National Library of Energy BETA

Sample records for water treatment systems

  1. Water Treatment System Cleans Marcellus Shale Wastewater | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas ...

  2. K West integrated water treatment system subproject safety analysis document

    SciTech Connect (OSTI)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  3. Acid mine water aeration and treatment system

    DOE Patents [OSTI]

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  4. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  5. WATER TREATMENT

    DOE Patents [OSTI]

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  6. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    SciTech Connect (OSTI)

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during

  7. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect (OSTI)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the first year of the project ''Modified Reverse Osmosis System for Treatment of Produced Waters.'' This research project has two objectives. The first objective is to test the use of clay membranes in the treatment of produced waters by reverse osmosis. The second objective is to test the ability of a system patented by the New Mexico Tech Research Foundation to remove salts from reverse osmosis waste streams as a solid. We performed 12 experiments using clay membranes in cross-flow experimental cells. We found that, due to dispersion in the porous frit used adjacent to the membrane, the concentration polarization layer seems to be completely (or nearly completely) destroyed at low flow rates. This observation suggests that clay membranes used with porous frit material many reach optimum rejection rates at lower pumping rates than required for use with synthetic membranes. The solute rejection efficiency decreases with increasing solution concentration. For the membranes and experiments reported here, the rejection efficiency ranged from 71% with 0.01 M NaCl solution down to 12% with 2.3 M NaCl solution. More compacted clay membranes will have higher rejection capabilities. The clay membranes used in our experiments were relatively thick (approximately 0.5 mm). The active layer of most synthetic membranes is only 0.04 {micro}m (0.00004 mm), approximately 1250 times thinner than the clay membranes used in these experiments. Yet clay membranes as thin as 12 {micro}m have been constructed (Fritz and Eady, 1985). Since Darcy's law states that the flow through a material of constant permeability is inversely proportional to it's the material's thickness, then, based on these experimental observations, a very thin clay membrane would be expected to have much higher flow rates than the ones used in these experiments. Future experiments will focus on testing very thin clay membranes. The membranes generally exhibited reasonable

  8. Construction Summary and As-Built Report for Ground Water Treatment System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monticello, Utah, Permeable Reactive Barrier Site | Department of Energy Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for

  9. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect (OSTI)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation

  10. Preliminary design report for the K basins integrated water treatment system

    SciTech Connect (OSTI)

    Pauly, T.R., Westinghouse Hanford

    1996-08-12

    This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

  11. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    SciTech Connect (OSTI)

    RITTMANN, P.D.

    1999-10-07

    Three bounding accidents postdated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing, and a hydrogen explosion. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  12. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    2000-01-10

    Four bounding accidents postulated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing a hydrogen explosion, and a fire breaching filter vessel and enclosure. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  13. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    SciTech Connect (OSTI)

    DERUSSEAU, R.R.

    2000-04-18

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

  14. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    SciTech Connect (OSTI)

    Sullivan, Enid J; Kwon, Soondong; Katz, Lynn; Kinney, Kerry

    2008-01-01

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ

  15. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  16. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  17. Simulation of integrated pollutant removal (IPR) water-treatment system using ASPEN Plus

    SciTech Connect (OSTI)

    Harendra, Sivaram; Oryshcyhn, Danylo [U.S. DOE Ochs, Thomas [U.S. DOE Gerdemann, Stephen; Clark, John

    2013-01-01

    Capturing CO2 from fossil fuel combustion provides an opportunity for tapping a significant water source which can be used as service water for a capture-ready power plant and its peripherals. Researchers at the National Energy Technology Laboratory (NETL) have patented a process—Integrated Pollutant Removal (IPR®)—that uses off-the-shelf technology to produce a sequestration ready CO2 stream from an oxy-combustion power plant. Water condensed from oxy-combustion flue gas via the IPR system has been analyzed for composition and an approach for its treatment—for in-process reuse and for release—has been outlined. A computer simulation model in ASPEN Plus has been developed to simulate water treatment of flue gas derived wastewater from IPR systems. At the field installation, water condensed in the IPR process contains fly ash particles, sodium (largely from spray-tower buffering) and sulfur species as well as heavy metals, cations, and anions. An IPR wastewater treatment system was modeled using unit operations such as equalization, coagulation and flocculation, reverse osmosis, lime softening, crystallization, and pH correction. According to the model results, 70% (by mass) of the inlet stream can be treated as pure water, the other 20% yields as saleable products such as gypsum (CaSO4) and salt (NaCl) and the remaining portion is the waste. More than 99% of fly ash particles are removed in the coagulation and flocculation unit and these solids can be used as filler materials in various applications with further treatment. Results discussed relate to a slipstream IPR installation and are verified experimentally in the coagulation/flocculation step.

  18. A practical application for the chemical treatment of Southern California`s reclaimed, Title 22 water for use as makeup water for recirculating cooling water systems

    SciTech Connect (OSTI)

    Zakrzewski, J.; Cosulich, J.; Bartling, E.

    1998-12-31

    Pilot cooling water studies conducted at a Southern California landfill/cogeneration station demonstrated a successful chemical treatment program for recirculating cooling water that used unnitrified, reclaimed, Title 22 water as the primary makeup water source. The constituents in the reclaimed water are supplied by variety of residential and waste water sources resulting in a water quality that may vary to a greater degree than domestic water supplies. This water contains high concentrations of orthophosphate, ammonia, chlorides and suspended solids. The impact of which, under cycled conditions is calcium orthophosphate scaling, high corrosion of yellow metal and mild steel, stress cracking of copper alloys and stainless steel and rapidly growing biological activity. A mobile cooling water testing laboratory with two pilot recirculating water systems modeled the cogeneration station`s cooling tower operating conditions and parameters. The tube and shell, tube side cooling heat exchangers were fitted with 443 admiralty, 90/10 copper nickel, 316 stainless steel and 1202 mild steel heat exchanger tubes. Coupons and Corrater electrodes were also installed. A chemical treatment program consisting of 60/40 AA/AMPS copolymer for scale, deposits and dispersion, sodium tolyltriazole for yellow metal corrosion, and a bromination program to control the biological activity was utilized in the pilot systems. Recirculating water orthophosphate concentrations reached levels of 70 mg/L as PO, and ammonia concentrations reached levels of 35 mg/L, as total NH3. The study successfully demonstrated a chemical treatment program to control scale and deposition, minimize admiralty, 90/10 copper nickel and carbon steel corrosion rates, prevent non-heat transfer yellow metal and stainless steel stress cracking, and control the biological activity in this high nutrient water.

  19. The effects of a stannous chloride-based water treatment system in a mercury contaminated stream

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mathews, Teresa J.; Looney, Brian B.; Smith, John G.; Miller, Carrie L.; Peterson, Mark J.; Bryan, A. Lawrence; Southworth, George R.

    2015-06-09

    Remediation of mercury (Hg)-contaminated watersheds is often challenging because of the complex nature of Hg biogeochemistry. Stream ecosystems have been shown to be particularly susceptible to Hg contamination and bioaccumulation in fish. Decreasing total Hg loading to stream systems, however, has shown variable performance in decreasing Hg concentrations in fish tissues. In this study, we assess the impacts of an innovative treatment system in reducing releases of Hg to a small stream system in the southeastern United States. The treatment system, installed in 2007, removes Hg from water using tin (Sn) (II) chloride followed by air stripping. Mercury concentrations inmore » the receiving stream, Tims Branch, decreased from > 100 to ~10 ng/L in the four years following treatment, and Hg body burdens in redfin pickerel (Esox americanus) decreased by 70 % at the most contaminated site. Tin concentrations in water and fish increased significantly in the tributary leading to Tims Branch, but concentrations remain below levels of concern for human health or ecological risks. While other studies have shown that Sn may be environmentally methylated and methyltin can transfer its methyl group to Hg, results from our field studies and sediment incubation experiments suggest that the added Sn to the Tims Branch watershed is not contributing to MeHg production and bioaccumulation. The stannous chloride treatment system installed at Tims Branch was effective at removing Hg inputs and reducing Hg bioaccumulation in the stream with minimal impacts on the environment due to the increased Sn in the system.« less

  20. Water_Treatment.cdr

    Office of Legacy Management (LM)

    than 290 million gallons of contaminated water have been treated and released into the Missouri River from two similar water treatment facilities at the site and the nearby Quarry. ...

  1. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREATOR SYSTEM

    SciTech Connect (OSTI)

    LYNN E. KATZ; KERRY A. KINNEY; R.S. BOWMAN; E.J. SULLIVAN

    2003-10-01

    Co-produced water from the oil and gas industry is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. An efficient, cost-effective treatment technology is needed to remove these constituents. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from March 2003 through September 2003. We have continued our investigation of SMZ regeneration from our previous DOE project. Ten saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. The results suggest that BTEX sorption capacity is not lost after ten saturation/regeneration cycles. The composition of produced water from a site operated by Crystal Solutions Ltd. in Wyoming has been characterized and was used to identify key semi-volatile components. Isotherms with selected semi-volatile components have been initiated and preliminary results have been obtained. The experimental vapor phase bioreactors for this project have been designed and

  2. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect (OSTI)

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during

  3. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025

  4. Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489

    SciTech Connect (OSTI)

    Denton, Mark S.; Mertz, Joshua L.; Bostick, William D.

    2012-07-01

    On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One

  5. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect (OSTI)

    Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2005-03-11

    This report summarizes work performed on this project from October 2004 through March 2005. In previous work, a surfactant modified zeolite (SMZ) was shown to be an effective system for removing BTEX contaminants from produced water. Additional work on this project demonstrated that a compost-based biofilter could biodegrade the BTEX contaminants found in the SMZ regeneration waste gas stream. However, it was also determined that the BTEX concentrations in the waste gas stream varied significantly during the regeneration period and the initial BTEX concentrations were too high for the biofilter to handle effectively. A series of experiments were conducted to determine the feasibility of using a passive adsorption column placed upstream of the biofilter to attenuate the peak gas-phase VOC concentrations delivered to the biofilter during the SMZ regeneration process. In preparation for the field test of the SMZ/VPB treatment system in New Mexico, a pilot-scale SMZ system was also designed and constructed during this reporting period. Finally, a cost and feasibility analysis was also completed. To investigate the merits of the passive buffering system during SMZ regeneration, two adsorbents, SMZ and granular activated carbon (GAC) were investigated in flow-through laboratory-scale columns to determine their capacity to handle steady and unsteady VOC feed conditions. When subjected to a toluene-contaminated air stream, the column containing SMZ reduced the peak inlet 1000 ppmv toluene concentration to 630 ppmv at a 10 second contact time. This level of buffering was insufficient to ensure complete removal in the downstream biofilter and the contact time was longer than desired. For this reason, using SMZ as a passive buffering system for the gas phase contaminants was not pursued further. In contrast to the SMZ results, GAC was found to be an effective adsorbent to handle the peak contaminant concentrations that occur early during the SMZ regeneration process. At a one

  6. An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation

    SciTech Connect (OSTI)

    John Rodgers; James Castle

    2008-08-31

    This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury

  7. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOE Patents [OSTI]

    Krauter, Paula A. W.; Krauter, Gordon W.

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  8. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect (OSTI)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  9. Water Monitoring & Treatment Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  10. Water treatment method

    DOE Patents [OSTI]

    Martin, Frank S.; Silver, Gary L.

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  11. Water treatment method

    DOE Patents [OSTI]

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  12. Missouri Water Treatment Plant Upgraded

    Broader source: Energy.gov [DOE]

    The city of St. Peters, Missouri obtains its water from one of the best known rivers. Eight pumps from underground wells in the Mississippi River floodplain send water to a lime-softening water treatment plant where it is prepared for drinking water purposes. But because the demand for clean water exists at all times, the plant consumes noticeably large amounts of money and energy.

  13. Abiotic systems for the catalytic treatment of solvent-contaminated water

    SciTech Connect (OSTI)

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie; Hollan, N.

    1996-12-31

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets can be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.

  14. Radioactive Air Emissions Notice of Construction for the 105-KW Basin integrated water treatment system filter vessel sparging vent

    SciTech Connect (OSTI)

    Kamberg, L.D.

    1998-02-23

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the Integrated Water Treatment System (IWTS) Filter Vessel Sparging Vent at 105-KW Basin. Additionally, the following description, and references are provided as the notices of startup, pursuant to 40 CFR 61.09(a)(1) and (2) in accordance with Title 40 Code of Federal Regulations, Part 61, National Emission Standards for Hazardous Air Pollutants. The 105-K West Reactor and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The IWTS, which has been described in the Radioactive Air Emissions NOC for Fuel Removal for 105-KW Basin (DOE/RL-97-28 and page changes per US Department of Energy, Richland Operations Office letter 97-EAP-814) will be used to remove radionuclides from the basin water during fuel removal operations. The purpose of the modification described herein is to provide operational flexibility for the IWTS at the 105-KW basin. The proposed modification is scheduled to begin in calendar year 1998.

  15. Arsenic in water treatment.

    SciTech Connect (OSTI)

    Siegel, Malcolm Dean

    2004-12-01

    Sandia National Laboratories (SNL) is collaborating with the Awwa Research Foundation (AwwaRF) and WERC (A Consortium for Environmental Education and Technology Development) in a program for the development and testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. Sandia National Laboratories will administer contracts placed with AwwaRF and WERC to carry out bench scale studies and economic analyses/outreach activities, respectively. The elements of the AwwaRF program include (1) identification of new technologies, (2) proof-of-concept laboratory studies and, (3) a research program that will meet the other needs of small utilities by providing solutions to small utilities so that they may successfully meet the new arsenic MCL. WERC's activities will include development of an economic analysis tool for Pilot Scale Demonstrations and development of educational training and technical assistance tools. The objective of the Sandia Program is the field demonstration testing of innovative technologies. The primary deliverables of the Sandia program will be engineering analyses of candidate technologies; these will be contained in preliminary reports and final analysis reports. Projected scale-up costs will be generated using a cost model provided by WERC or another suitable model.

  16. Design and implementation of a comprehensive residuals management system for the Cary/Apex water treatment facility

    SciTech Connect (OSTI)

    Tsang, K.R.; Dowbiggin, W.B.; White, M.; Fisher, K.; Bonne, R.; Creech, K.

    1998-07-01

    The Cary/Apex Water Treatment Facility was completed and began operation in 1993, with a design capacity of 0.526 m{sup 3}/s (12 mgd). Water demand has rapidly increased due to explosive growth in the service area. The residuals handling facilities initially provided at the WRF were soon overloaded, severely hampering the operation of the WTF. A comprehensive residuals management plan was developed and implemented to alleviate the existing problems. This paper presents a classic example of how residuals management needs are grossly overlooked in many treatment facility designs; the consequences of this neglect experienced by a rapidly growing community; and the development and implementation of a comprehensive residuals management plan to allow proper operation of the water treatment facility.

  17. Water Supply Infrastructure System Surety

    SciTech Connect (OSTI)

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  18. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    SciTech Connect (OSTI)

    Evans, S. K.

    2007-11-07

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

  19. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    SciTech Connect (OSTI)

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31

    The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b

  20. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  1. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  2. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, Joao E.; Williams, Daniel W.

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  3. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, J.E.; Williams, D.W.

    1995-01-01

    A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  4. Hedgehog(tm) Water Contaminant Removal System - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Hedgehog(tm) Water Contaminant Removal System Sandia ... recirculating treatment system reduces the levels of contaminants in water storage tanks. ...

  5. Portable treatment systems study

    SciTech Connect (OSTI)

    Sherick, M.J.; Schwinkendorf, W.E.; Bechtold, T.E.; Cole, L.T.

    1997-03-01

    In developing their Site Treatment Plans (STPs), many of the Department of Energy installations identified some form of portable treatment, to facilitate compliant disposition of select mixed low-level wastestreams. The Environmental Management Office of Science and Technology requested that a systems study be performed to better define the potential role of portable treatment with respect to mixed low-level waste, highlight obstacles to implementation, and identify opportunities for future research and development emphasis. The study was performed by first establishing a representative set of mixed waste, then formulating portable treatment system concepts to meet the required processing needs for these wastes. The portable systems that were conceptualized were evaluated and compared to a fixed centralized treatment alternative. The system evaluations include a life-cycle cost analysis and an assessment of regulatory, institutional, and technical issues associated with the potential use of portable systems. The results of this study show that when all costs are included, there are no significant cost differences between portable systems and fixed systems. However, it is also emphasized that many uncertainties exist that could impact the cost of implementing portable treatment systems. Portable treatment could be made more attractive through private sector implementation, although there is little economic incentive for a commercial vendor to develop small, specialized treatment capabilities with limited applicability. Alternatively, there may also be valid reasons why fixed units cannot be used for some problematic wastestreams. In any event, there are some site-specific problems that still need to be addressed, and there may be some opportunity for research and development to make a positive impact in these areas.

  6. Apparatus and process for water treatment

    DOE Patents [OSTI]

    Phifer, Mark A.; Nichols, Ralph L.

    2001-01-01

    An apparatus is disclosed utilizing permeable treatment media for treatment of contaminated water, along with a method for enhanced passive flow of contaminated water through the treatment media. The apparatus includes a treatment cell including a permeable structure that encloses the treatment media, the treatment cell may be located inside a water collection well, exterior to a water collection well, or placed in situ within the pathway of contaminated groundwater. The passive flow of contaminated water through the treatment media is maintained by a hydraulic connection between a collecting point of greater water pressure head, and a discharge point of lower water pressure head. The apparatus and process for passive flow and groundwater treatment utilizes a permeable treatment media made up of granular metal, bimetallics, granular cast iron, activated carbon, cation exchange resins, and/or additional treatment materials. An enclosing container may have an outer permeable wall for passive flow of water into the container and through the enclosed treatment media to an effluent point. Flow of contaminated water is attained without active pumping of water through the treatment media. Remediation of chlorinated hydrocarbons and other water contaminants to acceptable regulatory concentration levels is accomplished without the costs of pumping, pump maintenance, and constant oversight by personnel.

  7. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  8. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    SciTech Connect (OSTI)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  9. Water Monitoring & Treatment Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Heating Water Heating Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Water heating accounts for about 18% of your home's energy use. Reducing your hot water use, employing energy-saving strategies, and choosing an energy efficient

  10. How to select a water treatment supplier

    SciTech Connect (OSTI)

    Keister, T.E.

    1995-06-01

    This paper is a continuation of one first presented in 1984 at the International Water Conference. Since that time many things have changed, not the least of which is my means of earning a living. While my prospective upon the world has changed due to conversion from user to supplier, the industrial world today is also much different than that of ten years ago. Major factors driving change are the explosion in computer technology, new environmental realities and restrictions, and a radically different world from both the political and economic standpoints. All of these areas directly impact upon water treatment and the selection of a supplier. Your attention is called to the sponsor of this paper, the Association of Water Technologies (AWT). The AWT is the trade association representing {open_quotes}small{close_quotes} water treatment companies, which presently control at least 21% of the US market in water treatment services. This 21% plus market share is greater than that of any single water treatment supplier. Growth of the AWT has been quite remarkable since its founding nine short years ago, membership now stands at approximately 370 companies. The growth of the Association is a good indication that the individual small water treatment suppliers, making up 74% of the membership, are also growing. Given the huge marketing budgets of the six major water treatment companies, it is sometimes difficult to realize that there are approximately 800 other water treatment companies in the market. Many of these smaller companies can oftentimes provide a better water treatment program than a major company can due to better service, closer customer contact, superior technology, and lower overhead costs. Selection of a water treatment supplier, be it a major or one of the smaller companies, should be made upon a firm foundation of facts, not marketing {open_quotes}hype{close_quotes}.

  11. System for treating produced water

    DOE Patents [OSTI]

    Sullivan, Enid J.; Katz, Lynn; Kinney, Kerry; Bowman, Robert S.; Kwon, Soondong

    2010-08-03

    A system and method were used to treat produced water. Field-testing demonstrated the removal of contaminants from produced water from oil and gas wells.

  12. EECBG Success Story: Missouri Water Treatment Plant Upgraded

    Broader source: Energy.gov [DOE]

    The city of St. Peters, Missouri is installing a water reservoir pump at the water treatment plant and replace seven pump motors with premium efficiency motors on the high service and backwash pumping systems, thanks to an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  13. In-tank recirculating arsenic treatment system

    DOE Patents [OSTI]

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  14. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT (Technical...

    Office of Scientific and Technical Information (OSTI)

    ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT Citation Details In-Document Search Title: ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT You are accessing a document from...

  15. A molecular basis for advanced materials in water treatment....

    Office of Scientific and Technical Information (OSTI)

    A molecular basis for advanced materials in water treatment. Citation Details In-Document Search Title: A molecular basis for advanced materials in water treatment. Authors: Rempe, ...

  16. Cooling tower water treatment and reuse. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Cooling tower water treatment and reuse. Citation Details In-Document Search Title: Cooling tower water treatment and reuse. No abstract prepared. Authors: Brady, Patrick Vane ; ...

  17. Peak Treatment Systems | Open Energy Information

    Open Energy Info (EERE)

    Treatment Systems Jump to: navigation, search Name: Peak Treatment Systems Place: Golden, CO Website: www.peaktreatmentsystems.com References: Peak Treatment Systems1 Information...

  18. Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  19. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    SciTech Connect (OSTI)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-07-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  20. Produced Water Treatment Using Microbial Fuel Cell Technology

    SciTech Connect (OSTI)

    Borole, A. P.; Campbell, R.

    2011-05-20

    ORNL has developed a treatment for produced water using a combination of microbial fuel cells and electrosorption. A collaboration between Campbell Applied Physics and ORNL was initiated to further investigate development of the technology and apply it to treatment of field produced water. The project successfully demonstrated the potential of microbial fuel cells to generate electricity from organics in produced water. A steady voltage was continuously generated for several days using the system developed in this study. In addition to the extraction of electrical energy from the organic contaminants, use of the energy at the representative voltage was demonstrated for salts removal or desalination of the produced water. Thus, the technology has potential to remove organic as well as ionic contaminants with minimal energy input using this technology. This is a novel energy-efficient method to treat produced water. Funding to test the technology at larger scale is being pursued to enable application development.

  1. Integrated nonthermal treatment system study

    SciTech Connect (OSTI)

    Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J.; Quapp, W.J.; Bechtold, T.; Brown, B.; Schwinkendorf, W.; Swartz, G.

    1997-01-01

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

  2. Tahoe Water Systems | Open Energy Information

    Open Energy Info (EERE)

    Tahoe Water Systems Jump to: navigation, search Name: Tahoe Water Systems Sector: Solar, Wind energy Product: Develops a self-contained solarwind based water pumping technology....

  3. Treatment of Difficult Waters: Arsenic Removal Silica Control...

    Office of Scientific and Technical Information (OSTI)

    of Difficult Waters: Arsenic Removal Silica Control Carbon Capture and Enhanced Oil Recovery. Citation Details In-Document Search Title: Treatment of Difficult Waters:...

  4. Optimized alumina coagulants for water treatment

    DOE Patents [OSTI]

    Nyman, May D.; Stewart, Thomas A.

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  5. Water Treatment in Oil and Gas Production | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Treatment and Reuse in Unconventional Gas Production Click to email this to a friend ... Water Treatment and Reuse in Unconventional Gas Production A key challenge in tapping vast ...

  6. Energy optimization of water distribution system

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

  7. Community Water Pump and Treatment Facility PV Solar Power Project

    Office of Environmental Management (EM)

    200,000 kWhyear PROJECT LOCATION SITE DETAILS Water Pump and Treatment Facility Sole provider of water to Pueblo and its 5,000 residents 1 pump house, 2 water ...

  8. Preliminary research study of a water desalination system for the East Montana area subdivisions of El Paso County, El Paso, Texas. Water treatment technology program report No. 6. (Final)

    SciTech Connect (OSTI)

    Turner, C.; Swift, A.; Golding, P.

    1995-06-01

    Currently, water utility districts in the East Montana area subdivisions are either unable to provide potable water within acceptable federal and/or state drinking water standards, or furnish an adequate water supply to area residents. This preliminary research study ascertained the economical and technical feasibility of a desalination plant to treat brackish groundwater for potable use. Population growth, and the current and projected water demand and consumption were evaluated for the area. Water quality characterization of the local ground-water supply was conducted to evaluate the chemical composition and suitability of the groundwater for desalination. Reverse osmosis, electrodialysis, and multistage flash distillation were evaluated on an economic and technical basis. The objective was to determine the least expensive system that produced a reliable water supply within federal and/or state drinking water standards. In conjunction, an evaluation of numerous brine disposal technologies was made based on economics, technical feasibility, and federal and state regulations. Several recommendations are presented that met the objectives of this study. A pilot desalination plant investigation is proposed.

  9. The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants

    Broader source: Energy.gov [DOE]

    This webinar, held on Sept. 11, 2013, covers the energy water nexus for state and local water and wastewater treatment plants.

  10. Alternate Water Supply System, Riverton, WY, Site

    Office of Legacy Management (LM)

    Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January ... left blank DOE-LM1570-2008 Alternate Water Supply System Flushing Report Riverton, ...

  11. WasteWater Treatment And Heavy Metals Removal In The A-01 Constructed Wetland 2003 Report

    SciTech Connect (OSTI)

    ANNA, KNOX

    2004-08-01

    The A-01 wetland treatment system (WTS) was designed to remove metals from the effluent at the A-01 NPDES outfall. The purpose of research conducted during 2003 was to evaluate (1) the ability of the A-01 wetland treatment system to remediate waste water, (2) retention of the removed contaminants in wetland sediment, and (3) the potential remobilization of these contaminants from the sediment into the water column. Surface water and sediment samples were collected and analyzed in this study.

  12. Process and system for treating waste water

    DOE Patents [OSTI]

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  13. Clean option: Berkeley Pit water treatment and resource recovery strategy

    SciTech Connect (OSTI)

    Gerber, M.A.; Orth, R.J.; Elmore, M.R.; Monzyk, B.F.

    1995-09-01

    The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.

  14. ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REUSE | Department of Energy ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER REUSE ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER REUSE Research Triangle Institute - Research Triangle Park, NC A single hybrid system for industrial wastewater treatment and reuse that combines two known processes-forward osmosis and membrane distillation-will be developed and demonstrated. This system will use waste heat to treat a wide variety of waste streams at

  15. INL Bettis Water Treatment Project Report

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Bechtel Bettis Atomic Power Laboratory (Bettis), West Mifflin, PA, requested that the Idaho National Laboratory (INL) (Battelle Energy Alliance) perform tests using water simulants and three specified media to determine if those ion-exchange (IX) resins will be effective at removing the plutonium contamination from water. This report details the testing and results of the tests to determine the suitability of the media to treat plutonium contaminated water at near nuetral pH.

  16. Sonic spectrometer and treatment system

    DOE Patents [OSTI]

    Slomka, Bogdan J.

    1997-06-03

    A novel system and method for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object.

  17. Sonic spectrometer and treatment system

    DOE Patents [OSTI]

    Slomka, B.J.

    1997-06-03

    A novel system and method is developed for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object. 1 fig.

  18. Siphons for Geosiphon{trademark} Treatment Systems

    SciTech Connect (OSTI)

    Phifer, M.A.

    2001-07-26

    GeoSiphon{trademark} systems (patent pending) induce contaminated groundwater flow through permeable treatment media by utilizing a siphon between two points of hydraulic head difference. A siphon is a closed conduit that conveys liquid from a point of higher hydraulic head to one of lower head after raising it to a higher intermediate elevation, at sub-atmospheric conditions (negative gauge pressures or vacuum), without external power input. All surface waters and groundwaters contain dissolved gases, which degas within a siphon due to the vacuum and temperature within the siphon. Bubbles form, and if not properly managed will accumulate in the siphon, gradually reducing the flow rate until the system is ultimately shut down. Therefore appropriate management of gas within a siphon is the primary factor that must be considered to maintain continuous siphon flow. This report provides an overview of GeoSiphon technology and generic details concerning de-gassing in siphons and associated gas management methods.

  19. Improve Chilled Water System Peformance: Chilled Water System Analysis Tool (CWSAT) Improves Efficiency

    SciTech Connect (OSTI)

    2010-06-25

    This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

  20. The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants.

  1. FERRATES: SYNTHESIS, PROPERTIES AND APPLICATIONS IN WATER AND WASTEWATER TREATMENT.

    SciTech Connect (OSTI)

    CABELLI, D.E.; SHARMA, V.K.

    2006-05-19

    The higher oxidation states of iron (Fe(VI) and Fe(V) in particular) have been shown to be strongly oxidizing in enzymatic systems, where they can carry out aliphatic hydrogen abstraction. In addition, they have been postulated as intermediates in Fenton-type systems. Fe(VI) itself is relatively stable and has been shown to have potential as an oxidant in the so-called ''green'' treatment of polluted waters. By contrast, Fe(V) is a relatively short-lived transient when produced in aqueous solution in the absence of strongly bonding ligands other than hydroxide, a feature that has limited studies of its reactivity. Fe(VI) has been proposed to be useful in battery design and a very interesting study suggested that ferrate may be able to oxidize insoluble chromium to chromate and thus serve to remove chromium contamination in the Hanford radioactive waste tanks.

  2. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. Water reactive hydrogen fuel cell power system

    SciTech Connect (OSTI)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  4. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    SciTech Connect (OSTI)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  5. Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

  6. Desalting and water treatment membrane manual: A guide to membranes for municipal water treatment. Water treatment technology program report No. 1

    SciTech Connect (OSTI)

    Chapman-Wilbert, M.

    1993-09-01

    The Bureau of Reclamation prepared this manual to provide an overview of microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and electrodialysis processes as they are used for water treatment. Membrane composition, the chemical processes, and the physical processes involved with each membrane type are described and compared. Because care and maintenance of water treatment membranes are vital to their performance and life expectancy, pretreatment, cleaning, and storage requirements are discussed in some detail. Options for concentrate disposal, also a problematic feature of membrane processes, are discussed. The culmination of this wealth of knowledge is an extensive comparison of water treatment membranes commercially available at this time. The tables cover physical characteristics, performance data, and operational tolerances.

  7. Biological waste-water treatment of azo dyes

    SciTech Connect (OSTI)

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A.

    1988-05-01

    The U.S. Environmental Protection Agency's (EPA) Office of Toxic Substances evaluates existing chemicals under Section 4 of the Toxic Substances Control Act (TSCA) and Premanufacture Notification (PMN) submissions under Section 5 of TSCA. Azo dyes constitute a significant portion of these PMN submissions and specific azo dyes have recently been added to the priority list for considerations in the development of test rules under Section 4. Azo dyes are of concern because some of the dyes, dye precurors, and/or their degradation products such as aromatic amines (which are also dye precurors) have been shown to be, or are suspected to be, carcinogenic. The fate of azo dyes in biological waste-water treatment systems was studied to aid in the review of PMN submissions and to assist in the possible development of test rules. Results from extensive pilot-scale activated-sludge process testing for 18 azo dyes are presented. Results from fate studies of C.I. Disperse Blue 79 in aerobic and anaerobic waste-water treatment will also be presented.

  8. The 100K West Reactor Water Treatment Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demolition (D&D) work at the 100K West Reactor Water Treatment Facilities at the Hanford ... facilities and waste sites that supported reactor operations from the 1950s to the 1970s. ...

  9. Using naturally occurring radionuclides to determine drinking water age in a community water system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Waples, James T.; Bordewyk, Jason K.; Knesting, Kristina M.; Orlandini, Kent A.

    2015-07-22

    Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of 90Y/90Sr and 234Th/238U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σest: ± 3.8 h, P < 0.0001, r2 = 0.998, n =more » 11) and 25 days old (σest: ± 13.3 h, P < 0.0001, r2 = 0.996, n = 12), respectively. Moreover, 90Y-derived water ages in a community water system (6.8 × 104 m3 d–1 capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.« less

  10. Online Produced Water Treatment Catalog and Decision Tool

    SciTech Connect (OSTI)

    J. Arthur

    2012-03-31

    The objective of this project was to create an internet-based Water Treatment Technology Catalog and Decision Tool that will increase production, decrease costs and enhance environmental protection. This is to be accomplished by pairing an operator's water treatment cost and capacity needs to specific water treatments. This project cataloged existing and emerging produced water treatment technologies and allows operators to identify the most cost-effective approaches for managing their produced water. The tool captures the cost and capabilities of each technology and the disposal and beneficial use options for each region. The tool then takes location, chemical composition, and volumetric data for the operator's water and identifies the most cost effective treatment options for that water. Regulatory requirements or limitations for each location are also addressed. The Produced Water Treatment Catalog and Decision Tool efficiently matches industry decision makers in unconventional natural gas basins with: 1) appropriate and applicable water treatment technologies for their project, 2) relevant information on regulatory and legal issues that may impact the success of their project, and 3) potential beneficial use demands specific to their project area. To ensure the success of this project, it was segmented into seven tasks conducted in three phases over a three year period. The tasks were overseen by a Project Advisory Council (PAC) made up of stakeholders including state and federal agency representatives and industry representatives. ALL Consulting has made the catalog and decision tool available on the Internet for the final year of the project. The second quarter of the second budget period, work was halted based on the February 18, 2011 budget availability; however previous project deliverables were submitted on time and the deliverables for Task 6 and 7 were completed ahead of schedule. Thus the application and catalog were deployed to the public Internet

  11. Linking ceragenins to water-treatment membranes to minimize biofouling.

    SciTech Connect (OSTI)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu; Savage, Paul B.; Pollard, Jacob; Branda, Steven S.; Goeres, Darla; Buckingham-Meyer, Kelli; Stafslien, Shane; Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K.

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter

  12. Energy-Water Nexus and Energy Systems Integration | Energy Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...Water Nexus and Energy Systems Integration As we optimize our energy system at all scales, NREL is embarking on a new area of research geared at finding ways to balance our water ...

  13. Innovative Treatment Technologies for Natural Waters and Wastewaters

    SciTech Connect (OSTI)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  14. System for removal of arsenic from water

    DOE Patents [OSTI]

    Moore, Robert C.; Anderson, D. Richard

    2004-11-23

    Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  15. EDI as a Treatment Module in Recycling Spent Rinse Waters

    SciTech Connect (OSTI)

    Donovan, Robert P.; Morrison, Dennis J.

    1999-08-11

    Recycling of the spent rinse water discharged from the wet benches commonly used in semiconductor processing is one tactic for responding to the targets for water usage published in the 1997 National Technology Roadmap for Semiconductors (NTRS). Not only does the NTRS list a target that dramatically reduces total water usage/unit area of silicon manufactured by the industry in the future but for the years 2003 and beyond, the NTRS actually touts goals which would have semiconductor manufacturers drawing less water from a regional water supply per unit area of silicon manufactured than the quantity of ultrapure water (UPW) used in the production of that same silicon. Achieving this latter NTRS target strongly implies more widespread recycling of spent rinse waters at semiconductor manufacturing sites. In spite of the fact that, by most metrics, spent rinse waters are of much higher purity than incoming municipal waters, recycling of these spent rinse waters back into the UPW production plant is not a simple, straightforward task. The rub is that certain of the chemicals used in semiconductor manufacturing, and thus potentially present in trace concentrations (or more) in spent rinse waters, are not found in municipal water supplies and are not necessarily removed by the conventional UPW production sequence used by semiconductor manufacturers. Some of these contaminants, unique to spent rinse waters, may actually foul the resins and membranes of the UPW system, posing a threat to UPW production and potentially even causing a shutdown.

  16. System and process for biomass treatment

    DOE Patents [OSTI]

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  17. Radioactive Water Treatment at a United States Environmental Protection Agency Superfund Site - 12322

    SciTech Connect (OSTI)

    Beckman, John C.

    2012-07-01

    A water treatment system at a United States Environmental Protection Agency (USEPA) Superfund site impacted by radiological contaminants is used to treat water entering the site. The United States Army Corps of Engineers (USACE) is actively managing the remedial action for the USEPA using contracts to support the multiple activities on site. The site is where former gas mantle production facilities operated around the turn of the century. The manufacturing facilities used thorium ores to develop the mantles and disposed of off-specification mantles and ore residuals in the surrounding areas. During Site remedial actions, both groundwater and surface water comes into contact with contaminated soils and must be collected and treated at an on-site treatment facility. The radionuclides thorium and radium with associated progeny are the main concern for treatment. Suspended solids, volatile organic compounds, and select metals are also monitored during water treatment. The water treatment process begins were water is pumped to a collection tank where debris and grit settle out. Stored water is pumped to a coagulant tank containing poly-aluminum chloride to collect dissolved solids. The water passes into a reaction tube where aspirated air is added or reagent added to remove Volatile Organic Compounds (VOC'S) by mass transfer and convert dissolved iron to a solid. The water enters the flocculent polymer tank to drop solids out. The flocculated water overflows to a fluidized bed contact chamber to increase precipitation. Flocculation is where colloids of material drop out of suspension and settle. The settled solids are periodically removed and disposed of as radioactive waste. The water is passed through filters and an ion exchange process to extract the radionuclides. Several million liters of water are processed each year from two water treatment plants servicing different areas of the remediation site. Ion exchange resin and filter material are periodically replaced

  18. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

  19. Solar Water Heating System Maintenance and Repair | Department...

    Energy Savers [EERE]

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | ...

  20. Submersible purification system for radioactive water

    DOE Patents [OSTI]

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  1. Probabilistic cost estimation methods for treatment of water extracted during CO2 storage and EOR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graham, Enid J. Sullivan; Chu, Shaoping; Pawar, Rajesh J.

    2015-08-08

    Extraction and treatment of in situ water can minimize risk for large-scale CO2 injection in saline aquifers during carbon capture, utilization, and storage (CCUS), and for enhanced oil recovery (EOR). Additionally, treatment and reuse of oil and gas produced waters for hydraulic fracturing will conserve scarce fresh-water resources. Each treatment step, including transportation and waste disposal, generates economic and engineering challenges and risks; these steps should be factored into a comprehensive assessment. We expand the water treatment model (WTM) coupled within the sequestration system model CO2-PENS and use chemistry data from seawater and proposed injection sites in Wyoming, to demonstratemore » the relative importance of different water types on costs, including little-studied effects of organic pretreatment and transportation. We compare the WTM with an engineering water treatment model, utilizing energy costs and transportation costs. Specific energy costs for treatment of Madison Formation brackish and saline base cases and for seawater compared closely between the two models, with moderate differences for scenarios incorporating energy recovery. Transportation costs corresponded for all but low flow scenarios (<5000 m3/d). Some processes that have high costs (e.g., truck transportation) do not contribute the most variance to overall costs. Other factors, including feed-water temperature and water storage costs, are more significant contributors to variance. These results imply that the WTM can provide good estimates of treatment and related process costs (AACEI equivalent level 5, concept screening, or level 4, study or feasibility), and the complex relationships between processes when extracted waters are evaluated for use during CCUS and EOR site development.« less

  2. Water turbine system and method of operation

    DOE Patents [OSTI]

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  3. Water turbine system and method of operation

    DOE Patents [OSTI]

    Costin, Daniel P.

    2009-02-10

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  4. Water turbine system and method of operation

    DOE Patents [OSTI]

    Costin, Daniel P.

    2011-05-10

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  5. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  6. Wellbottom fluid implosion treatment system

    SciTech Connect (OSTI)

    Brieger, Emmet F.

    2001-01-01

    A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

  7. Screening reactor steam/water piping systems for water hammer

    SciTech Connect (OSTI)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.

  8. Treatment of arsenic-contaminated water using akaganeite adsorption

    DOE Patents [OSTI]

    Cadena C., Fernando; Johnson, Michael D.

    2008-01-01

    The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

  9. Using naturally occurring radionuclides to determine drinking water age in a community water system

    SciTech Connect (OSTI)

    Waples, James T.; Bordewyk, Jason K.; Knesting, Kristina M.; Orlandini, Kent A.

    2015-07-22

    Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of 90Y/90Sr and 234Th/238U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σest: ± 3.8 h, P < 0.0001, r2 = 0.998, n = 11) and 25 days old (σest: ± 13.3 h, P < 0.0001, r2 = 0.996, n = 12), respectively. Moreover, 90Y-derived water ages in a community water system (6.8 × 104 m3 d–1 capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.

  10. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

  11. Service water system failures and degradations

    SciTech Connect (OSTI)

    Lam, P.; Leeds, E.

    1989-01-01

    The Office for Analysis and Evaluation of Operational Data (AEOD) of the U.S. Nuclear Regulatory Commission (NRC) has completed a comprehensive review and evaluation of service water system failures and degradations observed in operating events in light water reactors from 1980 to 1987. The review and evaluation focused on the identification of causes of system failures and degradations, the adequacy of corrective actions implemented and planned, and the safety significance of the operating events. The results of this review and evaluation indicate that service water system failures and degradations have significant safety implications. These system failures and degradations are attributable to a great variety of causes and have adverse impact on a large number of safety-related systems and components that are required to mitigate reactor accidents. Specifically, the causes of failures and degradations include various fouling mechanisms (sediment deposition, biofouling, corrosion and erosion, pipe coating failure, calcium carbonate, foreign material and debris intrusion); single failures and other design deficiencies; flooding; multiple equipment failures; personnel and procedural errors; and seismic deficiencies. Systems and components adversely impacted by a service water system failure or degradation include the component cooling water system, emergency diesel generators, emergency core-cooling system pumps and heat exchangers, the residual heat removal system, containment spray and fan coolers, control room chillers, and reactor building cooling units.

  12. Treatment of produced waters by electrocoagulation and reverse osmosis

    SciTech Connect (OSTI)

    Tuggle, K.; Humenick, M.; Barker, F.

    1992-08-01

    Two oil field produced waters and one coal bed methane produced water from Wyoming were treated with electrocoagulation and reverse osmosis. All three produced waters would require treatment to meet the new Wyoming Department of Environmental Quality requirements for effluent discharge into a class III or IV stream. The removal of radium 226 and oil and grease was the primary focus of the study. Radium 226 and oil and grease were removed from the produced waters with electrocoagulation. The best removal of radium 226 (>84%) was achieved with use of a non-sacrificial anode (titanium). The best removal of oil and grease (>93%) was achieved using a sacrificial anode (aluminum). By comparison, reverse osmosis removed up to 87% of the total dissolved solids and up to 95% of the radium 226.

  13. Residential hot water distribution systems: Roundtablesession

    SciTech Connect (OSTI)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  14. Passive safety injection system using borated water

    DOE Patents [OSTI]

    Conway, Lawrence E.; Schulz, Terry L.

    1993-01-01

    A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

  15. High temperature hot water systems: A primer

    SciTech Connect (OSTI)

    Govan, F.A.

    1998-01-01

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  16. Evolution of a Groundwater Treatment System-Rocky Flats, Colorado, Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Evolution of a Groundwater Treatment System-Rocky Flats, Colorado, Site Evolution of a Groundwater Treatment System-Rocky Flats, Colorado, Site January 13, 2015 - 5:18pm Addthis What does this project do? Goal 1. Protect human health and the environment. A project to reconfigure the East Trenches Plume Treatment System (ETPTS) at the Rocky Flats site, to improve treatment effectiveness and meet the strict water quality standards in the area, is scheduled to be completed

  17. DEVELOPMENT AND VALIDATION OF AN ACID MINE DRAINAGE TREATMENT PROCESS FOR SOURCE WATER

    SciTech Connect (OSTI)

    Lane, Ann

    2015-12-31

    Throughout Northern Appalachia and surrounding regions, hundreds of abandoned mine sites exist which frequently are the source of Acid Mine Drainage (AMD). AMD typically contains metal ions in solution with sulfate ions which have been leached from the mine. These large volumes of water, if treated to a minimum standard, may be of use in Hydraulic Fracturing (HF) or other industrial processes. This project’s focus is to evaluate an AMD water treatment technology for the purpose of providing treated AMD as an alternative source of water for HF operations. The HydroFlex™ technology allows the conversion of a previous environmental liability into an asset while reducing stress on potable water sources. The technology achieves greater than 95% water recovery, while removing sulfate to concentrations below 100 mg/L and common metals (e.g., iron and aluminum) below 1 mg/L. The project is intended to demonstrate the capability of the process to provide AMD as alternative source water for HF operations. The second budget period of the project has been completed during which Battelle conducted two individual test campaigns in the field. The first test campaign demonstrated the ability of the HydroFlex system to remove sulfate to levels below 100 mg/L, meeting the requirements indicated by industry stakeholders for use of the treated AMD as source water. The second test campaign consisted of a series of focused confirmatory tests aimed at gathering additional data to refine the economic projections for the process. Throughout the project, regular communications were held with a group of project stakeholders to ensure alignment of the project objectives with industry requirements. Finally, the process byproduct generated by the HydroFlex process was evaluated for the treatment of produced water against commercial treatment chemicals. It was found that the process byproduct achieved similar results for produced water treatment as the chemicals currently in use. Further

  18. Treatment methods for breaking certain oil and water emulsions

    DOE Patents [OSTI]

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1992-01-01

    Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

  19. Particle count monitoring of reverse osmosis water treatment for removal of low-level radionuclides

    SciTech Connect (OSTI)

    Moritz, E.J.; Hoffman, C.R.; Hergert, T.R.

    1995-03-01

    Laser diode particle counting technology and analytical measurements were used to evaluate a pilot-scale reverse osmosis (RO) water treatment system for removal of particulate matter and sub-picocurie low-level radionuclides. Stormwater mixed with Waste Water Treatment Plant (WWTP) effluent from the Rocky Flats Environmental Technology Site (RFETS), formerly a Department of Energy (DOE) nuclear weapons production facility, were treated. No chemical pretreatment of the water was utilized during this study. The treatment system was staged as follows: multimedia filtration, granular activated carbon adsorption, hollow tube ultrafiltration, and reverse osmosis membrane filtration. Various recovery rates and two RO membrane models were tested. Analytical measurements included total suspended solids (TSS), total dissolved solids (TDS), gross alpha ({alpha}) and gross beta ({beta}) activity, uranium isotopes {sup 233/234}U and {sup 238}U, plutonium {sup 239/240}Pu, and americium {sup 241}Am. Particle measurement between 1--150 microns ({mu}) included differential particle counts (DPC), and total particle counts (TPC) before and after treatment at various sampling points throughout the test. Performance testing showed this treatment system produced a high quality effluent in clarity and purity. Compared to raw water levels, TSS was reduced to below detection of 5 milligrams per liter (mg/L) and TDS reduced by 98%. Gross {alpha} was essentially removed 100%, and gross {beta} was reduced an average of 94%. Uranium activity was reduced by 99%. TPC between 1-150{mu} were reduced by an average 99.8% to less than 1,000 counts per milliliter (mL), similar in purity to a good drinking water treatment plant. Raw water levels of {sup 239/240}Pu and {sup 241}Am were below reliable quantitation limits and thus no removal efficiencies could be determined for these species.

  20. Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a research project whose goal is to translate a unique approach for the synthesis of self-assembled nanostructured carbon into industrially viable technologies for two important, large-scale applications: electrochemical double-layer capacitors (also referred to as ultracapacitors) for electrical energy storage, and capacitive deionization (CDI) systems for water treatment and desalination.

  1. The design of an alum stormwater treatment system

    SciTech Connect (OSTI)

    Herr, J.L.; Harper, H.H.

    1998-07-01

    This paper summarizes the evaluation and design of an alum stormwater treatment system which was designed to improve water quality in Lake Maggiore in St. Petersburg, Florida. Lake Maggiore is a 156-hectare hyperutrophic lake located adjacent to Tampa Bay in the City of St. Petersburg, Florida which receives untreated stormwater runoff from a 927-hectare urban watershed area. Documentation of water quality problems such as algal blooms, fish kills, nuisance macrophyte growth, and high bacteria levels date back as far as the early 1950s. An environmental assessment was conducted from 1989--1991 which concluded that an acceptable improvement in the tropic status could be achieved by an 90% reduction in annual loadings of total phosphorus from stormwater runoff and baseflow. The study recommended that alum treatment of stormwater and baseflow be implemented due to the low cost and high removal efficiencies. In 1993 and 1994, a Preliminary Design Report was prepared which included the development of hydrologic and nutrient budgets for the lake, laboratory testing to determine the effectiveness of alum for removal of pollutants contained in the stormwater and baseflow, and the preparation of preliminary designs, construction cost estimates, and annual operation and maintenance costs for six separate alum treatment systems. Upon acceptance of the Preliminary Design Report, five separate alum stormwater treatment systems were designed during 1995, including both an in-line system with direct flow input into the lake and off-line systems incorporated into the water management system of an adjacent golf course. Construction was completed in January 1998 and the system was in full operation by March 1998.

  2. Building America Webinar: Central Multifamily Water Heating Systems...

    Energy Savers [EERE]

    Multifamily Central Heat Pump Water Heating Building America Webinar: Central Multifamily Water Heating Systems - Multifamily Central Heat Pump Water Heating This presentation will ...

  3. Water Use in Enhanced Geothermal Systems (EGS): Geology of U...

    Office of Scientific and Technical Information (OSTI)

    Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Source Policies Citation Details In-Document Search Title: ...

  4. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect (OSTI)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  5. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting ...

  6. Oregon Application for Onsite Sewage Treatment System | Open...

    Open Energy Info (EERE)

    Application for Onsite Sewage Treatment System Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon Application for Onsite Sewage Treatment System...

  7. In-situ continuous water monitoring system

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1998-03-31

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

  8. In-situ continuous water monitoring system

    DOE Patents [OSTI]

    Thompson, Cyril V.; Wise, Marcus B.

    1998-01-01

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.

  9. Siting Your Solar Water Heating System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Your Solar Water Heating System Siting Your Solar Water Heating System Before you buy and install a solar water heating system, you need to first consider your site's solar...

  10. Siting Your Solar Water Heating System | Department of Energy

    Energy Savers [EERE]

    Siting Your Solar Water Heating System Siting Your Solar Water Heating System Before you buy and install a solar water heating system, you need to first consider your site's solar ...

  11. Water injected fuel cell system compressor

    DOE Patents [OSTI]

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  12. System for disposing of radioactive water

    DOE Patents [OSTI]

    Gotchy, Reginald L.

    1976-01-13

    A system for reducing radioactivity released to the biosphere in the course of producing natural gas from a reservoir stimulated by the detonation of nuclear explosives therein. Tritiated water produced with the gas is separated out and returned to a nuclear chimney through a string of tubing positioned within the well casing. The tubing string is positioned within the well casing in a manner which enhances separation of the water out of the gas and minimizes entrainment of water into the gas flowing out of the chimney.

  13. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America research ...

  14. Enhanced Geothermal Systems (EGS) comparing water with CO2 as...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Geothermal Systems (EGS) comparing water with CO2 as heattransmission fluids Citation Details In-Document Search Title: Enhanced Geothermal Systems (EGS) comparing water ...

  15. Montana Ground Water Pollution Control System Information Webpage...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Information Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System...

  16. Building Codes and Regulations for Solar Water Heating Systems...

    Office of Environmental Management (EM)

    Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit:...

  17. Physical Modeling of Scaled Water Distribution System Networks...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Physical Modeling of Scaled Water Distribution System Networks. Citation Details In-Document Search Title: Physical Modeling of Scaled Water Distribution System ...

  18. New Water Booster Pump System Reduces Energy Consumption by 80...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BENEFITS A Motor Challeng NEW WATER BOOSTER PUMP SYSTEM REDUCES ENERGY CONSUMPTION BY 80 ... General Motors (GM) needed to relocate the facility's city water booster pumping system. ...

  19. Building America Webinar: Central Multifamily Water Heating Systems...

    Energy Savers [EERE]

    Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems The webinar was presented on January 21, 2015, and focused on the ...

  20. Boiler Upgrades and Decentralizing Steam Systems Save Water and...

    Energy Savers [EERE]

    Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval ...

  1. Water Outlet Control Mechanism for Fuel Cell System Operation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Water Outlet Control Mechanism for Fuel Cell System Operation in Variable Gravity Environments Self-Regulating Water Separation System for Fuel ...

  2. Boise State University Wind2Water Filtration System

    Broader source: Energy.gov (indexed) [DOE]

    MBE BRONCOS- BOISE STATE UNIVERSITY WIND2WATER FILTRATION SYSTEM Louis Stokes Alliance for Minority Participation MBE Broncos Wind2Water Filtration System 1 Executive Summary The ...

  3. High throughput chemical munitions treatment system

    DOE Patents [OSTI]

    Haroldsen, Brent L.; Stofleth, Jerome H.; Didlake, Jr., John E.; Wu, Benjamin C-P

    2011-11-01

    A new High-Throughput Explosive Destruction System is disclosed. The new system is comprised of two side-by-side detonation containment vessels each comprising first and second halves that feed into a single agent treatment vessel. Both detonation containment vessels further comprise a surrounding ventilation facility. Moreover, the detonation containment vessels are designed to separate into two half-shells, wherein one shell can be moved axially away from the fixed, second half for ease of access and loading. The vessels are closed by means of a surrounding, clam-shell type locking seal mechanisms.

  4. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to...

  5. Fire water systems in composite materials

    SciTech Connect (OSTI)

    Sundt, J.L.

    1993-12-31

    Due to corrosion problems in fire water systems offshore there is a need for a corrosion resistant material to improve the reliability of onboard fire fighting systems. Glass Reinforced Epoxy (GRE) pipe is seen as a cost effective and light weight alternative to metals. Through a test program run by AMAT, Advanced Materials a/s in collaboration with the Norwegian Fire and Research Laboratory (NBL, SINTEF), GRE pipes have proved to be viable materials for offshore fire water systems. The test program included furnace testing, jetfire testing and simulated explosion testing. GRE pipes (2--12 inches) from two suppliers were fire tested and evaluated. Both adhesively bonded joints and flange connections were tested. During the course of the project, application methods of passive fire protection and nozzle attachments were improved.

  6. Containment system for supercritical water oxidation reactor

    DOE Patents [OSTI]

    Chastagner, P.

    1994-07-05

    A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

  7. Containment system for supercritical water oxidation reactor

    DOE Patents [OSTI]

    Chastagner, Philippe

    1994-01-01

    A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

  8. Army Energy and Water Reporting System Assessment

    SciTech Connect (OSTI)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating

  9. Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead

    SciTech Connect (OSTI)

    BC Technologies

    2009-12-30

    Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL

  10. Oakland Ravine Stormwater Treatment System Project, Borough of Queens, NYC

    SciTech Connect (OSTI)

    Dinkle, R.E.; Moutal, H.P.; Evans, T.M.; Kloman, L.

    1999-07-01

    Compared to other cities, New York City (NYC) is abundantly endowed with parklands and open spaces, many of which can be utilized to treat and dissipate stormwater runoff flows, in conjunction with the preservation, restoration and creation of ecological systems. Such use of available parklands and open spaces has the benefit of decreasing cost for stormwater treatment and conveyance, while at the same time enhancing the natural biological systems. Through the combined efforts of the NYC Department of Environmental Protection (NYCDEP), which is responsible for stormwater control, and the NYC Department of Parks and Recreation (NYCDPR), which is responsible for preserving and restoring the ecological systems of parklands and open spaces, URS Greiner Woodward Clyde (URSGWC) developed a project to provide for the treatment of stormwater and the attenuation of peak stormwater flows through restoration and creation of wetlands within Oakland Ravine (located in the densely populated northeastern section of the Borough of Queens, NYC). The proposed Oakland Ravine Stormwater Treatment System Project was developed in conjunction with the East River Combined Sewer Overflow (CSO) Abatement Project, which is part of the NYC comprehensive program to reduce CSO discharges into receiving waters. Discharges into Alley Creek through Outfall TI-7, an outfall located about one-half mile northeast of the ravine which has been designated for CSO abatement, will be reduced as a result of the project.

  11. Building America Webinar: Central Multifamily Water Heating Systems...

    Energy Savers [EERE]

    Energy-Efficient Controls for Multifamily Domestic Hot Water Building America Webinar: Central Multifamily Water Heating Systems - Energy-Efficient Controls for Multifamily ...

  12. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Permit Application Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution...

  13. Building America Case Study: Indirect Solar Water Heating Systems...

    Energy Savers [EERE]

    Indirect Solar Water Heating Systems in Single-Family Homes Greenfield, Massachusetts ... Building Component: Solar water heating Application: Single-family Years Tested: 2010-2013 ...

  14. Posters Toward an Operational Water Vapor Remote Sensing System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Toward an Operational Water Vapor Remote Sensing System Using the Global ... T. Van Hove and C. Rocken University Navstar Consortium Boulder, Colorado Background Water ...

  15. Experimental Breeder Reactor-II Primary Tank System Wash Water...

    Office of Environmental Management (EM)

    Pre-Developmental INL EBR-II Wash Water Treatment Technologies (PBS ADSHQTD0100 (0003199)) EBR-II Wash Water Workshop - The majority of the sodium has been removed, remaining ...

  16. Medical waste treatment and decontamination system

    DOE Patents [OSTI]

    Wicks, George G.; Schulz, Rebecca L.; Clark, David E.

    2001-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  17. NOVEL MEMBRANES AND SYSTEMS FOR INDUSTRIAL AND MUNICIPAL WATER...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A smooth resin deposition technology will be developed for reverse osmosis membranes used in water treatment and industrial and municipal wastewater reuse. Thin films of the resin ...

  18. Finding Balance Between Biological Groundwater Treatment and Treated Injection Water

    SciTech Connect (OSTI)

    Carlson, Mark A.; Nielsen, Kellin R.; Byrnes, Mark E.; Simmons, Sally A.; Morse, John J.; Geiger, James B.; Watkins, Louis E.; McFee, Phillip M.; Martins, K.

    2015-01-14

    At the U.S. Department of Energy’s Hanford Site, CH2M HILL Plateau Remediation Company operates the 200 West Pump and Treat which was engineered to treat radiological and chemical contaminants in groundwater as a result of the site’s former plutonium production years. Fluidized bed bioreactors (FBRs) are used to remove nitrate, metals, and volatile organic compounds. Increasing nitrate concentrations in the treatment plant effluent and the presence of a slimy biomass (a typical microorganism response to stress) in the FBRs triggered an investigation of nutrient levels in the system. Little, if any, micronutrient feed was coming into the bioreactors. Additionally, carbon substrate (used to promote biological growth) was passing through to the injection wells, causing biological fouling of the wells and reduced specific injectivity. Adjustments to the micronutrient feed improved microorganism health, but the micronutrients were being overfed (particularly manganese) plugging the injection wells further. Injection well rehabilitation to restore specific injectivity required repeated treatments to remove the biological fouling and precipitated metal oxides. A combination of sulfamic and citric acids worked well to dissolve metal oxides and sodium hypochlorite effectively removed the biological growth. Intensive surging and development techniques successfully removed clogging material from the injection wells. Ultimately, the investigation and nutrient adjustments took months to restore proper balance to the microbial system and over a year to stabilize injection well capacities. Carefully tracking and managing the FBRs and well performance monitoring are critical to balancing the needs of the treatment system while reducing fouling mechanisms in the injection wells.

  19. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    SciTech Connect (OSTI)

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  20. Probabilistic cost estimation methods for treatment of water extracted during CO2 storage and EOR

    SciTech Connect (OSTI)

    Graham, Enid J. Sullivan; Chu, Shaoping; Pawar, Rajesh J.

    2015-08-08

    Extraction and treatment of in situ water can minimize risk for large-scale CO2 injection in saline aquifers during carbon capture, utilization, and storage (CCUS), and for enhanced oil recovery (EOR). Additionally, treatment and reuse of oil and gas produced waters for hydraulic fracturing will conserve scarce fresh-water resources. Each treatment step, including transportation and waste disposal, generates economic and engineering challenges and risks; these steps should be factored into a comprehensive assessment. We expand the water treatment model (WTM) coupled within the sequestration system model CO2-PENS and use chemistry data from seawater and proposed injection sites in Wyoming, to demonstrate the relative importance of different water types on costs, including little-studied effects of organic pretreatment and transportation. We compare the WTM with an engineering water treatment model, utilizing energy costs and transportation costs. Specific energy costs for treatment of Madison Formation brackish and saline base cases and for seawater compared closely between the two models, with moderate differences for scenarios incorporating energy recovery. Transportation costs corresponded for all but low flow scenarios (<5000 m3/d). Some processes that have high costs (e.g., truck transportation) do not contribute the most variance to overall costs. Other factors, including feed-water temperature and water storage costs, are more significant contributors to variance. These results imply that the WTM can provide good estimates of treatment and related process costs (AACEI equivalent level 5, concept screening, or level 4, study or feasibility), and the complex relationships between processes when extracted waters are evaluated for use during CCUS and EOR site development.

  1. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  2. Cost reduction in deep water production systems

    SciTech Connect (OSTI)

    Beltrao, R.L.C.

    1995-12-31

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project.

  3. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper,

  4. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    SciTech Connect (OSTI)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  5. Water Consumption from Freeze Protection Valves for Solar Water Heating Systems

    SciTech Connect (OSTI)

    Burch, J.; Salasovich, J.

    2005-12-01

    Conference paper regarding research in the use of freeze protection valves for solar domestic water heating systems in cold climates.

  6. Enhanced monitor system for water protection

    DOE Patents [OSTI]

    Hill, David E [Knoxville, TN; Rodriquez, Jr., Miguel [Oak Ridge, TN; Greenbaum, Elias [Knoxville, TN

    2009-09-22

    An automatic, self-contained device for detecting toxic agents in a water supply includes an analyzer for detecting at least one toxic agent in a water sample, introducing a means for introducing a water sample into the analyzer and discharging the water sample from the analyzer, holding means for holding a water sample for a pre-selected period of time before the water sample is introduced into the analyzer, and an electronics package that analyzes raw data from the analyzer and emits a signal indicating the presence of at least one toxic agent in the water sample.

  7. A field demonstration of the microbial treatment of sour produced water

    SciTech Connect (OSTI)

    Sublette, K.L.; Morse, D.; Raterman, K.

    1995-12-31

    The potential for detoxification and deodorization of sulfide-laden water (sour water) by microbial treatment was evaluated at a petroleum production site under field conditions. A sulfide-tolerant strain of the chemautotroph and facultative anaerobe, Thiobacillus denitrificans, was introduced into an oil-skimming pit of the Amoco Production Company LACT 10 Unit of the Salt Creek Field, Wyoming. Field-produced water enters this pit from the oil/water separation treatment train at an average flowrate of 5,000 bbl/D (795 m{sup 3}/D) with a potential maximum of 98,000 bbl/D (15,580 m{sup 3}/D). Water conditions at the pit inlet are 4,800 mg/l TDS, 100 mg/l sulfide, pH 7.8, and 107{degrees}F. To this water an aqueous solution of ammonium nitrate and diphosphorous pentoxide was added to provide required nutrients for the bacteria. The first 20% of the pit was aerated to a maximum depth of 5 ft (1.5 m) to facilitate the aerobic oxidation of sulfide. No provisions for pH control or biomass recovery and recycle were made. Pilot operations were initiated in October 1992 with the inoculation of the 19,000 bbl (3,020 m{sup 3}) pit with 40 lb (18.1 kg) of dry weight biomass. After a brief acclimation period, a nearly constant mass flux of 175 lb/D (80 kg/D) sulfide was established to the pit. Bio-oxidation of sulfide to elemental sulfur and sulfate was immediate and complete. Subsequent pilot operations focused upon process optimization and process sensitivity to system upsets. The process appeared most sensitive to large variations in sulfide loading due to maximum water discharge events. However, recoveries from such events could be accomplished within hours. This paper details all pertinent aspects of pilot operation, performance, and economics. Based on this body of evidence, it is suggested that the oxidation of inorganic sulfides by T denitrificans represents a viable concept for the treatment of sour water coproduced with oil and gas.

  8. Wastewater treatment: Ozonation processes and equipment. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning the use of ozone for wastewater disinfection. The citations cover system descriptions and evaluations, comparisons with the chlorination disinfection process, reaction kinetics, and the combination of ozonation with other wastewater treatment methods. The treatment of organic and inorganic compounds in wastewater and municipal water supplies is also discussed. (Contains 250 citations and includes a subject term index and title list.)

  9. Wastewater treatment: Ozonation processes and equipment. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    The bibliography contains citations concerning the use of ozone for wastewater disinfection. The citations cover system descriptions and evaluations, comparisons with the chlorination disinfection process, reaction kinetics, and the combination of ozonation with other wastewater treatment methods. The treatment of organic and inorganic compounds in wastewater and municipal water supplies is also discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. Building America Webinar: Central Multifamily Water Heating Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems The webinar was presented on January 21, 2015, and focused on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution. Presenters and specific topics for this webinar included: Elizabeth Weitzel from the Building America team, Alliance for Residential Building Innovation, presenting

  11. ORS 454 - Sewage Treatment and Disposal Systems | Open Energy...

    Open Energy Info (EERE)

    54 - Sewage Treatment and Disposal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS 454 - Sewage Treatment and...

  12. Nanofiltration/reverse osmosis for treatment of coproduced waters

    SciTech Connect (OSTI)

    Mondal, S.; Hsiao, C.L.; Wickramasinghe, S.R. [Colorado State University, Ft Collins, CO (United States)

    2008-07-15

    Current high oil and gas prices have lead to renewed interest in exploration of nonconventional energy sources such as coal bed methane, tar sand, and oil shale. However oil and gas production from these nonconventional sources has lead to the coproduction of large quantities of produced water. While produced water is a waste product from oil and gas exploration it is a very valuable natural resource in the arid Western United States. Thus treated produced water could be a valuable new source of water. Commercially available nanofiltration and low pressure reverse osmosis membranes have been used to treat three produced waters. The results obtained here indicate that the permeate could be put to beneficial uses such as crop and livestock watering. However minimizing membrane fouling will be essential for the development of a practical process. Field Emission Scanning Electron Microscopy imaging may be used to observe membrane fouling.

  13. Wetland treatment of oil and gas well waste waters. Final report

    SciTech Connect (OSTI)

    Kadlec, R.; Srinivasan, K.

    1995-08-01

    Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

  14. Treatment of Difficult Waters: Arsenic Removal Silica Control...

    Office of Scientific and Technical Information (OSTI)

    of Difficult Waters: Arsenic Removal Silica Control Carbon Capture and Enhanced Oil Recovery. Brady, Patrick Vane Abstract not provided. Sandia National Laboratories...

  15. Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.

    SciTech Connect (OSTI)

    Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

    2010-10-01

    In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system

  16. Replacement of chemical intensive water treatment processes with energy saving membrane. Final report

    SciTech Connect (OSTI)

    Mickley, M.C.; Goering, S.W.

    1983-11-01

    The project investigated the use of charged ultrafiltration membranes to treat hard water. More specifically, the work was undertaken to (1) make charged ultrafiltration membranes to demonstrate the technical feasibility of the chemical grafting approach; (2) evaluate the market potential for charged ultrafiltration membranes; and (3) evaluate the cost and energy savings for using charged ultrafiltration as compared to lime-based clarification and other treatment methods. The results suggest that chemical grafting is a relatively simple, reproducible and low-cost way to modify existing substrate materials to give them enhanced transport performance. Process studies lead to the identification of good market potential for membrane processes using charged ultrafiltration membranes. Capital and operating costs relative to lime-based clarification are favorable for low- and medium-sized treatment plants. Finally, substantial energy savings are apparent as compared to lime-based precipitation systems which incur substantial energy consumption in the lime production and transportation steps.

  17. Building Codes and Regulations for Solar Water Heating Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every

  18. Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate System IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant heat-up was suspended to allow detailed evaluation of a system pressure event observed during testing on Saturday. Integrated Waste Treatment Unit (IWTU) Facility startup testing has been ongoing for the past month, evaluating system

  19. Enhanced Geothermal Systems: Comparing Water and CO2 as Heat...

    Office of Scientific and Technical Information (OSTI)

    ENHANCED GEOTHERMAL SYSTEMS (EGS): COMPARING WATER AND CO 2 AS HEAT TRANSMISSION FLUIDS ... with supercritical CO 2 instead of water as heat transmission fluid (D.W. Brown, 2000). ...

  20. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes

    Broader source: Energy.gov [DOE]

    This presentation is from the Building America research team BA-PIRC webinar on September 30, 2011 providing informationprovide information about how to achieve energy savings from solar water heating, electric dedicated heat pump water heating, and gas tankless systems.

  1. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  2. Low Cost Manufacturable Microchannel Systems for Passive PEM Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management | Department of Energy Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 5_pnnl.pdf (20.48 KB) More Documents & Publications Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management Fuel Cells For Transportation - 2001 Annual Progress Report Fuel Cells For

  3. Slip stream apparatus and method for treating water in a circulating water system

    DOE Patents [OSTI]

    Cleveland, J.R.

    1997-03-18

    An apparatus is described for treating water in a circulating water system that has a cooling water basin which includes a slip stream conduit in flow communication with the circulating water system, a source of acid solution in flow communication with the slip stream conduit, and a decarbonator in flow communication with the slip stream conduit and the cooling water basin. In use, a slip stream of circulating water is drawn from the circulating water system into the slip stream conduit of the apparatus. The slip stream pH is lowered by contact with an acid solution provided from the source thereof. The slip stream is then passed through a decarbonator to form a treated slip stream, and the treated slip stream is returned to the cooling water basin. 4 figs.

  4. Slip stream apparatus and method for treating water in a circulating water system

    DOE Patents [OSTI]

    Cleveland, Joe R.

    1997-01-01

    An apparatus (10) for treating water in a circulating water system (12) t has a cooling water basin (14) includes a slip stream conduit (16) in flow communication with the circulating water system (12), a source (36) of acid solution in flow communication with the slip stream conduit (16), and a decarbonator (58) in flow communication with the slip stream conduit (16) and the cooling water basin (14). In use, a slip stream of circulating water is drawn from the circulating water system (12) into the slip stream conduit (16) of the apparatus (10). The slip stream pH is lowered by contact with an acid solution provided from the source (36) thereof. The slip stream is then passed through a decarbonator (58) to form a treated slip stream, and the treated slip stream is returned to the cooling water basin (14).

  5. Photoelectrochemical Water Systems for H2 Production (Presentation)

    SciTech Connect (OSTI)

    Turner, J. A.; Deutsch, T.; Head, J.; Vallett, P.

    2007-05-17

    This Photoelectrochemical Water Systems for Hydrogen Production presentation by the National Renewable Energy Laboratory's John Turner was given at the DOE Hydrogen Program's 2007 Annual Merit Review.

  6. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

  7. Building Codes and Regulations for Solar Water Heating Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision...

  8. Integrated thermal treatment system sudy: Phase 2, Results

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  9. Idaho waste treatment facility startup testing suspended to evaluate system

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    response | Department of Energy Idaho waste treatment facility startup testing suspended to evaluate system response Idaho waste treatment facility startup testing suspended to evaluate system response June 20, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant

  10. Use of Produced Water in Recirculating Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-07-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. This deliverable describes possible test configurations for produced water demonstration projects at SJGS. The ability to host demonstration projects would enable the testing and advancement of promising produced water treatment technologies. Testing is described for two scenarios: Scenario 1--PNM builds a produced water treatment system at SJGS and incorporates planned and future demonstration projects into the design of the system. Scenario 2--PNM forestalls or decides not to install a produced water treatment system and would either conduct limited testing at SJGS (produced water would have to be delivered by tanker trucked) or at a salt water disposal facility (SWD). Each scenario would accommodate demonstration projects differently and these differences are discussed in this deliverable. PNM will host a demonstration test of water-conserving cooling technology--Wet Surface Air Cooling (WSAC) using cooling tower blowdown

  11. New Water Booster Pump System Reduces Energy Consumption by 80...

    Broader source: Energy.gov (indexed) [DOE]

    As a result, the company reduced pumping system energy consumption by 80 percent (225,100 ... New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases ...

  12. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC

  13. Coming Up With the Latest in High-Tech Water Treatment

    Broader source: Energy.gov [DOE]

    Many people dont think much about what happens to water once it goes down the drain. Thanks to a vast network of wastewater treatment facilities in the United States, were able to clean and...

  14. Microbial fuel cell treatment of ethanol fermentation process water

    DOE Patents [OSTI]

    Borole, Abhijeet P.

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  15. CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting a CHP technology, such as size, emissions, location of maintenance personnel, and efficiency. This document summarizes the following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. CHP and Bioenergy Systems for Landfills and Wastewater

  16. Thermal overinsulation and the behavior of hot water heating systems

    SciTech Connect (OSTI)

    Casier, Y.

    1982-01-01

    Supported by thermodynamic calculations and field experience G.D.F. disproved the theory that because of their high warm-up/cooldown inertia, hot-water central heating systems are inefficient for insulated dwellings that have low thermal losses, causing overheating in certain situations. With the proper choice of thermostat, water temperature, and piping design, a heating system that uses water as the heat carrier can be responsive to the needs of a tightly insulated residence.

  17. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  18. Estimating Energy and Water Losses in Residential Hot WaterDistribution Systems

    SciTech Connect (OSTI)

    Lutz, James

    2005-02-26

    Residential single family building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include; the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy needed to reheat water that was already heated once before. Average losses of water are estimated to be 6.35 gallons (24.0 L) per day. (This is water that is rundown the drain without being used while waiting for hot water.) The amount of wasted hot water has been calculated to be 10.9 gallons (41.3L) per day. (This is water that was heated, but either is not used or issued after it has cooled off.) A check on the reasonableness of this estimate is made by showing that total residential hot water use averages about 52.6 gallons (199 L) per day. This indicates about 20 percent of average daily hot water is wasted.

  19. Ceramic coating system or water oxidation environments

    DOE Patents [OSTI]

    Hong, Glenn T.

    1996-01-01

    A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.

  20. Analysis of micromixers and biocidal coatings on water-treatment membranes to minimize biofouling.

    SciTech Connect (OSTI)

    Webb, Stephen W.; James, Darryl L.; Hibbs, Michael R.; Jones, Howland D. T.; Hart, William Eugene; Khalsa, Siri Sahib; Altman, Susan Jeanne; Clem, Paul Gilbert; Elimelech, Menachem; Cornelius, Christopher James; Sanchez, Andres L.; Noek, Rachael M.; Ho, Clifford Kuofei; Kang, Seokatae; Sun, Amy Cha-Tien; Adout, Atar; McGrath, Lucas K.; Cappelle, Malynda A.; Cook, Adam W.

    2009-12-01

    Biofouling, the unwanted growth of biofilms on a surface, of water-treatment membranes negatively impacts in desalination and water treatment. With biofouling there is a decrease in permeate production, degradation of permeate water quality, and an increase in energy expenditure due to increased cross-flow pressure needed. To date, a universal successful and cost-effect method for controlling biofouling has not been implemented. The overall goal of the work described in this report was to use high-performance computing to direct polymer, material, and biological research to create the next generation of water-treatment membranes. Both physical (micromixers - UV-curable epoxy traces printed on the surface of a water-treatment membrane that promote chaotic mixing) and chemical (quaternary ammonium groups) modifications of the membranes for the purpose of increasing resistance to biofouling were evaluated. Creation of low-cost, efficient water-treatment membranes helps assure the availability of fresh water for human use, a growing need in both the U. S. and the world.

  1. Wastewater and water treatment: Anion exchange. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The bibliography contains citations concerning the theory and methods of anion exchange in the treatment of potable water and wastewaters. Citations discuss anion exchange resins and membranes, desalination techniques, and process evaluations. Methods for anion analysis using chromatographic techniques are also considered. (Contains a minimum of 74 citations and includes a subject term index and title list.)

  2. Wastewater and water treatment: Anion exchange. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning the theory and methods of anion exchange in the treatment of potable water and wastewaters. Citations discuss anion exchange resins and membranes, desalination techniques, and process evaluations. Methods for anion analysis using chromatographic techniques are also considered. (Contains a minimum of 74 citations and includes a subject term index and title list.)

  3. Polyelectrolytes: Wastewater and sewage treatment. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The bibliography contains citations concerning polyelectrolytes in wastewater and water treatment. Topics include flocculation, coagulation, separation techniques, pollutant identification, water pollution sources, and sludge dehydration. Hospital wastewater processing, methods of synthesizing polyelectrolyte complexes, and performance evaluations of polyelectrolytes are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  4. Polyelectrolytes: Wastewater and sewage treatment. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning polyelectrolytes in wastewater and water treatment. Topics include flocculation, coagulation, separation techniques, pollutant identification, water pollution sources, and sludge dehydration. Hospital wastewater processing, methods of synthesizing polyelectrolyte complexes, and performance evaluations of polyelectrolytes are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  5. Small Water System Management Program: 100 K Area

    SciTech Connect (OSTI)

    Hunacek, G.S. Jr.

    1995-06-29

    Purposes of this document are: to provide an overview of the service and potable water system presently in service at the Hanford Site`s 100 K Area; to provide future system forecasts based on anticipated DOE activities and programs; to delineate performance, design, and operations criteria; and to describe planned improvements. The objective of the small water system management program is to assure the water system is properly and reliably managed and operated, and continues to exist as a functional and viable entity in accordance with WAC 246-290-410.

  6. EPA ENERGY STAR Webcast: Benchmarking Water/Wastewater Treatment Facilities in Portfolio Manager

    Broader source: Energy.gov [DOE]

    Learn how to track the progress of energy efficiency efforts and compare the energy use of wastewater treatment plants to other peer facilities across the country. Attendees will learn how to measure and track energy use and carbon dioxide emission reductions in water and wastewater treatment plants to establish baseline energy use, prioritize investments, set goals, and track improvements over time.

  7. Performance Monitoring of Residential Hot Water Distribution Systems

    SciTech Connect (OSTI)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  8. 300 Area waste acid treatment system closure plan

    SciTech Connect (OSTI)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  9. Operating experience review of service water system problems

    SciTech Connect (OSTI)

    Lam, P.

    1989-01-01

    In a recent paper, selected results of a comprehensive review and evaluation of service water system problems conducted by the Office for Analysis and Evaluation of Operational Data (AEOD) of the US Nuclear Regulatory Commission (NRC) were presented. The results of this review and evaluation indicated that service water system problems have significant safety implications. These system problems are attributable to a great variety of causes and have adverse impacts on a large number of safety-related systems and components. To provide additional feedback of operating experience, this paper presents an overview of the dominant mechanisms leading to service water system degradations and failures. The failures and degradations of service water systems observed in the 276 operating events are grouped into six general categories. The six general categories are (1) fouling due to various mechanisms, (2) single-failure and other design deficiencies, (3) flooding, (4) equipment failures, (5) personnel and procedural errors, and (6) seismic deficiencies.

  10. Everything You Wanted to Know About Solar Water Heating Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Everything You Wanted to Know About Solar Water Heating Systems Everything You Wanted to Know About Solar Water Heating Systems October 7, 2014 - 2:39pm Q&A What do you want to know about solar at home? Tell Us Addthis Solar panels heat water that is delivered to a storage tank. | Photo courtesy of David Springer, National Renewable Energy Laboratory Solar panels heat water that is delivered to a storage tank. | Photo courtesy of David Springer, National Renewable

  11. Simple solar water heating systems: The SWAP program in Florida

    SciTech Connect (OSTI)

    Harrison, J.

    1997-11-01

    This article describes the development of a solar water heating system appropriate for low-income Florida residents and the appliances developed in conjunction with it that may appeal to a wider market. Among the topics discussed are size and design of the system including passive preheaters and affordable active systems. Electric water heaters with 40 and 50 gallon capacity were found to be the most cost effective. The feed-back from customers is also discussed. 3 figs.

  12. OAR 340-071 - On Site Wastewater Treatment Systems Definitions...

    Open Energy Info (EERE)

    1 - On Site Wastewater Treatment Systems Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: OAR 340-071 - On Site...

  13. 300 Area waste acid treatment system closure plan. Revision 1

    SciTech Connect (OSTI)

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  14. Performance assessment techniques for groundwater recovery and treatment systems

    SciTech Connect (OSTI)

    Kirkpatrick, G.L.

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  15. A model for radionuclide transport in the Cooling Water System

    SciTech Connect (OSTI)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA.

  16. Fukushima Light Water Detritiation System Presentation

    Office of Environmental Management (EM)

    | Department of Energy Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in collaboration with the University of California-Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel

  17. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    SciTech Connect (OSTI)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  18. SOLERAS - Solar Energy Water Desalination Project: Boeing Engineering and Construction. System design final report

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The system design for a future commercial solar energy brackish water desalination plant is described. Key features of the plant are discussed along with its configuration selection rationale, design objectives, operation, and performance. The water treatment technology used in the plant is ion exchange pretreatment and single stage reverse osmosis desalination utilizing high-flux membranes. Electrical power needed for plant operation is produced by a solar energy system, which is based on the Brayton cycle having air as the working fluid. Primary solar system components are: heliostat field, central cavity-tube receiver, receiver support tower, thermal energy storage, and a commercial gas turbine generator set. The thermal energy storage subsystem is of the sensible heat brick type and provides a capability for continuous day/night power generation during most weather conditions. This system design was selected in a study of various system alternatives and their life cycle product water costs for a representative site in western Texas.

  19. Articulated plural well deep water production system

    SciTech Connect (OSTI)

    Lawson, J.

    1980-07-08

    Apparatus for subsea production of fluids through a manifold and central riser from a plurality of individual wells drilled in different parts of a field in deep water, is described that is comprised of: a central manifold base having flow line connectors thereon; an elongated boom for each well to be produced in a field, each boom being rigidly attached to the manifold base; a temporary guide base mounted to the other end of each boom for establishing a well site; and a flow line extending along each boom from a flow line connector on the central manifold base. A method of producing well fluids from a number of individual wells drilled in different parts of a field located in deep water to a production platform via a central riser, which comprises the steps of: submerging to the ocean floor a subsea production apparatus which includes a central manifold base having an elongated boom for each well articulated thereto at one end and mounting a temporary guide base at the other end of the boom for establishing a well site, and a preinstalled flow line extending along each boom from the manifold base; landing a manifold section on the manifold; and landing a subsea tree on each temporary guide base.

  20. Renewable Energy in Water and Wastewater Treatment Applications; Period of Performance: April 1, 2001--September 1, 2001

    SciTech Connect (OSTI)

    Argaw, N.

    2003-06-01

    This guidebook will help readers understand where and how renewable energy technologies can be used for water and wastewater treatment applications. It is specifically designed for rural and small urban center water supply and wastewater treatment applications. This guidebook also provides basic information for selecting water resources and for various kinds of commercially available water supply and wastewater treatment technologies and power sources currently in the market.

  1. NRC Notice: Antifreeze Agents in Fire Water Sprinkler Systems

    Energy Savers [EERE]

    were identified in NRC Information Notice (IN) 2015-02, Antifreeze Agents in Fire Water Sprinkler Systems, (http:pbadupws.nrc.govdocsML1432ML14323A 176.pdf). This IN was...

  2. EA-1093: Surface Water Drainage System, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to correct deficiencies in, and then to maintain, the surface water drainage system serving the U.S. Department of Energy's Rocky Flats...

  3. Heat Exchangers for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar...

  4. Towards a Design of a Complete Solar Water Splitting System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towards a Design of a Complete Solar Water Splitting System 1 Feb 2013 BISfuel : A team of Bisfuel researchers led by Devens Gust, Ana Moore and Tom Moore has designed and ...

  5. Collaborative Project. Mode and Intermediate Waters in Earth System Models

    SciTech Connect (OSTI)

    Sarmiento, Jorge L.; Dufour, Carolina; Rodgers, Keith B.

    2015-12-16

    The focus of this grant was on diagnosing the physical mechanisms controlling upper ocean water mass formation and carbon distribution in Earth System Models (ESMs), with the goal of improving the physics that controls their formation.

  6. Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling.

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

  7. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  8. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olsen, R.; Hewett, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  9. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  10. Water augmented indirectly-fired gas turbine systems and method

    DOE Patents [OSTI]

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  11. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect (OSTI)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  12. Enhanced Renewable Methane Production System Benefits Wastewater Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants, Farms, and Landfills - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Enhanced Renewable Methane Production System Benefits Wastewater Treatment Plants, Farms, and Landfills Argonne National Laboratory Contact ANL About This Technology <p> Argonne&rsquo;s Enhanced Renewable Methane Production System &mdash; Process Schematic.</p> Argonne's Enhanced Renewable Methane Production System - Process Schematic.

  13. Methods for attaching polymerizable ceragenins to water treatment membranes using amine and amide linkages

    DOE Patents [OSTI]

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D.T.; Savage, Paul B.

    2013-10-15

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  14. Methods for attaching polymerizable ceragenins to water treatment membranes using silane linkages

    DOE Patents [OSTI]

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D. T.; Savage, Paul B.

    2013-09-10

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  15. Biofouling-resistant ceragenin-modified materials and structures for water treatment

    SciTech Connect (OSTI)

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D. T.; Savage, Paul B.

    2013-09-10

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  16. Hot Water Distribution System Model Enhancements

    SciTech Connect (OSTI)

    Hoeschele, M.; Weitzel, E.

    2012-11-01

    This project involves enhancement of the HWSIM distribution system model to more accurately model pipe heat transfer. Recent laboratory testing efforts have indicated that the modeling of radiant heat transfer effects is needed to accurately characterize piping heat loss. An analytical methodology for integrating radiant heat transfer was implemented with HWSIM. Laboratory test data collected in another project was then used to validate the model for a variety of uninsulated and insulated pipe cases (copper, PEX, and CPVC). Results appear favorable, with typical deviations from lab results less than 8%.

  17. Integrated thermal treatment system study: Phase 1 results. Volume 1

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

    1994-07-01

    An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked.

  18. Drought management and its impact on public water systems

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This volume represents the report on a colloquium sponsored by the National Research Council's Water Science and Technology Board, 5 September 1985. It includes five background papers on drought, drought management, risks for public systems, and legal and institutional aspects, plus appendices on conservation and rationing plans for Los Angeles and Salt Lake County. The conclusions of the volume include: (1) there is substantial need for continued research on drought and its impact on the management of public water systems; (2) sizing of the physical facilities of a system should not be based solely on full-service requirements during the drought of record, nor should such facilities be sized by the arbitrary specification of hydrologic risk; and (3) the key to adequate drought management of public water systems lies in predrought preparation.

  19. Modeling threat assessments of water supply systems using markov latent effects methodology.

    SciTech Connect (OSTI)

    Silva, Consuelo Juanita

    2006-12-01

    Recent amendments to the Safe Drinking Water Act emphasize efforts toward safeguarding our nation's water supplies against attack and contamination. Specifically, the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 established requirements for each community water system serving more than 3300 people to conduct an assessment of the vulnerability of its system to a terrorist attack or other intentional acts. Integral to evaluating system vulnerability is the threat assessment, which is the process by which the credibility of a threat is quantified. Unfortunately, full probabilistic assessment is generally not feasible, as there is insufficient experience and/or data to quantify the associated probabilities. For this reason, an alternative approach is proposed based on Markov Latent Effects (MLE) modeling, which provides a framework for quantifying imprecise subjective metrics through possibilistic or fuzzy mathematics. Here, an MLE model for water systems is developed and demonstrated to determine threat assessments for different scenarios identified by the assailant, asset, and means. Scenario assailants include terrorists, insiders, and vandals. Assets include a water treatment plant, water storage tank, node, pipeline, well, and a pump station. Means used in attacks include contamination (onsite chemicals, biological and chemical), explosives and vandalism. Results demonstrated highest threats are vandalism events and least likely events are those performed by a terrorist.

  20. Solubility effects in waste-glass/demineralized-water systems

    SciTech Connect (OSTI)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150/sup 0/C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables. (DLC)

  1. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    SciTech Connect (OSTI)

    Kusworo, T. D. Aryanti, N. Firdaus, M. M. H.; Sukmawati, H.

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  2. Mode and Intermediate Waters in Earth System Models

    SciTech Connect (OSTI)

    Gnanadesikan, Anand; Sarmiento, Jorge L.

    2015-12-22

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  3. Integrated radwaste treatment system lessons learned from 2{1/2} years of operation

    SciTech Connect (OSTI)

    Baker, M.N.; Fussner, R.J.

    1997-05-01

    The Integrated Radwaste Treatment System (IRTS) at the West Valley Demonstration Project (WVDP) is a pretreatment scheme to reduce the amount of salts in the high-level radioactive waste (vitrification) stream. Following removal of cesium-137 (Cs-137) by ion-exchange in the Supernatant Treatment System (STS), the radioactive waste liquid is volume-reduced by evaporation. Trace amounts of Cs-137 in the resulting distillate are removed by ion-exchange, then the distillate is discharged to the existing plant water treatment system. The concentrated product, 37 to 41 percent solids by weight, is encapsulated in cement producing a stable, low-level waste form. The Integrated Radwaste Treatment System (IRTS) operated in this mode from May 1988 through November 1990, decontaminating 450,000 gallons of high-level waste liquid; evaporating and encapsulating the resulting concentrates into 10,393 71-gallon square drums. A number of process changes and variations from the original operating plan were required to increase the system flow rate and minimize waste volumes. This report provides a summary of work performed to operate the IRTS, including system descriptions, process highlights, and lessons learned.

  4. A systematic approach for water recycle system design

    SciTech Connect (OSTI)

    Myers, C.W.; Dave, B.B.

    1995-12-01

    Water reuse is becoming a critical technology for industrial plants to remain competitive as environmental regulations become more stringent and as municipal water demands increase. The basic challenge of water reuse is to meet the water quality requirements of both the plant effluent and the in-plant processes in an economical fashion. The complex nature of water reuse problems demands a systematic approach for achieving solutions. Such an approach has been developed which integrates the plant audit, numerical process simulation, and pilot-scale experiments to optimize reuse system designs in the sense of both technical and economic merits. Two case studies are presented which illustrate some of the capabilities of this highly flexible approach to water reuse. The case of an oil refinery demonstrates the utility of process modelling prior to pilot-level testing, which is then used to determine system operating parameters and costs. The role of numerical process simulation in predicting process water chemistry and overall economics is emphasized in the case of a copper smelting plant.

  5. Wastewater treatment by sand filtration. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning the use of sand filtration in the treatment of wastewaters. Treatment systems for both domestic and industrial effluents are discussed. Designs, processes, and performance evaluations of sand filters, columns, and mounds used as primary filtering mechanisms are included. (Contains a minimum of 244 citations and includes a subject term index and title list.)

  6. Wastewater treatment by sand filtration. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning the use of sand filtration in the treatment of wastewaters. Systems and filtration processes for municipal, domestic, and industrial wastewater treatment are discussed. Designs and performance evaluations of sand filters are included. (Contains a minimum of 247 citations and includes a subject term index and title list.)

  7. Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

  8. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  9. Biofuels, land and water : a systems approach to sustainability.

    SciTech Connect (OSTI)

    Gopalakrishnan, G.; Negri, M. C.; Wang, M.; Wu, M.; Snyder, S. W.; LaFreniere, L.

    2009-08-01

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  10. Integrated system dynamics toolbox for water resources planning.

    SciTech Connect (OSTI)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don; Hanson, Jason; Grimsrud, Kristine; Thacher, Jennifer; Broadbent, Craig; Brookshire, David; Chemak, Janie; Cockerill, Kristan; Aragon, Carlos , Socorro, NM); Hallett, Heather , Socorro, NM); Vivoni, Enrique , Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.