Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Renewable Energy Powered Water Treatment Systems   

E-Print Network (OSTI)

There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

Richards, Bryce S.; Schäfer, Andrea

2009-01-01T23:59:59.000Z

2

INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION  

SciTech Connect

This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance.

SEXTON RA; MEEUWSEN WE

2009-03-12T23:59:59.000Z

3

K West integrated water treatment system subproject safety analysis document  

SciTech Connect

This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

SEMMENS, L.S.

1999-02-24T23:59:59.000Z

4

Advanced Water Treatment System: Technological and Economic Evaluations  

Science Journals Connector (OSTI)

The supply of potable water from polluted rivers, lakes, unsafe wells, ... most effective methods to obtain low cost drinking water is desalination. In this chapter, an advanced water treatment system, based on electrodialysis

Artak Barseghyan

2011-01-01T23:59:59.000Z

5

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

6

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

7

POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

V. King

2000-06-19T23:59:59.000Z

8

Acid mine water aeration and treatment system  

DOE Patents (OSTI)

An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

Ackman, Terry E. (Finleyville, PA); Place, John M. (Bethel Park, PA)

1987-01-01T23:59:59.000Z

9

Onsite Wastewater Treatment Systems: Graywater Use and Water Quality  

E-Print Network (OSTI)

their homes in their landscapes. This reuse of graywater can reduce the amount of wastewater entering sewers or treatment systems, reduce the amount of fresh water used on landscapes and help preserve limited fresh water supplies. Onsite wastewater...-washing machines ? The code excludes water that has washed materials soiled with human waste, such as diapers, and water that has been in contact with toilet waste. This water, known as blackwater, includes flush water from toilets and urinals and wastewater...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-08-28T23:59:59.000Z

10

Effective Ship Ballast Water Treatment System Management  

Science Journals Connector (OSTI)

Besides its great effect on ship stability, ballast water causes an important problem. While a ship loads ballast water from any sea, it ... species. These species may have a great effect on the local ecological ...

Levent Bilgili; Kaan Ünlügenço?lu…

2013-01-01T23:59:59.000Z

11

Reverse-Osmosis Filtration Based Water Treatment and Special Water Purification for Nuclear Power Systems  

Science Journals Connector (OSTI)

This paper is devoted to the development and operation of specialized water treatment and water purification systems, based on the principle of reverse-osmosis filtration of water, for the operation of ... P. Ale...

V. N. Epimakhov; M. S. Oleinik; L. N. Moskvin

2004-04-01T23:59:59.000Z

12

Drinking water treatment and distribution systems must comply with US EPA water quality regula-  

E-Print Network (OSTI)

Drinking water treatment and distribution systems must comply with US EPA water quality regula trihalomethanes (THMs). Drinking water providers do frequent, costly testing for THMs. Field real-time sensors PROJECT GOALS The goal of this project was to bring a team of experts in drinking water, polymers

Fay, Noah

13

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network (OSTI)

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler...

Bloom, D.

14

Water Resources Water Quality and Water Treatment  

E-Print Network (OSTI)

Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

Sohoni, Milind

15

MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS  

SciTech Connect

This final report of ''Modified Reverse Osmosis System for Treatment of Produced Water,'' DOE project No. DE-FC26-00BC15326 describes work performed in the third year of the project. Several good results were obtained, which are documented in this report. The compacted bentonite membranes were replaced by supported bentonite membranes, which exhibited the same salt rejection capability. Unfortunately, it also inherited the clay expansion problem due to water invasion into the interlayer spaces of the compacted bentonite membranes. We noted that the supported bentonite membrane developed in the project was the first of its kind reported in the literature. An {alpha}-alumina-supported MFI-type zeolite membrane synthesized by in-situ crystallization was fabricated and tested. Unlike the bentonite clay membranes, the zeolite membranes maintained stability and high salt rejection rate even for a highly saline solution. Actual produced brines from gas and oil fields were then tested. For gas fields producing brine, the 18,300 ppm TDS (total dissolved solids) in the produced brine was reduced to 3060 ppm, an 83.3% rejection rate of 15,240 ppm salt rejection. For oilfield brine, while the TDS was reduced from 181,600 ppm to 148,900 ppm, an 18% rejection rate of 32,700 ppm reduction, the zeolite membrane was stable. Preliminary results show the dissolved organics, mainly hydrocarbons, did not affect the salt rejection. However, the rejection of organics was inconclusive at this point. Finally, the by-product of this project, the {alpha}-alumina-supported Pt-Co/Na Y catalytic zeolite membrane was developed and demonstrated for overcoming the two-step limitation of nonoxidation methane (CH{sub 4}) conversion to higher hydrocarbons (C{sub 2+}) and hydrogen (H{sub 2}). Detailed experiments to obtain quantitative results of H{sub 2} generation for various conditions are now being conducted. Technology transfer efforts included five manuscripts submitted to peer-reviewed journals and five conference presentations.

Robert L. Lee; Junghan Dong

2004-06-03T23:59:59.000Z

16

MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS  

SciTech Connect

This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation efficiency of the bentonite membrane for each of the dilutions. We found that membrane efficiency decreased with increasing solute concentration and with increasing TDS. The rejection of SO{sub 4}{sup 2-} was greater than Cl{sup -}. This may be because the SO{sub 4}{sup 2-} concentration was much lower than the Cl{sup -} concentration in the waters tested. The cation rejection sequence varied with solute concentration and TDS. The solute rejection sequence for multi-component solutions is difficult to predict for synthetic membranes; it may not be simple for clay membranes either. The permeate flows in our experiments were 4.1 to 5.4% of the total flow. This suggests that very thin clay membranes may be useful for some separations. Work on development of a spiral-wound clay membrane module found that it is difficult to maintain compaction of the membrane if the membrane is rolled and then inserted in the outer tube. A different design was tried using a cylindrical clay membrane and this also proved difficult to assemble with adequate membrane compaction. The next step is to form the membrane in place using hydraulic pressure on a thin slurry of clay in either water or a nonpolar organic solvent such as ethanol. Technology transfer efforts included four manuscripts submitted to peer-reviewed journals, two abstracts, and chairing a session on clays as membranes at the Clay Minerals Society annual meeting.

T.M. Whitworth; Liangxiong Li

2002-09-15T23:59:59.000Z

17

Construction Summary and As-Built Report for Ground Water Treatment System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Summary and As-Built Report for Ground Water Treatment Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site More Documents & Publications Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah Performance Assessment and Recommendations for Rejuvenation of a Permeable

18

Coagulation—ultrafiltration system for river water treatment  

Science Journals Connector (OSTI)

The “in-line” coagulation—ultrafiltration hybrid process has been investigated using three different coagulants, viz. FeCl3, Fe2(SO4)3 and Al2(SO4)3. The coagulants were dosed in the amounts of 2.4 mg Fe/dm3, 2.8 mg Fe/dm3 and 2.9 mg Al/dm3, respectively. Surface water from the Czarna Przemsza river (Silesia region, Poland) was used as raw water. The ultrafiltration membrane module with capillary polyethersulphone membranes was applied. It has been shown that the application of coagulant “in-line” contributes to the improvement of the quality of water as a result of growth of the removal of organic matter. It has also been statistically proven that the proper choice of the coagulant is of significant importance for the degree of removal of organic matter from the water. The highest efficiency of the process was achieved when the aluminum coagulant was used. Furthermore, it has been shown that the application of “in-line” coagulation and ultrafiltration with the most proper coagulant restricts the fouling of the membranes, so that contaminations deposited on the membrane can easily be removed using deionized water.

Krystyna Konieczny; Dorota S?kol; Joanna P?onka; Mariola Rajca; Micha? Bodzek

2009-01-01T23:59:59.000Z

19

Effectiveness of AOC removal by advanced water treatment systems: a case study  

Science Journals Connector (OSTI)

Recently, the appearance of assimilable organic carbon (AOC) in the water treatment system and effluent of the treatment plant has brought more attention to the environmental engineers. In this study, AOC removal efficiency at the Cheng-Ching Lake water treatment plant (CCLWTP) was evaluated. The main objectives of this study were to: (1) evaluate the treatability of AOC by the advanced treatment system at the CCLWTP, (2) assess the relativity of AOC and the variations of other water quality indicators, (3) evaluate the effects of sodium thiosulfate on AOC analysis, and (4) evaluate the efficiency of biofiltration process using granular activated carbon (GAC) and anthracite as the fillers. Results show that the averaged influent and final effluent AOC concentrations at the CCLWTP were approximately 124 and 30 ?g acetate-C/L, respectively. Thus, the treatment plant had an AOC removal efficiency of about 76%, and the AOC concentrations in the final effluent met the criteria established by the CCLWTP (50 ?g acetate-C/L). Results indicate that the biofiltration process might contribute to the removal of the trace AOC in the GAC filtration process. Moreover, the removal of AOC had a correlation with the decrease in concentrations of other drinking water indicators. Results from a column test show that GAC was a more appropriate material than anthracite for the AOC removal. Results from this study provide us insight into the mechanisms of AOC removal by advanced water treatment processes. These findings would be helpful in designing a modified water treatment system for AOC removal and water quality improvement.

C.C. Chien; C.M. Kao; C.D. Dong; T.Y. Chen; J.Y. Chen

2007-01-01T23:59:59.000Z

20

Statement of work for definitive design of the K basins integrated water treatment system project  

SciTech Connect

This Statement of Work (SOW) identifies the scope of work and schedule requirements for completing definitive design of the K Basins Integrated Water Treatment Systems (IWTS) Subproject. This SOW shall form the contractual basis between WHC and the Design Agent for the Definitive Design.

Pauly, T.R., Westinghouse Hanford

1996-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Preliminary design report for the K basins integrated water treatment system  

SciTech Connect

This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

Pauly, T.R., Westinghouse Hanford

1996-08-12T23:59:59.000Z

22

System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)  

SciTech Connect

This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

DERUSSEAU, R.R.

2000-04-18T23:59:59.000Z

23

Pilot scale test of a produced water-treatment system for initial removal of organic compounds  

SciTech Connect

A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ/MBR/RO system may be a feasible alternative to current methods for produced water treatment and disposal.

Sullivan, Enid J [Los Alamos National Laboratory; Kwon, Soondong [UT-AUSTIN; Katz, Lynn [UT-AUSTIN; Kinney, Kerry [UT-AUSTIN

2008-01-01T23:59:59.000Z

24

Control System Development for Integrated Biological Waste Water Treatment Process of a Paper Production Plant  

Science Journals Connector (OSTI)

Abstract A bioreactor, integrated with an anoxic reactor and a settler for waste water treatment from a paper production plant is under investigation to implement a control system for enhancing effluent quality. In order to reveal the operation of the integrated process to achieve a specific goal, a methodology for control system development is proposed. In this paper, preliminary results of some steps of the methodology are presented, in order to address the oxygen uptake rate control. A dynamic model is developed for future analysis for the conceptual design of different generated control configurations.

Alicia Román-Martínez; Pastor Lanuza-Perez; Margarito Cepeda-Rodríguez; Elvia M. Mata-Padrón

2013-01-01T23:59:59.000Z

25

Fouling mitigation in coagulation microfiltration hybrid system for drinking water treatment.  

E-Print Network (OSTI)

??Coagulation combined with microfiltration has been receiving a great attention and has been evolving in recent years as an alternative for surface water treatment. There… (more)

Sadreddini, Sara

2009-01-01T23:59:59.000Z

26

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

27

Electrodialysis in Water Treatment  

Science Journals Connector (OSTI)

This chapter focuses on the uses of electrodialysis and specially electrodialysis reversal for the treatment of brackish and groundwater to produce drinking water. Over the last 10–15 years,...

Andréa Moura Bernardes; Marco A. S. Rodrigues

2014-01-01T23:59:59.000Z

28

Wastewater and Wastewater Treatment Systems (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

The Oklahoma Department of Environmental Quality administers regulations for waste water and waste water treatment systems. Construction of a municipal treatment work, non-industrial waste water...

29

Integrated Water Treatment System (IWTS) Process Flow Diagram Mass Balance Calculations for K West Basin  

SciTech Connect

The purpose of this calculation is to develop the rational for the material balances that are documented in the KW Basin water system Level 1 process flow diagrams.

REED, A.V.

2000-02-28T23:59:59.000Z

30

Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System  

SciTech Connect

This report summarizes work performed on this project from October 2004 through March 2005. In previous work, a surfactant modified zeolite (SMZ) was shown to be an effective system for removing BTEX contaminants from produced water. Additional work on this project demonstrated that a compost-based biofilter could biodegrade the BTEX contaminants found in the SMZ regeneration waste gas stream. However, it was also determined that the BTEX concentrations in the waste gas stream varied significantly during the regeneration period and the initial BTEX concentrations were too high for the biofilter to handle effectively. A series of experiments were conducted to determine the feasibility of using a passive adsorption column placed upstream of the biofilter to attenuate the peak gas-phase VOC concentrations delivered to the biofilter during the SMZ regeneration process. In preparation for the field test of the SMZ/VPB treatment system in New Mexico, a pilot-scale SMZ system was also designed and constructed during this reporting period. Finally, a cost and feasibility analysis was also completed. To investigate the merits of the passive buffering system during SMZ regeneration, two adsorbents, SMZ and granular activated carbon (GAC) were investigated in flow-through laboratory-scale columns to determine their capacity to handle steady and unsteady VOC feed conditions. When subjected to a toluene-contaminated air stream, the column containing SMZ reduced the peak inlet 1000 ppmv toluene concentration to 630 ppmv at a 10 second contact time. This level of buffering was insufficient to ensure complete removal in the downstream biofilter and the contact time was longer than desired. For this reason, using SMZ as a passive buffering system for the gas phase contaminants was not pursued further. In contrast to the SMZ results, GAC was found to be an effective adsorbent to handle the peak contaminant concentrations that occur early during the SMZ regeneration process. At a one second residence time, the GAC bed reduced peak contaminant concentrations by 97%. After the initial peak, the inlet VOC concentration in the SMZ regeneration gas stream drops exponentially with time. During this period, the contaminants on the GAC subsequently desorbed at a nearly steady rate over the next 45 hours resulting in a relatively steady effluent concentration of approximately 25 ppm{sub v}. This lower concentration is readily degradable by a downstream vapor phase biofilter (VPB) and the steady nature of the feed stream will prevent the biomass in the VPB from enduring starvation conditions between SMZ regeneration cycles. Repetitive sorption and desorption cycles that would be expected in the field were also investigated. It was determined that although the GAC initially lost some VOC sorption capacity, the adsorption and desorption profiles stabilized after approximately 6 cycles indicating that a GAC bed should be suitable for continuous operation. In preparation for the pilot field testing of the SMZ/VPB system, design, ''in-house'' construction and testing of the field system were completed during this project period. The design of the SMZ system for the pilot test was based on previous investigations by the PI's in Wyoming, 2002 and on analyses of the produced water at the field site in New Mexico. The field tests are scheduled for summer, 2005. A cost survey, feasibility of application and cost analyses were completed to investigate the long term effectiveness of the SMZ/VPB system as a method of treating produced water for re-use. Several factors were investigated, including: current costs to treat and dispose of produced water, end-use water quality requirements, and state and federal permitting requirements.

Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

2005-03-11T23:59:59.000Z

31

Treatment of brackish water  

SciTech Connect

Brackish water resulting from steam extraction of heavy crude oils, including oil sands bitumen, is processed for reuse by removing hydrocarbon contamination and removing mineral contamination. The purified water can be boiled in conventional boilers without scaling or fouling occurring. Heat economy is used in conducting the process. The brackish water is first subjected to oil removal by separating out as much of the free oil as possible, such as by using gravity separation and air flotation, and then stripping any residual oil by ozone treatment. The hydrocarbon-free water then is subjected to demineralization. The demineralization is effected by a first electrodialysis reversal step to remove minerals other than silica and a second silica removal step. 8 claims.

Ciepiela, E.J.

1983-07-26T23:59:59.000Z

32

Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489  

SciTech Connect

On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One must remember that, in addition to attempting to do isotope removal in the competition of seawater (as high as 18,000 ppm sodium due to concentration), some 350,000 gallons of turbine oil was dispersed into the flooded buildings as well. The proposed system consisted of a 4 guard vessel skid for the oil and debris, 4 skids containing 16 cesium towers in a lead-lag layout with removable vessels (sent to an interim storage facility), and a 4 polishing vessel skid for iodine removal and trace cesium levels. At a flow rate of at least 220 gallons per minute, the system has routinely removed over 99% of the cesium, the main component of the activity, since going on line. To date, some 50% of the original activity has been removed and stabilized and cold shutdown of the plant was announced on December 10, 2011. In March and April alone, 10 cubic feet of Engineered Herschelite was shipped to Seabrook Nuclear Power Plant, NPP, to support the April 1, 2011 outage cleanup; 400 cubic feet was shipped to Oak Ridge National Laboratory (ORNL) for strontium (Sr-90) ground water remediation; and 6000 cubic feet (100 metric tons, MT, or 220,400 pounds) was readied for the Fukushima Nuclear Power Station with an additional 100 MT on standby for replacement vessels. This experience and accelerated media production in the U.S. bore direct application to what was to soon be used in Fukushima. How such a sophisticated and totally unique system and huge amount of media could be deployable in such a challenging and changing matrix, and in only seven weeks, is outlined in this paper as well as the system and operation itself. As demonstrated herein, all ten major steps leading up to the readiness and acceptance of a modular emergency technology recovery system were met and in a very short period of time, thus utilizing three decades of experience to produce and deliver such a system literally in seven weeks: - EPRI - U.S. Testing and Experience Leading to Introduction to EPRI - Japan and Subsequently TEPCO Emergency Meetings - Three Mile Island (TMI) Media and Vitrification Experience

Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc., P.O. Box 5901, Oak Ridge, Tennessee 37831 (United States); Bostick, William D. [Materials and Chemistry Laboratory, Inc. (MCL) ETTP, Building K-1006, 2010 Highway 58, Suite 1000, Oak Ridge, Tennessee 37830 (United States)

2012-07-01T23:59:59.000Z

33

Water treatment process and system for metals removal using Saccharomyces cerevisiae  

DOE Patents (OSTI)

A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

Krauter, Paula A. W. (Livermore, CA); Krauter, Gordon W. (Livermore, CA)

2002-01-01T23:59:59.000Z

34

An evaluation of household drinking water treatment systems in Peru : the table filter and the safe water system  

E-Print Network (OSTI)

(cont.) storage, and education. Tests on the SWSs in Peru demonstrated 99.6% E.coli removal and 95% total coliform removal. Only 30% of the SWSs tested contained water at or above the WHO-recommended concentration of free ...

Coulbert, Brittany, 1981-

2005-01-01T23:59:59.000Z

35

Water_Treatment.cdr  

Office of Legacy Management (LM)

Since dewatering at the Weldon Spring site began in Since dewatering at the Weldon Spring site began in 1992, more than 290 million gallons of contaminated water have been treated and released into the Missouri River from two similar water treatment facilities at the site and the nearby Quarry. On September 30, 1999, dewatering efforts at the Chemical Plant site were completed, meeting one of the most substantial milestones of the project and bringing to an end a part of history that was started nearly 5 decades ago. From 1955 to 1966, uranium materials were processed at the U.S. Atomic Energy Commission's Uranium Feed Materials Plant. The ore was processed in a nitric acid solution that separated the uranium from other chemicals. The by-product, called raffinate, was neutralized with lime, then placed in four settling basins,

36

Guidelines for makeup water treatment  

SciTech Connect

The EPRI Fossil Plant Cycle Chemistry Program, RP 2712, was developed in recognition of the importance of controlling cycle water and steam purity in attainment of maximized unit availability, reliability and efficiency. This guideline characterizes the state-of-the-art technology for production of cycle makeup water. It is intended to complement other RP 2712 projects in the areas of cycle chemistry guidelines, instrumentation and control, guideline demonstration and verification, and related subject areas. This guideline reviews available technology for and preferred approaches to production of fossil plant cycle makeup from various raw water supplies. Subject areas covered include makeup water source and source characteristics, unit processes comprising makeup treatment systems, guidelines for process selection, resin and membrane selection guidelines, techniques for monitoring performance and cost effectiveness, and waste disposal considerations. The report also identifies additional research activity needed to advance the state-of-the-art for makeup water treatment, results of a utility industry survey and other related topics. 72 refs., 60 figs., 74 tabs.

Cline, D.A. Jr.; Shields, K.J. (Powell (Sheppard T.) Associates, Baltimore, MD (USA))

1990-03-01T23:59:59.000Z

37

Low Molecular Weight Organic Contaminants in Advanced Treatment: Occurrence, Treatment and Implications to Desalination and Water Reuse Systems.  

E-Print Network (OSTI)

??Water reuse and desalination are increasingly considered as viable sources of potable water because improvements in materials and designs have decreased the cost of reverse… (more)

Agus, Eva

2011-01-01T23:59:59.000Z

38

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management  

SciTech Connect

Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

David Dzombak; Radisav Vidic; Amy Landis

2012-06-30T23:59:59.000Z

39

Water treatment method  

DOE Patents (OSTI)

A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

Martin, F.S.; Silver, G.L.

1991-04-30T23:59:59.000Z

40

ENVIRONMENTAL ASSESSMENT Waste Water Treatment Modifications for  

E-Print Network (OSTI)

Actions - Isolate and restore sand filter beds (~10 acres) - Remove UV light sanitation system ­ evaluateENVIRONMENTAL ASSESSMENT FOR Waste Water Treatment Modifications for Improved Effluent Compliance adhering to them. · Develop recharge basins for disposal of treated waste water. Polythiocarbonate

Homes, Christopher C.

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ENVIRONMENTAL ASSESSMENT FOR WASTE WATER TREATMENT MODIFICATIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE WATER TREATMENT MODIFICATIONS WASTE WATER TREATMENT MODIFICATIONS FOR IMPROVED EFFLUENT COMPLIANCE BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK BROOKHAVEN SITE OFFICE JUNE 24, 2011 DOE/EA-1854 i Table of Contents 1.0 INTRODUCTION ............................................................................................................... 1 2.0 SUMMARY ........................................................................................................................ 1 3.0 PURPOSE AND NEED ....................................................................................................17 4.0 ALTERNATIVES ..............................................................................................................17 4.1 Alternative 1 - Groundwater Recharge System (Preferred Alternative) .............. 17

42

Technology Evaluation for the Big Spring Water Treatment System at the Y-12 National Security Complex, Oak Ridge, Tennessee  

SciTech Connect

The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone & Webster Building 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to Bldg. 9201-2. The EEMTS treats mercury-contaminated groundwater that collects in sumps in the basement of Bldg. 9201-2. A pre-design study was performed to investigate the applicability of various treatment technologies for reducing mercury discharges at Outfall 51 in support of the design of the Big Spring Water Treatment System. This document evaluates the results of the pre-design study for selection of the mercury removal technology for the treatment system.

Becthel Jacobs Company LLC

2002-11-01T23:59:59.000Z

43

Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on  

E-Print Network (OSTI)

, brackish groundwater, produced water, etc.produced water, etc. Advanced treatmentAdvanced treatment Water© Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on EnergyEnergy--Water LinkagesWater Linkages (The Water Utility Perspective)(The Water

Keller, Arturo A.

44

Hybrid Membrane System for Industrial Water Reuse  

Energy.gov (U.S. Department of Energy (DOE))

Demonstrate an advanced water treatment and reuse process in a single hybrid system that combines forward osmosis with membrane distillation to achieve greater efficiency and increased water reuse.

45

Boiler feed water treatment using electrodialysis.  

E-Print Network (OSTI)

??Water treatment is the most important part of any power plant. Water from natural reservoir is fetched into plant and treated to reduce impurity level,… (more)

Patel, Ankit

2010-01-01T23:59:59.000Z

46

Magnetic water treatment: A coming attraction?  

SciTech Connect

United Airlines and pharmaceutical company Eli Lilly and Company are among a number of users that are controlling scale and corrosion in cooling tower loops with magnetic water treatment, a controversial technology that has met with skepticism, disbelief, and claims of fraud. Experts and hundreds of published papers disagree on whether magnetic water treatment works, and if so, how. No scientific theory has proven how magnets can treat water, nor are there documented, reproducible laboratory test results. Field experience is mixed, with some installations working well and others failing. Despite the controversy and the lack of an adequately documented theoretical underpinning, the existence of large, apparently successful installations lends credence to the view that at least some magnetic water treatment systems are effective. The stakes are high. Most large HVAC systems are currently treated with chemicals. These chemicals generally work well, but they are costly, in many cases are environmentally damaging, and are subject to increasingly strict regulations. A reliable, low-cost, and more environmentally benign alternative that eliminates or sharply reduces the need for chemical treatment would have obvious benefits. Based on the review of the literature, discussions with users, vendors, and independent analysts, and tours of several apparently successful installations, E Source believes that this technology works in some cases and warrants further investigation. They caution prospective users to shop carefully and to select vendors with an established track record.

Fryer, L.

1995-10-01T23:59:59.000Z

47

Hedgehog(tm) Water Contaminant Removal System - Energy Innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

recirculating treatment system reduces the levels of contaminants in water storage tanks. A recirculation pump continually sends water though a treatment in order to reduce...

48

Onsite Wastewater Treatment Systems: Constructed Wetlands  

E-Print Network (OSTI)

Two-compartment septic tank Soil absorption field Constructed wetland Onsite wastewater treatment systems Constructed wetlands Natural wetlands generally have visible water in the system. However, for those at homes, the water flows beneath... the media surface, which limits contact between residents and wastewater. The constructed wetland waste- water treatment system has three main components that work together to purify wastewater: ? A septic tank, which is an en- closed watertight...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

49

Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation  

SciTech Connect

The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

2007-12-31T23:59:59.000Z

50

Onsite Wastewater Treatment Systems: Aerobic Treatment Unit  

E-Print Network (OSTI)

wastewater treatment systems use. They remove 85 to 98 percent of the organic matter and solids from the wastewater, producing effluent as clean as that from munici- pal wastewater treatment plants, and cleaner than that from conventional septic tanks.... Onsite wastewater treatment systems Single-compartment trash tank Chlorinator Aerobic treatment unit Spray heads Pump tank Bruce Lesikar Professor and Extension Agricultural Engineer The Texas A&M System Aerobic treatment units, which are certified...

Lesikar, Bruce J.

2008-10-31T23:59:59.000Z

51

ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER  

SciTech Connect

During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

John R. Gallagher

2001-07-31T23:59:59.000Z

52

Magnetic treatment of water prevents mineral build-up  

SciTech Connect

Increased demand for water and especially for water reuse combined with tighter restrictions on environmental pollution has dictated the need for improvement in water treatment. The effective treatment of a water supply to prevent or minimize the formation of scale or corrosion, for example, is complex and any process requiring little or no chemical additions represents an attractive alternative. Untreated water results in equipment failures, process interruptions and circulating water systems clogged by minerals. These problems are, in many instances, related to scale deposition and corrosion caused by dissolved and suspended solids in the water supply. Magnetic treatment of water is an effective method of overcoming these problems. The theory, application and case studies involving the use of magnetic treatment are discussed.

Quinn, C.J. [Purdue Univ., Fort Wayne, IN (United States); Molden, T.C. [Molden Associates, Inc., Michigan City, IN (United States); Sanderson, C.H. [Magnatech Corp., Fort Wayne, IN (United States). Superior Mfg. Div.

1997-07-01T23:59:59.000Z

53

Modeling Urban Storm-Water Quality Treatment: Model Development and Application to a Surface Sand Filter  

E-Print Network (OSTI)

water impacts has led us to the develop- ment of different storm-water treatment strategies. Previous knowledge regarding traditional water treatment systems drink- ing and wastewater and the evaluation

54

Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse  

Science Journals Connector (OSTI)

Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse ... Although existing infrastructure contributes inertia against a paradigm shift, these immense challenges call for a change toward integrated management of water and wastewater with a decentralized, differential treatment and reuse paradigm where water and wastewater are treated to the quality dictated by the intended use. ... Nanotechnology will likely play a critical role, not only supplementing and enhancing existing processes, but also facilitating the transformation of water supply systems toward a distributed differential treatment paradigm that integrates wastewater reuse with energy neutral operations, lower residuals production, and safer water quality. ...

Xiaolei Qu; Jonathon Brame; Qilin Li; Pedro J. J. Alvarez

2012-06-27T23:59:59.000Z

55

Ground Water Recovery and Treatment  

Science Journals Connector (OSTI)

Until the environmental revolution, the only ground water that was routinely treated to remove contamination was the impacted ground water that was extracted for beneficial use. With ... the recognition that cont...

Tie Li Ph.D.; Raaj U. Patel P.G.; David K. Ramsden Ph.D.…

2003-01-01T23:59:59.000Z

56

A novel, integrated treatment system for coal waste waters. Quarterly report, September 2, 1993--December 1, 1993  

SciTech Connect

The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the heavy metals present in coal conversion waste waters. In this report, the following findings have been reported and discussed. Adsorption of {beta}-naphthoic acid (NA) onto hectorite-CBDA containing different amounts of adsorbed CBDA is pH dependent, stronger at pH 4.5 and much weaker at pH 8.6. Partitioning into the hydrophobic patches of hectorite-CBDA and binding as counter ion to CBDA bilayers appear to be the dominant mechanisms of adsorption of NA to hectorite-CBDA. Anionic CR(VI) adsorbs very weakly to MONT-DT at pH 8.5 and this result verifies our earlier finding that the positive surface charge on MONT-DT decreases with increasing pH above pH 7.0. Potentiometric titrations of DT in water-isopropyl alcohol (EPA) binary solutions containing different volume fractions of IPA reveal that the pKa of DT is 7.6 {+-} 0.1 independent of EPA volume fraction. It is also shown that DT forms emulsions at pH lower than 4.0 and these emulsions tend to break up as pH is raised above 6.5. The formation of DT emulsions is reversible with respect to pH, but the process appears to be slow with a time constant of about 30 minutes.

Wang, H.Y.; Srinivasan, K.R.

1993-12-31T23:59:59.000Z

57

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

58

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

Gluntz, D.M.; Taft, W.E.

1994-12-20T23:59:59.000Z

59

A novel, integrated treatment system for coal waste waters. Quarterly report, March 2, 1994--June 1, 1994  

SciTech Connect

The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the heavy metals present in coal conversion waste waters. A specific goal of the study is to remove and recover cationic and anionic heavy metals from aqueous solutions and coal conversion waste waters using modified-clay adsorbents developed in this study. To this end, a multi-step adsorption/desorption process has been carried out with hectorite-CBDA-DT (HCDT) as the adsorbent and Cr(VI) as the adsorbate. Adsorption was carried out at pH 4.0 in 0.02 M buffer, while desorption was effected at the same pH and in the same buffer with either 0.5 M NaCl or 0.02 M Na{sub 2}SO{sub 4} as the desorbates. Multi-step involves cycling the same adsorbent through these two sets of operating conditions with a washing step after each adsorption/desorption sequence. The authors results indicate that, during the first two cycles, the potency of the adsorbent remains unchanged, but it diminishes after the third and the fourth cycles. The total decrease in potency is, however, only 15% even after 4 cycles of adsorption/desorption. Addition of 20% isopropyl alcohol (IPA) to the reaction medium, however, diminishes the potency even more after 4 cycles of adsorption and desorption. Both the desorbates yielded identical results, and the overall mass balance on Cr(VI) was between 95 and 102%. Continuous leaching experiments on HCDT revealed that DT bound to HCDT is mobilized to the extent of only 10% after 44 hrs in aqueous medium while in 20% IPA-water mixtures the extent of dissolution of DT from the surface is close to 16%. Thus, the loss of potency of HCDT is attributed partly to the loss of DT from the surface and partly to the incomplete washing of the adsorbent between each adsorption/desorption step.

Wang, H.Y. [Univ. of Michigan, Ann Arbor, MI (United States); Wang, H.Y.; Srinivasan, K.R.

1994-09-01T23:59:59.000Z

60

Purge water management system  

DOE Patents (OSTI)

A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

Cardoso-Neto, J.E.; Williams, D.W.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Onsite Wastewater Treatment Systems: Graywater Safety  

E-Print Network (OSTI)

irrigation and decr,ease the amount of wastewater entering sewers or onsite wastewater treatment systems. Onsite wastewater treatment systems However, homeowners who irrigate their lawns with graywater need to understand the risks and safety issues.... Residential wastewater can be classified as either blackwater (sew- age containing fecal matter or food wastes) or graywater. If graywater is collected separately from blackwater, it can be dispersed as irrigation water with less treatment than...

Melton, Rebecca; Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

62

A novel, integrated treatment system for coal waste waters. Quarterly report, June 2, 1993--September 1, 1993  

SciTech Connect

The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the heavy metals present in coal conversion waste waters. In this report, the following findings have been reported and discussed. Acid-base titration of Duomeen-T (DT), a diamine surfactant, that has been used in this study to modify smectite surfaces to form smectite-DT complexes has been undertaken. In aqueous medium containing 5% by volume iso propyl alcohol (IPA), DT shows a broad distribution of pKa with a mean value of 7.55. This finding suggests that DT is a much weaker base than a typical diamine and helps explain the fact that Cu(II) adsorbs specifically onto DT with maximal affinity in the pH range 7.2--7.5. Electrokinetic sonic amplitude (ESA) measurements on DT-smectite complexes also reveal that the mean pKa of the adsorbed DT is around 7.0. This finding supports our earlier observations that Cu(II) and Cd(II) cations bind strongly through specific interaction to DT-smectite surface in the pH range 7.0--8.0. Our results also show that DT is fully protonated at pH 4.5, and it is at this pH that Cr(VI) is maximally adsorbed as counterions to the DT-smectite surface. These and our earlier results provide a firm basis to conclude that a heterogeneous mixture of diamine surfactants can be used to adsorb and desorb cationic and anionic heavy metals from their respective aqueous solutions as a function of the solution pH.

Wang, H.Y.; Srinivasan, K.R.

1993-12-31T23:59:59.000Z

63

Nanotechnology in water treatment: an emerging trend  

Science Journals Connector (OSTI)

With advances in nanotechnology, different types of nanomaterial are emerging for applications in water purification and water treatment devices owing to their effectiveness against both chemical and biological contaminants. This paper discusses the application of nanoscale materials that are being evaluated or developed as functional materials for water treatment, e.g. nanomembranes (nanocomposite RO and NF and carbon nanotubes), metal nanoparticles, nanoadsorbents, magnetic nanoparticles, bioactive nanoparticles, carbonaceous nanomaterials, zeolites, dendrimers and nanofibres. Nanomaterials are intrinsically better in terms of performance than other substances used in water treatment because of their high surface area (surface/volume ratio). Owing to these characteristics, these may be used in future at large scale for water purification.

Hiren D. Raval; Jaydev M. Gohil

2010-01-01T23:59:59.000Z

64

Remediation of Risks in Natural Gas Storage Produced Waters: The Potential Use of Constructed Wetland Treatment Systems.  

E-Print Network (OSTI)

??Natural gas storage produced waters (NGSPWs) are generated in large volumes, vary in composition, and often contain constituents in concentrations and forms that are toxic… (more)

Johnson, Brenda

2006-01-01T23:59:59.000Z

65

Missouri Water Treatment Plant Upgraded | Department of Energy  

Energy Savers (EERE)

Missouri Water Treatment Plant Upgraded Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water Treatment Plant are...

66

EPA ENERGY STAR Webcast: Benchmarking Water/Wastewater Treatment...  

Energy Savers (EERE)

Benchmarking WaterWastewater Treatment Facilities in Portfolio Manager EPA ENERGY STAR Webcast: Benchmarking WaterWastewater Treatment Facilities in Portfolio Manager November...

67

Saving Energy, Water, and Money with Efficient Water Treatment Technologies  

SciTech Connect

Reverse Osmosis (RO) is a method of purifying water for industrial processes and human consumption; RO can remove mineral salts as well as contaminants such as bacteria and pesticides. Advances in water treatment technologies have enhanced and complemented the conventional RO process, reducing energy and water consumption, lowering capital and operating costs, and producing purer water. This publication of the Department of Energy's Federal Energy Management Program introduces RO, describes the benefits of high-efficiency reverse osmosis (HERO), and compares HERO with RO/electrodeionization (EDI) technology.

Not Available

2004-06-01T23:59:59.000Z

68

On-Site Wastewater Treatment Systems: Graywater  

E-Print Network (OSTI)

-6176 3-08 Figure 1: A diagram of separate blackwater and graywater plumbing systems. W ith water reuse gaining popularity, people increasingly consider graywater from their residences as a resource to be separated from the wastewater stream... and reused in their landscapes. Such reuse of graywater reduces the amount of wastewater entering sewers or onsite wastewater treatment systems, reduces demands to use potable water for other residential uses like irrigation and helps preserve limited...

Melton, Rebecca; Lesikar, Bruce J.; Smith, David; O'Neill, Courtney

2008-04-03T23:59:59.000Z

69

In-tank recirculating arsenic treatment system  

DOE Patents (OSTI)

A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

2009-04-07T23:59:59.000Z

70

Water Purification by Using Microplasma Treatment  

Science Journals Connector (OSTI)

Dielectric barrier discharge microplasma generated at the surface of water is proposed as a solution for water treatment. It is an economical and an ecological technology for water treatment due to its generation at atmospheric pressure and low discharge voltage. Microplasma electrodes were placed at small distance above the water thus active species and radicals were flown by the gas towards the water surface and furthermore reacted with the target to be decomposed. Indigo carmine was chosen as the target to be decomposed by the effect of active species and radicals generated between the electrodes. Air, oxygen, nitrogen and argon were used as discharge gases. Measurement of absorbance showed the decomposition of indigo carmine by microplasma treatment. Active species and radicals of oxygen origin so called ROS (reactive oxidative species) were considered to be the main factor in indigo carmine decomposition. The decomposition rate increased with the increase of the treatment time as shown by the spectrophotometer analysis. Discharge voltage also influenced the decomposition process.

K Shimizu; N Masamura; M Blajan

2013-01-01T23:59:59.000Z

71

Iowa's first electrodialysis reversal water treatment plant  

Science Journals Connector (OSTI)

In 1979 the City of Washington was notified by the Iowa Department of Natural Resources (IDNR) that the City was in violation of the radium standard for drinking water. The City of Washington authorized an engineering study to determine the most cost-effective and practical way to remove radium and, at the same time, improve overall water quality. Several possible treatment alternatives were evaluated. It was finally decided to utilize electrodialysis reversal (EDR). Washington obtains its water from three deep wells ranging in capacity from 600–780 gpm. The untreated water withdrawn from the wells first passes through the EDR units. There are three EDR units, each able to produce 285 gpm of finished water. In the future, another EDR unit can be easily added to the other three units, since the new plant was built and plumbed for an additional EDR unit if water demand increased. The Jordan aquifer supply is adequate for current and future needs. The average daily water usage in 1993 was 818,000 gal/d. In order to meet peak flows, it is possible to bypass the EDR units with part of the untreated water and then blend treated and untreated water. The treated water meets IDNR standards of 5.0 pC/L. After the EDR units, the water flows through an aerator where odor-causing gases and carbon dioxide are removed. Aeration reduces the amount of caustic soda and chlorine used in the finished water. The hydrogen sulfide gas leaves the water as it passes through the aerator, and this loss of gas creates less chlorine demand. Total and free chlorine residuals are now detected in every water main of the town, whereas before, the residuals would not be detected in certain area of Washington. Phosphates have been cut back from 7 pounds per day to one pound per day. Better water quality is now being achieved with fewer chemicals added to the finished water. Washington's water treatment plant is the first municipal EDR plant in the State of Iowa and one of the largest municipal installations in the United States.

John Hays

2000-01-01T23:59:59.000Z

72

Mycobacteria in Water and Loose Deposits of Drinking Water Distribution Systems in Finland  

Science Journals Connector (OSTI)

...acid-fast organisms in water supply, treatment, and...distribution systems. J. Am. Water Works Assoc. 75: 139-144...mycobacteria from indoor swimming pools in Finland. APMIS 107...mycobacteria in brook waters. Appl. Environ. Microbiol...

Eila Torvinen; Sini Suomalainen; Markku J. Lehtola; Ilkka T. Miettinen; Outi Zacheus; Lars Paulin; Marja-Leena Katila; Pertti J. Martikainen

2004-04-01T23:59:59.000Z

73

Alternate Water Supply System  

Office of Legacy Management (LM)

Alternate Water Supply Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January 2008 Office of Legacy Management DOE M/1570 2008 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank DOE-LM/1570-2008 Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January 2008 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado This page intentionally left blank

74

Arsenic Leachability in Water Treatment Adsorbents  

Science Journals Connector (OSTI)

Arsenic Leachability in Water Treatment Adsorbents ... The EXAFS results indicate that As forms inner-sphere bidentate binuclear surface complexes on all five adsorbent surfaces. ... Extended X-ray absorption fine structure (EXAFS) was used for the first time to investigate the bonding structures of adsorbed As(V) ... ...

Chuanyong Jing; Suqin Liu; Manish Patel; Xiaoguang Meng

2005-06-02T23:59:59.000Z

75

Novel Americium Treatment Process for Surface Water and Dust Suppression Water  

SciTech Connect

The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am-241 contaminated pond water, surface run-off and D and D dust suppression water during the later stages of the D and D effort at Rocky Flats. This novel chemical treatment system allowed for highly efficient, high-volume treatment of all contaminated waste waters to the very low stream standard of 0.15 pCi/1 with strict compliance to the RFCA discharge criteria for release to off-site surface waters. The rapid development and implementation of the treatment system avoided water management issues that would have had to be addressed if contaminated water had remained in Pond A-4 into the Spring of 2005. Implementation of this treatment system for the Pond A-4 waters and the D and D waters from Buildings 776 and 371 enabled the site to achieve cost-effective treatment that minimized secondary waste generation, avoiding the need for expensive off-site water disposal. Water treatment was conducted for a cost of less than $0.20/gal which included all development costs, capital costs and operational costs. This innovative and rapid response effort saved the RFETS cleanup program well in excess of $30 million for the potential cost of off-site transportation and treatment of radioactive liquid waste. (authors)

Tiepel, E.W.; Pigeon, P. [Golder Associates (United States); Nesta, S. [Kaiser-Hill Company, LLC (United States); Anderson, J. [Rocky Flats Closure Site Services - RFCSS (United States)

2006-07-01T23:59:59.000Z

76

Flexible hybrid membrane treatment systems for tailored nutrient management: A new paradigm in urban wastewater treatment  

E-Print Network (OSTI)

in urban wastewater treatment D. Vuono a , J. Henkel a , J. Benecke a , T.Y. Cath a , T. Reid b , L: Sequencing batch reactor Membrane bioreactor Water reclamation Distributed wastewater treatment Tailored, decentralized, and satellite wastewater treatment systems into existing urban water infrastructure

77

EECBG Success Story: Missouri Water Treatment Plant Upgraded...  

Energy Savers (EERE)

Missouri Water Treatment Plant Upgraded EECBG Success Story: Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water...

78

Waste-Water Treatment: The Tide Is Turning  

Science Journals Connector (OSTI)

...combine to form water. The resins...by waste-water treatment standards. In electrodialysis, an electric...human use. Electrodialysis and reverse...brackish waste water, and these...problem in sewage treatment. The cost...

Robert W. Holcomb

1970-07-31T23:59:59.000Z

79

Biological treatment options for consolidated tailings release waters  

SciTech Connect

Suncor Inc., Oil Sands Group, operates a large oil sands mining and extraction operation in northeastern Alberta. The extraction plant produces large volumes of a tailings slurry which resists dewatering and treatment, and is toxic to aquatic organisms. Consolidated tailings (CT) technology is used to treat tailings by either acid/lime or gypsum and enhances the possibility of treating residual fine tails in a ``dry`` land reclamation scenario and treating the release water in a wastewater treatment reclamation scenario. The objective was to assess the treatability of CT release water (i.e., the reduction of acute and chronic toxicities to trout, Ceriodaphnia, and bacteria) in bench-scale biological treatment systems. Microtox{reg_sign} IC20 test showed complete detoxification for the gypsum CT release water within 3 to 5 weeks compared with little reduction in toxicity for dyke drainage. Acute toxicity (fish) and chronic toxicity (Ceriodaphnia, bacterial) was removed from both CT release waters. Phosphate and aeration enhanced detoxification rates. Concentrations of naphthenic acids (an organic toxicant) were not reduced, but levels of dissolved organic compounds decreased faster than was the case for dyke drainage water, indicating that some of the organic compounds in both acid/lime and gypsum CT waters were more biodegradable. There was a pattern of increasing toxicity for dyke drainage water which confirmed observations during field-scale testing in the constructed wetlands and which was not observed for CT release waters. Acid/lime and gypsum CT water can be treated biologically in either an aeration pond, constructed wetlands, or a combination of both thereby avoiding the expense of long-term storage and/or conventional waste treatment systems.

Gunter, C.P.; Nix, P.G.; Sander, B. [EVS Environment Consultants, North Vancouver, British Columbia (Canada); Knezevic, Z.

1995-12-31T23:59:59.000Z

80

Applications of nanotechnology in water and wastewater treatment  

E-Print Network (OSTI)

Applications of nanotechnology in water and wastewater treatment Xiaolei Qu, Pedro J.J. Alvarez and wastewater treatment Water reuse Sorption Membrane processes Photocatalysis Disinfection Microbial control. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency

Alvarez, Pedro J.

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Resources for Small Water Systems in Texas  

E-Print Network (OSTI)

supply and wastewater treatment projects through state bonds and federal grants. TWDB administers the Economically Distressed Areas Program (EDAP), which provides fi nancial assistance to eligible counties and communities. Some counties are eligible.... The U.S. Department of Agriculture Rural Utilities Service has a Water and Wastewater Disposal Program that gives loans and grants to water systems in rural areas and to towns with fewer than 10,000 people. Emergency Community Water Assistance...

Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

2007-03-28T23:59:59.000Z

82

Integrated nonthermal treatment system study  

SciTech Connect

This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

1997-01-01T23:59:59.000Z

83

Carbon and Water Resource Management for Water Distribution Systems  

E-Print Network (OSTI)

the embodied energy in drinking water supply systems: a caselosses to 5% of total drinking water supply for threeResearch Council. Drinking Water Distribution Systems:

Hendrickson, Thomas Peter

2013-01-01T23:59:59.000Z

84

E-Print Network 3.0 - auxiliary water systems Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

including drinking water distribution systems (esp. in small rural communities... ), wastewater treatment, storm runoff, irrigation systems, dams, levees, and canals. 9. Water...

85

On-Site Wastewater Treatment Systems: Mound System  

E-Print Network (OSTI)

oxygen demand (BOD 5 ), which is the amount of oxygen used by microorganisms to break down waste material. The maximum BOD 5 of pretreate waste- The On-Site Wastewater Treatment Systems series of publications is a result of collaborative efforts... Extension Service Texas Natural Resource Conservation Commission Texas Agricultural Experiment Station USDA Water Quality Demonstration Projects Texas On-Site Wastewater Association Consortium of Institutes for Decentralized Wastewater Treatment USDA Natural...

Lesikar, Bruce J.

2002-04-22T23:59:59.000Z

86

Solar Farm Going Strong at Water Treatment Plant in Pennsylvania |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farm Going Strong at Water Treatment Plant in Pennsylvania Farm Going Strong at Water Treatment Plant in Pennsylvania Solar Farm Going Strong at Water Treatment Plant in Pennsylvania October 8, 2010 - 10:39am Addthis Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram’s Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram's Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Stephen Graff Former Writer & editor for Energy Empowers, EERE It takes a lot of energy to run a water treatment plant round-the-clock. And pumping 35 million gallons of water a day to hundreds of thousands businesses and residents can get expensive.

87

E-Print Network 3.0 - air treatment system Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... , water treatment equipment,...

88

Review of technologies for oil and gas produced water treatment  

Science Journals Connector (OSTI)

Produced water is the largest waste stream generated in oil and gas industries. It is a mixture of different organic and inorganic compounds. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging produced water on the environment has lately become a significant issue of environmental concern. Produced water is conventionally treated through different physical, chemical, and biological methods. In offshore platforms because of space constraints, compact physical and chemical systems are used. However, current technologies cannot remove small-suspended oil particles and dissolved elements. Besides, many chemical treatments, whose initial and/or running cost are high and produce hazardous sludge. In onshore facilities, biological pretreatment of oily wastewater can be a cost-effective and environmental friendly method. As high salt concentration and variations of influent characteristics have direct influence on the turbidity of the effluent, it is appropriate to incorporate a physical treatment, e.g., membrane to refine the final effluent. For these reasons, major research efforts in the future could focus on the optimization of current technologies and use of combined physico-chemical and/or biological treatment of produced water in order to comply with reuse and discharge limits.

Ahmadun Fakhru’l-Razi; Alireza Pendashteh; Luqman Chuah Abdullah; Dayang Radiah Awang Biak; Sayed Siavash Madaeni; Zurina Zainal Abidin

2009-01-01T23:59:59.000Z

89

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Household Wastewater Treatment  

E-Print Network (OSTI)

. This publication covers the following topics: 1. Septic tanks/soil absorption systems 2. Quantity of wastewater 3. Quality of wastewater 4. Collection of wastewater 5. Treatment systems 6. Disposal system 7. Assistance with failing systems or new designs 8.... Evaluation table Septic Tanks/Soil Absorption Systems The most common form of on-site waste- water treatment is a septic tank/soil absorption system. In this system, wastewater flows from the household sewage lines into an under- ground septic tank...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

90

JOINT OPTIMISATION OF SEWER SYSTEM AND TREATMENT PLANT CONTROL  

Science Journals Connector (OSTI)

Large cities in most of the cases are equipped with combined sewer systems discharging to waste water treatment plants. This is also the case for the City of Vienna. This city has just extended its Main Treatm...

HELMUT KROISS

2006-01-01T23:59:59.000Z

91

Water preheater system  

SciTech Connect

A heat transfer liquid collects heat in a solar collector and transfers the heat to water in a preheater heat exchanger. Use of a negative-pressure collector by means of an ejector and pressure relief valve allows inexpensive and readily available materials to be used in the collector. Preferably, the preheat heat exchanger is a converted gas hot water heater in which the heat transfer liquid is sprayed onto a portion of the storage tank and is collected in a reservoir. The negative-pressure solar collector can also be used to heat swimming pool water.

Dunstan, Ph.E.

1985-03-12T23:59:59.000Z

92

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network (OSTI)

Phyllis Fox INTRODUCTION Oil shale retorting produces fromWaste Water from Oil Shale Processing" ACS Division of FuelEvaluates Treatments for Oil-Shale Retort Water," Industrial

Ossio, Edmundo

2012-01-01T23:59:59.000Z

93

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse  

Energy.gov (U.S. Department of Energy (DOE))

Demonstrate an advanced water treatment and reuse process in a single hybrid system that combines forward osmosis with membrane distillation to achieve greater efficiency and increased water reuse.

94

Continuous Commissioning of a Central Chilled Water & Hot Water System  

E-Print Network (OSTI)

A central chilled water / hot water system provides cooling / heating energy from central utility plants to multiple customers (buildings) through campus distribution loops. To effectively transport the chilled water and hot water to the buildings...

Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

2000-01-01T23:59:59.000Z

95

On-Site Wastewater Treatment Systems: Trickling Filter  

E-Print Network (OSTI)

Soil absorption field Septic tank Clarifier/Dosing tank Trickling filter On-site wastewater treatment systems Trickling filter Bruce Lesikar and Russell Persyn Extension Agricultural Engineering Specialist, Extension Assistant-Water Conservation... municipal wastewater before cities began using activated sludge aeration systems. Now, homes and businesses use trickling filters in on-site wastewater treatment systems. Each trickling filter system has several components: 3 A septic tank, which removes...

Lesikar, Bruce J.

2000-02-04T23:59:59.000Z

96

Energy optimization of water distribution system  

SciTech Connect

In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

Not Available

1993-02-01T23:59:59.000Z

97

OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER (FEAC307)  

SciTech Connect

Oil production is shifting from ''shallow'' wells (0-650 ft water depth) to off-shore, deep-water operations (>2,600 ft.). Production from these operations is now approaching 20%. By 2007, it is projected that as much as 70% of the U.S. oil production will be from deep-water operations. The crude oil from these deep wells is more polar, thus increasing the amount of dissolved hydrocarbons in the produced water. Early data from Gulf of Mexico (GOM) wells indicate that the problem with soluble organics will increase significantly as deep-water production increases. Existing physical/chemical treatment technologies used to remove dispersed oil from produced water will not remove dissolved organics. GOM operations are rapidly moving toward design of high-capacity platforms that will require compact, low-cost, efficient treatment processes to comply with current and future water quality regulations. This project is an extension of previous research to improve the applicability of ozonation and will help address the petroleum industry-wide problem of treating water containing soluble organics. The goal of this project is to maximize oxidation of water-soluble organics during a single-pass operation. The project investigates: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Industrial collaborators include Chevron, Shell, Phillips, BP Amoco, Statoil, and Marathon Oil through a joint project with the Petroleum Environmental Research Forum (PERF). The research and demonstration program consists of three phases: (1) Laboratory testing in batch reactors to compare effectiveness of organics destruction using corona discharge ozone generation methods with hydrogen peroxide generated sonochemically and to evaluate the enhancement of destruction by UV light and micro-bubble spraying. (2) Continuous-flow studies to determine the efficacy of various contactors, the dependency of organics destruction on process variables, and scale-up issues. (3) Field testing of a prototype system in close collaboration with an industrial partner to generate performance data suitable for scale-up and economic evaluation.

Klasson, KT

2001-03-20T23:59:59.000Z

98

The EPRI state-of-the-art cooling water treatment research project: A tailored collaboration program  

SciTech Connect

The EPRI Tailored Collaboration State-of-the-Art Cooling Water Treatment Research Program has been initiated with several electric utility participants. Started in January 1995, the program provides O&M cost reduction through improved cooling water system reliability and operation,. This effort is discussed along with the objectives and goals, the participants and project timetable. The program will provide three (3) main results to the participating utilities: cost effective optimization of cooling water treatment, production of a new Cooling Water Treatment Manual and updating of two (2) EPRI software products - SEQUIL and COOLADD. A review of the specific objectives, project timetable and results to date will be presented. 1 tab.

Zammitt, K. [Electric Power Research Institute, Palo Alto, CA (United States); Selby, K.A. [Puckorius & Associates, Inc., Evergreen, CO (United States); Brice, T. [Entergy Operations - River Bend Station, St. Francisville, LA (United States)] [and others

1996-08-01T23:59:59.000Z

99

Water Treatment using Electrocoagulation Ritika Mohan  

E-Print Network (OSTI)

Reverse Osmosis (HEROTM). Semiconductor industrial waste water amounts to approximately 105 ­ 106 gal of brine amounting to almost 103 104 gal/day water. The difference between conventional Reverse Osmosis

Fay, Noah

100

Clean option: Berkeley Pit water treatment and resource recovery strategy  

SciTech Connect

The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.

Gerber, M.A.; Orth, R.J.; Elmore, M.R.; Monzyk, B.F.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Water in clay-water systems (1) Philip F. LOW  

E-Print Network (OSTI)

Water in clay-water systems (1) Philip F. LOW Department of Agronomy, Purdue University. Agric. Exp. Stn., West Lafayette, IN 47907, U.S.A. SUMMARY The swelling of clay-water systems and the thermodynamic, hydrodynamic and spectroscopic properties of water in these systems are discussed. The swelling

Paris-Sud XI, Université de

102

Household water treatment and safe storage product development in Ghana  

E-Print Network (OSTI)

Microbial and/or chemical contaminants can infiltrate into piped water systems, especially when the system is intermittent. Ghana has been suffering from aged and intermittent piped water networks, and an added barrier of ...

Yang, Shengkun, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

103

Cleaning Membranes with Focused Ultrasound Beams for Drinking Water Treatment  

E-Print Network (OSTI)

Cleaning Membranes with Focused Ultrasound Beams for Drinking Water Treatment Jian-yu Lu1 , Xi Du2 micro pollutants such as harmful organics and cannot meet the demand for high-quality drinking water. Membrane technologies are known to produce drinking water of the highest quality. However, membrane fouling

Lu, Jian-yu

104

INL Bettis Water Treatment Project Report  

SciTech Connect

Bechtel Bettis Atomic Power Laboratory (Bettis), West Mifflin, PA, requested that the Idaho National Laboratory (INL) (Battelle Energy Alliance) perform tests using water simulants and three specified media to determine if those ion-exchange (IX) resins will be effective at removing the plutonium contamination from water. This report details the testing and results of the tests to determine the suitability of the media to treat plutonium contaminated water at near nuetral pH.

Not Available

2009-06-01T23:59:59.000Z

105

Animal Waste Treatment System Loan Program (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the Animal Waste Treatment System Loan Program is to finance animal waste treatment systems for independent livestock and poultry producers at below conventional interest rates. Loan...

106

The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants.

107

Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

108

Water Heaters and Hot Water Distribution Systems  

E-Print Network (OSTI)

Building Energy Efficiency Standards .. 4 Multi-Family Water Heating.. 4 Pipe HeatBuilding Energy Efficiency Standards The scope of this task included the following subtasks; Multi-Family Water Heating, Pipe Heat

Lutz, Jim

2012-01-01T23:59:59.000Z

109

Desalting and water treatment membrane manual: A guide to membranes for municipal water treatment. Water treatment technology program report No. 1  

SciTech Connect

The Bureau of Reclamation prepared this manual to provide an overview of microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and electrodialysis processes as they are used for water treatment. Membrane composition, the chemical processes, and the physical processes involved with each membrane type are described and compared. Because care and maintenance of water treatment membranes are vital to their performance and life expectancy, pretreatment, cleaning, and storage requirements are discussed in some detail. Options for concentrate disposal, also a problematic feature of membrane processes, are discussed. The culmination of this wealth of knowledge is an extensive comparison of water treatment membranes commercially available at this time. The tables cover physical characteristics, performance data, and operational tolerances.

Chapman-Wilbert, M.

1993-09-01T23:59:59.000Z

110

inactivation of viral aggregates during water treatment  

E-Print Network (OSTI)

treatment. MS2 virus used as the model organism. peracetic acid (PAA) chosen as disinfectant (400 mM) were used to study the pH effect on disinfection rate constants of PAA/L PAA; all experiments showed pseudo-first order kinetics (fig. 1b): biggest aggregates

111

Treatment of aricultural drainage water: technological schemes and financial indicators  

Science Journals Connector (OSTI)

Treatment and application of agricultural drainage water (ADW) has become mandatory to cope with the shortage of potable water. In Egypt, current water supply plans comprise increasing utilization of the ample resource of ADW. The current limitations facing wider utilization of secondary sources in general and, ADW of particular, need extensive funding requirements. Best available technologies and consequently high level of capital have been required to implement treatment works. This paper presents techno-economic aspects of treatment and reuse of polluted surface water resulting from mixing river water with ADW. Proposed technological treatment schemes are first discussed. Further, the selected integrated treatment scheme based on conventional and advanced physicochemical techniques is elucidated. Membrane separation has been incorporated to achieve removal of residual pollutants as well as salinity reduction. Further, the paper is concluded with a techno-economic assessment of the proposed treatment train for 110,000 m3/d treatment facility. The results indicate promising features of the proposed scheme. Complementary studies are needed to assess potential environmental impacts under normal conditions.

Hala A. Talaat; Safaa R. Ahmed

2007-01-01T23:59:59.000Z

112

Linking ceragenins to water-treatment membranes to minimize biofouling.  

SciTech Connect

Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter katedanii, and Paracoccus marcusii (seawater), and Sphingopyxis spp. (groundwater). The testing demonstrated the ability of these isolates to be used for biofouling control testing under laboratory conditions. Biofilm forming bacteria were obtained from all the source water samples.

Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

2012-01-01T23:59:59.000Z

113

WATER DISTRIBUTION SYSTEM OPERATION: APPLICATION OF  

E-Print Network (OSTI)

CHAPTER 5 WATER DISTRIBUTION SYSTEM OPERATION: APPLICATION OF SIMULATED ANNEALING Fred E. Goldman Arizona State University, Tempe, Arizona 5.1 INTRODUCTION The operation of water distribution systems affects the water quality in these systems. EPA regulations require that water quality be maintained

Mays, Larry W.

114

1.85 Water and Wastewater Treatment Engineering, Spring 2005  

E-Print Network (OSTI)

Theory and design of systems for treating industrial and municipal wastewater and potable water supplies. Methods for characterizing wastewater properties. Physical, chemical, and biological processes, including primary ...

Shanahan, Peter

115

``New`` countercurrent demineralization techniques are carving a place in water treatment  

SciTech Connect

This article describes how supplementing older treatment methods with modern advancements creates water treatment technology greater than the sum of its parts. Water treatment technology has rapidly advanced in recent years to where a myriad of options are now available for producing makeup water for utility boilers. Some of the newer methods include two-pass reverse osmosis (RO), RO followed by mixed-bed demineralization and triple-membrane treatment consisting of ultrafiltration, electrodialysis and RO. All of these techniques have performed well in various applications. A technique that is gaining attention is packed-bed, counter-currently regenerated demineralization. This process combines ion exchange with advanced regeneration methods in a system that produces water of significantly better quality than that of conventional cation/anion units.

Buecker, B.

1996-09-01T23:59:59.000Z

116

Radioactive residues associated with water treatment, use and disposal in Australia.  

E-Print Network (OSTI)

??Water resources are known to contain radioactive materials, either from natural or anthropogenic sources. Treatment, including wastewater treatment, of water for drinking, domestic, agricultural and… (more)

Kleinschmidt, Ross Ivan

2011-01-01T23:59:59.000Z

117

Water Heaters and Hot Water Distribution Systems  

E-Print Network (OSTI)

from controlling heat loss through the distribution pipes.distribution system configurations; a collection of analytical heat lossdistribution system configurations; a collection of analytical heat loss

Lutz, Jim

2012-01-01T23:59:59.000Z

118

Peak Treatment Systems | Open Energy Information  

Open Energy Info (EERE)

Agreement Partnership Year 1998 Link to project description http:www.nrel.govnewspress199804licns.html Peak Treatment Systems is a company located in Golden, CO....

119

Onsite Wastewater Treatment Systems: Liquid Chlorination  

E-Print Network (OSTI)

This publication explains the process, components, legal requirements, factors affecting performance, and maintenance needs of liquid chlorination systems for onsite wastewater treatment....

Weaver, Richard; Lesikar, Bruce J.; Richter, Amanda; O'Neill, Courtney

2008-10-23T23:59:59.000Z

120

Innovative Treatment Technologies for Natural Waters and Wastewaters  

SciTech Connect

The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

Childress, Amy E.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Milli-Q Reference Water Purification System  

E-Print Network (OSTI)

Milli-Q® Reference Water Purification System The reference for ultrapure water systems EMD the requirements of the most demanding norms. We've achieved all this with a new purification strategy. Water. This water is sent through a small recirculation loop to the POD pak, where a final purification step

Woodall, Jerry M.

122

Onsite Wastewater Treatment Systems: Ultraviolet Light Disinfection  

E-Print Network (OSTI)

Some onsite wastewater treatment systems include a disinfection component. This publication explains how homeowners can disinfect wastewater with ultraviolet light, what the components of such a system are, what factors affect the performance of a...

Lesikar, Bruce J.

2008-10-02T23:59:59.000Z

123

Simulation Models for Improved Water Heating Systems  

E-Print Network (OSTI)

The DLM accounts for the distribution heat loss within eachHot-Water Distribution System Piping Heat Loss Factors—PhaseHot Water Distribution System Piping Heat Loss Factors-

Lutz, Jim

2014-01-01T23:59:59.000Z

124

Rate Setting for Small Water Systems  

E-Print Network (OSTI)

in detail the many resources that are available to help managers of small water systems make wise business decisions....

Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

2007-03-28T23:59:59.000Z

125

Water reactive hydrogen fuel cell power system  

DOE Patents (OSTI)

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-11-25T23:59:59.000Z

126

Water reactive hydrogen fuel cell power system  

DOE Patents (OSTI)

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-01-21T23:59:59.000Z

127

Onsite Wastewater Treatment Systems: Spray Distribution System  

E-Print Network (OSTI)

Spray distribution systems for wastewater are much like lawn sprinkler systems, in that they spray treated wastewater over the surface of a yard. This publication explains how spray distribution systems work, what their design requirements are...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

128

Desalination and Water Treatment www.deswater.com  

E-Print Network (OSTI)

.22 µm. Seawater, reverse osmosis (RO) concentrate collected from a wastewater reclamation plant for the treatment of saline water and wastewater such as thermal distillation and reverse osmosis [2,3]. MD has several advantages compared to conventional thermal distillation and reverse osmosis processes [3

129

Chapter 5 - Solar Water-Heating Systems  

Science Journals Connector (OSTI)

Abstract Chapter 5 is on solar water-heating systems. Both passive and active systems are described. Passive systems include thermosiphon and integrated collector storage systems. The former include theoretical performance of thermosiphon solar water heaters, reverse circulation in thermosiphon systems, vertical against horizontal tank configurations, freeze protection, and tracking thermosiphons. Subsequently, active systems are described, which include direct circulation systems, indirect water-heating systems, air water-heating systems, heat pump systems and pool heating systems, which include the analysis of various heat losses like evaporation, radiation, convection heat losses, make-up water load, and solar radiation-heat gain. Then the characteristics and thermal analysis of heat storage systems for both water and air systems are presented. The module and array design methods are then described and include the effects of shading, thermal expansion, galvanic corrosion, array sizing, heat exchangers, pipe and duct losses, partially shaded collectors and over-temperature protection—followed by an analysis of the characteristics of differential thermostats. Finally, methods to calculate the hot water demand are given as well as a review of international standards used to evaluate the solar water heaters performance. The chapter includes also simple system models and practical considerations for the setup of solar water-heating systems, which include: pipes, supports and insulation; pumps; valves and instrumentation.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

130

Desalination and Water Treatment www.deswater.com  

E-Print Network (OSTI)

of a solar-assisted pilot plant in the Arava Valley in Israel. It is argued that the proposed system would. Keywords: Brackish water; Irrigation; Nanofiltration; Reverse osmosis; Solar desalination 1. Agriculture

Messalem, Rami

131

Treatment of arsenic-contaminated water using akaganeite adsorption  

DOE Patents (OSTI)

The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

Cadena C., Fernando (Las Cruces, NM); Johnson, Michael D. (Las Cruces, NM)

2008-01-01T23:59:59.000Z

132

Treatment of pulp mill sludges by supercritical water oxidation  

SciTech Connect

Supercritical water oxidation (SCWO) is new process that can oxidize organics very effectively at moderate temperatures (400 to 650{degree}C) and high pressure (3700 psi). It is an environmentally acceptable alternative for sludge treatment. In bench scale tests, total organic carbon (TOC) and total organic halide (TOX) reductions of 99 to 99.9% were obtained; dioxin reductions were 95 to 99.9%. A conceptual design for commercial systems has been completed and preliminary economics have been estimated. Comparisons confirm that SCWO is less costly than dewatering plus incineration for treating pulp mill sludges. SCWO can also compete effectively with dewatering plus landfilling where tipping fees exceed $35/yd{sup 3}. In some regions of the US, tipping fees are now $75/yd{sup 3} and rising steadily. In the 1995 to 2000 time frame, SCWO has a good chance of becoming the method of choice. MODEC's objective is to bring the technology to commercial availability by 1993. 10 refs., 6 figs., 19 tabs.

Modell, M.

1990-07-01T23:59:59.000Z

133

Onsite Wastewater Treatment Systems: Sand Filters  

E-Print Network (OSTI)

Sand filters are beds of granular material, or sand, drained from underneath so that pretreated wastewater can be treated, collected and distributed to a land application system. This publication explains the treatment, design, operation...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

134

Treatment of produced waters by electrocoagulation and reverse osmosis  

SciTech Connect

Two oil field produced waters and one coal bed methane produced water from Wyoming were treated with electrocoagulation and reverse osmosis. All three produced waters would require treatment to meet the new Wyoming Department of Environmental Quality requirements for effluent discharge into a class III or IV stream. The removal of radium 226 and oil and grease was the primary focus of the study. Radium 226 and oil and grease were removed from the produced waters with electrocoagulation. The best removal of radium 226 (>84%) was achieved with use of a non-sacrificial anode (titanium). The best removal of oil and grease (>93%) was achieved using a sacrificial anode (aluminum). By comparison, reverse osmosis removed up to 87% of the total dissolved solids and up to 95% of the radium 226.

Tuggle, K.; Humenick, M.; Barker, F.

1992-08-01T23:59:59.000Z

135

Author's personal copy Modelling and automation of water and wastewater treatment processes  

E-Print Network (OSTI)

and Jeppsson, 2006), including sewage systems and surrounding land use. From the methodological viewpoint on the applications of modelling and automation to water and wastewater treatment processes. The session, under sludge processes, to which unconventional and innovative control strategies were applied. But there were

136

Integrated thermal treatment system study -- Phase 2 results. Revision 1  

SciTech Connect

This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

Feizollahi, F.; Quapp, W.J.

1996-02-01T23:59:59.000Z

137

Groundwater Treatment at the Fernald Preserve: Status and Path Forward for the Water Treatment Facility - 12320  

SciTech Connect

Operating a water treatment facility at the Fernald Preserve in Cincinnati, Ohio-to support groundwater remediation and other wastewater treatment needs-has become increasingly unnecessary. The Fernald Preserve became a U.S. Department of Energy Office of Legacy Management (LM) site in November 2006, once most of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration had been completed. Groundwater remediation is anticipated to continue beyond 2020. A portion of the wastewater treatment facility that operated during the CERCLA cleanup continued to operate after the site was transferred to LM, to support the remaining groundwater remediation effort. The treatment facility handles the site's remaining water treatment needs (for groundwater, storm water, and wastewater) as necessary, to ensure that uranium discharge limits specified in the Operable Unit 5 Record of Decision are met. As anticipated, the need to treat groundwater to meet uranium discharge limits has greatly diminished over the last several years. Data indicate that the groundwater treatment facility is no longer needed to support the ongoing aquifer remediation effort. (authors)

Powel, J. [U.S. Department of Energy Office of Legacy Management, Harrison, Ohio (United States); Hertel, B.; Glassmeyer, C.; Broberg, K. [S.M. Stoller Corporation, Harrison, Ohio (United States)

2012-07-01T23:59:59.000Z

138

Treatment methods for breaking certain oil and water emulsions  

DOE Patents (OSTI)

Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

Sealock, Jr., L. John (W. Richland, WA); Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

1992-01-01T23:59:59.000Z

139

Optimization of Chilled Water Systems  

E-Print Network (OSTI)

the absorption chiller has the least increase in COP per degree change in supply water. METHODS OF IMPLEMENTATION Using Space Conditions. (Figure 2). By evaluating the performance of all the cooling coils through a selector switch, then establishing.....::::.....L-...L-....L..-...L..-+--"""---.L.--"----"------1 15~--1---~-+---+---+---+-7' Reciprocating Absorption 40 c Leaving chIlled water temperature - C F Fig. 1 Effect of chilled water temperature on chiller coefficient of performance Using Return Water Temperature. (Figure 3). This method...

Gidwani, B. N.

140

Green Systems Solar Hot Water  

E-Print Network (OSTI)

,2; basement) Pre-heats water so water heaters don't need to use as much energy Gas-powered, high efficiency heated water before it is circulated through the building Two gas boilers (GWB-1,2; basement) can be used

Schladow, S. Geoffrey

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Land disposal of water treatment plant sludge -- A feasibility analysis  

SciTech Connect

In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

1998-07-01T23:59:59.000Z

142

Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant  

SciTech Connect

The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality.

Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

1998-07-01T23:59:59.000Z

143

Reverse osmosis treatment to remove inorganic contaminants from drinking water  

SciTech Connect

The purpose of the research project was to determine the removal of inorganic contaminants from drinking water using several state-of-the-art reverse osmosis membrane elements. A small 5-KGPD reverse osmosis system was utilized and five different membrane elements were studied individually with the specific inorganic contaminants added to several natural Florida ground waters. Removal data were also collected on naturally occurring substances.

Huxstep, M.R.; Sorg, T.J.

1987-12-01T23:59:59.000Z

144

On-Site Wastewater Treatment Systems: Mound System  

E-Print Network (OSTI)

Septic tank Pump tank Distribution pipe Sand Gravel Geotextile fabric On-site wastewater treatment systems Mound system Bruce Lesikar and Vance Weynand Associate Professor and Extension Agricultural Engineering Specialist, Extension Assistant... The Texas A&M University System L-5414 4-02 Figure 1: A mound system for distributing treated wastewater to the soil. A mound system for wastewater is a soil absorption system placed above the natural surface of the ground. Mound systems are used...

Lesikar, B.; Waynard, V.

145

Enhanced integrated nonthermal treatment system study  

SciTech Connect

The purpose of the Enhanced Nonthermal Treatment Systems (ENTS) study is to evaluate alternative configurations of one of the five systems evaluated in the Integrated Nonthermal Treatment Systems (INTS) study. Five alternative configurations are evaluated. Each is designed to enhance the final waste form performance by replacing grout with improved stabilization technologies, or to improve system performance by improving the destruction efficiency for organic contaminants. AU enhanced systems are alternative configurations of System NT-5, which has the following characteristics: Nonthermal System NT-5: (1) catalytic wet oxidation (CWO) to treat organic material including organic liquids, sludges, and soft (or combustible) debris, (2) thermal desorption of inorganic sludge and process residue, (3) washing of soil and inorganic debris with treatment by CWO of removed organic material, (4) metal decontamination by abrasive blasting, (5) stabilization of treated sludge, soil, debris, and untreated debris with entrained contamination in grout, and (6) stabilization of inorganic sludge, salts and secondary waste in polymer. System NT-5 was chosen because it was designed to treat combustible debris thereby minimizing the final waste form volume, and because it uses grout for primary stabilization. The enhanced nonthermal systems were studied to determine the cost and performance impact of replacing grout (a commonly used stabilization agent in the DOE complex) with improved waste stabilization methods such as vitrification and polymer.

Biagi, C.; Schwinkendorf, B.; Teheranian, B.

1997-02-01T23:59:59.000Z

146

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

147

Public Health Issues Associated with Small Drinking Water Systems  

E-Print Network (OSTI)

Public Health Issues Associated with Small Drinking Water Systems Not Regulated by the Safe Drinking Water Act From: Nonfederally Regulated Drinking Water Systems: State and Local Public Health ...........................................................................................5 Priority Environmental Public Health Challenges for Small Drinking Water Systems

148

Conservation of Energy Through The Use of a Predictive Performance Simulator of Operating Cooling Water Systems  

E-Print Network (OSTI)

chemical treatment program for the prevention of corrosion, scale and deposit accumulations. Calgon has made available a computerized performance simulator of operating cooling water systems which reliably predicts system corrosion rates, percent scale...

Schell, C. J.

1981-01-01T23:59:59.000Z

149

Submersible purification system for radioactive water  

DOE Patents (OSTI)

A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

Abbott, Michael L. (Fort Collins, CO); Lewis, Donald R. (Pocatello, ID)

1989-01-01T23:59:59.000Z

150

Screening reactor steam/water piping systems for water hammer  

SciTech Connect

A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.

Griffith, P. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1997-09-01T23:59:59.000Z

151

Tomorrow`s energy today for cities and counties -- Alternative wastewater treatment: Advanced Integrated Pond systems  

SciTech Connect

This report provides a discussion of the design, construction, operation, and maintenance of the Advanced Integrated Pond System as an alternative for other more costly municipal waste water treatment plants.

Not Available

1993-10-01T23:59:59.000Z

152

Emergy Synthesis and Its Application on Water Efficiency of Water Ecological-Economic System  

Science Journals Connector (OSTI)

Water ecological-economic system (WEES) is a coupling system of traditional water resource system (WS) and eco-environment, social economy system. Water efficiency is an important index and comprehensively reflec...

Cuimei Lv; Minhua Ling

2011-01-01T23:59:59.000Z

153

[Waste water heat recovery system  

SciTech Connect

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

154

Residential hot water distribution systems: Roundtablesession  

SciTech Connect

Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

2002-08-01T23:59:59.000Z

155

Passive safety injection system using borated water  

DOE Patents (OSTI)

A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

Conway, Lawrence E. (Allegheny, PA); Schulz, Terry L. (Westmoreland, PA)

1993-01-01T23:59:59.000Z

156

Use of ceregenins to create novel biofouling resistant water water-treatment membranes.  

SciTech Connect

Scoping studies have demonstrated that ceragenins, when linked to water-treatment membranes have the potential to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced molecules that mimic antimicrobial peptides. Evidence includes measurements of CSA-13 prohibiting the growth of and killing planktonic Pseudomonas fluorescens. In addition, imaging of biofilms that were in contact of a ceragenin showed more dead cells relative to live cells than in a biofilm that had not been treated with a ceragenin. This work has demonstrated that ceragenins can be attached to polyamide reverse osmosis (RO) membranes, though work needs to improve the uniformity of the attachment. Finally, methods have been developed to use hyperspectral imaging with multivariate curve resolution to view ceragenins attached to the RO membrane. Future work will be conducted to better attach the ceragenin to the RO membranes and more completely test the biocidal effectiveness of the ceragenins on the membranes.

Kirk, Matthew F.; Jones, Howland D. T.; Feng, Yanshu; McGrath, Lucas K.; Altman, Susan Jeanne; Pollard, Jacob; Hibbs, Michael R.; Savage, Paul B.

2010-05-01T23:59:59.000Z

157

Robot design for leak detection in water-pipe systems  

E-Print Network (OSTI)

Leaks are major problem that occur in the water pipelines all around the world. Several reports indicate loss of around 20 to 30 percent of water in the distribution of water through water pipe systems. Such loss of water ...

Choi, Changrak

2012-01-01T23:59:59.000Z

158

Treatment of produced water using chemical and biological unit operations.  

E-Print Network (OSTI)

??Water generated along with oil and gas during coal bed methane and oil shale operations is commonly known as produced water, formation water, or oilfield… (more)

Li, Liang

2010-01-01T23:59:59.000Z

159

High throughput chemical munitions treatment system  

SciTech Connect

A new High-Throughput Explosive Destruction System is disclosed. The new system is comprised of two side-by-side detonation containment vessels each comprising first and second halves that feed into a single agent treatment vessel. Both detonation containment vessels further comprise a surrounding ventilation facility. Moreover, the detonation containment vessels are designed to separate into two half-shells, wherein one shell can be moved axially away from the fixed, second half for ease of access and loading. The vessels are closed by means of a surrounding, clam-shell type locking seal mechanisms.

Haroldsen, Brent L. (Manteca, CA); Stofleth, Jerome H. (Albuquerque, NM); Didlake, Jr., John E. (Livermore, CA); Wu, Benjamin C-P (San Ramon, CA)

2011-11-01T23:59:59.000Z

160

Distribution of bacteria within operating laboratory water purification systems.  

Science Journals Connector (OSTI)

...within operating laboratory water purification systems. G A McFeters S C...within operating laboratory water purification systems. | Experiments were...within Operating Laboratory Water Purification Systems GORDON A. McFETERS...

G A McFeters; S C Broadaway; B H Pyle; Y Egozy

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Reduction of corrosivity of reused water in refinery water circulating systems  

SciTech Connect

This paper discusses the problem of controlling scale formation in heat transfer equipment in refinery recirculating water systems. One of the effective methods for reducing the degree of pitting is acidification of the medium to pH 6-6.5, thus suppressing the activity of the sulfide and manganese inclusions in the metal that play the role of pitting centers. The authors investigated the effects of the AOC and TPP on the characteristics of refinery recirculating water and combined treatment to reduce the amount of scaling and lower the corrosivity. The untreated recirculating water was unstable; the water treated with AOC or with AOC+TPP is capable of dissolving carbonate deposits.

Sorochenko, V.F.; Beskorovainaya, N.J.; Shut'ko, A.P.; Slipchenko, O.G.; Zorina, N.E.

1985-11-01T23:59:59.000Z

162

Assess of physical antiscale-treatments on conventional electrodialysis pilot unit during brackish water desalination  

Science Journals Connector (OSTI)

Abstract In electrodialysis (ED) desalination plants, calcium carbonate is the main component of meted scales. To prevent its formation several treatments were proposed. For more efficiency, treatments must be assessed at experimental conditions close to real ones. Thus, this work is a contribution to understand and evaluate three anti-calcareous physical treatments for ED desalination systems simulating real conditions. Magnetic field (MF) and ultrasonic field (UF) were applied to concentrate solution, compartment where scaling is imminent in the used ED pilot unit. The third treatment was a pulsed electric field (PEF) application. Tested solution was a synthetic brackish water. Results show that magnetic and ultrasonic treatments accelerate the precipitation of CaCO3 by reducing the nucleation time and the metastable domain. It is also shown that pulsed electric treatment accelerates CaCO3 precipitation resulting from desalination improvement comparing to stationary mode. However, all these treatments favor the homogeneous precipitation which prevents scale formation on membrane surfaces. It seems that MF improves the desalination only by preventing membrane scaling. However, UF and PEF application improve desalination by preventing membrane scaling and by improving the ions transfer during desalination; UF application acts on ions mobility or diffusion, while PEF application reduces the concentration polarization layer.

Ilhem BEN SALAH SAYADI; Philippe SISTAT; Mohamed Mouldi TLILI

2014-01-01T23:59:59.000Z

163

Variations in AOC and microbial diversity in an advanced water treatment plant  

Science Journals Connector (OSTI)

Summary The objective of this study was to evaluate the variations in assimilable organic carbon (AOC) and microbial diversities in an advanced water treatment plant. The efficiency of biofiltration on AOC removal using anthracite and granular activated carbon (GAC) as the media was also evaluated through a pilot-scale column experiment. Effects of hydrological factors (seasonal effects and river flow) on AOC concentrations in raw water samples and hydraulic retention time (HRT) of biofiltration on AOC treatment were also evaluated. Results show that AOC concentrations in raw water and clear water of the plant were about 138 and 27 ?g acetate-C/L, respectively. Higher AOC concentrations were observed in wet seasons probably due to the resuspension of organic-contained sediments and discharges of non-point source (NPS) pollutants from the upper catchment. This reveals that seasonal effect played an important role in the variations in influent AOC concentrations. Approximately 82% and 70% of AOC removal efficiencies were observed in GAC and anthracite columns, respectively. Results from column experiment reveal that the applied treatment processes in the plant and biofiltration system were able to remove AOC effectively. Microbial colonization on GAC and anthracite were detected via the observation of scanning electron microscopic (SEM) images. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis reveal significant decrease in microbial diversities after the ozonation process. Higher HRT caused higher microbial contact time, and thus, more microbial colonies and higher microbial diversity were observed in the latter part of the biofilters. Some of the dominant microbial species in the biofiltration columns belonged to the beta-proteobacterium, which might contribute to the AOC degradation. Results of this study provide us insight into the variations in AOC and microbial diversity in the advanced water treatment processes.

B.M. Yang; J.K. Liu; C.C. Chien; R.Y. Surampalli; C.M. Kao

2011-01-01T23:59:59.000Z

164

Vulnerability assessment of water supply systems for insufficient fire flows  

E-Print Network (OSTI)

and Data Acquisition (SCADA) systems. Generally speaking, SCADA systems are the monitoring and control systems in the utility industries which help in operating the water system components with proper timing and sequence, measuring water quality... parameters, etc., without physically accessing the network. Thus, SCADA systems can reduce operating cost for a water utility and thereby increase a water system?s efficiency. The proposed hardening methodology of the water supply system was based...

Kanta, Lufthansa Rahman

2009-05-15T23:59:59.000Z

165

Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment  

Science Journals Connector (OSTI)

The corona or corona-like system uses discharges of ?1 J/pulse, whereas the pulsed arc discharge uses energy of ?1 kJ/pulse and larger. ... AC, DC, and pulsed electric fields have been applied in conditions where the electrodes have been fully immersed in the liquid phase, where one electrode has been placed in an adjacent gas phase, and/or where arcing across the electrodes may occur. ... The electrohydraulic shock treatment of microorganisms was accomplished by discharging high-voltage electricity (8 to 15 kv.) across an electrode gap below the surface of aq. ...

B. R. Locke; M. Sato; P. Sunka; M. R. Hoffmann; J.-S. Chang

2005-12-31T23:59:59.000Z

166

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

167

New Water Booster Pump System Reduces Energy Consumption by 80...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases...

168

Combined Systems with Tankless Water Heaters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Systems with Tankless Water Heaters Combined Systems with Tankless Water Heaters Armin Rudd Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas 2 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas More builder's wanting to use gas-fired tankless water heaters, and with solar pre-heat  Endless hot water  Helps HERS Index  Space saving 2 3 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Problem with elevated TWH inlet temperature 60 70 80 90 100 110 120 130 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Maximum Inlet Temperature (F) DHW flow rate (gpm) Maximum TWH inlet temperature to stay below 125 F delivered temperature, with 15 kBtu/h minimum firing rate Typical shower temperature 4 Residential Energy Efficiency Stakeholder Meeting

169

Wastewater Effluent Polishing Systems of Anaerobic Baffled Reactor Treating Black-water from Households  

E-Print Network (OSTI)

Wastewater Effluent Polishing Systems of Anaerobic Baffled Reactor Treating Black-water from of different integrated low-cost wastewater treatment systems, comprising one ABR as first treatment step filter and a vertical flow constructed wetland. A mixture of septage and domestic wastewater was used

Richner, Heinz

170

Water injected fuel cell system compressor  

DOE Patents (OSTI)

A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

Siepierski, James S. (Williamsville, NY); Moore, Barbara S. (Victor, NY); Hoch, Martin Monroe (Webster, NY)

2001-01-01T23:59:59.000Z

171

Solar trough concentration for fresh water production and waste water treatment  

Science Journals Connector (OSTI)

The present paper examines the concept of utilizing trough type solar concentration plants for water production, remediation and waste treatment. Solar trough plants are a mature technology which deserves to be diffused throughout the European Union and in the partner countries of the Mediterranean Area. The present study is intended to find applications of the solar through concentration technology beyond heat and refrigeration. At the present stage, a number of possibilities have been identified; the main ones which will be considered here are related to clean water production by processes such as solar distillation, atmospheric condensation, and waste processing. Although the technical feasibility of the proposed applications is not in discussion, before attempting to put such applications into practice, we’ll discuss their potential economical and environmental benefits in comparison to existing solutions.

A. Scrivani; T. El Asmar; U. Bardi

2007-01-01T23:59:59.000Z

172

Practical Approach to Water System Optimal Operation  

Science Journals Connector (OSTI)

Abstract Optimal pump scheduling is a major consideration when dealing with minimizing operational costs of a water distribution system. Pump operation must balance between three factors. Water balance constraints, including consumer demand and water tank volumes. Hydraulic constraints determining water pump operating point. Electrical tariff rate effecting energy cost. Optimization models may assume linear or discrete pump operation, depending on type and accuracy of the model in use. Linear operation assumes the pump may operate during part of the time step while discrete operation requires the pump to be either on or off during the entire time step. Linear optimization models commonly have short solution times, but cannot contain non-linear constraints such as hydraulic headloss. By such, linear model results may be difficult to implement in a real water system as the hydraulic behavior of the system may render the optimal solution impractical. Likewise, if the pump operation partially uses the time step the pump may be forced to come in and out of duty often causing mechanical ware and tare. Discrete operation provides smooth pump operation and may contain non-linear hydraulic constraint to calculate a more realistic working point for the pump. Discrete models have long solution times due the vast amount of pump operating combinations, which must be explored. Heuristic techniques may be used to shorten solution times but these do not assure global minimization of the solution. The goal of the research is to create a minimum cost optimal operation water distribution system model that utilizes the short solution time of a linear model but also includes non-linear hydraulic constraints effecting pump energy consumption and discrete pump operation. The motivation is to use the model for real-time pump scheduling and for water system design.

E. Price; A. Ostfeld

2014-01-01T23:59:59.000Z

173

Monitoring effective use of household water treatment and safe storage technologies in Ethiopia and Ghana  

E-Print Network (OSTI)

Household water treatment and storage (HWTS) technologies dissemination is beginning to scale-up to reach the almost 900 million people without access to an improved water supply (WHO/UNICEF/JMP, 2008). Without well-informed ...

Stevenson, Matthew M

2009-01-01T23:59:59.000Z

174

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor Manufacturing  

E-Print Network (OSTI)

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor of treating wastewater streams in the semiconductor manufacturing industry. Electrocoagulation involves wastewater is increasing greatly. The objective is that by using EC to treat wastewater streams, this water

Fay, Noah

175

Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes  

E-Print Network (OSTI)

a research project that evaluated the treatment of brine generated in oil fields (produced water) with ultrafiltration membranes. The characteristics of various ultrafiltration membranes for oil and suspended solids removal from produced water were...

Beech, Scott Jay

2006-10-30T23:59:59.000Z

176

Computer program design for land treatment systems  

SciTech Connect

Municipal Sludge Land Application expert System (MuSLAXS)is as expert system developed for site assessment and design analysis of municipal sludge application on agricultural land. The system has knowledge on the technical and regulatory aspects of sludge land application and understanding of soil-plant systems for South Carolina. It can be effectively used outside South Carolina with modifications to incorporate specific regulations on land treatment and soil and crop database. A database supports this expert system and provides appropriate default values for sludge and soil characteristics, and fertilizer recommendations for crops commonly grown in South Carolina. Information on the sludge characteristics is gathered from the user, if it is available, or it is retrieved from the sludge database. Based on the recommendations by the EPA and the expert, a list of 22 constituents, for which the sludge should be analyzed is developed. This list includes: total solids, volatile solids, total nitrogen (TNK), ammonia-nitrogen, organic-nitrogen, phosphorus, potassium, sulfur, cadmium, copper, lead, nickel, zinc, PCBs, calcium, magnesium, chromium, boron, arsenic, aluminum, cobalt, and molybdenum.

White, R.K. (Clemson Univ. SC (USA)); Jantrania, A.

1989-10-01T23:59:59.000Z

177

Medical waste treatment and decontamination system  

DOE Patents (OSTI)

The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL)

2001-01-01T23:59:59.000Z

178

Removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant.  

E-Print Network (OSTI)

??Reject water, the liquid fraction produced after dewatering of anaerobically digested activated sludge on a municipal wastewater treatment plant (MWWTP), contains from 750 to 1500… (more)

Guo, Chenghong

2011-01-01T23:59:59.000Z

179

Forward osmosis for desalination and water treatment : a study of the factors influencing process performance.  

E-Print Network (OSTI)

??This thesis explores various factors that have significant impacts on FO process performance in desalination and water treatment. These factors mainly include working temperatures, solution… (more)

Zhao, Shuaifei

2012-01-01T23:59:59.000Z

180

On-Site Wastewater Treatment Systems: Selecting and Permitting (Spanish)  

E-Print Network (OSTI)

This publication explains how to select and obtain a permit for an on-site wastewater treatment system in Texas....

Lesikar, Bruce J.

2005-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Carbon and Water Resource Management for Water Distribution Systems  

E-Print Network (OSTI)

wastewater transmission and sewage treatment. Distribution pumping and sewage treatment were found to contribute the most to climate change

Hendrickson, Thomas Peter

2013-01-01T23:59:59.000Z

182

Hot Water Heating System Operation and Energy Conservation  

E-Print Network (OSTI)

Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

Shao, Z.; Chen, H.; Wei, P.

2006-01-01T23:59:59.000Z

183

Life Cycle Assessment for Sustainable Metropolitan Water Systems Planning  

Science Journals Connector (OSTI)

Life Cycle Assessment (LCA) is useful as an information tool for the examination of alternative future scenarios for strategic planning. ... Water systems supply additional functions includ ing the following:? (1) nutrient recovery ? the treatment and land application of biosolids brings back the nutrients to the natural cycle in agriculture, horticulture, and forest systems, which can prevent the need for chemical fertilizers and thus avoid their production; (2) energy recovery ? which can include the generation of electricity or the cogeneration of thermal energy and electricity from biogas at sewage treat ment plants (STPs) or biosolids combustion off-site [This generation activity replaces the production of electrical and thermal energy from other energy sources.]; ...

Sven Lundie; Gregory M. Peters; Paul C. Beavis

2004-05-21T23:59:59.000Z

184

Innovative wastewater treatment using reversing anaerobic upflow system (RAUS)  

SciTech Connect

Anaerobic processes are widely popular in the treatment of a variety of industrial wastewaters since the development of such high rate treatment processes like upflow anaerobic sludge blanket (UASB), anaerobic filter, and the fluidized-bed process. In order to devise a low cost/high technology system so that it would provide an economical solution to environmentally sound pollution control, the Reversing Anaerobic Upflow System (RAUS) was developed. The system consists of two anaerobic reactors connected to each other. At the beginning, one reactor is fed upwards with wastewater while the other acts as a settling tank. After a set interval of time, the flow is reversed such that the second reactor is fed with wastewater and the first one acts as the settler. This particular feeding pattern had shown improved settling characteristics and granulation of methanogenic biomass from research carried out at the Hannover University with different wastewaters. The biological reaction vessels to which wastewater is introduced intermittently functions basically as a sludge blanket type reactor although the costly integrated settling devices present in a typical UASB system are avoided. The RAUS combines three principle reactor configurations: (1) conventional with sludge recycling; (2) fill and draw or sequential batch, inflow maintained constant during feeding; (3) upflow anaerobic sludge blanket. A pilot scale RAUS was operated for 400 days using distillery wastewater consisting of molasses slop and bottle washing water mixed in the ratio 1:1. This paper discusses the results of pilot scale experiments.

Basu, S.K. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Environmental Engineering Div.

1996-11-01T23:59:59.000Z

185

Modeling Onsite Wastewater Treatment Systems in the Dickinson Bayou Watershed  

E-Print Network (OSTI)

Bayou watershed. HYDRUS was used to simulate conventional septic systems with soil absorption fields, aerobic treatment units (ATUs) with spray dispersal systems, and mound systems. Results found that the simulated conventional systems fail due to high...

Forbis-Stokes, Aaron

2012-10-19T23:59:59.000Z

186

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM  

E-Print Network (OSTI)

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California, Center for Ocean Health, Long Marine Lab GREGOR CAILLIET, Moss Landing Marine Laboratories DAVID MAYER be obvious that large studies like these require the coordinated work of many people. We would first like

187

Integrated Planning for Water and Energy Systems  

E-Print Network (OSTI)

Policy 2. Energy Intensity of Water 3. Water Intensity of Energy 1. Integrated Energy and Water Policy 2. Energy Intensity of Water 3. Water Intensity of Energy #12;Total Water Withdrawals, 2000Total Water at Edmonston #12;Energy Intensity of WaterEnergy Intensity of Water Energy intensity, or embedded energy

Keller, Arturo A.

188

The optimal treatment method of water turbidity purification in tap-water plant.  

E-Print Network (OSTI)

??The main purpose of this study is to investigate the relationship between the water turbidity purification result with raw water turbidity, raw water pH value… (more)

Lin, Yi-Heng

2010-01-01T23:59:59.000Z

189

The Application of Electrodialysis for Drinking Water Treatment  

Science Journals Connector (OSTI)

Electrodialysis is applied for the removal of dissolved ionic substances from water. Amongst other desalination processes, such as ... and reverse osmosis, the main advantages of electrodialysis are high water re...

F. Hell; J. Lahnsteiner

2002-01-01T23:59:59.000Z

190

Containment system for supercritical water oxidation reactor  

DOE Patents (OSTI)

A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

Chastagner, P.

1994-07-05T23:59:59.000Z

191

Effectiveness of purification processes in removing algae from Vaal Dam water at the Rand Water Zuikerbosch treatment plant in Vereeniging / H. Ewerts.  

E-Print Network (OSTI)

??The aim of this study was to investigate the efficacy of purification processes at the Rand Water Zuikerbosch treatment plant near Vereeniging. Raw water is… (more)

Ewerts, Hendrik

2010-01-01T23:59:59.000Z

192

Characterization of Rio Blanco retort 1 water following treatment by lime-soda softening and reverse osmosis  

SciTech Connect

Laboratory research was initiated to evaluate the chemical, physical, and toxicological characteristics of treated and untreated Rio Blanco oil shale retort water. Wet chemical analyses, metals analyses, MICROTOX assays and particle-size analysis were performed on the wastewater before and after treatment by lime-soda softening and reverse osmosis. The reverse osmosis system successfully removed dissolved solids and organics from the wastewater. Based on MICROTOX tests, the water was much less toxic after treatment by reverse osmosis. 8 refs., 7 figs., 8 tabs.

Kocornik, D.J.

1985-12-01T23:59:59.000Z

193

STATUS REPORT: Onsite Wastewater Treatment Systems in California jointly presented by:  

E-Print Network (OSTI)

The regulation of onsite wastewater treatment systems will be undergoing significant changes in California in the coming years. Recent legislation has mandated that the State Water Resources Control Board develop and adopt statewide regulations by January 2004. These will be the first statewide regulations governing the use of onsite wastewater treatment in California. There are approximately 1.2 million onsite wastewater treatment systems in California, serving more than 3.5 million people, or 10 % of the state’s population. Since 1990, ten percent of new housing starts use onsite systems and this trend should continue for the foreseeable future. Onsite/decentralized systems are an integral part of the infrastructure used to support continued growth and development in the state. In April 1997, EPA published its Response to Congress on Use of Decentralized Wastewater Treatment Systems which concluded that, overall, “adequately managed decentralized (onsite) wastewater treatment systems can be a cost effective and long-term option for meeting public health and water quality goals, particularly for small, suburban, and rural areas. ” Our dependence on onsite technologies has led to renewed interest in how they work. The performance of these systems is an important consideration in protecting the public health and water quality in the state. If onsite systems are recharging California’s

California Wastewater

194

Study on Energy Efficiency Evaluation Method of Cooling Water System of Surface Water Source Heat Pump  

Science Journals Connector (OSTI)

Water source heat pump system is a green air-conditioning system which has high efficiency, energy saving, and environmental protection, but inappropriate design of the system type of water intake will impact on ...

Jibo Long; Siyi Huang

2014-01-01T23:59:59.000Z

195

Army Energy and Water Reporting System Assessment  

SciTech Connect

There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating with other existing data sources, thus minimizing manually entered data.

Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

2011-09-01T23:59:59.000Z

196

Modeling Water Resource Systems under Climate Change: IGSM-WRS  

E-Print Network (OSTI)

Through the integration of a Water Resource System (WRS) component, the MIT Integrated Global System Model (IGSM) framework has been enhanced to study the effects of climate change on managed water-resource systems. ...

Strzepek, K.

197

Chapter 7 - Test Cell Cooling Water and Exhaust Gas Systems  

Science Journals Connector (OSTI)

Part 1 considers the thermodynamics of water cooling systems, water quality, typical cooling water circuits, and engine coolant control units. Also covered are the commissioning cooling circuits, thermal shock, and chilled water systems. Part 2 covers the design of test cell exhaust systems, exhaust silencers, exhaust gas volume flow, exhaust silencers, and exhaust cowls. Part 3 briefly covers the testing of turbochargers.

A.J. Martyr; M.A. Plint

2012-01-01T23:59:59.000Z

198

Soil Water and Temperature System (SWATS) Handbook  

SciTech Connect

The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

Bond, D

2005-01-01T23:59:59.000Z

199

New Advanced System Utilizes Industrial Waste Heat to Power Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

200

Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.  

SciTech Connect

In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

September 3, 1999 Characterization of Arsenic Occurrence in US Drinking Water Treatment  

E-Print Network (OSTI)

September 3, 1999 Characterization of Arsenic Occurrence in US Drinking Water Treatment Facility amendments to the US Safe Drinking Water Act (SDWA) mandate revision of current maxi­ mum contaminant levels (MCLs) for various harmful substances in public drinking water supplies. The determination of a revised

202

Nanofiltration/reverse osmosis for treatment of coproduced waters  

SciTech Connect

Current high oil and gas prices have lead to renewed interest in exploration of nonconventional energy sources such as coal bed methane, tar sand, and oil shale. However oil and gas production from these nonconventional sources has lead to the coproduction of large quantities of produced water. While produced water is a waste product from oil and gas exploration it is a very valuable natural resource in the arid Western United States. Thus treated produced water could be a valuable new source of water. Commercially available nanofiltration and low pressure reverse osmosis membranes have been used to treat three produced waters. The results obtained here indicate that the permeate could be put to beneficial uses such as crop and livestock watering. However minimizing membrane fouling will be essential for the development of a practical process. Field Emission Scanning Electron Microscopy imaging may be used to observe membrane fouling.

Mondal, S.; Hsiao, C.L.; Wickramasinghe, S.R. [Colorado State University, Ft Collins, CO (United States)

2008-07-15T23:59:59.000Z

203

Water treatment by reverse osmosis. (Latest citations from the U. S. Patent data base). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning water purification systems and components using reverse osmosis technology. Patents include purification systems and devices for seawater, waste water, and drinking water. Topics also include complete purification systems, valves and distribution components, membranes, supports, storage units, and monitors. Water purification systems using activated charcoal are referenced in a related bibliography. (Contains a minimum of 135 citations and includes a subject term index and title list.)

Not Available

1992-10-01T23:59:59.000Z

204

Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable  

E-Print Network (OSTI)

mechanical methods in this category are lime-soda side stream softening and vapor compression blowdown evaporation. Another approach is chemical treatment to promote scale inhibition and dispersion....

Boffardi, B. P.

205

POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS  

SciTech Connect

New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.

Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland; Margaret L. Laumb

2001-06-01T23:59:59.000Z

206

Statistical estimation of water distribution system pipe break risk  

E-Print Network (OSTI)

The deterioration of pipes in urban water distribution systems is of concern to water utilities throughout the world. This deterioration generally leads to pipe breaks and leaks, which may result in reduction in the water-carrying capacity...

Yamijala, Shridhar

2009-05-15T23:59:59.000Z

207

Derivation of a viscous Boussinesq system for surface water waves  

E-Print Network (OSTI)

Derivation of a viscous Boussinesq system for surface water waves Hervé Le Meur 26 mai 2013 Abstract. In this article, we derive a viscous Boussinesq system for surface water waves from Navier equation from our viscous Boussinesq system. We also extend the system to the 3-D case. Key words: water

Paris-Sud XI, Université de

208

Economies of size in municipal water treatment technologies: Texas lower Rio Grande Valley  

E-Print Network (OSTI)

advancements have improved the economic viability of reverse-osmosis (RO) desalination of brackish-groundwater as a potable water source. Brackish-groundwater may be an alternative water source that provides municipalities an opportunity to hedge against... droughts, political shortfalls, and protection from potential surface-water contamination. This research specifically focuses on investigating economies of size for conventional surface-water treatment and brackish-groundwater desalination by using results...

Boyer, Christopher Neil

2008-10-10T23:59:59.000Z

209

Assessment of an ultrafiltration pre-treatment system for a seawater reverse osmosis plant  

Science Journals Connector (OSTI)

The seawater reverse osmosis system requires extensive pre-treatment in order to ensure reliable performance. The conventional pre-treatment system involves dosing of chemicals, which requires frequent monitoring of raw water quality, and also involves adjusting the dosage. Besides being cumbersome, there is a lot of time lag involved in carrying out these measures. This calls for pre-treatment systems based on physicochemical mechanisms. During the last few years, Ultrafiltration (UF) has emerged as a leading unit operation in order to render raw seawater compatible with reverse osmosis operations. In this context, the Desalination Division of BARC has already installed an operational UF pre-treatment system. In this paper, we examine the role of UF in the overall operations of the seawater reverse osmosis system.

S.A. Tiwari; D. Goswami; S. Prabhakar; P.K. Tewari

2006-01-01T23:59:59.000Z

210

On-Site Wastewater Treatment Systems: Constructed Wetland Media  

E-Print Network (OSTI)

This publication explains the functions, characteristics, choices, configurations and maintenance needs for constructed wetland media in on-site wastewater treatment systems....

Lesikar, Bruce J.; Weaver, Richard; Richter, Amanda; O'Neill, Courtney

2005-02-19T23:59:59.000Z

211

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network (OSTI)

Wastewater Genera ted in Shale Oil Development 9 BattelleControl Technology for Shale Oil Wastewaters 9 11 inWaste Water from Oil Shale Processing" ACS Division of Fuel

Ossio, Edmundo

2012-01-01T23:59:59.000Z

212

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network (OSTI)

29,000 mg/1 nil a Source of sludge: City of Richmond WaterYen assessed the activated sludge process for the treatmentstudies using a digested sludge seed from a municipal

Ossio, Edmundo

2012-01-01T23:59:59.000Z

213

Ensuring the Resiliency of Our Future Water and Energy Systems...  

Energy Savers (EERE)

Ensuring the Resiliency of Our Future Water and Energy Systems Ensuring the Resiliency of Our Future Water and Energy Systems June 18, 2014 - 12:00pm Addthis Infographic by

214

Building America Webinar: Central Multifamily Water Heating Systems...  

Energy Savers (EERE)

Building America Webinar: Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 3:00PM to 4:30PM EST This...

215

Central Multifamily Water Heating Systems | Department of Energy  

Energy Savers (EERE)

Central Multifamily Water Heating Systems Central Multifamily Water Heating Systems January 21, 2015 3:00PM to 4:30PM EST The Building America Program is hosting a no-cost,...

216

Building America Webinar: Central Multifamily Water Heating Systems...  

Energy Savers (EERE)

Building America Webinar: Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 11:00AM to 12:30PM MST...

217

Everything You Wanted to Know About Solar Water Heating Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Everything You Wanted to Know About Solar Water Heating Systems Everything You Wanted to Know About Solar Water Heating Systems October 7, 2014 - 2:39pm Q&A What do you want to...

218

Water Consumption from Freeze Protection Valves for Solar Water Heating Systems  

SciTech Connect

Conference paper regarding research in the use of freeze protection valves for solar domestic water heating systems in cold climates.

Burch, J.; Salasovich, J.

2005-12-01T23:59:59.000Z

219

Managing Uncertainty in Operational Control of Water Distribution Systems  

E-Print Network (OSTI)

Managing Uncertainty in Operational Control of Water Distribution Systems A. Bargiela Department. There are system management decisions concerning the regulatory measures such as water pricing principles, effluent in water distribution systems con- cern reservoir(s) management with associated pump scheduling

Bargiela, Andrzej

220

Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment  

Science Journals Connector (OSTI)

...pellets, while assimilable organic carbon (AOC), dissolved organic carbon, and flow...These organisms removed as much as 60 of AOC from the water during treatment, thus contributing...Dissolved organic carbon (DOC) and AOC. The concentration of assimilable organic...

Frederik Hammes; Nico Boon; Marius Vital; Petra Ross; Aleksandra Magic-Knezev; Marco Dignum

2010-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Assessment of sludge management options in a waste water treatment plant  

E-Print Network (OSTI)

This thesis is part of a larger project which began in response to a request by the Spanish water agengy, Cadagua, for advice on life cycle assessment (LCA) and environmental impacts of Cadagua operated wastewater treatment ...

Lim, Jong hyun, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

222

Water/Wastewater Treatment Plant Field Device Wiring Method Decision Analysis  

E-Print Network (OSTI)

The choice of field device wiring method for water and wastewater treatment plant design is extremely complex and contains many variables. The choice not only affects short-term startup and equipment costs, but also long-term operations...

Dicus, Scott C.

2011-12-16T23:59:59.000Z

223

Onsite Wastewater Treatment Systems: Septic Tank/Soil Absorption Field  

E-Print Network (OSTI)

For septic tank and soil absorption systems to work properly, homeowners must choose the right kind of system for their household size and soil type, and they must maintain them regularly. This publication explains the treatment, design, operation...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

224

Onsite Wastewater Treatment Systems: Homeowner's Guide to Evaluating Service Contracts  

E-Print Network (OSTI)

This guide helps homeowners who are seeking maintenance services for their onsite wastewater treatment systems (such as septic systems). Included are definitions of common terms used in service contracts, types of service contracts available...

Lesikar, Bruce J.; O'Neill, Courtney; Deal, Nancy; Loomis, George; Gustafson, David; Lindbo, David

2008-10-23T23:59:59.000Z

225

Evaluation of physical-chemical and biological treatment of shale oil retort water  

SciTech Connect

Bench scale studies were conducted to evaluate conventional physical-chemical and biological treatment processes for removal of pollutants from retort water produced by in situ shale oil recovery methods. Prior to undertaking these studies, very little information had been reported on treatment of retort water. A treatment process train patterned after that generally used throughout the petroleum refining industry was envisioned for application to retort water. The treatment train would consist of processes for removing suspended matter, ammonia, biodegradable organics, and nonbiodegradable or refractory organics. The treatment processes evaluated include anaerobic digestion and activated sludge for removal of biodegradable organics and other oxidizable substances; activated carbon adsorption for removal of nonbiodegradable organics; steam stripping for ammonia removal; and chemical coagulation, sedimentation and filtration for removal of suspended matter. Preliminary cost estimates are provided.

Mercer, B.W.; Mason, M.J.; Spencer, R.R.; Wong, A.L.; Wakamiya, W.

1982-09-01T23:59:59.000Z

226

Conference Topic: Integrated Water Resources and Coastal Areas Management National Water Information Systems: A Tool to Support Integrated Water Resources  

E-Print Network (OSTI)

Conference Topic: Integrated Water Resources and Coastal Areas Management National Water Information Systems: A Tool to Support Integrated Water Resources Management in the Caribbean Marie-Claire St of Integrated Water Resources Management (IWRM) in the Caribbean and to address the problems

Barthelat, Francois

227

Integrated thermal treatment system sudy: Phase 2, Results  

SciTech Connect

This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

Feizollahi, F.; Quapp, W.J.

1995-08-01T23:59:59.000Z

228

I. INTRODUCTION Previous research in water treatment has been  

E-Print Network (OSTI)

sharp nanosecond wavefront processes [2]. A third ED technique, pulsed arc electrohydraulic discharge-current/moderated high- voltage (few kV), slow microsecond wave front electrical discharge between two submersed electrodes [1,4-6,8,11]. The PAED process uses the creation of pulsed arc discharges within the water which

McMaster University

229

Siting Your Solar Water Heating System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

230

Siting Your Solar Water Heating System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

231

ACCEPTED BY WATER ENVIRONMENT RESEARCH ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT  

E-Print Network (OSTI)

of their high rates of chemical consumption. Additionally, chemical scrubbers are ineffective for the removalACCEPTED BY WATER ENVIRONMENT RESEARCH _______ ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT of biofilters for sequential removal of H2S and VOCs from wastewater treatment plant waste air. The biofilter

232

Design package for solar domestic hot water system  

SciTech Connect

Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

None

1980-09-01T23:59:59.000Z

233

Microbial fuel cell treatment of ethanol fermentation process water  

DOE Patents (OSTI)

The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

Borole, Abhijeet P. (Knoxville, TN)

2012-06-05T23:59:59.000Z

234

Analysis and removal of assimilable organic carbon (AOC) from treated drinking water using a biological activated carbon filter system  

Science Journals Connector (OSTI)

Abstract This study is focused on reducing the concentration of assimilable organic carbon (AOC) in treated drinking water. Experiments were conducted to evaluate the efficiency of AOC removal by biological activated carbon filters (BACF) in a pilot-scale system. The results show that BACF reduces the total concentration of AOC. The concentration of AOC primarily indicates microorganism growth in a water supply network, and the amount of AOC in water is significantly reduced after BACF treatment. The predicted and measured values of AOC in output water treated by the BACF system show linear relationships, and their correlation coefficients are high. An AOC empirical equation was established by determining the relationship between water quality parameters such as total organic carbon, dissolved organic carbon, UV254, ammonia nitrogen, and total phosphorous. These findings may be relevant to conventional water treatment plants or to water distribution systems to provide treated drinking water with a high level of biological stability.

Jie-Chung Lou; Chih-Yuan Yang; Che-Jung Chang; Wei-Hsiang Chen; Wei-Bin Tseng; Jia-Yun Han

2014-01-01T23:59:59.000Z

235

Onsite Wastewater Treatment Systems: Operation and Maintenance  

E-Print Network (OSTI)

To prevent health hazards to people and pollution in the environment, septic tank systems must be operated and maintained properly. This publication explains how septic systems work and how to keep them running properly....

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

236

Wastewater and water treatment: Anion exchange. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning the theory and methods of anion exchange in the treatment of potable water and wastewaters. Citations discuss anion exchange resins and membranes, desalination techniques, and process evaluations. Methods for anion analysis using chromatographic techniques are also considered. (Contains a minimum of 74 citations and includes a subject term index and title list.)

Not Available

1993-09-01T23:59:59.000Z

237

Wastewater and water treatment: Anion exchange. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning the theory and methods of anion exchange in the treatment of potable water and wastewaters. Citations discuss anion exchange resins and membranes, desalination techniques, and process evaluations. Methods for anion analysis using chromatographic techniques are also considered. (Contains a minimum of 74 citations and includes a subject term index and title list.)

Not Available

1994-01-01T23:59:59.000Z

238

No Chemical, Zero Bleed Cooling Tower Water Treatment Process  

E-Print Network (OSTI)

solubility and begin the scale inhibition process. This also descales existing scale build-up in the system. Ozone is manufactured from ambient air and injected into the bypass system through a venturi type injector. This kills algae, slime and bacteria...

Coke, A. L.

239

Thermal performance of an ammonia-water refrigeration system  

SciTech Connect

The conservation and efficient use of energy has led to alternate methods for air conditioning in buildings. Presently, two types of absorption air conditioning systems are widely used: the lithium-bromide-water system and the ammonia-water system. The first type is typically a water fired absorption chiller while the second one is a gas fired chiller. Some of the lithium-bromide-water systems use as a source of heat a stream of hot water supplied from solar collectors at a temperature level of the order of 95-100 {degrees}C. The purpose of this paper is to explore the possibilities to use solar energy to operate an ammonia-water system and to predict its thermodynamic performance. The results indicate that it is feasible to use solar energy to operate an ammonia-water absorption-refrigeration system.

Manrique, J.A. (Inst. Tecnologico y de Estudios Superiores de Monterrey, Dept. of Thermal Engineering, Monterrey, NL (MX))

1991-11-01T23:59:59.000Z

240

Building America Webinar: Central Multifamily Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is from the Building America research team BA-PIRC webinar on September 30, 2011 providing informationprovide information about how to achieve energy savings from solar water heating, electric dedicated heat pump water heating, and gas tankless systems.

242

A DC Brushless PM Motor Driven Phptovoltaic Water Pumping System  

Science Journals Connector (OSTI)

Along with the worldwide more attention to environment and rapid development of photovoltaic industry, the PV water pumping system has rapidly developed, the economic ... estimated, up to now the operating PV water

Yu Shijie; Xie Lei; He Huiruo; Zhang Hualin…

2009-01-01T23:59:59.000Z

243

300 Area waste acid treatment system closure plan  

SciTech Connect

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

LUKE, S.N.

1999-05-17T23:59:59.000Z

244

Use of Produced Water in Recirculating Cooling Systems at Power Generating Facilities  

SciTech Connect

The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. This deliverable describes possible test configurations for produced water demonstration projects at SJGS. The ability to host demonstration projects would enable the testing and advancement of promising produced water treatment technologies. Testing is described for two scenarios: Scenario 1--PNM builds a produced water treatment system at SJGS and incorporates planned and future demonstration projects into the design of the system. Scenario 2--PNM forestalls or decides not to install a produced water treatment system and would either conduct limited testing at SJGS (produced water would have to be delivered by tanker trucked) or at a salt water disposal facility (SWD). Each scenario would accommodate demonstration projects differently and these differences are discussed in this deliverable. PNM will host a demonstration test of water-conserving cooling technology--Wet Surface Air Cooling (WSAC) using cooling tower blowdown from the existing SJGS Unit 3 tower--during the summer months of 2005. If successful, there may be follow-on testing using produced water. WSAC is discussed in this deliverable. Recall that Deliverable 4, Emerging Technology Testing, describes the pilot testing conducted at a salt water disposal facility (SWD) by the CeraMem Corporation. This filtration technology could be a candidate for future demonstration testing and is also discussed in this deliverable.

Kent Zammit; Michael N. DiFilippo

2005-07-01T23:59:59.000Z

245

Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system  

Science Journals Connector (OSTI)

This paper investigated the variation of assimilable organic carbon (AOC) concentrations in water from several typical water treatment plants and distribution systems in a northern city of China. It is concluded from this study that: (1) The AOC in most of the product water of the studied water treatment plants and the water from the associated distribution systems could not meet the biostability criteria of 50–100 ?g/L. (2) Only 4% of the measured AOC concentrations were less than 100 ?g/L. However, about half of the measured AOC values were less than 200 ?g/L. (3) Better source water quality resulted in lower AOC concentrations. (4) The variation of AOC concentrations in distribution systems was affected by chlorine oxidation and bacterial activity: the former resulted in an increase of AOC value while the latter led to a reduction in AOC. (5) The variation of AOC concentration followed different patterns in different distribution systems or different seasons due to their respective operational characteristics. (6) Less than 30% of AOC could be removed by a conventional treatment process, whereas 30–60% with a maximum of 50–60% could be removed by granular activated carbon (GAC). (7) The observation via scanning electron microscope (SEM) on distribution pipe tubercle samples demonstrated that the pipe inner wall was not smooth and bacteria multiplied in the crevice as well as in the interior wall of distribution pipes.

W Liu; H Wu; Z Wang; S.L Ong; J.Y Hu; W.J Ng

2002-01-01T23:59:59.000Z

246

Reduction of Water Use in Wet FGD Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduction of WateR use in Wet fGd Reduction of WateR use in Wet fGd systems Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

247

Desalination and Water Treatment www.deswater.com  

E-Print Network (OSTI)

-driven desalination with reverse osmosis: the state of the art Andrea Ghermandi*, Rami Messalem Ben-Gurion University; accepted in revised form 17 June 2009 abstract Solar-driven reverse osmosis desalination can potentially experimental and design systems worldwide. Our results show that photovoltaic-powered reverse osmosis is techni

Messalem, Rami

248

On-Site Wastewater Treatment Systems: Evapotranspiration Bed  

E-Print Network (OSTI)

Two-compartment septic tank Loam soil Crushed stone Evapotranspiration bed Wick On-site wastewater treatment systems Evapotranspiration bed Bruce Lesikar Extension Agricultural Engineering Specialist The Texas A&M University System ET systems..., synthetic or concrete liner. A liner is required if the surrounding soil is very permeable, such as in sandy gravel or karst limestone. Unlined systems can be used in highly impermeable soils such as heavy clays. In unlined systems, wastewater is disposed...

Lesikar, Bruce J.

1999-09-01T23:59:59.000Z

249

Outdoor Laboratory Water System Clemson, SC  

E-Print Network (OSTI)

show about it, and other things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control have strict standards for all the results of our water-quality analyses. Every regulated contaminant that was detected in the water, even

Duchowski, Andrew T.

250

Outdoor Laboratory Water System Clemson, SC  

E-Print Network (OSTI)

show about it, and other things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control have strict standards for all of our water-quality analyses. Every regulated contaminant that was detected in the water, even

Duchowski, Andrew T.

251

Idaho waste treatment facility startup testing suspended to evaluate system  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste treatment facility startup testing suspended to waste treatment facility startup testing suspended to evaluate system response Idaho waste treatment facility startup testing suspended to evaluate system response June 20, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant heat-up was suspended to allow detailed evaluation of a system pressure event observed during testing on Saturday. Facility startup testing has been ongoing for the past month, evaluating system and component operation and response during operating conditions. No radioactive or hazardous waste has been introduced into the facility,

252

300 Area waste acid treatment system closure plan. Revision 1  

SciTech Connect

This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

NONE

1996-03-01T23:59:59.000Z

253

On-Site Wastewater Treatment Systems: Selecting and Permitting  

E-Print Network (OSTI)

This publication explains factors to consider when choosing an on-site wastewater treatment system and lists the nine steps required to obtain a permit for one. It includes addresses and phone numbers of Texas Natural Resource Conservation...

Lesikar, Bruce J.

2005-04-30T23:59:59.000Z

254

Treatment of sea water using electrodialysis: Current efficiency evaluation  

Science Journals Connector (OSTI)

In this paper, desalination of seawater using a laboratory scale electrodialysis (ED) cell was investigated. At steady state operation of ED, the outlet concentration of dilute stream was measured at different voltages (2?6 V), flow rates (0.1?5.0 mL/s) and feed concentrations (5000?30,000 ppm). The electrical resistance of sea water solution in the dilute compartment was initially calculated using basic electrochemistry rules and average concentration of feed and dilute streams. Then, current intensity in each run was evaluated using Ohm's law. Finally, current efficiency (CE) which is an important parameter in determining the optimum range of applicability of an ED cell was calculated. It was found out that, at flow rates larger than 1.5 mL/s, higher feed concentrations lead to larger values of CE. However, exactly opposite behavior was observed at lower flow rates. Increasing the feed flow rate increases CE to a maximum value then decreases it down to zero for all cell voltages and feed concentrations. In the case of higher feed concentrations, maximum values of CE are obtained at higher flow rates. As expected, in almost all experiments, CE increases by intensifying cell voltage. CE values of up to 48 indicate effective ion transfer across the ion exchange membranes in spite of low separation performance of the ED cell.

Mohtada Sadrzadeh; Toraj Mohammadi

2009-01-01T23:59:59.000Z

255

Nanoparticle Doped Water -NeowaterTM The effects of the rf-treatments of water and aqueous solutions can be amplified and stabilized by  

E-Print Network (OSTI)

Nanoparticle Doped Water - NeowaterTM The effects of the rf-treatments of water and aqueous solutions can be amplified and stabilized by doping the water with low density of insoluble nanoparticles [1 is separated. In Fig A. we compare between the source powder and the nanoparticles at the clear doped water

Jacob, Eshel Ben

256

Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities  

SciTech Connect

Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

C. McGowin; M. DiFilippo; L. Weintraub

2006-06-30T23:59:59.000Z

257

Activated charcoal filters: Water treatment, pollution control, and industrial applications. (Latest citations from the Patent Bibliographic database with exemplary claims. ) Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming pool filtration, tobacco smoke filters, kitchen ventilators, medical filtration treatment, and odor absorbing materials. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

258

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Star Hot Water Systems for High Performance Homes Star Hot Water Systems for High Performance Homes 1 | Building America Program www.buildingamerica.gov Buildings Technologies Program Date: September 30, 2011 ENERGY STAR ® Hot Water Systems for High Performance Homes Welcome to the Webinar! We will start at 11:00 AM Eastern. There is no call in number. The audio will be sent through your computer speakers. All questions will be submitted via typing. Video of presenters Energy Star Hot Water Systems for High Performance Homes 2 | Building America Program www.buildingamerica.gov Energy Star Hot Water Systems for High Performance Homes 3 | Building America Program www.buildingamerica.gov Building America Program: Introduction Building Technologies Program Energy Star Hot Water Systems for High Performance Homes

259

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

260

Quality Modeling of Water Distribution Systems using Sensitivity Equations  

E-Print Network (OSTI)

Quality Modeling of Water Distribution Systems using Sensitivity Equations P. Fabrie1 ; G. Gancel2 and the associated sensitivity equa- tions are solved for Water Distribution Systems (WDS). A new solution algorithm presented in this study permits global sensitivity analysis of the system to be performed and its efficiency

Boyer, Edmond

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plant experience with temporary reverse osmosis makeup water systems  

SciTech Connect

Pacific Gas and Electric (PG and E) Company's Diablo Canyon Power Plant (DCPP), which is located on California's central coast, has access to three sources of raw water: creek water, well water, and seawater. Creek and well water are DCPP's primary sources of raw water; however, because their supply is limited, these sources are supplemented with seawater. The purpose of this paper is to discuss the temporary, rental, reverse osmosis systems used by PG and E to process DCPP's raw water into water suitable for plant makeup. This paper addresses the following issues: the selection of reverse osmosis over alternative water processing technologies; the decision to use vendor-operated temporary, rental, reverse osmosis equipment versus permanent PG and E-owned and -operated equipment; the performance of DCPP's rental reverse osmosis systems; and, the lessons learned from DCPP's reverse osmosis system rental experience that might be useful to other plants considering renting similar equipment.

Polidoroff, C.

1986-01-01T23:59:59.000Z

262

Review of the integrated thermal and nonthermal treatment system studies  

SciTech Connect

This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

NONE

1996-08-01T23:59:59.000Z

263

How environmentally significant is water consumption during wastewater treatment?: Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations  

Science Journals Connector (OSTI)

Abstract Environmental impact assessment models are readily available for the assessment of pollution-related impacts in life cycle assessment (LCA). These models have led to an increased focus on water pollution issues resulting in numerous LCA studies. Recently, there have been significant developments in methods assessing freshwater use. These improvements widen the scope for the assessment of wastewater treatment (WWT) technologies, now allowing us to apprehend, for the first time, a combination of operational (energy and chemicals use), qualitative (environmental pollution) and quantitative (water deprivation) issues in wastewater treatment. This enables us to address the following question: Is water consumption during wastewater treatment environmentally significant compared to other impacts? To answer this question, a standard life cycle inventory (LCI) was performed with a focus on consumptive water uses at plant level, where several WWT technologies were operating, in different climatic conditions. The impacts of water consumption were assessed by integrating regionalized characterization factors for water deprivation within an existing life cycle impact assessment (LCIA) method. Results at the midpoint level, show that water deprivation impacts are highly variable in relation to the chosen WWT technology (water volume used) and of WWTP location (local water scarcity). At the endpoint level, water deprivation impacts on ecosystem quality and on the resource damage categories are significant for WWT technologies with great water uses in water-scarce areas. Therefore, our study shows the consideration of water consumption-related impacts is essential and underlines the need for a greater understanding of the water consumption impacts caused by WWT systems. This knowledge will help water managers better mitigate local water deprivation impacts, especially in selecting WWT technologies suitable for arid and semi-arid areas.

Eva Risch; Philippe Loubet; Montserrat Núñez; Philippe Roux

2014-01-01T23:59:59.000Z

264

2005 Borchardt Conference: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI  

E-Print Network (OSTI)

-25, Ann Arbor, MI Conference Proceedings 1 Membrane Biofilm Reactors for Water and Wastewater Treatment and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings 2 (sparging) to replenish oxygen: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings

Nerenberg, Robert

265

Atmospheric plasma treatment to improve durability of a water and oil repellent finishing for acrylic fabrics  

Science Journals Connector (OSTI)

In this study, the influence of an atmospheric plasma treatment on the durability of a commercial water and oil repellent finish was tested. Acrylic fabrics were processed with a RF atmospheric pressure plasma generator and afterwards a fluorocarbon finish was applied through a traditional pad-dry-cure method. Two gas mixtures were tested (helium and helium/oxygen) with different plasma treatment times. The ageing of the finishing was simulated through repeated accelerated laundry cycles. The water and oil repellencies were measured through standard test methods. While the initial water and oil repellency did not change, the plasma treatment improved the durability of the finish after artificial ageing. Scanning electron microscopy analyses were carried out to highlight morphological changes.

Alberto Ceria; Peter J. Hauser

2010-01-01T23:59:59.000Z

266

Protected Water Area System (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protected Water Area System (Iowa) Protected Water Area System (Iowa) Protected Water Area System (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources The Natural Resource Commission maintains a state plan for the design and

267

Towards a Design of a Complete Solar Water Splitting System  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Water Splitting System 1 Feb 2013 BISfuel : A team of Bisfuel researchers led by Devens Gust, Ana Moore and Tom Moore has designed and characterized an artificial...

268

Sensor Networks for Monitoring and Control of Water Distribution Systems  

E-Print Network (OSTI)

Water distribution systems present a significant challenge for structural monitoring. They comprise a complex network of pipelines buried underground that are relatively inaccessible. Maintaining the integrity of these ...

Whittle, Andrew

269

Building America Webinar: Central Multifamily Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

270

Effect of heat treatment on stress corrosion of Alloy 718 in pressurized-water-reactor primary water  

SciTech Connect

Stress corrosion cracking (SCC) tests were conducted in 360{degrees}C pressurized-water-reactor (PWR) primary water using alloy 718 in various heat treatment conditions. Alloy X-750 in the HTH condition and an experimental heat of an alloy 718 variation, Hicoroy, were also tested for comparison. Fatigue-precracked, 12.5-mm-thick compact fracture specimens were subjected to a constant extension rate of 1.3 x 10{sup {minus}9} m/s. Crack growth rate was measured during testing using a reversing DC potential drop technique. Results in the form of SCC crack growth rate versus applied stress intensity demonstrate that the SCC resistance of alloy 718 in the PWR primary-side environment can be improved by changes in heat treatment.

Miglin, M.T.; Monter, J.V.; Wade, C.S. [Babcock & Wilcox Co., Alliance, OH (United States); Nelson, J.L. [Electric Power Research Institute, Palo Alto, CA (United States)

1992-12-31T23:59:59.000Z

271

The Relationship between Water and Energy: Optimizing Water and Energy  

E-Print Network (OSTI)

understanding that the highest value opportunities for water conservation usually exist where there is the strongest interaction of water and energy. Steam management systems, process cooling, high quality water production and waste water treatment represent...

Finley, T.; Fennessey, K.; Light, R.

2007-01-01T23:59:59.000Z

272

Characterization and stabilization of arsenic in water treatment residuals  

E-Print Network (OSTI)

O2) + 4H2O #0;?#0;? 3CaO? 2SiO2? 3H2O + 3Ca(OH)2 (2.2) It takes around 1 year to complete 95 to 98% of cement hydration. Calcium silicate hydrate (C-S-H) and portlandite (Ca(OH)2) are the two main products of cement hydration. C...). FIGURE 2.2 pE/pH diagram for the As-H2O system at 25? C Source: Welch et al, 1988 8 Figure 2.2 is useful to understand the many complicated reactions related to arsenic, but it does not consider several other important factors. For example...

Wee, Hun Young

2004-11-15T23:59:59.000Z

273

Optimize water-treatment economics at your powerplant  

SciTech Connect

This article describes how power producers can minimize overall long-term cost by improving system chemistry. Power producers are well aware of the economic penalties they incur when a component failure causes a plant shutdown. One of the heaviest financial burdens is attributed to steam-cycle corrosion, which is said to account for about half of the forced outages experienced in the US electric-utility sector and about $3-billion annually in operating and maintenance costs. Attractive financial returns are possible by improving cycle chemistry, because of the high benefit-to-cost ratios obtainable--in some cases as high as 1000:1. Upgrading chemistry monitoring with a continuous sodium analyzer at a cost of a few thousand dollars is a classic example. Keeping track of a steady increase in that feedwater contaminant, with its potential for turbine and superheater caustic corrosion if unchecked, can eliminate millions of dollars in maintenance costs.

Strauss, S.D.

1995-02-01T23:59:59.000Z

274

The mutagenic potential of soil and runoff water from land treatment of three hazardous industrial wastes  

E-Print Network (OSTI)

THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAYOL Submitted to the Graduate College of Te xa s ASM Un i ver s i ty in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1987 Major Subject: Soil Science THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAVDL Approved. s to style and content by: Kirk W...

Davol, Phebe

2012-06-07T23:59:59.000Z

275

Application of photoelectrochemical–electrodialysis treatment for the recovery and reuse of water from tannery effluents  

Science Journals Connector (OSTI)

The conventional tannery effluents treatment is not established in order to obtain water in such a quality, that it could be reused in the same process. This study was carried out in order to evaluate the electrochemical treatment of tannery effluents. The photoelectrochemical oxidation and the electrodialysis were applied in these effluents. The obtained results indicated a remarkable removal efficiency of more than 98.5% for all ion species present in effluents. It is noticeable that the effluent treated with combined PEO–ED techniques presents very similar values for the same parameter as the ones presented by normal feed water.

M.A.S. Rodrigues; F.D.R. Amado; J.L.N. Xavier; K.F. Streit; A.M. Bernardes; J.Z. Ferreira

2008-01-01T23:59:59.000Z

276

Treatment and remediation methods for arsenic removal from the ground water  

Science Journals Connector (OSTI)

Globally, ground water is contaminating by arsenic continously, which needs economic treatment and remediation technologies. Physical, chemical and biological treatment methods have been developed, that include different kinds of filters, bucket type units, fill and draw, kalshi etc. The remediation methods discussed are air oxidation, reactive barriers, utilisation of deeper aquifers and sanitary protected dug wells. To the best of our knowledge no technology is available capable to remove arsenic from water at efficient, economic and commercial levels. Therefore, fast, efficient and economic arsenic removal technologies are required. Attempts have been made to suggest the future technologies of arsenic removal.

Imran Ali; Tabrez A. Khan; Iqbal Hussain

2011-01-01T23:59:59.000Z

277

Impacts of the Reduction of Nutrient Levels on Bacterial Water Quality in Distribution Systems  

Science Journals Connector (OSTI)

...increase when assimilable organic carbon (AOC) levels were lower than 10 mug/liter...bacteria in chlorinated water may be limited by AOC levels of less than 50 to 100 mug/liter...levels of treatment. For systems with high AOC or BDOC levels (e.g., an AOC level...

Christian J. Volk; Mark W. LeChevallier

1999-11-01T23:59:59.000Z

278

Design of Hard Water Stable Emulsifier Systems for Petroleum-  

E-Print Network (OSTI)

Design of Hard Water Stable Emulsifier Systems for Petroleum- and Bio-based Semi for petroleum and bio-based MWFs that improve fluid lifetime by providing emulsion stability under hard water. The newly developed petroleum and bio-based formulations with improved hard water stability are competitive

Clarens, Andres

279

DECISION SUPPORT SYSTEM FOR MANAGEMENT OF WATER SOURCES  

E-Print Network (OSTI)

DECISION SUPPORT SYSTEM FOR MANAGEMENT OF WATER SOURCES Nejc Trdin1, 2 , Marko Bohanec1 , Mitja.bohanec}@ijs.si, mitja.janza@geo-zs.si ABSTRACT Meeting the quality criteria for drinking water is one of the areas which of data collected while monitoring water adequacy, an expert carries a large burden and also his decisions

Bohanec, Marko

280

Energy Audit of a Water System Network  

Science Journals Connector (OSTI)

The energy audit of water networks has to be focused... i - Operational schedule of pumping stations and available storage to atte...

Edmundo Koelle

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A Changing Framework for Urban Water Systems  

Science Journals Connector (OSTI)

? Department of Civil & Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States ... Although many challenges remain with regard to environmental impacts, desalination is now considered a viable option for urban water supply, particularly in situations where either climate change or short-term events (e.g., catastrophic floods) compromise water quantity and quality. ... Stormwater harvesting couples flood control and urban runoff management with urban water supply by capturing runoff and recharging it to drinking water aquifers or by reusing stormwater for nonpotable uses. ...

Janet G. Hering; T. David Waite; Richard G. Luthy; Jörg E. Drewes; David L. Sedlak

2013-05-08T23:59:59.000Z

282

Emergency Water Treatment with Bleach in the United States: The Need to Revise EPA Recommendations  

Science Journals Connector (OSTI)

(2) However, research has dispelled this myth, showing instead that populations have increased waterborne illness risk only in those emergencies that cause flooding or displacement,(3, 4) or when infrastructure systems are damaged and do not provide safe, chlorinated water. ... Colorado ... It should be noted that surface water supplies had by far the most total coliforms contamination, and thus surface water supplies (and in particular flood waters) should only be used if there are no other options for water supply by the emergency-affected population. ...

Daniele Lantagne; Bobbie Person; Natalie Smith; Ally Mayer; Kelsey Preston; Elizabeth Blanton; Kristen Jellison

2014-03-31T23:59:59.000Z

283

Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal  

Science Journals Connector (OSTI)

A pilot plant had been built to test the behaviour of ultrafiltration (UF), reverse osmosis (RO), and electrodialysis reversal (EDR) in order to improve the quality of the water supplied to Barcelona metropolitan area from the Llobregat River. This paper presents results from two studies to reduce natural radioactivity. The results from the pilot plant with four different scenarios were used to design the full-scale treatment plant built (SJD WTP). The samples taken at different steps of the treatment were analysed to determine gross alpha, gross beta and uranium activity. The results obtained revealed a significant improvement in the radiological water quality provided by both membrane techniques (RO and EDR showed removal rates higher than 60%). However, UF did not show any significant removal capacity for gross alpha, gross beta or uranium activities. RO was better at reducing the radiological parameters studied and this treatment was selected and applied at the full scale treatment plant. The RO treatment used at the SJD WTP reduced the concentration of both gross alpha and gross beta activities and also produced water of high quality with an average removal of 95% for gross alpha activity and almost 93% for gross beta activity at the treatment plant.

M. Montaña; A. Camacho; I. Serrano; R. Devesa; L. Matia; I. Vallés

2013-01-01T23:59:59.000Z

284

Clemson University Water System Clemson, SC  

E-Print Network (OSTI)

. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental the results of our water-quality analyses. Every regulated contaminant that was detected in the water, even of such contamination, footnotes explaining our findings, and a key to units of measurement. Definitions of MCL and MCLG

Duchowski, Andrew T.

285

Fant's Grove Water System Clemson, SC  

E-Print Network (OSTI)

.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control have strict the results of our water-quality analyses. Every regulated contaminant that was detected in the water, even of such contamination, footnotes explaining our findings, and a key to units of measurement. Definitions of MCL and MCLG

Duchowski, Andrew T.

286

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

SciTech Connect

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z

287

Onsite Wastewater Treatment Systems: Responding to Power Outages and Floods  

E-Print Network (OSTI)

People and the environment can be harmed if a home's onsite wastewater treatment system does not work properly after a flood or power outage. This publication explains the steps to take after such an event to get the system back into service. 4 pp...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-10-23T23:59:59.000Z

288

Improving water and energy metabolism efficiency in urban water supply system through pressure stabilization by optimal operation on water tanks  

Science Journals Connector (OSTI)

Abstract Water supply consumes 2–3% of the worldwide energy. Water distribution system, which accounts for 70% electricity consumption of water supply, is a key link of urban water and energy metabolism. The operation of the secondary water supply system (SWSS) has great influence on the pressure stability and associated energy consumption as well as water loss of urban water distribution. This research developed an approach based on the hydraulic solver EPANET and genetic algorithm (GA) to investigate the impacts of two different operation strategies, user demand regulation (UDR) and tank level regulation (TLR) of SWSS, on pressure stability and energy efficiency. The results showed that the strategy of TLR could reduce the pressure fluctuations and increase the minimal pressure of the distribution network under the same supply–demand condition. Reduction of the pressure fluctuations is beneficial to the reliability and leakage control of pipe networks. Increase of the minimal pressure indicates that less energy is lost during the distribution. Therefore, the TLR strategy of SWSS can support to initiatively lower the water pressure of the pumps at the water plant outlet, thus improves the water and energy metabolism efficiency in urban water supply system.

Qiang Xu; Qiuwen Chen; Siliang Qi; Desuo Cai

2014-01-01T23:59:59.000Z

289

Homeland Security Challenges Facing Small Water Systems in Texas  

E-Print Network (OSTI)

with small water systems to develop volun- tary assessments of the homeland security threats that they face. EPA provides assistance to small systems through education work- shops and seminars, reports and guidelines, and tutorials on CD. In 2005 EPA...

Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

2007-05-31T23:59:59.000Z

290

Improving Heating System Operations Using Water Re-Circulation  

E-Print Network (OSTI)

In order to solve the imbalance problem of a heating system, brought about by consumer demand and regulation, and save the electricity energy consumed by a circulation pump, a water mixing and pressure difference control heating system is proposed...

Li, F.; Han, J.

2006-01-01T23:59:59.000Z

291

Advanced Feed Water and Cooling Water Treatment at Combined Cycle Power Plant  

Science Journals Connector (OSTI)

Tokyo Gas Yokosuka Power Station is an IPP combined cycle power plant supplied by Fuji Electric Systems...

Ryo Takeishi; Kunihiko Hamada; Ichiro Myogan…

2007-01-01T23:59:59.000Z

292

Minimizing Energy Consumption in a Water Distribution System: A Systems Modeling Approach  

E-Print Network (OSTI)

In a water distribution system from groundwater supply, the bulk of energy consumption is expended at pump stations. These pumps pressurize the water and transport it from the aquifer to the distribution system and to elevated storage tanks. Each...

Johnston, John

2011-08-08T23:59:59.000Z

293

Treatment of produced water by simultaneous removal of heavy metals and dissolved polycyclic aromatic hydrocarbons in a photoelectrochemical cell.  

E-Print Network (OSTI)

??Early produced water treatment technologies were developed before carbon dioxide emissions and hazardous waste discharge were recognised as operational priority. These technologies are deficient in… (more)

Igunnu, Ebenezer Temitope

2014-01-01T23:59:59.000Z

294

Determining the Viability of a Hybrid Experiential and Distance Learning Educational Model for Water Treatment Plant Operators in Kentucky.  

E-Print Network (OSTI)

?? Drinking water and wastewater industries are facing a nationwide workforce shortfall of qualified treatment plant operators due to factors including the en masse retirement… (more)

Fattic, Jana R.

2011-01-01T23:59:59.000Z

295

Evaporative system for water and beverage refrigeration in hot countries  

E-Print Network (OSTI)

Evaporative system for water and beverage refrigeration in hot countries A Saleh1 and MA Al-Nimr2 1 Abstract: The present study proposes an evaporative refrigerating system used to keep water or other are found to be consistent with the available literature data. Keywords: evaporative refrigeration, heat

296

Water Supply Planning Using an Expert Geographic Information System  

E-Print Network (OSTI)

An expert geographic information system (expert GIS) for long-term regional water supply planning has been developed. This system has been evaluated through a case study examining a l9-county study region in South Texas with several water supply...

McKinney, Daene C.; Burgin, John F.; Maidment, David R.

297

Process modeling for the Integrated Thermal Treatment System (ITTS) study  

SciTech Connect

This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

1995-09-01T23:59:59.000Z

298

Removing Radium-226 Contamination From Ion Exchange Resins Used in Drinking Water Treatment  

E-Print Network (OSTI)

Removing Radium-226 Contamination From Ion Exchange Resins Used in Drinking Water Treatment P r o b of groundwater containing high levels of radium-226 activity (Objective 1) were regenerated with prescribed brine that the concentration of salt in the brine cleaning solution was the most influential factor in the resin regeneration

299

The use of reverse osmosis technology for water treatment in power engineering  

Science Journals Connector (OSTI)

The results of operation of DVS-M/150 installations for a total output of 150 m3/h (ZAO NPK Mediana-Fil’tr) at the Water Treatment Department of the Novocherkassk Thermal Power Plant (NchGRES) are presented, and ...

A. N. Samodurov; S. E. Lysenko; S. L. Gromov; A. A. Panteleev…

2006-06-01T23:59:59.000Z

300

Treatment of Methyl tert-Butyl Ether Contaminated Water Using a Dense  

E-Print Network (OSTI)

discharge of organic compounds require that new, innovative tech- nologies and methods of remediation dioxide, making the DMP reactor a promising tool in the future remediation of water. Chemical and physical is transformed into a more toxic material or a substance that is more difficult to remediate, the treatment

Dandy, David

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solar Water Heating System Maintenance and Repair | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating System Maintenance and Repair Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Solar energy systems require periodic inspections and routine maintenance to keep them operating efficiently. Also, from time to time, components may need repair or replacement. You should also take steps to prevent scaling, corrosion, and freezing. You might be able to handle some of the inspections and maintenance tasks on your own, but others may require a qualified technician. Ask for a cost estimate in writing before having any work done. For some systems, it may

302

Building Codes and Regulations for Solar Water Heating Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

303

Building Codes and Regulations for Solar Water Heating Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

304

Salt and Light Water Purification System.  

E-Print Network (OSTI)

??The need for a proposed solution to help mitigate the world’s water crisis is presented. This need is not a new development in the 21st… (more)

Ewing, Emile

2012-01-01T23:59:59.000Z

305

Small solar (thermal) water-pumping system  

SciTech Connect

A small solar (thermal) water pump phototype was tested. The pump works on an organic Rankine cycle using refrigerant R113. The design of the pump is described. Detailed temperature and pressure measurements of the working fluid for different operating conditions are performed. The behaviour of the cycle is analysed to get a clear picture of the thermodynamic process. Power-characteristic curves are obtained by a systematic variation of water temperature, pumping head and heat input. 10 refs., 13 figs., 2 tabs.

Spindler, K.; Hahne, E. [Universitaet Stuttgart (Germany)] [Universitaet Stuttgart (Germany); Chandwalker, K. [Stiletto Engineers, Hyderabad (India)] [Stiletto Engineers, Hyderabad (India)

1996-07-01T23:59:59.000Z

306

Integrated thermal treatment system study: Phase 1 results. Volume 1  

SciTech Connect

An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked.

Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

1994-07-01T23:59:59.000Z

307

A Demonstration System for Capturing Geothermal Energy from Mine Waters  

Open Energy Info (EERE)

System for Capturing Geothermal Energy from Mine Waters System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description Butte, Montana, like many other mining towns that developed because of either hard-rock minerals or coal, is underlain by now-inactive water-filled mines. In Butte's case, over 10,000 miles of underground workings have been documented, but as in many other mining communities these waters are regarded as more of a liability than asset. Mine waters offer several advantages:

308

Clemson University Water System System No, SC3910006  

E-Print Network (OSTI)

, and other things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control have strict standards for all drinking water contaminant that was detected in the water, even in the most minute traces, is listed here. The table contains

Duchowski, Andrew T.

309

Fant's Grove Water System System No, SC390112  

E-Print Network (OSTI)

, and other things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control have strict standards for all drinking water contaminant that was detected in the water, even in the most minute traces, is listed here. The table contains

Duchowski, Andrew T.

310

Clemson University Water System System No, SC3910006  

E-Print Network (OSTI)

things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control (DHEC) have strict standards for all drinking water contaminant that was detected in the water, even the most minute trace, is listed here. The table contains

Duchowski, Andrew T.

311

SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS  

SciTech Connect

We propose a process that uses sulfur dioxide from coal combustion as a raw material to synthesize polymeric ferric sulfate (PFS), a water treatment agent. The process uses sodium chlorate as an oxidant and ferrous sulfate as an absorbent. The major chemical mechanisms in this reaction system include oxidation, hydrolysis, and polymerization. Oxidation determines sulfur conversion efficiency while hydrolysis and polymerization control the quality of product. Many factors, including SO{sub 2} inlet concentration, flow rate of simulated flue gas, reaction temperature, addition rate of oxidant and stirring rate, may affect the efficiencies of SO{sub 2} removal. Currently, the effects of SO{sub 2} inlet concentration, the flow rate of simulated flue gas and addition rate of flue gas on removal efficiencies of SO{sub 2}, are being investigated. Experiments shown in this report have demonstrated that the conversion efficiencies of sulfur dioxide with ferrous sulfate as an absorbent are in the range of 60-80% under the adopted process conditions. However, the conversion efficiency of sulfur dioxide may be improved by optimizing reaction conditions to be investigated. Partial quality indices of the synthesized products, including Fe{sup 2+} concentration and total iron concentration, have been evaluated.

Robert C. Brown; Maohong Fan

2001-12-01T23:59:59.000Z

312

Summary of comparative results integrated nonthermal treatment and integrated thermal treatment systems studies  

SciTech Connect

In July 1994, the Idaho National Engineering Laboratory (INEL), under a contract from U.S. Department of Energy`s (DOE) Environment Management Office of Science and Technology (OST, EM-50) published a report entitled {open_quotes}Integrated Thermal Treatment System Study - Phase 1 Results{close_quotes} (EGG-MS-11211). This report was the culmination of over a year of analysis involving scientists and engineers within the DOE complex and from private industry. The purpose of that study was {open_quotes}to conduct a systematic engineering evaluation of a variety of mixed low level waste (MLLW) treatment system alternatives.{close_quotes} The study also {open_quotes}identified the research and development, demonstrations, and testing and evaluation needed to assure unit operability in the most promising alternative system.{close_quotes} This study evaluated ten primary thermal treatment technologies, organized into complete {open_quotes}cradle-to-grave{close_quotes} systems (including complete engineering flow sheets), to treat DOE MLLW and calculated mass balances and 20-year total life cycle costs (TLCC) for all systems. The waste input used was a representative heterogenous mixture of typical DOE MLLW. An additional study was conducted, and then, based on response to these studies, additional work was started to investigate and evaluate non-thermal treatment options on a footing comparable to the effort devoted to thermal options. This report attempts to present a summary overview of the thermal and non-thermal treatment technologies which were examined in detail in the process of the above mentioned reviews.

NONE

1996-12-01T23:59:59.000Z

313

On-Site Wastewater Treatment Systems: Alternative Collection Systems  

E-Print Network (OSTI)

Rural Texas communities have new options for wastewater management infrastructure that are cost effective but still protect human health and environmental quality. Such communities now can combine different kinds of systems in a new approach called...

Lesikar, Bruce J.

2000-08-30T23:59:59.000Z

314

Clemson University Water System Clemson, SC  

E-Print Network (OSTI)

. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental-quality analyses. Every regulated contaminant that was detected in the water, even in the most minute traces), the ideal goals for public health, the amount detected, the usual sources of such contamination, footnotes

Duchowski, Andrew T.

315

Fant's Grove Water System Clemson, SC  

E-Print Network (OSTI)

.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control have strict-quality analyses. Every regulated contaminant that was detected in the water, even in the most minute traces), the ideal goals for public health, the amount detected, the usual sources of such contamination, footnotes

Duchowski, Andrew T.

316

Water Distribution and Wastewater Systems Operators (North Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Distribution and Wastewater Systems Operators (North Dakota) Water Distribution and Wastewater Systems Operators (North Dakota) Water Distribution and Wastewater Systems Operators (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting All public water supply and wastewater disposal systems are subject to classification and regulation by the State of North Dakota, and must obtain certification from the State Department of Health

317

On-Site Wastewater Treatment Systems: Soil Particle Analysis Procedure  

E-Print Network (OSTI)

Soil is an important component of an on-site wastewater treatment system. This publication explains the composition of soils, the sizing of soil particles, and the ways soil particles are analyzed to determine whether a site is suitable for a...

Lesikar, Bruce J.

2005-08-18T23:59:59.000Z

318

Technical analysis of advanced wastewater-treatment systems for coal-gasification plants  

SciTech Connect

This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

Not Available

1981-03-31T23:59:59.000Z

319

Reduction of Vinyl Chloride in Metallic Iron-Water Systems  

E-Print Network (OSTI)

residence time for contaminated ground- water to degrade VC to below its maximum contamination levelReduction of Vinyl Chloride in Metallic Iron-Water Systems B A O L I N D E N G * Department). Remediation of groundwater contaminated with chlori- nated ethylenes, including vinyl chloride, has been chal

Deng, Baolin

320

Literature research and review of groundwater quality and treatment systems for basin F Rocky Mountain Arsenal. Final engineering report  

SciTech Connect

The purposes of this report are to review applicable literature and previous RMA studies and recommend a ground water treatment system for Basin F that can treat organics using activated carbon and/or an alternative and is capable of removing Cl and F. The technologies are compared for ability to meet treatment goals; capital and operating costs; and treatment flexibility. Findings and recommendations include best alternative to GAC for removal of organics is UV-catalyzed ozonation; best method for the removal of Cl and F appears to be electrodialysis followed by vapor compression evaporation; and Basin F interim response ground water treatment system should include lime softening and Mn removal for pretreatment and UV-ozone and GAC for organic.

NONE

1987-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Optimal water quality management in surface water systems and energy recovery in water distribution networks.  

E-Print Network (OSTI)

??Two of the most important environmental challenges in the 21st century are to protect the quality of fresh water resources and to utilize renewable energy… (more)

Telci, Ilker Tonguc

2012-01-01T23:59:59.000Z

322

Clemson University Water System System No, SC3910006  

E-Print Network (OSTI)

, and other things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control (DHEC) have strict standards for all drinking-quality analyses. Every regulated contaminant that was detected in the water, even in the most minute traces

Duchowski, Andrew T.

323

Clemson University Water System System No, SC3910006  

E-Print Network (OSTI)

, and other things you should know about drinking water. The U.S. Environmental Protection Agency (EPA) and the S.C. Department of Health and Environmental Control (DHEC) have strict standards for all drinking-quality analyses. Every regulated contaminant that was detected in the water, even the most minute trace, is listed

Duchowski, Andrew T.

324

Economic Representation of Agricultural Activities in Water Resources Systems Engineering  

E-Print Network (OSTI)

i Economic Representation of Agricultural Activities in Water Resources Systems Engineering. #12;iii Guilherme Fernandes Marques January 2004 Civil and Environmental Engineering Economic of DOCTOR OF PHILOSOPHY in Engineering in the OFFICE OF GRADUATE STUDIES of the UNIVERSITY OF CALIFORNIA

Lund, Jay R.

325

EA-1093: Surface Water Drainage System, Golden, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to correct deficiencies in, and then to maintain, the surface water drainage system serving the U.S. Department of Energy's Rocky Flats...

326

Split system CO2 heat pump water heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Split-system-CO2-heat-pump-water-heaters- Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE...

327

Strategic indicators for characterization of water system infrastructure and management  

E-Print Network (OSTI)

Shifts in the US water industry are characteristic of the flux found across all infrastructure sectors. Economic, environmental, market, regulatory and systemic forces are pushing the industry toward a different future ...

Garvin, Michael J. (Michael Joseph)

2001-01-01T23:59:59.000Z

328

Simulation Models for Improved Water Heating Systems  

E-Print Network (OSTI)

distribution (in multi-family buildings); efficiency (eithercentral systems in multi- family buildings are assigned a54 °C (130 °F) for multi-family buildings that have central

Lutz, Jim

2014-01-01T23:59:59.000Z

329

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

SciTech Connect

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

330

STATUS REPORT: Onsite Wastewater Treatment Systems in California jointly presented by:  

E-Print Network (OSTI)

, “adequately managed decentralized (onsite) wastewater treatment systems can be a cost effective and long

California Wastewater

331

Water treatment by reverse osmosis. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning water purification systems and components using reverse osmosis technology. Patents include purification systems and devices for seawater, waste water, and drinking water. Topics also include complete purification systems, valves and distribution components, membranes, supports, storage units, and monitors. Water purification systems using activated charcoal are referenced in a related bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01T23:59:59.000Z

332

Water treatment by reverse osmosis. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning water purification systems and components using reverse osmosis technology. Patents include purification systems and devices for seawater, waste water, and drinking water. Topics also include complete purification systems, valves and distribution components, membranes, supports, storage units, and monitors. Water purification systems using activated charcoal are referenced in a related bibliography. (Contains a minimum of 146 citations and includes a subject term index and title list.)

Not Available

1994-02-01T23:59:59.000Z

333

Biofuels, Land, and Water: A Systems Approach to Sustainability  

Science Journals Connector (OSTI)

Biofuels, Land, and Water: A Systems Approach to Sustainability ... This study presents a systems approach to the challenge of biofuel sustainability where environmental liabilities are used as recoverable resources for biomass feedstock production. ... There are suggestions that water quantity and quality impacts are likely to be significant as a result of increased biofuel production, especially when grain-based biofuels are the feedstock of choice (16, 17). ...

Gayathri Gopalakrishnan; M. Cristina Negri; Michael Wang; May Wu; Seth W. Snyder; Lorraine LaFreniere

2009-07-07T23:59:59.000Z

334

Activated-charcoal filters: water treatment, pollution control, and industrial applications. January 1970-July 1988 (citations from the US Patent data base). Report for January 1970-July 1988  

SciTech Connect

This bibliography contains citations of selected patents concerning activated-charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic gases and pollutants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, swimming pool filtration, waste conversion, automobile fuel and exhaust systems, and footwear deodorizing. (Contains 129 citations fully indexed and including a title list.)

Not Available

1988-08-01T23:59:59.000Z

335

Energy Conservation in Process Chilled Water Systems  

E-Print Network (OSTI)

The energy consumption of the chiller and cooling tower in a process cooling application was analyzed using the TRNSYS computer code. The basic system included a constant speed centrifugal chiller and an induced-draft, counterflow cooling tower...

Ambs, L. L.; DiBella, R. A.

336

Current and Long-Term Effects of Delta Water Quality on Drinking Water Treatment Costs from Disinfection Byproduct Formation  

E-Print Network (OSTI)

for protecting public drinking water (CALFED 2000), are alsobest management options for drinking water sourced from theDelta Authority. 2004. Drinking water quality program multi-

Chen, Wei-Hsiang; Haunschild, Kristine; Lund, Jay R.; Fleenor, William E.

2010-01-01T23:59:59.000Z

337

Westinghouse Cementation Facility of Solid Waste Treatment System - 13503  

SciTech Connect

During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

Jacobs, Torsten; Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)

2013-07-01T23:59:59.000Z

338

New mud system produces solids-free, reusable water  

SciTech Connect

The Corpus Christi, Texas, based Cameron Equipment Co., Inc., has developed a closed-loop mud treating system that removes solids from water-based systems and leaves the separated fluid clean and chemical free enough to be re-used directly on the rig. The system has been successfully applied by a Gulf of Mexico operator in areas where zero discharge is required. The alternative mud conditions program offered by the developers is called the Cameron Fluid Recycling System. Designed for closed-loop water-based fluids, the system is a new method of removing solids from normally discharged fluids such as drilling mud, waste and wash water, or any other water-based fluid that contains undesirable solids. The patented method efficiently produces end products that are (1) dry solids; and (2) essentially 100% solids-free fluid that can be re-used in the same mud system. All excess drilling mud, and all wash water that would normally go to the reserve pit or a cuttings barge are collected in a tank. Recycled fluid is compatible with the mud system fluid, no harmful chemicals are used, and pH is not altered.

NONE

1996-02-01T23:59:59.000Z

339

Small angle x-ray scattering study of fluctuations in 1-propanol-water and 2-propanol-water systems  

SciTech Connect

Small-angle x-ray scattering (SAXS) measurements have been carried out on the 1-propanol (NPA)-water system and on the 2-propanol (IPA)-water system at 20{degree}C. In the NPA-water system, the zero angle intensity, the concentration fluctuation, the Kirkwood-Buff parameters, and Debye's correlation lengths have been determined at various concentrations. In the IPA-water system, the zero angle intensity and Debye's correlation lengths have also been determined. In both the NPA-water and IPA-water systems, all obtained parameters have maxima at about 0.2 of the mole fraction of alcohol. In terms of these parameters, the mixing state of the NPA-water and IPA-water systems is discussed and compared with that of the TBA-water system.

Hayashi, Hisashi; Nishikawa, Keiko; Iijima, Takao (Gakushuin Univ., Tokyo (Japan))

1990-10-18T23:59:59.000Z

340

Mining Gold from your Cooling Water System  

E-Print Network (OSTI)

to be achieved. GPM 2 /GPM 1 = RPM 2 /RPM 1 Equation (1) (RPM 2 /RPM 1 ) 3 = HP 2 /HP 1 Equation (2) ESL-IE-07-05-25 Proceedings from the Twenty-ninth Industrial Energy Technology Conference, New Orleans, LA, May 8-11, 2007. COOLING WATER PUMPING Pumping... Apr May Jun Jul Aug Sep Oct Nov Months Ri ver l eve l ( f t ) 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 T e mp er at ur e ( F) Average River Level Average River Temperature ESL-IE-07-05-25 Proceedings from the Twenty...

Mendez, T.

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment  

SciTech Connect

Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ?1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

Fuangrod, Todsaporn [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, the University of Newcastle, NSW 2308 (Australia)] [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, the University of Newcastle, NSW 2308 (Australia); Woodruff, Henry C.; O’Connor, Daryl J. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308 (Australia)] [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308 (Australia); Uytven, Eric van; McCurdy, Boyd M. C. [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada) [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Kuncic, Zdenka [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)] [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Greer, Peter B. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)] [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)

2013-09-15T23:59:59.000Z

342

LANSCE Drift Tube Linac Water Control System Refurbishment  

SciTech Connect

There are several refurbishment projects underway at the Los Alamos National Laboratory LANSCE linear accelerator. Systems involved are: RF, water cooling, networks, diagnostics, timing, controls, etc. The Drift Tube Linac (DTL) portion of the accelerator consists of four DTL tanks, each with three independent water control systems. The systems are about 40 years old, use outdated and non-replaceable equipment and NIM bin control modules, are beyond their design life and provide unstable temperature control. Insufficient instrumentation and documentation further complicate efforts at maintaining system performance. Detailed design of the replacement cooling systems is currently in progress. Previous design experience on the SNS accelerator water cooling systems will be leveraged, see the SNS DTL FDR. Plans call for replacement of water piping, manifolds, pumps, valves, mix tanks, instrumentation (flow, pressure and temperature) and control system hardware and software. This presentation will focus on the control system design with specific attention on planned use of the National Instruments Compact RIO platform with the Experimental Physics and Industrial Control system (EPICS) software toolkit.

Marroquin, Pilar S. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

343

Cs-137 in the Savannah River and the Beaufort-Jasper and Port Wentworth water-treatment plants  

SciTech Connect

Cesium-137 concentration measurements made in 1965 are reported for the Savannah River above and below the Savannah River Plant (SRP) and for the Beaufort-Jasper and Port Wentworth water treatment plants down river. These concentrations, measured when four SRP reactors (C, K, L, and P) were operating, were used to estimate Cs-137 reduction ratios for transport in the Savannah River and across each water treatment plant. In 1965 there was a 48% reduction in the Cs-137 concentration in the Savannah River between Highway 301 and the water treatment plant inlet points. Measured Cs-137 values in the finished water from Port Wentworth and the Beaufort-Jasper water treatment plants showed an 80% and 98% reduction in concentration level, respectively, when compared to Cs-137 concentration at Highway 301. The lower Cs-137 concentration (0.04 pCi/l) in the Beaufort-Jasper finished water is attributed to dilution in the canal from inflow of surface water (40%) and sediment cleanup processes that take place in the open portions of the canal (about 17 to 18 miles). Using the 1965 data, maximum Cs-137 concentrations expected in finished water in the Beaufort-Jasper and Port Wentworth water treatment plants following L-Reactor startup were recalculated. The recalculated values are 0.01 and 0.09 pCi/l for Beaufort-Jasper and Port Wentworth, respectively, compared to the 1.05 pCi/l value in the Environmental Assessment.

Hayes, D.W.; Boni, A.L.

1983-01-10T23:59:59.000Z

344

System analysis of membrane facilitated water generation from air humidity  

Science Journals Connector (OSTI)

Abstract The use of water vapor selective membranes can reduce the energy requirement for extracting water out of humid air by more than 50%. We performed a system analysis of a proposed unit, that uses membranes to separate water vapor from other atmospheric gases. This concentrated vapor can then be condensed specifically, rather than cooling the whole body of air. The driving force for the membrane permeation is maintained with a condenser and a vacuum pump. The pump regulates the total permeate side pressure by removing non-condensable gases that leak into the system. We show that by introducing a low-pressure, recirculated, sweep stream, the total permeate side pressure can be increased without impairing the water vapor permeation. This measure allows energy efficiency even in the presence of leakages, as it significantly lowers the power requirements of the vacuum pump. Such a constructed atmospheric water generator with a power of 62 kW could produce 9.19 m3/day of water (583 MJ/m3) as compared to 4.45 m3/day (1202 MJ/m3) that can be condensed without membranes. Due to the physical barrier the membrane imposes, fresh water generated in this manner is also cleaner and of higher quality than water condensed directly out of the air.

D. Bergmair; S.J. Metz; H.C. de Lange; A.A. van Steenhoven

2014-01-01T23:59:59.000Z

345

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies  

E-Print Network (OSTI)

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After;System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies, analyzing, and optimizing of complex diesel exhaust after-treatment systems. The methodology presented

de Weck, Olivier L.

346

Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

Not Available

2008-12-01T23:59:59.000Z

347

Strategies for automatic online treatment plan reoptimization using clinical treatment planning system: A planning parameters study  

SciTech Connect

Purpose: Adaptive radiation therapy for prostate cancer using online reoptimization provides an improved control of interfractional anatomy variations. However, the clinical implementation of online reoptimization is currently limited by the low efficiency of current strategies and the difficulties associated with integration into the current treatment planning system. This study investigates the strategies for performing fast (?2 min) automatic online reoptimization with a clinical fluence-map-based treatment planning system; and explores the performance with different input parameters settings: dose-volume histogram (DVH) objective settings, starting stage, and iteration number (in the context of real time planning).Methods: Simulated treatments of 10 patients were reoptimized daily for the first week of treatment (5 fractions) using 12 different combinations of optimization strategies. Options for objective settings included guideline-based RTOG objectives, patient-specific objectives based on anatomy on the planning CT, and daily-CBCT anatomy-based objectives adapted from planning CT objectives. Options for starting stages involved starting reoptimization with and without the original plan's fluence map. Options for iteration numbers were 50 and 100. The adapted plans were then analyzed by statistical modeling, and compared both in terms of dosimetry and delivery efficiency.Results: All online reoptimized plans were finished within ?2 min with excellent coverage and conformity to the daily target. The three input parameters, i.e., DVH objectives, starting stage, and iteration number, contributed to the outcome of optimization nearly independently. Patient-specific objectives generally provided better OAR sparing compared to guideline-based objectives. The benefit in high-dose sparing from incorporating daily anatomy into objective settings was positively correlated with the relative change in OAR volumes from planning CT to daily CBCT. The use of the original plan fluence map as the starting stage reduced OAR dose at the mid-dose region, but increased the monitor units by 17%. Differences of only 2cc or less in OAR V50%/V70Gy/V76Gy were observed between 100 and 50 iterations.Conclusions: It is feasible to perform automatic online reoptimization in ?2 min using a clinical treatment planning system. Selecting optimal sets of input parameters is the key to achieving high quality reoptimized plans, and should be based on the individual patient's daily anatomy, delivery efficiency, and time allowed for plan adaptation.

Li, Taoran; Wu, Qiuwen; Zhang, You; Vergalasova, Irina; Lee, W. Robert; Yin, Fang-Fang; Wu, Q. Jackie [Duke Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Duke Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

2013-11-15T23:59:59.000Z

348

Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater  

SciTech Connect

TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with less toxic ash pond water, and replanted due to low survival rates from the first planting the previous summer. The goals of the TVA-EPRI-DOE collaboration include building a better understanding of the chemical transformations that trace elements such as arsenic, selenium, and mercury undergo as they are treated in a passive treatment system, and to evaluate the performance of a large-scale replicated passive treatment system to provide additional design criteria and economic factors.

Terry Yost; Paul Pier; Gregory Brodie

2007-12-31T23:59:59.000Z

349

Side by Side Testing of Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Florida A Research Institute of the University of Central Florida Side by Side Testing of Water Heating Systems Residential Energy Efficiency Stakeholder Meeting Austin , Texas March 1st, 2012 Carlos J. Colon carlos@fsec.ucf.edu FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Hot Water Systems (HWS) Laboratory FSEC Cocoa, Florida 3 2009 -Present (Currently in third testing rotation) FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Underground Circulation Loop * Solar circulation Loop 140+ feet of ½" copper tubing * Encased in PVC tubing with R-2.4 insulation * ICS to 50 gallon storage tank path need to

350

DEVELOPMENT OF POLYMER GEL SYSTEMS TO IMPROVE VOLUMETRIC SWEEP AND REDUCE PRODUCING WATER/OIL RATIOS  

SciTech Connect

Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of the first year of a three-year research program that is aimed at the understanding of the chemistry of gelation and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work has focused on a widely-applied system in field applications, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. The initial reaction between chromium acetate and one polymer is referred to as the uptake reaction. The uptake reaction was studied as functions of chromium and polymer concentrations and pH values. Experimental data were regressed to determine a rate equation that describes the uptake reaction of chromium by polyacrylamide. Pre-gel aggregates form and grow as the reactions between chromium acetate and polyacrylamide proceed. A statistical model that describes the growth of pre-gel aggregates was developed using the theory of branching processes. The model gives molecular weight averages that are expressed as functions of the conversion of the reactive sites on chromium acetate or on the polymer molecule. Results of the application of the model correlate well with experimental data of viscosity and weight-average molecular weight and gives insights into the gelation process. A third study addresses the flow of water and oil in rock material after a gel treatment. Previous works have shown that gel treatments usually reduce the permeability to water to a greater extent than the permeability to oil is reduced. This phenomenon is referred to as disproportionate permeability reduction (DPR). Flow experiments were conducted to determine the effect of polymer and chromium concentrations on DPR. All gels studied reduced the permeability to water by a greater factor than the factor by which the oil permeability was reduced. Greater DPR was observed as the concentrations of polymer and chromium were increased. Increased pressure gradients during oil flow decreased the oil permeability and the water permeability that was measured afterward. Lower pressure gradients that were applied subsequently moderately affected water permeabilities but did not affect oil permeabilities. A conceptual model of the mechanisms responsible for DPR is presented. Primary features of the model are (1) the development of flow channels through the gel by dehydration of the gel and by re-connection of pre-treatment, residual oil volume and (2) high flow resistance in the channels during water flow is caused by significant saturations of oil remaining in the channels.

G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Rajeev Jain; Tuan Nguyen

2003-11-01T23:59:59.000Z

351

1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important when  

E-Print Network (OSTI)

of H2S in septic sewers causing pipe corrosion. 2. CO2 Stripping of some ground waters, industrial1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important wastewaters to the stream. Gas/Liquid Interface Gas Liquid Gas transfer to the liquid is absorption Gas

Stenstrom, Michael K.

352

Economies of Size in Municipal Water-Treatment Technologies: A Texas Lower Rio Grande Valley Case Study  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Brackish Groundwater Reverse-Osmosis Desalination. . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ES Classification by Cost Category, Type, and Item. . . . . . . . . . . . . . . . . . . . . . . 56 ES Classification by Facility Segment.... . . . . . . . . . . . . . . . . . . . 3 2 Reported Cost of Supply and Treatment ($/1,000 gallons) for Surface-Water Treatment Facilities and RO Desalination Facilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Initial Construction Costs for a 2.0 mgd Facility...

Boyer, Christopher N.; Rister, M. Edward; Rogers, Callie S.; Sturdivant, Allen W.; Lacewell, Ronald D.; Browning, Charles Jr.; Elium III, James R.; Seawright, Emily K.

353

OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water...

354

Lessons and Measures Learned from Continuous Commissioning(SM) of Central Chilled/Hot Water Systems  

E-Print Network (OSTI)

water and hot water system operation. It can be performed before, during, or after building side continuous commissioning. Successful central chilled/hot water system CC not only results in improved production and distribution, but also achieves...

Deng, S.; Turner, W. D.; Claridge, D. E.; Bruner, H.; Chen, H.; Wei, G.

2001-01-01T23:59:59.000Z

355

Water Use in Agricultural Watersheds Derrel Martin, Professor, Irrigation and Water Resources Engineer, Dept. of Biological Systems  

E-Print Network (OSTI)

Water Use in Agricultural Watersheds Derrel Martin, Professor, Irrigation and Water Resources Engineer, Dept. of Biological Systems Engineering, UNL Background Concerns about water use have intensified and Republican River Basins, and the implementation of LB 962. To understand water use it is helpful to consider

Nebraska-Lincoln, University of

356

Integrated system dynamics toolbox for water resources planning.  

SciTech Connect

Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

2006-12-01T23:59:59.000Z

357

Treatment of nitrate-rich water in a baffled membrane bioreactor (BMBR) employing waste derived materials  

Science Journals Connector (OSTI)

Abstract Nitrate removal in submerged membrane bioreactors (MBRs) is limited as intensive aeration (for maintaining adequate dissolved oxygen levels and for membrane scouring) deters the formation of anoxic zones essential for biological denitrification. The present study employs baffled membrane bioreactor (BMBR) to overcome this constraint. Treatment of nitrate rich water (synthetic and real groundwater) was investigated. Sludge separation was achieved using ceramic membrane filters prepared from waste sugarcane bagasse ash. A complex external carbon source (leachate from anaerobic digestion of food waste) was used to maintain an appropriate C/N ratio. Over 90% COD and 95% NO3–N reduction was obtained. The bagasse ash filters produced a clear permeate, free of suspended solids. Sludge aggregates were observed in the reactor and were linked to the high extracellular polymeric substances (EPS) content. Lower sludge volume index (40 mL/g compared to 150 mL/g for seed sludge), higher settling velocity (47 m/h compared to 10 m/h for seed sludge) and sludge aggregates (0.7 mm aggregates compared to <0.2 mm for seed sludge) was observed. The results demonstrate the potential of waste-derived materials viz. food waste leachate and bagasse ash filters in water treatment.

Subhankar Basu; Saurabh K. Singh; Prahlad K. Tewari; Vidya S. Batra; Malini Balakrishnan

2014-01-01T23:59:59.000Z

358

Local Board of Health Guide to On-Site Wastewater Treatment Systems  

E-Print Network (OSTI)

Local Board of Health Guide to On-Site Wastewater Treatment Systems ©2006 National Association Side of Cover and is Blank #12;Local Board of Health Guide to On-Site Wastewater Treatment Systems............................................................................................................. 9 WHAT IS WASTEWATER

359

Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas  

SciTech Connect

The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

James Spillane

2005-10-01T23:59:59.000Z

360

(The fate of nuclides in natural water systems)  

SciTech Connect

Our research at Yale on the fate of nuclides in natural water systems has three components to it: the study of the atmospheric precipitation of radionuclides and other chemical species; the study of the behavior of natural radionuclides in groundwater and hydrothermal systems; and understanding the controls on the distribution of radionuclides and stable nuclides in the marine realm. In this section a review of our progress in each of these areas is presented.

Turekian, K.K. (Yale Univ., New Haven, CT (USA). Dept. of Geology and Geophysics)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Developmental Pre-Developmental INL EBR-II Wash Water Treatment Technologies (PBS # ADSHQTD0100 (0003199)) EBR-II Wash Water Workshop - The majority of the sodium has been removed, remaining material is mostly passivated. Similar closure projects have been successfully completed. Engineering needs to be developed to apply the OBA path. Page 1 of 2 Idaho National Laboratory Idaho Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop Challenge In 1994 Congress ordered the shutdown of the Experimental Breeder Reactor-II (EBR-II) and a closure project was initiated. The facility was placed in cold shutdown, engineering began on sodium removal, the sodium was drained in 2001 and the residual sodium chemically passivated to render it less reactive in 2005. Since that time, approximately 700 kg of metallic sodium and 3500 kg of sodium bicarbonate remain in the facility. The

362

Chemical pre-treatment of waste water from the Morcinek Mine in Poland  

SciTech Connect

This report presents a treatment strategy for brine that is recovered from the Morcinek mine near the city of Kartowice in Upper Silesia, Poland. The purpose of the study is to provide sufficient chemical composition and solubility data to permit selection of equipment for a pilot scale waste water processing plant. The report delineates: (1) the pre-treatment steps necessary before the brine is delivered to a reverse osmosis unit; (2) the composition of the brine solution at various stages in the pretreatment process and during the reverse osmosis step; (3) the types and amounts of chemicals that need to be added to the brine during pre-treatment. Analysis of the composition of the brine slurry from the submerged combustion evaporator that follows the reverse osmosis unit and the composition of brine elements that might be carried into the exhaust stack of the evaporator will be dealt with later. The pretreatment process will consist of four steps: (1) aeration and addition of sodium carbonate, (2) multimedia filtration, (3) addition of hydrochloric acid, and (4) ultrafiltration. On the basis of one m{sup 3} of the brine that has a density of 1.03 g/cm{sup 3}, approximately 800 grams (1.7 lbs.) of sodium carbonate monohydrate (Na{sub 2}CO{sub 3}{center_dot}H{sub 2}O) and 60 grams (0.12 lbs.) of concentrated hydrochloric acid (HCI) will need to be added to the brine during pre-treatment. The goal of the pre-treatment is to produce a fluid that is always undersaturated with respect to all mineral phases. However, only the minimum amount of pre-treatment chemicals should be added in order to minimize costs. Therefore the overall goal is to generate a fluid that approaches but does not exceed saturation at the end of the reverse osmosis process. The suggested amounts of chemicals reported here are therefore the minimum amounts that need to be added during pre-treatment to keep all salts in solution during the reverse osmosis process.

Bourcier, W.; Jackson, K.J.

1994-06-01T23:59:59.000Z

363

Designing a wastewater and storm water management system for a new sealed lead acid battery facility  

SciTech Connect

Design of a new lead acid battery manufacturing facility requires careful planning to ensure compliance with wastewater, storm water, air quality and hazardous waste regulations. A case history is presented describing the planning approach to development of a wastewater and storm water management system for an SLA (sealed lead acid) battery plant in Columbus, Georgia. Several pollution prevention concepts were utilized in the design of the wastewater management system, which resulted in an 80% reduction in wastewater volume, and at the same time ensured compliance with the mass-based federal categorical effluent limits. Storm water management features were focused on eliminating any outdoor areas of industrial activity by avoiding outdoor storage areas to the extent possible, containment of remaining areas, and stringent air emission control concepts. Federal effluent guidelines for the battery manufacturing point source category as well as federal regulations governing the industrial storm water discharge permitting program were the key factors in motivating the design concepts utilized. Areas affected by the design concepts included facility layout, HVAC system design, process recovery systems, chemical storage and containment, and wastewater treatment technology. The facility has been in compliance with all applicable environmental regulations since startup in August, 1992 and has been awarded the 1995 Matsushita Electric Corporation`s President`s Award for Environmental Excellence.

Nichols, C.P.; Langan, M.M.

1996-12-31T23:59:59.000Z

364

Impact of Onsite Wastewater Treatment Systems on Nitrogen and Baseflow in Urban Watersheds of Metropolitan Atlanta  

E-Print Network (OSTI)

Impact of Onsite Wastewater Treatment Systems on Nitrogen and Baseflow in Urban Watersheds 2401, Miller Plant Sciences Building Onsite wastewater treatment systems (OWTS) are widely used Septic Wastewater-Treatment Systems on Base Flow in Selected Watersheds in Gwinnett County, Georgia

Arnold, Jonathan

365

Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling  

SciTech Connect

A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondarytreated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

2013-10-01T23:59:59.000Z

366

Hierarchical predictive control of integrated wastewater treatment systems  

Science Journals Connector (OSTI)

The paper proposes an approach to designing the control structure and algorithms for optimising control of integrated wastewater treatment plant-sewer systems (IWWTS) under a full range of disturbance inputs. The optimised control of IWWTS allows for significant cost savings, fulfilling the effluent discharge limits over a long period and maintaining the system in sustainable operation. Due to the specific features of a wastewater system a hierarchical control structure is applied. The functional decomposition leads to three control layers: supervisory, optimising and follow-up. A temporal decomposition that is applied in order to efficiently accommodate the system's multiple time scales leads to further decomposition of the optimising control layer into three control sublayers: slow, medium, and fast. An extended Kalman Filter is used to carry out an estimation of needed but not measured plant states in real time. The robustly feasible model predictive controller produces manipulated variable trajectories based on a dedicated grey box (GB) model of the biological processes and drawing its physical reality from the well known \\{ASM2d\\} model. The GB model parameters are dependant on the plant operating point and therefore are continuously estimated. As it is impossible to efficiently control the plant under all influent conditions that may occur by using one universal control strategy, different control strategies are designed. Recently developed mechanisms for soft switching between the MPC control strategies are applied in order to smooth the state and control transient processes during the switching. The methodologies and algorithms proposed in the paper are validated by simulation based on real data records from a wastewater system located in Kartuzy, northern Poland. The control system was implemented at the case-study site to generate in real time the control actions that were assessed by the plant operators and verified by simulation based on a calibrated plant model.

M.A. Brdys; M. Grochowski; T. Gminski; K. Konarczak; M. Drewa

2008-01-01T23:59:59.000Z

367

Meeting the Need for Safe Drinking Water in Rural Mexico through Point-of-Use Treatment  

E-Print Network (OSTI)

Solar disinfection of drinking water and diarrhoea in Maasai2001. Solar disinfection of drinking water protects againstdisinfection of drinking water contained in transparent

Lang, Micah; Kaser, Forrest; Reygadas, Fermin; Nelson, Kara; Kammen, Daniel M.

2006-01-01T23:59:59.000Z

368

GreenPower Trap Water-Muffler System | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GreenPower Trap Water-Muffler System GreenPower Trap Water-Muffler System This hydrated EGR system reduces NOx and enhances fuel efficiency, and the DPF is catalyzed by the...

369

The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system  

SciTech Connect

Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water.

Garrett, W.E. Jr. [Alabama Power Co./GSC No. 8, Birmingham, AL (United States); Laylor, M.M. [Univ. of Alabama, Birmingham, AL (United States)

1995-06-01T23:59:59.000Z

370

BIO?REFINERIES: BIOPROCESS TECHNOLOGIES FOR WASTE?WATER TREATMENT, ENERGY AND PRODUCT VALORIZATION  

Science Journals Connector (OSTI)

Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also potable water is becoming a scarce resource in many parts of the world and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non?GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food fiber and other biology?based products including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific?attribute raw materials for differentiated markets we can argue that processes such as mass cultivation of microalgae and the concept of bio?refineries be seen as part of a ‘new’ agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste?water treatment water polishing and endocrine disruptor (EDC) removal sustainable energy production and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings and for commercial extraction of bulk commodities such as bio?oils and lecithin. This presentation will address efforts to establish a fully operational solar?driven microalgae bio?refinery for use not only in waste remediation but to transform waste and biomass to energy fuels and other useful materials (valorisation) with particular focus on environmental quality and sustainability goals.

A. Keith Cowan

2010-01-01T23:59:59.000Z

371

Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094  

SciTech Connect

Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly and the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)

Camper, Larry W.; Michalak, Paul; Cohen, Stephen; Carter, Ted [Nuclear Regulatory Commission (United States)

2012-07-01T23:59:59.000Z

372

Physicochemical Properties Related to Long-Term Phosphorus Retention by Drinking-Water Treatment Residuals  

Science Journals Connector (OSTI)

It is necessary to determine the true long-term P sorption capacities of WTRs, if used to reduce soluble P in systems very high in P, such as in animal waste lagoons. ... Second-order rate coefficients for Fe-based WTRs were generally smaller than those of Al-based WTRs, consistent with there being less P sorption for the second biphasic (longer term) sorption stage. ... Typical air-dried Fe- and Al-based WTR show minimal bacterial activity (long-term storage, and chlorine addition during the drinking-water purification process (5). ...

Konstantinos C. Makris; Willie G. Harris; George A. O'Connor; Thomas A. Obreza; Herschel A. Elliott

2005-05-04T23:59:59.000Z

373

Solar hot water system installed at Mobile, Alabama. Final report  

SciTech Connect

This final report describes the solar energy hot water system installed at LaQuinta Motor Inn Inc., at Mobile, Alabama. The building is a 122 unit motel. The system consists of six rows of ten collectors and three rows of eleven collectors (1990 square feet) mounted on the roof. Griswald flow control valves were installed to regulate the flow to each row. Two Heliotrope electronic thermometers with a combined capability of measuring the temperatures of 22 different locations were installed for monitoring purposes. Engineering drawings, component specifications, and operator instructions are included.

None

1980-10-01T23:59:59.000Z

374

SOLERAS - Solar Energy Water Desalination Project: Catalytic. System design final report. Volume 1. System requirement definition and system analysis  

SciTech Connect

Catalytic Inc. was awarded a contract to conduct a preliminary system design and cost analysis for a brackish water desalination project to be located in Brownsville, Texas. System analyses and economic analyses were performed to define the baseline solar energy desalination system. The baseline system provides an average daily product water capacity of 6000 mT. The baseline system is optimal relative to technological risk, performance, and product water cost. Subsystems and their interfaces have been defined and product water cost projections made for commercial plants in a range of capacities. Science Applications, Inc. (SAI), subcontractor to Catalytic, had responsibility for the solar power system. This, the final report, summarizes the work performed under the Phase I effort.

Not Available

1986-01-01T23:59:59.000Z

375

Efficiency and Evolution of Water Transport Systems in Higher Plants: A Modelling Approach. II. Stelar Evolution  

Science Journals Connector (OSTI)

...July 1994 research-article Efficiency and Evolution of Water Transport Systems in Higher...protostele and siphonostele in water conduction was analysed numerically...identical with regard to water transport efficiency. The Royal Society is collaborating...

1994-01-01T23:59:59.000Z

376

Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China  

E-Print Network (OSTI)

This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

Chen, H.; Li, D.; Dai, X.

2006-01-01T23:59:59.000Z

377

SYSTEM OPTIMIZTION OF HOT WATER CONCENTRATED SOLAR THERMOELECTRIC GENERATION  

E-Print Network (OSTI)

In this report, we describe the design of a concentrated solar thermoelectric (TE) system which can provide both electricity and hot water. Today’s thermoelectric materials have a relatively low efficiency (~6 % for temperature difference across the thermoelement on the order of 300 o C). However since thermoelectrics don’t need their cold side to be near room temperature, (in another word, one can chose the particular thermoelectric material to match to the operational temperature) it is possible to use the waste heat to provide hot water and this makes the overall efficiency of the combined system to be quite high. A key factor in the optimization of the thermoelectric module is the thermal impedance matching with the incident solar radiation, and also with the hot water heat exchanger on the cold side of the thermoelectric module. We have developed an analytic model for the whole system and optimized each component in order to minimize the material cost. TE element fill factor is found to be an important parameter to optimize at low solar concentrations (generated per mass of the thermoelectric elements. Similarly the co-optimization of the microchannel heat exchanger and the TE module can be used to minimize the amount of material in the heat exchanger and the pumping power required for forced convection liquid cooling. Changing the amount of solar concentration, changes the input heat flux and this is another parameter that can be optimized in order to reduce the cost of heat exchanger (by size), the tracking requirement and the whole system. A series of design curves for different solar concentration are obtained. It is shown that the overall efficiency of the system can be more than 80 % at 200x concentration which is independent of the material ZT (TE figure-of-merit). For a material with ZThot~0.9, the electrical conversion efficiency is ~10%. For advanced materials with ZThot ~ 2.8, the electrical conversion efficiency could reach ~21%. 1.

Kazuaki Yazawa; Ali Shakouri

378

The Coordinated Control of a Central Air Conditioning System Based on Variable Chilled Water Temperature and Variable Chilled Water Flow  

E-Print Network (OSTI)

At present, regulation of water flow by means of pump frequency conversion is one of the major methods for power-saving in central air conditioning systems. In this article, optimization regulation for central air conditioning system on the basis...

Liu, J.; Mai, Y.; Liu, X.

2006-01-01T23:59:59.000Z

379

K-1435 Wastewater Treatment System for the Toxic Substances Control Act Incinerator Wastewater at the East Tennessee Technology Park, Oak Ridge, TN  

SciTech Connect

This paper discusses the design and performance of a wastewater treatment system installed to support the operation of a hazardous waste incinerator. The Oak Ridge Toxic Substances Control Act Incinerator (TSCAI), located at the East Tennessee Technology Park (ETTP), is designed and permitted to treat Resource ConservatioN and Recovery Act (RCRA) wastes including characteristic and listed wastes and polychlorinated biphenyl (PCB)-contaminated mixed waste. the incinerator process generates acidic gases and particulates which consist of salts, metals, and radionuclides. These off-gases from the incinerator are treated with a wet off-gas scrubber system. The recirculated water is continuously purged (below down), resulting in a wastewater to be treated. Additional water sources are also collected on the site for treatment, including storm water that infiltrates into diked areas and fire water from the incinerator's suppression system. To meet regulatory requirements for discharge, a wastewater treatment system (WWTS) was designed, constructed, and operated to treat these water sources. The WWTS was designed to provide for periodic fluctuation of contaminant concentrations due to various feed streams to the incinverator. Blow down consists of total suspended solids (TSS) and total dissolved solids (TDS), encompassing metals, radionuclide contamination and trace organics. The system design flow rate range is 35 to 75 gallons per minute (gpm). The system is designed with redundancy to minimize time off-line and to reduce impacts to the TSCAI operations. A novel treatment system uses several unit operations, including chemical feed systems, two-stage chemical reaction treatment, microfiltration, sludge storage and dewatering, neutralization, granular activated carbon, effluent neutralization, and a complete programmable logic controller (PLC) and human-machine interface (HMI) control system. To meet the space requirements and to provide portability of the WWTS to other applications, the system was installed in three, over-the-road semi trailers, and interconnected with piping and power. Trailers were oriented on a small site footprint to facilitate ease of installation. A remote sump pump skid was provided to convey water from two holding sumps adjacent to the treatment process. An accumulation tank and pump were also provided to receive miscellaneous wastewaters for treatment if they meet the waste acceptance criteria. The paper includes details of the technology used in the design, the requirements for compliance, and the initial performance demonstration and jar testing results. The WWTS successfully allowed for highly efficient, high-volume treatment with compliant discharge to off-site surface water.

Swientoniewski M.D.

2008-02-24T23:59:59.000Z

380

Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration of Global Positioning System and Scanning Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates V. Mattioli and P. Basili Department of Electronic and Information Engineering University of Perugia Perugia, Italy E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction In recent years the Global Positioning System (GPS) has proved to be a reliable instrument for measuring precipitable water vapor (PWV) (Bevis et al. 1992), offering an independent source of information on water vapor when compared with microwave radiometers (MWRs), and/or radiosonde

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A three-phase K-value study for pure hydrocarbons/water and crude oil/water systems  

E-Print Network (OSTI)

Steam distillation, or vaporization of crude oil in porous media is on of the major mechanisms responsible for high oil recovery by steamflooding from heavy oil as well as light oil reservoir systems. Several authors have reported steam dsitillation...-phase equilibrium data for hydrocarbon/water systems ranging from light to heavy crude oil fractions. ! Experimental data describing the phase behavior and the hydrocarbon/water separation process for multi-component hydrocarbon/water and crude oil...

Lanclos, Ritchie Paul

1990-01-01T23:59:59.000Z

382

A solid polymer water electrolysis system utilizing natural circulation  

Science Journals Connector (OSTI)

Abstract Solid Polymer Water Electrolysis (SPWE) is a method to efficiently produce high-purity hydrogen gas using a polymer electrolyte membrane-based system. SPWE systems that utilize natural water circulation (resulting from a difference in buoyancy) are a promising technology, which need no additional circulation pump for water supply to the electrolysis cells, and generate no pressure difference between the hydrogen generation and oxygen generation chambers. However, despite not needing an accurate pressure control, gas bubbles formed and trapped within the cell stacks can inhibit heat convection, leading to hot-spot formation and consequent destructive degradation. Improving the reliability is therefore one of the most important technological issues in natural circulation SPWEs. In this study, hot-spot formation is studied both by numerical heat and flow analysis, and by experimental in-situ visualization. This leads to insights into the degradation mechanisms of SPWE stacks, and their possible solutions. An improved design for an SPWE cell stack is successfully fabricated, and reliable operation up to 5000 h is demonstrated.

Yoshinori Kobayashi; Kenichiro Kosaka; Takashi Yamamoto; Yuya Tachikawa; Kohei Ito; Kazunari Sasaki

2014-01-01T23:59:59.000Z

383

Promising freeze protection alternatives in solar domestic hot water systems  

SciTech Connect

Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

Bradley, D.E.

1997-12-31T23:59:59.000Z

384

Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes.  

E-Print Network (OSTI)

??Produced water is a major waste produced from oil and natural gas wells in the state of Texas. This water could be a possible source… (more)

Beech, Scott Jay

2006-01-01T23:59:59.000Z

385

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recommendations for Applying Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

386

Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

2012-03-15T23:59:59.000Z

387

Analysis of fruitland water production treatment and disposal, San Juan Basin. Topical report, October 1991-March 1993  

SciTech Connect

The San Juan Basin produces more coalbed methane than the rest of the world combined. Brackish water is produced with the gas. Water production climbed from 40,000 barrels per day in 1989 to 115,000 bpd by late 1992. Underground injection is used to dispose of virtually all the produced water. Water production is projected to increase to 180,000 bpd in 1995. 650 million to 1.1 billion barrels are projected to be produced over the next 20 years. Restricted injection capacity and aquifer storage capacity may necessitate additional disposal wells and, ultimately, other methods to dispose of the water. Alternative treatment technologies, especially electrodialysis and/or reverse osmosis, may be applicable at costs of $0.17 to $0.22 per barrel, a considerable savings over the $0.80 to $1.00/bbl cost of deep injection. With suitable treatment, the majority of the produced water could be made suitable for agricultural or municipal uses. Reservoir analysis and simulations indicate stimulations can be optimized, and that heating water prior to injection might increase injectivity in some wells.

Cox, D.O.; Decker, A.D.; Stevens, S.H.

1993-06-01T23:59:59.000Z

388

Ozone treatment in a closed culture system for Macrobrachium rosenbergii  

E-Print Network (OSTI)

constant flow of air. The Orthotoridine-Manganese Method (OTM) wss employed to measure ozone in solution (APHA, 1976) . Because of the rapid rate of decomposition of ozone in water, it was determined that the production of ozone could not be measured... by introducing into water and then sampling that water for analysis with OTM. Therefore, ozone was introduced directly into a solution of OTM reagent with subsequent changes in color of the reagent, measured on a "B & L Spectronic 70" spectrophotometer, being...

Yamaguchi, Ryoji

1978-01-01T23:59:59.000Z

389

Comparative study of power and water cogeneration systems  

Science Journals Connector (OSTI)

The performance of three combined systems using reverse osmosis to produce drinkable water and a Rankine cycle which produces mechanical power have been analyzed and compared. The RO subsystem incorporates a power recovery unit (a hydraulic turbine in the first two cases and a pressure exchange unit in the third case). The coupling between the RO and Rankine subsystems is only mechanical in the first case (the Rankine cycle provides mechanical power to the pumps of the RO subsystem), while in the two other cases the coupling is both mechanical and thermal (the heat rejected by the condenser of the Rankine cycle is transferred to the seawater). The minimum values of the Rankine cycle mass ratio for the three systems and the maximum operating temperature for the two last systems have been established. Energy and exergy efficiencies are also compared for identical entering parameters.

N. Bouzayani; N. Galanis; J. Orfi

2007-01-01T23:59:59.000Z

390

Artificial Neural Networks Modelling of PID and Model Predictive Controlled Waste Water Treatment Plant Based on the Benchmark Simulation Model No.1  

Science Journals Connector (OSTI)

The paper presents techniques for the design and training of Artificial Neural Networks (ANN) models for the dynamic simulation of the controlled Benchmark Simulation Model no. 1 (BSM1) Waste Water Treatment Plant (WWTP). The developed ANN model of the WWTP and its associated control system is used for the assessment of the plant behaviour in integrated urban waste water system simulations. Both embedded PID (Proportional-Integral-Derivative) control and Model Predictive Control (MPC) structures for the WWTP are investigated. The control of the Dissolved Oxygen (DO) mass concentration in the aerated reactors and nitrate (NO) mass concentration in the anoxic compartments are presented. The ANN based simulators reveal good accuracy for predicting important process variables and an important reduction of the simulation time, compared to the first principle WWTP simulator.

Vasile-Mircea Cristea; Cristian Pop; Paul Serban Agachi

2009-01-01T23:59:59.000Z

391

The effects of the implementation of grey water reuse systems on construction cost and project schedule  

E-Print Network (OSTI)

a positive or negative effect on the design team’s decision to implement a grey water reuse system: capital cost, maintenance cost, LEED credits, local plumbing codes, project schedule, local water conservation issues, complexity of the system, etc...

Kaduvinal Varghese, Jeslin

2009-05-15T23:59:59.000Z

392

Coagulation/Flocculation Treatments for Flue-Gas-Derived Water from Oxyfuel Power Production with CO2 Capture  

Science Journals Connector (OSTI)

Coagulation/Flocculation Treatments for Flue-Gas-Derived Water from Oxyfuel Power Production with CO2 Capture ... The buffered solution is then sent back to the top of the tower, where it is sprayed into the upflowing oxyfuel gas stream, condensing and cleaning the ash-laden gas. ...

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen Gerdemann; John Clark; Cathy Summers

2011-08-02T23:59:59.000Z

393

In situ heat treatment process utilizing a closed loop heating system  

DOE Patents (OSTI)

Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

2010-12-07T23:59:59.000Z

394

Efficiency and Evolution of Water Transport Systems in Higher Plants: A Modelling Approach. I. The Earliest Land Plants  

Science Journals Connector (OSTI)

...1994 research-article Efficiency and Evolution of Water Transport Systems in Higher...transport vascular taxa water water pressure GeoRef, Copyright...1098/rstb.1994.0093 Efficiency and evolution of water transport systems in higher...

1994-01-01T23:59:59.000Z

395

Water resources and the urban environment--98  

SciTech Connect

This report contains all the papers presented at the meeting. There are 25 sessions and one poster session in the document. The Sessions are: (1) Landfill gas/groundwater interactions; (2) Urban solids management; (3) Local issues; (4) Surface water quality studies 1; (5) Reductive treatment of hazardous wastes with zero-valent iron; (6) Water reuse 1; (7) Biosolids management; (8) GIS information systems 1; (9) Drinking water distribution; (10) Anaerobic treatment; (11) Water reuse 2; (12) Municipal wastewater treatment technology; (13) GIS information systems 2; (14) Drinking water treatment 1; (15) Risk-based site remediation; (16) Small urban watersheds; (17) Disinfection; (18) Air pollution control and risk assessment; (19) Drinking water treatment 2; (20) Biological wastewater treatment; (21) Wastewater treatment; (22) Decentralized small-scale alternative wastewater management systems; (23) General environmental issues; (24) Drinking water treatment 3; and (25) Groundwater remediation. Papers have been processed separately for inclusion on the database.

Wilson, T.E. [ed.

1998-07-01T23:59:59.000Z

396

Degradation Of Selected Organic Agrochemicals In Artificial Soil Slurry Systems By Anodic Fenton Treatment .  

E-Print Network (OSTI)

??This thesis investigated the application of anodic Fenton treatment to the degradation of several probe agrochemicals in model soil slurry systems. A kinetic model, called… (more)

Ye, Peng

2009-01-01T23:59:59.000Z

397

Experimental Studies of NGNP Reactor Cavity Cooling System With Water  

SciTech Connect

This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

Michael Corradini; Mark Anderson; Yassin Hassan; Akira Tokuhiro

2013-01-16T23:59:59.000Z

398

Water treatment by reverse osmosis. November 1970-October 1989 (Citations from the US Patent data base). Report for November 1970-October 1989  

SciTech Connect

This bibliography contains citations of selected patents concerning water purification systems and components using reverse-osmosis technology. Patents include systems and devices for sea water, waste water, and drinking water purification. Topics include complete purification systems, valves and distribution components, membranes, supports, storage units, and monitors. Water purification systems using activated charcoal are referenced in a related published bibliography. (Contains 103 citations fully indexed and including a title list.)

Not Available

1990-01-01T23:59:59.000Z

399

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

In a drinking water treatment plant, the motors devoted toSmall Water Supply Facilities: A Profile of Motor Energydrinking water systems, installing energy-efficient motors

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

400

Graduate Opportunities in Earth Systems Modeling and Climate Impacts on Hydrology and Water Resources  

E-Print Network (OSTI)

Graduate Opportunities in Earth Systems Modeling and Climate Impacts on Hydrology and Water research assistantships available in the general area of earth systems modeling and climate impacts

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Application of the Colorado River Simulation System Model to Evaluate Water Shortage Conditions in the Central Arizona Project  

Science Journals Connector (OSTI)

The Colorado River system water management and reservoir operations ... following categories: water allocations, water deliveries, flood control, reservoir operating requirements and criteria,...

Jesús R. Gastélum; Chuck Cullom

2013-05-01T23:59:59.000Z

402

Long-Term Succession of Structure and Diversity of a Biofilm Formed in a Model Drinking Water Distribution System  

E-Print Network (OSTI)

formation in a model drinking water distribution system. J.and activity in drinking water distribution networks underbacterial species from drinking water biofilms and proof of

Martiny, A. C; Jorgensen, T. M; Albrechtsen, H.-J.; Arvin, E.; Molin, S.

2003-01-01T23:59:59.000Z

403

An investigation into positron emission tomography contouring methods across two treatment planning systems  

SciTech Connect

Positron emission tomography (PET) imaging has been used to provide additional information regarding patient tumor location, size, and staging for radiotherapy treatment planning purposes. This additional information reduces interobserver variability and produces more consistent contouring. It is well recognized that different contouring methodology for PET data results in different contoured volumes. The goal of this study was to compare the difference in PET contouring methods for 2 different treatment planning systems using a phantom dataset and a series of patient datasets. Contouring methodology was compared on the ADAC Pinnacle Treatment Planning System and the CMS XiO Treatment Planning System. Contours were completed on the phantom and patient datasets using a number of PET contouring methods—the standardized uptake value 2.5 method, 30%, 40%, and 50% of the maximum uptake method and the signal to background ratio method. Differences of >15% were observed for PET-contoured volumes between the different treatment planning systems for the same data and the same PET contouring methodology. Contoured volume differences between treatment planning systems were caused by differences in data formatting and display and the different contouring tools available. Differences in treatment planning system as well as contouring methodology should be considered carefully in dose-volume contouring and reporting, especially between centers that may use different treatment planning systems or those that have several different treatment planning systems.

Young, Tony, E-mail: Tony.Young@sswahs.nsw.gov.au [Liverpool and Macarthur Cancer Therapy Centres, New South Wales (Australia); Som, Seu [Department of Nuclear Medicine and PET, Liverpool Hospital, New South Wales (Australia); South Western Sydney Clinical School, University of New South Wales, New South Wales (Australia); Sathiakumar, Chithradevi [Department of Nuclear Medicine and PET, Liverpool Hospital, New South Wales (Australia); Holloway, Lois [Liverpool and Macarthur Cancer Therapy Centres, New South Wales (Australia); Institute of Medical Physics, University of Sydney, New South Wales (Australia); Center for Medical Radiation Physics, University of Wollongong, New South Wales (Australia)

2013-04-01T23:59:59.000Z

404

NREL: Water Power Research - Economic and Power System Modeling and  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic and Power System Modeling and Analysis Economic and Power System Modeling and Analysis NREL has a long history of successful research to understand and improve the cost of renewable energy technologies, their possible deployment scenarios, and the economic impacts of this deployment. As a research laboratory, NREL is a neutral third party and can provide an unbiased perspective of methodologies and approaches used to estimate direct and indirect economic impacts of offshore renewable energy projects. Deployment and Economic Impact NREL's economic analysis team is working to provide stakeholders with the tools necessary to understand potential deployment scenarios of water power technologies and the economic impacts of this deployment. The team is working to improve the representation of marine and

405

Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation  

SciTech Connect

Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank doped with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications.

Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Department of Physics and Astronomy and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Fox, Colleen J.; Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)] [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

2014-06-15T23:59:59.000Z

406

The Full Water Disposal Ways and Study on Central Air-conditioning Circulation Cooling Water System  

E-Print Network (OSTI)

with automatic inspection, control the condense times and installing toroidal swirl type filtering water purifier. We have solved the water quality fundamentally of the circulation cooling water. This way will make the chem..with medicine more reliable...

Zhang, J.

2006-01-01T23:59:59.000Z

407

Automation of Pivot Sprinkler Irrigation Systems to More Efficiently Utilize Rainfall and Irrigation Water  

E-Print Network (OSTI)

A study was conducted to develop automated pivot sprinkler irrigation systems and determine if such systems use less water and energy than manually operated systems. The study was conducted near Earth, Texas, using irrigation systems located...

Wendt, C. W.; Runkles, J. R.; Gerst, M. D.; Harbert, H. P. III; Hutmacher, R. B.

408

Water geochemistry of hydrothermal systems, Wood River District, Idaho  

SciTech Connect

Hydrothermal systems of the Wood River District, central Idaho, have been studied by geologic mapping of thermal spring areas and geochemical investigations of thermal and non-thermal waters. This report summarizes the new geochemical data gathered during the study. Integration of the results of geological and geochemical studies has led to development of a target model for hydrothermal resources on the margin of the Idaho Batholith. Warfield Hot Springs, with temperatures up to 58/sup 0/C, flow from a major shear zone along the margin of an apophysis of the batholith. Hailey Hot Springs, with temperatures up to 60/sup 0/C, occur in an area of multiple thrust faults and newly recognized, closely spaced normal faults in the Paleozoic Milligen and Wood River Formations, 2.5 km from a highly brecciated batholith contact. Other Wood River district hydrothermal systems also occur along the margins of batholith apophyses or in adjacent highly fractured Paleozoic rocks, where there are indications of batholith rocks at shallow depths (100 to 300 m) in water wells.

Zeisloft, J.; Foley, D.; Blackett, R.

1983-08-01T23:59:59.000Z

409

[Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 9, Removal action system design  

SciTech Connect

This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.

Not Available

1992-04-01T23:59:59.000Z

410

Zinc Treatment Effects on Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water  

SciTech Connect

Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 C were found to lower the corrosion rate of austenitic stainless steel (UNS S30400) by about a factor of five, relative to a non-zinc baseline test after 10,000 hr. Characterizations of the corrosion oxide layer via grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy in combination with argon ion milling and target factor analysis, confirmed the presence of two spinel oxide phases and minor amounts of recrystallized nickel. Based on the distribution of the three oxidized alloying constituents (Fe, Cr, Ni) with respect to depth and oxidation state, it was concluded that: (a) corrosion occurs in a non-selective manner, but approximately 30% of the oxidized iron is released to the water, and (b) the two spinel oxides exist as a ferrite-based outer layer (Ni{sub 0.1}Zn{sub 0.6}Fe{sub 0.3})(Fe{sub 0.95}Cr{sub 0.05}){sub 2}O{sub 4} on top of a chromite-based inner layer (Ni{sub 0.1}Zn{sub 0.2}Fe{sub 0.7})(Fe{sub 0.4}Cr{sub 0.6}){sub 2}O{sub 4}. These results suggest that immiscibility in the Fe{sub 3}O{sub 4}-ZnFe{sub 2}O{sub 4} binary may play a role in controlling the zinc content of the outer layer. On the other hand, the lower corrosion rate caused by zinc additions is believed to be a consequence of corrosion oxide film stabilization due to the substitution reaction equilibrium: z Zn{sup 2+}(aq) + FeCr{sub 2}O{sub 4}(s) {approx} z Fe{sup 2+}(aq) + (Zn{sub z}Fe{sub 1-z})Cr{sub 2}O{sub 4}(s). The liquid-solid distribution coefficient for the reaction, defined by the ratio of total zinc to iron ion concentrations in solution divided by the Zn(II)/Fe(II) ratio in the solid, z/(1-z), was found to be 0.184. This interpretation is consistent with the benefits of zinc treatment being concentration dependent.

S.E. Ziemniak; M. Hanson

2001-03-20T23:59:59.000Z

411

Evolution of a Groundwater Treatment System-Rocky Flats, Colorado...  

Energy Savers (EERE)

the treatment cells (which are made of plastic, so they're more fragile than concrete tanks) and hauled away for disposal. Due to the past nuclear weapons-related mission of...

412

Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia  

Science Journals Connector (OSTI)

Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate ... study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household wat...

Awrajaw Dessie; Esayas Alemayehu…

2014-01-01T23:59:59.000Z

413

Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse  

Science Journals Connector (OSTI)

The recovered waste stream can be used elsewhere in the process, and the water could be used for boiler feed or cooling towers and other operations thereby reducing consumption of precious raw water and drastically reducing operating costs. ...

Chandrakanth Gadipelly; Antía Pérez-González; Ganapati D. Yadav; Inmaculada Ortiz; Raquel Ibáñez; Virendra K. Rathod; Kumudini V. Marathe

2014-06-20T23:59:59.000Z

414

A shallow-water system for sampling macrobenthic infauna  

Science Journals Connector (OSTI)

Oct 1, 1973 ... of materials between water and sediments. ... water estuarine areas penetrated to a depth of 2O- .... pelled by a 7 hp outboard motor, which.

1999-12-31T23:59:59.000Z

415

Meeting the Need for Safe Drinking Water in Rural Mexico through Point-of-Use Treatment  

E-Print Network (OSTI)

solar disinfection (SODIS), and UV disinfection are promising alternative approaches to meeting the urgent water quality needs of rural Mexico.

Lang, Micah; Kaser, Forrest; Reygadas, Fermin; Nelson, Kara; Kammen, Daniel M.

2006-01-01T23:59:59.000Z

416

Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios  

SciTech Connect

Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a 42-month research program that focused on the understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work was conducted on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A rate equation that describes the reaction between chromium acetate and polymer molecules was regressed from experimental data. A mathematical model that describes the crosslinking reaction between two polymer molecules as a function of time was derived. The model was based on probability concepts and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. Average molecular weights of pre-gel aggregates were measured as a function of time and were comparable to model simulations. Experimental methods to determine molecular weight distributions of pre-gel aggregates were unsuccessful. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results and data from literature. Gel treatments usually reduce the permeability to water to a greater extent than the permeability to oil is reduced. This phenomenon is referred to as disproportionate permeability reduction (DPR). Flow experiments were conducted in sandpacks to determine the effect of polymer and chromium concentrations on DPR. All gels studied reduced the permeability to water by a greater factor than the factor by which the oil permeability was reduced. Greater DPR was observed as the concentrations of polymer and chromium were increased. A conceptual model of the mechanisms responsible for DPR is presented. Primary features of the model are (1) the development of flow channels through the gel by dehydration and displacement of the gel and by re-connection of pre-treatment, residual oil volume and (2) high flow resistance in the channels during water flow is caused by significant saturations of oil remaining in the channels. A similar study of DPR was conducted in Berea sandstone cores. Both oil and water permeabilities were reduced by much smaller factors in Berea sandstone cores than in similar treatments in sandpacks. Poor maturation of the gelant in the Berea rock was thought to be caused by fluid-rock interactions that interfered with the gelation process.

G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

2005-12-31T23:59:59.000Z

417

Posters Toward an Operational Water Vapor Remote Sensing System Using the Global Positioning System  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Posters Toward an Operational Water Vapor Remote Sensing System Using the Global Positioning System S. I. Gutman, (a) R. B. Chadwick, (b) and D. W. Wolf (c) National Oceanic and Atmospheric Administration Boulder, Colorado A. Simon Cooperative Institute for Research in Environmental Science Boulder, Colorado T. Van Hove and C. Rocken University Navstar Consortium Boulder, Colorado Background Water vapor is one of the most important constituents of the free atmosphere since it is the principal mechanism by which moisture and latent heat are transported and cause "weather." The measurement of atmospheric water vapor is essential for weather and climate research as well as for operational weather forecasting. An important goal in modern weather prediction is to improve the accuracy of short-term

418

Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments  

SciTech Connect

This study compares the dosimetric differences in HDR brachytherapy treatment plans calculated with Nucletron's PLATO and Oncentra MasterPlan treatment planning systems (TPS). Ten patients (1 T1b, 1 T2a, 6 T2b, 2 T4) having cervical carcinoma, median age of 43.5 years (range, 34-79 years) treated with tandem and ring applicator in our institution were selected retrospectively for this study. For both Plato and Oncentra TPS, the same orthogonal films anterior-posterior (AP) and lateral were used to manually draw the prescription and anatomical points using definitions from the Manchester system and recommendations from the ICRU report 38. Data input for PLATO was done using a digitizer and Epson Expression 10000XL scanner was used for Oncentra where the points were selected on the images in the screen. The prescription doses for these patients were 30 Gy to points right A (RA) and left A (LA) delivered in 5 fractions with Ir-192 HDR source. Two arrangements: one dwell position and two dwell positions on the tandem were used for dose calculation. The doses to the patient points right B (RB) and left B (LB), and to the organs at risk (OAR), bladder and rectum for each patient were calculated. The mean dose and the mean percentage difference in dose calculated by the two treatment planning systems were compared. Paired t-tests were used for statistical analysis. No significant differences in mean RB, LB, bladder and rectum doses were found with p-values > 0.14. The mean percent difference of doses in RB, LB, bladder and rectum are found to be less than 2.2%, 1.8%, 1.3% and 2.2%, respectively. Dose calculations based on the two different treatment planning systems were found to be consistent and the treatment plans can be made with either system in our department without any concern.

Singh, Hardev; De La Fuente Herman, Tania; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin [Department of Radiation Oncology, Peggy and Charles Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 (United States)

2012-10-23T23:59:59.000Z

419

Charles J. Vrsmarty & the UNH Water Systems Analysis Group  

E-Print Network (OSTI)

and environmental flows? Pollution? Poor governance? #12;Provision of Clean Water and Sanitation: A Millennium #12;Food security Global Water Resource Challenges "Engineered" water Sanitation and access to clean.1 billion people lack clean drinking water 2.6 billion people lack basic sanitation

Slatton, Clint

420

Matlab Tools: An Alternative to Planning Systems in Brachytherapy Treatments  

SciTech Connect

This work proposes the use of the Matlab environment to obtain the treatment dose based on the reported data by Krishnaswamy and Liu et al. The comparison with reported measurements is showed for the Amersham source model. For the 3M source model, measurements with TLDs and a Monte Carlo simulation are compared to the data obtained by Matlab. The difference for the Amersham model is well under the 15% recommended by the IAEA and for the 3M model, although the difference is greater, the results are consistent. The good agreement to the reported data allows the Matlab calculations to be used in daily brachytherapy treatments.

Herrera, Higmar [Departamento de Fisica Medica, Centro Estatal de Cancerologia, 5 de febrero y Norman Fuentes s/n, Durango, 34000 (Mexico); Rodriguez, Mercedes [Instituto de Fisica, UNAM, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, Coyoacan, DF, 04510 (Mexico); Rodriguez, Miguel [Departamento de Biofisica, Instituto Nacional de Cancerologia, Av. San Fernando 22, Col. Seccion XVI, Tlalpan, DF, 14080 (Mexico)

2006-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

422

Numerical simulation on the influence of water spray in thermal plasma treatment of CF4 gas  

Science Journals Connector (OSTI)

Nitrogen thermal plasma generated by a non-transferred DC arc plasma torch was used to decompose tetrafluoromethane (CF4). In the thermal decomposition process, water was used as a chemical reactant source. Two kinds of water spray methods were compared: water spray directly to the arc plasma flame and indirectly to the reactor tube wall. Although the same operating conditions of input power, waste gas, and sprayed water flow rate were employed for each water spray methods, a relatively higher decomposition rate was achieved in the case of water spray to the reactor wall. In order to investigate the effects of water spraying direction on the thermal decomposition process, a numerical simulation on the thermal plasma flow characteristics was carried out considering water injection in the reactor. The simulation was performed using commercial fluid dynamics software of the FLUENT, which is suitable for calculating a complex flow. From the results, it was revealed that water spray to the reactor wall and use of a relatively small quantity of water are more effective methods for decomposition of CF4, because a sufficiently high temperature area and long reaction time can be maintained over large area.

Tae-Hee Kim; Sooseok Choi; Dong-Wha Park

2012-01-01T23:59:59.000Z

423

Cost reduction performance enhancements of multiple site cooling water systems, enabled by remote system monitoring/control and multifaceted data management  

SciTech Connect

An outsourced cooling water treatment automated control and data acquisition package, has been designed, installed, and commissioned in over 70 sites in North America and offshore. The standard package consists of a controller, sensors, human-machine interface software, data acquisition and management software, communications, and reporting. Significant challenges to applying this standard package in multiple sites arose from variations in cooling system design and makeup water quality as well as operations, environmental considerations, metrics, and language. A standard approach has met these challenges and overcome effects of downsizing through significant reduction in non-value-added, manual activities. Overall system reliability has been improved by migration to best practice throughout the organizations involved and immediate proactive response to out-of-specification conditions. This paper documents the evolution of a standard cooling water automation and data management package from its inception to current practice.

Cook, B. [BetzDearborn Water Management Group, Horsham, PA (United States); Young, D. [BetzDearborn Water Management Group, Mississauga, Ontario (Canada); Tari, K. [Praxair, Inc., Tonawanda, New York, NY (United States)

1998-12-31T23:59:59.000Z

424

Efficacy of gravity-fed chlorination system for community-scale water disinfection in northern Ghana  

E-Print Network (OSTI)

Although chlorine is one of the lowest cost ways of providing disinfection, currently billions of people lack drinking water that has had this simple treatment. Arch Chemical's Pulsar 1 unit is an innovation in chlorine ...

Fitzpatrick, Daniel Cash

2008-01-01T23:59:59.000Z

425

Performances of photovoltaic water pumping systems: a case study  

Science Journals Connector (OSTI)

This paper presents a mathematical motor-pump model for photovoltaic (PV) applications which allow us to contribute in the studies of PV pumping sizing. The modelled motor-pump characteristic is flow rate-power (Q, P). The model is established for centrifugal pump (CP) coupled to DC motor. The non-linear relation between flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enabled us to simulate the electric and hydraulic performances of CP pumps versus the total water heads for different PV array configuration. The experimental data are obtained with our pumping test facility. The performances are calculated using the measured meteorological data of different sites located in Saudi Arabia. The size of the PV array is varied to achieve the optimum performance of the proposed system.

M. Benghanem

2009-01-01T23:59:59.000Z

426

Feasibility study and roadmap to improve residential hot water distribution systems  

SciTech Connect

Residential building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include: the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy to reheat water that was already heated once before. A feasibility study and an action plan for a proposed research project involving residential hot water distribution systems is being developed. The feasibility study will use past work to estimate of hot water and energy loses caused by current hot water distribution systems in residences. Proposed research project, or roadmap, will develop recommendations for improvements to residential hot water distribution systems. The roadmap addresses the technical obstacles and gaps in our knowledge that prevent water and energy reductions and market adoption of water- and energy-efficient technologies. The initial results of the feasibility study are presented here along with a discussion of a roadmap to improve the efficiency of residential hot water distribution systems.

Lutz, James D.

2004-03-31T23:59:59.000Z

427

On-Site Wastewater Treatment Systems: Gravel-less Pipe  

E-Print Network (OSTI)

Gravel-less pipe systems distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of gravel-less pipe systems, explains how to maintain them and gives estimates of costs....

Lesikar, Bruce J.

2000-04-10T23:59:59.000Z

428

Economic costs of conventional surface-water treatment: A case study of the Mcallen northwest facility  

E-Print Network (OSTI)

supplies.2 2 The majority of the groundwater in the Valley is brackish; therefore, the groundwater is not considered3 potable unless it is treated with a desalination process. In order to determine if water is brackish, the salinity of the water must....e., supply) include: groundwater wells, wastewater reuse, desalination of seawater and/or brackish groundwater, and rainwater harvesting. Efficiency-in-use improvements being applied in the Valley3 include on-farm and municipal water-conservation measures...

Rogers, Callie Sue

2009-05-15T23:59:59.000Z

429

Removal of Emerging Contaminants in Water Treatment by Nanofiltration and Reverse Osmosis  

Science Journals Connector (OSTI)

The general rules established in abundant studies on removal of conventional pollutants from waters by reverse osmosis and nanofiltration were reconsidered in this contribution...

Branko Kunst; Krešimir Košuti?

2008-01-01T23:59:59.000Z

430

Modeling the Global Water Resource System in an Integrated Assessment Modeling Framework: IGSM-WRS  

E-Print Network (OSTI)

The availability of water resources affects energy, agricultural and environmental systems, which are linked together as well as to climate via the water cycle. As such, watersheds and river basins are directly impacted ...

Strzepek, Kenneth M.

431

Thermal performance of phase change material energy storage floor for active solar water-heating system  

Science Journals Connector (OSTI)

The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the w...

Ruolang Zeng; Xin Wang; Wei Xiao…

2010-06-01T23:59:59.000Z

432

Techno-Economic Evaluation of Renewable Energy Systems for Irrigation Water Pumping in India  

Science Journals Connector (OSTI)

An attempt to develop a simple framework for techno-economics evaluation of renewable energy (RE) systems for irrigation water pumping has been made. The unit cost of water delivered and unit cost of useful energy

Ishan Purohit; Pallav Purohit

2009-01-01T23:59:59.000Z

433

Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturable Manufacturable Microchannel Systems for Passive PEM Water Management IIPS Number 16910 Low Low - - Cost Cost Manufacturable Manufacturable Microchannel Systems for Passive Microchannel Systems for Passive PEM Water Management PEM Water Management IIPS Number 16910 IIPS Number 16910 Ward TeGrotenhuis, Susie Stenkamp, Curt Lavender Pacific Northwest National Laboratories Richland, WA HFCIT Kick Off Meeting February 2007 2 Project objective: Create a low cost and passive PEM water management system Project objective: Project objective: Create a low cost Create a low cost and passive PEM water management system and passive PEM water management system Specific Targets Addressed for 3.4.2 Automotive-Scale: 80 kWe Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen

434

Reservoir/River System Reliability Considering Water Rights and Water Quality  

E-Print Network (OSTI)

Effective management of the highly variable water resources of a river basin requires an understanding of the amount of suitable quality water that can be provided under various conditions within institutional constraints. Although much research has...

Wurbs, Ralph A.; Sanchez-Torres, Gerardo; Dunn, David D.

435

Adapting to Less Water: Household Willingness to Pay for Decentralised Water Systems in Urban Australia  

Science Journals Connector (OSTI)

In South East Queensland (SEQ), extended periods of drought and unprecedented population growth have resulted in a water strategy reliant on permanent water conservation measures. As a result, there has been i...

Sorada Tapsuwan; Michael Burton; Aditi Mankad; David Tucker…

2014-03-01T23:59:59.000Z

436

Treatment of drinking water to improve its sanitary or bacteriological quality is  

E-Print Network (OSTI)

,000 gallons), such an approach can be wasteful, increasing energy costs for the well pump to refill the tank Chlorine Amounts To sanitize water properly, enough chlorine needs to be added to a storage tank to reach bacteria have been properly destroyed by the sanitation process, submit water samples from a faucet served

437

E-Print Network 3.0 - affect water relations Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

corrosive water affects the entire household plumbing system... on water testing and treatment and issues ... Source: Liskiewicz, Maciej - Institut fr Theoretische Informatik,...

438

E-Print Network 3.0 - affects water relations Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

corrosive water affects the entire household plumbing system... on water testing and treatment and issues ... Source: Liskiewicz, Maciej - Institut fr Theoretische Informatik,...

439

Optimum Energy Management of a Photovoltaic Water Pumping System  

Science Journals Connector (OSTI)

This paper presents a new management of the energy of a photovoltaic water pumping installation composed of a battery, a water pump and a photovoltaic panel. The approach makes decision on the optimum connecti...

Souhir Sallem; Maher Chaabene; M. B. A. Kamoun

2009-01-01T23:59:59.000Z

440

Modeling the water consumption of Singapore using system dynamics  

E-Print Network (OSTI)

Water resources are essential to life, and in urban areas, the high demand density and finite local resources often engender conditions of relative water scarcity. To overcome this scarcity, governments intensify infrastructure ...

Welling, Karen Noiva

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Attached growth fungal system for corn wet milling wastewater treatment.  

E-Print Network (OSTI)

??High organic strength food-processing wastewaters are typically treated with conventional aerobic systems such as an activated sludge process that produces substantial quantities of low value… (more)

Jasti, Nagapadma

2006-01-01T23:59:59.000Z

442

UV water disinfector  

DOE Patents (OSTI)

A UV disinfector with a gravity driven feed water delivery system and an air-suspended bare UV lamp are disclosed. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir. 7 figs.

Gadgil, A.; Garud, V.

1998-07-14T23:59:59.000Z

443

Characterization of Cu{sub 6}Sn{sub 5} intermetallic powders produced by water atomization and powder heat treatment  

SciTech Connect

Since the Cu{sub 6}Sn{sub 5} intermetallic shows its importance in industrial applications, the Cu{sub 6}Sn{sub 5} intermetallic-containing powders, produced by a powder processing route with a high production rate, were characterized. The route consisted of water atomization of an alloy melt (Cu–61 wt.% Sn) and subsequent heat treatment of the water-atomized powders. Characterization of the water-atomized powders and their heated forms was conducted by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Fine water-atomized powder microstructures consisted of primary hexagonal ?-Cu{sub 6.25}Sn{sub 5} dendrites coexisting with interdendritic ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic. Solidification of fine melt droplets was governed by surface nucleation and growth of the primary hexagonal ?-Cu{sub 6.25}Sn{sub 5} dendrites followed by ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic solidification of the remnant liquid. In coarse melt droplets, nucleation and growth of primary ?-Cu{sub 3}Sn dendrites were followed by peritectic reaction (?-Cu{sub 3}Sn + liquid ? ?-Cu{sub 6.25}Sn{sub 5}) or direct crystallization of ?-Cu{sub 6.25}Sn{sub 5} phase from the undercooled melt. Finally, the ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic solidification of the remnant liquid occurred. Heating of the water-atomized powders at different temperatures resulted in microstructural homogenization. The water-atomized powders with mixed phases were transformed to powders with single monoclinic ?-Cu{sub 6}Sn{sub 5} phase. - Highlights: • The Cu{sub 6}Sn{sub 5} intermetallic powder production route was proposed. • Single phase Cu{sub 6}Sn{sub 5} powders could be by water atomization and heating. • Water-atomized Cu–Sn powders contained mixed Cu–Sn phases. • Solidification and heat treatment of water-atomized Cu–Sn powders are explained.

Tongsri, Ruangdaj, E-mail: ruangdt@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Yotkaew, Thanyaporn, E-mail: thanyy@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Krataitong, Rungtip, E-mail: rungtipk@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Wila, Pongsak, E-mail: pongsakw@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Sir-on, Autcharaporn, E-mail: autchars@mtec.or.th [Materials Characterization Research Unit (MCRU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Muthitamongkol, Pennapa, E-mail: pennapm@mtec.or.th [Materials Characterization Research Unit (MCRU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Tosangthum, Nattaya, E-mail: nattayt@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand)

2013-12-15T23:59:59.000Z

444

Anti-HER2 Cationic Immunoemulsion as a Potential Targeted Drug Delivery System for the Treatment of Prostate Cancer  

Science Journals Connector (OSTI)

...and response to treatment with a HER2-directed...single agent for the treatment of these patients...concentrations in oil/water nanoemulsions will...Germany) at 25C using water as the solvent...unconjugated mAbs by dialysis using a polyvinylidene...for transmission electron microscopy (TEM...

Danny Goldstein; Ofer Gofrit; Abraham Nyska; and Simon Benita

2007-01-01T23:59:59.000Z

445

Hydrogen from Water in a Novel Recombinant Cyanobacterial System  

SciTech Connect

Photobiological processes are attractive routes to renewable H2 production. With the input of solar energy, photosynthetic microbes such as cyanobacteria and green algae carry out oxygenic photosynthesis, using sunlight energy to extract protons and high energy electrons from water. These protons and high energy electrons can be fed to a hydrogenase system yielding H2. However, most hydrogen-evolving hydrogenases are inhibited by O2, which is an inherent byproduct of oxygenic photosynthesis. The rate of H2 production is thus limited. Certain photosynthetic bacteria are reported to have an O2-tolerant evolving hydrogenase, yet these microbes do not split water, and require other more expensive feedstocks. To overcome these difficulties, the goal of this work has been to construct novel microbial hybrids by genetically transferring O2-tolerant hydrogenases from other bacteria into a class of photosynthetic bacteria called cyanobacteria. These hybrid organisms will use the photosynthetic machinery of the cyanobacterial hosts to perform the water-oxidation reaction with the input of solar energy, and couple the resulting protons and high energy electrons to the O2-tolerant bacterial hydrogenase, all within the same microbe (Fig. 1). The ultimate goal of this work has been to overcome the sensitivity of the hydrogenase enzyme to O2 and address one of the key technological hurdles to cost-effective photobiological H2 production which currently limits the production of hydrogen in algal systems. In pursuit of this goal, work on this project has successfully completed many subtasks leading to a greatly increased understanding of the complicated [NiFe]-hydrogenase enzymes. At the beginning of this project, [NiFe] hydrogenases had never been successfully moved across wide species barriers and had never been heterologously expressed in cyanobacteria. Furthermore, the idea that whole, functional genes could be extracted from complicated, mixed-sequence meta-genomes was not established. In the course of this work, we identified a new hydrogenase from environmental DNA sequence and successfully expressed it in a variety of hosts including cyanobacteria. This was one of the first examples of these complicated enzymes being moved across vastly different bacterial species and is the first example of a hydrogenase being “brought to life” from no other information than a DNA sequence from metagenomic data. The hydrogenase we identified had the molecular signature of other O2-tolerant hydrogenases, and we discovered that the resulting enzyme had exceptionally high oxygen- and thermo-tolerance. The new enzyme retained 80% of its activity after incubation at 80° C for 2 hours and retained 20% activity in 1% O2. We performed detailed analysis on the maturation genes required for construction of a functional enzyme of this class of hydrogenase, and found that seven additional maturation genes were required for minimal activity and a total of nine genes besides the hydrogenase were required for optimal maturation efficiency. Furthermore, we demonstrated that the maturation genes are functional on closely-related hydrogenase enzymes such as those from Alteromonas macleodii and Thiocapsa roseopersicina. Finally, we have extensively modified the hydrogenase to engineer new traits including higher H2 production and better interaction with electron donors. For example, combining two strategies increased hydrogenase activity in cyanobacteria by at least 20-fold over our initial expression level. The activity of this combined strain is almost twice that of the native hydrogenase activity in S. elongatus. This work validates the idea that these enzymes are broadly tolerant to modifications that may help integrate them into a successful photobiological H2 production system. While we did not achieve our ultimate goal of integrating the functional hydrogenase with the cyanobacterial photosynthetic apparatus, the work on this project has led to significant advances in the understanding of these complicated enzymes. This work will greatly benefit future

Weyman, Philip D [J. Craig Venter Institute; Smith, Hamillton O.

2014-12-03T23:59:59.000Z

446

Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios  

SciTech Connect

Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of the third year of a 42 month research program that is aimed at an understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work focused on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A mathematical model that describes uptake and crosslinking reactions as a function of time was derived. The model was probability based and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. A liquid chromatography apparatus to experimentally measure the size and molecular weight distributions of polymer samples was developed. The method worked well for polymer samples without the chromium crosslinker. Sample retention observed during measurements of gelant samples during the gelation process compromised the results. Other methods will be tested to measure size distributions of the pre-gel aggregates. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results.

G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

2005-04-03T23:59:59.000Z

447

Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report  

SciTech Connect

The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

None

1980-11-01T23:59:59.000Z

448

On-Site Wastewater Treatment Systems: Leaching Chambers  

E-Print Network (OSTI)

Leaching chambers distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of leaching chamber systems, explains how to maintain them and gives estimates of costs....

Lesikar, Bruce J.

2000-02-04T23:59:59.000Z

449

Fate of Triclosan and Triclosan-Methyl in Sewage TreatmentPlants and Surface Waters  

Science Journals Connector (OSTI)

The fate of triclosan in diverse stages of two sewage treatment ... two-stage biologic (activated sludge) process removed triclosan more efficiently than the STP with a ... not very effective. The elimination rat...

Kai Bester

2005-07-01T23:59:59.000Z

450

EPA ENERGY STAR Webcast: Benchmarking Water/Wastewater Treatment Facilities in Portfolio Manager  

Energy.gov (U.S. Department of Energy (DOE))

Learn how to track the progress of energy efficiency efforts and compare the energy use of wastewater treatment plants to other peer facilities across the country. Attendees will learn how to...

451

Most modern wastewater treatment systems rely on microbial processes to remove contaminants. This makes wastewater  

E-Print Network (OSTI)

Most modern wastewater treatment systems rely on microbial processes to remove contaminants. This makes wastewater treatment one of the largest biotechnology industries in the world. In New Zealand alone, about 1.5 billion litres of treated domestic wastewater is discharged each day

Auckland, University of

452

Numerical simulation of Large Solar Hot Water system in storage tank.  

E-Print Network (OSTI)

??This research is aimed to study the storage tank design parameters effects on the efficiency of the large solar hot water system. Detailed CFD simulation… (more)

Shue, Nai-Shen

2012-01-01T23:59:59.000Z

453

Assessing resilience of water supply systems under the impacts of climate change.  

E-Print Network (OSTI)

??This project was a step forward in developing the scientific basis for a methodology to assess the resilience of water supply systems under the impacts… (more)

Jofreh, Venus

2014-01-01T23:59:59.000Z

454

Resilience of water supply systems in meeting the challenges posed by climate change and population growth.  

E-Print Network (OSTI)

??This research project provides a scientifically robust approach for assessing the resilience of water supply systems, which are critical infrastructure, to impacts of climate change… (more)

Amarasinghe, Pradeep

2014-01-01T23:59:59.000Z

455

Effectiveness of solar water-lift system with parabolic cylindrical solar energy collector and jet pump  

Science Journals Connector (OSTI)

Formulas are presented and a computer calculation program is implemented for determining the energy efficiency of a solar water-lift system module with a parabolic...

S. F. Ergashev

2007-03-01T23:59:59.000Z

456

Electrolysis of Water in a System with a Solid Polymer Electrolyte at Elevated Pressure  

Science Journals Connector (OSTI)

Electrolysis of water in a system with a solid polymer ... of the effect of elevated pressure on the electrolysis electrochemistry is proposed. A mathematical model and...

S. A. Grigor'ev; M. M. Khaliullin; N. V. Kuleshov…

2001-08-01T23:59:59.000Z

457

Feasibility Analysis of Two Indirect Heat Pump Assisted Solar Domestic Hot Water Systems.  

E-Print Network (OSTI)

??This thesis is an analysis of the simulated performance of two indirect heat pump assisted solar domestic hot water (i-HPASDHW) systems compared to two base… (more)

Sterling, Scott Joseph

2011-01-01T23:59:59.000Z

458

Simulation and Validation of a Single Tank Heat Pump Assisted Solar Domestic Water Heating System.  

E-Print Network (OSTI)

??This thesis is a study of an indirect heat pump assisted solar domestic hot water (I-HPASDHW) system, where the investigated configuration is called the Dual… (more)

Wagar, William Robert

2013-01-01T23:59:59.000Z

459

Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system  

Science Journals Connector (OSTI)

In this study, passive cooling of a room using a solar chimney and water spraying system in the room ... a hot and arid city with very high solar radiation). The performance of this system ... some parameters suc...

Ramin Rabani; Ahmadreza K. Faghih; Mehrdad Rabani; Mehran Rabani

2014-11-01T23:59:59.000Z

460

Theoretical model for evaluation of variable frequency drive for cooling water pumps in sea water based once through condenser cooling water systems  

Science Journals Connector (OSTI)

In sea water based once through cooling water system for power plants, sea water is pumped through the condenser and the return hot water is let back to sea. The cooling water pumps (CWP) in power plants generally operate at constant speed, pumping variable quantities of water depending on the tide level in the sea. The variable flow causes variation in condenser back pressure resulting in changes in the turbine cycle heat rate. If the pump speed is controlled using a variable frequency drive (VFD) to maintain design flow irrespective of the tide level, the CWP power consumption can be reduced compared to the case with constant speed CWP. However, the turbine cycle heat rate benefit that could have accrued at tide levels above the pre defined level (for fixing the CWP head) with constant speed CWP would have to be sacrificed. This paper provides a theoretical model with a typical case study to establish viability of providing VFD for \\{CWPs\\} in power plants with sea water based once through condenser cooling water system.

R. Harish; E.E. Subhramanyan; R. Madhavan; S. Vidyanand

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district  

E-Print Network (OSTI)

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district heating system ­ and makes a proposal for a technical and economic improvement. Monitoring of water quality in district heating systems is necessary

462

Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models  

SciTech Connect

A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

Weitzel, E.; Hoeschele, M.

2014-09-01T23:59:59.000Z

463

Modeling of recycling oxic and anoxic treatment system for swine wastewater using neural networks  

Science Journals Connector (OSTI)

A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry ... treated and then part of the effluent is recycled

Jung-Hye Choi; Jun-Il Sohn; Hyun-Sook Yang…

2000-10-01T23:59:59.000Z

464

Ground water monitoring system for effluent irrigated areas : a case study of Hawkesbury water recycling scheme.  

E-Print Network (OSTI)

??Water recycling schemes are increasingly being implemented across Australia as an effective means of converting wastewater into a valuable resource. There is currently a lack… (more)

Beveridge, Gavin John

2006-01-01T23:59:59.000Z

465

USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES  

SciTech Connect

The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 1 presents a general assessment of produced water generation in the San Juan Basin in Four Corners Area of New Mexico. Oil and gas production, produced water handling and disposal, and produced water quantities and chemistry are discussed. Legislative efforts to enable the use of this water at SJGS are also described.

Michael N. DiFilippo

2004-08-01T23:59:59.000Z

466

Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Creates One-Touch Wonder for Groundwater Treatment Creates One-Touch Wonder for Groundwater Treatment Systems Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems April 29, 2013 - 12:00pm Addthis The interior of a pump-and-treat system along the Columbia River at the Hanford Site. With the push of a button, workers can now power the site’s five systems along the river that are working to extract and treat contaminated groundwater. The interior of a pump-and-treat system along the Columbia River at the Hanford Site. With the push of a button, workers can now power the site's five systems along the river that are working to extract and treat contaminated groundwater. RICHLAND, Wash. - Engineers and operators supporting the Richland Operations Office at the Hanford site found a way to start and stop

467

Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Creates One-Touch Wonder for Groundwater Treatment Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems April 29, 2013 - 12:00pm Addthis The interior of a pump-and-treat system along the Columbia River at the Hanford Site. With the push of a button, workers can now power the site’s five systems along the river that are working to extract and treat contaminated groundwater. The interior of a pump-and-treat system along the Columbia River at the Hanford Site. With the push of a button, workers can now power the site's five systems along the river that are working to extract and treat contaminated groundwater. RICHLAND, Wash. - Engineers and operators supporting the Richland Operations Office at the Hanford site found a way to start and stop

468

Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: To improve the efficiency and output variability of geothermal-based ORC power production systems with minimal water consumption by deploying: 1) a hybrid-water/air cooled condenser with low water consumption and 2) an enhanced turbine with high efficiency.

469

University of Arizona Geography and Regional Development 696O Adaptation and Resilience in Water Resources Systems  

E-Print Network (OSTI)

, urban growth, energy demand, and global food trade alter water in coupled human-natural systemsUniversity of Arizona Geography and Regional Development 696O 1 Adaptation and Resilience in Water syllabus] As we enter an era of drastically heightened pressure on water resources combined with greater

Scott, Christopher

470

Fault Diagnosis Of A Water For Injection System Using Enhanced Structural Isolation  

Science Journals Connector (OSTI)

A water for injection system supplies chilled sterile water as a solvent for pharmaceutical products. There are ultimate requirements for the quality of the sterile water, and the consequence of a fault in temperature or in flow control within the process ... Keywords: Fault Diagnosis, Fault Isolation, Matching, Structural Analysis

Morten Laursen; Mogens Blanke; Dilek Dü?TegöR

2008-12-01T23:59:59.000Z