206

A modelling approach to carbon, water and energy feedbacks and interactions across the  

E-Print Network [OSTI]

) Advanced Very High Resolution Radiometer BOREAS - (the) BOReal Ecosystem-Atmosphere Study C - Carbon CABi A modelling approach to carbon, water and energy feedbacks and interactions across the land partitioning of energy, the evapotranspiration of water and if the land-surface is a sink or a source of CO2

207

Water-soluble carbon nanotube compositions for drug delivery and medicinal applications  

DOE Patents [OSTI]

Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.

Tour, James M.; Lucente-Schultz, Rebecca; Leonard, Ashley; Kosynkin, Dmitry V.; Price, Brandi Katherine; Hudson, Jared L.; Conyers, Jr., Jodie L.; Moore, Valerie C.; Casscells, S. Ward; Myers, Jeffrey N.; Milas, Zvonimir L.; Mason, Kathy A.; Milas, Luka

2014-07-22T23:59:59.000Z

208

Dolomitization by ground-water flow systems in carbonate platforms  

SciTech Connect (OSTI)

Dolomite occurs throughout the subsurface of modern carbonate platforms such as the Bahamas. Groundwater flow systems must be responsible for delivery of reactants needed for dolomitization. Reflux, freshwater lens flows, and thermal convection are large-scale flow systems that may be widespread in active platforms. The author has evaluated some aspects of the dynamics and characteristics of these processes with ground-water flow theory and by scaled sandbox experiments. Reflux is not restricted to hypersaline brines, but can occur with bankwaters of only slightly elevated salinity such as those found on the Bahama Banks today (42%). The lack of evaporites in a stratigraphic section, therefore, does not rule out the possibility that reflux may have operated. Flows associated with freshwater lenses include flow in the lens, in the mixing zone, and in the seawater beneath and offshore of the lens. Upward transfer of seawater through the platform margins occurs when surrounding cold ocean water migrates into the platform and is heated. This type of thermal convection (Kohout convection) has been studied by Francis Kohout in south Florida. The ranges of mass flux of magnesium in these processes are all comparable and are all sufficient to account for young dolomites beneath modern platforms. Each process yields dolomitized zones of characteristic shape and location and perhaps may be distinguishable in ancient rocks. The concepts presented here may have application to exploration for dolomite reservoirs in the Gulf Coast and elsewhere.

Simms, M.

1984-09-01T23:59:59.000Z

209

Electrolyte vapor condenser  

DOE Patents [OSTI]

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

1983-02-08T23:59:59.000Z

210

Electrolyte vapor condenser  

DOE Patents [OSTI]

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

1983-01-01T23:59:59.000Z

211

Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein  

DOE Patents [OSTI]

A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

Bamberger, Carlos E. (Oak Ridge, TN); Robinson, Paul R. (Knoxville, TN)

1980-01-01T23:59:59.000Z

212

The rate of carbonic acid decomposition in sea water and its oceanographic significance  

E-Print Network [OSTI]

Compressed Air Purging . . . . . . . . , . . 58 15 L6 Carbon-14 Uptake by ~la ~nas sp. in a Closed System, under 4f Carbon Dioxide Gas Purging and under N Gas Purging using Low pH Sea Water . C b -V, Uptk by~Mt ~~lt ik Cl System and under N2 Gas... and under Nitrogen Gas Purging and 4$ Carbon Dioxide Purging, using low pH Sea Water . . . . . . . . . . . . . . . . . , 63 12 Carbon-14 Uptake by Nitzuhia closterium in a Closed System and under Nitrogen Gas Purging . 1v PREFATORY' NOTE The author...

Park, Kilho

1957-01-01T23:59:59.000Z

213

Vibrational Sum Frequency Spectroscopy and Molecular Dynamics Simulation of the Carbon Tetrachloride-Water and 1,2-Dichloroethane-Water Interfaces  

E-Print Network [OSTI]

and bonding at the carbon tetrachloride-water (CCl4-H2O) and the 1,2-dichloroethane-water (DCE-H2O) liquidVibrational Sum Frequency Spectroscopy and Molecular Dynamics Simulation of the Carbon Tetrachloride-Water and 1,2-Dichloroethane-Water Interfaces Dave S. Walker, Fred G. Moore, and Geraldine L

Richmond, Geraldine L.

214

Quantum Chemical Simulations Reveal Acetylene-Based Growth Mechanisms in the Chemical Vapor Deposition Synthesis of Carbon Nanotubes  

SciTech Connect (OSTI)

Nonequilibrium quantum chemical molecular dynamics (QM/MD) simulation of early stages in the nucleation process of carbon nanotubes from acetylene feedstock on an Fe38 cluster was performed based on the density-functional tight-binding (DFTB) potential. Representative chemical reactions were studied by complimentary static DFTB and density functional theory (DFT) calculations. Oligomerization and cross-linking reactions between carbon chains were found as the main reaction pathways similar to that suggested in previous experimental work. The calculations highlight the inhibiting effect of hydrogen for the condensation of carbon ring networks, and a propensity for hydrogen disproportionation, thus enriching the hydrogen content in already hydrogen-rich species and abstracting hydrogen content in already hydrogen-deficient clusters. The ethynyl radical C2H was found as a reactive, yet continually regenerated species, facilitating hydrogen transfer reactions across the hydrocarbon clusters. The nonequilibrium QM/MD simulations show the prevalence of a pentagon-first nucleation mechanism where hydrogen may take the role of one arm of an sp2 carbon Y-junction. The results challenge the importance of the metal carbide formation for SWCNT cap nucleation in the VLS model and suggest possible alternative routes following hydrogen-abstraction acetylene addition (HACA)-like mechanisms commonly discussed in combustion synthesis.

Eres, Gyula [ORNL] [ORNL; Wang, Ying [Nagoya University, Japan] [Nagoya University, Japan; Gao, Xingfa [Institute of High Energy Physics, Chinese Academy of Sciences, China] [Institute of High Energy Physics, Chinese Academy of Sciences, China; Qian, Hu-Jun [Jilin University, Changchun] [Jilin University, Changchun; Ohta, Yasuhito [Fukui Institute of Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan] [Fukui Institute of Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan; Wu, Xiaona [Nagoya University, Japan] [Nagoya University, Japan; Morokuma, Keiji [Fukui Institute of Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan] [Fukui Institute of Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan; Irle, Stephan [WPI-Institute of Transformative Bio-Molecules and Department of Chemistry, Nagoya University, Japan] [WPI-Institute of Transformative Bio-Molecules and Department of Chemistry, Nagoya University, Japan

2014-01-01T23:59:59.000Z

215

Thermal decomposition of ethanol and growth of vertically aligned single-walled carbon nanotubes by alcohol catalytic chemical vapor deposition  

E-Print Network [OSTI]

Thermal decomposition of ethanol and growth of vertically aligned single-walled carbon nanotubes. In this study, we have investigated the thermal decomposition of ethanol at various temperatures, as well National Meeting, San Francisco, CA, September 10-14, 2006 1/1 PRES 29 - Thermal decomposition of ethanol

Maruyama, Shigeo

216

Structure and Depletion at Fluoro- and Hydro-carbon/Water Liquid/Liquid Interfaces  

E-Print Network [OSTI]

The results of x-ray reflectivity studies of two oil/water (liquid/liquid) interfaces are inconsistent with recent predictions of the presence of a vapor-like depletion region at hydrophobic/aqueous interfaces. One of the oils, perfluorohexane, is a fluorocarbon whose super-hydrophobic interface with water provides a stringent test for the presence of a depletion layer. The other oil, heptane, is a hydrocarbon and, therefore, is more relevant to the study of biomolecular hydrophobicity. These results are consistent with the sub-angstrom proximity of water to soft hydrophobic materials.

Kaoru Kashimoto; Jaesung Yoon; Binyang Hou; Chiu-hao Chen; Binhua Lin; Makoto Aratono; Takanori Takiue; Mark L. Schlossman

2008-07-18T23:59:59.000Z

217

Driving force of water entry into hydrophobic channels of carbon nanotubes: entropy or energy?  

E-Print Network [OSTI]

Spontaneous entry of water molecules inside single-wall carbon nanotubes (SWCNTs) has been confirmed by both simulations and experiments. Using molecular dynamics simulations, we have studied the thermodynamics of filling of a (6,6) carbon nanotube in a temperature range from 273 to 353 K and with different strengths of the nanotube-water interaction. From explicit energy and entropy calculations using the two-phase thermodynamics method, we have presented a thermodynamic understanding of the filling behaviour of a nanotube. We show that both the energy and the entropy of transfer decrease with increasing temperature. On the other hand, scaling down the attractive part of the carbon-oxygen interaction results in increased energy of transfer while the entropy of transfer increases slowly with decreasing the interaction strength. Our results indicate that both energy and entropy favour water entry into (6,6) SWCNTs. Our results are compared with those of several recent studies of water entry into carbon nanotub...

Kumar, Hemant; Maiti, Prabal K

2015-01-01T23:59:59.000Z

218

The role of hydrogen in methane formation from carbon and water over metal catalysts  

E-Print Network [OSTI]

THE ROLE OF HYDROGEN IN METHANE FORMATION FROM CARBON AND WATER OVER METAL CATALYSTS A Thesis by STANLEY EDWIN MOORE Submitted to the Graduate College of Texas AaM University in partial fulfillment of the requirement for the degree MASTER... OF SCIENCE December 1982 Major subject: chemistry THE ROLE OF HYDROGEN IN METHANE FORMATION FROM CARBON AND WATER OVER METAL CATALYSTS A Thesis by STANLEY EDWIN MOORE Approved as to style and content by: hairman of Commi ee) (Me r) (Member) ( d...

Moore, Stanley Edwin

1982-01-01T23:59:59.000Z

219

Evaluation and prevention of explosions in soil vapor extraction systems  

SciTech Connect (OSTI)

Due to the widespread and long term use of petroleum derived fuels and solvents, many areas have subsurface soils contaminated with petroleum derivatives. This contamination can migrate to groundwater, which is frequently used to supply drinking water needs. A common method of cleaning up that contamination is soil vapor extraction (SVE). SVE is a technique where several extraction wells are installed in the contaminated area, with screens in the appropriate vertical locations. The soil vapors re extracted form the wells using a positive displacement blower. To prevent this subsurface contamination from becoming air pollution, the extracted vapors are then sent to some hydrocarbon removal device, such as a carbon adsorption system or a thermal oxidizer. The data used in this investigation were collected as part of a Radian Corporation project for a client. The site is a former petroleum refinery, and the hydrocarbons are primarily gasoline and diesel.

Hower, J.W. [Radian Corp., El Segundo, CA (United States)

1995-12-31T23:59:59.000Z

220

Effect of Mo Dispersion Size and Water Vapor on Oxidation of Two-Phase Directionally Solidified NiAl-9Mo In-Situ Composites  

SciTech Connect (OSTI)

Oxidation of two-phase NiAl-9Mo eutectics with 3 different growth rates/2nd phase Mo dispersion sizes were investigated at 900 C in air and air with 10% water vapor. Good oxidation resistance via alumina formation was observed in dry air, with Mo volatilization loss minimized by fine submicron Mo dispersions. However, extensive Mo volatilization and in-place internal oxidation of prior Mo phase regions was observed in wet air oxidation. Ramifications of this phenomenon for the development of multi-phase high-temperature alloys are discussed

Brady, Michael P [ORNL] [ORNL; Bei, Hongbin [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Tortorelli, Peter F [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere  

E-Print Network [OSTI]

dioxide Water vapor #12;Atmospheric composition (parts per million by volume) · Nitrogen (N2) 780Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere Bill Satzer 3M Company #12;Outline,840 · Oxygen (O2) 209,460 · Argon (Ar) 9340 · Carbon dioxide (CO2) 394 · Methane (CH4) 1.79 · Ozone (O3) 0

Olver, Peter

222

Degradation of Carbon Fiber-reinforced Epoxy Composites by Ultraviolet  

E-Print Network [OSTI]

, combined exposure to UV radiation and water vapor, which are predominantly responsible for degradationDegradation of Carbon Fiber-reinforced Epoxy Composites by Ultraviolet Radiation and Condensation) ABSTRACT: The degradation of an IM7/997 carbon fiber-reinforced epoxy exposed to ultraviolet radiation and

Nakamura, Toshio

223

Layered Organic Structure at the Carbon Tetrachloride-Water Interface Dennis K. Hore, Dave S. Walker, and Geraldine L. Richmond*  

E-Print Network [OSTI]

Layered Organic Structure at the Carbon Tetrachloride-Water Interface Dennis K. Hore, Dave S remediation. The carbon tetrachloride-water interface in particular has been the subject of numerous the density profile across the interface. No detailed studies of the carbon tetrachloride structure

Richmond, Geraldine L.

224

Carbon-based electric double layer capacitors for water desalination  

E-Print Network [OSTI]

In capacitive deionization (CDI), salt water is passed through two polarized electrodes, whereby salt is adsorbed onto the electrode surface and removed from the water stream. This approach has received renewed interest ...

Fellman, Batya A. (Batya Ayala)

2010-01-01T23:59:59.000Z

225

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network [OSTI]

subcritical and supercritical con?gurations, respectively Environmental Management (2010) 45:651661 Fig. 5 Water

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

226

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network [OSTI]

Environmental Management (2010) 45:651661 capture penalty of increased waterEnvironmental Management (2010) 45:651661 DOI 10.1007/s00267-010-9434-1 FORUM WaterEnvironmental Management (2010) 45:651661 Fig. 5 Water

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

227

Measurements of heat and mass transfer coefficients during absorption of water vapor by lithium bromide and (Li,K,Na)NO sub 3 mixtures  

SciTech Connect (OSTI)

A knowledge of heat and mass transfer coefficients in heat pump fluids, plays an important role in the design of absorption machines. Heat and mass transfer coefficients as well as subcooling are measured for absorption of water vapor in (Li, K, Na)No{sub 3} and Lithium Bromide (LiBr) mixtures.The rate of absorption of water vapor is obtained from the difference in concentration of mixtures between inlet and outlet streams across the absorber. In situ concentrations of aqueous salt mixtures over temperature ranges between 80 to 135 {degrees}C were calculated from density measurements. This technique of measurement is a reliable and convenient but not a very accurate ({plus minus}0.8 wt% salt) method of measuring the in situ salt concentration. Results show that the subcooling at the absorber exit is not only a property of the fluid, but depends strongly on the process conditions. The subcooling in LiBr mixtures without additive is shown to vary between 2.2 and 24.3 {degrees}C and the film heat transfer coefficient between 1365.2 and 801.1 W/m{sup 2}.K respectively, depending upon process conditions. These empirical results will prove to be of value to heat pump manufacturers because they have a strong bearing on costs and performance. Heat and mass transfer coefficients in aqueous salt solutions ate presented as a function of dimensionless numbers. 12 refs., 3 figs., 4 tabs.

Zaltash, A.; Ally, M.R.; Linkous, R.L.; Klatt, L.N.

1991-01-01T23:59:59.000Z

228

Hydrogenation of Carbon Dioxide by Water: Alkali-Promoted Synthesis of Formate  

SciTech Connect (OSTI)

Conversion of carbon dioxide utilizing protons from water decomposition is likely to provide a sustainable source of fuels and chemicals in the future. We present here a time-evolved infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD) study of the reaction of CO{sub 2} + H{sub 2}O in thin potassium layers. Reaction at temperatures below 200 K results in the hydrogenation of carbon dioxide to potassium formate. Thermal stability of the formate, together with its sequential transformation to oxalate and to carbonate, is monitored and discussed. The data of this model study suggest a dual promoter mechanism of the potassium: the activation of CO{sub 2} and the dissociation of water. Reaction at temperatures above 200 K, in contrast, is characterized by the absence of formate and the direct reaction of CO{sub 2} to oxalate, due to a drastic reduction of the sticking coefficient of water at higher temperatures.

Hrbek, J.; Hoffmann, F.M.; Yang, Y.; Paul, J.; White, M.G.

2010-07-15T23:59:59.000Z

229

The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water  

SciTech Connect (OSTI)

The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated for the first time. Unlike ion exchange, one of the more conventional deionization processes, no chemicals were required for regeneration of the system. Electricity was used instead. Water with various anions and cations was pumped through the electrochemical cell. After polarization, ions were electrostatically removed from the water and held in the electric double layers formed at electrode surfaces. The water leaving the cell was purified, as desired.

Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

1995-02-17T23:59:59.000Z

230

Ordovician carbonate formation waters in the Illinois Basin: Chemical and isotopic evolution beneath a regional aquitard  

SciTech Connect (OSTI)

Formation waters from carbonate reservoirs in the upper Ordovician Galena Group of the Illinois Basin have been analyzed geochemically to study origin of salinity, chemical and isotopic evolution, and relation to paleohydrologic flow systems. These carbonate reservoirs underlie the Maquoketa Shale Group of Cincinnatian age, which forms a regional aquitard. Cl-Br relations and Na/Br-Cl/Br systematics indicate that initial brine salinity resulted from subaerial evaporation of seawater to a point not significantly beyond halite saturation. Subsequent dilution in the subsurface by meteoric waters is supported by delta D-delta O-18 covariance. Systematic relations between Sr-87/Sr-86 and 1/Sr suggest two distinct mixing events: introduction of a Sr-87 enriched fluid from a siliciclastic source, and a later event which only affected reservoir waters from the western shelf of the basin. The second mixing event is supported by covariance between Sr-87/Sr-86 and concentrations of cations and anions; covariance between Sr and O-D isotopes suggests that the event is related to meteoric water influx. Systematic geochemical relations in ordovician Galena Group formation waters have been preserved by the overlying Maquoketa shale aquitard. Comparison with results from previous studies indicates that waters from Silurian-Devonian carbonate strata evolved in a manner similar to yet distinct from that of the Ordovician carbonate waters, whereas waters from Mississippian-Pennsylvanian strata that overlie the New Albany Shale Group regional aquitard are marked by fundamentally different Cl-Br-Na and Sr isotope systematics. Evolution of these geochemical formation-water regimes apparently has been influenced significantly by paleohydrologic flow systems.

Stueber, A.M. (Illinois Univ., Edwardsville, IL (United States)); Walter, L.M. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Geological Sciences)

1992-01-01T23:59:59.000Z

231

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

232

Comparative analysis of the secondary electron yield from carbon nanoparticles and pure water medium  

E-Print Network [OSTI]

The production of secondary electrons generated by carbon nanoparticles and pure water medium irradiated by fast protons is studied by means of model approaches and Monte Carlo simulations. It is demonstrated that due to a prominent collective response to an external field, the nanoparticles embedded in the medium enhance the yield of low-energy electrons. The maximal enhancement is observed for electrons in the energy range where plasmons, which are excited in the nanoparticles, play the dominant role. Electron yield from a solid carbon nanoparticle composed of fullerite, a crystalline form of C60 fullerene, is demonstrated to be several times higher than that from liquid water. Decay of plasmon excitations in carbon-based nanosystems thus represents a mechanism of increase of the low-energy electron yield, similar to the case of sensitizing metal nanoparticles. This observation gives a hint for investigation of novel types of sensitizers to be composed of metallic and organic parts.

Verkhovtsev, Alexey; de Vera, Pablo; Surdutovich, Eugene; Guatelli, Susanna; Korol, Andrei V; Rosenfeld, Anatoly; Solov'yov, Andrey V

2015-01-01T23:59:59.000Z

233

Climate, Water, and Carbon Program A PROPOSAL IN RESPONSE TO THE PROVOST'S CALL FOR  

E-Print Network [OSTI]

of our daily lives necessitate a deeper understanding of Earth's climate system, which sustains all life and is now threatened and compromised by human activities (population growth, economic development of drastic perturbations in the global carbon cycle. The impact on water resources of this sudden shift

Howat, Ian M.

234

Efficiency of carbon nanotubes water based nanofluids as coolants Salma Halelfadl a  

E-Print Network [OSTI]

previously determined. This may be helpful for using these nanofluids in real cooling systems. Keywords: Heat heating or cooling systems is used. Thus, there is a need to achieve compact systems, energy saving1 Efficiency of carbon nanotubes water based nanofluids as coolants Salma Halelfadl a , Thierry

Paris-Sud XI, Université de

235

Thermodynamics of Piperazine/Methyldiethanolamine/Water/Carbon Sanjay Bishnoi and Gary T. Rochelle*  

E-Print Network [OSTI]

Thermodynamics of Piperazine/Methyldiethanolamine/Water/Carbon Dioxide Sanjay Bishnoi and Gary T though MDEA is present at much higher concentrations. Introduction Thermodynamics of aqueous amine are usually rate-controlling. Fur- thermore, a consistent thermodynamic model can quan- tify the energy

Rochelle, Gary T.

236

Self-Assembled Micro-Honeycomb Network of Single-Walled Carbon Nanotubes for Solar Cells  

E-Print Network [OSTI]

1 Self-Assembled Micro-Honeycomb Network of Single-Walled Carbon Nanotubes for Solar Cells Kehang nanotubes (SWNTs) into a self-assembled micro-honeycomb network (-HN) for the application to SWNT- Si solar-assembled, micro- honeycomb network, water vapor treatment #12;3 Single-walled carbon nanotubes (SWNTs) feature

Maruyama, Shigeo

237

Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09  

SciTech Connect (OSTI)

This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline formation waters. Therefore, they are expected to be representative of saline formation waters at actual and potential future CCS sites. We are using a produced waters database (Breit, 2002) covering most of the United States compiled by the U.S. Geological Survey (USGS). In one instance to date, we have used this database to find a composition corresponding to the brine expected at an actual CCS site (Big Sky CSP, Nugget Formation, Sublette County, Wyoming). We have located other produced waters databases, which are usually of regional scope (e.g., NETL, 2005, Rocky Mountains basins).

Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

2009-11-25T23:59:59.000Z

238

A Facile High-speed Vibration Milling Method to Water-disperse Single- walled Carbon Nanohorns  

SciTech Connect (OSTI)

A high-speed vibration milling (HSVM) method was applied to synthesize water dispersible single- walled carbon nanohorns (SWNHs). Highly reactive free radicals (HOOCCH2CH2 ) produced from an acyl peroxide under HSVM conditions react with hydrophobic SWNHs to produce a highly water dispersible derivative (f-SWNHs), which has been characterized in detail by spectroscopic and microscopic techniques together with thermogravimetric analysis (TGA) and dynamic light scatter- ing (DLS). The carboxylic acid functionalized, water-dispersible SWNHs material are versatile precursors that have potential applications in the biomedical area.

Shu, Chunying [Virginia Polytechnic Institute and State University (Virginia Tech); Zhang, Jianfei [Virginia Polytechnic Institute and State University (Virginia Tech); Sim, Jae Hyun [Virginia Polytechnic Institute and State University (Virginia Tech); Burke, Brian [University of Virginia, Charlottesville; Williams, Keith A [University of Virginia, Charlottesville; Rylander, Nichole M [Virginia Polytechnic Institute and State University (Virginia Tech); Campbell, Tom [Virginia Polytechnic Institute and State University (Virginia Tech); Puretzky, Alexander A [ORNL; Rouleau, Christopher M [ORNL; Geohegan, David B [ORNL; More, Karren Leslie [ORNL; Esker, Alan R [Virginia Polytechnic Institute and State University (Virginia Tech); Gibson, Harry W [Virginia Polytechnic Institute and State University (Virginia Tech); Dorn, Harry C [Virginia Polytechnic Institute and State University (Virginia Tech)

2010-01-01T23:59:59.000Z

239

Tracing coalbed natural gas-coproduced water using stable isotopes of carbon  

SciTech Connect (OSTI)

Recovery of hydrocarbons commonly is associated with coproduction of water. This water may be put to beneficial use or may be reinjected into subsurface aquifers. In either case, it would be helpful to establish a fingerprint for that coproduced water so that it may be tracked following discharge on the surface or reintroduction to geologic reservoirs. This study explores the potential of using {delta}{sup 13}C of dissolved inorganic carbon (DIC) of coalbed natural gas (CBNG) - coproduced water as a fingerprint of its origin and to trace its fate once it is disposed on the surface. Our initial results for water samples coproduced with CBNG from the Powder River Basin show that this water has strongly positive {delta}{sup 13}C(DIC) (12 parts per thousand to 22 parts per thousand) that is readily distinguished from the negative {delta}{sup 13}C of most surface and ground water (-8 parts per thousand to -11 parts per thousand). Furthermore, the DIC concentrations in coproduced water samples are also high (more than 100 mg C/L) compared to the 20 to 50 mg C/L in ambient surface and ground water of the region. The distinctively high {delta}{sup 13}C and DIC concentrations allow us to identify surface and ground water that have incorporated CBNG-coproduced water. Accordingly, we suggest that the {delta}{sup 13}C(DIC) and DIC concentrations of water can be used for long-term monitoring of infiltration of CBNG-coproduced water into ground water and streams. Our results also show that the {delta} {sup 13}C (DIC) of CBNG-coproduced water from two different coal zones are distinct leading to the possibility of using {delta}{sup 13}C(DIC) to distinguish water produced from different coal zones.

Sharma, S.; Frost, C.D. [University of Wyoming, Laramie, WY (United States). Dept. for Renewable Resources

2008-03-15T23:59:59.000Z

240

Vapor deposition of thin films  

DOE Patents [OSTI]

A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Extrasolar Carbon Planets  

E-Print Network [OSTI]

We suggest that some extrasolar planets planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk's C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune-mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures.

Marc J. Kuchner; S. Seager

2005-05-02T23:59:59.000Z

242

Water-in-carbon dioxide microemulsions: An environment for hydrophiles including proteins  

SciTech Connect (OSTI)

Carbon dioxide in the liquid and supercritical fluid states is useful as a replacement for toxic organic solvents. However, nonvolatile hydrophilic substances such as proteins, ions, and most catalysts are insoluble. This limitation was overcome by the formation of aqueous microemulsion droplets in a carbon dioxide-continuous phase with a nontoxic ammonium carboxylate perfluoropolyether surfactant. Several spectroscopic techniques consistently indicated that the properties of the droplets approach those of bulk water. The protein bovine serum albumin (BSA) with a molecular weight of 67,000 is soluble in this microemulsion and experiences an environment similar to that of native BSA in buffer. 23 refs., 4 figs.

Johnston, K.P.; Harrison, K.L. [Univ. of Texas, Austin, TX (United States); Clarke, M.J. [Univ. of Nottingham (United Kingdom)] [and others

1996-02-02T23:59:59.000Z

243

Insights into Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids  

SciTech Connect (OSTI)

Long-term geologic storage of carbon dioxide (CO2) is considered an integral part to moderating CO2 concentrations in the atmosphere and subsequently minimizing effects of global climate change. Although subsurface injection of CO2 is common place in certain industries, deployment at the scale required for emission reduction is unprecedented and therefore requires a high degree of predictability. Accurately modeling geochemical processes in the subsurface requires experimental derived data for mineral reactions occurring between the CO2, water, and rocks. Most work in this area has focused on aqueous-dominated systems in which dissolved CO2 reacts to form crystalline carbonate minerals. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet supercritical fluid phase. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably hydrated supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 C) and pressures (90,120 and 160 bar) that simulate conditions in geologic repositories. Mineral transformation reactions were followed by three novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the supercritical CO2 resulted in increased silicate carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared spectroscopy and determined to be critical for facilitating carbonation processes. Even in extreme low water conditions, magic angle spinning nuclear magnetic resonance detected formation of Q3 [Si(OSi)3OH] and Q4 [Si(OSi)4] amorphous silica species. Unlike the thick (<10 ?m) passivating silica layers observed in the fully water saturated scCO2 experiments, images obtained from a focused ion beam sectioned sample indicted these coatings were chemically wollastonite but structurally amorphous. In addition, evidence of an intermediate hydrated amorphous calcium carbonate forming under these conditions further emphasize the importance of understanding geochemical processes occurring in water bearing scCO2 fluids.

Miller, Quin RS; Thompson, Christopher J.; Loring, John S.; Windisch, Charles F.; Bowden, Mark E.; Hoyt, David W.; Hu, Jian Z.; Arey, Bruce W.; Rosso, Kevin M.; Schaef, Herbert T.

2013-07-01T23:59:59.000Z

244

Thermodesorption studies of catalytic systems. 16. The carbon monoxide-water vapor conversion on copper-containing catalysts  

SciTech Connect (OSTI)

Thermodesorption studies have shown the presence of several types of centers: centers for the firm irreversible adsorption of CO, centers for the adsorption of H/sub 2/O, centers for the competitive adsorption of CO and H/sub 2/O, and centers for the CO-H/sub 2/O conversion, on the surface of the skeletal copper catalyst. It is suggested that CO adsorbs in bridged form on the competitive adsorption centers, and in linear form on the reaction centers. The conversion reaction involves CO and H/sub 2/O molecules adsorbed on a small fraction (approx. 1%) of centers, the H/sub 2/O molecules in question being in the associative adsorbed form.

Gel'man, V.N.; Varlamova, A.M.; Sobolevskii, V.S.; Golosman, E.Z.; Yakerson, V.I.

1981-03-01T23:59:59.000Z

245

Vapor spill pipe monitor  

DOE Patents [OSTI]

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

246

Self-Assembled Micro-Honeycomb Network of Single-Walled Carbon Nanotubes for Heterojunction Solar Cells  

E-Print Network [OSTI]

Self-Assembled Micro-Honeycomb Network of Single-Walled Carbon Nanotubes for Heterojunction Solar@photon.t.u-tokyo.ac.jp Keywords: Self-assembly, micro-honeycomb network, single-walled carbon nanotubes, heterojunction solar cell-assembled micro-honeycomb network (-HN) of SWNTs obtained by water or ethanol vapor treatment of as

Maruyama, Shigeo

247

A Ni-Fe Layered Double Hydroxide-Carbon Nanotube Complex for Water Oxidation  

E-Print Network [OSTI]

Highly active, durable and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions including water splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel iron layered double hydroxide nanoplates on mildly oxidized multi-walled carbon nanotubes. Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-layered double hydroxide. The nanoplates were covalently attached to a network of nanotubes, affording excellent electrical wiring to the nanoplates. The ultra-thin Ni-Fe layered double hydroxide nanoplates/carbon nanotube complex was found to exhibit unusually high electro-catalytic activity and stability for oxygen evolution and outperformed commercial precious metal Ir catalysts.

Gong, Ming; Wang, Hailiang; Liang, Yongye; Wu, Justin Zachary; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

2013-01-01T23:59:59.000Z

248

The use of carbon aerogel electrodes for deionizing water and treating aqueous process wastes  

SciTech Connect (OSTI)

A wide variety of ionic contaminants can be removed from aqueous solutions by electrosorption on carbon aerogel electrodes. Carbon aerogel is an ideal electrode material because of its low electrical resistivity (< 40 m{Omega}-cm), high specific surface area (400 to 1100 m{sup 2}/g), and controllable pore size distribution (< 50 nm). This approach may avoid the generation of a substantial amount of secondary waste associated with ion exchange processing. Ion exchange resins require concentrated solutions of acid, base, or salt for regeneration, whereas carbon aerogel electrodes require only electrical discharge or reverse polarization. Aqueous solutions of NaCl, NaNO{sub 3}, NH{sub 4}ClO{sub 4}, Na{sub 2}CO{sub 3}, Na{sub 2}SO{sub 4} and Na{sub 3}PO{sub 4} have been separated into concentrate and high-purity product streams. The deionization of a 100 {mu}S/cm NaCl solution with two parallel stacks of carbon aerogel electrodes in a potential-swing mode is discussed in detail. The selective removal of Cu, Zn, Cd, Pb, Cr, Mn, Co and U from a variety of process solutions and natural waters has also been demonstrated. Feasibility tests indicate that the remediation of Cr(VI)-contaminated ground water may be possible.

Farmer, J.C.; Mack, G.V.; Fix, D.V.

1996-07-01T23:59:59.000Z

249

The effects of water on the passive behavior of 1018 carbon steel in organic solutions  

SciTech Connect (OSTI)

The passivation and breakdown behavior of 1018 carbon steel in propylene carbonate (PC) or dimethoxyethane (DME) mixtures with water and containing 0.5M LiAsF[sub 6] were studied. The behavior of the steel in the organic solvent/water mixtures was highly dependent on the organic solvent. The anodic polarization of carbon steel displayed active-passive behavior in 10--90 mole percent (m/o) PC/H[sub 2]O mixtures and a tenuous degree of stability within the passive range. The anodic polarization of carbon steel displayed no active-passive behavior in 50--90 m/o DME/H[sub 2]O mixtures and displayed active-passive behavior in 10--30 m/o DME/H[sub 2]O mixtures. The steel was stable within the passive range of these DME/H[sub 2]O solutions. The breakdown potential of the steel in DME/H[sub 2]O mixtures is more electropositive than the oxidation potential of the DME solvent at all molar ratios.

Shifler, D.A.; Kruger, J. (John Hopkins Univ., Baltimore, MD (United States). Dept. of Materials Science and Engineering); Moran, P.J. (Naval Academy, Annapolis, MD (United States). Dept. of Mechanical Engineering)

1994-04-01T23:59:59.000Z

250

Rapid Migration of Radionuclides Leaked from High-Level Water Tanks; A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport  

SciTech Connect (OSTI)

The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts atypical of low ionic strength infiltration. In the field, this mechanism could for ce flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contract angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tens ion of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of this waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediments. Th e released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford.

Anderson l. Ward; Glendon W. Gee; John S. Selker; Clay Cooper

2002-04-24T23:59:59.000Z

251

Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport  

SciTech Connect (OSTI)

The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts a typical of low ionic strength infiltration. In the field, this mechanism could force flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contact angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tension of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests of showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of the waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediment s. The released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford.

Anderson L. Ward; Glendon W. Gee; John S. Selker; Caly Cooper

2002-04-24T23:59:59.000Z

252

Calibrated vapor generator source  

DOE Patents [OSTI]

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

1995-09-26T23:59:59.000Z

253

PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE  

SciTech Connect (OSTI)

Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82?ºC (180?ºF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

BOWERS C.D.; ELBEL S.; PETERSEN M.; HRNJAK P.S.

2011-07-01T23:59:59.000Z

254

On the Diurnal Cycle of Deep Convection, High-Level Cloud, and Upper Troposphere Water Vapor in the Multiscale Modeling Framework  

SciTech Connect (OSTI)

The Multiscale Modeling Framework (MMF), also called superparameterization, embeds a cloud-resolving model (CRM) at each grid column of a general circulation model to replace traditional parameterizations of moist convection and large-scale condensation. This study evaluates the diurnal cycle of deep convection, high-level clouds, and upper troposphere water vapor by applying an infrared (IR) brightness temperature (Tb) and a precipitation radar (PR) simulator to the CRM column data. Simulator results are then compared with IR radiances from geostationary satellites and PR reflectivities from the Tropical Rainfall Measuring Mission (TRMM). While the actual surface precipitation rate in the MMF has a reasonable diurnal phase and amplitude when compared with TRMM observations, the IR simulator results indicate an inconsistency in the diurnal anomalies of high-level clouds between the model and the geostationary satellite data. Primarily because of its excessive high-level clouds, the MMF overestimates the simulated precipitation index (PI) and fails to reproduce the observed diurnal cycle phase relationships among PI, high-level clouds, and upper troposphere relative humidity. The PR simulator results show that over the tropical oceans, the occurrence fraction of reflectivity in excess of 20 dBZ is almost 1 order of magnitude larger than the TRMM data especially at altitudes above 6 km. Both results suggest that the MMF oceanic convection is overactive and possible reasons for this bias are discussed. However, the joint distribution of simulated IR Tb and PR reflectivity indicates that the most intense deep convection is found more often over tropical land than ocean, in agreement with previous observational studies.

Zhang, Yunyan; Klein, Stephen A.; Liu, Chuntao; Tian, Baijun; Marchand, Roger T.; Haynes, J. M.; McCoy, Renata; Zhang, Yuying; Ackerman, Thomas P.

2008-08-22T23:59:59.000Z

255

Carbon capture by sorption-enhanced water-gas shift reaction process using hydrotalcite-based material  

SciTech Connect (OSTI)

A novel route for precombustion decarbonization is the sorption-enhanced water-gas shift (SEWGS) process. In this process carbon dioxide is removed from a synthesis gas at elevated temperature by adsorption. Simultaneously, carbon monoxide is converted to carbon dioxide by the water-gas shift reaction. The periodic adsorption and desorption of carbon dioxide is induced by a pressure swing cycle, and the cyclic capacity can be amplified by purging with steam. From previous studies is it known that for SEWGS applications, hydrotalcite-based materials are particularly attractive as sorbent, and commercial high-temperature shift catalysts can be used for the conversion of carbon monoxide. Tablets of a potassium promoted hydrotalcite-based material are characterized in both breakthrough and cyclic experiments in a 2 m tall fixed-bed reactor. When exposed to a mixture of carbon dioxide, steam, and nitrogen at 400{sup o}C, the material shows a breakthrough capacity of 1.4 mmol/g. In subsequent experiments the material was mixed with tablets of promoted iron-chromium shift catalyst and exposed to a mixture of carbon dioxide, carbon monoxide, steam, hydrogen, and nitrogen. It is demonstrated that carbon monoxide conversion can be enhanced to 100% in the presence of a carbon dioxide sorbent. At breakthrough, carbon monoxide and carbon dioxide simultaneously appear at the end of the bed. During more than 300 cycles of adsorption/reaction and desorption, the capture rate, and carbon monoxide conversion are confirmed to be stable. Two different cycle types are investigated: one cycle with a CO{sub 2} rinse step and one cycle with a steam rinse step. The performance of both SEWGS cycles are discussed.

van Selow, E.R.; Cobden, P.D.; Verbraeken, P.A.; Hufton, J.R.; van den Brink, R.W. [Energy research Center of the Netherlands, Petten (Netherlands)

2009-05-15T23:59:59.000Z

256

Spatially-explicit impacts of carbon capture and sequestration on water supply and demand  

E-Print Network [OSTI]

Annual Conference on Carbon Capture and Sequestration, MayEleventh Annual Carbon Capture, Utilization & Sequestrationplants with and without carbon capture. Presentation at 2009

Sathre, Roger

2014-01-01T23:59:59.000Z

257

Spatially-explicit impacts of carbon capture and sequestration on water supply and demand  

E-Print Network [OSTI]

Laboratory). 2010. Carbon Sequestration Atlas of the United2012. National Carbon Sequestration Database and Geographicfor use in geologic carbon sequestration projects. Aquifers

Sathre, Roger

2014-01-01T23:59:59.000Z

258

E-Print Network 3.0 - ammonia-water-carbon dioxide mixtures Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: . The possibility of using carbonation process as a direct means for carbon dioxide sequestration is yet... . Carbon dioxide gas is the principal greenhouse...

259

Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.  

SciTech Connect (OSTI)

In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

2010-10-01T23:59:59.000Z

260

Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process)  

SciTech Connect (OSTI)

The CAMERE process (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) was developed and evaluated. The reverse-water-gas-shift reactor and the methanol synthesis reactor were serially aligned to form methanol from CO{sub 2} hydrogenation. Carbon dioxide was converted to CO and water by the reverse-water-gas-shift reaction (RWReaction) to remove water before methanol was synthesized. With the elimination of water by RWReaction, the purge gas volume was minimized as the recycle gas volume decreased. Because of the minimum purge gas loss by the pretreatment of RWReactor, the overall methanol yield increased up to 89% from 69%. An active and stable catalyst with the composition of Cu/ZnO/ZrO{sub 2}/Ga{sub 2}O{sub 3} (5:3:1:1) was developed. The system was optimized and compared with the commercial methanol synthesis processes from natural gas and coal.

Joo, O.S.; Jung, K.D.; Han, S.H.; Uhm, S.J. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.] [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.; Moon, I. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering] [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Rozovskii, A.Y.; Lin, G.I. [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)] [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)

1999-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Catalysts for the production of hydrocarbons from carbon monoxide and water  

DOE Patents [OSTI]

A method of converting low H.sub.2 /CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200.degree. to 350.degree. C. in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinium, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n+1).gtoreq.x.gtoreq.O and for olefinic hydrocarbons: 2n.gtoreq.x.gtoreq.O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); Goldberg, Robert I. (Selden, NY)

1987-01-01T23:59:59.000Z

262

Catalysts for the production of hydrocarbons from carbon monoxide and water  

DOE Patents [OSTI]

A method of converting low H/sub 2//CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200 to 350/sup 0/C in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinum, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n + 1) greater than or equal to x greater than or equal to O and for olefinic hydrocarbons: 2n greater than or equal to x greater than or equal to O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

Sapienza, R.S.; Slegeir, W.A.; Goldberg, R.I.

1985-11-06T23:59:59.000Z

263

Effect of surfactants on the interfacial tension and emulsion formation between water and carbon dioxide  

SciTech Connect (OSTI)

The lowering of the interfacial tension ({gamma}) between water and carbon dioxide by various classes of surfactants is reported and used to interpret complementary measurements of the capacity, stability, and average drop size of water-in-CO{sub 2} emulsions. {gamma} is lowered from {approximately}20 to {approximately}2 mN/m for the best poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(propylene oxide) (PPO-b-PEO-b-PPO) and PeO-b-PPO-b-PEO Pluronic triblock copolymers, 1.4 mN/m for a poly(butylene oxide)-b-PEO copolymer, 0.8 mN/m for a perfluoropolyether (PEPE) ammonium carboxylate and 0.2 mN/m for PDMS{sub 24}-g-EO{sub 22}. The hydrophilic-CO{sub 2}-philic balance (HCB) of the triblock Pluronic and PDMS-g-PEO-PPO surfactants is characterized by the CO{sub 2}-to-water distribution coefficient and V-shaped plots of log {gamma} vs wt % EO. A minimum in {gamma} is observed for the optimum HCB. As the CO{sub 2}-philicity of the surfactant tail is increased, the molecular weight of the hydrophilic segment increases for an optimum HCB. The stronger interactions on both sides of the interface lead to a lower {gamma}. Consequently, more water was emulsified for the PDMS-based copolymers than either the PPO- or PBO-based copolymers.

Rocha, S.R.P. da; Harrison, K.L.; Johnston, K.P. [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering] [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering

1999-01-19T23:59:59.000Z

264

Diffusive Dynamics of Water inside Hydrophobic Carbon Micropores Studied by Neutron Spectroscopy and Molecular Dynamics Simulation  

E-Print Network [OSTI]

When water molecules are confined to nanoscale spacings, such as in the nanometer size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures ($\\sim$ 150 K), leading to a metastable liquid state with remarkable physical properties. We have investigated the ambient pressure diffusive dynamics of water in microporous Kynol\\texttrademark ACF-10 (average pore size $\\sim$11.6 {\\AA}, with primarily slit-like pores) from temperature $T=$ 280 K in its stable liquid state down to $T=$ 230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be respectively higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time $$ when compared to previous findings indicate that it is the size of the confining pores - not their shape - that primarily affects the dynamics of water for pore sizes larger than 10 {\\AA}. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 {\\AA} gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer $Q$ ($Q\\le 0.9$ \\AA${^{-1}}$). At high $Q$ however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. The best agreement is obtained for the diffusion parameter $D$ associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bi-modal exponential model, is used to parameterize the self-correlation function $I(Q,t)$.

S. O. Diallo; L. Vlcek; E. Mamontov; J. K. Keum; Jihua Chen; J. S. Hayes Jr.; A. A. Chialvo

2014-12-15T23:59:59.000Z

265

The Effect Of ZnO Addition On Co/C Catalyst For Vapor And Aqueous Phase Reforming Of Ethanol  

SciTech Connect (OSTI)

The effect of ZnO addition on the oxidation behavior of Co along with catalytic performance in vapor and aqueous phase reforming of ethanol were investigated on Co supported on carbon black (XC-72R). Carbon was selected to minimize the support interactions. Effect of ZnO addition during both vapor and aqueous phase reforming were compared at 250 C. ZnO addition inhibited the reduction of cobalt oxides by H2 and created surface sites for H2O activation. During vapor phase reforming at 450 C the redox of cobalt, driven by steam oxidation and H2 reduction, trended to an equilibrium of Co0/Co2+. ZnO showed no significant effect on cobalt oxidation, inferred from the minor changes of C1 product yield. Surface sites created by ZnO addition enhanced water activation and oxidation of surface carbon species, increasing CO2 selectivity. At 250 C cobalt reduction was minimal, in situ XANES demonstrated that ZnO addition significantly facilitated oxidation of Co0 under vapor phase reforming conditions, demonstrated by lower C1 product yield. Sites introduced by ZnO addition improved the COx selectivity at 250 C. Both Co/C and Co-ZnO/C rapidly oxidized under aqueous phase reaction conditions at 250 C, showing negligible activity in aqueous phase reforming. This work suggests that ZnO affects the activation of H2O for Co catalysts in ethanol reforming.

Davidson, Stephen; Sun, Junming; Hong, Yongchun; Karim, Ayman M.; Datye, Abhaya K.; Wang, Yong

2014-02-05T23:59:59.000Z

266

Warm water vapor envelope in the supergiants alf Ori and alf Her and its effects on the apparent size from the near-infrared to the mid-infrared  

E-Print Network [OSTI]

We present a possible interpretation for the increase of the angular diameter of the supergiants alf Ori (M1-2 Ia-Ibe) and alf Her (M5 Ib-II) from the K band to the 11 micron region and the high-resolution 11 micron spectra without any salient spectral features revealed by Weiner et al. (2003). The angular diameters as well as the high-resolution spectra of alf Ori and alf Her obtained in the 11 micron region can be reproduced by a warm water vapor envelope, whose presence in alf Ori was revealed by Tsuji (2000) based on the reanalysis of the near-infrared data obtained with the Stratoscope II. While prominent absorption due to H2O can be expected from such a dense, warm water vapor envelope, the absorption lines can be filled in by emission from the extended part of the envelope. This effect leads to a significant weakening of the H2O lines in the 11 micron region, and makes the observed spectra appear to be rather featureless and continuum-like. However, the emission due to H2O lines from the extended envelope leads to an increase of the apparent size in this spectral region. The observed angular diameter and the high resolution spectra of alf Ori and alf Her in the 11 micron region can be best interpreted by the water vapor envelope extending to 1.4--1.5 Rstar, with a temperature of about 2000 K and a column density of H2O of the order of 10^20 cm^-2.

Keiichi Ohnaka

2004-06-02T23:59:59.000Z

267

Desalination Using Vapor-Compression Distillation  

E-Print Network [OSTI]

and MSF, this research investigates a high-efficiency mechanical vapor-compression distillation system that employs an improved water flow arrangement. The incoming salt concentration was 0.15% salt for brackish water and 3.5% salt for seawater, whereas...

Lubis, Mirna R.

2010-07-14T23:59:59.000Z

268

CNT-SI HETEROJUNCTION SOLAR CELLS WITH STRUCTURE-CONTROLLED SINGLE-WALL CARBON NANOTUBE FILMS  

E-Print Network [OSTI]

CNT-SI HETEROJUNCTION SOLAR CELLS WITH STRUCTURE- CONTROLLED SINGLE-WALL CARBON NANOTUBE FILMS. The heterojunction solar cell was fabricated by dry depositing the SWNT film to the 3 mm by 3 mm n-type silicon solar cells. We proposed a water-vapor treatment to build up SWNTs to a self-assembled micro- honeycomb

Maruyama, Shigeo

269

Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes  

E-Print Network [OSTI]

This article discusses the way the standard description of capillary filling dynamics has to be modified to account for liquid/solid slip in nanometric pores. It focuses in particular on the case of a large slip length compared to the pore size. It is shown that the liquid viscosity does not play a role, and that the flow is only controlled by the friction coefficient of the liquid at the wall. Moreover in the Washburn regime, the filling velocity does not depend on the tube radius. Finally, molecular dynamics simulations suggest that this standard description fails to describe the early stage of capillary filling of carbon nanotubes by water, since viscous dissipation at the tube entrance must be taken into account.

Laurent Joly

2011-12-06T23:59:59.000Z

270

Modifying the Soil and Water Assessment Tool to Simulate Cropland Carbon Flux: Model Development and Initial Evaluation  

SciTech Connect (OSTI)

Climate change is one of the most compelling modern issues and has important implications for almost every aspect of natural and human systems. The Soil and Water Assessment Tool (SWAT) model has been applied worldwide to support sustainable land and water management in a changing climate. However, the inadequacies of the existing carbon algorithm in SWAT limit its application in assessing impacts of human activities on CO2 emission, one important source of greenhouse gases (GHGs) that traps heat in the earth system and results in global warming. In this research, we incorporate a revised version of the CENTURY carbon model into SWAT to describe dynamics of soil organic matter (SOM)- residue and simulate land-atmosphere carbon exchange.

Zhang, Xuesong; Izaurralde, Roberto C.; Arnold, Jeffrey; Williams, Jimmy R.; Srinivasan, Raghavan

2013-10-01T23:59:59.000Z

271

Multiscale Interactions between Water and Carbon Fluxes and Environmental Variables in A Central U.S. Grassland  

E-Print Network [OSTI]

field in the central U.S. Time-series of the entropy of water and carbon fluxes exhibit pronounced annual cycles, primarily explained by the modulation of the diurnal flux amplitude by other variables, such as the net radiation. Entropies of soil...

Brunsell, Nathaniel A.; Wilson, Cassandra J.

2013-04-10T23:59:59.000Z

272

Designer organisms for photosynthetic production of ethanol from carbon dioxide and water  

DOE Patents [OSTI]

The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

Lee, James Weifu (Knoxville, TN)

2011-07-05T23:59:59.000Z

273

DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES  

SciTech Connect (OSTI)

A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

Ashish Gupta

2002-06-01T23:59:59.000Z

274

Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars  

SciTech Connect (OSTI)

This study demonstrates that wildfires/biomass combustion may be an important source of labile pyrogenic water-soluble organic matter (Py-WSOM) to aquatic systems. Spectroscopic analysis (of the solid char and Py-WSOM) with Fourier transform infrared spectroscopy (FTIR) indicated that the Py-WSOM extracted from two low temperature chars (one wood, one grass) was dominated by polar moieties (-OH and C-O) derived from depolymerization and fragmentation of lignocellulose. Incubation experiments under aerobic conditions with unsterilized river water suggested that Py-WSOM and associated biomarkers may have turnover rates on the order of weeks to months, consistent with mixing and transport conditions of riverine systems. For example, pyrogenic dissolved organic carbon (Py-DOC) had a half-life of 30-40 days. Turnover rate for the combustion biomarkers was shorter, with levoglucosan and free lignin phenols having a half-life around 3-4 days and polymeric lignin components 13-14 days. The latter observations contradict earlier studies on the biodegradation of dissolved lignin and point to the need for re-assessment of lignin degradation kinetics in well-mixed riverine systems, particularly when such lignin components are derived from thermally altered plant material that may exist in a form more labile than that in highly processed riverine DOM.

Norwood, Matt J.; Louchouarn, Patrick; Kuo, Li-Jung; Harvey, Omar

2013-03-16T23:59:59.000Z

275

Simultaneous Detection of Water, Methane and Carbon Monoxide in the Atmosphere of Exoplanet HR8799b  

E-Print Network [OSTI]

Absorption lines from water, methane and carbon monoxide are detected in the atmosphere of exoplanet HR8799b. A medium-resolution spectrum presented here shows well-resolved and easily identified spectral features from all three molecules across the K band. The majority of the lines are produced by CO and H2O, but several lines clearly belong to CH4. Comparisons between these data and atmosphere models covering a range of temperatures and gravities yield log mole fractions of H2O between -3.09 and -3.91, CO between -3.30 and -3.72 and CH4 between -5.06 and -5.85. More precise mole fractions are obtained for each temperature and gravity studied. A reanalysis of H-band data, previously obtained at similar spectral resolution, results in a nearly identical water abundance as determined from the K-band spectrum. The methane abundance is shown to be sensitive to vertical mixing and indicates an eddy diffusion coefficient in the range of 10^6 to 10^8 cm^2 s^-1, comparable to mixing in the deep troposphere of Jupite...

Barman, Travis S; Macintosh, Bruce; Marois, Christian

2015-01-01T23:59:59.000Z

276

E-Print Network 3.0 - acid vapor pressures Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 22 3b. Thermodynamics of moist air Water phase, water latent heat of vaporization Lv Summary: 3b. Thermodynamics of moist air Water phase, water latent...

277

Method for controlling corrosion in thermal vapor injection gases  

DOE Patents [OSTI]

An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

1981-01-01T23:59:59.000Z

278

Potential Effects of Organic Carbon Production on Ecosystems and Drinking Water Quality  

E-Print Network [OSTI]

National Primary Drinking Water Regulations, disinfectantsand implications for drinking water quality and the Deltaand control in drinking water. American Chemical Society,

Brown, Larry R.

2003-01-01T23:59:59.000Z

279

A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide  

E-Print Network [OSTI]

- phatic chains and naphthenic rings.8,9 Apart from carbon and hydrogen, small amounts of nitrogen, oxy

Kilpatrick, Peter K.

280

The effect of water temperature on the adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon  

SciTech Connect (OSTI)

The influence of water temperature on the adsorption of natural dissolved organic matter (DOM) on activated carbon has not been investigated intensively yet. In this study, batch experiments with granular activated carbon (GAC) F300, from bituminous coal, have been carried out at three temperatures (5, 20, 35{sup o} C) using a humic acid model water and different types of surface water (lake, river, canal). Furthermore, the adsorption of an anthropogenic contaminant, atrazine, was quantified in the absence and presence of DOM. The results indicate a significant influence of water temperature on the adsorption equilibrium of DOM and atrazine. Contrary to expectations, DOM and atrazine adsorption in surface water tends to be increased with increasing water temperature, whereas the extent of this effect is dependent on the type and concentration of DOM. Furthermore, the temperature effect on atrazine adsorption is controlled by competition of DOM and atrazine on adsorption sites. Some assumptions are proposed and discussed for explaining the temperature effects observed in the batch studies. 39 refs., 4 figs., 2 tabs.

Bernd Schreiber; Viktor Schmalz; Thomas Brinkmann; Eckhard Worch [Dresden University of Technology, Dresden (Germany). Institute of Water Chemistry

2007-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2  

SciTech Connect (OSTI)

The collection of extensive, reliable, oceanic carbon data is a key component of the Joint Global Ocean Flux Study (JGOFS). A portion of the US JGOFS oceanic carbon dioxide measurements will be made during the World Ocean Circulation Experiment Hydrographic Program. A science team has been formed to plan and coordinate the various activities needed to produce high quality oceanic carbon dioxide measurements under this program. This handbook was prepared at the request of, and with the active participation of, that science team. The procedures have been agreed on by the members of the science team and describe well tested methods. They are intended to provide standard operating procedures, together with an appropriate quality control plan, for measurements made as part of this survey. These are not the only measurement techniques in use for the parameters of the oceanic carbon system; however, they do represent the current state-of-the-art for ship-board measurements. In the end, the editors hope that this handbook can serve widely as a clear and unambiguous guide to other investigators who are setting up to analyze the various parameters of the carbon dioxide system in sea water.

Dickson, A.G.; Goyet, C. [eds.] [eds.

1994-09-01T23:59:59.000Z

282

Particles of spilled oil-absorbing carbon in contact with water  

DOE Patents [OSTI]

Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.

Muradov, Nazim (Melbourne, FL)

2011-03-29T23:59:59.000Z

283

Copper vapor laser modular packaging assembly  

DOE Patents [OSTI]

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

284

Public resource allocation for programs aimed at managing woody plants on the Edwards Plateau: water yield, wildlife habitat, and carbon sequestration  

E-Print Network [OSTI]

The Edwards Plateau is the drainage area for the Edwards Aquifer, which provides water to over 2.2 million people. The plateau also provides other ecosystem services, such as wildlife habitat and the sequestration of atmospheric carbon dioxide...

Davis, Amber Marie

2006-08-16T23:59:59.000Z

285

Modeling of Water-rock interaction in the Mackenzie Basin: competition between sulfuric and carbonic acids  

E-Print Network [OSTI]

sulfuric and carbonic acids E. Beaulieu, Y. Godd´eris, D. Labat, C. Roelandt, D. Calmels, J. Gail- lardet of the resulting proof before it is published in its final form. Please note that during the production process in the Mackenzie Basin: competition between sulfuric and carbonic acids. E. Beaulieu1 , Y. Goddéris1 , D. Labat1

286

New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration.  

SciTech Connect (OSTI)

Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

Krumhansl, James Lee; McNemar, Andrea (National Energy Technology Laboratory (NETL), Morgantown, WV); Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor

2010-12-01T23:59:59.000Z

287

Activated carbon from grass -a green alternative catalyst support for water electrolysis Kalyani Palanichamy1,  

E-Print Network [OSTI]

cleanly producing water as the only product. Invariably it is stored in nature as water and hydrocarbons methods including water electrolysis, steam reformation of natural gas, and coal gasification are the foci of widespread production research; but water electrolysis is one of the renowned technologies which provide

Paris-Sud XI, Université de

288

Experimental investigation of factors controlling the calcium carbonate ion activity product of shallow water carbonate-rich sediments  

E-Print Network [OSTI]

to compute the saturation state of the solution wi th respect to calcite and aragonite. CHAPTER III RESULTS IN SITU ANALYSES For stations selected for the equilibration experiment, the mea- sured in situ pH, AT, and the calculated saturation relative... 5 Mg Organic low Mg calcite 6rain Size C J I A Joulters Cay oolites 111-6 Grass bed 111-10 III-MR Lily Banks oolite shoal (high energy) Mangrove swamp mud, high organics IV-6 111-4 Shallow water sandy bottmn between two parallel patch...

Bernstein, Lawrence Douglas

1983-01-01T23:59:59.000Z

289

A method for the determination of dissolved organic carbon in sea water by gas chromatography  

E-Print Network [OSTI]

of organic matter was carried out at elevated temperature and pressure after collection of a large number of samples. The resulting carbon dioxide was flushed through a gas chromatograph with helium as the carrier gas and the signal was recorded on a strip... chart recorder. Chromatographic analysis time was approximately eleven minutes per sample with a precision of + Q. 1 mg C/l. The organic carbon content of the sample was determined by measurement of the peak area using an appropriate carbon dioxide...

Fredericks, Alan D

1965-01-01T23:59:59.000Z

290

Gasoline vapor recovery  

SciTech Connect (OSTI)

In a gasoline distribution network wherein gasoline is drawn from a gasoline storage tank and pumped into individual vehicles and wherein the gasoline storage tank is refilled periodically from a gasoline tanker truck, a method of recovering liquid gasoline from gasoline vapor that collects in the headspace of the gasoline storage tank as the liquid gasoline is drawn therefrom, said method comprising the steps of: (a) providing a source of inert gas; (b) introducing inert gas into the gasoline storage tank as liquid gasoline is drawn therefrom so that liquid gasoline drawn from the tank is displaced by inert gas and gasoline vapor mixes with the inert gas in the headspace of the tank; (c) collecting the inert gas/gasoline vapor mixture from the headspace of the gasoline storage tank as the tank is refilled from a gasoline tanker truck; (d) cooling the inert gas/gasoline vapor mixture to a temperature sufficient to condense the gasoline vapor in the mixture to liquid gasoline but not sufficient to liquify the inert gas in the mixture; (e) separating the condensed liquid gasoline from the inert gas; and delivering the condensed liquid gasoline to a remote location for subsequent use.

Lievens, G.; Tiberi, T.P.

1993-06-22T23:59:59.000Z

291

Laboratory Investigations in Support of Carbon Dioxide-in-Water Emulsions Stabilized by Fine Particles for Ocean and Geologic Sequestration of Carbon Dioxide  

SciTech Connect (OSTI)

Since the submission of our last Semi-annual Report, dated September 2006, the research objectives of this Co-operative Agreement shifted toward geologic sequestration of carbon dioxide. In the period September 2006-February 2007, experiments were conducted in a High-Pressure Batch Reactor (HPBR) for creating emulsions of liquid carbon dioxide (/CO{sub 2})-in-water stabilized by fine particles for geologic sequestration of CO{sub 2}. Also, emulsions were created in water of a binary mixture of liquid carbon dioxide and liquid hydrogen sulfide (/H{sub 2}S), called Acid Gas (AG). This leads to the possibility of safe disposal of AG in deep geologic formations, such as saline aquifers. The stabilizing particles included pulverized limestone (CaCO{sub 3}), unprocessed flyash, collected by an electrostatic precipitator at a local coal-fired power plant, and pulverized siderite (FeCO{sub 3}). Particle size ranged from submicron to a few micrometers. The first important finding is that /CO{sub 2} and /H{sub 2}S freely mix as a binary liquid without phase separation. The next finding is that the mixture of /CO{sub 2} and /H{sub 2}S can be emulsified in water using fine particles as emulsifying agents. Such emulsions are stable over prolonged periods, so it should not be a problem to inject an emulsion into subterranean formations. The advantage of injecting an emulsion into subterranean formations is that it is denser than the pure liquid, therefore it is likely to disperse in the bottom of the geologic formation, rather than buoying upward (called fingering). In such a fashion, the risk of the liquids escaping from the formation, and possibly re-emerging into the atmosphere, is minimized. This is especially important for H{sub 2}S, because it is a highly toxic gas. Furthermore, the emulsion may interact with the surrounding minerals, causing mineral trapping. This may lead to longer sequestration periods than injecting the pure liquids alone.

Dan Golomb; David Ryan; Eugene Barry

2007-01-08T23:59:59.000Z

292

Leakage and Sepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water  

E-Print Network [OSTI]

from geologic carbon sequestration sites: unsaturated zoneCO 2 from Geologic Carbon Sequestration Sites, Vadose Zoneseepage from geologic carbon sequestration sites may occur.

Oldenburg, Curt M.; Lewicki, Jennifer L.

2005-01-01T23:59:59.000Z

293

Waterflood and Enhanced Oil Recovery Studies using Saline Water and Dilute Surfactants in Carbonate Reservoirs  

E-Print Network [OSTI]

to decrease the residual oil saturation. In calcareous rocks, water from various resources (deep formation, seawater, shallow beds, lakes and rivers) is generally injected in different oil fields. The ions interactions between water molecules, salts ions, oil...

Alotaibi, Mohammed

2012-02-14T23:59:59.000Z

294

Can carbon finance contribute to the promotion of solar water heating in Bolivia?  

E-Print Network [OSTI]

Residential applications of renewable energy can contribute to reducing greenhouse gas emissions while improving the quality of life for households. Thermosiphon solar water heaters are passive systems using solar energy to supply hot water...

Hayek, Niklas

2011-11-24T23:59:59.000Z

295

Membrane augmented distillation to separate solvents from water  

DOE Patents [OSTI]

Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

2012-09-11T23:59:59.000Z

296

Carbon dioxide and energy flux partitioning between the understorey and the overstorey of a maritime pine forest during a year with reduced soil water availability  

E-Print Network [OSTI]

during an atypical year with long-lasting reduced soil water availibility. Energy balance closure1 Carbon dioxide and energy flux partitioning between the understorey and the overstorey of a maritime pine forest during a year with reduced soil water availability Nathalie Jarosz* , Yves Brunet

Paris-Sud XI, Université de

297

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network [OSTI]

for Geologic Carbon Sequestration. International of Energy. Carbon Sequestration Atlas of the Water Extracted from Carbon Sequestration Projects."

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

298

Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water  

SciTech Connect (OSTI)

A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

1997-07-01T23:59:59.000Z

299

Glycol-Water Interactions and co-existing phases and Temperature Dependent Solubility. An Example Of Carbon-Hydrogen Chemistry In Water  

E-Print Network [OSTI]

Recently there has been great interest in Glycol-Water chemistry and solubility and temperature dependent phase dynamics. The Glycol-Water biochemistry of interactions is present in plant biology and chemistry, is of great interest to chemical engineers and biochemists as it is a paradigm of Carbon-Hydrogen Water organic chemistry. There is an interest moreover in formulating a simpler theory and computation model for the Glycol-Water interaction and phase dynamics, that is not fully quantum mechanical yet has the high accuracy available from a fully quantum mechanical theory of phase transitions of fluids and Fermi systems. Along these lines of research interest we have derived a Lennard-Jones -like theory of interacting molecules-Water in a dissolved adducts of Glycol-Water system interacting by Hydrogen bonds whose validity is supported at the scale of interactions by other independent molecular dynamics investigations that utilize force fields dependent on their experimental fittings to the Lennard-Jones potential and where we have relaxed or generalized the potential to arbitrary and possibly fractional powers. The theory then is a semi-classical theory as the repulsion of particles is incorporated in the Lennard-Jones -like potential's energy required to bring two molecules together, a repulsion of sorts. We derive distributions for the molecular species that are exactly solved, and are derived from maximum entropy, here the semi-classical analogue of the Hamiltonian superposition of quantum phase theory of fluids. We also derive the similar statistics from the microscopic SDEs stochastic differential dynamics equations, verifying the macroscopic state function entropic-thermodynamic derivation.

Fredrick Michael

2010-10-26T23:59:59.000Z

300

Leakage and Sepage of CO2 from Geologic Carbon SequestrationSites: CO2 Migration into Surface Water  

SciTech Connect (OSTI)

Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO{sub 2} may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO{sub 2} leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO{sub 2} and CH{sub 4} fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO{sub 2} and CH{sub 4} fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO{sub 2} overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO{sub 2} bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s{sup -1} at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s{sup -1}. Liquid CO{sub 2} bubbles rise slower in water than gaseous CO{sub 2} bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO{sub 2} and CH{sub 4} at three different seepage rates reveals that ebullition and bubble flow will be the dominant form of gas transport in surface water for all but the smallest seepage fluxes or shallowest water bodies. The solubility of the gas species in water plays a fundamental role in whether ebullition occurs. We used a solubility model to examine CO{sub 2} solubility in waters with varying salinity as a function of depth below a 200 m-deep surface water body. In this system, liquid CO{sub 2} is stable between the deep regions where supercritical CO{sub 2} is stable and the shallow regions where gaseous CO{sub 2} is stable. The transition from liquid to gaseous CO{sub 2} is associated with a large change in density, with corresponding large change in bubble buoyancy. The solubility of CO{sub 2} is lower in high-salinity waters such as might be encountered in the deep subsurface. Therefore, as CO{sub 2} migrates upward through the deep subsurface, it will likely encounter less saline water with increasing capacity to dissolve CO{sub 2} potentially preventing ebullition, depending on the CO{sub 2} leakage flux. However, as CO{sub 2} continues to move upward through shallower depths, CO{sub 2} solubility in water decreases strongly leading to greater likelihood of ebullition and bubble flow in surface water. In the case of deep density-stratified lakes in which ebullition is suppressed, enhanced mixing and man-made degassing schemes can alleviate the buildup of CO{sub 2} and related risk of dangerous rapid discharges. Future research efforts are needed to increase understanding of CO{sub 2} leakage and seepage in surface water and saturated porous media. For example, we recommend experiments and field tests of CO{sub 2} migration in saturated systems to formulate bubble-driven water-displacement models and relative permeability functions that can be used in simulation models.

Oldenburg, Curt M.; Lewicki, Jennifer L.

2005-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Temperature dependent vapor pressures of chlorinated catechols, syringols, and syringaldehydes  

SciTech Connect (OSTI)

The vapor pressures of nine chlorinated catechols, syringols, and syringaldehydes were determined as a function of temperature with a gas chromatographic retention time technique. The vapor pressures at 298.15 K were in the range of 0.02--1 Pa, and the enthalpies of vaporization, between 68 and 82 kJ/mol. The validity of the technique was established by a calibration involving four chlorinated phenols with well-known vapor pressures. Using these data and previously reported solubility data, Henry`s law constants for these substances and some chlorinated guaiacols and veratrols were estimated. The vapor pressure of these substances tends to decrease with increasing polarity and an increasing number of chlorine atoms. Henry`s law constants decrease sharply with increasing polarity, suggesting that methylation can result in a significant increase in a chemical`s potential for volatilization from water.

Lei, Y.D.; Shiu, W.Y.; Boocock, D.G.B. [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry] [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry; Wania, F. [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)] [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)

1999-03-01T23:59:59.000Z

302

Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets  

E-Print Network [OSTI]

by chem- ical vapor infiltration (CVI) of carbon source gases into fiber preforms. While CVI of carbon fasteners [1]. While the above applications are currently filled by traditional carbon fiber C/ C compositesStructural annealing of carbon coated aligned multi-walled carbon nanotube sheets Shaghayegh Faraji

Zhu, Yuntian T.

303

Carbon monoxide-assisted growth of carbon nanotubes Y.H. Tang a,b  

E-Print Network [OSTI]

Carbon monoxide-assisted growth of carbon nanotubes Y.H. Tang a,b , Y.F. Zheng a , C.S. Lee a , N was used to synthesize carbon nanotubes (CNTs) in a hot-®lament chemical vapor deposition (HFCVD) system in the formation of multi-walled carbon nanotubes (MWNT)s. The CNTs synthesized from carbon monoxide validate

Zheng, Yufeng

304

Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave Radiometers During the 2003 Cloudiness Inter-Comparison Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface of water.OrganicNov 4 5

305

Organic vapor jet printing system  

DOE Patents [OSTI]

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

306

Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects  

E-Print Network [OSTI]

* Department of Chemistry and Biochemistry, University of MissourisSt. Louis, St. Louis, Missouri 63121 Liquid vapor pressure isotope effects have generally been observed, pD > pH.12 Vapor pressure and sublimation

Chickos, James S.

307

Method of making carbon-carbon composites  

DOE Patents [OSTI]

A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1993-01-01T23:59:59.000Z

308

Vapor-phase heat-transport system  

SciTech Connect (OSTI)

A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

Hedstrom, J.C.

1983-01-01T23:59:59.000Z

309

Vapor-liquid equilibrium of water-acetone-air at ambient temperatures and pressures. An analysis of different VLE-fitting methods  

SciTech Connect (OSTI)

The availability of accurate equilibrium data is of high importance in chemical engineering practice both for design and research purposes. It appeared that for the gas absorption system water-acetone-air in the range of special interest for absorption and desorption operations, neither literature data nor calculations following UNIFAC gave a sufficient accuracy. An experimental program was set up to determine equilibrium data with an accuracy within 2% for low acetone concentrations (up to 7 wt % gas phase) at ambient temperature (16-30/sup 0/C) and atmospheric pressure (740-860 mmHg). From experiments the activity coefficient at infinite dilution of acetone ..gamma.. is found to be 6.79 (0.01) at 20/sup 0/C and 7.28 (0.01) at 25/sup 0/C, while the total error in ..gamma.. is 1.5%. The equilibrium constant can be calculated from ..gamma.. and shows the same error. The experimental data-fitting with procedures of Margules (two parameters) and Van Laar were successful, but NRTL, Wilson, and UNIQUAC failed, probably because of the small concentration range used.

Lichtenbelt, J.H.; Schram, B.J.

1985-04-01T23:59:59.000Z

310

Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas  

DOE Patents [OSTI]

Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

Kong, Peter C. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

2004-10-19T23:59:59.000Z

311

Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas  

DOE Patents [OSTI]

Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

Kong, Peter C.; Detering, Brent A.

2003-08-19T23:59:59.000Z

312

Stratified vapor generator  

DOE Patents [OSTI]

A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

2008-05-20T23:59:59.000Z

313

VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS  

SciTech Connect (OSTI)

This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

Eric M. Suuberg; Vahur Oja

1997-07-01T23:59:59.000Z

314

Multimodel Predictive System for Carbon Dioxide Solubility in Saline Formation Waters  

SciTech Connect (OSTI)

The prediction of carbon dioxide solubility in brine at conditions relevant to carbon sequestration (i.e., high temperature, pressure, and salt concentration (T-P-X)) is crucial when this technology is applied. Eleven mathematical models for predicting CO{sub 2} solubility in brine are compared and considered for inclusion in a multimodel predictive system. Model goodness of fit is evaluated over the temperature range 304433 K, pressure range 74500 bar, and salt concentration range 07 m (NaCl equivalent), using 173 published CO{sub 2} solubility measurements, particularly selected for those conditions. The performance of each model is assessed using various statistical methods, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Different models emerge as best fits for different subranges of the input conditions. A classification tree is generated using machine learning methods to predict the best-performing model under different T-P-X subranges, allowing development of a multimodel predictive system (MMoPS) that selects and applies the model expected to yield the most accurate CO{sub 2} solubility prediction. Statistical analysis of the MMoPS predictions, including a stratified 5-fold cross validation, shows that MMoPS outperforms each individual model and increases the overall accuracy of CO{sub 2} solubility prediction across the range of T-P-X conditions likely to be encountered in carbon sequestration applications.

Wang, Zan; Small, Mitchell J.; Karamalidis, Athanasios K.

2013-02-05T23:59:59.000Z

315

Novel Membranes for Water Technologies "Formation of Aligned Carbon Nanotubes (CNTs) with Tailored Physical and  

E-Print Network [OSTI]

water worldwide for industrial, agricultural and municipal usage need to be well preserved by efficient-microbial polymeric film over the vertically embedded CNTs on the membrane surface PES PET Single walled Double Walled

316

Green chemistry : dense carbon dioxide and water as environmentally benign reaction media  

E-Print Network [OSTI]

(cont.) was investigated in scCO?, and the cycloaddition between cyclopentadiene and methyl vinyl ketone (MVK) was studied in an scCO?/liquid water environment. Nitrogen chemistry, specifically the synthesis of nitrogen ...

Allen, Andrew J. (Andrew John), 1978-

2004-01-01T23:59:59.000Z

317

In Situ Infrared Spectroscopic Study of Brucite Carbonation in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbonation in Dry to Water-Saturated Supercritical Carbon Dioxide. Abstract: In geologic carbon sequestration, while part of the injected carbon dioxide will dissolve into host...

318

LABORATORY TESTING TO SIMULATE VAPOR SPACE CORROSION IN RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 70 years at the Hanford nuclear facility. Vapor space corrosion of the tank walls has emerged as an ongoing challenge to overcome in maintaining the structural integrity of these tanks. The interaction between corrosive and inhibitor species in condensates/supernates on the tank wall above the liquid level, and their interaction with vapor phase constituents as the liquid evaporates from the tank wall influences the formation of corrosion products and the corrosion of the carbon steel. An effort is underway to gain an understanding of the mechanism of vapor space corrosion. Localized corrosion, in the form of pitting, is of particular interest in the vapor space. CPP testing was utilized to determine the susceptibility of the steel in a simulated vapor space environment. The tests also investigated the impact of ammonia gas in the vapor space area on the corrosion of the steel. Vapor space coupon tests were also performed to investigate the evolution of the corrosion products during longer term exposures. These tests were also conducted at vapor space ammonia levels of 50 and 550 ppm NH{sub 3} (0.005, and 0.055 vol.%) in air. Ammonia was shown to mitigate vapor space corrosion.

Wiersma, B.; Garcia-Diaz, B.; Gray, J.

2013-08-30T23:59:59.000Z

319

Organic carbon flux at the mangrove soil-water column interface in the Florida Coastal Everglades  

E-Print Network [OSTI]

??????????????????.?.. 24 8 Salinity vs. DOC concentration plot of water samples during study sampling periods????????????..??????.??. 32 viii LIST OF TABLES TABLE Page 1 delta13C values and amount of DOC... leached over a 24-hour period for three mangrove species and one freshwater marsh sedge???...? 25 2 Comparison of DOC and TOC concentrations of various wetland studies..?????????????????????????. 28 3 Estimates of net...

Romigh, Melissa Marie

2006-08-16T23:59:59.000Z

320

Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater  

SciTech Connect (OSTI)

Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

To estimate vapor pressure easily  

SciTech Connect (OSTI)

Vapor pressures as functions of temperature for approximately 700 major organic chemical compounds are given. The tabulation also gives the temperature range for which the data are applicable. Minimum and maximum temperatures are denoted by TMIN and TMAX. The Antoine equation that correlates vapor pressure as a function of temperature is described. A representative comparison of calculated and actual data values for vapor pressure is shown for ethyl alcohol. The coefficient tabulation is based on both literature (experimental data) and estimated values.

Yaws, C.L.; Yang, H.C. (Lamar Univ., Beaumont, TX (USA))

1989-10-01T23:59:59.000Z

322

Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones  

SciTech Connect (OSTI)

The ongoing changes in the global climate expose the world s ecosystems not only to increasing CO2 concentrations and temperatures but also to altered precipitation (P) regimes. Using four well-established process-based ecosystem models (LPJ, DayCent, ORCHIDEE, TECO), we explored effects of potential P changes on water limitation and net primary production (NPP) in seven terrestrial ecosystems with distinctive vegetation types in different hydroclimatic zones. We found that NPP responses to P changes differed not only among sites but also within a year at a given site. The magnitudes of NPP change were basically determined by the degree of ecosystem water limitation, which was quantified here using the ratio between atmospheric transpirational demand and soil water supply. Humid sites and/or periods were least responsive to any change in P as compared with moderately humid or dry sites/periods. We also found that NPP responded more strongly to doubling or halving of P amount and a seasonal shift in P occurrence than that to altered P frequency and intensity at constant annual amounts. The findings were highly robust across the four models especially in terms of the direction of changes and largely consistent with earlier P manipulation experiments and modelling results. Overall, this study underscores the widespread importance of P as a driver of change in ecosystems, although the ultimate response of a particular site will depend on the detailed nature and seasonal timing of P change.

Gerten, Dieter [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Luo, Yiqi [University of Oklahoma; Le Maire, Guerric [Laboratoire des Sciences du Climat et de l'Environement, France; Parton, William [University of Colorado, Fort Collins; Keough, Cindy [University of Colorado, Fort Collins; Weng, Ensheng [University of Oklahoma, Norman; Beier, Claus [Riso National Laboratory, Roskilde, Denmark; Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Cramer, Wolfgang [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Dukes, Jeff [University of Massachusetts, Boston; Hanson, Paul J [ORNL; Knapp, Alan [Colorado State University, Fort Collins; Linder, Sune [Swedish University of Agricultural Sciences, Upsalla, Sweden; Nepstad, Daniel [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Rustad, Lindsey [USDA Forest Service; Sowerby, ALWYN [Centre for Ecology and Hydrology, Bangor, Gwynedd, United Kingdom

2008-01-01T23:59:59.000Z

323

ARM - Field Campaign - Water Vapor IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX) govCampaignsVerification

324

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect (OSTI)

The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport reactor systems is planned to demonstrate the feasibility of this process in large scale operations to separate carbon dioxide from flue gas.

David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

2001-10-01T23:59:59.000Z

325

Microemulsions of water in supercritical carbon dioxide : an in-situ NMR investigation of micelle formation and structure.  

SciTech Connect (OSTI)

High-pressure NMR spectroscopy was used for the first time to investigate microemulsions of water in supercritical carbon dioxide. The emulsions were formed using a family of anionic perfluoropolyether ammonium carboxylate surfactants. This system holds promise as a reaction medium for conducting homogeneous catalytic reactions within the aqueous micellular cores while, at the same time, exploiting the facile mass transfer properties of the supercritical fluid. Ammonium hexafluorophosphate was used as a water-soluble ionic guest to investigate micelle formation and structure. Under micelle-forming conditions, the PF{sub 6}{sup -} guest, surfactant, and water were uniformly dispersed throughout the CO{sub 2} phase, as demonstrated by in situ NMR imaging. In addition, the micelles were observed to form even in the absence of mechanical stirring. This spontaneous formation of micelles demonstrates that the NMR spectral properties were obtained under conditions that result in the production of thermodynamically stable microemulsions. The nuclear overhauser effect (NOE) was used to probe the micellular structure through dipole-dipole interactions between the PF{sub 6}{sup -} anion and the fluorinated backbone of the surfactant. A strong negative homonuclear NoE was observed between the PF{sub 6}{sup -} guest and the fluorine moiety that is located directly adjacent to the surfactant's carboxylate head group. This highly specific negative NOE indicates an ordered arrangement, where the PF{sub 6}{sup -} anion and carboxylate ion are located in close proximity to one another. This close association of two negatively charged ionic groups in an aqueous environment is unusual and suggests that the PF{sub 6}{sup -} guest is concentrated within the electric double layer that forms at the micellular interface.

Fremgen, D. E.; Smotkin, E. S.; Gerald, R. E.; Klingler, R. J.; Rathke, J. W.; Chemical Engineering; IIT

2001-04-01T23:59:59.000Z

326

Fuel vapor control device  

SciTech Connect (OSTI)

A fuel vapor control device is described having a valve opening and closing a passage connecting a carburetor and a charcoal canister according to a predetermined temperature. A first coil spring formed by a ''shape memory effect'' alloy is provided to urge the valve to open the passage when the temperature is high. A second coil spring urges the valve to close the passage. A solenoid is provided to urge an armature against the valve to close the passage against the force of the first coil spring when the engine is running. The solenoid heats the first coil spring to generate a spring force therein when the engine is running. When the engine is turned off, the solenoid is deactivated, and the force of the first spring overcomes the force of the second spring to open the passage until such time as the temperature of the first spring drops below the predetermined temperature.

Ota, I.; Nishimura, Y.; Nishio, S.; Yogo, K.

1987-10-20T23:59:59.000Z

327

Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water  

E-Print Network [OSTI]

Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture preservation of the IRMOF structure. Carbon dioxide capture from combustion sources such as flue gas in power this carbon capture challenge. The preferred method for measuring the efficiency of a given material

Yaghi, Omar M.

328

Fabrication and characterization of single carbon nanotube emitters as point electron sources  

E-Print Network [OSTI]

a producing micron-size carbon fibers which contain single carbon nanotubes at their cores by a chemical vapor of the fractured carbon fiber, a multiwalled nanotube sticks out due to its different fracture toughness from the carbon fiber that is largely made of amorphous carbon. The pro- truded carbon nanotubes are usually 4

Qin, Lu-Chang

329

Water Ice, Silicate and PAH Emission Features in the ISO Spectrum of the Carbon-rich Planetary Nebula CPD-56 8032  

E-Print Network [OSTI]

Combined ISO SWS and LWS spectroscopy is presented of the late WC-type planetary nebula nucleus CPD-56 8032 and its carbon-rich nebula. The extremely broad coverage (2.4-197 microns) enables us to recognize the clear and simultaneous presence of emission features from both oxygen- and carbon- rich circumstellar materials. Removing a smooth continuum highlights bright emission bands characteristic of polycyclic aromatic hydrocarbons (hereafter PAHs) in the 3-14 micron region, bands from crystalline silicates longwards of 18 microns, and the 43- and 62-micron bands of crystalline water ice. We discuss the probable evolutionary state and history of this unusual object in terms of (a) a recent transition from an O-rich to a C-rich outflow following a helium shell flash; or (b) a carbon-rich nebular outflow encountering an O-rich comet cloud.

Martin Cohen; M. J. Barlow; R. J. Sylvester; X. -W. Liu; P. Cox; T. Lim; B. Schmitt; A. K. Speck

1999-01-11T23:59:59.000Z

330

Portable vapor diffusion coefficient meter  

DOE Patents [OSTI]

An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

Ho, Clifford K. (Albuquerque, NM)

2007-06-12T23:59:59.000Z

331

Chemical vapor deposition of group IIIB metals  

DOE Patents [OSTI]

Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

Erbil, A.

1989-11-21T23:59:59.000Z

332

Optimization of multi-pressure himidification-dehumidification desalination using thermal vapor compression and hybridization  

E-Print Network [OSTI]

Humidification-dehumidification (HD or HDH) desalination, and specifically HD driven by a thermal vapor compressor (TVC), is a thermal desalination method that has the potential to produce potable water efficiently in order ...

Mistry, Karan Hemant

333

Application of Computational Fluid Dynamics in the Forced Dispersion Modeling of LNG Vapor Clouds  

E-Print Network [OSTI]

The safety and security of liquefied natural gas (LNG) facilities has prompted the need for continued study of LNG mitigation systems. Water spray systems are widely recognized as an effective measure for dispersing LNG vapor clouds. Currently...

Kim, Byung-Kyu

2013-05-31T23:59:59.000Z

334

Modeled Interactive Effects of Precipitation, temperature, and [CO2] on Ecosystem Carbon and Water Dynamics in Different Climatic Zones  

SciTech Connect (OSTI)

Interactive effects of multiple global change factors on ecosystem processes are complex. It is relatively expensive to explore those interactions in manipulative experiments. We conducted a modeling analysis to identify potentially important interactions and to stimulate hypothesis formulation for experimental research. Four models were used to quantify interactive effects of climate warming (T), altered precipitation amounts [doubled (DP) and halved (HP)] and seasonality (SP, moving precipitation in July and August to January and February to create summer drought), and elevated [CO2] (C) on net primary production (NPP), heterotrophic respiration (Rh), net ecosystem production (NEP), transpiration, and runoff.We examined those responses in seven ecosystems, including forests, grasslands, and heathlands in different climate zones. The modeling analysis showed that none of the threeway interactions among T, C, and altered precipitation was substantial for either carbon or water processes, nor consistent among the seven ecosystems. However, two-way interactive effects on NPP, Rh, and NEP were generally positive (i.e. amplification of one factor s effect by the other factor) between T and C or between T and DP. A negative interaction (i.e. depression of one factor s effect by the other factor) occurred for simulated NPP between T and HP. The interactive effects on runoff were positive between T and HP. Four pairs of two-way interactive effects on plant transpiration were positive and two pairs negative. In addition, wet sites generally had smaller relative changes in NPP, Rh, runoff, and transpiration but larger absolute changes in NEP than dry sites in response to the treatments. The modeling results suggest new hypotheses to be tested in multifactor global change experiments. Likewise, more experimental evidence is needed for the further improvement of ecosystem models in order to adequately simulate complex interactive processes.

Luo, Yiqi [University of Oklahoma; Gerten, Dieter [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Le Maire, Guerric [Laboratoire des Sciences du Climat et de l'Environement, France; Parton, William [University of Colorado, Fort Collins; Weng, Ensheng [University of Oklahoma, Norman; Zhou, Xuhuui [University of Oklahoma; Keough, Cindy [University of Colorado, Fort Collins; Beier, Claus [Riso National Laboratory, Roskilde, Denmark; Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Cramer, Wolfgang [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Dukes, Jeff [University of Massachusetts, Boston; Emmett, Bridget [Centre for Ecology and Hydrology, Bangor, Gwynedd, United Kingdom; Hanson, Paul J [ORNL; Knapp, Alan [Colorado State University, Fort Collins; Linder, Sune [Swedish University of Agricultural Sciences, Upsalla, Sweden; Nepstad, Daniel [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Rustad, Lindsey [USDA Forest Service

2008-01-01T23:59:59.000Z

335

Production of higher quality bio-oils by in-line esterification of pyrolysis vapor  

DOE Patents [OSTI]

The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

2014-12-02T23:59:59.000Z

336

The Vaporization Enthalpies and Vapor Pressures of Some Primary Amines of Pharmaceutical Importance by Correlation Gas  

E-Print Network [OSTI]

by Correlation Gas Chromatography Chase Gobble, Nigam Rath, and James Chickos* Department of Chemistry Information ABSTRACT: Vapor pressures, vaporization, and sublimation enthalpies of several pharmaceuticals and boiling temperatures when available. Sublimation enthalpies and vapor pressures are also evaluated for 1

Chickos, James S.

337

VAPORIZATION THERMODYNAMICS OF KCl. COMBINING VAPOR PRESSURE AND GRAVIMETRIC DATA  

E-Print Network [OSTI]

.B. Department of Chemistry, Moscow State University, Moscow, 119899, Russia Bonnell D.W., Hastie J.W. National temperature chemistry situations, vapor pressures are typically less than 100 kPa. The molar volume is p = 101325 Pa). The subscript trs denotes that the changeisfor a transition, typically sublimation

Rudnyi, Evgenii B.

338

Method of making carbon-carbon composites  

DOE Patents [OSTI]

A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1991-01-01T23:59:59.000Z

339

Water Management in A PEMFC: Water Transport Mechanism and Material  

E-Print Network [OSTI]

Water Management in A PEMFC: Water Transport Mechanism and Material Degradation in Gas Diffusion on the water management of the PEMFC, namely the transport of product water (both liquid and vapor its water management performance and func- tion as indicators of the degradation of GDL material

Kandlikar, Satish

340

Self-Assembled, Nanostructured Carbon for Energy Storage and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment nanostructuredcarbon.pdf...

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Inorganic and organic carbon variations in surface water, Konza prairie LTER site, USA, and Maolan karst experimental site, China  

E-Print Network [OSTI]

at the Maolan Karst Experimental (Maolan) Site, China. For the stream at the Konza LTER site, little variation in water chemistry was observed among the upstream, midstream and downstream locations, indicating the groundwater and stream water chemistry...

Liu, Huan

2014-05-31T23:59:59.000Z

342

Carbon based prosthetic devices  

SciTech Connect (OSTI)

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to evaluate the use of carbon/carbon-fiber-reinforced composites for use in endoprosthetic devices. The application of these materials for the metacarpophalangeal (MP) joints of the hand was investigated. Issues concerning mechanical properties, bone fixation, biocompatibility, and wear are discussed. A system consisting of fiber reinforced materials with a pyrolytic carbon matrix and diamond-like, carbon-coated wear surfaces was developed. Processes were developed for the chemical vapor infiltration (CVI) of pyrolytic carbon into porous fiber preforms with the ability to tailor the outer porosity of the device to provide a surface for bone in-growth. A method for coating diamond-like carbon (DLC) on the articulating surface by plasma-assisted chemical vapor deposition (CVD) was developed. Preliminary results on mechanical properties of the composite system are discussed and initial biocompatibility studies were performed.

Devlin, D.J.; Carroll, D.W.; Barbero, R.S.; Archuleta, T. [Los Alamos National Lab., NM (US); Klawitter, J.J.; Ogilvie, W.; Strzepa, P. [Ascension Orthopedics (US); Cook, S.D. [Tulane Univ., New Orleans, LA (US). School of Medicine

1998-12-31T23:59:59.000Z

343

Vapor phase modifiers for oxidative coupling  

DOE Patents [OSTI]

Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, Barbara K. (Charleston, WV)

1991-01-01T23:59:59.000Z

344

CARBON SEQUESTRATION IN NATURAL AND CREATED WETLANDS.  

E-Print Network [OSTI]

?? Wetland ecosystems are significant carbon sinks. Their high productivity and presence of water gives them the ability to efficiently sequester carbon in the soil, (more)

Bernal, Blanca

2012-01-01T23:59:59.000Z

345

Crystallographic Snapshots of Cyanide- and Water-Bound C-Clusters from Bifunctional Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase  

E-Print Network [OSTI]

Nickel-containing carbon monoxide dehydrogenases (CODHs) reversibly catalyze the oxidation of carbon monoxide to carbon dioxide and are of vital importance in the global carbon cycle. The unusual catalytic CODH C-cluster ...

Kung, Yan

346

Method of preparation of carbon materials for use as electrodes in rechargeable batteries  

DOE Patents [OSTI]

A method is described for producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of {approx_equal} 80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere. 4 figs.

Doddapaneni, N.; Wang, J.C.F.; Crocker, R.W.; Ingersoll, D.; Firsich, D.W.

1999-03-16T23:59:59.000Z

347

Method of preparation of carbon materials for use as electrodes in rechargeable batteries  

DOE Patents [OSTI]

A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

Doddapaneni, Narayan (Alburquerque, NM); Wang, James C. F. (Livermore, CA); Crocker, Robert W. (Fremont, CA); Ingersoll, David (Alburquerque, NM); Firsich, David W. (Dayton, OH)

1999-01-01T23:59:59.000Z

348

Stratigraphy and Reservoir-analog Modeling of Upper Miocene Shallow-water and Deep-water Carbonate Deposits: Agua Amarga Basin, Southeast Spain  

E-Print Network [OSTI]

(97.7 x 10 6 m 3 of reservoir pore volume); dispersed-flow deep-water deposits (5.71 x 10 6 m 3 of reservoir pore volume) that are heterogeneous and widespread; focused-flow deep-water deposits (14.6 x 10 6 m 3 of reservoir pore volume... odel).......................136 Apendix IX Dip Angle Maps.........................................................136 Apendix X Porosity Evolution........................................................138 vii List of Figures & Tables Chapter...

Dvoretsky, Rachel Ana

2009-03-10T23:59:59.000Z

349

Vapor canister heater for evaporative emissions systems  

SciTech Connect (OSTI)

Automotive evaporative emissions systems use a charcoal canister to store evaporative hydrocarobn emissions. These stored vapors are later purged and burned during engine operation. Under certain conditions the engine cannot completely purge the canister of the stored fuel vapors, which results in a decreased vapor storage capacity in the canister. A self-regulating PTC (Positive Temperature Coefficient) heater has been developed to warm the purge air as it enters the canister, in order to provide thermal energy for increased release of the vapors from charcoal sites. This paper describes the construction and operation of the vapor canister heater as it relates to improved evaporative emission system performance.

Bishop, R.P.; Berg, P.G.

1987-01-01T23:59:59.000Z

350

Method of and apparatus for measuring vapor density  

DOE Patents [OSTI]

Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.

Nelson, L.D.; Cerni, T.A.

1989-10-17T23:59:59.000Z

351

Method of and apparatus for measuring vapor density  

DOE Patents [OSTI]

Apparatus and method determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavlength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to: ##EQU1## where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4)+K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation.

Nelson, Loren D. (Morrison, CO); Cerni, Todd A. (Littleton, CO)

1989-01-01T23:59:59.000Z

352

Recovery of Water from Boiler Flue Gas  

SciTech Connect (OSTI)

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

353

ETHANOL PRODUCTION FROM DIFFERENT CARBON SOURCES USING ANAEROBICALLY DIGESTED AND WETOXIDISED MANURE AS NUTRIENT AND WATER SUPPLY  

E-Print Network [OSTI]

gasses, great interest has arisen in production of biofuels. The idea of combining biogas and bioethanol and water in industry is a rather expensive medium. The remaining liquid after the biogas process is waste to pollution of ground waters. Furthermore the biogas process does not kill all pathogens. Anaerobically

354

Simulation of chemical vapor infiltration and deposition based on 3D images: a local scale approach  

E-Print Network [OSTI]

infiltration of ceramic matrix composites is presented. This computational model requires a 3D representation/reaction problems; Random walks; 3D image-based modeling 1. Introduction Ceramic Matrix Composites and Carbon with a matrix. One of the most efficient ones is Chemical Vapor Infiltration (CVI), by which gaseous precursors

Boyer, Edmond

355

Seasonal carbon dynamics and water fluxes in an Amazon Y E O N J O O K I M * , R Y A N G . K N O X , M A R C O S L O N G O , D A V I D M E D V I G Y ,  

E-Print Network [OSTI]

Seasonal carbon dynamics and water fluxes in an Amazon rainforest Y E O N J O O K I M * , R Y A N of seasonality in water, carbon, and litter fluxes seen at the Tapajos National Forest, Brazil (2.86°S, 54.96°W% of undis- turbed tropical rainforest, and plays a critical role in the Earth's water and carbon cycles

Moorcroft, Paul R.

356

MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.  

SciTech Connect (OSTI)

Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

Dugger, Michael T.; Asay, David B.; Kim, Seong H.

2008-01-01T23:59:59.000Z

357

Porous media to separate gases liquid droplets and/or solid particles from gases or vapors and coalesce entrained droplets  

SciTech Connect (OSTI)

Gas-vapor treating and filter mats are described that are composed of glass fibers intermixed with micro-bits of any of an expanded thermoplastic styrene-polymer or expanded thermoplastic lower polyolefin or flexible foam polyurethane and a suitable organic bonding agent, which mat may contain any of fibers of a fiber-forming terephthalate polyester, activated carbon, and gas-vapor adsorbent crystalline zeolite molecular sieve particles.

Klein, M.

1980-12-16T23:59:59.000Z

358

Vapor explosion in the RIA-ST-4 experiment. [BWR  

SciTech Connect (OSTI)

A concern in assuring the safety of commercial light water reactors (LWRs) is whether core overheating, during which molten fuel is produced, can lead to massive vaporization of the coolant and shock pressurization of the system due to an energetic molten fuel-coolant interaction (MFCI). The RIA-ST-4 experiment was one of four scoping tests in the Reactivity Initiated Accident (RIA) Test Series which is being conducted in the Power Burst Facility (PBF) to define an energy deposition failure threshold and to determine modes and consequences of fuel rod failure during a postulated boiling water reactor (BWR) control rod drop accident.

El-Genk, M.S.

1980-01-01T23:59:59.000Z

359

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network [OSTI]

materials. MATERIALS AND DESIRED DATA Carbon-Carbon Composites(T300 & SWB): Crush Resistance, Bend StrengthCARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

Rollins, Andrew M.

360

Carbon Nanotube Growth Using Ni Catalyst in Different Layouts  

E-Print Network [OSTI]

Vertically aligned carbon nanotubes have been grown using Ni as catalyst by plasma enhanced chemical vapor deposition system (PECVD) in various pre-patterned substrates. Ni was thermally evaporated on silicon substrates ...

Nguyen, H. Q.

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sustaining dry surfaces under water  

E-Print Network [OSTI]

Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

Paul R. Jones; Xiuqing Hao; Eduardo R. Cruz-Chu; Konrad Rykaczewski; Krishanu Nandy; Thomas M. Schutzius; Kripa K. Varanasi; Constantine M. Megaridis; Jens H. Walther; Petros Koumoutsakos; Horacio D. Espinosa; Neelesh A. Patankar

2014-09-29T23:59:59.000Z

362

VAPOR SPACE AND LIQUID/AIR INTERFACECORROSION TESTS  

SciTech Connect (OSTI)

The phenomena of vapor space corrosion and liquid/air interface corrosion of carbon steel in simulated liquid waste environments have been investigated. Initial experiments have explored the hypothesis that vapor space corrosion may be accelerated by the formation of a corrosive electrolyte on the tank wall by a process of evaporation of relatively warmer waste and condensation of the vapor on the relatively cooler tank wall. Results from initial testing do not support the hypothesis of electrolyte transport by evaporation and condensation. The analysis of the condensate collected by a steel specimen suspended over a 40 C simulated waste solution showed no measurable concentrations of the constituents of the simulated solution and a decrease in pH from 14 in the simulant to 5.3 in the condensate. Liquid/air interface corrosion was studied as a galvanic corrosion system, where steel at the interface undergoes accelerated corrosion while steel in contact with bulk waste is protected. The zero-resistance-ammeter technique was used to measure the current flow between steel specimens immersed in solutions simulating (1) the high-pH bulk liquid waste and (2) the expected low-pH meniscus liquid at the liquid/air interface. Open-circuit potential measurements of the steel specimens were not significantly different in the two solutions, with the result that (1) no consistent galvanic current flow occurred and (2) both the meniscus specimen and bulk specimen were subject to pitting corrosion.

Zapp, P.; Hoffman, E.

2009-11-09T23:59:59.000Z

363

Assessment of radionuclide vapor-phase transport in unsaturated tuff  

SciTech Connect (OSTI)

This report describes bounding calculations performed to investigate the possibility of radionuclide migration in a vapor phase associated with the emplacement of high-level waste canister in unsaturated tuff formations. Two potential radionuclide transport mechanisms in the vapor phase were examined: aerosol migration and convection/diffusion of volatile species. The former may have significant impact on the release of radionuclides to the accessible environment as the concentration in the aerosols will be equal to that in the ground water. A conservative analysis of air diffusion in a stagnant liquid film indicated that for all expected repository conditions, aerosol formation is not possible. The migration of volatile species was examined both in the vicinity of a waste canister and outside the thermally disturbed zone. Two-dimensional (radial) and three-dimensional (radial-vertical) coupled heat transfer-gas flow-liquid flow simulations were performed using the TOUGH computer code. The gas flow rate relative to the liquid flow rate predicted from the simulations allowed calculations of mobility ratios due to convection which led to the conclusion that, except for the immediate region near the canister, transport in the liquid phase will be dominant for radionuclides heavier than radon. Near the waste canister, iodine transport may also be important in the vapor phase. Bounding calculations for vertical mobility ratios were carried out as a function of saturation. These calculations are conservative and agree well with the two-dimensional simulations. Based on this analysis, it is clear that vapor-phase transport will not be important for radionuclides such as cesium and heavier species. Vapor transport for iodine may play a role in the overall release scenario depending on the particular repository conditions.

Smith, D.M.; Updegraff, C.D.; Bonano, E.J.; Randall, J.D.

1986-11-01T23:59:59.000Z

364

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

SciTech Connect (OSTI)

Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

2007-06-30T23:59:59.000Z

365

Control of flow through a vapor generator  

DOE Patents [OSTI]

In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

Radcliff, Thomas D.

2005-11-08T23:59:59.000Z

366

Carbon nanotube coatings as chemical absorbers  

DOE Patents [OSTI]

Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

2004-06-15T23:59:59.000Z

367

Overview of chemical vapor infiltration  

SciTech Connect (OSTI)

Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

1993-06-01T23:59:59.000Z

368

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents [OSTI]

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

369

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents [OSTI]

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

370

Vapor phase modifiers for oxidative coupling  

DOE Patents [OSTI]

Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, B.K.

1991-12-17T23:59:59.000Z

371

A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems  

SciTech Connect (OSTI)

In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size.

Factorovich, Matas H.; Scherlis, Damin A. [Departamento de Qumica Inorgnica, Analtica y Qumica Fsica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA (Argentina)] [Departamento de Qumica Inorgnica, Analtica y Qumica Fsica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA (Argentina); Molinero, Valeria [Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)] [Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)

2014-02-14T23:59:59.000Z

372

Near real time vapor detection and enhancement using aerosol adsorption  

SciTech Connect (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

373

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents [OSTI]

A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

Novick, V.J.; Johnson, S.A.

1999-08-03T23:59:59.000Z

374

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents [OSTI]

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

1999-01-01T23:59:59.000Z

375

E-Print Network 3.0 - alkali metal carbonates Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, sodium carbide, turpentine, finely divided metals Calcium water, carbon dioxide, carbon tetrachloride... , acids, metal powders, sulfur, finely divided organics or...

376

E-Print Network 3.0 - ammonium carbonate leaching Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

all oxidizing agents Chlorates ammonium salts... compounds, fulminic acid Sodium carbon tetrachloride, carbon dioxide, water Sodium nitrite ammonium nitrate... , calcium...

377

The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine  

E-Print Network [OSTI]

Thermodynamic property calculations of mixtures containing carbon dioxide (CO$_2$) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi, and the CO$_2$ activity coefficient model by Duan and Sun. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO$_2$, pure water, and both CO$_2$-rich and aqueous (H$_2$O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun's model yields accurate results for the partial molar enthalpy of CO$_2$. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H$_2$O-CO$_2$-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

P. C. Myint; Y. Hao; A. Firoozabadi

2015-04-20T23:59:59.000Z

378

Quantitative organic vapor-particle sampler  

DOE Patents [OSTI]

A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

Gundel, Lara (Berkeley, CA); Daisey, Joan M. (Walnut Creek, CA); Stevens, Robert K. (Cary, NC)

1998-01-01T23:59:59.000Z

379

Thermophilic Biotrickling Filtration of Ethanol Vapors  

E-Print Network [OSTI]

Thermophilic Biotrickling Filtration of Ethanol Vapors H U U B H . J . C O X , T H O M A S S E X of ethanol vapors in biotrickling filters for air pollution control was investigated. Two reactors were adaptation phase, the removal of ethanol was similar in both reactors. At a bed contact time of 57 s

380

VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.  

SciTech Connect (OSTI)

Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that the tritium concentration could be underestimated by 3 - 6%.

Kuhne, W.

2012-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION  

SciTech Connect (OSTI)

Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

ANDERSON, T.J.

2006-12-20T23:59:59.000Z

382

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents [OSTI]

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

2010-11-09T23:59:59.000Z

383

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents [OSTI]

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D.; Bourcier, William L.

2014-08-19T23:59:59.000Z

384

Quantitative Infrared Intensity Studies of Vapor-PhaseGlyoxal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal, and 2,3-Butanedione (Diacetyl) with Quantitative Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal,...

385

Absolute integrated intensities of vapor-phase hydrogen peroxide...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Absolute integrated intensities of vapor-phase hydrogen peroxide (H202) in the mid-infrared at atmospheric pressure. Absolute integrated intensities of vapor-phase hydrogen...

386

Tribocharging phenomena in hard disk amorphous carbon coatings with and without perfluoropolyether lubricants  

SciTech Connect (OSTI)

Scanning polarization force microscopy was used to study changes in surface potential (tribocharging) caused by the contact between a tungsten carbide tip and the amorphous carbon coating of a hard disk, both when bare and when covered with Zdol-TX lubricant. The surface potential change produced by tip contact decays with time at a rate that is strongly dependent on lubricant coverage and on the presence of oxygen and water vapor in the environment. Two different charging mechanisms are proposed. One involves chemical modification of the surface by removal of oxygen bound to the surface. This gives rise to a potential change that decays with time. Another mechanism involves trapping of charge in states within the energy gap of the insulating carbon film. The potential change due to this trapped charge does not decay over periods much greater than 1 h.

van den Oetelaar, R. J. A.; Xu, L.; Ogletree, D. F.; Salmeron, M.; Tang, H.; Gui, J.

2001-04-01T23:59:59.000Z

387

Tribocharging phenomena in hard disk amorphous carbon coatings with and without perfluoropolyether lubricants  

SciTech Connect (OSTI)

Scanning polarization force microscopy was used to study changes in surface potential (tribocharging) caused by the contact between a tungsten carbide tip and the amorphous carbon coating of a hard disk,both when bare and when covered with Zdol-TX lubricant. The surface potential change produced by tip contact decays with time at a rate that is strongly dependent on lubricant coverage, and on the presence of oxygen and water vapor in the environment. Two different charging mechanisms are proposed. One involves chemical modification of the surface by removal of oxygen bound to the surface. This gives rise to a potential change that decays with time. Another mechanism involves trapping of charge in states within the energy gap of the insulating carbon film. The potential change due to this trapped charge does not decay over periods much greater than 1 hour.

van den Oetelaar, Ronald J.A.; Xu, Lei; Ogletree, D. Frank; Salmeron, Miquel; Tang, Hung; Gui, Jing

2000-08-01T23:59:59.000Z

388

Effect of paraffinic, naphthenic and aromatic distribution in the hydrocarbon mixture and water on the phase equilibria of carbon dioxide-hydrocarbon systems over the temperature range from 333 K to 366 K  

SciTech Connect (OSTI)

Carbon dioxide flooding has been suggested as an efficient and effective means of achieving additional oil recoveries from depleted and/or water flooded reservoirs. The numerical simulation of a carbon dioxide flood requires a phase equilibria predictor that will provide the compositional distribution of the reservoir fluids as the displacement propagates through the reservoir. The objective of this work was to provide a phase equilibria predictor that utilizes the Soave-Redlich-Kwong (SRK) equation of state. A new PUT apparatus was constructed. This apparatus was used to measure the isothermal P-x data of the systems: CO/sub 2/-toluene, CO/sub 2/-ethylbenzene, CO/sub 2/-propylbenzene, CO/sub 2/-cyclopentane, CO/sub 2/-cyclohexane and CO/sub 2/-methylcyclohexane at 333.15 K, 349.82 K and 366.48 K. Interaction parameters were regressed from literature data for CO/sub 2/-paraffin systems and from the experimental data of this work for CO/sub 2/-aromatic and CO/sub 2/-naphthenic systems. Recommended interaction parameters for these systems are provided. Experimental results indicated that the dominant effect of water on CO/sub 2/-hydrocarbon systems was the solubilization of carbon dioxide by water into the aqueous phase. This concept was simulated with the SRK equation of state and a correlation of literature data on the solubility of carbon dioxide in water. The predicted results agreed well with the experimental results. The presence of dissolved salts in water mitigates the effect of water on CO/sub 2/-hydrocarbon systems. The presence on n-butylbenzene or n-butylcylcohexane in the heavy ends with n-decane improved the maximum miscibility composition of the system. Pressure has a substantial effect on maximum miscibility compositions.

Ezekwe, J.N.

1982-01-01T23:59:59.000Z

389

A study of the effect of added carbon dioxide and water on the recovery of oil by in situ combustion  

E-Print Network [OSTI]

3 4 5 6 7 8 9 10 11 12 Time, Hours FIGURE 7. PRODUCED GAS RATE FOR RUN 3 0 1 2 3 4 5 6 7 8 9 10 11 12 Time, Hours FIGURE 8. PRODUCED GAS RATE FOR RUN 4 C N3 6 0 0 '~2 M I I I I I I I I I I Start of[ Water I Inj ection~, 1. 85... DISTRIBUTIONS DURING RUN 1 4&Xi 10 M ~17 r~n6 15 7 2. 38 8o o 4N (d 2 14 0 4 8 12 16 20 24 28 32 36 Distance, Inches FIGURE 15, PRESSURE AND TEMPERATURE DISTRIBUTIONS DURING RUN 2 2. 200 190 ~180 7. 64 hrs. 3. 71 hrs. 3. 71 hrs. 7. 64 hrs...

Zahiruddin, Mohammed

2012-06-07T23:59:59.000Z

390

Supporting Information Unexpected Role of Activated Carbon in Promoting  

E-Print Network [OSTI]

Supporting Information Unexpected Role of Activated Carbon in Promoting Transformation of Secondary. (City of Industry, CA), Siemens Aquacarb carbon (AqC) from Siemens Water Technologies (Warrendale, PA

Huang, Ching-Hua

391

Reaction of titanium polonides with carbon dioxide  

SciTech Connect (OSTI)

It has been ascertained that heating titanium and tantalum in carbon dioxide to temperatures of 500 or 800/sup 0/C alters the composition of the gas phase, causing the advent of carbon monoxide and lowering the oxygen content. Investigation of the thermal stability of titanium polonides in a carbon dioxide medium has shown that titanium mono- and hemipolonides are decomposed at temperatures below 350/sup 0/C. The temperature dependence of the vapor pressure of polonium produced in the decomposition of these polonides in a carbon dioxide medium have been determined by a radiotensimetric method. The enthalpy of the process, calculated from this relationship, is close to the enthalpy of vaporization of elementary polonium in vacuo.

Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

1987-05-01T23:59:59.000Z

392

Variation in soil moisture and N availability modulates carbon and water exchange in a California grassland experiment  

SciTech Connect (OSTI)

Variability in the magnitude and timing of precipitation is predicted to change under future climate scenarios. The primary objective of this study was to understand how variation in precipitation patterns consisting of soil moisture pulses mixed with intermittent dry down events influence ecosystem gas fluxes. We characterized the effects of precipitation amount and timing, N availability, and plant community composition on whole ecosystem and leaf gas exchange in a California annual grassland mesocosm study system that allowed precise control of soil moisture conditions. Ecosystem CO2 and fluxes increased significantly with greater precipitation and were positively correlated with soil moisture. A repeated 10 day dry down period following 11 days of variable precipitation inputs strongly depressed net ecosystem CO2 exchange (NEE) across a range of season precipitation totals, and plant community types. Ecosystem respiration (Re), evapotranspiration (ET) and leaf level photosynthesis (Amax) showed greatest sensitivity to dry down periods in low precipitation plots. Nitrogen additions significantly increased NEE, Re and Amax, particularly as water availability was increased. These results demonstrate that N availability and intermittent periods of soil moisture deficit (across a wide range of cumulative season precipitation totals) strongly modulate ecosystem gas exchange.

St. Clair, S.B.; Sudderth, E.; Fischer, M.L.; Torn, M.S.; Stuart, S.; Salve, R.; Eggett, D.; Ackerly, D.

2009-03-15T23:59:59.000Z

393

Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes  

E-Print Network [OSTI]

Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes B. J. LeRoy,a) S. G-wall carbon nanotubes that are freely suspended over a trench. The nanotubes were grown by chemical vapor on the freestanding portions of the nanotubes. Spatially resolved spectroscopy on the suspended portion of both

Dekker, Cees

394

Vapor Pressures and Heats of Vaporization of Primary Coal Tars  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National Carbon Capture Center at ,iMA-110662 PT6a DynamicV

395

1993 NEC 1) (Single-Walled Carbon  

E-Print Network [OSTI]

MWNT (Vapor-grown carbon fiber, VGCF)33) 10001300 34) SWNT CCVD Smalley 15) CO SWNT SWNT 1993 NEC 1) (Single-Walled Carbon Nanotubes, SWNTs) 1(a) 1nm µm µm SWNTs 2) (MWNTs) 1(c 29,30,35-41) SWNT , MgO Fe/Co, Ni/Co, Mo/Co nm SWNT VGCF Fe(CO)5 SWNT Ethanol tank Hot

Maruyama, Shigeo

396

Chemical vapor deposition of functionalized isobenzofuran polymers  

E-Print Network [OSTI]

This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

Olsson, Ylva Kristina

2007-01-01T23:59:59.000Z

397

Chemical vapor deposition of antimicrobial polymer coatings  

E-Print Network [OSTI]

There is large and growing interest in making a wide variety of materials and surfaces antimicrobial. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers ...

Martin, Tyler Philip, 1977-

2007-01-01T23:59:59.000Z

398

Water mist injection in oil shale retorting  

DOE Patents [OSTI]

Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

1980-07-30T23:59:59.000Z

399

Self-assembly of carbon nanohelices: Characteristics and field electron emission properties  

E-Print Network [OSTI]

Self-assembly of carbon nanohelices: Characteristics and field electron emission properties Guangyu. Their field-emission properties were investigated. Carbon nanohelices were fabricated using microwave- plasma of self-assembled carbon nanohelices on iron needles using microwave plasma assisted chemical vapor

Zhang, Guangyu

400

Field Emission Properties of Single-Walled Carbon Nanotubes with a Variety of Emitter-Morphologies  

E-Print Network [OSTI]

1 Field Emission Properties of Single-Walled Carbon Nanotubes with a Variety of Emitter@chemsys.t.u-tokyo.ac.jp Field emission properties of single-walled carbon nanotubes (SWNTs), which have been prepared through: single-walled carbon nanotube, field emission, alcohol catalytic chemical vapor deposition, ethanol

Maruyama, Shigeo

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

FAPRI-UMC Report #01-07 Estimating Water Quality,  

E-Print Network [OSTI]

Carbon and Carbon Sequestration...................................10 CRP EffectsFAPRI-UMC Report #01-07 Estimating Water Quality, Air Quality, and Soil Carbon Benefits Quality, Air Quality, and Soil Carbon Benefits of the Conservation Reserve Program FAPRI-UMC Report #01

402

E-Print Network 3.0 - adsorption equilibria hydrocarbons Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of water vapor and hydrocarbons by activated carbon beds: thermo- dynamic model for adsorption... of binary adsorption equilibria of solvent and water vapor on acti- Z .vated...

403

Vapor Pressures and Vaporization, Sublimation, and Fusion Enthalpies of Some Fatty Acids  

E-Print Network [OSTI]

Vapor Pressures and Vaporization, Sublimation, and Fusion Enthalpies of Some Fatty Acids Joe A. Wilson and James S. Chickos* Department of Chemistry and Biochemistry, University of MissouriSt. Louis, St. Louis, Missouri 63121, United States *S Supporting Information ABSTRACT: Sublimation enthalpies

Chickos, James S.

404

Vapor Pressures and Vaporization Enthalpies of a Series of Dialkyl Phthalates by Correlation Gas Chromatography  

E-Print Network [OSTI]

Chromatography Chase Gobble and James Chickos* Department of Chemistry and Biochemistry University of Missouri-St. Louis, St. Louis Missouri 63121, United States Sergey P. Verevkin Department of Physical Chemistry: Experimental vapor pressures, vaporization, fusion and sublimation enthalpies of a number of dialkyl

Chickos, James S.

405

Synthesis and characterization of carbon nanotubes using scanning probe based nano-lithographic techniques  

E-Print Network [OSTI]

A novel process which does not require the traditional Chemical Vapor Deposition (CVD) synthesis techniques and which works at temperatures lower than the conventional techniques was developed for synthesis of carbon nanotubes (CNT). The substrates...

Gargate, Rohit Vasant

2009-05-15T23:59:59.000Z

406

Origami-inspired nanofabrication utilizing physical and magnetic properties of in situ grown carbon nanotubes  

E-Print Network [OSTI]

Carbon nanotubes (CNTs), in particular the vertically-aligned variety grown through a plasma enhanced chemical vapor deposition (PECVD)-based process, are highly versatile nanostructures that can be used in a variety of ...

In, Hyun Jin

2010-01-01T23:59:59.000Z

407

Water Formation in the Early Universe  

E-Print Network [OSTI]

We demonstrate that high abundances of water vapor could have existed in extremely low metallicity ($10^{-3}$ solar) partially shielded gas, during the epoch of first metal enrichment of the interstellar medium of galaxies at high redshifts.

Bialy, Shmuel; Loeb, Abraham

2015-01-01T23:59:59.000Z

408

Vapor Barriers or Vapor Diffusion Retarders | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type WaterTravel TravelUpcomingUsefulAbout

409

Vapor scavenging by atmospheric aerosol particles  

SciTech Connect (OSTI)

Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

Andrews, E.

1996-05-01T23:59:59.000Z

410

Carbon monoxide sensor for PEM fuel cell systems Christopher T. Holta,*  

E-Print Network [OSTI]

reforming) or with air and water (autothermal reforming). In the second step, carbon monoxide is reduced

Azad, Abdul-Majeed

411

System and method for controlling hydrogen elimination during carbon nanotube synthesis from hydrocarbons  

DOE Patents [OSTI]

A system and method for producing carbon nanotubes by chemical vapor deposition includes a catalyst support having first and second surfaces. The catalyst support is capable of hydrogen transport from the first to the second surface. A catalyst is provided on the first surface of the catalyst support. The catalyst is selected to catalyze the chemical vapor deposition formation of carbon nanotubes. A fuel source is provided for supplying fuel to the catalyst.

Reilly, Peter T. A. (Knoxville, TN)

2010-03-23T23:59:59.000Z

412

Water Vapor Turbulence Statistics in the Convective Boundary...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This study presented the first long-term data set of variance and skewness turbulent statistic profiles in the CBL, spanning a range of seasons and environmental conditions. These...

413

EXAMINING THE SPECTROSCOPY OF WATER VAPOR IN THE ATMOSPHERE  

E-Print Network [OSTI]

Compare to relative humidity probe Describes VCSEL accuracy #12;FLOW DILUTION SYSTEM Critical Orifice

Petta, Jason

414

Validation of TES Temperature and Water Vapor Retrievals with ARM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II FieldVacancy-InducedCloud PropertiesObservations

415

Desalination of water by vapor transport through hydrophobic nanopores  

E-Print Network [OSTI]

Although Reverse osmosis (RO) is the state-of-the-art desalination technology, it still suffers from persistent drawbacks including low permeate flux, low selectivity for non-ionic species, and lack of resistance to chlorine. ...

Lee, Jongho, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

416

ARM - Field Campaign - ARM-FIRE Water Vapor Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIIIgovCampaignsARM West

417

ARM - Field Campaign - Arctic Winter Water Vapor IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010SeptemberInfraredgovCampaignsAircraft

418

ARM - Field Campaign - Fall 1997 Water Vapor IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-ArcticShortwave IOP ARM DataUAV

419

ARM - Field Campaign - Single Frequency GPS Water Vapor Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicatorgovCampaignsSingle Column

420

Overview of the ARM/FIRE Water Vapor Experiment (AFWEX)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics GroupPlanning Workshop Overview ofOverview of the

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vapor characterization of Tank 241-C-103  

SciTech Connect (OSTI)

The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

1994-06-01T23:59:59.000Z

422

Method and Apparatus for Concentrating Vapors for Analysis  

DOE Patents [OSTI]

An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

2008-10-07T23:59:59.000Z

423

Vapor space characterization of waste Tank 241-BY-108: Results from samples collected on 10/27/94  

SciTech Connect (OSTI)

This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-BY-108 (referred to as Tank BY-108). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Trends in NH{sub 3} and H{sub 2}O samples indicated a possible sampling problem. Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, the authors looked for the 40 TO-14 compounds plus an additional 15 analytes. Of these, 17 were observed above the 5-ppbv reporting cutoff. Also, eighty-one organic tentatively identified compounds (TICs) were observed above the reporting cutoff (ca.) 10 ppbv, and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The nine organic analytes with the highest estimated concentrations are listed in Summary Table 1 and account for approximately 48% of the total organic components in the headspace of Tank BY-108. Three permanent gases, hydrogen (H{sub 2}), carbon dioxide (CO{sub 2}), and nitrous oxide (N{sub 2}O) were also detected. Tank BY-108 is on the Ferrocyanide Watch List.

McVeety, B.D.; Clauss, T.W.; Ligotke, M.W. [and others

1995-10-01T23:59:59.000Z

424

Vapor space characterization of waste Tank 241-TY-101: Results from samples collected on 4/6/95  

SciTech Connect (OSTI)

This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-101 (referred to as Tank TY-101). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Off these, 5 were observed above the 5-ppbv reporting cutoff. One tentatively identified compound (TIC) was observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The six organic analyses identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank TY-101. Two permanent gases, carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O), were also detected. Tank TY-101 is on the Ferrocyanide Watch List.

Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; McVeety, B.D.; Olsen, K.B.; Bredt, O.P.; Fruchter, J.S.; Goheen, S.C.

1995-11-01T23:59:59.000Z

425

Vapor space characterization of waste Tank 241-C-107: Results from samples collected on 9/29/94  

SciTech Connect (OSTI)

This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-C-107 (referred to as Tank C-107). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Sampling for sulfur oxides (SO{sub x}) was not requested. Organic compounds were also quantitatively determined. Twenty organic tentatively identified compounds (TICs) were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and the reported concentrations are semiquantitative estimates. In addition, the authors looked for the 55 TO-14 extended analytes. Of these, 3 were observed above the 5-ppbv detection limit. The 10 organic analytes with the highest estimated concentrations are listed in Summary Table 1 and account for approximately 96% of the total organic components in Tank C-107. Two permanent gases, carbon dioxide and nitrous oxide, were also detected.

Pool, K.H.; Clauss, T.W.; Ligotke, M.W. [and others

1995-11-01T23:59:59.000Z

426

Carbon Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Capture Pre-Combustion Post-Combustion CO2 Compression Systems Analysis Regulatory Drivers Program Plan Capture Handbook Carbon capture involves the separation of CO2 from...

427

Thermal electric vapor trap arrangement and method  

DOE Patents [OSTI]

A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

Alger, T.

1988-03-15T23:59:59.000Z

428

Ceramic-metallic coatings by electron beam physical vapor deposition (EB-PVD) process  

SciTech Connect (OSTI)

Electron Beam Physical Vapor Deposition (EB-PVD) process is considered to be a technology that has overcome some of the difficulties or problems associated with the chemical vapor deposition (CVD), physical vapor deposition (PVD) and metal spray processes. The EB-PVD process offers many desirable characteristics such as relatively high deposition rates (up to 100-150 {mu}m/minute with an evaporation rate {approx}10-15 Kg/hour,) dense coatings, precise compositional control, columnar and poly-crystalline microstructure, low contamination, and high thermal efficiency. Various metallic and ceramic coatings (oxides, carbides, nitrides) can be deposited at relatively low temperatures. Even elements with low vapor pressure such as molybdenum, tungsten, and carbon are readily evaporated by this process. In addition, EB-PVD is capable of producing multi-layered laminated metallic/ceramic coatings on large components by changing the EB-PVD processing conditions such as ingot composition, part manipulation, and electron beam energy. Attachment of an ion assisted beam source to the EB-PVD offers additional benefits such as dense coatings with improved adhesion. In addition, textured coatings can be obtained that are desirable in many applications such as cutting tools. This laboratory has started a new thrust in the coating area by the EB-PVD process. The microstructure of thermal barrier ceramic coatings (i.e., yttria stabilized zirconia) developed by the EB-PVD process will be presented.

Wolfe, D.E.; Singh, J. [Pennsylvania State Univ., State College, PA (United States)

1995-12-31T23:59:59.000Z

429

Method of physical vapor deposition of metal oxides on semiconductors  

DOE Patents [OSTI]

A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

Norton, David P. (Knoxville, TN)

2001-01-01T23:59:59.000Z

430

Water cooled steam jet  

DOE Patents [OSTI]

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

431

Drinking Water Problems: MTBE  

E-Print Network [OSTI]

. This compound belongs to a chemical family of fuel oxygenates that enhance gaso- line combustion by increasing oxygen available for the process. Added to gasoline, MTBE has reduced carbon monoxide and ozone emissions by promoting more complete burning.... Texas follows the EPA drinking water advisory of 20 to 40 micrograms per liter. How can MTBE be Removed from Well Water? MTBE requires a specific treatment process for removal from water. Well owners can use granular activated carbon or charcoal...

Dozier, Monty; Lesikar, Bruce J.

2008-08-28T23:59:59.000Z

432

Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land SurfaceVirus-Infected Macaques

433

Chemical vapor deposited diamond-on-diamond powder composites (LDRD final report)  

SciTech Connect (OSTI)

Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors developed techniques for forming diamond powder precursors and densified these precursors in a hot filament-assisted reactor and a microwave plasma-assisted reactor. Densification conditions were varied following a fractional factorial statistical design. A number of conclusions can be drawn as a result of this study. High density diamond powder green bodies that contain a mixture of particle sizes solidify more readily than more porous diamond powder green bodies with narrow distributions of particle sizes. No composite was completely densified although all of the deposits were densified to some degree. The hot filament-assisted reactor deposited more material below the exterior surface, in the interior of the powder deposits; in contrast, the microwave-assisted reactor tended to deposit a CVD diamond skin over the top of the powder precursors which inhibited vapor phase diamond growth in the interior of the powder deposits. There were subtle variations in diamond quality as a function of the CVI process parameters. Diamond and glassy carbon tended to form at the exterior surface of the composites directly exposed to either the hot filament or the microwave plasma. However, in the interior, e.g. the powder/substrate interface, diamond plus diamond-like-carbon formed. All of the diamond composites produced were grey and relatively opaque because they contained flawed diamond, diamond-like-carbon and glassy carbon. A large amount of flawed and non-diamond material could be removed by post-CVI oxygen heat treatments. Heat treatments in oxygen changed the color of the composites to white.

Panitz, J.K.; Hsu, W.L.; Tallant, D.R.; McMaster, M.; Fox, C.; Staley, D.

1995-12-01T23:59:59.000Z

434

Vapor intrusion modeling : limitations, improvements, and value of information analyses  

E-Print Network [OSTI]

Vapor intrusion is the migration of volatile organic compounds (VOCs) from a subsurface source into the indoor air of an overlying building. Vapor intrusion models, including the Johnson and Ettinger (J&E) model, can be ...

Friscia, Jessica M. (Jessica Marie)

2014-01-01T23:59:59.000Z

435

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)  

SciTech Connect (OSTI)

In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

Not Available

2013-10-01T23:59:59.000Z

436

Reductive Dehalogenation of Trichloroethene Vapors in an  

E-Print Network [OSTI]

to treat trichloroethene (TCE) from waste gases generated by soil vapor extraction or dual-phase extraction through the recirculating liquid as a source of hydrogen, the electron donor for Dehalococcoides strains (DPE) (4). However, these techniques result in a waste gas stream that needs further treatment. Several

437

Advancing Explosives Detection Capabilities: Vapor Detection  

ScienceCinema (OSTI)

A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

Atkinson, David

2014-07-24T23:59:59.000Z

438

Vaporization of synthetic fuels. Final report. [Thesis  

SciTech Connect (OSTI)

The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

1983-01-01T23:59:59.000Z

439

Chemical vapor deposition of mullite coatings  

DOE Patents [OSTI]

This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

1998-01-01T23:59:59.000Z

440

ASHRAE Transactions: Research 3 A steady-state simulation model for a water-to-water  

E-Print Network [OSTI]

ASHRAE Transactions: Research 3 ABSTRACT A steady-state simulation model for a water Reciprocating vapor compression heat pumps and chill- ers have been the target of a number of simulation models

Note: This page contains sample records for the topic "water vapor carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Carbon Smackdown: Carbon Capture  

SciTech Connect (OSTI)

In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

Jeffrey Long

2010-07-12T23:59:59.000Z

442

Carbon Smackdown: Carbon Capture  

ScienceCinema (OSTI)

In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

Jeffrey Long

2010-09-01T23:59:59.000Z

443

Industrial Heat Pumps Using Solid/Vapor Working Fluids  

E-Print Network [OSTI]

INDUSTRIAL HEAT PUMPS USING SOLID/VAPOR WORKING FLUIDS Uwe Rockenfeller, Desert Research Institute, Boulder City, Nevada ABSTRACT Industrial heat pumps have the potential to reduce the operating costs of chemical and heat treating processes... with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to 'nore cost effective...

Rockenfeller, U.

444

Journal of Electronic Materials, Vol. 19, No, 4, 1990 Carbon Tetrachloride Doped AIxGa_xAS  

E-Print Network [OSTI]

Journal of Electronic Materials, Vol. 19, No, 4, 1990 Carbon Tetrachloride Doped AIx been shown to be a suitable carbon doping source for obtaining p-type GaAs grown by metalorganic chemical vapor deposition (MOCVD) with carbon acceptor concentrations in excess of 1 x 1019cm-3

Cunningham, Brian

445

Carbon Composite Bipolar Plate for PEM T. M. Besmann, J. J. Henry, J. W. Klett,  

E-Print Network [OSTI]

May 19-22, 2003 #12;To develop a slurry-molded, carbon fiber material with a carbon chemical vapor-molded carbon fibers ­similar to paper or felt production ­fibers ~100 µm plus filler particles ­features-molded carbon fibers ­ net shape process/press-in features ­ process can be continuous (i.e., papermaking) ­ low

446

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines  

E-Print Network [OSTI]

A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

447

Burners and combustion apparatus for carbon nanomaterial production  

DOE Patents [OSTI]

The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

Alford, J. Michael (Lakewood, CO); Diener, Michael D. (Denver, CO); Nabity, James (Arvada, CO); Karpuk, Michael (Boulder, CO)

2007-10-09T23:59:59.000Z

448

Burners and combustion apparatus for carbon nanomaterial production  

DOE Patents [OSTI]

The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

2013-02-05T23:59:59.000Z

449

Field Emission and Nanostructure of Carbon Films  

SciTech Connect (OSTI)

The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded. However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.

Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.

1999-11-29T23:59:59.000Z

450

Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks  

SciTech Connect (OSTI)

As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

Wiersma, B.; Gray, J. R.; Garcia-Diaz, B. L.; Murphy, T. H.; Hicks, K. R.

2014-01-30T23:59:59.000Z

451

The interaction of flow, heat transfer, and free interfaces in an electron-beam vaporization system for metals  

SciTech Connect (OSTI)

A numerical analysis is made of the liquid flow and energy transport in a system to vaporize metals. The energy from an electron beam heats metal confined in a water-cooled crucible. Metal vaporizes from a hot pool of circulating liquid which is surrounded by a shell of its own solid. Flow in the pool is strongly driven by temperature-induced buoyancy and capillary forces and is located in the transition region between laminar and turbulent flow. At high vaporization rates, the thrust of the departing vapor forms a trench at the beam impact site. A modified finite element method is used to calculate the flow and temperature fields coupled with the interface locations. The mesh is structured with spines that stretch and pivot as the interfaces move. The discretized equations are arranged in an {open_quotes}arrow{close_quotes} matrix and solved using the Newton-Raphson method. The electron-beam power and width are varied for cases involving the high-rate vaporization of aluminum. Attention is focused on the interaction of vaporization, liquid flow, and heat transport in the trench area.

Westerberg, K.W. [Aspen Technology, Inc., Cambridge, MA (United States); McClelland, M.A. [Lawrence Livermore National Lab., CA (United States); Finlayson, B.A. [Univ. of Washington, Seattle, WA (United States)

1994-11-01T23:59:59.000Z

452

An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete  

SciTech Connect (OSTI)

The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

Haselbach, Liv M.; Thomle, Jonathan N.

2014-07-01T23:59:59.000Z

453

Water Resources Milind Sohoni  

E-Print Network [OSTI]

-photosynthesis, energy transfer in animals, and so on. Life as we know it is water-centric (and organic carbon 20, 2012 6 / 17 #12;Water availability Total renewable (defined using the water cycle) per-capita, per year. Country cu. m. Congo 275,000 Canada 94,000 Brazil 48,000 Mongolia, Indonesia 13,000 Japan

Sohoni, Milind

454

Electrochemical Insertion/extraction of Lithium in Multiwall Carbon Nanotube/Sb and SnSb?.? Nanocomposites  

E-Print Network [OSTI]

Multiwall carbon nanotubes (CNTs) were synthesized by catalytic chemical vapor deposition of acetylene and used as templates to prepare CNT-Sb and CNT-SnSb?.? nanocomposites via the chemical reduction of SnCl? and SbCl? ...

Chen, Wei Xiang

455

Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces  

E-Print Network [OSTI]

We report graphene films composed mostly of one or two layers of graphene grown by controlled carbon precipitation on the surface of polycrystalline Ni thin films during atmospheric chemical vapor deposition (CVD). Controlling ...

Reina, Alfonso

2009-01-01T23:59:59.000Z

456

Apparatus and method for photochemical vapor deposition  

DOE Patents [OSTI]

A photochemical vapor deposition apparatus includes a reactor housing having a window in one wall above a reaction chamber in the housing. A transparent curtain divides the reaction chamber into a reaction zone and a flush zone. At least one substrate is mounted in the reaction zone in light communication with the window so that ultraviolet radiation may penetrate through the window into the reaction zone. The window is kept clear by a gas flowing through the flush zone.

Jackson, Scott C. (Wilmington, DE); Rocheleau, Richard E. (Wilmington, DE)

1987-03-31T23:59:59.000Z

457

DuPont Chemical Vapor Technical Report  

SciTech Connect (OSTI)

DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

MOORE, T.L.

2003-10-03T23:59:59.000Z

458

Modeling of LNG Pool Spreading and Vaporization  

E-Print Network [OSTI]

..................................................................................... 15 Figure 5: 90 mol% Methane 10mol% Ethane mixture VLE phase envelope .................. 18 Figure 6: Boiling temperature and vapor composition of 90 mol% methane 10mol% ethane mixture... process of natural gas allows a 600 fold reduction in the volume of the gas being transported at ambient pressure. The resulting liquid which is mainly composed of methane presents some hazardous properties linked to its flammable nature and its...

Basha, Omar 1988-

2012-11-20T23:59:59.000Z

459

Method for fabricating thin films of pyrolytic carbon  

DOE Patents [OSTI]

The present invention relates to a method for fabricating ultrathin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the 10 polymeric resin coating with thermally induced forces.

Brassell, G.W.; Lewis, J. Jr.; Weber, G.W.

1980-03-13T23:59:59.000Z

460

Combined rankine and vapor compression cycles  

DOE Patents [OSTI]

An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.