Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Water Resources Water Quality and Water Treatment  

E-Print Network [OSTI]

Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

Sohoni, Milind

2

Treatment of brackish water  

SciTech Connect (OSTI)

Brackish water resulting from steam extraction of heavy crude oils, including oil sands bitumen, is processed for reuse by removing hydrocarbon contamination and removing mineral contamination. The purified water can be boiled in conventional boilers without scaling or fouling occurring. Heat economy is used in conducting the process. The brackish water is first subjected to oil removal by separating out as much of the free oil as possible, such as by using gravity separation and air flotation, and then stripping any residual oil by ozone treatment. The hydrocarbon-free water then is subjected to demineralization. The demineralization is effected by a first electrodialysis reversal step to remove minerals other than silica and a second silica removal step. 8 claims.

Ciepiela, E.J.

1983-07-26T23:59:59.000Z

3

Electrodialysis in Water Treatment  

Science Journals Connector (OSTI)

This chapter focuses on the uses of electrodialysis and specially electrodialysis reversal for the treatment of brackish and groundwater to produce drinking water. Over the last 10–15 years,...

Andréa Moura Bernardes; Marco A. S. Rodrigues

2014-01-01T23:59:59.000Z

4

Water_Treatment.cdr  

Office of Legacy Management (LM)

Since dewatering at the Weldon Spring site began in Since dewatering at the Weldon Spring site began in 1992, more than 290 million gallons of contaminated water have been treated and released into the Missouri River from two similar water treatment facilities at the site and the nearby Quarry. On September 30, 1999, dewatering efforts at the Chemical Plant site were completed, meeting one of the most substantial milestones of the project and bringing to an end a part of history that was started nearly 5 decades ago. From 1955 to 1966, uranium materials were processed at the U.S. Atomic Energy Commission's Uranium Feed Materials Plant. The ore was processed in a nitric acid solution that separated the uranium from other chemicals. The by-product, called raffinate, was neutralized with lime, then placed in four settling basins,

5

Guidelines for makeup water treatment  

SciTech Connect (OSTI)

The EPRI Fossil Plant Cycle Chemistry Program, RP 2712, was developed in recognition of the importance of controlling cycle water and steam purity in attainment of maximized unit availability, reliability and efficiency. This guideline characterizes the state-of-the-art technology for production of cycle makeup water. It is intended to complement other RP 2712 projects in the areas of cycle chemistry guidelines, instrumentation and control, guideline demonstration and verification, and related subject areas. This guideline reviews available technology for and preferred approaches to production of fossil plant cycle makeup from various raw water supplies. Subject areas covered include makeup water source and source characteristics, unit processes comprising makeup treatment systems, guidelines for process selection, resin and membrane selection guidelines, techniques for monitoring performance and cost effectiveness, and waste disposal considerations. The report also identifies additional research activity needed to advance the state-of-the-art for makeup water treatment, results of a utility industry survey and other related topics. 72 refs., 60 figs., 74 tabs.

Cline, D.A. Jr.; Shields, K.J. (Powell (Sheppard T.) Associates, Baltimore, MD (USA))

1990-03-01T23:59:59.000Z

6

Water treatment method  

DOE Patents [OSTI]

A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

Martin, F.S.; Silver, G.L.

1991-04-30T23:59:59.000Z

7

INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION  

SciTech Connect (OSTI)

This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance.

SEXTON RA; MEEUWSEN WE

2009-03-12T23:59:59.000Z

8

Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on  

E-Print Network [OSTI]

, brackish groundwater, produced water, etc.produced water, etc. Advanced treatmentAdvanced treatment Water© Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on EnergyEnergy--Water LinkagesWater Linkages (The Water Utility Perspective)(The Water

Keller, Arturo A.

9

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network [OSTI]

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler...

Bloom, D.

10

Boiler feed water treatment using electrodialysis.  

E-Print Network [OSTI]

??Water treatment is the most important part of any power plant. Water from natural reservoir is fetched into plant and treated to reduce impurity level,… (more)

Patel, Ankit

2010-01-01T23:59:59.000Z

11

Arsenic Leachability in Water Treatment Adsorbents  

Science Journals Connector (OSTI)

Arsenic Leachability in Water Treatment Adsorbents ... The EXAFS results indicate that As forms inner-sphere bidentate binuclear surface complexes on all five adsorbent surfaces. ... Extended X-ray absorption fine structure (EXAFS) was used for the first time to investigate the bonding structures of adsorbed As(V) ... ...

Chuanyong Jing; Suqin Liu; Manish Patel; Xiaoguang Meng

2005-06-02T23:59:59.000Z

12

Magnetic water treatment: A coming attraction?  

SciTech Connect (OSTI)

United Airlines and pharmaceutical company Eli Lilly and Company are among a number of users that are controlling scale and corrosion in cooling tower loops with magnetic water treatment, a controversial technology that has met with skepticism, disbelief, and claims of fraud. Experts and hundreds of published papers disagree on whether magnetic water treatment works, and if so, how. No scientific theory has proven how magnets can treat water, nor are there documented, reproducible laboratory test results. Field experience is mixed, with some installations working well and others failing. Despite the controversy and the lack of an adequately documented theoretical underpinning, the existence of large, apparently successful installations lends credence to the view that at least some magnetic water treatment systems are effective. The stakes are high. Most large HVAC systems are currently treated with chemicals. These chemicals generally work well, but they are costly, in many cases are environmentally damaging, and are subject to increasingly strict regulations. A reliable, low-cost, and more environmentally benign alternative that eliminates or sharply reduces the need for chemical treatment would have obvious benefits. Based on the review of the literature, discussions with users, vendors, and independent analysts, and tours of several apparently successful installations, E Source believes that this technology works in some cases and warrants further investigation. They caution prospective users to shop carefully and to select vendors with an established track record.

Fryer, L.

1995-10-01T23:59:59.000Z

13

ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER  

SciTech Connect (OSTI)

During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

John R. Gallagher

2001-07-31T23:59:59.000Z

14

Magnetic treatment of water prevents mineral build-up  

SciTech Connect (OSTI)

Increased demand for water and especially for water reuse combined with tighter restrictions on environmental pollution has dictated the need for improvement in water treatment. The effective treatment of a water supply to prevent or minimize the formation of scale or corrosion, for example, is complex and any process requiring little or no chemical additions represents an attractive alternative. Untreated water results in equipment failures, process interruptions and circulating water systems clogged by minerals. These problems are, in many instances, related to scale deposition and corrosion caused by dissolved and suspended solids in the water supply. Magnetic treatment of water is an effective method of overcoming these problems. The theory, application and case studies involving the use of magnetic treatment are discussed.

Quinn, C.J. [Purdue Univ., Fort Wayne, IN (United States); Molden, T.C. [Molden Associates, Inc., Michigan City, IN (United States); Sanderson, C.H. [Magnatech Corp., Fort Wayne, IN (United States). Superior Mfg. Div.

1997-07-01T23:59:59.000Z

15

Ground Water Recovery and Treatment  

Science Journals Connector (OSTI)

Until the environmental revolution, the only ground water that was routinely treated to remove contamination was the impacted ground water that was extracted for beneficial use. With ... the recognition that cont...

Tie Li Ph.D.; Raaj U. Patel P.G.; David K. Ramsden Ph.D.…

2003-01-01T23:59:59.000Z

16

Renewable Energy Powered Water Treatment Systems   

E-Print Network [OSTI]

There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

Richards, Bryce S.; Schäfer, Andrea

2009-01-01T23:59:59.000Z

17

Nanotechnology in water treatment: an emerging trend  

Science Journals Connector (OSTI)

With advances in nanotechnology, different types of nanomaterial are emerging for applications in water purification and water treatment devices owing to their effectiveness against both chemical and biological contaminants. This paper discusses the application of nanoscale materials that are being evaluated or developed as functional materials for water treatment, e.g. nanomembranes (nanocomposite RO and NF and carbon nanotubes), metal nanoparticles, nanoadsorbents, magnetic nanoparticles, bioactive nanoparticles, carbonaceous nanomaterials, zeolites, dendrimers and nanofibres. Nanomaterials are intrinsically better in terms of performance than other substances used in water treatment because of their high surface area (surface/volume ratio). Owing to these characteristics, these may be used in future at large scale for water purification.

Hiren D. Raval; Jaydev M. Gohil

2010-01-01T23:59:59.000Z

18

ENVIRONMENTAL ASSESSMENT FOR WASTE WATER TREATMENT MODIFICATIONS  

Broader source: Energy.gov (indexed) [DOE]

WASTE WATER TREATMENT MODIFICATIONS WASTE WATER TREATMENT MODIFICATIONS FOR IMPROVED EFFLUENT COMPLIANCE BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK BROOKHAVEN SITE OFFICE JUNE 24, 2011 DOE/EA-1854 i Table of Contents 1.0 INTRODUCTION ............................................................................................................... 1 2.0 SUMMARY ........................................................................................................................ 1 3.0 PURPOSE AND NEED ....................................................................................................17 4.0 ALTERNATIVES ..............................................................................................................17 4.1 Alternative 1 - Groundwater Recharge System (Preferred Alternative) .............. 17

19

ENVIRONMENTAL ASSESSMENT Waste Water Treatment Modifications for  

E-Print Network [OSTI]

Actions - Isolate and restore sand filter beds (~10 acres) - Remove UV light sanitation system ­ evaluateENVIRONMENTAL ASSESSMENT FOR Waste Water Treatment Modifications for Improved Effluent Compliance adhering to them. · Develop recharge basins for disposal of treated waste water. Polythiocarbonate

Homes, Christopher C.

20

Missouri Water Treatment Plant Upgraded | Department of Energy  

Energy Savers [EERE]

Missouri Water Treatment Plant Upgraded Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water Treatment Plant are...

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EPA ENERGY STAR Webcast: Benchmarking Water/Wastewater Treatment...  

Energy Savers [EERE]

Benchmarking WaterWastewater Treatment Facilities in Portfolio Manager EPA ENERGY STAR Webcast: Benchmarking WaterWastewater Treatment Facilities in Portfolio Manager November...

22

Saving Energy, Water, and Money with Efficient Water Treatment Technologies  

SciTech Connect (OSTI)

Reverse Osmosis (RO) is a method of purifying water for industrial processes and human consumption; RO can remove mineral salts as well as contaminants such as bacteria and pesticides. Advances in water treatment technologies have enhanced and complemented the conventional RO process, reducing energy and water consumption, lowering capital and operating costs, and producing purer water. This publication of the Department of Energy's Federal Energy Management Program introduces RO, describes the benefits of high-efficiency reverse osmosis (HERO), and compares HERO with RO/electrodeionization (EDI) technology.

Not Available

2004-06-01T23:59:59.000Z

23

Treatment of aricultural drainage water: technological schemes and financial indicators  

Science Journals Connector (OSTI)

Treatment and application of agricultural drainage water (ADW) has become mandatory to cope with the shortage of potable water. In Egypt, current water supply plans comprise increasing utilization of the ample resource of ADW. The current limitations facing wider utilization of secondary sources in general and, ADW of particular, need extensive funding requirements. Best available technologies and consequently high level of capital have been required to implement treatment works. This paper presents techno-economic aspects of treatment and reuse of polluted surface water resulting from mixing river water with ADW. Proposed technological treatment schemes are first discussed. Further, the selected integrated treatment scheme based on conventional and advanced physicochemical techniques is elucidated. Membrane separation has been incorporated to achieve removal of residual pollutants as well as salinity reduction. Further, the paper is concluded with a techno-economic assessment of the proposed treatment train for 110,000 m3/d treatment facility. The results indicate promising features of the proposed scheme. Complementary studies are needed to assess potential environmental impacts under normal conditions.

Hala A. Talaat; Safaa R. Ahmed

2007-01-01T23:59:59.000Z

24

Water Purification by Using Microplasma Treatment  

Science Journals Connector (OSTI)

Dielectric barrier discharge microplasma generated at the surface of water is proposed as a solution for water treatment. It is an economical and an ecological technology for water treatment due to its generation at atmospheric pressure and low discharge voltage. Microplasma electrodes were placed at small distance above the water thus active species and radicals were flown by the gas towards the water surface and furthermore reacted with the target to be decomposed. Indigo carmine was chosen as the target to be decomposed by the effect of active species and radicals generated between the electrodes. Air, oxygen, nitrogen and argon were used as discharge gases. Measurement of absorbance showed the decomposition of indigo carmine by microplasma treatment. Active species and radicals of oxygen origin so called ROS (reactive oxidative species) were considered to be the main factor in indigo carmine decomposition. The decomposition rate increased with the increase of the treatment time as shown by the spectrophotometer analysis. Discharge voltage also influenced the decomposition process.

K Shimizu; N Masamura; M Blajan

2013-01-01T23:59:59.000Z

25

Iowa's first electrodialysis reversal water treatment plant  

Science Journals Connector (OSTI)

In 1979 the City of Washington was notified by the Iowa Department of Natural Resources (IDNR) that the City was in violation of the radium standard for drinking water. The City of Washington authorized an engineering study to determine the most cost-effective and practical way to remove radium and, at the same time, improve overall water quality. Several possible treatment alternatives were evaluated. It was finally decided to utilize electrodialysis reversal (EDR). Washington obtains its water from three deep wells ranging in capacity from 600–780 gpm. The untreated water withdrawn from the wells first passes through the EDR units. There are three EDR units, each able to produce 285 gpm of finished water. In the future, another EDR unit can be easily added to the other three units, since the new plant was built and plumbed for an additional EDR unit if water demand increased. The Jordan aquifer supply is adequate for current and future needs. The average daily water usage in 1993 was 818,000 gal/d. In order to meet peak flows, it is possible to bypass the EDR units with part of the untreated water and then blend treated and untreated water. The treated water meets IDNR standards of 5.0 pC/L. After the EDR units, the water flows through an aerator where odor-causing gases and carbon dioxide are removed. Aeration reduces the amount of caustic soda and chlorine used in the finished water. The hydrogen sulfide gas leaves the water as it passes through the aerator, and this loss of gas creates less chlorine demand. Total and free chlorine residuals are now detected in every water main of the town, whereas before, the residuals would not be detected in certain area of Washington. Phosphates have been cut back from 7 pounds per day to one pound per day. Better water quality is now being achieved with fewer chemicals added to the finished water. Washington's water treatment plant is the first municipal EDR plant in the State of Iowa and one of the largest municipal installations in the United States.

John Hays

2000-01-01T23:59:59.000Z

26

EECBG Success Story: Missouri Water Treatment Plant Upgraded...  

Energy Savers [EERE]

Missouri Water Treatment Plant Upgraded EECBG Success Story: Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water...

27

Waste-Water Treatment: The Tide Is Turning  

Science Journals Connector (OSTI)

...combine to form water. The resins...by waste-water treatment standards. In electrodialysis, an electric...human use. Electrodialysis and reverse...brackish waste water, and these...problem in sewage treatment. The cost...

Robert W. Holcomb

1970-07-31T23:59:59.000Z

28

Linking ceragenins to water-treatment membranes to minimize biofouling.  

SciTech Connect (OSTI)

Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter katedanii, and Paracoccus marcusii (seawater), and Sphingopyxis spp. (groundwater). The testing demonstrated the ability of these isolates to be used for biofouling control testing under laboratory conditions. Biofilm forming bacteria were obtained from all the source water samples.

Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

2012-01-01T23:59:59.000Z

29

INL Bettis Water Treatment Project Report  

SciTech Connect (OSTI)

Bechtel Bettis Atomic Power Laboratory (Bettis), West Mifflin, PA, requested that the Idaho National Laboratory (INL) (Battelle Energy Alliance) perform tests using water simulants and three specified media to determine if those ion-exchange (IX) resins will be effective at removing the plutonium contamination from water. This report details the testing and results of the tests to determine the suitability of the media to treat plutonium contaminated water at near nuetral pH.

Not Available

2009-06-01T23:59:59.000Z

30

Applications of nanotechnology in water and wastewater treatment  

E-Print Network [OSTI]

Applications of nanotechnology in water and wastewater treatment Xiaolei Qu, Pedro J.J. Alvarez and wastewater treatment Water reuse Sorption Membrane processes Photocatalysis Disinfection Microbial control. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency

Alvarez, Pedro J.

31

Novel Americium Treatment Process for Surface Water and Dust Suppression Water  

SciTech Connect (OSTI)

The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am-241 contaminated pond water, surface run-off and D and D dust suppression water during the later stages of the D and D effort at Rocky Flats. This novel chemical treatment system allowed for highly efficient, high-volume treatment of all contaminated waste waters to the very low stream standard of 0.15 pCi/1 with strict compliance to the RFCA discharge criteria for release to off-site surface waters. The rapid development and implementation of the treatment system avoided water management issues that would have had to be addressed if contaminated water had remained in Pond A-4 into the Spring of 2005. Implementation of this treatment system for the Pond A-4 waters and the D and D waters from Buildings 776 and 371 enabled the site to achieve cost-effective treatment that minimized secondary waste generation, avoiding the need for expensive off-site water disposal. Water treatment was conducted for a cost of less than $0.20/gal which included all development costs, capital costs and operational costs. This innovative and rapid response effort saved the RFETS cleanup program well in excess of $30 million for the potential cost of off-site transportation and treatment of radioactive liquid waste. (authors)

Tiepel, E.W.; Pigeon, P. [Golder Associates (United States); Nesta, S. [Kaiser-Hill Company, LLC (United States); Anderson, J. [Rocky Flats Closure Site Services - RFCSS (United States)

2006-07-01T23:59:59.000Z

32

Advanced Water Treatment System: Technological and Economic Evaluations  

Science Journals Connector (OSTI)

The supply of potable water from polluted rivers, lakes, unsafe wells, ... most effective methods to obtain low cost drinking water is desalination. In this chapter, an advanced water treatment system, based on electrodialysis

Artak Barseghyan

2011-01-01T23:59:59.000Z

33

Solar Farm Going Strong at Water Treatment Plant in Pennsylvania |  

Broader source: Energy.gov (indexed) [DOE]

Farm Going Strong at Water Treatment Plant in Pennsylvania Farm Going Strong at Water Treatment Plant in Pennsylvania Solar Farm Going Strong at Water Treatment Plant in Pennsylvania October 8, 2010 - 10:39am Addthis Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram’s Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram's Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Stephen Graff Former Writer & editor for Energy Empowers, EERE It takes a lot of energy to run a water treatment plant round-the-clock. And pumping 35 million gallons of water a day to hundreds of thousands businesses and residents can get expensive.

34

Land disposal of water treatment plant sludge -- A feasibility analysis  

SciTech Connect (OSTI)

In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

1998-07-01T23:59:59.000Z

35

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Broader source: Energy.gov (indexed) [DOE]

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

36

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Broader source: Energy.gov (indexed) [DOE]

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

37

Treatment methods for breaking certain oil and water emulsions  

DOE Patents [OSTI]

Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

Sealock, Jr., L. John (W. Richland, WA); Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

1992-01-01T23:59:59.000Z

38

Onsite Wastewater Treatment Systems: Graywater Use and Water Quality  

E-Print Network [OSTI]

their homes in their landscapes. This reuse of graywater can reduce the amount of wastewater entering sewers or treatment systems, reduce the amount of fresh water used on landscapes and help preserve limited fresh water supplies. Onsite wastewater...-washing machines ? The code excludes water that has washed materials soiled with human waste, such as diapers, and water that has been in contact with toilet waste. This water, known as blackwater, includes flush water from toilets and urinals and wastewater...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-08-28T23:59:59.000Z

39

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network [OSTI]

Phyllis Fox INTRODUCTION Oil shale retorting produces fromWaste Water from Oil Shale Processing" ACS Division of FuelEvaluates Treatments for Oil-Shale Retort Water," Industrial

Ossio, Edmundo

2012-01-01T23:59:59.000Z

40

Reverse-Osmosis Filtration Based Water Treatment and Special Water Purification for Nuclear Power Systems  

Science Journals Connector (OSTI)

This paper is devoted to the development and operation of specialized water treatment and water purification systems, based on the principle of reverse-osmosis filtration of water, for the operation of ... P. Ale...

V. N. Epimakhov; M. S. Oleinik; L. N. Moskvin

2004-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

K West integrated water treatment system subproject safety analysis document  

SciTech Connect (OSTI)

This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

SEMMENS, L.S.

1999-02-24T23:59:59.000Z

42

Yosemite Waters Vehicle Evaluation Report: Final Results  

SciTech Connect (OSTI)

Document details the evaluation of Fischer-Tropsch diesel, a gas-to-liquid fuel, in medium-duty delivery vehicles at Yosemite Waters. The study was conducted by NREL at the company's Fullerton, California, bottling headquarters.

Eudy, L.; Barnitt, R.; Alleman, T. L.

2005-08-01T23:59:59.000Z

43

News Release: DOE Announces Riverton Water Sampling Results | Department of  

Broader source: Energy.gov (indexed) [DOE]

Announces Riverton Water Sampling Results Announces Riverton Water Sampling Results News Release: DOE Announces Riverton Water Sampling Results May 11, 2012 - 3:25pm Addthis News Contact: Contractor, Judy Miller, S.M. Stoller Corporation Public Affairs (970) 248-6363 jmiller@lm.doe.gov Laboratory results indicate water from the alternative water supply system is safe for residents to drink The U.S. Department of Energy announced today that residential drinking water testing from an alternative water supply system in Riverton, Wyoming, confirmed the water is safe. Results from ater samples collected on May 3, 2012, show that uranium levels at 0.0001 milligrams per liter, well below the drinking water standard set by the U.S. Environmental Protection Agency. "We take the issue of potential water contamination very seriously and

44

The EPRI state-of-the-art cooling water treatment research project: A tailored collaboration program  

SciTech Connect (OSTI)

The EPRI Tailored Collaboration State-of-the-Art Cooling Water Treatment Research Program has been initiated with several electric utility participants. Started in January 1995, the program provides O&M cost reduction through improved cooling water system reliability and operation,. This effort is discussed along with the objectives and goals, the participants and project timetable. The program will provide three (3) main results to the participating utilities: cost effective optimization of cooling water treatment, production of a new Cooling Water Treatment Manual and updating of two (2) EPRI software products - SEQUIL and COOLADD. A review of the specific objectives, project timetable and results to date will be presented. 1 tab.

Zammitt, K. [Electric Power Research Institute, Palo Alto, CA (United States); Selby, K.A. [Puckorius & Associates, Inc., Evergreen, CO (United States); Brice, T. [Entergy Operations - River Bend Station, St. Francisville, LA (United States)] [and others

1996-08-01T23:59:59.000Z

45

Effective Ship Ballast Water Treatment System Management  

Science Journals Connector (OSTI)

Besides its great effect on ship stability, ballast water causes an important problem. While a ship loads ballast water from any sea, it ... species. These species may have a great effect on the local ecological ...

Levent Bilgili; Kaan Ünlügenço?lu…

2013-01-01T23:59:59.000Z

46

Water Treatment using Electrocoagulation Ritika Mohan  

E-Print Network [OSTI]

Reverse Osmosis (HEROTM). Semiconductor industrial waste water amounts to approximately 105 ­ 106 gal of brine amounting to almost 103 104 gal/day water. The difference between conventional Reverse Osmosis

Fay, Noah

47

The optimal treatment method of water turbidity purification in tap-water plant.  

E-Print Network [OSTI]

??The main purpose of this study is to investigate the relationship between the water turbidity purification result with raw water turbidity, raw water pH value… (more)

Lin, Yi-Heng

2010-01-01T23:59:59.000Z

48

Clean option: Berkeley Pit water treatment and resource recovery strategy  

SciTech Connect (OSTI)

The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.

Gerber, M.A.; Orth, R.J.; Elmore, M.R.; Monzyk, B.F.

1995-09-01T23:59:59.000Z

49

Cleaning Membranes with Focused Ultrasound Beams for Drinking Water Treatment  

E-Print Network [OSTI]

Cleaning Membranes with Focused Ultrasound Beams for Drinking Water Treatment Jian-yu Lu1 , Xi Du2 micro pollutants such as harmful organics and cannot meet the demand for high-quality drinking water. Membrane technologies are known to produce drinking water of the highest quality. However, membrane fouling

Lu, Jian-yu

50

Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse  

Science Journals Connector (OSTI)

Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse ... Although existing infrastructure contributes inertia against a paradigm shift, these immense challenges call for a change toward integrated management of water and wastewater with a decentralized, differential treatment and reuse paradigm where water and wastewater are treated to the quality dictated by the intended use. ... Nanotechnology will likely play a critical role, not only supplementing and enhancing existing processes, but also facilitating the transformation of water supply systems toward a distributed differential treatment paradigm that integrates wastewater reuse with energy neutral operations, lower residuals production, and safer water quality. ...

Xiaolei Qu; Jonathon Brame; Qilin Li; Pedro J. J. Alvarez

2012-06-27T23:59:59.000Z

51

POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

V. King

2000-06-19T23:59:59.000Z

52

From: "Cheryl Beecroft" Subject: Drinking Water Results-ITB  

E-Print Network [OSTI]

From: "Cheryl Beecroft" Subject: Drinking Water Results-ITB Date: Fri, 1 Oct samples collected at ITB. The results were below the allowable level of 10ug/L for lead in drinking water 2010 15:54:56 -0400 To: Please see the table below for lead content in water

Thompson, Michael

53

Yosemite Waters Vehicle Evaluation Report: Final Results (Brochure)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Results Results Prepared for South Coast Air Quality Management District by the National Renewable Energy Laboratory CRD-01-098 Fischer-Tropsch Synthetic Fuel Demonstration in a Southern California Vehicle Fleet Yosemite Waters Vehicle Evaluation Report Yosemite Waters Vehicle Evaluation Report i Alternative Fuel Trucks YOSEMITE WATERS VEHICLE EVALUATION REPORT Authors Leslie Eudy, National Renewable Energy Laboratory (NREL)

54

The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants.

55

Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

56

Drinking water treatment and distribution systems must comply with US EPA water quality regula-  

E-Print Network [OSTI]

Drinking water treatment and distribution systems must comply with US EPA water quality regula trihalomethanes (THMs). Drinking water providers do frequent, costly testing for THMs. Field real-time sensors PROJECT GOALS The goal of this project was to bring a team of experts in drinking water, polymers

Fay, Noah

57

E-Print Network 3.0 - alternate water sources Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Conveyance Water Treatment Distribution Customer Use Wastewater Collection and Treatment 12... ;2000 Urban Water-Related Energy Use Sources ... Source: Keller, Arturo A. -...

58

Water Power Program: Program Plans, Implementation, and Results  

Broader source: Energy.gov (indexed) [DOE]

Water Power Program Water Power Program HOME ABOUT RESEARCH & DEVELOPMENT FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE » Water Power Program » About Key Activities Plans, Implementation, & Results Budget Peer Review 2011 Contacts Plans, Implementation, and Results Here you'll find an overview of the Water Power Program and links to its program planning, implementation, and results documents. This list summarizes the program's water power research, development, and demonstration activities. Read more about: Overview Learn more about this EERE Office. Plans Discover the plans, budgets, and analyses that set the direction of office priorities and activities. Implementation Find out how the office controls, implements, and adjusts its plans and manages its activities.

59

Water Power Program: Program Plans, Implementation, and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Power Program Water Power Program HOME ABOUT RESEARCH & DEVELOPMENT FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE » Water Power Program » About Key Activities Plans, Implementation, & Results Budget Peer Review 2011 Contacts Plans, Implementation, and Results Here you'll find an overview of the Water Power Program and links to its program planning, implementation, and results documents. This list summarizes the program's water power research, development, and demonstration activities. Read more about: Overview Learn more about this EERE Office. Plans Discover the plans, budgets, and analyses that set the direction of office priorities and activities. Implementation Find out how the office controls, implements, and adjusts its plans and manages its activities.

60

Desalting and water treatment membrane manual: A guide to membranes for municipal water treatment. Water treatment technology program report No. 1  

SciTech Connect (OSTI)

The Bureau of Reclamation prepared this manual to provide an overview of microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and electrodialysis processes as they are used for water treatment. Membrane composition, the chemical processes, and the physical processes involved with each membrane type are described and compared. Because care and maintenance of water treatment membranes are vital to their performance and life expectancy, pretreatment, cleaning, and storage requirements are discussed in some detail. Options for concentrate disposal, also a problematic feature of membrane processes, are discussed. The culmination of this wealth of knowledge is an extensive comparison of water treatment membranes commercially available at this time. The tables cover physical characteristics, performance data, and operational tolerances.

Chapman-Wilbert, M.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Economies of size in municipal water treatment technologies: Texas lower Rio Grande Valley  

E-Print Network [OSTI]

advancements have improved the economic viability of reverse-osmosis (RO) desalination of brackish-groundwater as a potable water source. Brackish-groundwater may be an alternative water source that provides municipalities an opportunity to hedge against... droughts, political shortfalls, and protection from potential surface-water contamination. This research specifically focuses on investigating economies of size for conventional surface-water treatment and brackish-groundwater desalination by using results...

Boyer, Christopher Neil

2008-10-10T23:59:59.000Z

62

Acid mine water aeration and treatment system  

DOE Patents [OSTI]

An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

Ackman, Terry E. (Finleyville, PA); Place, John M. (Bethel Park, PA)

1987-01-01T23:59:59.000Z

63

Integrated thermal treatment system study -- Phase 2 results. Revision 1  

SciTech Connect (OSTI)

This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

Feizollahi, F.; Quapp, W.J.

1996-02-01T23:59:59.000Z

64

inactivation of viral aggregates during water treatment  

E-Print Network [OSTI]

treatment. MS2 virus used as the model organism. peracetic acid (PAA) chosen as disinfectant (400 mM) were used to study the pH effect on disinfection rate constants of PAA/L PAA; all experiments showed pseudo-first order kinetics (fig. 1b): biggest aggregates

65

Integrated thermal treatment system sudy: Phase 2, Results  

SciTech Connect (OSTI)

This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

Feizollahi, F.; Quapp, W.J.

1995-08-01T23:59:59.000Z

66

Radioactive residues associated with water treatment, use and disposal in Australia.  

E-Print Network [OSTI]

??Water resources are known to contain radioactive materials, either from natural or anthropogenic sources. Treatment, including wastewater treatment, of water for drinking, domestic, agricultural and… (more)

Kleinschmidt, Ross Ivan

2011-01-01T23:59:59.000Z

67

Innovative Treatment Technologies for Natural Waters and Wastewaters  

SciTech Connect (OSTI)

The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

Childress, Amy E.

2011-07-01T23:59:59.000Z

68

E-Print Network 3.0 - air treatment system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... , water treatment equipment,...

69

Biological treatment options for consolidated tailings release waters  

SciTech Connect (OSTI)

Suncor Inc., Oil Sands Group, operates a large oil sands mining and extraction operation in northeastern Alberta. The extraction plant produces large volumes of a tailings slurry which resists dewatering and treatment, and is toxic to aquatic organisms. Consolidated tailings (CT) technology is used to treat tailings by either acid/lime or gypsum and enhances the possibility of treating residual fine tails in a ``dry`` land reclamation scenario and treating the release water in a wastewater treatment reclamation scenario. The objective was to assess the treatability of CT release water (i.e., the reduction of acute and chronic toxicities to trout, Ceriodaphnia, and bacteria) in bench-scale biological treatment systems. Microtox{reg_sign} IC20 test showed complete detoxification for the gypsum CT release water within 3 to 5 weeks compared with little reduction in toxicity for dyke drainage. Acute toxicity (fish) and chronic toxicity (Ceriodaphnia, bacterial) was removed from both CT release waters. Phosphate and aeration enhanced detoxification rates. Concentrations of naphthenic acids (an organic toxicant) were not reduced, but levels of dissolved organic compounds decreased faster than was the case for dyke drainage water, indicating that some of the organic compounds in both acid/lime and gypsum CT waters were more biodegradable. There was a pattern of increasing toxicity for dyke drainage water which confirmed observations during field-scale testing in the constructed wetlands and which was not observed for CT release waters. Acid/lime and gypsum CT water can be treated biologically in either an aeration pond, constructed wetlands, or a combination of both thereby avoiding the expense of long-term storage and/or conventional waste treatment systems.

Gunter, C.P.; Nix, P.G.; Sander, B. [EVS Environment Consultants, North Vancouver, British Columbia (Canada); Knezevic, Z.

1995-12-31T23:59:59.000Z

70

Effectiveness of AOC removal by advanced water treatment systems: a case study  

Science Journals Connector (OSTI)

Recently, the appearance of assimilable organic carbon (AOC) in the water treatment system and effluent of the treatment plant has brought more attention to the environmental engineers. In this study, AOC removal efficiency at the Cheng-Ching Lake water treatment plant (CCLWTP) was evaluated. The main objectives of this study were to: (1) evaluate the treatability of AOC by the advanced treatment system at the CCLWTP, (2) assess the relativity of AOC and the variations of other water quality indicators, (3) evaluate the effects of sodium thiosulfate on AOC analysis, and (4) evaluate the efficiency of biofiltration process using granular activated carbon (GAC) and anthracite as the fillers. Results show that the averaged influent and final effluent AOC concentrations at the CCLWTP were approximately 124 and 30 ?g acetate-C/L, respectively. Thus, the treatment plant had an AOC removal efficiency of about 76%, and the AOC concentrations in the final effluent met the criteria established by the CCLWTP (50 ?g acetate-C/L). Results indicate that the biofiltration process might contribute to the removal of the trace AOC in the GAC filtration process. Moreover, the removal of AOC had a correlation with the decrease in concentrations of other drinking water indicators. Results from a column test show that GAC was a more appropriate material than anthracite for the AOC removal. Results from this study provide us insight into the mechanisms of AOC removal by advanced water treatment processes. These findings would be helpful in designing a modified water treatment system for AOC removal and water quality improvement.

C.C. Chien; C.M. Kao; C.D. Dong; T.Y. Chen; J.Y. Chen

2007-01-01T23:59:59.000Z

71

Desalination and Water Treatment www.deswater.com  

E-Print Network [OSTI]

.22 µm. Seawater, reverse osmosis (RO) concentrate collected from a wastewater reclamation plant for the treatment of saline water and wastewater such as thermal distillation and reverse osmosis [2,3]. MD has several advantages compared to conventional thermal distillation and reverse osmosis processes [3

72

Modeling Urban Storm-Water Quality Treatment: Model Development and Application to a Surface Sand Filter  

E-Print Network [OSTI]

water impacts has led us to the develop- ment of different storm-water treatment strategies. Previous knowledge regarding traditional water treatment systems drink- ing and wastewater and the evaluation

73

E-Print Network 3.0 - affect water relations Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

corrosive water affects the entire household plumbing system... on water testing and treatment and issues ... Source: Liskiewicz, Maciej - Institut fr Theoretische Informatik,...

74

E-Print Network 3.0 - affects water relations Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

corrosive water affects the entire household plumbing system... on water testing and treatment and issues ... Source: Liskiewicz, Maciej - Institut fr Theoretische Informatik,...

75

E-Print Network 3.0 - auxiliary water systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

including drinking water distribution systems (esp. in small rural communities... ), wastewater treatment, storm runoff, irrigation systems, dams, levees, and canals. 9. Water...

76

Treatment of produced waters by electrocoagulation and reverse osmosis  

SciTech Connect (OSTI)

Two oil field produced waters and one coal bed methane produced water from Wyoming were treated with electrocoagulation and reverse osmosis. All three produced waters would require treatment to meet the new Wyoming Department of Environmental Quality requirements for effluent discharge into a class III or IV stream. The removal of radium 226 and oil and grease was the primary focus of the study. Radium 226 and oil and grease were removed from the produced waters with electrocoagulation. The best removal of radium 226 (>84%) was achieved with use of a non-sacrificial anode (titanium). The best removal of oil and grease (>93%) was achieved using a sacrificial anode (aluminum). By comparison, reverse osmosis removed up to 87% of the total dissolved solids and up to 95% of the radium 226.

Tuggle, K.; Humenick, M.; Barker, F.

1992-08-01T23:59:59.000Z

77

Review of technologies for oil and gas produced water treatment  

Science Journals Connector (OSTI)

Produced water is the largest waste stream generated in oil and gas industries. It is a mixture of different organic and inorganic compounds. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging produced water on the environment has lately become a significant issue of environmental concern. Produced water is conventionally treated through different physical, chemical, and biological methods. In offshore platforms because of space constraints, compact physical and chemical systems are used. However, current technologies cannot remove small-suspended oil particles and dissolved elements. Besides, many chemical treatments, whose initial and/or running cost are high and produce hazardous sludge. In onshore facilities, biological pretreatment of oily wastewater can be a cost-effective and environmental friendly method. As high salt concentration and variations of influent characteristics have direct influence on the turbidity of the effluent, it is appropriate to incorporate a physical treatment, e.g., membrane to refine the final effluent. For these reasons, major research efforts in the future could focus on the optimization of current technologies and use of combined physico-chemical and/or biological treatment of produced water in order to comply with reuse and discharge limits.

Ahmadun Fakhru’l-Razi; Alireza Pendashteh; Luqman Chuah Abdullah; Dayang Radiah Awang Biak; Sayed Siavash Madaeni; Zurina Zainal Abidin

2009-01-01T23:59:59.000Z

78

Groundwater Treatment at the Fernald Preserve: Status and Path Forward for the Water Treatment Facility - 12320  

SciTech Connect (OSTI)

Operating a water treatment facility at the Fernald Preserve in Cincinnati, Ohio-to support groundwater remediation and other wastewater treatment needs-has become increasingly unnecessary. The Fernald Preserve became a U.S. Department of Energy Office of Legacy Management (LM) site in November 2006, once most of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration had been completed. Groundwater remediation is anticipated to continue beyond 2020. A portion of the wastewater treatment facility that operated during the CERCLA cleanup continued to operate after the site was transferred to LM, to support the remaining groundwater remediation effort. The treatment facility handles the site's remaining water treatment needs (for groundwater, storm water, and wastewater) as necessary, to ensure that uranium discharge limits specified in the Operable Unit 5 Record of Decision are met. As anticipated, the need to treat groundwater to meet uranium discharge limits has greatly diminished over the last several years. Data indicate that the groundwater treatment facility is no longer needed to support the ongoing aquifer remediation effort. (authors)

Powel, J. [U.S. Department of Energy Office of Legacy Management, Harrison, Ohio (United States); Hertel, B.; Glassmeyer, C.; Broberg, K. [S.M. Stoller Corporation, Harrison, Ohio (United States)

2012-07-01T23:59:59.000Z

79

Nanofiltration/reverse osmosis for treatment of coproduced waters  

SciTech Connect (OSTI)

Current high oil and gas prices have lead to renewed interest in exploration of nonconventional energy sources such as coal bed methane, tar sand, and oil shale. However oil and gas production from these nonconventional sources has lead to the coproduction of large quantities of produced water. While produced water is a waste product from oil and gas exploration it is a very valuable natural resource in the arid Western United States. Thus treated produced water could be a valuable new source of water. Commercially available nanofiltration and low pressure reverse osmosis membranes have been used to treat three produced waters. The results obtained here indicate that the permeate could be put to beneficial uses such as crop and livestock watering. However minimizing membrane fouling will be essential for the development of a practical process. Field Emission Scanning Electron Microscopy imaging may be used to observe membrane fouling.

Mondal, S.; Hsiao, C.L.; Wickramasinghe, S.R. [Colorado State University, Ft Collins, CO (United States)

2008-07-15T23:59:59.000Z

80

MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS  

SciTech Connect (OSTI)

This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation efficiency of the bentonite membrane for each of the dilutions. We found that membrane efficiency decreased with increasing solute concentration and with increasing TDS. The rejection of SO{sub 4}{sup 2-} was greater than Cl{sup -}. This may be because the SO{sub 4}{sup 2-} concentration was much lower than the Cl{sup -} concentration in the waters tested. The cation rejection sequence varied with solute concentration and TDS. The solute rejection sequence for multi-component solutions is difficult to predict for synthetic membranes; it may not be simple for clay membranes either. The permeate flows in our experiments were 4.1 to 5.4% of the total flow. This suggests that very thin clay membranes may be useful for some separations. Work on development of a spiral-wound clay membrane module found that it is difficult to maintain compaction of the membrane if the membrane is rolled and then inserted in the outer tube. A different design was tried using a cylindrical clay membrane and this also proved difficult to assemble with adequate membrane compaction. The next step is to form the membrane in place using hydraulic pressure on a thin slurry of clay in either water or a nonpolar organic solvent such as ethanol. Technology transfer efforts included four manuscripts submitted to peer-reviewed journals, two abstracts, and chairing a session on clays as membranes at the Clay Minerals Society annual meeting.

T.M. Whitworth; Liangxiong Li

2002-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS  

SciTech Connect (OSTI)

This final report of ''Modified Reverse Osmosis System for Treatment of Produced Water,'' DOE project No. DE-FC26-00BC15326 describes work performed in the third year of the project. Several good results were obtained, which are documented in this report. The compacted bentonite membranes were replaced by supported bentonite membranes, which exhibited the same salt rejection capability. Unfortunately, it also inherited the clay expansion problem due to water invasion into the interlayer spaces of the compacted bentonite membranes. We noted that the supported bentonite membrane developed in the project was the first of its kind reported in the literature. An {alpha}-alumina-supported MFI-type zeolite membrane synthesized by in-situ crystallization was fabricated and tested. Unlike the bentonite clay membranes, the zeolite membranes maintained stability and high salt rejection rate even for a highly saline solution. Actual produced brines from gas and oil fields were then tested. For gas fields producing brine, the 18,300 ppm TDS (total dissolved solids) in the produced brine was reduced to 3060 ppm, an 83.3% rejection rate of 15,240 ppm salt rejection. For oilfield brine, while the TDS was reduced from 181,600 ppm to 148,900 ppm, an 18% rejection rate of 32,700 ppm reduction, the zeolite membrane was stable. Preliminary results show the dissolved organics, mainly hydrocarbons, did not affect the salt rejection. However, the rejection of organics was inconclusive at this point. Finally, the by-product of this project, the {alpha}-alumina-supported Pt-Co/Na Y catalytic zeolite membrane was developed and demonstrated for overcoming the two-step limitation of nonoxidation methane (CH{sub 4}) conversion to higher hydrocarbons (C{sub 2+}) and hydrogen (H{sub 2}). Detailed experiments to obtain quantitative results of H{sub 2} generation for various conditions are now being conducted. Technology transfer efforts included five manuscripts submitted to peer-reviewed journals and five conference presentations.

Robert L. Lee; Junghan Dong

2004-06-03T23:59:59.000Z

82

OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER (FEAC307)  

SciTech Connect (OSTI)

Oil production is shifting from ''shallow'' wells (0-650 ft water depth) to off-shore, deep-water operations (>2,600 ft.). Production from these operations is now approaching 20%. By 2007, it is projected that as much as 70% of the U.S. oil production will be from deep-water operations. The crude oil from these deep wells is more polar, thus increasing the amount of dissolved hydrocarbons in the produced water. Early data from Gulf of Mexico (GOM) wells indicate that the problem with soluble organics will increase significantly as deep-water production increases. Existing physical/chemical treatment technologies used to remove dispersed oil from produced water will not remove dissolved organics. GOM operations are rapidly moving toward design of high-capacity platforms that will require compact, low-cost, efficient treatment processes to comply with current and future water quality regulations. This project is an extension of previous research to improve the applicability of ozonation and will help address the petroleum industry-wide problem of treating water containing soluble organics. The goal of this project is to maximize oxidation of water-soluble organics during a single-pass operation. The project investigates: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Industrial collaborators include Chevron, Shell, Phillips, BP Amoco, Statoil, and Marathon Oil through a joint project with the Petroleum Environmental Research Forum (PERF). The research and demonstration program consists of three phases: (1) Laboratory testing in batch reactors to compare effectiveness of organics destruction using corona discharge ozone generation methods with hydrogen peroxide generated sonochemically and to evaluate the enhancement of destruction by UV light and micro-bubble spraying. (2) Continuous-flow studies to determine the efficacy of various contactors, the dependency of organics destruction on process variables, and scale-up issues. (3) Field testing of a prototype system in close collaboration with an industrial partner to generate performance data suitable for scale-up and economic evaluation.

Klasson, KT

2001-03-20T23:59:59.000Z

83

Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal  

Science Journals Connector (OSTI)

A pilot plant had been built to test the behaviour of ultrafiltration (UF), reverse osmosis (RO), and electrodialysis reversal (EDR) in order to improve the quality of the water supplied to Barcelona metropolitan area from the Llobregat River. This paper presents results from two studies to reduce natural radioactivity. The results from the pilot plant with four different scenarios were used to design the full-scale treatment plant built (SJD WTP). The samples taken at different steps of the treatment were analysed to determine gross alpha, gross beta and uranium activity. The results obtained revealed a significant improvement in the radiological water quality provided by both membrane techniques (RO and EDR showed removal rates higher than 60%). However, UF did not show any significant removal capacity for gross alpha, gross beta or uranium activities. RO was better at reducing the radiological parameters studied and this treatment was selected and applied at the full scale treatment plant. The RO treatment used at the SJD WTP reduced the concentration of both gross alpha and gross beta activities and also produced water of high quality with an average removal of 95% for gross alpha activity and almost 93% for gross beta activity at the treatment plant.

M. Montaña; A. Camacho; I. Serrano; R. Devesa; L. Matia; I. Vallés

2013-01-01T23:59:59.000Z

84

Application of photoelectrochemical–electrodialysis treatment for the recovery and reuse of water from tannery effluents  

Science Journals Connector (OSTI)

The conventional tannery effluents treatment is not established in order to obtain water in such a quality, that it could be reused in the same process. This study was carried out in order to evaluate the electrochemical treatment of tannery effluents. The photoelectrochemical oxidation and the electrodialysis were applied in these effluents. The obtained results indicated a remarkable removal efficiency of more than 98.5% for all ion species present in effluents. It is noticeable that the effluent treated with combined PEO–ED techniques presents very similar values for the same parameter as the ones presented by normal feed water.

M.A.S. Rodrigues; F.D.R. Amado; J.L.N. Xavier; K.F. Streit; A.M. Bernardes; J.Z. Ferreira

2008-01-01T23:59:59.000Z

85

The use of reverse osmosis technology for water treatment in power engineering  

Science Journals Connector (OSTI)

The results of operation of DVS-M/150 installations for a total output of 150 m3/h (ZAO NPK Mediana-Fil’tr) at the Water Treatment Department of the Novocherkassk Thermal Power Plant (NchGRES) are presented, and ...

A. N. Samodurov; S. E. Lysenko; S. L. Gromov; A. A. Panteleev…

2006-06-01T23:59:59.000Z

86

Summary of comparative results integrated nonthermal treatment and integrated thermal treatment systems studies  

SciTech Connect (OSTI)

In July 1994, the Idaho National Engineering Laboratory (INEL), under a contract from U.S. Department of Energy`s (DOE) Environment Management Office of Science and Technology (OST, EM-50) published a report entitled {open_quotes}Integrated Thermal Treatment System Study - Phase 1 Results{close_quotes} (EGG-MS-11211). This report was the culmination of over a year of analysis involving scientists and engineers within the DOE complex and from private industry. The purpose of that study was {open_quotes}to conduct a systematic engineering evaluation of a variety of mixed low level waste (MLLW) treatment system alternatives.{close_quotes} The study also {open_quotes}identified the research and development, demonstrations, and testing and evaluation needed to assure unit operability in the most promising alternative system.{close_quotes} This study evaluated ten primary thermal treatment technologies, organized into complete {open_quotes}cradle-to-grave{close_quotes} systems (including complete engineering flow sheets), to treat DOE MLLW and calculated mass balances and 20-year total life cycle costs (TLCC) for all systems. The waste input used was a representative heterogenous mixture of typical DOE MLLW. An additional study was conducted, and then, based on response to these studies, additional work was started to investigate and evaluate non-thermal treatment options on a footing comparable to the effort devoted to thermal options. This report attempts to present a summary overview of the thermal and non-thermal treatment technologies which were examined in detail in the process of the above mentioned reviews.

NONE

1996-12-01T23:59:59.000Z

87

Effect of heat treatment on stress corrosion of Alloy 718 in pressurized-water-reactor primary water  

SciTech Connect (OSTI)

Stress corrosion cracking (SCC) tests were conducted in 360{degrees}C pressurized-water-reactor (PWR) primary water using alloy 718 in various heat treatment conditions. Alloy X-750 in the HTH condition and an experimental heat of an alloy 718 variation, Hicoroy, were also tested for comparison. Fatigue-precracked, 12.5-mm-thick compact fracture specimens were subjected to a constant extension rate of 1.3 x 10{sup {minus}9} m/s. Crack growth rate was measured during testing using a reversing DC potential drop technique. Results in the form of SCC crack growth rate versus applied stress intensity demonstrate that the SCC resistance of alloy 718 in the PWR primary-side environment can be improved by changes in heat treatment.

Miglin, M.T.; Monter, J.V.; Wade, C.S. [Babcock & Wilcox Co., Alliance, OH (United States); Nelson, J.L. [Electric Power Research Institute, Palo Alto, CA (United States)

1992-12-31T23:59:59.000Z

88

Assessment of compliance costs resulting from implementation of the proposed Great Lakes water quality guidance  

SciTech Connect (OSTI)

The primary purpose of the study was to develop an estimate of the incremental cost to direct dischargers resulting from the implementation of the proposed Great Lakes Water Quality Guidance (GLWQG). This estimate reflects the incremental cost of complying with permit requirements developed using the Implementation Procedures and water quality criteria proposed in the GLWQG versus permit requirements based on existing State water quality standards. Two secondary analyses were also performed, one to develop a preliminary estimate of the costs that would be incurred by indirect dischargers to publicly owned treatment works (POTWs), and another to evaluate the cost-effectiveness of the GLWQG. Finally, several sensitivity analyses were performed to evaluate the impact of several major assumptions on the estimated compliance costs. To estimate compliance costs, permit limitations and conditions based on existing State water quality standards were compared to water quality-based limitations and conditions based on the proposed GLWQG criteria and Implementation Procedures for a sample of plants. The control measures needed to comply with the proposed GLWQG-based effluent limitations were evaluated. Individual plant compliance costs were estimated for these control measures based on information on treatment technology and cost analyses available in the literature. An overall compliance cost was projected from the sample based on statistical methods.

Fenner, K.; Podar, M.; Snyder, B.

1993-04-16T23:59:59.000Z

89

Variations in AOC and microbial diversity in an advanced water treatment plant  

Science Journals Connector (OSTI)

Summary The objective of this study was to evaluate the variations in assimilable organic carbon (AOC) and microbial diversities in an advanced water treatment plant. The efficiency of biofiltration on AOC removal using anthracite and granular activated carbon (GAC) as the media was also evaluated through a pilot-scale column experiment. Effects of hydrological factors (seasonal effects and river flow) on AOC concentrations in raw water samples and hydraulic retention time (HRT) of biofiltration on AOC treatment were also evaluated. Results show that AOC concentrations in raw water and clear water of the plant were about 138 and 27 ?g acetate-C/L, respectively. Higher AOC concentrations were observed in wet seasons probably due to the resuspension of organic-contained sediments and discharges of non-point source (NPS) pollutants from the upper catchment. This reveals that seasonal effect played an important role in the variations in influent AOC concentrations. Approximately 82% and 70% of AOC removal efficiencies were observed in GAC and anthracite columns, respectively. Results from column experiment reveal that the applied treatment processes in the plant and biofiltration system were able to remove AOC effectively. Microbial colonization on GAC and anthracite were detected via the observation of scanning electron microscopic (SEM) images. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis reveal significant decrease in microbial diversities after the ozonation process. Higher HRT caused higher microbial contact time, and thus, more microbial colonies and higher microbial diversity were observed in the latter part of the biofilters. Some of the dominant microbial species in the biofiltration columns belonged to the beta-proteobacterium, which might contribute to the AOC degradation. Results of this study provide us insight into the variations in AOC and microbial diversity in the advanced water treatment processes.

B.M. Yang; J.K. Liu; C.C. Chien; R.Y. Surampalli; C.M. Kao

2011-01-01T23:59:59.000Z

90

Use of ceregenins to create novel biofouling resistant water water-treatment membranes.  

SciTech Connect (OSTI)

Scoping studies have demonstrated that ceragenins, when linked to water-treatment membranes have the potential to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced molecules that mimic antimicrobial peptides. Evidence includes measurements of CSA-13 prohibiting the growth of and killing planktonic Pseudomonas fluorescens. In addition, imaging of biofilms that were in contact of a ceragenin showed more dead cells relative to live cells than in a biofilm that had not been treated with a ceragenin. This work has demonstrated that ceragenins can be attached to polyamide reverse osmosis (RO) membranes, though work needs to improve the uniformity of the attachment. Finally, methods have been developed to use hyperspectral imaging with multivariate curve resolution to view ceragenins attached to the RO membrane. Future work will be conducted to better attach the ceragenin to the RO membranes and more completely test the biocidal effectiveness of the ceragenins on the membranes.

Kirk, Matthew F.; Jones, Howland D. T.; Feng, Yanshu; McGrath, Lucas K.; Altman, Susan Jeanne; Pollard, Jacob; Hibbs, Michael R.; Savage, Paul B.

2010-05-01T23:59:59.000Z

91

Coagulation—ultrafiltration system for river water treatment  

Science Journals Connector (OSTI)

The “in-line” coagulation—ultrafiltration hybrid process has been investigated using three different coagulants, viz. FeCl3, Fe2(SO4)3 and Al2(SO4)3. The coagulants were dosed in the amounts of 2.4 mg Fe/dm3, 2.8 mg Fe/dm3 and 2.9 mg Al/dm3, respectively. Surface water from the Czarna Przemsza river (Silesia region, Poland) was used as raw water. The ultrafiltration membrane module with capillary polyethersulphone membranes was applied. It has been shown that the application of coagulant “in-line” contributes to the improvement of the quality of water as a result of growth of the removal of organic matter. It has also been statistically proven that the proper choice of the coagulant is of significant importance for the degree of removal of organic matter from the water. The highest efficiency of the process was achieved when the aluminum coagulant was used. Furthermore, it has been shown that the application of “in-line” coagulation and ultrafiltration with the most proper coagulant restricts the fouling of the membranes, so that contaminations deposited on the membrane can easily be removed using deionized water.

Krystyna Konieczny; Dorota S?kol; Joanna P?onka; Mariola Rajca; Micha? Bodzek

2009-01-01T23:59:59.000Z

92

E-Print Network 3.0 - awwa water quality Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Relevant Coursework: Principles of Environmental Chemistry Water and Wastewater Treatment... EPA quality control mandates Worked with Operations department to help achieve...

93

Lithium Treatment Prevents Neurocognitive Deficit Resulting from Cranial Irradiation  

Science Journals Connector (OSTI)

...the flag was removed and the water was made cloudy with white paint. A video camera suspended above the pool captured the subjects...Master Mix were done by the Multiprobe II HT EX liquid handling robot (Perkin-Elmer, Boston, MA). Cycling, data collection...

Eugenia M. Yazlovitskaya; Eric Edwards; Dinesh Thotala; Allie Fu; Kate L. Osusky; William O. Whetsell, Jr.; Braden Boone; Eric T. Shinohara; and Dennis E. Hallahan

2006-12-01T23:59:59.000Z

94

Integrated thermal treatment system study: Phase 1 results. Volume 1  

SciTech Connect (OSTI)

An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked.

Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

1994-07-01T23:59:59.000Z

95

Treatment of produced water using chemical and biological unit operations.  

E-Print Network [OSTI]

??Water generated along with oil and gas during coal bed methane and oil shale operations is commonly known as produced water, formation water, or oilfield… (more)

Li, Liang

2010-01-01T23:59:59.000Z

96

Assess of physical antiscale-treatments on conventional electrodialysis pilot unit during brackish water desalination  

Science Journals Connector (OSTI)

Abstract In electrodialysis (ED) desalination plants, calcium carbonate is the main component of meted scales. To prevent its formation several treatments were proposed. For more efficiency, treatments must be assessed at experimental conditions close to real ones. Thus, this work is a contribution to understand and evaluate three anti-calcareous physical treatments for ED desalination systems simulating real conditions. Magnetic field (MF) and ultrasonic field (UF) were applied to concentrate solution, compartment where scaling is imminent in the used ED pilot unit. The third treatment was a pulsed electric field (PEF) application. Tested solution was a synthetic brackish water. Results show that magnetic and ultrasonic treatments accelerate the precipitation of CaCO3 by reducing the nucleation time and the metastable domain. It is also shown that pulsed electric treatment accelerates CaCO3 precipitation resulting from desalination improvement comparing to stationary mode. However, all these treatments favor the homogeneous precipitation which prevents scale formation on membrane surfaces. It seems that MF improves the desalination only by preventing membrane scaling. However, UF and PEF application improve desalination by preventing membrane scaling and by improving the ions transfer during desalination; UF application acts on ions mobility or diffusion, while PEF application reduces the concentration polarization layer.

Ilhem BEN SALAH SAYADI; Philippe SISTAT; Mohamed Mouldi TLILI

2014-01-01T23:59:59.000Z

97

Solar trough concentration for fresh water production and waste water treatment  

Science Journals Connector (OSTI)

The present paper examines the concept of utilizing trough type solar concentration plants for water production, remediation and waste treatment. Solar trough plants are a mature technology which deserves to be diffused throughout the European Union and in the partner countries of the Mediterranean Area. The present study is intended to find applications of the solar through concentration technology beyond heat and refrigeration. At the present stage, a number of possibilities have been identified; the main ones which will be considered here are related to clean water production by processes such as solar distillation, atmospheric condensation, and waste processing. Although the technical feasibility of the proposed applications is not in discussion, before attempting to put such applications into practice, we’ll discuss their potential economical and environmental benefits in comparison to existing solutions.

A. Scrivani; T. El Asmar; U. Bardi

2007-01-01T23:59:59.000Z

98

Monitoring effective use of household water treatment and safe storage technologies in Ethiopia and Ghana  

E-Print Network [OSTI]

Household water treatment and storage (HWTS) technologies dissemination is beginning to scale-up to reach the almost 900 million people without access to an improved water supply (WHO/UNICEF/JMP, 2008). Without well-informed ...

Stevenson, Matthew M

2009-01-01T23:59:59.000Z

99

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor Manufacturing  

E-Print Network [OSTI]

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor of treating wastewater streams in the semiconductor manufacturing industry. Electrocoagulation involves wastewater is increasing greatly. The objective is that by using EC to treat wastewater streams, this water

Fay, Noah

100

Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes  

E-Print Network [OSTI]

a research project that evaluated the treatment of brine generated in oil fields (produced water) with ultrafiltration membranes. The characteristics of various ultrafiltration membranes for oil and suspended solids removal from produced water were...

Beech, Scott Jay

2006-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

E-Print Network 3.0 - asexual american water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: asexual american water Page: << < 1 2 3 4 5 > >> 1 Evolutionary Ecology Research, 2000, 2: 841855 2000 Alistair J. Cullum Summary: and evaporative water loss...

102

Fouling mitigation in coagulation microfiltration hybrid system for drinking water treatment.  

E-Print Network [OSTI]

??Coagulation combined with microfiltration has been receiving a great attention and has been evolving in recent years as an alternative for surface water treatment. There… (more)

Sadreddini, Sara

2009-01-01T23:59:59.000Z

103

Removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant.  

E-Print Network [OSTI]

??Reject water, the liquid fraction produced after dewatering of anaerobically digested activated sludge on a municipal wastewater treatment plant (MWWTP), contains from 750 to 1500… (more)

Guo, Chenghong

2011-01-01T23:59:59.000Z

104

Forward osmosis for desalination and water treatment : a study of the factors influencing process performance.  

E-Print Network [OSTI]

??This thesis explores various factors that have significant impacts on FO process performance in desalination and water treatment. These factors mainly include working temperatures, solution… (more)

Zhao, Shuaifei

2012-01-01T23:59:59.000Z

105

Pilot scale test of a produced water-treatment system for initial removal of organic compounds  

SciTech Connect (OSTI)

A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ/MBR/RO system may be a feasible alternative to current methods for produced water treatment and disposal.

Sullivan, Enid J [Los Alamos National Laboratory; Kwon, Soondong [UT-AUSTIN; Katz, Lynn [UT-AUSTIN; Kinney, Kerry [UT-AUSTIN

2008-01-01T23:59:59.000Z

106

Treatment of pulp mill sludges by supercritical water oxidation  

SciTech Connect (OSTI)

Supercritical water oxidation (SCWO) is new process that can oxidize organics very effectively at moderate temperatures (400 to 650{degree}C) and high pressure (3700 psi). It is an environmentally acceptable alternative for sludge treatment. In bench scale tests, total organic carbon (TOC) and total organic halide (TOX) reductions of 99 to 99.9% were obtained; dioxin reductions were 95 to 99.9%. A conceptual design for commercial systems has been completed and preliminary economics have been estimated. Comparisons confirm that SCWO is less costly than dewatering plus incineration for treating pulp mill sludges. SCWO can also compete effectively with dewatering plus landfilling where tipping fees exceed $35/yd{sup 3}. In some regions of the US, tipping fees are now $75/yd{sup 3} and rising steadily. In the 1995 to 2000 time frame, SCWO has a good chance of becoming the method of choice. MODEC's objective is to bring the technology to commercial availability by 1993. 10 refs., 6 figs., 19 tabs.

Modell, M.

1990-07-01T23:59:59.000Z

107

Construction Summary and As-Built Report for Ground Water Treatment System  

Broader source: Energy.gov (indexed) [DOE]

Construction Summary and As-Built Report for Ground Water Treatment Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site More Documents & Publications Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah Performance Assessment and Recommendations for Rejuvenation of a Permeable

108

The Application of Electrodialysis for Drinking Water Treatment  

Science Journals Connector (OSTI)

Electrodialysis is applied for the removal of dissolved ionic substances from water. Amongst other desalination processes, such as ... and reverse osmosis, the main advantages of electrodialysis are high water re...

F. Hell; J. Lahnsteiner

2002-01-01T23:59:59.000Z

109

Household water treatment and safe storage product development in Ghana  

E-Print Network [OSTI]

Microbial and/or chemical contaminants can infiltrate into piped water systems, especially when the system is intermittent. Ghana has been suffering from aged and intermittent piped water networks, and an added barrier of ...

Yang, Shengkun, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

110

Hot water geothermal development: opportunities and pilot plant results  

SciTech Connect (OSTI)

It has been projected that up to 11,000 MW of geothermal electric capacity may be on line in the United States by the year 2000. The majority of this capacity will come from hot water geothermal plants, as dry steam resources are limited. Currently, no commercial hot water geothermal capacity exists in the U.S., although, substantial capacity does exist in other countries. Large hot, high temperature resources exist in Southern California's Imperial Valley. Early research work has led to the technical success of a 10 MW unit at Brawley, and to the construction of second generation pilot unit at the Salton Sea resource.

Crane, G.K.

1982-08-01T23:59:59.000Z

111

Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas  

SciTech Connect (OSTI)

The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

James Spillane

2005-10-01T23:59:59.000Z

112

Effectiveness of purification processes in removing algae from Vaal Dam water at the Rand Water Zuikerbosch treatment plant in Vereeniging / H. Ewerts.  

E-Print Network [OSTI]

??The aim of this study was to investigate the efficacy of purification processes at the Rand Water Zuikerbosch treatment plant near Vereeniging. Raw water is… (more)

Ewerts, Hendrik

2010-01-01T23:59:59.000Z

113

E-Print Network 3.0 - anal cancer treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: anal cancer treatment Page: << < 1 2 3 4 5 > >> 1 Stanford Cancer Clinical Trials Information Line...

114

September 3, 1999 Characterization of Arsenic Occurrence in US Drinking Water Treatment  

E-Print Network [OSTI]

September 3, 1999 Characterization of Arsenic Occurrence in US Drinking Water Treatment Facility amendments to the US Safe Drinking Water Act (SDWA) mandate revision of current maxi­ mum contaminant levels (MCLs) for various harmful substances in public drinking water supplies. The determination of a revised

115

1.85 Water and Wastewater Treatment Engineering, Spring 2005  

E-Print Network [OSTI]

Theory and design of systems for treating industrial and municipal wastewater and potable water supplies. Methods for characterizing wastewater properties. Physical, chemical, and biological processes, including primary ...

Shanahan, Peter

116

Control System Development for Integrated Biological Waste Water Treatment Process of a Paper Production Plant  

Science Journals Connector (OSTI)

Abstract A bioreactor, integrated with an anoxic reactor and a settler for waste water treatment from a paper production plant is under investigation to implement a control system for enhancing effluent quality. In order to reveal the operation of the integrated process to achieve a specific goal, a methodology for control system development is proposed. In this paper, preliminary results of some steps of the methodology are presented, in order to address the oxygen uptake rate control. A dynamic model is developed for future analysis for the conceptual design of different generated control configurations.

Alicia Román-Martínez; Pastor Lanuza-Perez; Margarito Cepeda-Rodríguez; Elvia M. Mata-Padrón

2013-01-01T23:59:59.000Z

117

Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable  

E-Print Network [OSTI]

mechanical methods in this category are lime-soda side stream softening and vapor compression blowdown evaporation. Another approach is chemical treatment to promote scale inhibition and dispersion....

Boffardi, B. P.

118

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

119

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network [OSTI]

Wastewater Genera ted in Shale Oil Development 9 BattelleControl Technology for Shale Oil Wastewaters 9 11 inWaste Water from Oil Shale Processing" ACS Division of Fuel

Ossio, Edmundo

2012-01-01T23:59:59.000Z

120

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network [OSTI]

29,000 mg/1 nil a Source of sludge: City of Richmond WaterYen assessed the activated sludge process for the treatmentstudies using a digested sludge seed from a municipal

Ossio, Edmundo

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Desalination and Water Treatment www.deswater.com  

E-Print Network [OSTI]

of a solar-assisted pilot plant in the Arava Valley in Israel. It is argued that the proposed system would. Keywords: Brackish water; Irrigation; Nanofiltration; Reverse osmosis; Solar desalination 1. Agriculture

Messalem, Rami

122

Treatment of arsenic-contaminated water using akaganeite adsorption  

DOE Patents [OSTI]

The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

Cadena C., Fernando (Las Cruces, NM); Johnson, Michael D. (Las Cruces, NM)

2008-01-01T23:59:59.000Z

123

Reverse osmosis treatment to remove inorganic contaminants from drinking water  

SciTech Connect (OSTI)

The purpose of the research project was to determine the removal of inorganic contaminants from drinking water using several state-of-the-art reverse osmosis membrane elements. A small 5-KGPD reverse osmosis system was utilized and five different membrane elements were studied individually with the specific inorganic contaminants added to several natural Florida ground waters. Removal data were also collected on naturally occurring substances.

Huxstep, M.R.; Sorg, T.J.

1987-12-01T23:59:59.000Z

124

``New`` countercurrent demineralization techniques are carving a place in water treatment  

SciTech Connect (OSTI)

This article describes how supplementing older treatment methods with modern advancements creates water treatment technology greater than the sum of its parts. Water treatment technology has rapidly advanced in recent years to where a myriad of options are now available for producing makeup water for utility boilers. Some of the newer methods include two-pass reverse osmosis (RO), RO followed by mixed-bed demineralization and triple-membrane treatment consisting of ultrafiltration, electrodialysis and RO. All of these techniques have performed well in various applications. A technique that is gaining attention is packed-bed, counter-currently regenerated demineralization. This process combines ion exchange with advanced regeneration methods in a system that produces water of significantly better quality than that of conventional cation/anion units.

Buecker, B.

1996-09-01T23:59:59.000Z

125

Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment  

Science Journals Connector (OSTI)

...pellets, while assimilable organic carbon (AOC), dissolved organic carbon, and flow...These organisms removed as much as 60 of AOC from the water during treatment, thus contributing...Dissolved organic carbon (DOC) and AOC. The concentration of assimilable organic...

Frederik Hammes; Nico Boon; Marius Vital; Petra Ross; Aleksandra Magic-Knezev; Marco Dignum

2010-12-10T23:59:59.000Z

126

Assessment of sludge management options in a waste water treatment plant  

E-Print Network [OSTI]

This thesis is part of a larger project which began in response to a request by the Spanish water agengy, Cadagua, for advice on life cycle assessment (LCA) and environmental impacts of Cadagua operated wastewater treatment ...

Lim, Jong hyun, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

127

Water/Wastewater Treatment Plant Field Device Wiring Method Decision Analysis  

E-Print Network [OSTI]

The choice of field device wiring method for water and wastewater treatment plant design is extremely complex and contains many variables. The choice not only affects short-term startup and equipment costs, but also long-term operations...

Dicus, Scott C.

2011-12-16T23:59:59.000Z

128

Evaluation of physical-chemical and biological treatment of shale oil retort water  

SciTech Connect (OSTI)

Bench scale studies were conducted to evaluate conventional physical-chemical and biological treatment processes for removal of pollutants from retort water produced by in situ shale oil recovery methods. Prior to undertaking these studies, very little information had been reported on treatment of retort water. A treatment process train patterned after that generally used throughout the petroleum refining industry was envisioned for application to retort water. The treatment train would consist of processes for removing suspended matter, ammonia, biodegradable organics, and nonbiodegradable or refractory organics. The treatment processes evaluated include anaerobic digestion and activated sludge for removal of biodegradable organics and other oxidizable substances; activated carbon adsorption for removal of nonbiodegradable organics; steam stripping for ammonia removal; and chemical coagulation, sedimentation and filtration for removal of suspended matter. Preliminary cost estimates are provided.

Mercer, B.W.; Mason, M.J.; Spencer, R.R.; Wong, A.L.; Wakamiya, W.

1982-09-01T23:59:59.000Z

129

I. INTRODUCTION Previous research in water treatment has been  

E-Print Network [OSTI]

sharp nanosecond wavefront processes [2]. A third ED technique, pulsed arc electrohydraulic discharge-current/moderated high- voltage (few kV), slow microsecond wave front electrical discharge between two submersed electrodes [1,4-6,8,11]. The PAED process uses the creation of pulsed arc discharges within the water which

McMaster University

130

Treatment of nitrate-rich water in a baffled membrane bioreactor (BMBR) employing waste derived materials  

Science Journals Connector (OSTI)

Abstract Nitrate removal in submerged membrane bioreactors (MBRs) is limited as intensive aeration (for maintaining adequate dissolved oxygen levels and for membrane scouring) deters the formation of anoxic zones essential for biological denitrification. The present study employs baffled membrane bioreactor (BMBR) to overcome this constraint. Treatment of nitrate rich water (synthetic and real groundwater) was investigated. Sludge separation was achieved using ceramic membrane filters prepared from waste sugarcane bagasse ash. A complex external carbon source (leachate from anaerobic digestion of food waste) was used to maintain an appropriate C/N ratio. Over 90% COD and 95% NO3–N reduction was obtained. The bagasse ash filters produced a clear permeate, free of suspended solids. Sludge aggregates were observed in the reactor and were linked to the high extracellular polymeric substances (EPS) content. Lower sludge volume index (40 mL/g compared to 150 mL/g for seed sludge), higher settling velocity (47 m/h compared to 10 m/h for seed sludge) and sludge aggregates (0.7 mm aggregates compared to <0.2 mm for seed sludge) was observed. The results demonstrate the potential of waste-derived materials viz. food waste leachate and bagasse ash filters in water treatment.

Subhankar Basu; Saurabh K. Singh; Prahlad K. Tewari; Vidya S. Batra; Malini Balakrishnan

2014-01-01T23:59:59.000Z

131

Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results and Policy Implications  

SciTech Connect (OSTI)

ARUBA (Arsenic Removal Using Bottom Ash) has proven effective at removing high concentrations of arsenic from drinking water in Bangladesh. During fieldwork in four sub-districts of the country, ARUBA reduced arsenic levels ranging from 200 to 900 ppb to below the Bangladesh standard of 50 ppb. The technology is cost-effective because the substrate--bottom ash from coal fired power plants--is a waste material readily available in South Asia. In comparison to similar technologies, ARUBA uses less media for arsenic removal due to its high surface area to volume ratio. Hence, less waste is produced. A number of experiments were conducted in Bangladesh to determine the effectiveness of various water treatment protocols. It was found that (1) ARUBA removes more than half of the arsenic from water within five minutes of treatment, (2) ARUBA, that has settled at the bottom of a treatment vessel, continues to remove arsenic for 2-3 days, (3) ARUBA's arsenic removal efficiency can be improved through sequential partial dosing (adding a given amount of ARUBA in fractions versus all at once), and (4) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic levels ten times lower than treating water directly out of the well. Our findings imply a number of tradeoffs between ARUBA's effective arsenic removal capacity, treatment system costs, and waste output. These tradeoffs, some a function of arsenic-related policies in Bangladesh (e.g., waste disposal regulations), must be considered when designing an arsenic removal system. We propose that the most attractive option is to use ARUBA in communityscale water treatment centers, installed as public-private partnerships, in Bangladeshi villages.

Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Addy, Susan E.A.

2009-09-17T23:59:59.000Z

132

ACCEPTED BY WATER ENVIRONMENT RESEARCH ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT  

E-Print Network [OSTI]

of their high rates of chemical consumption. Additionally, chemical scrubbers are ineffective for the removalACCEPTED BY WATER ENVIRONMENT RESEARCH _______ ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT of biofilters for sequential removal of H2S and VOCs from wastewater treatment plant waste air. The biofilter

133

Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.  

SciTech Connect (OSTI)

In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

2010-10-01T23:59:59.000Z

134

Microbial fuel cell treatment of ethanol fermentation process water  

DOE Patents [OSTI]

The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

Borole, Abhijeet P. (Knoxville, TN)

2012-06-05T23:59:59.000Z

135

E-Print Network 3.0 - australian fresh water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: australian fresh water Page: << < 1 2 3 4 5 > >> 1 Freshwater fish resources in the Snowy River, Victoria. Freshwater fish resources in the Snowy Summary:...

136

Wastewater and water treatment: Anion exchange. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the theory and methods of anion exchange in the treatment of potable water and wastewaters. Citations discuss anion exchange resins and membranes, desalination techniques, and process evaluations. Methods for anion analysis using chromatographic techniques are also considered. (Contains a minimum of 74 citations and includes a subject term index and title list.)

Not Available

1993-09-01T23:59:59.000Z

137

Wastewater and water treatment: Anion exchange. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the theory and methods of anion exchange in the treatment of potable water and wastewaters. Citations discuss anion exchange resins and membranes, desalination techniques, and process evaluations. Methods for anion analysis using chromatographic techniques are also considered. (Contains a minimum of 74 citations and includes a subject term index and title list.)

Not Available

1994-01-01T23:59:59.000Z

138

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management  

SciTech Connect (OSTI)

Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

David Dzombak; Radisav Vidic; Amy Landis

2012-06-30T23:59:59.000Z

139

Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment  

Science Journals Connector (OSTI)

The corona or corona-like system uses discharges of ?1 J/pulse, whereas the pulsed arc discharge uses energy of ?1 kJ/pulse and larger. ... AC, DC, and pulsed electric fields have been applied in conditions where the electrodes have been fully immersed in the liquid phase, where one electrode has been placed in an adjacent gas phase, and/or where arcing across the electrodes may occur. ... The electrohydraulic shock treatment of microorganisms was accomplished by discharging high-voltage electricity (8 to 15 kv.) across an electrode gap below the surface of aq. ...

B. R. Locke; M. Sato; P. Sunka; M. R. Hoffmann; J.-S. Chang

2005-12-31T23:59:59.000Z

140

E-Print Network 3.0 - aging heat treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat treatment and after 7 and 30 days stor- age at 4 C after the treatment. Weight loss... treatment to develop feasible heat treatments. Treatment parameters were selected...

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Biomechanical pulping of aspen chips; Energy savings resulting from different fungal treatments  

SciTech Connect (OSTI)

Besides increasing paper strength, fungal treatments can also reduce the electrical energy needed for fiberizing chips during mechanical pulping. Fungal species, chip movement, and treatment duration affected the extent of energy savings. This paper reports that four-week-long treatment with white-rot fungi, including Phlebia species or Pholiota mutabilis, in a stationary wire tray bioreactor resulted in at least 35% energy savings for pulping chips to 100 mL CSF in a 300-mm-diameter disc refiner. With Phanerochaete chrysosporium in a rotating-drum bioreactor, the optimal treatment duration was four weeks. Treatment with a brown-rot fungus also resulted in energy savings. Over the range of fungi and conditions tested, neither chip weight loss nor lignin loss correlated with energy savings. Some treatments giving the least chip weight loss ({lt}5%) saved the most energy. Wood modifications responsible for energy savings differed from those that increased strength. Treatments that saved the most energy did not necessarily give the highest strength properties.

Leatham, G.F.; Myers, G.C.; Wegner, T.H. (USDA Forest Service, Forest Products Lab., Madison, WI (US))

1990-05-01T23:59:59.000Z

142

Effectiveness of aquamag ground brucite in water treatment processes  

Science Journals Connector (OSTI)

We present the results of laboratory tests of the physical and chemical properties of two size fractions of Aquamag ground brucite (particle sizes 0–45 µm and ... acid), as well as the effectiveness of brucite fo...

A. N. Belevtsev; S. A. Baikova; V. I. Zhavoronkova; N. N. Mel’nikova…

2007-05-01T23:59:59.000Z

143

Treatment of sea water using electrodialysis: Current efficiency evaluation  

Science Journals Connector (OSTI)

In this paper, desalination of seawater using a laboratory scale electrodialysis (ED) cell was investigated. At steady state operation of ED, the outlet concentration of dilute stream was measured at different voltages (2?6 V), flow rates (0.1?5.0 mL/s) and feed concentrations (5000?30,000 ppm). The electrical resistance of sea water solution in the dilute compartment was initially calculated using basic electrochemistry rules and average concentration of feed and dilute streams. Then, current intensity in each run was evaluated using Ohm's law. Finally, current efficiency (CE) which is an important parameter in determining the optimum range of applicability of an ED cell was calculated. It was found out that, at flow rates larger than 1.5 mL/s, higher feed concentrations lead to larger values of CE. However, exactly opposite behavior was observed at lower flow rates. Increasing the feed flow rate increases CE to a maximum value then decreases it down to zero for all cell voltages and feed concentrations. In the case of higher feed concentrations, maximum values of CE are obtained at higher flow rates. As expected, in almost all experiments, CE increases by intensifying cell voltage. CE values of up to 48 indicate effective ion transfer across the ion exchange membranes in spite of low separation performance of the ED cell.

Mohtada Sadrzadeh; Toraj Mohammadi

2009-01-01T23:59:59.000Z

144

Nanoparticle Doped Water -NeowaterTM The effects of the rf-treatments of water and aqueous solutions can be amplified and stabilized by  

E-Print Network [OSTI]

Nanoparticle Doped Water - NeowaterTM The effects of the rf-treatments of water and aqueous solutions can be amplified and stabilized by doping the water with low density of insoluble nanoparticles [1 is separated. In Fig A. we compare between the source powder and the nanoparticles at the clear doped water

Jacob, Eshel Ben

145

How environmentally significant is water consumption during wastewater treatment?: Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations  

Science Journals Connector (OSTI)

Abstract Environmental impact assessment models are readily available for the assessment of pollution-related impacts in life cycle assessment (LCA). These models have led to an increased focus on water pollution issues resulting in numerous LCA studies. Recently, there have been significant developments in methods assessing freshwater use. These improvements widen the scope for the assessment of wastewater treatment (WWT) technologies, now allowing us to apprehend, for the first time, a combination of operational (energy and chemicals use), qualitative (environmental pollution) and quantitative (water deprivation) issues in wastewater treatment. This enables us to address the following question: Is water consumption during wastewater treatment environmentally significant compared to other impacts? To answer this question, a standard life cycle inventory (LCI) was performed with a focus on consumptive water uses at plant level, where several WWT technologies were operating, in different climatic conditions. The impacts of water consumption were assessed by integrating regionalized characterization factors for water deprivation within an existing life cycle impact assessment (LCIA) method. Results at the midpoint level, show that water deprivation impacts are highly variable in relation to the chosen WWT technology (water volume used) and of WWTP location (local water scarcity). At the endpoint level, water deprivation impacts on ecosystem quality and on the resource damage categories are significant for WWT technologies with great water uses in water-scarce areas. Therefore, our study shows the consideration of water consumption-related impacts is essential and underlines the need for a greater understanding of the water consumption impacts caused by WWT systems. This knowledge will help water managers better mitigate local water deprivation impacts, especially in selecting WWT technologies suitable for arid and semi-arid areas.

Eva Risch; Philippe Loubet; Montserrat Núñez; Philippe Roux

2014-01-01T23:59:59.000Z

146

2005 Borchardt Conference: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI  

E-Print Network [OSTI]

-25, Ann Arbor, MI Conference Proceedings 1 Membrane Biofilm Reactors for Water and Wastewater Treatment and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings 2 (sparging) to replenish oxygen: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings

Nerenberg, Robert

147

Atmospheric plasma treatment to improve durability of a water and oil repellent finishing for acrylic fabrics  

Science Journals Connector (OSTI)

In this study, the influence of an atmospheric plasma treatment on the durability of a commercial water and oil repellent finish was tested. Acrylic fabrics were processed with a RF atmospheric pressure plasma generator and afterwards a fluorocarbon finish was applied through a traditional pad-dry-cure method. Two gas mixtures were tested (helium and helium/oxygen) with different plasma treatment times. The ageing of the finishing was simulated through repeated accelerated laundry cycles. The water and oil repellencies were measured through standard test methods. While the initial water and oil repellency did not change, the plasma treatment improved the durability of the finish after artificial ageing. Scanning electron microscopy analyses were carried out to highlight morphological changes.

Alberto Ceria; Peter J. Hauser

2010-01-01T23:59:59.000Z

148

Desalination and Water Treatment www.deswater.com  

E-Print Network [OSTI]

-driven desalination with reverse osmosis: the state of the art Andrea Ghermandi*, Rami Messalem Ben-Gurion University; accepted in revised form 17 June 2009 abstract Solar-driven reverse osmosis desalination can potentially experimental and design systems worldwide. Our results show that photovoltaic-powered reverse osmosis is techni

Messalem, Rami

149

The mutagenic potential of soil and runoff water from land treatment of three hazardous industrial wastes  

E-Print Network [OSTI]

THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAYOL Submitted to the Graduate College of Te xa s ASM Un i ver s i ty in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1987 Major Subject: Soil Science THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAVDL Approved. s to style and content by: Kirk W...

Davol, Phebe

2012-06-07T23:59:59.000Z

150

Treatment and remediation methods for arsenic removal from the ground water  

Science Journals Connector (OSTI)

Globally, ground water is contaminating by arsenic continously, which needs economic treatment and remediation technologies. Physical, chemical and biological treatment methods have been developed, that include different kinds of filters, bucket type units, fill and draw, kalshi etc. The remediation methods discussed are air oxidation, reactive barriers, utilisation of deeper aquifers and sanitary protected dug wells. To the best of our knowledge no technology is available capable to remove arsenic from water at efficient, economic and commercial levels. Therefore, fast, efficient and economic arsenic removal technologies are required. Attempts have been made to suggest the future technologies of arsenic removal.

Imran Ali; Tabrez A. Khan; Iqbal Hussain

2011-01-01T23:59:59.000Z

151

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Household Wastewater Treatment  

E-Print Network [OSTI]

. This publication covers the following topics: 1. Septic tanks/soil absorption systems 2. Quantity of wastewater 3. Quality of wastewater 4. Collection of wastewater 5. Treatment systems 6. Disposal system 7. Assistance with failing systems or new designs 8.... Evaluation table Septic Tanks/Soil Absorption Systems The most common form of on-site waste- water treatment is a septic tank/soil absorption system. In this system, wastewater flows from the household sewage lines into an under- ground septic tank...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

152

Wear damage resulting from sliding impact kinematics in pressurized high temperature water: energetical and  

E-Print Network [OSTI]

1 Wear damage resulting from sliding impact kinematics in pressurized high temperature water and Cecile Langlade2,3 1 FRAMATOME-ANP Technical Center, Avenue B. Marcet, Porte Magenta, 71200 Le Creusot.bec@ec-lyon.fr Abstract Specific wear of Rod Cluster Control Assemblies (RCCA) in Pressurized Water nuclear Reactors (PWR

Paris-Sud XI, Université de

153

WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1  

E-Print Network [OSTI]

WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1 Xixi Wang, Assefa M. Melesse, Michael E. McClain, and Wanhong Yang2 ABSTRACT: Coalbed methane (CBM the Powder River. (KEY TERMS: coalbed methane, produced water; Montana; natural gas; pattern analysis

McClain, Michael

154

BIO?REFINERIES: BIOPROCESS TECHNOLOGIES FOR WASTE?WATER TREATMENT, ENERGY AND PRODUCT VALORIZATION  

Science Journals Connector (OSTI)

Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also potable water is becoming a scarce resource in many parts of the world and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non?GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food fiber and other biology?based products including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific?attribute raw materials for differentiated markets we can argue that processes such as mass cultivation of microalgae and the concept of bio?refineries be seen as part of a ‘new’ agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste?water treatment water polishing and endocrine disruptor (EDC) removal sustainable energy production and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings and for commercial extraction of bulk commodities such as bio?oils and lecithin. This presentation will address efforts to establish a fully operational solar?driven microalgae bio?refinery for use not only in waste remediation but to transform waste and biomass to energy fuels and other useful materials (valorisation) with particular focus on environmental quality and sustainability goals.

A. Keith Cowan

2010-01-01T23:59:59.000Z

155

ROTIGOTINE TRANSDERMAL PATCH IS EFFECTIVE IN THE TREATMENT OF IDIOPATHIC RLS: RESULTS OF A 6-MONTH,  

E-Print Network [OSTI]

ROTIGOTINE TRANSDERMAL PATCH IS EFFECTIVE IN THE TREATMENT OF IDIOPATHIC RLS: RESULTS OF A 6-MONTH of the SP792 study group Objective: To evaluate efficacy and safety of rotigotine transdermal patch. Conclusion: Therapy with rotigotine transdermal patch in doses of 2 and 3 mg/24h over a period of 6 months

Lichtarge, Olivier

156

Treatment of produced water by simultaneous removal of heavy metals and dissolved polycyclic aromatic hydrocarbons in a photoelectrochemical cell.  

E-Print Network [OSTI]

??Early produced water treatment technologies were developed before carbon dioxide emissions and hazardous waste discharge were recognised as operational priority. These technologies are deficient in… (more)

Igunnu, Ebenezer Temitope

2014-01-01T23:59:59.000Z

157

Determining the Viability of a Hybrid Experiential and Distance Learning Educational Model for Water Treatment Plant Operators in Kentucky.  

E-Print Network [OSTI]

?? Drinking water and wastewater industries are facing a nationwide workforce shortfall of qualified treatment plant operators due to factors including the en masse retirement… (more)

Fattic, Jana R.

2011-01-01T23:59:59.000Z

158

Removing Radium-226 Contamination From Ion Exchange Resins Used in Drinking Water Treatment  

E-Print Network [OSTI]

Removing Radium-226 Contamination From Ion Exchange Resins Used in Drinking Water Treatment P r o b of groundwater containing high levels of radium-226 activity (Objective 1) were regenerated with prescribed brine that the concentration of salt in the brine cleaning solution was the most influential factor in the resin regeneration

159

Statement of work for definitive design of the K basins integrated water treatment system project  

SciTech Connect (OSTI)

This Statement of Work (SOW) identifies the scope of work and schedule requirements for completing definitive design of the K Basins Integrated Water Treatment Systems (IWTS) Subproject. This SOW shall form the contractual basis between WHC and the Design Agent for the Definitive Design.

Pauly, T.R., Westinghouse Hanford

1996-07-16T23:59:59.000Z

160

Preliminary design report for the K basins integrated water treatment system  

SciTech Connect (OSTI)

This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

Pauly, T.R., Westinghouse Hanford

1996-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Author's personal copy Modelling and automation of water and wastewater treatment processes  

E-Print Network [OSTI]

and Jeppsson, 2006), including sewage systems and surrounding land use. From the methodological viewpoint on the applications of modelling and automation to water and wastewater treatment processes. The session, under sludge processes, to which unconventional and innovative control strategies were applied. But there were

162

Treatment of Methyl tert-Butyl Ether Contaminated Water Using a Dense  

E-Print Network [OSTI]

discharge of organic compounds require that new, innovative tech- nologies and methods of remediation dioxide, making the DMP reactor a promising tool in the future remediation of water. Chemical and physical is transformed into a more toxic material or a substance that is more difficult to remediate, the treatment

Dandy, David

163

Explicit temperature treatment in Monte Carlo neutron tracking routines - First results  

SciTech Connect (OSTI)

This article discusses the preliminary implementation of the new explicit temperature treatment method to the development version Monte Carlo reactor physics code Serpent 2 and presents the first practical results calculated using the method. The explicit temperature treatment method, as introduced in [1], is a stochastic method for taking the effect of thermal motion into account on-the-fly in a Monte Carlo neutron transport calculation. The method is based on explicit treatment of the motion of target nuclei at collision sites and requires cross sections at 0 K temperature only, regardless of the number of temperatures in the problem geometry. The method includes a novel capability of modelling continuous temperature distributions. Test calculations are performed for two test cases, a PWR pin-cell and a HTGR system. The resulting k{sub eff} and flux spectra are compared to a reference solution calculated using Serpent 1.1.16 with Doppler-broadening rejection correction [2]. The results are in very good agreement with the reference and also the increase in calculation time due to the new method is on acceptable level although not fully insignificant. On the basis of the current study, the explicit treatment method can be considered feasible for practical calculations. (authors)

Tuomas, V.; Jaakko, L. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)

2012-07-01T23:59:59.000Z

164

Water Loss Test Results: West Main Canal United Irrigation District of Hidalgo County  

E-Print Network [OSTI]

TR-329 2008 Water Loss Test Results: West Main Canal United Irrigation District of Hidalgo County Eric Leigh Texas AgriLife Extension Associate, Biological and Agricultural Engineering, College Station... Guy Fipps Texas AgriLife Extension Professor and Extension Agricultural Engineer, Biological and Agricultural Engineering, College Station April 6, 2006 W 1 ATER LOSS TEST RESULTS: WEST MAIN CANAL UNITED IRRIGATION...

Leigh, E.; Fipps, G.

165

Endovenous Laser Treatment of Saphenous Vein Reflux: Long-Term Results  

E-Print Network [OSTI]

PURPOSE: To report long-term follow-up results of endovenous laser treatment for great saphenous vein (GSV) reflux caused by saphenofemoral junction (SFJ) incompetence. MATERIALS AND METHODS: Four hundred ninety-nine GSVs in 423 subjects with varicose veins were treated over a 3-year period with 810-nm diode laser energy delivered percutaneously into the GSV via a 600-m fiber. Tumescent anesthesia (100–200 mL of 0.2 % lidocaine) was delivered perivenously under ultrasound (US) guidance. Patients were evaluated clinically and with duplex US at 1 week, 1 month, 3 months, 6 months, 1 year, and yearly thereafter to assess treatment efficacy and adverse reactions. Compression sclerotherapy was performed in nearly all patients at follow-up for treatment of associated tributary varicose veins and secondary telangiectasia. RESULTS: Successful occlusion of the GSV, defined as absence of flow on color Doppler imaging, was noted in 490 of 499 GSVs (98.2%) after initial treatment. One hundred thirteen of 121 limbs (93.4%) followed for 2 years have remained closed, with the treated portions of the GSVs not visible on duplex imaging. Of note, all recurrences have occurred before 9 months, with the majority noted before 3 months. Bruising was noted in 24 % of patients and tightness along the course of the treated vein was present in 90 % of limbs. There have been no skin burns, paresthesias, or cases of deep vein thrombosis. CONCLUSIONS: Long-term results available in 499 limbs treated with endovenous laser demonstrate a recurrence

Robert J. Min; Neil Khilnani; Steven E. Zimmet

166

Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

2012-03-15T23:59:59.000Z

167

Numerical simulation on the influence of water spray in thermal plasma treatment of CF4 gas  

Science Journals Connector (OSTI)

Nitrogen thermal plasma generated by a non-transferred DC arc plasma torch was used to decompose tetrafluoromethane (CF4). In the thermal decomposition process, water was used as a chemical reactant source. Two kinds of water spray methods were compared: water spray directly to the arc plasma flame and indirectly to the reactor tube wall. Although the same operating conditions of input power, waste gas, and sprayed water flow rate were employed for each water spray methods, a relatively higher decomposition rate was achieved in the case of water spray to the reactor wall. In order to investigate the effects of water spraying direction on the thermal decomposition process, a numerical simulation on the thermal plasma flow characteristics was carried out considering water injection in the reactor. The simulation was performed using commercial fluid dynamics software of the FLUENT, which is suitable for calculating a complex flow. From the results, it was revealed that water spray to the reactor wall and use of a relatively small quantity of water are more effective methods for decomposition of CF4, because a sufficiently high temperature area and long reaction time can be maintained over large area.

Tae-Hee Kim; Sooseok Choi; Dong-Wha Park

2012-01-01T23:59:59.000Z

168

Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System  

SciTech Connect (OSTI)

This report summarizes work performed on this project from October 2004 through March 2005. In previous work, a surfactant modified zeolite (SMZ) was shown to be an effective system for removing BTEX contaminants from produced water. Additional work on this project demonstrated that a compost-based biofilter could biodegrade the BTEX contaminants found in the SMZ regeneration waste gas stream. However, it was also determined that the BTEX concentrations in the waste gas stream varied significantly during the regeneration period and the initial BTEX concentrations were too high for the biofilter to handle effectively. A series of experiments were conducted to determine the feasibility of using a passive adsorption column placed upstream of the biofilter to attenuate the peak gas-phase VOC concentrations delivered to the biofilter during the SMZ regeneration process. In preparation for the field test of the SMZ/VPB treatment system in New Mexico, a pilot-scale SMZ system was also designed and constructed during this reporting period. Finally, a cost and feasibility analysis was also completed. To investigate the merits of the passive buffering system during SMZ regeneration, two adsorbents, SMZ and granular activated carbon (GAC) were investigated in flow-through laboratory-scale columns to determine their capacity to handle steady and unsteady VOC feed conditions. When subjected to a toluene-contaminated air stream, the column containing SMZ reduced the peak inlet 1000 ppmv toluene concentration to 630 ppmv at a 10 second contact time. This level of buffering was insufficient to ensure complete removal in the downstream biofilter and the contact time was longer than desired. For this reason, using SMZ as a passive buffering system for the gas phase contaminants was not pursued further. In contrast to the SMZ results, GAC was found to be an effective adsorbent to handle the peak contaminant concentrations that occur early during the SMZ regeneration process. At a one second residence time, the GAC bed reduced peak contaminant concentrations by 97%. After the initial peak, the inlet VOC concentration in the SMZ regeneration gas stream drops exponentially with time. During this period, the contaminants on the GAC subsequently desorbed at a nearly steady rate over the next 45 hours resulting in a relatively steady effluent concentration of approximately 25 ppm{sub v}. This lower concentration is readily degradable by a downstream vapor phase biofilter (VPB) and the steady nature of the feed stream will prevent the biomass in the VPB from enduring starvation conditions between SMZ regeneration cycles. Repetitive sorption and desorption cycles that would be expected in the field were also investigated. It was determined that although the GAC initially lost some VOC sorption capacity, the adsorption and desorption profiles stabilized after approximately 6 cycles indicating that a GAC bed should be suitable for continuous operation. In preparation for the pilot field testing of the SMZ/VPB system, design, ''in-house'' construction and testing of the field system were completed during this project period. The design of the SMZ system for the pilot test was based on previous investigations by the PI's in Wyoming, 2002 and on analyses of the produced water at the field site in New Mexico. The field tests are scheduled for summer, 2005. A cost survey, feasibility of application and cost analyses were completed to investigate the long term effectiveness of the SMZ/VPB system as a method of treating produced water for re-use. Several factors were investigated, including: current costs to treat and dispose of produced water, end-use water quality requirements, and state and federal permitting requirements.

Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

2005-03-11T23:59:59.000Z

169

Characterization of Cu{sub 6}Sn{sub 5} intermetallic powders produced by water atomization and powder heat treatment  

SciTech Connect (OSTI)

Since the Cu{sub 6}Sn{sub 5} intermetallic shows its importance in industrial applications, the Cu{sub 6}Sn{sub 5} intermetallic-containing powders, produced by a powder processing route with a high production rate, were characterized. The route consisted of water atomization of an alloy melt (Cu–61 wt.% Sn) and subsequent heat treatment of the water-atomized powders. Characterization of the water-atomized powders and their heated forms was conducted by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Fine water-atomized powder microstructures consisted of primary hexagonal ?-Cu{sub 6.25}Sn{sub 5} dendrites coexisting with interdendritic ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic. Solidification of fine melt droplets was governed by surface nucleation and growth of the primary hexagonal ?-Cu{sub 6.25}Sn{sub 5} dendrites followed by ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic solidification of the remnant liquid. In coarse melt droplets, nucleation and growth of primary ?-Cu{sub 3}Sn dendrites were followed by peritectic reaction (?-Cu{sub 3}Sn + liquid ? ?-Cu{sub 6.25}Sn{sub 5}) or direct crystallization of ?-Cu{sub 6.25}Sn{sub 5} phase from the undercooled melt. Finally, the ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic solidification of the remnant liquid occurred. Heating of the water-atomized powders at different temperatures resulted in microstructural homogenization. The water-atomized powders with mixed phases were transformed to powders with single monoclinic ?-Cu{sub 6}Sn{sub 5} phase. - Highlights: • The Cu{sub 6}Sn{sub 5} intermetallic powder production route was proposed. • Single phase Cu{sub 6}Sn{sub 5} powders could be by water atomization and heating. • Water-atomized Cu–Sn powders contained mixed Cu–Sn phases. • Solidification and heat treatment of water-atomized Cu–Sn powders are explained.

Tongsri, Ruangdaj, E-mail: ruangdt@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Yotkaew, Thanyaporn, E-mail: thanyy@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Krataitong, Rungtip, E-mail: rungtipk@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Wila, Pongsak, E-mail: pongsakw@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Sir-on, Autcharaporn, E-mail: autchars@mtec.or.th [Materials Characterization Research Unit (MCRU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Muthitamongkol, Pennapa, E-mail: pennapm@mtec.or.th [Materials Characterization Research Unit (MCRU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Tosangthum, Nattaya, E-mail: nattayt@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand)

2013-12-15T23:59:59.000Z

170

Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms - Water, BOD, carbon and nutrient removal  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer It is necessary to improve existing and develop new sludge management techniques. Black-Right-Pointing-Pointer One method is dewatering and biodegradation of compounds in constructed wetlands. Black-Right-Pointing-Pointer The result showed high reduction of all tested parameters after treatment. Black-Right-Pointing-Pointer Plants improve degradation and Phragmites australis is tolerant to xenobiotics. Black-Right-Pointing-Pointer The amount of sludge could be reduced by 50-70%. - Abstract: Since the mid-1970s, Sweden has been depositing 1 million ton d.w sludge/year, produced at waste water treatment plants. Due to recent legislation this practice is no longer a viable method of waste management. It is necessary to improve existing and develop new sludge management techniques and one promising alternative is the dewatering and treatment of sludge in constructed wetlands. The aim of this study was to follow reduction of organic carbon, BOD and nutrients in an industrial sludge containing nitro-aromatic compounds passing through constructed small-scale wetlands, and to investigate any toxic effect such as growth inhibition of the common reed Phragmites australis. The result showed high reduction of all tested parameters in all the outgoing water samples, which shows that constructed wetlands are suitable for carbon and nutrient removal. The results also showed that P. australis is tolerant to xenobiotics and did not appear to be affected by the toxic compounds in the sludge. The sludge residual on the top of the beds contained low levels of organic carbon and is considered non-organic and could therefore be landfilled. Using this type of secondary treatment method, the amount of sludge could be reduced by 50-70%, mainly by dewatering and biodegradation of organic compounds.

Gustavsson, L., E-mail: Lillemor.Gustavsson@karlskogaenergi.se [Karlskoga Environment and Energy Company, Karlskoga (Sweden); Engwall, M. [Karlskoga Environment and Energy Company, Karlskoga (Sweden); School of Science and Technology, MTM - Man-Technology-Environment, Oerebro University, 701 82 Oerebro (Sweden)

2012-01-15T23:59:59.000Z

171

E-Print Network 3.0 - aerated treatment pond Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geosciences ; Environmental Sciences and Ecology 3 publication 426-045 Urban Water-Quality Management Summary: publication 426-045 Urban Water-Quality Management...

172

E-Print Network 3.0 - area effluent treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Nature and Transformation of Dissolved Organic Matter in Summary: . As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes...

173

Water quality changes as a result of coalbed methane development in a Rocky mountain watershed  

SciTech Connect (OSTI)

Coalbed methane (CBM) development raises serious environmental concerns. In response, concerted efforts have been made to collect chemistry, salinity, and sodicity data on CBM produced water. However, little information on changes of stream water quality resulting from directly and/or indirectly received CBM produced water is available in the literature. The objective of this study was to examine changes in stream water quality, particularly sodicity and salinity, due to CBM development in the Powder River watershed, which is located in the Rocky Mountain Region and traverses the states of Wyoming and Montana. To this end, a retrospective analysis of water quality trends and patterns was conducted using data collected from as early as 1946 up to and including 2002 at four U.S. Geological Survey gauging stations along the Powder River. Trend analysis was conducted using linear regression and Seasonal Kendall tests, whereas, Tukey's test for multiple comparisons was used to detect changes in the spatial pattern. The results indicated that the CBM development adversely affected the water quality in the Powder River. First, the development elevated the stream sodicity, as indicated by a significant increase trend of the sodium adsorption ratio. Second, the development tended to shrink the water quality differences among the three downstream stations but to widen the differences between these stations and the farthest upstream station. In contrast, the development had only a minor influence on stream salinity. Hence, the CBM development is likely an important factor that can be managed to lower the stream sodicity. The management may need to take into account that the effects of the CBMdevelopment were different from one location to another along the Powder River.

Wang, X.; Melesse, A.M.; McClain, M.E.; Yang, W. [Tarleton State University, Stephenville, TX (USA)

2007-12-15T23:59:59.000Z

174

Current and Long-Term Effects of Delta Water Quality on Drinking Water Treatment Costs from Disinfection Byproduct Formation  

E-Print Network [OSTI]

for protecting public drinking water (CALFED 2000), are alsobest management options for drinking water sourced from theDelta Authority. 2004. Drinking water quality program multi-

Chen, Wei-Hsiang; Haunschild, Kristine; Lund, Jay R.; Fleenor, William E.

2010-01-01T23:59:59.000Z

175

Cs-137 in the Savannah River and the Beaufort-Jasper and Port Wentworth water-treatment plants  

SciTech Connect (OSTI)

Cesium-137 concentration measurements made in 1965 are reported for the Savannah River above and below the Savannah River Plant (SRP) and for the Beaufort-Jasper and Port Wentworth water treatment plants down river. These concentrations, measured when four SRP reactors (C, K, L, and P) were operating, were used to estimate Cs-137 reduction ratios for transport in the Savannah River and across each water treatment plant. In 1965 there was a 48% reduction in the Cs-137 concentration in the Savannah River between Highway 301 and the water treatment plant inlet points. Measured Cs-137 values in the finished water from Port Wentworth and the Beaufort-Jasper water treatment plants showed an 80% and 98% reduction in concentration level, respectively, when compared to Cs-137 concentration at Highway 301. The lower Cs-137 concentration (0.04 pCi/l) in the Beaufort-Jasper finished water is attributed to dilution in the canal from inflow of surface water (40%) and sediment cleanup processes that take place in the open portions of the canal (about 17 to 18 miles). Using the 1965 data, maximum Cs-137 concentrations expected in finished water in the Beaufort-Jasper and Port Wentworth water treatment plants following L-Reactor startup were recalculated. The recalculated values are 0.01 and 0.09 pCi/l for Beaufort-Jasper and Port Wentworth, respectively, compared to the 1.05 pCi/l value in the Environmental Assessment.

Hayes, D.W.; Boni, A.L.

1983-01-10T23:59:59.000Z

176

Zinc Treatment Effects on Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water  

SciTech Connect (OSTI)

Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 C were found to lower the corrosion rate of austenitic stainless steel (UNS S30400) by about a factor of five, relative to a non-zinc baseline test after 10,000 hr. Characterizations of the corrosion oxide layer via grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy in combination with argon ion milling and target factor analysis, confirmed the presence of two spinel oxide phases and minor amounts of recrystallized nickel. Based on the distribution of the three oxidized alloying constituents (Fe, Cr, Ni) with respect to depth and oxidation state, it was concluded that: (a) corrosion occurs in a non-selective manner, but approximately 30% of the oxidized iron is released to the water, and (b) the two spinel oxides exist as a ferrite-based outer layer (Ni{sub 0.1}Zn{sub 0.6}Fe{sub 0.3})(Fe{sub 0.95}Cr{sub 0.05}){sub 2}O{sub 4} on top of a chromite-based inner layer (Ni{sub 0.1}Zn{sub 0.2}Fe{sub 0.7})(Fe{sub 0.4}Cr{sub 0.6}){sub 2}O{sub 4}. These results suggest that immiscibility in the Fe{sub 3}O{sub 4}-ZnFe{sub 2}O{sub 4} binary may play a role in controlling the zinc content of the outer layer. On the other hand, the lower corrosion rate caused by zinc additions is believed to be a consequence of corrosion oxide film stabilization due to the substitution reaction equilibrium: z Zn{sup 2+}(aq) + FeCr{sub 2}O{sub 4}(s) {approx} z Fe{sup 2+}(aq) + (Zn{sub z}Fe{sub 1-z})Cr{sub 2}O{sub 4}(s). The liquid-solid distribution coefficient for the reaction, defined by the ratio of total zinc to iron ion concentrations in solution divided by the Zn(II)/Fe(II) ratio in the solid, z/(1-z), was found to be 0.184. This interpretation is consistent with the benefits of zinc treatment being concentration dependent.

S.E. Ziemniak; M. Hanson

2001-03-20T23:59:59.000Z

177

E-Print Network 3.0 - ambient water toxicity Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The most Summary: waters of the toxicity test beakers. Immediate collection and analysis of interstitial water... was necessary. Others have recommended interstitial waters...

178

Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results and Policy Implications  

E-Print Network [OSTI]

for Arsenic-Free, Safe Drinking Water in Bangladesh. ” Worldburden from arsenic in drinking water in Bangladesh. ”Remediation of Bangladesh Drinking Water using Iron-oxide

Mathieu, Johanna L.

2010-01-01T23:59:59.000Z

179

Low Molecular Weight Organic Contaminants in Advanced Treatment: Occurrence, Treatment and Implications to Desalination and Water Reuse Systems.  

E-Print Network [OSTI]

??Water reuse and desalination are increasingly considered as viable sources of potable water because improvements in materials and designs have decreased the cost of reverse… (more)

Agus, Eva

2011-01-01T23:59:59.000Z

180

Civil society research and Marcellus Shale natural gas development: results of a survey of volunteer water monitoring organizations  

Science Journals Connector (OSTI)

This paper reports the results of a survey of civil society organizations that are monitoring surface water for impacts of Marcellus Shale development in Pennsylvania and New York. We ... ” of surface water quali...

Kirk Jalbert; Abby J. Kinchy…

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - abuse treatment gap Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences Summary: .1 Prevalence and Treatment of Mental Health and Substance Abuse in New Hampshire 2 1.2 Cost of Mental Health... Treatment Declined 12 3.1.3 Access to...

182

Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489  

SciTech Connect (OSTI)

On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One must remember that, in addition to attempting to do isotope removal in the competition of seawater (as high as 18,000 ppm sodium due to concentration), some 350,000 gallons of turbine oil was dispersed into the flooded buildings as well. The proposed system consisted of a 4 guard vessel skid for the oil and debris, 4 skids containing 16 cesium towers in a lead-lag layout with removable vessels (sent to an interim storage facility), and a 4 polishing vessel skid for iodine removal and trace cesium levels. At a flow rate of at least 220 gallons per minute, the system has routinely removed over 99% of the cesium, the main component of the activity, since going on line. To date, some 50% of the original activity has been removed and stabilized and cold shutdown of the plant was announced on December 10, 2011. In March and April alone, 10 cubic feet of Engineered Herschelite was shipped to Seabrook Nuclear Power Plant, NPP, to support the April 1, 2011 outage cleanup; 400 cubic feet was shipped to Oak Ridge National Laboratory (ORNL) for strontium (Sr-90) ground water remediation; and 6000 cubic feet (100 metric tons, MT, or 220,400 pounds) was readied for the Fukushima Nuclear Power Station with an additional 100 MT on standby for replacement vessels. This experience and accelerated media production in the U.S. bore direct application to what was to soon be used in Fukushima. How such a sophisticated and totally unique system and huge amount of media could be deployable in such a challenging and changing matrix, and in only seven weeks, is outlined in this paper as well as the system and operation itself. As demonstrated herein, all ten major steps leading up to the readiness and acceptance of a modular emergency technology recovery system were met and in a very short period of time, thus utilizing three decades of experience to produce and deliver such a system literally in seven weeks: - EPRI - U.S. Testing and Experience Leading to Introduction to EPRI - Japan and Subsequently TEPCO Emergency Meetings - Three Mile Island (TMI) Media and Vitrification Experience

Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc., P.O. Box 5901, Oak Ridge, Tennessee 37831 (United States); Bostick, William D. [Materials and Chemistry Laboratory, Inc. (MCL) ETTP, Building K-1006, 2010 Highway 58, Suite 1000, Oak Ridge, Tennessee 37830 (United States)

2012-07-01T23:59:59.000Z

183

E-Print Network 3.0 - air treatment heating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DISORDER CAUSE SIGNS & SYMPTOMS TREATMENT Heat Cramps Heavy sweating Loss of salt -Painful spasms of arms... outdoors or in ......

184

Macrophyte Decomposition Rates in the Tres Rios Constructed Treatment Wetland: Preliminary Results!  

E-Print Network [OSTI]

with our research at the Tres Rios Wastewater Treatment Facility. This Research Assistantship for High & Gosselink 2000). It leads to a recycling of nutrients to fuel new productivity, and the process is largely, such as those associated with municipal wastewater treatment.! Constructed treatment wetlands perform important

Hall, Sharon J.

185

Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch  

SciTech Connect (OSTI)

In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

Pickett, J.B.; Martin, H.L.; Diener, G.A.

1992-07-06T23:59:59.000Z

186

Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch. Revision 1  

SciTech Connect (OSTI)

In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

Pickett, J.B.; Martin, H.L.; Diener, G.A.

1992-07-06T23:59:59.000Z

187

Estimating surface water risk at Oak Ridge National Laboratory: Effects of site conditions on modeling results  

SciTech Connect (OSTI)

Multiple source term and groundwater modeling runs were executed to estimate surface water {sup 90}Sr concentrations resulting from leaching of sludges in five 180,000 gallon Gunite{trademark} tanks at Oak Ridge National Laboratory. Four release scenarios were analyzed: (1) leaching of unstabilized sludge with immediate tank failure; (2) leaching of unstabilized sludge with delayed tank failure due to chemical degradation; (3) leaching of stabilized sludge with immediate tank failure; and (4) leaching of residual contamination out of the shells of empty tanks. Source terms and concentrations of {sup 90}Sr in the stream directly downgradient of the tanks were calculated under these release scenarios. The following conclusions were drawn from the results of the modeling: (1) small changes in soil path length resulted in relatively large changes in the modeled {sup 90}Sr concentrations in the stream; (2) there was a linear relationship between the amount of sludge remaining in a tank and the peak concentration of {sup 90}Sr in the stream; (3) there was a linear relationship between the cumulative {sup 90}Sr release from a tank and the peak concentration of {sup 90}Sr in the stream; (4) sludge stabilization resulted in significantly reduced peak concentrations of {sup 90}Sr in the stream; and (5) although radioactive decay of {sup 90}Sr during the period of tank degradation resulted in incrementally lower peak {sup 90}Sr concentrations in surface water than under the immediate tank failure scenarios these concentrations were equivalent under the two scenarios after about 90 years.

Curtis, A.H. III

1996-08-01T23:59:59.000Z

188

1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important when  

E-Print Network [OSTI]

of H2S in septic sewers causing pipe corrosion. 2. CO2 Stripping of some ground waters, industrial1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important wastewaters to the stream. Gas/Liquid Interface Gas Liquid Gas transfer to the liquid is absorption Gas

Stenstrom, Michael K.

189

Advancement of chitosan-based adsorbents for enhanced and selective adsorption performance in water/wastewater treatment: review  

Science Journals Connector (OSTI)

This paper gives an overview of the results obtained by various researchers in the treatment of various suspensions and solutions by using Chitosan as an adsorbent. Chitosan, a partially deacetylated polymer obtained from the alkaline deacetylation of chitin, extracted from shellfish has been reviewed for its application in water and wastewater. Chitosan exhibits a variety of physicochemical and biological properties resulting in numerous applications in various fields. The review provides a summary of recent information obtained using batch studies, deals with the various adsorption mechanisms involved also summarises the equilibrium and kinetic modelling. It is attempted to identify the gaps in the use of Chitosan as an adsorbent and to indicate future directions useful for research.

Madhukar V. Jadhav; Yogesh S. Mahajan

2011-01-01T23:59:59.000Z

190

Economies of Size in Municipal Water-Treatment Technologies: A Texas Lower Rio Grande Valley Case Study  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Brackish Groundwater Reverse-Osmosis Desalination. . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ES Classification by Cost Category, Type, and Item. . . . . . . . . . . . . . . . . . . . . . . 56 ES Classification by Facility Segment.... . . . . . . . . . . . . . . . . . . . 3 2 Reported Cost of Supply and Treatment ($/1,000 gallons) for Surface-Water Treatment Facilities and RO Desalination Facilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Initial Construction Costs for a 2.0 mgd Facility...

Boyer, Christopher N.; Rister, M. Edward; Rogers, Callie S.; Sturdivant, Allen W.; Lacewell, Ronald D.; Browning, Charles Jr.; Elium III, James R.; Seawright, Emily K.

191

Technology Evaluation for the Big Spring Water Treatment System at the Y-12 National Security Complex, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone & Webster Building 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to Bldg. 9201-2. The EEMTS treats mercury-contaminated groundwater that collects in sumps in the basement of Bldg. 9201-2. A pre-design study was performed to investigate the applicability of various treatment technologies for reducing mercury discharges at Outfall 51 in support of the design of the Big Spring Water Treatment System. This document evaluates the results of the pre-design study for selection of the mercury removal technology for the treatment system.

Becthel Jacobs Company LLC

2002-11-01T23:59:59.000Z

192

E-Print Network 3.0 - animal manure treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Collection: Environmental Sciences and Ecology 31 Managing Manure with Biogas Recovery Systems Summary: anaerobic lagoons used in the treatment and storage of these...

193

E-Print Network 3.0 - aerox waste treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

facilities that could be modified to generate hydrogen Fuel... from organic waste Wastewater treatment plants ... Source: DOE Office of Energy Efficiency and Renewable...

194

E-Print Network 3.0 - acid treatment inhibits Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ation by inhibiting the action of the enzyme that links... oxygen with red blood cells. POISON SYMPTOMS AND TREATMENT Prussic acid poisoning can occur within a few... , prompt...

195

E-Print Network 3.0 - a-01 wetland treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering... Design; CEE 751: Biological Unit Operations; CEE 771: Wastewater Treatment in Small Rural Communities Source: Marchand, Eric A. - Department of Civil and...

196

Chemical pre-treatment of waste water from the Morcinek Mine in Poland  

SciTech Connect (OSTI)

This report presents a treatment strategy for brine that is recovered from the Morcinek mine near the city of Kartowice in Upper Silesia, Poland. The purpose of the study is to provide sufficient chemical composition and solubility data to permit selection of equipment for a pilot scale waste water processing plant. The report delineates: (1) the pre-treatment steps necessary before the brine is delivered to a reverse osmosis unit; (2) the composition of the brine solution at various stages in the pretreatment process and during the reverse osmosis step; (3) the types and amounts of chemicals that need to be added to the brine during pre-treatment. Analysis of the composition of the brine slurry from the submerged combustion evaporator that follows the reverse osmosis unit and the composition of brine elements that might be carried into the exhaust stack of the evaporator will be dealt with later. The pretreatment process will consist of four steps: (1) aeration and addition of sodium carbonate, (2) multimedia filtration, (3) addition of hydrochloric acid, and (4) ultrafiltration. On the basis of one m{sup 3} of the brine that has a density of 1.03 g/cm{sup 3}, approximately 800 grams (1.7 lbs.) of sodium carbonate monohydrate (Na{sub 2}CO{sub 3}{center_dot}H{sub 2}O) and 60 grams (0.12 lbs.) of concentrated hydrochloric acid (HCI) will need to be added to the brine during pre-treatment. The goal of the pre-treatment is to produce a fluid that is always undersaturated with respect to all mineral phases. However, only the minimum amount of pre-treatment chemicals should be added in order to minimize costs. Therefore the overall goal is to generate a fluid that approaches but does not exceed saturation at the end of the reverse osmosis process. The suggested amounts of chemicals reported here are therefore the minimum amounts that need to be added during pre-treatment to keep all salts in solution during the reverse osmosis process.

Bourcier, W.; Jackson, K.J.

1994-06-01T23:59:59.000Z

197

E-Print Network 3.0 - anechoic water tank Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1, 2, and 3 including steam drums, water drums, firebox, and exhaust stack. All tanks including... Side of Surface Condenser < Fuel Oil Storage Tanks < Chilled Water...

198

E-Print Network 3.0 - anaerobic waste water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Jun Wei LIM... waste. Keywords Anaerobic digestion; food waste; brown water; biogas; co-digestion INTRODUCTION... of brown water and food ... Source: Ecole Polytechnique,...

199

E-Print Network 3.0 - air soil water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iii. Soil-Plant Relationships iv. Cation exchange IV. Pollution of Water, Soil, and Air: (Lecture... unsaturated unsteady water flow X. Gaseous Phase of Soils (Hillel pages...

200

E-Print Network 3.0 - air water soil Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iii. Soil-Plant Relationships iv. Cation exchange IV. Pollution of Water, Soil, and Air: (Lecture... unsaturated unsteady water flow X. Gaseous Phase of Soils (Hillel pages...

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

E-Print Network 3.0 - american water flea Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

earth at reducing populations Summary: affected than those that must metabolize water from their food sources. Both fleas and blow flies... lost water faster and more...

202

Comparing removal of trace organic compounds and assimilable organic carbon (AOC) at advanced and traditional water treatment plants  

Science Journals Connector (OSTI)

Stability of drinking water can be indicated by the assimilable organic carbon (AOC). This AOC value represents the regrowth capacity of microorganisms...254, and AOC) from water, experimental results indicate th...

Jie-Chung Lou; Chung-Yi Lin; Jia-Yun Han…

2012-06-01T23:59:59.000Z

203

Meeting the Need for Safe Drinking Water in Rural Mexico through Point-of-Use Treatment  

E-Print Network [OSTI]

Solar disinfection of drinking water and diarrhoea in Maasai2001. Solar disinfection of drinking water protects againstdisinfection of drinking water contained in transparent

Lang, Micah; Kaser, Forrest; Reygadas, Fermin; Nelson, Kara; Kammen, Daniel M.

2006-01-01T23:59:59.000Z

204

Water Supply Challenges in Cities as a Result of Urbanization: Analyzing the Hurdles of Achieving Universal Water Access in Kampala  

E-Print Network [OSTI]

. Interviewed by Greg Felter [in person] Ampthill, UK, 5 June. Cross, P. and Morel, A. n.d.. Pro-Poor Strategies for Urban Water Supply and Sanitation Services Delivery in Africa. [report] Nairobi: The World Bank, pp. 1-8 Dimanin, P. 2012. Exploring... Corporation (NWSC) (Alabaster, 2013). 1.1. Water Access Goals Improving Water, Sanitation and Hygiene (WASH) facilities is a critical goal of the UN, which created the target to halve the overall proportion of people without sustainable access to safe...

Felter, Greg

2014-07-09T23:59:59.000Z

205

POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS  

SciTech Connect (OSTI)

New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.

Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland; Margaret L. Laumb

2001-06-01T23:59:59.000Z

206

E-Print Network 3.0 - adjacent shelf waters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the cavity beneath an ice... ); freezing occurs because warm waters in contact with the ice-shelf base undergo cooling and freshening... of the fluxes of heat and fresh water...

207

E-Print Network 3.0 - african water resource Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WWW-YES 2009: Urban waters: resource or risks? 2-5 June 2009 Summary: Resources in Africa. African Water Development Report. hal-00591650,version1-9May2011 12;Potentials......

208

Posters Atmospheric Emitted Radiance Interferometer: Status and Water Vapor Continuum Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 Posters Atmospheric Emitted Radiance Interferometer: Status and Water Vapor Continuum Results H. E. Revercomb, R. O. Knuteson, W. L. Smith, F. A. Best, and R. G. Dedecker University of Wisconsin Madison, Wisconsin H. B. Howell National Oceanic and Atmospheric Administration Systems Design and Applications Branch Madison, Wisconsin Introduction Accurate and spectrally detailed observations of the thermal emission from radiatively important atmospheric gases, aerosols, and clouds are now being provided to the Atmospheric Radiation Measurement (ARM) data base by the Atmospheric Emitted Radiance Interferometer (AERI) prototype at the Southern Great Plains Cloud and Radiation Testbed (CART) site. Spectra over the range from 520 to 3000 cm -1 (3 to 19 microns) with a resolution of 0.5 cm

209

Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation  

SciTech Connect (OSTI)

Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 (G4) polyelectrolyte polyamidoamine (PAMAM) starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, (r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work which provides a link between the neutron scattering experiment and MD computation. The simulations enable scattering calculations of not only the hydrocarbons, but also the contribution to the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we question the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

Chen, Wei-Ren [ORNL; Do, Changwoo [ORNL; Hong, Kunlun [ORNL; Liu, Emily [Rensselaer Polytechnic Institute (RPI); Liu, Yun [National Institute of Standards and Technology (NIST); Porcar, L. [National Institute of Standards and Technology (NIST); Smith, Gregory Scott [ORNL; Wu, Bin [ORNL; Egami, T [University of Tennessee, Knoxville (UTK); Smith, Sean C [ORNL

2012-01-01T23:59:59.000Z

210

Disaggregating measurement uncertainty from population variability and Bayesian treatment of uncensored results  

Science Journals Connector (OSTI)

......The counting system includes an...spectrometry system is calibrated...the Y-12 plant for the year...regulatory control. When communicating...concentrations. J. Air Waste Manag. Assoc...complex dosimetry system: some observations...calibration and integrated conditional...and Bayesian treatment of uncensored......

Daniel J. Strom; Kevin E. Joyce; Jay A. MacLellan; David J. Watson; Timothy P. Lynch; Cheryl L. Antonio; Alan Birchall; Kevin K. Anderson; Peter A. Zharov

2012-04-01T23:59:59.000Z

211

Characterization of Rio Blanco retort 1 water following treatment by lime-soda softening and reverse osmosis  

SciTech Connect (OSTI)

Laboratory research was initiated to evaluate the chemical, physical, and toxicological characteristics of treated and untreated Rio Blanco oil shale retort water. Wet chemical analyses, metals analyses, MICROTOX assays and particle-size analysis were performed on the wastewater before and after treatment by lime-soda softening and reverse osmosis. The reverse osmosis system successfully removed dissolved solids and organics from the wastewater. Based on MICROTOX tests, the water was much less toxic after treatment by reverse osmosis. 8 refs., 7 figs., 8 tabs.

Kocornik, D.J.

1985-12-01T23:59:59.000Z

212

Use of bioassays to assess the water quality of wastewater treatment plants for the occurrence of estrogens and androgens  

E-Print Network [OSTI]

exposed to reconstituted reverse osmosis water (Control) andprocesses included reverse osmosis, filtration/chlorinationbeen treated with reverse osmosis. Our results also suggest

Schlenk, Daniel

2005-01-01T23:59:59.000Z

213

Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation  

SciTech Connect (OSTI)

Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank doped with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications.

Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Department of Physics and Astronomy and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Fox, Colleen J.; Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)] [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

2014-06-15T23:59:59.000Z

214

Results of the DF-4 BWR (boiling water reactor) control blade-channel box test  

SciTech Connect (OSTI)

The DF-4 in-pile fuel damage experiment investigated the behavior of boiling water reactor (BWR) fuel canisters and control blades in the high temperature environment of an unrecovered reactor accident. This experiment, which was carried out in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories, was performed under the USNRC's internationally sponsored severe fuel damage (SFD) program. The DF-4 test is described herein and results from the experiment are presented. Important findings from the DF-4 test include the low temperature melting of the stainless steel control blade caused by reaction with the B{sub 4}C, and the subsequent low temperature attack of the Zr-4 channel box by the relocating molten blade components. Hydrogen generation was found to continue throughout the experiment, diminishing slightly following the relocation of molten oxidizing zircaloy to the lower extreme of the test bundle. A large blockage which was formed from this material continued to oxidize while steam was being fed into the the test bundle. The results of this test have provided information on the initial stages of core melt progression in BWR geometry involving the heatup and cladding oxidation stages of a severe accident and terminating at the point of melting and relocation of the metallic core components. The information is useful in modeling melt progression in BWR core geometry, and provides engineering insight into the key phenomena controlling these processes. 12 refs., 12 figs.

Gauntt, R.O.; Gasser, R.D.

1990-10-01T23:59:59.000Z

215

Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes.  

E-Print Network [OSTI]

??Produced water is a major waste produced from oil and natural gas wells in the state of Texas. This water could be a possible source… (more)

Beech, Scott Jay

2006-01-01T23:59:59.000Z

216

Analysis of fruitland water production treatment and disposal, San Juan Basin. Topical report, October 1991-March 1993  

SciTech Connect (OSTI)

The San Juan Basin produces more coalbed methane than the rest of the world combined. Brackish water is produced with the gas. Water production climbed from 40,000 barrels per day in 1989 to 115,000 bpd by late 1992. Underground injection is used to dispose of virtually all the produced water. Water production is projected to increase to 180,000 bpd in 1995. 650 million to 1.1 billion barrels are projected to be produced over the next 20 years. Restricted injection capacity and aquifer storage capacity may necessitate additional disposal wells and, ultimately, other methods to dispose of the water. Alternative treatment technologies, especially electrodialysis and/or reverse osmosis, may be applicable at costs of $0.17 to $0.22 per barrel, a considerable savings over the $0.80 to $1.00/bbl cost of deep injection. With suitable treatment, the majority of the produced water could be made suitable for agricultural or municipal uses. Reservoir analysis and simulations indicate stimulations can be optimized, and that heating water prior to injection might increase injectivity in some wells.

Cox, D.O.; Decker, A.D.; Stevens, S.H.

1993-06-01T23:59:59.000Z

217

Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling  

SciTech Connect (OSTI)

A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondarytreated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

2013-10-01T23:59:59.000Z

218

E-Print Network 3.0 - area modulate water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-steps. The hydrological module is designed to ac- count for: water availability in terms of river runo , reservoir storage... -arid hydroclimatological conditions. This...

219

E-Print Network 3.0 - advanced water reactor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water... it can be built on time and budget. Reactors currently under construction in Finland and France... are indeed well behind schedule. But there are several reactors that...

220

E-Print Network 3.0 - assess water quality Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... 33 DIRECT ASSESSMENT OF CONTAMINANT LOAD INTO WATERWAYS LCA APPROACH TO WATER QUALITY... to change policy. UNEP established the WaFNE Project in...

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

E-Print Network 3.0 - assessing water quality Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... 33 DIRECT ASSESSMENT OF CONTAMINANT LOAD INTO WATERWAYS LCA APPROACH TO WATER QUALITY... to change policy. UNEP established the WaFNE Project in...

222

E-Print Network 3.0 - austrian mineral water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mines may affect air quality. As with water pollution, mines can contribute to air pollution... Chapter 15 Mineral Resources and the Environment 12;Minerals ... Source: Pan,...

223

Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results and Policy Implications  

E-Print Network [OSTI]

using Iron-oxide Coated Coal Ash. ” In Arsenic Contaminationarsenic from drinking water: Coal ash coated with ferricwater per day. However, the coal ash required to treat that

Mathieu, Johanna L.

2010-01-01T23:59:59.000Z

224

E-Print Network 3.0 - air-water bubbly flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Chemistry 6 Hydrodynamic and statistical parameters of slug flow Lev Shemer * Summary: identification from dynamic void fraction measurements in vertical air-water flows. Int....

225

E-Print Network 3.0 - abb-ce light water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supplier Beginning in 1999... , community water supply systems must provide an annual report describ- ing the quality of their drinking Source: Fernndez-Juricic, Esteban -...

226

E-Print Network 3.0 - adjacent coastal waters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wetland Forests Summary: of coastal Louisiana is presently experiencing an apparent water level rise of about 3.3 feet per century... infrastructure that have also altered and...

227

E-Print Network 3.0 - air conditioners water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water... EECBG Direct Equipment Purchase Air Conditioner Guide ... Source: California Energy Commission Collection: Energy Storage, Conversion and Utilization 2 June 30, 2011...

228

E-Print Network 3.0 - adjacent marine waters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SEMINAR Diatom Based Quantitative Reconstructions of Summary: . The bay ecosystem is affected by changes in water quality and quantity in the adjacent marine... and freshwater...

229

E-Print Network 3.0 - alkaline ground waters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water from the Lake Calumet... , and ground ... Source: Bethke, Craig - Department of Geology, University of Illinois at Urbana-Champaign Collection: Environmental Sciences and...

230

Analysis of 129I in Groundwater Samples: Direct and Quantitative Results below the Drinking Water Standard  

SciTech Connect (OSTI)

Due to its long half-life (15.7 million years) and relatively unencumbered migration in subsurface environments, 129I has been recognized as a contaminant of concern at numerous federal, private, and international facilities. In order to understand the long-term risk associated with 129I at these locations, quantitative analysis of groundwater samples must be performed. However, the ability to quantitatively assess the 129I content in groundwater samples requires specialized extraction and sophisticated analytical techniques, which are complicated and not always available to the general scientific community. This paper highlights an analytical method capable of directly quantifying 129I in groundwater samples at concentrations below the MCL without the need for sample pre-concentration. Samples were analyzed on a Perkin Elmer ELAN DRC II ICP-MS after minimal dilution using O2 as the reaction gas. Analysis of continuing calibration verification standards indicated that the DRC mode could be used for quantitative analysis of 129I in samples below the drinking water standard (0.0057 ng/ml or 1 pCi/L). The low analytical detection limit of 129I analysis in the DRC mode coupled with minimal sample dilution (1.02x) resulted in a final sample limit of quantification of 0.0051 ng/ml. Subsequent analysis of three groundwater samples containing 129I resulted in fully quantitative results in the DRC mode, and spike recovery analyses performed on all three samples confirmed that the groundwater matrix did not adversely impact the analysis of 129I in the DRC mode. This analytical approach has been proven to be a cost-effective, high-throughput technique for the direct, quantitative analysis of 129I in groundwater samples at concentrations below the current MCL.

Brown, Christopher F.; Geiszler, Keith N.; Lindberg, Michael J.

2007-03-03T23:59:59.000Z

231

Ultraviolet-B Radiation Harms Aquatic Life -Current Results http://www.currentresults.com/Water/Water-Pollution/ultraviolet.php 1 of 2 8/7/2007 1:45 PM  

E-Print Network [OSTI]

Ultraviolet-B Radiation Harms Aquatic Life - Current Results http://www.currentresults.com/Water/Water-Pollution Water E Coli UVB Sunscreen #12;Ultraviolet-B Radiation Harms Aquatic Life - Current Results http://www.currentresults.com/Water/Water-Pollution/ultraviolet.php 2 of 2 8/7/2007 1:45 PM Home | About | Privacy Policy | Terms of Use | Advertise on This Site

Blaustein, Andrew R.

232

Coagulation/Flocculation Treatments for Flue-Gas-Derived Water from Oxyfuel Power Production with CO2 Capture  

Science Journals Connector (OSTI)

Coagulation/Flocculation Treatments for Flue-Gas-Derived Water from Oxyfuel Power Production with CO2 Capture ... The buffered solution is then sent back to the top of the tower, where it is sprayed into the upflowing oxyfuel gas stream, condensing and cleaning the ash-laden gas. ...

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen Gerdemann; John Clark; Cathy Summers

2011-08-02T23:59:59.000Z

233

SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS  

SciTech Connect (OSTI)

We propose a process that uses sulfur dioxide from coal combustion as a raw material to synthesize polymeric ferric sulfate (PFS), a water treatment agent. The process uses sodium chlorate as an oxidant and ferrous sulfate as an absorbent. The major chemical mechanisms in this reaction system include oxidation, hydrolysis, and polymerization. Oxidation determines sulfur conversion efficiency while hydrolysis and polymerization control the quality of product. Many factors, including SO{sub 2} inlet concentration, flow rate of simulated flue gas, reaction temperature, addition rate of oxidant and stirring rate, may affect the efficiencies of SO{sub 2} removal. Currently, the effects of SO{sub 2} inlet concentration, the flow rate of simulated flue gas and addition rate of flue gas on removal efficiencies of SO{sub 2}, are being investigated. Experiments shown in this report have demonstrated that the conversion efficiencies of sulfur dioxide with ferrous sulfate as an absorbent are in the range of 60-80% under the adopted process conditions. However, the conversion efficiency of sulfur dioxide may be improved by optimizing reaction conditions to be investigated. Partial quality indices of the synthesized products, including Fe{sup 2+} concentration and total iron concentration, have been evaluated.

Robert C. Brown; Maohong Fan

2001-12-01T23:59:59.000Z

234

Side-by-Side Testing of Water Heating Systems: Results from the 2009-2010 Evaluation  

Broader source: Energy.gov [DOE]

The performance of seven differing types of residential water heating systems was compared in a side-by-side test configuration over a full year period. The Hot Water System Laboratory (HWS Lab) test facility at the Florida Solar Energy Center (FSEC) in Cocoa, FL was used for the tests.

235

Evaluation of the CRITERIA Irrigation Scheme Soil Water Balance Model in Texas – Initial Results  

E-Print Network [OSTI]

The CRITERIA model was created in the 1990s in Italy, and is based on the soil water balance computation procedures developed at the Wageningen University in the Netherlands in the 1980s. CRITERIA has been used as an analysis and regional water...

Bonaiti, G.; Fipps, G.

2011-01-01T23:59:59.000Z

236

Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test  

SciTech Connect (OSTI)

In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified form of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.

Booker, Kayje; Han, Tae Won; Granderson, Jessica; Jones, Jennifer; Lsk, Kathleen; Yang, Nina; Gadgil, Ashok

2011-06-01T23:59:59.000Z

237

Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation  

SciTech Connect (OSTI)

The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

2007-12-31T23:59:59.000Z

238

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2012-12-01T23:59:59.000Z

239

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2011-09-01T23:59:59.000Z

240

E-Print Network 3.0 - artificial sea water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: artificial sea water Page: << < 1 2 3 4 5 > >> 1 BULLETIN OF THE UNITED ,STATES FISH COMJISLIOM.465 V d . JIV, No. 30. Washington, D.C. Oct. 1, 1884. Summary: in...

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

E-Print Network 3.0 - atlantic slope waters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the southern South Atlantic the high... long as the pressure does not vary. If a water parcel moves to a different depth, the slope and value... Atlantic. The continuity of this...

242

E-Print Network 3.0 - advanced waste water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Swedish report "Frbrnning av avfall en Summary: in the plants, 90-95% of the dioxins in the waste are broken down into carbon dioxide, water and hydrogen... RVF - The...

243

Water Loss Test Results for the West Main Pipeline United Irrigation District of Hidalgo County  

E-Print Network [OSTI]

measured from the original canal we see an average water savings of 78%. While this would be considered much improvement, the district?s expectations for their new pipeline were higher. Following minor repairs, due to the apparent leakage occurring... measured from the original canal we see an average water savings of 78%. While this would be considered much improvement, the district?s expectations for their new pipeline were higher. Following minor repairs, due to the apparent leakage occurring...

Leigh, E.; Fipps, G.

244

Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia  

Science Journals Connector (OSTI)

Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate ... study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household wat...

Awrajaw Dessie; Esayas Alemayehu…

2014-01-01T23:59:59.000Z

245

Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse  

Science Journals Connector (OSTI)

The recovered waste stream can be used elsewhere in the process, and the water could be used for boiler feed or cooling towers and other operations thereby reducing consumption of precious raw water and drastically reducing operating costs. ...

Chandrakanth Gadipelly; Antía Pérez-González; Ganapati D. Yadav; Inmaculada Ortiz; Raquel Ibáñez; Virendra K. Rathod; Kumudini V. Marathe

2014-06-20T23:59:59.000Z

246

A novel, integrated treatment system for coal waste waters. Quarterly report, March 2, 1994--June 1, 1994  

SciTech Connect (OSTI)

The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the heavy metals present in coal conversion waste waters. A specific goal of the study is to remove and recover cationic and anionic heavy metals from aqueous solutions and coal conversion waste waters using modified-clay adsorbents developed in this study. To this end, a multi-step adsorption/desorption process has been carried out with hectorite-CBDA-DT (HCDT) as the adsorbent and Cr(VI) as the adsorbate. Adsorption was carried out at pH 4.0 in 0.02 M buffer, while desorption was effected at the same pH and in the same buffer with either 0.5 M NaCl or 0.02 M Na{sub 2}SO{sub 4} as the desorbates. Multi-step involves cycling the same adsorbent through these two sets of operating conditions with a washing step after each adsorption/desorption sequence. The authors results indicate that, during the first two cycles, the potency of the adsorbent remains unchanged, but it diminishes after the third and the fourth cycles. The total decrease in potency is, however, only 15% even after 4 cycles of adsorption/desorption. Addition of 20% isopropyl alcohol (IPA) to the reaction medium, however, diminishes the potency even more after 4 cycles of adsorption and desorption. Both the desorbates yielded identical results, and the overall mass balance on Cr(VI) was between 95 and 102%. Continuous leaching experiments on HCDT revealed that DT bound to HCDT is mobilized to the extent of only 10% after 44 hrs in aqueous medium while in 20% IPA-water mixtures the extent of dissolution of DT from the surface is close to 16%. Thus, the loss of potency of HCDT is attributed partly to the loss of DT from the surface and partly to the incomplete washing of the adsorbent between each adsorption/desorption step.

Wang, H.Y. [Univ. of Michigan, Ann Arbor, MI (United States); Wang, H.Y.; Srinivasan, K.R.

1994-09-01T23:59:59.000Z

247

Meeting the Need for Safe Drinking Water in Rural Mexico through Point-of-Use Treatment  

E-Print Network [OSTI]

solar disinfection (SODIS), and UV disinfection are promising alternative approaches to meeting the urgent water quality needs of rural Mexico.

Lang, Micah; Kaser, Forrest; Reygadas, Fermin; Nelson, Kara; Kammen, Daniel M.

2006-01-01T23:59:59.000Z

248

Water treatment by reverse osmosis. (Latest citations from the U. S. Patent data base). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations of selected patents concerning water purification systems and components using reverse osmosis technology. Patents include purification systems and devices for seawater, waste water, and drinking water. Topics also include complete purification systems, valves and distribution components, membranes, supports, storage units, and monitors. Water purification systems using activated charcoal are referenced in a related bibliography. (Contains a minimum of 135 citations and includes a subject term index and title list.)

Not Available

1992-10-01T23:59:59.000Z

249

An evaluation of household drinking water treatment systems in Peru : the table filter and the safe water system  

E-Print Network [OSTI]

(cont.) storage, and education. Tests on the SWSs in Peru demonstrated 99.6% E.coli removal and 95% total coliform removal. Only 30% of the SWSs tested contained water at or above the WHO-recommended concentration of free ...

Coulbert, Brittany, 1981-

2005-01-01T23:59:59.000Z

250

A novel, integrated treatment system for coal waste waters. Quarterly report, September 2, 1993--December 1, 1993  

SciTech Connect (OSTI)

The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the heavy metals present in coal conversion waste waters. In this report, the following findings have been reported and discussed. Adsorption of {beta}-naphthoic acid (NA) onto hectorite-CBDA containing different amounts of adsorbed CBDA is pH dependent, stronger at pH 4.5 and much weaker at pH 8.6. Partitioning into the hydrophobic patches of hectorite-CBDA and binding as counter ion to CBDA bilayers appear to be the dominant mechanisms of adsorption of NA to hectorite-CBDA. Anionic CR(VI) adsorbs very weakly to MONT-DT at pH 8.5 and this result verifies our earlier finding that the positive surface charge on MONT-DT decreases with increasing pH above pH 7.0. Potentiometric titrations of DT in water-isopropyl alcohol (EPA) binary solutions containing different volume fractions of IPA reveal that the pKa of DT is 7.6 {+-} 0.1 independent of EPA volume fraction. It is also shown that DT forms emulsions at pH lower than 4.0 and these emulsions tend to break up as pH is raised above 6.5. The formation of DT emulsions is reversible with respect to pH, but the process appears to be slow with a time constant of about 30 minutes.

Wang, H.Y.; Srinivasan, K.R.

1993-12-31T23:59:59.000Z

251

Emergency Water Treatment with Bleach in the United States: The Need to Revise EPA Recommendations  

Science Journals Connector (OSTI)

(2) However, research has dispelled this myth, showing instead that populations have increased waterborne illness risk only in those emergencies that cause flooding or displacement,(3, 4) or when infrastructure systems are damaged and do not provide safe, chlorinated water. ... Colorado ... It should be noted that surface water supplies had by far the most total coliforms contamination, and thus surface water supplies (and in particular flood waters) should only be used if there are no other options for water supply by the emergency-affected population. ...

Daniele Lantagne; Bobbie Person; Natalie Smith; Ally Mayer; Kelsey Preston; Elizabeth Blanton; Kristen Jellison

2014-03-31T23:59:59.000Z

252

High-Dose-Rate Interstitial Brachytherapy as Monotherapy for Clinically Localized Prostate Cancer: Treatment Evolution and Mature Results  

SciTech Connect (OSTI)

Purpose: To report the clinical outcome of high-dose-rate (HDR) interstitial (IRT) brachytherapy (BRT) as sole treatment (monotherapy) for clinically localized prostate cancer. Methods and Materials: Between January 2002 and December 2009, 718 consecutive patients with clinically localized prostate cancer were treated with transrectal ultrasound (TRUS)-guided HDR monotherapy. Three treatment protocols were applied; 141 patients received 38.0 Gy using one implant in 4 fractions of 9.5 Gy with computed tomography-based treatment planning; 351 patients received 38.0 Gy in 4 fractions of 9.5 Gy, using 2 implants (2 weeks apart) and intraoperative TRUS real-time treatment planning; and 226 patients received 34.5 Gy, using 3 single-fraction implants of 11.5 Gy (3 weeks apart) and intraoperative TRUS real-time treatment planning. Biochemical failure was defined according to the Phoenix consensus, and toxicity was evaluated using Common Toxicity Criteria for Adverse Events version 3. Results: The median follow-up time was 52.8 months. The 36-, 60-, and 96-month biochemical control and metastasis-free survival rates for the entire cohort were 97%, 94%, and 90% and 99%, 98%, and 97%, respectively. Toxicity was scored per event, with 5.4% acute grade 3 genitourinary and 0.2% acute grade 3 gastrointestinal toxicity. Late grade 3 genitourinary and gastrointestinal toxicities were 3.5% and 1.6%, respectively. Two patients developed grade 4 incontinence. No other instance of grade 4 or greater acute or late toxicity was reported. Conclusion: Our results confirm IRT-HDR-BRT is safe and effective as monotherapy for clinically localized prostate cancer.

Zamboglou, Nikolaos [Department of Radiation Oncology, Klinikum Offenbach, Offenbach (Germany)] [Department of Radiation Oncology, Klinikum Offenbach, Offenbach (Germany); Tselis, Nikolaos, E-mail: ntselis@hotmail.com [Department of Radiation Oncology, Klinikum Offenbach, Offenbach (Germany)] [Department of Radiation Oncology, Klinikum Offenbach, Offenbach (Germany); Baltas, Dimos [Department of Medical Physics and Engineering, Klinikum Offenbach, Offenbach (Germany)] [Department of Medical Physics and Engineering, Klinikum Offenbach, Offenbach (Germany); Buhleier, Thomas [Department of Radiation Oncology, Klinikum Offenbach, Offenbach (Germany)] [Department of Radiation Oncology, Klinikum Offenbach, Offenbach (Germany); Martin, Thomas [Department of Radiation Oncology, Klinikum Bremen-Mitte, Bremen (Germany)] [Department of Radiation Oncology, Klinikum Bremen-Mitte, Bremen (Germany); Milickovic, Natasa; Papaioannou, Sokratis [Department of Medical Physics and Engineering, Klinikum Offenbach, Offenbach (Germany)] [Department of Medical Physics and Engineering, Klinikum Offenbach, Offenbach (Germany); Ackermann, Hanns [Institute of Biostatistics, J.W. Goethe University of Frankfurt, Frankfurt (Germany)] [Institute of Biostatistics, J.W. Goethe University of Frankfurt, Frankfurt (Germany); Tunn, Ulf W. [Department of Urology, Klinikum Offenbach, Offenbach (Germany)] [Department of Urology, Klinikum Offenbach, Offenbach (Germany)

2013-03-01T23:59:59.000Z

253

NATURAL RADIONUCLIDES MEASUREMENTS IN DRINKING WATER BY LIQUID SCINTILLATION COUNTING. METHODS AND RESULTS  

E-Print Network [OSTI]

to dose evaluation, namely gross alpha and beta activity, uranium and radium isotopes content. For tritium activity and uranium isotope concentration have been measured. A Quantulus-Wallac scintillation counter hasNATURAL RADIONUCLIDES MEASUREMENTS IN DRINKING WATER BY LIQUID SCINTILLATION COUNTING. METHODS

254

Economic costs of conventional surface-water treatment: A case study of the Mcallen northwest facility  

E-Print Network [OSTI]

supplies.2 2 The majority of the groundwater in the Valley is brackish; therefore, the groundwater is not considered3 potable unless it is treated with a desalination process. In order to determine if water is brackish, the salinity of the water must....e., supply) include: groundwater wells, wastewater reuse, desalination of seawater and/or brackish groundwater, and rainwater harvesting. Efficiency-in-use improvements being applied in the Valley3 include on-farm and municipal water-conservation measures...

Rogers, Callie Sue

2009-05-15T23:59:59.000Z

255

Integrated Water Treatment System (IWTS) Process Flow Diagram Mass Balance Calculations for K West Basin  

SciTech Connect (OSTI)

The purpose of this calculation is to develop the rational for the material balances that are documented in the KW Basin water system Level 1 process flow diagrams.

REED, A.V.

2000-02-28T23:59:59.000Z

256

Removal of Emerging Contaminants in Water Treatment by Nanofiltration and Reverse Osmosis  

Science Journals Connector (OSTI)

The general rules established in abundant studies on removal of conventional pollutants from waters by reverse osmosis and nanofiltration were reconsidered in this contribution...

Branko Kunst; Krešimir Košuti?

2008-01-01T23:59:59.000Z

257

Report on the effectiveness of flocculation for removal of {sup 239}Pu at concentrations of 1 pCi/L and 0.1 pCi/L. RFP Pond Water Characterization and Treatment (LATO-EG&G-91-022): Task C deliverables: 5.1.2 and 5.2.2  

SciTech Connect (OSTI)

The objective of this work is to assess the effectiveness of flocculation for the removal of Pu from Rocky Flats Plant (RFP) pond waters spiked with {sup 239}Pu at the 1.0 and 0.1 pCi/L level. The flocculation treatment procedure is described in detail. Results are presented for treatment studies for the removal of Pu from C-2 pond water spiked with {sup 239}Pu and from distilled water spiked with {sup 239}Pu.

Triay, I.R.; Bayhurst, G.K.; Mitchell, A.J.; Cisneros, M.R.; Efurd, D.W.; Roensch, F.R.; Rokop, D.J.; Aguilar, R.D.; Attrep, M.; Nuttall, H.E. [EG and G Rocky Flats, Inc., Golden, CO (United States)

1993-08-01T23:59:59.000Z

258

A novel, integrated treatment system for coal waste waters. Quarterly report, June 2, 1993--September 1, 1993  

SciTech Connect (OSTI)

The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the heavy metals present in coal conversion waste waters. In this report, the following findings have been reported and discussed. Acid-base titration of Duomeen-T (DT), a diamine surfactant, that has been used in this study to modify smectite surfaces to form smectite-DT complexes has been undertaken. In aqueous medium containing 5% by volume iso propyl alcohol (IPA), DT shows a broad distribution of pKa with a mean value of 7.55. This finding suggests that DT is a much weaker base than a typical diamine and helps explain the fact that Cu(II) adsorbs specifically onto DT with maximal affinity in the pH range 7.2--7.5. Electrokinetic sonic amplitude (ESA) measurements on DT-smectite complexes also reveal that the mean pKa of the adsorbed DT is around 7.0. This finding supports our earlier observations that Cu(II) and Cd(II) cations bind strongly through specific interaction to DT-smectite surface in the pH range 7.0--8.0. Our results also show that DT is fully protonated at pH 4.5, and it is at this pH that Cr(VI) is maximally adsorbed as counterions to the DT-smectite surface. These and our earlier results provide a firm basis to conclude that a heterogeneous mixture of diamine surfactants can be used to adsorb and desorb cationic and anionic heavy metals from their respective aqueous solutions as a function of the solution pH.

Wang, H.Y.; Srinivasan, K.R.

1993-12-31T23:59:59.000Z

259

Treatment of drinking water to improve its sanitary or bacteriological quality is  

E-Print Network [OSTI]

,000 gallons), such an approach can be wasteful, increasing energy costs for the well pump to refill the tank Chlorine Amounts To sanitize water properly, enough chlorine needs to be added to a storage tank to reach bacteria have been properly destroyed by the sanitation process, submit water samples from a faucet served

260

Fate of Triclosan and Triclosan-Methyl in Sewage TreatmentPlants and Surface Waters  

Science Journals Connector (OSTI)

The fate of triclosan in diverse stages of two sewage treatment ... two-stage biologic (activated sludge) process removed triclosan more efficiently than the STP with a ... not very effective. The elimination rat...

Kai Bester

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EPA ENERGY STAR Webcast: Benchmarking Water/Wastewater Treatment Facilities in Portfolio Manager  

Broader source: Energy.gov [DOE]

Learn how to track the progress of energy efficiency efforts and compare the energy use of wastewater treatment plants to other peer facilities across the country. Attendees will learn how to...

262

Water treatment process and system for metals removal using Saccharomyces cerevisiae  

DOE Patents [OSTI]

A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

Krauter, Paula A. W. (Livermore, CA); Krauter, Gordon W. (Livermore, CA)

2002-01-01T23:59:59.000Z

263

System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)  

SciTech Connect (OSTI)

This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

DERUSSEAU, R.R.

2000-04-18T23:59:59.000Z

264

Analysis of long-term flows resulting from large-scale sodium-water reactions in an LMFBR secondary system  

SciTech Connect (OSTI)

Leaks in LMFBR steam generators cannot entirely be prevented; thus the steam generators and the intermediate heat transport system (IHTS) of an LMFBR must be designed to withstand the effects of the leaks. A large-scale leak which might result from a sudden break of a steam generator tube, and the resulting sodium-water reaction (SWR) can generate large pressure pulses that propagate through the IHTS and exert large forces on the piping supports. This paper discusses computer programs for analyzing long-term flow and thermal effects in an LMFBR secondary system resulting from large-scale steam generator leaks, and the status of the development of the codes.

Shin, Y.W.; Chung, H.; Choi, U.S.; Wiedermann, A.H.; Ockert, C.E.

1984-07-01T23:59:59.000Z

265

Electrolytic Reduction of Spent Light Water Reactor Fuel Bench-Scale Experiment Results  

SciTech Connect (OSTI)

A series of experiments were performed to demonstrate the electrolytic reduction of spent light water reactor fuel at bench-scale in a hot cell at the Idaho National Laboratory Materials and Fuels Complex. The process involves the conversion of oxide fuel to metal by electrolytic means, which would then enable subsequent separation and recovery of actinides via existing electrometallurgical technologies, i.e., electrorefining. Four electrolytic reduction runs were performed at bench scale using ~500 ml of molten LiCl – 1 wt% Li2O electrolyte at 650 ºC. In each run, ~50 g of crushed spent oxide fuel was loaded into a permeable stainless steel basket and immersed into the electrolyte as the cathode. A spiral wound platinum wire was immersed into the electrolyte as the anode. When a controlled electric current was conducted through the anode and cathode, the oxide fuel was reduced to metal in the basket and oxygen gas was evolved at the anode. Salt samples were extracted before and after each electrolytic reduction run and analyzed for fuel and fission product constituents. The fuel baskets following each run were sectioned and the fuel was sampled, revealing an extent of uranium oxide reduction in excess of 98%.

Steven D. Herrmann

2007-04-01T23:59:59.000Z

266

Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment  

Science Journals Connector (OSTI)

...reactor biomass concentrations as high as 220 mg of ATP/m3 of reactor...were removed as a reusable product. High calcium and magnesium concentrations...such as scale deposits in water boilers, a higher demand for detergents in washing...

Frederik Hammes; Nico Boon; Marius Vital; Petra Ross; Aleksandra Magic-Knezev; Marco Dignum

2010-12-10T23:59:59.000Z

267

Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment  

Science Journals Connector (OSTI)

...mM) was mixed with the SYBR Green I working solution at a ratio...fixed wavelength of 488 nm. Green fluorescence was collected at...The trigger was set on the green fluorescence channel, and data...obtained by mixing 50 bottled mineral water and 50 nonchlorinated...

Frederik Hammes; Nico Boon; Marius Vital; Petra Ross; Aleksandra Magic-Knezev; Marco Dignum

2010-12-10T23:59:59.000Z

268

Characterization of forest crops with a range of nutrient and water treatments using AISA Hyperspectral Imagery.  

SciTech Connect (OSTI)

This research examined the utility of Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for estimating the biomass of three forest crops---sycamore, sweetgum and loblolly pine--planted in experimental plots with a range of fertilization and irrigation treatments on the Savannah River Site near Aiken, South Carolina.

Gong, Binglei; Im, Jungho; Jensen, John, R.; Coleman, Mark; Rhee, Jinyoung; Nelson, Eric

2012-07-01T23:59:59.000Z

269

Results of High R-Ratio Fatigue Crack Growth Tests on 304 Stainless Steel in Low Oxygen Water  

SciTech Connect (OSTI)

Fatigue crack growth rate tests were performed on a 304 stainless steel compact tension (CT) specimen in water with 40-60 cc/kg H[sub]2. Data in the literature for CT tests show minor environmental effects in hydrogenated water, but higher effects in oxygenated water. However, the PWR data presented by Bernard, et al (1979) were taken at low stress ratios (R=0.05) and high stress intensity levels (delta K=16-41 MPa square root m). The purpose of these tests is to explore the crack growth rate characteristics of 304 SS in hydrogenated water at higher R values (0.7 and 0.83) and lower delta K values (11.0 and 7.7 MPa square root m). Each set of R, delta K conditions were tested at frequencies of 0.1, 0.01 and 0.001 Hz. The results show a pronounced effect on crack growth rates when compared to available literature data on air rates.

Evans, W. M.; Wire, G. L.

2002-08-01T23:59:59.000Z

270

Proceedings ASCE EWRI World Water and Environmental Resources Congress 2005 May 15-19, 2005 Modeling and evaluating temperature dynamics in wastewater treatment plants  

E-Print Network [OSTI]

Modeling and evaluating temperature dynamics in wastewater treatment plants Scott A. Wells1 , Dmitriy into receiving waters, there is much interest in providing a model of temperature dynamics in wastewater using detailed temperature data from a Washington County, Oregon, USA wastewater treatment facility

Wells, Scott A.

271

Process Testing Results and Scaling for the Hanford Waste Treatment and Immobilization Plant (WTP) Pretreatment Engineering Platform - 10173  

SciTech Connect (OSTI)

The U.S. Department of Energy-Office of River Protection’s Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks at Richland, Washington. In support of this effort, engineering-scale tests at the Pretreatment Engineering Platform (PEP) have been completed to confirm the process design and provide improved projections of system capacity. The PEP is a 1/4.5-scale facility designed, constructed, and operated to test the integrated leaching and ultrafiltration processes being deployed at the WTP. The PEP replicates the WTP leaching processes with prototypic equipment and control strategies and non-prototypic ancillary equipment to support the core processing. The testing approach used a nonradioactive aqueous slurry simulant to demonstrate the unit operations of caustic and oxidative leaching, cross-flow ultrafiltration solids concentration, and solids washing. Parallel tests conducted at the laboratory scale with identical simulants provided results that allow scale-up factors to be developed between the laboratory and PEP performance. This paper presents the scale-up factors determined between the laboratory and engineering-scale results and presents arguments that extend these results to the full-scale process.

Kurath, Dean E.; Daniel, Richard C.; Baldwin, David L.; Rapko, Brian M.; Barnes, Steven M.; Gilbert, Robert A.; Mahoney, Lenna A.; Huckaby, James L.

2010-01-14T23:59:59.000Z

272

Activated charcoal filters: Water treatment, pollution control, and industrial applications. (Latest citations from the Patent Bibliographic database with exemplary claims. ) Published Search  

SciTech Connect (OSTI)

The bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming pool filtration, tobacco smoke filters, kitchen ventilators, medical filtration treatment, and odor absorbing materials. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

273

An Investigation of Hydrological Aspects of Water Harvesting  

E-Print Network [OSTI]

Water harvesting is a potential source of water for arid and semiarid lands. The objectives of this study were to determine combinations of land surface treatments and land forming which result in efficient but inexpensive water harvesting...

Wilke, O.; Runkles, J.; Wendt, C.

274

Physicochemical Properties Related to Long-Term Phosphorus Retention by Drinking-Water Treatment Residuals  

Science Journals Connector (OSTI)

It is necessary to determine the true long-term P sorption capacities of WTRs, if used to reduce soluble P in systems very high in P, such as in animal waste lagoons. ... Second-order rate coefficients for Fe-based WTRs were generally smaller than those of Al-based WTRs, consistent with there being less P sorption for the second biphasic (longer term) sorption stage. ... Typical air-dried Fe- and Al-based WTR show minimal bacterial activity (long-term storage, and chlorine addition during the drinking-water purification process (5). ...

Konstantinos C. Makris; Willie G. Harris; George A. O'Connor; Thomas A. Obreza; Herschel A. Elliott

2005-05-04T23:59:59.000Z

275

X-ray Photoelectron Spectroscopy of GaP{1-x}N(x) Photocorroded as a Result of Hydrogen Production through Water Electrolysis  

E-Print Network [OSTI]

X-ray Photoelectron Spectroscopy of GaP{1-x}N(x) Photocorroded as a Result of Hydrogen Production through Water Electrolysis

Mayer, Marie A

2006-01-01T23:59:59.000Z

276

Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-6 test data report : thermal hydraulic results, Rev. 0.  

SciTech Connect (OSTI)

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure? (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx} {phi} 30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength is being addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus measures the fracture strength of the crust while it is either at room temperature or above, the latter state being achieved with a heating element placed below the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the sixth water ingression test, designated SSWICS-6. This test investigated the quenching behavior of a fully oxidized PWR corium melt containing 15 wt% siliceous concrete at a system pressure of 1 bar absolute. The report includes a description of the test apparatus, the instrumentation used, plots of the recorded data, and some rudimentary data reduction to obtain an estimate of the heat flux from the corium to the overlying water pool.

Lomperski, S.; Farmer, M. T.; Kilsdonk, D.; Aeschlimann, B. (Nuclear Engineering Division)

2011-06-28T23:59:59.000Z

277

Substantiation of proposals on standardization of the manganese content in water supplied for electrodyalysis treatment  

Science Journals Connector (OSTI)

The results of systematic investigations of the electrodialysis process of manganese-containing solutions and the impact of manganese compounds on electrochemical characteristics of ion-exchange membranes have...

L. A. Mel’nik

2011-02-01T23:59:59.000Z

278

Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094  

SciTech Connect (OSTI)

Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly and the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)

Camper, Larry W.; Michalak, Paul; Cohen, Stephen; Carter, Ted [Nuclear Regulatory Commission (United States)

2012-07-01T23:59:59.000Z

279

From acid etching treatments to tribocorrosive properties of dental implants: do some experimental results on surface treatments have an influence on the tribocorrosion behaviour of dental implants?  

Science Journals Connector (OSTI)

Surface treatments of dental implants aim at promoting osseointegration, i.e. the anchorage of the metallic part. Titanium-, grade II?V, based material is used as a bulk material for dental implants. For promoting the anchorage of this metallic biomaterial in human jaw, some strategies have been applied for improving the surface state, i.e. roughness, topography and coatings. A case study, experimental study, is described with the method of acid etching on titanium grade 4, CpTi. The main goal is to find the right proportion in a mixture of two acids in order to obtain the best surface state. Finally, a pure theoretical prediction is quite impossible and some experimental investigations are necessary to improve the surface state. The described acid etching is compared with some other acid etching treatments and some coatings available on dental implants. Thus, the discussion is focused on the tribocorrosion behaviour of titanium-based materials. The purpose of the coating is that the lifetime under tribocorrosion is limited. Moreover, the surgery related to the implantation has a huge impact on the stability of dental implants. Thus, the performance of dental implants depends on factors related to surgery (implantation) that are difficult to predict from the biomaterial characteristics. From the tribocorrosion point of view, i.e. during the mastication step, the titanium material is submitted to some deleterious factors that cause the performance of dental implants to decrease.

Jean Geringer; Nicolas Demanget; Julie Pellier

2013-01-01T23:59:59.000Z

280

Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: Experimental results  

E-Print Network [OSTI]

Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure online 4 May 2013 Keywords: Pool boiling Heat transfer enhancement Open microchannels Cylindrical tube boiling heat transfer over enhanced cylindrical microchannel test surfaces with water at atmospheric

Kandlikar, Satish

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

Wilson, Cathy; Newman, Brent; Heikoop, Jeff

282

Activated-charcoal filters: water treatment, pollution control, and industrial applications. January 1970-July 1988 (citations from the US Patent data base). Report for January 1970-July 1988  

SciTech Connect (OSTI)

This bibliography contains citations of selected patents concerning activated-charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic gases and pollutants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, swimming pool filtration, waste conversion, automobile fuel and exhaust systems, and footwear deodorizing. (Contains 129 citations fully indexed and including a title list.)

Not Available

1988-08-01T23:59:59.000Z

283

INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE  

SciTech Connect (OSTI)

Mercury (Hg) has been identified as a 'persistent, bioaccumulative and toxic' pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water quality criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., < 0.3 {mu}g/g fillet) is considered to be a more consistent indicator of exposure and risk (EPA, 2001). Effective mercury remediation at point-source contaminated sites requires an understanding of the nature and magnitude of mercury inputs, and also knowledge of how these inputs must be controlled in order to achieve the desired reduction of mercury contamination in biota necessary for compliance with AWQC targets. One of the challenges to remediation is that mercury body burdens in fish are more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper trophic level fish and other biota; this is a key environmental endpoint since reducing mercury concen

Looney, B.; Bryan, L.; Mathews, T.

2012-03-30T23:59:59.000Z

284

Effective water treatment for rural communities in Suriname : a comparison of point-of-use ceramic filters and centralized treatment with sand filters.  

E-Print Network [OSTI]

?? For countless communities around the world, acquiring access to safe drinking water is a daily challenge which many organizations endeavor to meet. The villages… (more)

Vincent, Ashlee K.

2012-01-01T23:59:59.000Z

285

Point-of-use water treatment and diarrhoea reduction in the emergency context: an effectiveness trial in Liberia  

E-Print Network [OSTI]

water storage have been shown to reduce diarrhoea in populations with poor hygiene and sanitation the provision of adequate water and sanitation can be fraught with challenges. Diarrhoea is widely considered of adequate sanitation and water supply, including both water quantity and quality, and hygiene education

Scharfstein, Daniel

286

Analysis of results obtained using the automatic chemical control of the quality of the water heat carrier in the drum boiler of the Ivanovo CHP-3 power plant  

Science Journals Connector (OSTI)

Results of industrial tests of the new method used for the automatic chemical control of the quality of boiler water of the drum-type power boiler (P d = 13.8 MPa) are described. The possibility o...

A. B. Larin; A. V. Kolegov

2012-10-01T23:59:59.000Z

287

DERIVATION AND SIMULATION RESULTS OF A HYBRID MODEL PREDICTIVE CONTROL FOR WATER PURGE SCHEDULING IN A FUEL CELL  

E-Print Network [OSTI]

, and can cause permanent degradation or damage. Water produced at the cathode catalyst layer will diffuse a lookup table of affine gains. 1 INTRODUCTION Water management is a critical issue for PEMFC operation resistance which leads to voltage loss), but flooding in the channels or catalyst layers is undesirable

Stefanopoulou, Anna

288

Wastewater and Wastewater Treatment Systems (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Department of Environmental Quality administers regulations for waste water and waste water treatment systems. Construction of a municipal treatment work, non-industrial waste water...

289

Energy - Water Nexus -- Meeting the Energy and Water Needs of the Snake/Columbia River Basin in the 21st CenturyScience and Technology SummitConference Results  

SciTech Connect (OSTI)

In June 2007, representatives from federal, state, and academic institutions met to discuss the role of innovative science, technology, and policy in meeting future energy and water demands in the Snake-Columbia River Basin. Conference members assessed the state-of-the-science, technology, and associated research to develop cost-effective and environmentally sound methodologies and technologies to maximize the production of energy and availability of water and to minimize the consumption of both water and energy in the Snake-Columbia River system. Information on all phases of science and technology development, theoretical analysis, laboratory experiments, pilot tests, and field applications were relevant topics for discussion. An overview of current management needs was presented the first day. On the second day, five focus groups were created: ? Energy Generation and Use ? Water Allocation and Use ? Energy/Water Storage ? Environmental Considerations ? Social, Economic, Political, and Regulatory Considerations. Each group started with a list of status items and trends, and discussed the future challenges and research needed to reach four goals: ? Balance energy production and resource consumption ? Balance water availability and competing needs ? Balance water consumption/energy production and competing needs ? Balance environmental impacts and water use/energy production ? Balance costs and benefits of water use. The resulting initiatives were further broken down into three categories of importance: critical, important, and nice to do but could be delayed. Each initiative was assigned a number of dots to show a more refined ranking. The results of each focus group are given in the pages that follow. These results are intended to help local and regional researchers 1. Develop a technical strategy for developing cost-effective science and technology to predict, measure, monitor, purify, conserve, and store water and to maximize power generation, storage, and efficiency in the region 2. Evaluate methods and technologies for reducing the impacts of energy and water development and use on the environment.

Paul L. Wichlacz; Gerald Sehlke

2008-02-01T23:59:59.000Z

290

The study of potable water treatment process in Algeria (boudouaou station) -by the application of life cycle assessment (LCA)  

Science Journals Connector (OSTI)

In LCA studies, contributions by individuals to the environmental ... to double the volume of water used in agriculture to eradicate malnutrition in 2025 [23]. The fact remains that "the right to water is a palpa...

Messaoud-Boureghda Mohamed-Zine…

2013-12-01T23:59:59.000Z

291

Water treatment by reverse osmosis. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations of selected patents concerning water purification systems and components using reverse osmosis technology. Patents include purification systems and devices for seawater, waste water, and drinking water. Topics also include complete purification systems, valves and distribution components, membranes, supports, storage units, and monitors. Water purification systems using activated charcoal are referenced in a related bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01T23:59:59.000Z

292

Water treatment by reverse osmosis. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations of selected patents concerning water purification systems and components using reverse osmosis technology. Patents include purification systems and devices for seawater, waste water, and drinking water. Topics also include complete purification systems, valves and distribution components, membranes, supports, storage units, and monitors. Water purification systems using activated charcoal are referenced in a related bibliography. (Contains a minimum of 146 citations and includes a subject term index and title list.)

Not Available

1994-02-01T23:59:59.000Z

293

Course Information and Syllabus Water Policy  

E-Print Network [OSTI]

Desalination November 10 Water Quality, Wastewater Treatment, and Water Recycling November 15 Economics

California at Santa Barbara, University of

294

Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments  

SciTech Connect (OSTI)

The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase with increasing fuel Wobbe number.

Rapp, VH; Singer, BC

2014-03-01T23:59:59.000Z

295

Strategies for Compliance with Stage 2 Disinfectants and Disinfection Byproducts Rule for Surface Water Treatment Facilities in Northeastern Oklahoma.  

E-Print Network [OSTI]

??The Environmental Protection Agency (EPA) recently created new regulations that better protect human health but that also make achieving compliance more difficult for existing water… (more)

Wintle, Brian N.

2012-01-01T23:59:59.000Z

296

Biologically active filtration for treatment of produced water and fracturing flowback wastewater in the O&G industry.  

E-Print Network [OSTI]

??Sustainable development of unconventional oil and gas reserves, particularly tight oil, tight gas, and shale gas, requires prudent management of water resources used during drilling,… (more)

Freedman, Daniel E.

2014-01-01T23:59:59.000Z

297

Remediation of Risks in Natural Gas Storage Produced Waters: The Potential Use of Constructed Wetland Treatment Systems.  

E-Print Network [OSTI]

??Natural gas storage produced waters (NGSPWs) are generated in large volumes, vary in composition, and often contain constituents in concentrations and forms that are toxic… (more)

Johnson, Brenda

2006-01-01T23:59:59.000Z

298

The sediment resuspension event scours dissolved phase contaminants from the water column. As a result, a short-term  

E-Print Network [OSTI]

The sediment resuspension event scours dissolved phase contaminants from the water column loading estimates to the southern basin in the absence of sediment resuspension, respectively. In southern Lake Michigan, the impact of the sediment resuspension event is magnified because of heavy atmospheric

NOAA Great Lakes Environmental Research Laboratory, Episodic Events

299

Introduction Counterpropagating interactions Numerical methods Co-propagating interactions A result on energy transfer Solitary water wave interactions  

E-Print Network [OSTI]

on energy transfer Solitary water wave interactions Walter Craig Department of Mathematics & Statistics (energy loss) and S (amplitude change). Walter Craig McMaster University Solitary wave interactions #12 (energy loss) and S (amplitude change). Walter Craig McMaster University Solitary wave interactions #12

Craig, Walter

300

Long-Term Reduction in 137Cs Concentration in Food Crops on Coral Atolls Resulting from Potassium Treatment  

SciTech Connect (OSTI)

Bikini Island was contaminated March 1, 1954 by the Bravo detonation (U.S nuclear test series, Castle) at Bikini Atoll. About 90% of the estimated dose from nuclear fallout to potential island residents is from cesium-137 ({sup 137}Cs) transferred from soil to plants that are consumed by residents. Thus, radioecology research efforts have been focused on removing {sup 137}Cs from soil and/or reducing its uptake into vegetation. Most effective was addition of potassium (K) to soil that reduces {sup 137}Cs concentration in fruits to 3-5% of pretreatment concentrations. Initial observations indicated this low concentration continued for some time after K was last applied. Long-term studies were designed to evaluate this persistence in more detail because it is very important to provide assurance to returning populations that {sup 137}Cs concentrations in food (and, therefore, radiation dose) will remain low for extended periods, even if K is not applied annually or biennially. Potassium applied at 300, 660, 1260, and 2070 kg ha{sup -1} lead to a {sup 137}Cs concentration in drinking coconut meat that is 34, 22, 10, and about 4% of original concentration, respectively. Concentration of {sup 137}Cs remains low 8 to 10 y after K is last applied. An explanation for this unexpected result is discussed.

Robison, W L; Stone, E L; Hamilton, T F; Conrado, C L

2004-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Long-Term Reduction in 137Cs Concentration in Food Crops on Coral Atolls Resulting from Potassium Treatment  

SciTech Connect (OSTI)

Bikini Island was contaminated March 1, 1954 by the Bravo detonation (U.S nuclear test series, Castle) at Bikini Atoll. About 90% of the estimated dose from nuclear fallout to potential island residents is from cesium-137 ({sup 137}Cs) transferred from soil to plants that are consumed by residents. Thus, radioecology research efforts have been focused on removing {sup 137}Cs from soil and/or reducing its uptake into vegetation. Most effective was addition of potassium (K) to soil that reduces {sup 137}Cs concentration in fruits to 3-5% of pretreatment concentrations. Initial observations indicated this low concentration continued for some time after K was last applied. Long-term studies were designed to evaluate this persistence in more detail because it is very important to provide assurance to returning populations that {sup 137}Cs concentrations in food (and, therefore, radiation dose) will remain low for extended periods, even if K is not applied annually or biennially. Potassium applied at 300, 660, 1260, and 1970 kg ha{sup -1} lead to a {sup 137}Cs concentration in drinking coconut meat that is 34, 22, 10, and about 4 % of original concentration, respectively. Concentration of {sup 137}Cs remains low 8 to 10 y after K is last applied. An explanation for this unexpected result is discussed.

Robison, W; Stone, E; Hamilton, T; Conrado, C

2005-04-08T23:59:59.000Z

302

Global Water Sustainability:  

Science Journals Connector (OSTI)

...Ground Water and Drinking Water EPA 816-R-04-003...oil and gas produced water treatment. Journal of Hazardous...92-99 Jurenka B (2007) Electrodialysis (ED) and Electrodialysis...usbr.gov/pmts/water/publications/reportpdfs...

Kelvin B. Gregory; Radisav D. Vidic; David A. Dzombak

303

Remediation of ground water containing chlorinated and brominated hydrocarbons, benzene and chromate by sequential treatment using ZVI and GAC  

Science Journals Connector (OSTI)

A laboratory experiment with two sequenced columns was performed as a preliminary study for the installation of a permeable reactive barrier (PRB) at a site where a mixed ground water contamination exists. The...

Volkmar Plagentz; Markus Ebert; Andreas Dahmke

2006-03-01T23:59:59.000Z

304

Treatment of methyl t-butyl ether contaminated water using a dense medium plasma reactor, a mechanistic and kinetic investigation  

E-Print Network [OSTI]

, a mechanistic and kinetic investigation Derek C. Johnson1 , Vasgen A. Shamamian2 , John H. Callahan2 , Ferencz S in the future remediation of water. Chemical and physical mechanisms, together with carbon balances, are used

Dandy, David

305

Status of household water treatment and safe storage in 45 countries and a case study in Northern India  

E-Print Network [OSTI]

This thesis examines the present of the status of HWTS technologies across the world, and in one location Lucknow, India. The data for the global status of HWTS was collected by contacting the Water, Sanitation and Hygiene ...

Jain, Mehul

2010-01-01T23:59:59.000Z

306

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Manure Storage and Treatment Facilities  

E-Print Network [OSTI]

Improperly managed manure can contaminate both ground and surface water. Storing manure allows producers to spread it when crops can best use the nutrients. This publication explains safe methods of manure storage, as well as specifics about safe...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

307

Colorado Water Resources Research Institute Annual Technical Report  

E-Print Network [OSTI]

wastewater treatment systems on water quality, optimal irrigation scheduling, household conservation patterns, the effects of wastewater reuse on turfgrass, the economics of water transfers, or historical and optimal of Reclamation asked us to help stage a workshop on produced waters those waters resulting from the extraction

308

Physico-chemical fracturing and cleaning of coal. [Treatment with CO/sub 2/ in water at high pressure  

DOE Patents [OSTI]

This invention relates to a method of producing a crushable coal and reducing the metallic values in coal represented by Si, Al, Ca, Na, K, and Mg, which comprises contacting a coal/water mix in a weight ratio of from about 4:1 to 1:6 in the presence of CO/sub 2/ at pressures of about 100 to 1400 psi and a minimum temperature of about 15/sup 0/C for a period of about one or more hours to produce a treated coal/water mix. In the process the treated coal/water mix has reduced values for Ca and Mg of up to 78% over the starting mix and the advantageous CO/sub 2/ concentration is in the range of about 3 to 30 g/L. Below 5 g/L CO/sub 2/ only small effects are observed and above 30 g/L no further special advantages are achieved. The coal/water ratios in the range 1:2 to 2:1 are particularly desirable and such ratios are compatible with coal water slurry applications.

Sapienza, R.S.; Slegeir, W.A.R.

1983-09-30T23:59:59.000Z

309

Steam plasma jet for treatment of contaminated water with high-concentration 1,4-dioxane organic pollutants  

Science Journals Connector (OSTI)

A steam plasma jet (SPJ) by using both water and 1,4-dioxane aqueous solution (DAS) as working medium was injected into contaminated water to decompose 1,4-dioxane. The optical emission spectroscopy analysis showed that the formation of the excited species CH* and C2* depended on the concentration of 1,4-dioxane. The influences of SPJ gas temperatures for different working mediums were discussed. The 1,4-dioxane decomposition was enhanced when DAS was used as working medium and SPJ was injected into DAS. Synthesis gas (a mixture of H2 and CO) and CO2 were the main products in gaseous effluents.

G. H. Ni; Y. Zhao; Y. D. Meng; X. K. Wang; H. Toyoda

2013-01-01T23:59:59.000Z

310

Artificial Neural Networks Modelling of PID and Model Predictive Controlled Waste Water Treatment Plant Based on the Benchmark Simulation Model No.1  

Science Journals Connector (OSTI)

The paper presents techniques for the design and training of Artificial Neural Networks (ANN) models for the dynamic simulation of the controlled Benchmark Simulation Model no. 1 (BSM1) Waste Water Treatment Plant (WWTP). The developed ANN model of the WWTP and its associated control system is used for the assessment of the plant behaviour in integrated urban waste water system simulations. Both embedded PID (Proportional-Integral-Derivative) control and Model Predictive Control (MPC) structures for the WWTP are investigated. The control of the Dissolved Oxygen (DO) mass concentration in the aerated reactors and nitrate (NO) mass concentration in the anoxic compartments are presented. The ANN based simulators reveal good accuracy for predicting important process variables and an important reduction of the simulation time, compared to the first principle WWTP simulator.

Vasile-Mircea Cristea; Cristian Pop; Paul Serban Agachi

2009-01-01T23:59:59.000Z

311

Produced Water R&D | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Shale Gas » Produced Water Shale Gas » Produced Water R&D Produced Water R&D Developed as a result of lessons learned from the NETL funded demonstration project, the Altela 600 water treatment system (shown above) treats about 25,000 gallons per day of produced and flowback water from hydraulic fracturing. [Photo courtesy of Altela Inc.] Developed as a result of lessons learned from the NETL funded demonstration project, the Altela 600 water treatment system (shown above) treats about 25,000 gallons per day of produced and flowback water from hydraulic fracturing. [Photo courtesy of Altela Inc.] Drilling and fracturing wells produce water along with the natural gas. Some of this water is returned fracture fluid and some is natural formation water. The actual water production of a particular well depends on the well

312

Experimental measurements of the diffusion parameters of light hydrocarbons in water-saturated sedimentary rocks: II. Results and geochemical significance  

SciTech Connect (OSTI)

Diffusion parameters (diffusion coefficient, diffusion permeability, solubility coefficient) for methane, ethane, propane, n-butane, methylpropane and 2,2-dimethylpropane were measured on 21 samples of water-saturated sedimentary rocks at different temperatures (30, 50, and 70 C). The rock samples include sandstones, siltstones, and claystones with porosities ranging from 0.4 to 16.5% and permeabilities from <0.005 to 33.4 millidarcy. Experimental diffusion coefficients ranged from c. 6 {times} 10{sup {minus}10} to 9 {times} 10{sup {minus}13} m{sup 2}/s, solubility coefficients covered a range from c. 5 {times} 10{sup {minus}1} to 5 {times} 10{sup {minus}4}, and diffusion permeabilities lay between c. 4 {times} 10{sup {minus}12} and 1 {times} 10{sup {minus}14} m{sup 2}/s. Diffusion coefficients decrease with increasing molecular weight of the hydrocarbon compound, the decrease depending on the petrophysical properties and the mineralogy of the rocks and being most drastic in shales. None of the petrophysical parameters examined in this study (porosity, permeability, formation resistivity factor) gave a good correlation with the nonsteady-state diffusion coefficient, D. An excellent correlation was found between the formation resistivity factor, F, and the steady-state diffusion permeability. P. A possibly useful-though less significant-relation bearing some resemblance with Archie's law appears to exist between the porosity and the diffusion permeability. The temperature dependence of the diffusion parameters was determined on two calcareous sandstones. Based on an activated diffusion model activation energies for the diffusion process ranging around 50 kJ/mol were calculated for all hydrocarbons examined.

Krooss, B.M.; Leythaeuser, D. (Institute of petroleum and Organic Geochemistry, Juelich (Germany, F.R.))

1988-01-01T23:59:59.000Z

313

Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington  

SciTech Connect (OSTI)

PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for "No Further Action" by previous invesitgators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site.

Cantrell, Kirk J.; Liikala, Terry L.; Strenge, Dennis L.; Taira, Randal Y.

2000-12-11T23:59:59.000Z

314

Results of Water and Sediment Toxicity Tests and Chemical Analyses Conducted at the Central Shops Burning Rubble Pit Waste Unit, January 1999  

SciTech Connect (OSTI)

The Central Shops Burning Rubble Pit Operable Unit consists of two inactive rubble pits (631-1G and 631-3G) that have been capped, and one active burning rubble pit (631-2G), where wooden pallets and other non-hazardous debris are periodically burned. The inactive rubble pits may have received hazardous materials, such as asbestos, batteries, and paint cans, as well as non-hazardous materials, such as ash, paper, and glass. In an effort to determine if long term surface water flows of potentially contaminated water from the 631-1G, 631-3G, and 631-2G areas have resulted in an accumulation of chemical constituents at toxic levels in the vicinity of the settling basin and wetlands area, chemical analyses for significant ecological preliminary constituents of concern (pCOCs) were performed on aqueous and sediment samples. In addition, aquatic and sediment toxicity tests were performed in accordance with U.S. EPA methods (U.S. EPA 1989, 1994). Based on the results of the chemical analyses, unfiltered water samples collected from a wetland and settling basins located adjacent to the CSBRP Operable Unit exceed Toxicity Reference Values (TRVs) for aluminum, barium, chromium, copper, iron, lead, and vanadium at one or more of the four locations that were sampled. The water contained very high concentrations of clay particles that were present as suspended solids. A substantial portion of the metals were present as filterable particulates, bound to the clay particles, and were therefore not biologically available. Based on dissolved metal concentrations, the wetland and settling basin exceeded TRVs for aluminum and barium. However, the background reference location also exceeded the TRV for barium, which suggests that this value may be too low, based on local geochemistry. The detection limits for both total and dissolved mercury were higher than the TRV, so it was not possible to determine if the TRV for mercury was exceeded. Dissolved metal levels of chromium, copper, iron, lead and vanadium were below the TRVs. Metal concentrations in the sediment exceeded the TRVs for arsenic, chromium, copper, and mercury but not for antimony and lead. The results of the water toxicity tests indicated no evidence of acute toxicity in any of the samples. The results of the chronic toxicity tests indicated possible reproductive impairment at two locations. However, the results appear to be anomalous, since the toxicity was unrelated to concentration, and because the concentrations of pCOCs were similar in the toxic and the non-toxic samples. The results of the sediment toxicity tests indicated significant mortality in all but one sample, including the background reference sediment. When the results of the CSBRP sediment toxicity tests were statistically compared to the result from the background reference sediment, there was no significant mortality. These results suggest that the surface water and sediment at the CSBRP Operable Unit are not toxic to the biota that inhabit the wetland and the settling basin.

Specht, W.L.

1999-06-02T23:59:59.000Z

315

NETL Water and Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

316

A Prospective Cohort Study to Compare Treatment Results Between 2 Fractionation Schedules of High-Dose-Rate Intracavitary Brachytherapy (HDR-ICBT) in Patients With Cervical Cancer  

SciTech Connect (OSTI)

Purpose: To compare the treatment results of 2 fractionation schedules for high-dose-rate intracavitary brachytherapy (HDR-ICBT) in patients with cervical cancer. Methods and Materials: From June 2001 through January 2008, 267 patients with stage IB-IVA cervical cancer were enrolled in the study. All patients underwent 4-field pelvic irradiation and HDR-ICBT. The median central and parametrial doses were 39.6 Gy and 45 Gy, respectively. Patient underwent either 6 Gy Multiplication-Sign 4 (HDR-4) (n=144) or 4.5 Gy Multiplication-Sign 6 (HDR-6) (n=123) to point A of ICBT using {sup 192}Ir isotope twice weekly. The rates of overall survival, locoregional failure, distant metastasis, proctitis, cystitis, and enterocolitis were compared between HDR-4 and HDR-6. Results: There were no significant differences in the demographic data between HDR-4 and HDR-6 except for total treatment time. The 5-year proctitis rates were 23.0% and 21.5% in HDR-4 and HDR-6 (P=.399), respectively. The corresponding rates of grade 2-4 proctitis were 18.7% and 9.6% (P=.060). The corresponding rates of grades 3-4 proctitis were 5.2% and 1.3% (P=.231). Subgroup analysis revealed that HDR-4 significantly increased grade 2-4 proctitis in patients aged {>=}62 years old (P=.012) but not in patients aged <62 years (P=.976). The rates of overall survival, locoregional failure, distant metastasis, cystitis, and enterocolitis were not significantly different between HDR-4 and HDR-6 schedules. Conclusion: The small fraction size of HDR-ICBT is associated with grade 2 proctitis without compromise of prognosis in elderly patients. This schedule is suggested for patients who tolerate an additional 2 applications of HDR-ICBT.

Huang, Eng-Yen [Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China) [Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taiwan (China); Sun, Li-Min [Department of Radiation Oncology, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (China)] [Department of Radiation Oncology, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (China); Lin, Hao [Department of Gynecologic Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China)] [Department of Gynecologic Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Lan, Jen-Hong [Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China)] [Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Chanchien, Chan-Chao [Department of Gynecologic Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China)] [Department of Gynecologic Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Huang, Yu-Jie; Wang, Chang-Yu [Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China)] [Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Wang, Chong-Jong, E-mail: cjw1010@adm.cgmh.org.tw [Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China)] [Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China)

2013-01-01T23:59:59.000Z

317

Evaluation of Selective Ion Exchange Resins for Removal of Mercury from the H-Area Water Treatment Unit  

SciTech Connect (OSTI)

This study investigated the ability of seven ion exchange (IX) resins, some of which were mercury specific, to remove mercury in H-Area WTU waters from three sources (Reverse Osmosis (RO) Feed, RO Permeate from Train A, and a mercury ''hot spot'' extraction well HEX 18). Seven ion exchange resins, including ResinTech CG8 and Dowex 21K (the cation and anion exchange resins currently used at the H-Area WTU) were screened against five alternative ion exchange materials plus an experimental blank. Mercury decontamination factors (DFs), mercury breakthrough, and post-test contaminant concentrations of IX resins were determined for each IX material tested.

Serkiz, S.M.

2000-09-05T23:59:59.000Z

318

Water Loss Test Results for Lateral A Before and After Lining Hidalgo County Irrigation District No. 2  

E-Print Network [OSTI]

Starting Depth (ft) Test ID in/day ft/day in/day ft/day ft 3 /ft 2 /hour gal/ft 2 /day SJ5 4.75 0.108 0.009 3.00 0.25 0.0076 1.36 The following tests were conducted after the segment was relined October 2004. SJ13 4.32 0.050 0.004 0.58 0.05 0.0016 0....0102 1.83 The following tests were conducted after the segment was relined October 2004. SJ12 3.88 0.050 0.004 2.79 0.233 0.0074 1.33 SJ14 4.50 0.140 0.012 0.65 0.054 0.0016 0.29 - 5 - Appendix A Detailed Test Results Lateral A-7...

Leigh, E.; Fipps, G.

319

OECD MCCI project Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-1 test data report : thermal hydraulic results. Rev. 0 September 20, 2002.  

SciTech Connect (OSTI)

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the first water ingression test, designated SSWICS-1. The report includes a description of the test apparatus, the instrumentation used, plots of the recorded data, and some rudimentary data reduction to obtain an estimate of the heat flux from the corium to the overlying water pool.

Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

2011-05-23T23:59:59.000Z

320

OECD MCCI Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-3 test data report : thermal Hydraulic results, Rev. 0 February 19, 2003.  

SciTech Connect (OSTI)

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the third water ingression test, designated SSWICS-3. This test investigated the quenching behavior of a fully oxidized PWR corium melt containing 8 wt% limestone/common sand concrete at a system pressure of 4 bar absolute. The report includes a description of the test apparatus, the instrumentation used, plots of the recorded data, and some rudimentary data reduction to obtain an estimate of the heat flux from the corium to the overlying water pool.

Lomperski, S.; Farmer, M. T.; Kilsdonk, D.; Aeschlimann, B. (Nuclear Engineering Division)

2011-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

OECD MMCI Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-2 test data report : thermal hydraulic results, Rev. 0 September 20, 2002.  

SciTech Connect (OSTI)

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the second water ingression test, designated SSWICS-2. The report includes a description of the test apparatus, the instrumentation used, plots of the recorded data, and some rudimentary data reduction to obtain an estimate of the heat flux from the corium to the overlying water pool.

Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

2011-05-23T23:59:59.000Z

322

NORDIC WASTE WATER TREATMENT SLUDGE TREATMENT  

E-Print Network [OSTI]

biogas, electricity and fertilizer from 30 000 tons of annually waste. The plant was opened in March 2008 together it an- nually produces 18,9 GWh biogas and around 10 GWh of elec- tricity. The Cambi THP ­process

323

Atmospheric Pressure RF (13.56 MHz) Glow Discharge: Characterization and Application to “In Line” Waste Water Treatment  

Science Journals Connector (OSTI)

In this work the results obtained from the experimental study of an Atmospheric Pressure Glow Discharge (APGD) appear, generated in Helium (He) and dry air mixture by using a radio frequency (RF 13.56 MHz) pow...

Jaime B. Castro; Marlon H. Guerra-Mutis…

2003-06-01T23:59:59.000Z

324

Assimilable Organic Carbon (AOC) in Drinking Water  

Science Journals Connector (OSTI)

Developments in water treatment The removal in water treatment of microorganisms causing the so-called “water-borne” diseases and the prevention of contamination of drinking water with these orga...

D. van der Kooij

1990-01-01T23:59:59.000Z

325

Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution; Federal Energy Management Program (FEMP) Achieving Results with Renewable Energy in the Federal Government (Brochure)  

Broader source: Energy.gov (indexed) [DOE]

Heating Water with Solar Energy Costs Less Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front

326

The Relationship between Water and Energy: Optimizing Water and Energy  

E-Print Network [OSTI]

understanding that the highest value opportunities for water conservation usually exist where there is the strongest interaction of water and energy. Steam management systems, process cooling, high quality water production and waste water treatment represent...

Finley, T.; Fennessey, K.; Light, R.

2007-01-01T23:59:59.000Z

327

Effect of Water Quality on the Performance of Boiler in Nigerian Petroleum Industry  

E-Print Network [OSTI]

This work investigates quality of water used in boilers of Refinery Company in Nigeria. The results shows that the quality of water fed to boilers are off specification. Low water quality used in boilers led to frequent failure of the boilers as a result of tube rupture. This has resulted into low capacity utilization and loss of processing fees. The poor performance of the boiler feed treatment plant is attributable to the deplorable condition of water intake plant, raw water treatment, demineralization plant, change in raw water quality and non-functioning of the polisher unit.

J. O. Odigure; A. S. Abdulkareem; E. T. Asuquo

328

Treatment of acid mine wastewaters  

SciTech Connect (OSTI)

Acid mine drainage often results from the oxidation sulfide minerals to form sulfuric acid. As a consequence, high concentrations of metals in the both the suspended and dissolved state result from the low pH water. This paper discusses several of the more common treatment methods for acid mine drainage including the use of chemical precipitation agents, pH correction agents, filtration methods, and biodegradation methods. Advanced treatment technologies are also briefly described and include microfiltration, reverse osmosis, ion exchange, and electrodialysis.

Hayward, D.; Barnard, R.

1993-06-01T23:59:59.000Z

329

Gravity effect of water storage changes in a weathered hard-rock aquifer in West Africa: results from joint absolute gravity, hydrological monitoring and geophysical prospection  

Science Journals Connector (OSTI)

......masked out and the conservation of the total water mass has been enforced...control the amount of water that produces gravity variations (Pool Eychaner 1995...semi-arid Niger. Water Resour. Res...wrcr.20235. Pool D.R. , Eychaner......

Basile Hector; Luc Séguis; Jacques Hinderer; Marc Descloitres; Jean-Michel Vouillamoz; Maxime Wubda; Jean-Paul Boy; Bernard Luck; Nicolas Le Moigne

2013-01-01T23:59:59.000Z

330

Gravity effect of water storage changes in a weathered hard-rock aquifer in West Africa: results from joint absolute gravity, hydrological monitoring and geophysical prospection  

Science Journals Connector (OSTI)

......and deformation responses on a spherical non-rotating...continental water storage within a range of...the lack of higher frequency gravity data sampling...specific yield and storage change in an unconfined...Combined analysis of energy and water balances...al. Land water storage changes from ground......

Basile Hector; Luc Séguis; Jacques Hinderer; Marc Descloitres; Jean-Michel Vouillamoz; Maxime Wubda; Jean-Paul Boy; Bernard Luck; Nicolas Le Moigne

2013-01-01T23:59:59.000Z

331

Effects of Tillage Practices on Water Consumption, Water Use Efficiency and Grain Yield in Wheat Field  

Science Journals Connector (OSTI)

Abstract Water shortage is a serious issue threatening the sustainable development of agriculture in the North China Plain, with the winter wheat (Triticum aestivum L.) as its largest water-consuming crop. The effects of tillage practices on the water consumption and water use efficiency (WUE) of wheat under high-yield conditions using supplemental irrigation based on testing soil moisture dynamic change were examined in this study. This experiment was conducted from 2007 to 2010, with five tillage practice treatments, namely, strip rotary tillage (SR), strip rotary tillage after subsoiling (SRS), rotary tillage (R), rotary tillage after subsoiling (RS), and plowing tillage (P). The results showed that in the SRS and RS treatments the total water and soil water consumptions were 11.81, 25.18% and 12.16, 14.75% higher than those in SR and R treatments, respectively. The lowest ratio of irrigation consumption to total water consumption in the SRS treatment was 18.53 and 21.88% for the 2008–2009 and 2009–2010 growing seasons, respectively. However, the highest percentage of water consumption was found in the SRS treatment from anthesis to maturity. No significant difference was found between the WUE of the flag leaf at the later filling stage in the SRS and RS treatments, but the flag leaf WUE at these stages were higher than those of other treatments. The SRS and RS treatments exhibited the highest grain yield (9573.76 and 9507.49 kg ha?1 for 3-yr average) with no significant difference between the two treatments, followed by P, R and SR treatments. But the SRS treatment had the highest WUE. Thus, the 1-yr subsoiling tillage, plus 2 yr of strip rotary planting operation may be an efficient measure to increase wheat yield and WUE.

Cheng-yan ZHENG; Zhen-wen YU; Yu SHI; Shi-ming CUI; Dong WANG; Yong-li ZHANG; Jun-ye ZHAO

2014-01-01T23:59:59.000Z

332

Water treatment by reverse osmosis. November 1970-October 1989 (Citations from the US Patent data base). Report for November 1970-October 1989  

SciTech Connect (OSTI)

This bibliography contains citations of selected patents concerning water purification systems and components using reverse-osmosis technology. Patents include systems and devices for sea water, waste water, and drinking water purification. Topics include complete purification systems, valves and distribution components, membranes, supports, storage units, and monitors. Water purification systems using activated charcoal are referenced in a related published bibliography. (Contains 103 citations fully indexed and including a title list.)

Not Available

1990-01-01T23:59:59.000Z

333

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management Carnegie Mellon University, in a joint effort with the University of Pittsburgh, is conducting a study of the use of treated municipal wastewater as cooling system makeup for coal fired power plants. This project builds upon a study sponsored by the U.S. Department of Energy entitled, "Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants," which showed that treated municipal wastewater is the most common and widespread source in the United States. Data analysis revealed that 81 percent of power plants proposed for construction by the Energy Information Administration (EIA) would have sufficient cooling water supply from one to two publicly owned treatment works (POTW) within a 10-mile radius, while 97 percent of the proposed power plants would be able to meet their cooling water needs with one to two POTWs within 25 miles of these plants. Thus, municipal wastewater will be the impaired water source most likely to be locally available in sufficient and reliable quantities for power plants. Results of initial studies indicate that it is feasible to use secondary treated municipal wastewater as cooling system makeup. The biodegradable organic matter, ammonia-nitrogen, and phosphorus in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, although current research is demonstrating that these problems can be controlled through aggressive chemical management. It is currently unclear whether tertiary treatment of municipal waste water prior to its re-use can be a cost-effective option to aggressive chemical management of the bulk cooling water volume.

334

BULKING SLUDGE TREATMENT BY MICROSCOPIC OBSERVATION AND MECHANICAL TREATMENT  

E-Print Network [OSTI]

for the operation of the biological stage of waste water treatment plants. If the threatening extensive growth of wastewater treatment plants often need a complex control for the optimal processing. The measurement status and for the regulation of biological parts in waste water treatment plants. Furthermore, e

335

Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring  

SciTech Connect (OSTI)

In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

B.M. Gallaher; R.J. Koch

2004-09-15T23:59:59.000Z

336

Beneficial Reuse of San Ardo Produced Water  

SciTech Connect (OSTI)

This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron, and organics. Pilot study results indicate that produced water from the San Ardo oilfield can be treated to meet project water quality goals. Approximately 600 mg/l of caustic and 100 mg/l magnesium dosing were required to meet the hardness and silica goals in the warm softening unit. Approximately 30% of the ammonia was removed in the cooling tower; additional ammonia could be removed by ion exchange or other methods if necessary. A brackish water reverse osmosis membrane was effective in removing total dissolved solids and organics at all pH levels evaluated; however, the boron treatment objective was only achieved at a pH of 10.5 and above.

Robert A. Liske

2006-07-31T23:59:59.000Z

337

Triclosan Reactivity in Chloraminated Waters  

Science Journals Connector (OSTI)

Triclosan Reactivity in Chloraminated Waters ... Triclosan, widely employed as an antimicrobial additive in many household personal care products, has recently been detected in wastewater treatment plant effluents and in source waters used for drinking water supplies. ... Chloramines used either as alternative disinfectants in drinking water treatment or formed during chlorination of nonnitrified wastewater effluents have the potential to react with triclosan. ...

Aimee E. Greyshock; Peter J. Vikesland

2006-03-16T23:59:59.000Z

338

Control solids in cooling water to cut makeup requirements  

SciTech Connect (OSTI)

A pilot program demonstrates effectiveness of reverse osmosis and electrodialysis in increasing the cycles of concentration of recirculating-water systems. The team performed its study with the help of the Department of Interior's mobile demineralization treatment system, which houses both a reverse-osmosis and an electrodialysis desalting system. Their results indicate that both systems can produce product water of higher quality than makeup water drawn from the Colorado River. Capital cost of a full-scale treatment system with 75% product-water recovery is estimated at $3.6 million. Annual operating cost would be about $822,000.

Osantowski, R.; Kane, J.

1984-07-01T23:59:59.000Z

339

Using Membrane Sets Incorporated into a Crossflow Electrofiltration/Electrodialysis Treatment Module to Treat CMP Wastewater and Simultaneously Generate Electrolytic Ionized Water.  

E-Print Network [OSTI]

??In this work, membrane set(s) had been incorporated into different crossflow electrofiltration (CEF) /electrodialysis (ED) treatment modules for treating various CMP wastewaters and simultaneously generating… (more)

Yang, Tsung-Yin

2003-01-01T23:59:59.000Z

340

Brookhaven's Drinking-Water Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Quality Water Quality The Lab's finished drinking water is produced with pride by the staff of BNL's Water Treatment Facility Home Groundwater Consumer Confidence Reports Water Treatment Process Resources Tap Water Recommendations Water Cooler Cleaning Additional Resources Brookhaven Lab Drinking Water Brookhaven produces its own drinking water for all employees, facility-users, guests, residents, and visitors on site at its Water Treatment Facility (WTF). BNL's drinking water is pumped from groundwater by five active wells and processed at the WTF which can handle up to 6 million gallons per day. The "finished" water is sent to the Lab's two storage towers and then distributed around the site via 45 miles of pipeline. To ensure that Brookhaven's water meets all applicable local, state, and

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Water quality Water quantity  

E-Print Network [OSTI]

01-1 · Water quality · Water quantity · Remediation strategies MinE 422: Water Resources: Younger, Banwart and Hedin. 2002. Mine Water. Hydrology, Pollution, Remediation. Impacts of mining on water mining ­ Often the largest long term issue ­ Water quality affected, surface/ground water pollution

Boisvert, Jeff

342

Water quality Water quantity  

E-Print Network [OSTI]

· Water quality · Water quantity · Remediation strategies MinE 422: Water Resources: Younger, Banwart and Hedin. 2002. Mine Water. Hydrology, Pollution, Remediation. Impacts of mining on water mining ­ Often the largest long term issue ­ Water quality affected, surface/ground water pollution

Boisvert, Jeff

343

On Adsorption at the Oil/Water Interface and the Calculation of Electrical Potentials in the Aqueous Surface Phase I. Neutral Molecules and a Simplified Treatment for Ions  

Science Journals Connector (OSTI)

...Potentials in the Aqueous Surface Phase I. Neutral Molecules and a Simplified Treatment for Ions D. A. Haydon...concentrations, and for all surface-active agents in high...size in the theoretical treatment. There is no evidence...with dehydration of the surface-active ions occur...

1960-01-01T23:59:59.000Z

344

Hedgehog(tm) Water Contaminant Removal System - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recirculating treatment system reduces the levels of contaminants in water storage tanks. A recirculation pump continually sends water though a treatment in order to reduce...

345

WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0 of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of water the WaterSense program saves nationwide involves integrating two components, or modules, of the NWS model. Module 1 calculates the baseline national water consumption of typical fixtures, fittings, and appliances prior to the program (as described in Section 2.0 of this report). Module 2 develops trends in efficiency for water-using products both in the business-as-usual case and as a result of the program (Section 3.0). The NWS model combines the two modules to calculate total gallons saved by the WaterSense program (Section 4.0). Figure 1 illustrates the modules and the process involved in modeling for the NWS model analysis.The output of the NWS model provides the base case for each end use, as well as a prediction of total residential indoor water consumption during the next two decades. Based on the calculations described in Section 4.0, we can project a timeline of water savings attributable to the WaterSense program. The savings increase each year as the program results in the installation of greater numbers of efficient products, which come to compose more and more of the product stock in households throughout the United States.

Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla; Letschert, Virginie; della_Cava, Mirka

2008-02-28T23:59:59.000Z

346

Water Loss Test Results for the Pipeline Units: I-19/I-18, I-7A, and I-22 Hidalgo County Irrigation District No. 2  

E-Print Network [OSTI]

...................................................... ..9 Acknowledgements........................................................................................................................................... 13 List of Figures Figure 1. Photo of leaking pipeline control structure... I-19/I-18 52080 63653 58.4 71.3 SJ17 I-7A 50193 61347 56.2 68.7 J18 I-22 36490 44599 40.9 50.0 * Water loss rates given are based on an in-service use of 24 hours/day and 365 days/year. Figure 1 shows a leaking pipeline control structure...

Fipps, G.; Leigh, E.

347

Hydrogen and Water: An Engineering, Economic and Environmental Analysis  

SciTech Connect (OSTI)

The multi-year program plan for the Department of Energy's Hydrogen and Fuel Cells Technology Program (USDOE, 2007a) calls for the development of system models to determine economic, environmental and cross-cutting impacts of the transition to a hydrogen economy. One component of the hydrogen production and delivery chain is water; water's use and disposal can incur costs and environmental consequences for almost any industrial product. It has become increasingly clear that due to factors such as competing water demands and climate change, the potential for a water-constrained world is real. Thus, any future hydrogen economy will need to be constructed so that any associated water impacts are minimized. This, in turn, requires the analysis and comparison of specific hydrogen production schemes in terms of their water use. Broadly speaking, two types of water are used in hydrogen production: process water and cooling water. In the production plant, process water is used as a direct input for the conversion processes (e.g. steam for Steam Methane Reforming {l_brace}SMR{r_brace}, water for electrolysis). Cooling water, by distinction, is used indirectly to cool related fluids or equipment, and is an important factor in making plant processes efficient and reliable. Hydrogen production further relies on water used indirectly to generate other feedstocks required by a hydrogen plant. This second order indirect water is referred to here as 'embedded' water. For example, electricity production uses significant quantities of water; this 'thermoelectric cooling' contributes significantly to the total water footprint of the hydrogen production chain. A comprehensive systems analysis of the hydrogen economy includes the aggregate of the water intensities from every step in the production chain including direct, indirect, and embedded water. Process and cooling waters have distinct technical quality requirements. Process water, which is typically high purity (limited dissolved solids) is used inside boilers, reactors or electrolyzers because as it changes phase or is consumed, it leaves very little residue behind. Pre-treatment of 'raw' source water to remove impurities not only enables efficient hydrogen production, but also reduces maintenance costs associated with component degradation due to those impurities. Cooling water has lower overall quality specifications, though it is required in larger volumes. Cooling water has distinct quality requirements aimed at preserving the cooling equipment by reducing scaling and fouling from untreated water. At least as important as the quantity, quality and cost of water inputs to a process are the quantity, quality and cost of water discharge. In many parts of the world, contamination from wastewater streams is a far greater threat to water supply than scarcity or drought (Brooks, 2002). Wastewater can be produced during the pre-treatment processes for process and cooling water, and is also sometimes generated during the hydrogen production and cooling operations themselves. Wastewater is, by definition, lower quality than supply water. Municipal wastewater treatment facilities can handle some industrial wastewaters; others must be treated on-site or recycled. Any of these options can incur additional cost and/or complexity. DOE's 'H2A' studies have developed cost and energy intensity estimates for a variety of hydrogen production pathways. These assessments, however, have not focused on the details of water use, treatment and disposal. As a result, relatively coarse consumption numbers have been used to estimate water intensities. The water intensity for hydrogen production ranges between 1.5-40 gallons per kilogram of hydrogen, including the embedded water due to electricity consumption and considering the wide variety of hydrogen production, water treatment, and cooling options. Understanding the consequences of water management choices enables stakeholders to make informed decisions regarding water use. Water is a fundamentally regional commodity. Water resources vary in quality and qu

Simon, A J; Daily, W; White, R G

2010-01-06T23:59:59.000Z

348

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

Fox, J.P.

2010-01-01T23:59:59.000Z

349

Biorefinery Grey Water Analysis | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

options for grey water generated from a biorefinery with fast pyrolysis and hydrotreating Wastewater treatment options for grey water generated from a biorefinery...

350

Hybrid Membrane System for Industrial Water Reuse  

Broader source: Energy.gov [DOE]

Demonstrate an advanced water treatment and reuse process in a single hybrid system that combines forward osmosis with membrane distillation to achieve greater efficiency and increased water reuse.

351

Water, water everywhere  

Science Journals Connector (OSTI)

... available water resources, either locally or globally, are by no means exhausted. At present desalination -- the removal of salt from sea water or brackish water -- is very ... or brackish water -- is very expensive, mainly because it consumes so much energy. Desalination provides less than 0.2 per cent of all the water used in the world ...

Philip Ball

2000-01-27T23:59:59.000Z

352

Investigation of assimilable organic carbon (AOC) in flemish drinking water  

Science Journals Connector (OSTI)

The aim of the study was to investigate the drinking water supplied to majority of residents of Flanders in Belgium. Over 500 water samples were collected from different locations, after particular and complete treatment procedure to evaluate the efficiency of each treatment step in production of biologically stable drinking water. In this study assimilable organic carbon (AOC) was of our interest and was assumed as a parameter responsible for water biostability. The influence of seasons and temperature changes on AOC content was also taken into account. The AOC in most of the non-chlorinated product water of the studied treatment plants could not meet the biostability criteria of 10 ?g/l, resulting in the mean AOC concentration of 50 ?g/l. However, majority of the examined chlorinated water samples were consistent with proposed criteria of 50–100 ?g/l for systems maintaining disinfectant residual. Here, mean AOC concentration of 72 ?g/l was obtained. Granular activated carbon filtration was helpful in diminishing AOC content of drinking water; however, the nutrient removal was enhanced by biological process incorporated into water treatment (biological activated carbon filtration). Disinfection by means of chlorination and ozonation increased the water AOC concentration while the ultraviolet irradiation showed no impact on the AOC content. Examination of seasonal AOC variations showed similar fluctuations in six units with the highest values in summer and lowest in winter.

Monika Polanska; Koen Huysman; Chris van Keer

2005-01-01T23:59:59.000Z

353

Long-Term Outcome and Morbidity After Treatment With Accelerated Radiotherapy and Weekly Cisplatin for Locally Advanced Head-and-Neck Cancer: Results of a Multidisciplinary Late Morbidity Clinic  

SciTech Connect (OSTI)

Purpose: To evaluate the long-term outcome and morbidity after intensified treatment for locally advanced head-and-neck cancer. Methods and Materials: Between May 2003 and December 2007, 77 patients with Stage III to IV head-and-neck cancer were treated with curative intent. Treatment consisted of accelerated radiotherapy to a dose of 68 Gy and concurrent cisplatin. Long-term survivors were invited to a multidisciplinary outpatient clinic for a comprehensive assessment of late morbidity with special emphasis on dysphagia, including radiological evaluation of swallowing function in all patients. Results: Compliance with the treatment protocol was high, with 87% of the patients receiving at least five cycles of cisplatin and all but 1 patient completing the radiotherapy as planned. The 5-year actuarial disease-free survival and overall survival rates were 40% and 47%, respectively. Locoregional recurrence-free survival at 5 years was 61%. The 5-year actuarial rates of overall late Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) Grade 3 and Grade 4 toxicity were 52% and 25% respectively. Radiologic evaluation after a median follow-up of 44 months demonstrated impaired swallowing in 57% of the patients, including 23% with silent aspiration. Subjective assessment using a systematic scoring system indicated normalcy of diet in only 15.6% of the patients. Conclusion: This regimen of accelerated radiotherapy with weekly cisplatin produced favorable tumor control rates and survival rates while compliance was high. However, comprehensive assessment by a multidisciplinary team of medical and paramedical specialists revealed significant long-term morbidity in the majority of the patients, with dysphagia being a major concern.

Ruetten, Heidi, E-mail: h.rutten@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Pop, Lucas A.M.; Janssens, Geert O.R.J. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Takes, Robert P. [Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Knuijt, Simone [Department of Rehabilitation/Speech Pathology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Rooijakkers, Antoinette F. [Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Berg, Manon van den [Department of Gastroenterology-Dietetics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Merkx, Matthias A. [Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Herpen, Carla M.L. van [Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

2011-11-15T23:59:59.000Z

354

Life Cycle Assessment of Three Water Scenarios  

E-Print Network [OSTI]

Use/ Reuse/ Maintenance Recycling Material and Energy Inputs Releases to the Environment Process on portion of total water received (3%) #12;Reclamation: Scottsdale Reclaims wastewater for use (Reclaimed Plant) Wastewater treatment, advanced water treatment, and groundwater recharge and extraction

Keller, Arturo A.

355

Wastewater treatment using ferrous sulfate  

SciTech Connect (OSTI)

Treatment of industrial wastewater with coagulants is used extensively in the thorough removal of emulsified tars and oils. The central plant laboratory at the Zhdanov Coke Works conducted investigations of the treatment of wastewater, subsequently used for quenching coke, with ferrous sulfate. Laboratory tests and subsequent industrial tests demonstrated the efficiency of the method. In order to further intensify the wastewater treatment process we conducted laboratory tests with the addition of certain quantities of other coagulation reagents, for example polyacrylamide (PAA) and caustic soda, in addition to the ferrous sulfate. The combined use of polyacrylamide and ferrous sulfate permits instant coagulation of the sludge and very rapid (5 to 10 min) clarification of the water. In addition, in this case the degree of purification of the water is less dependent on the initial concentration of impurities. The purification is also improved when caustic soda is added, raising the pH. From the data it is apparent that an identical degree of purification of the water may be achieved either by increasing the consumption of ferrous sulfate, or by adding PAA or NaOH. During industrial tests of the purification of wastewater with ferrous sulfate, we also investigated the resulting sludge. The use of ferrous sulfate causes a significant increase in its quantity (by a factor of 1.5 to 1.8) and in its oil content (by a factor of 2 to 2.5). The water content in the sludge decreases. The sludge (in the quantity of 0.6% of the charge) may be added to the coking charge.

Boetskaya, K.P.; Ioffe, E.M.

1980-01-01T23:59:59.000Z

356

Results of analyses of fur samples from the San Joaquin Kit Fox and associated soil and water samples from the Naval Petroleum Reserve No. 1, Tupman, California  

SciTech Connect (OSTI)

The purpose of this study was to determine whether analysis of the elemental content of fur from San Joaquin kit foxes (Vulpes macrotis mutica) and of water and soil from kit fox habitats could be used to make inferences concerning the cause of an observed decline in the kit fox population on Naval Petroleum Reserve No. 1 (NPR-1). Fur samples that had been collected previously from NPR-1, another oil field (NPR-2), and two sites with no oil development were subjected to neutron activation analysis. In addition, soil samples were collected from the home ranges of individual foxes from undisturbed portions of major soil types on NPR-1 and from wastewater samples were collected from tanks and sumps and subjected to neutron activation analysis. Most elemental concentrations in fur were highest at Camp Roberts and lowest on the undeveloped portions of NPR-I. Fur concentrations were intermediate on the developed oil fields but were correlated with percent disturbance and with number of wells on NPR-1 and NPR-2. The fact that most elements covaried across the range of sites suggests that some pervasive source such as soil was responsible. However, fur concentrations were not correlated with soft concentrations. The kit foxes on the developed portion of NPR-1 did not have concentrations of elements in fur relative to other sites that would account for the population decline in the early 1980s. The oil-related elements As, Ba, and V were elevated in fox fur from oil fields, but only As was sufficiently elevated to suggest a risk of toxicity in individual foxes. However, arsenic concentrations suggestive of sublethal toxicity were found in only 0.56% of foxes from developed oil fields, too few to account for a population decline.

Suter, G.W. II; Rosen, A.E.; Beauchamp, J.J. [Oak Ridge National Lab., TN (United States); Kato, T.T. [EG and G Energy Measurements, Inc., Tupman, CA (United States)

1992-12-01T23:59:59.000Z

357

Palestinians and Israelis talk water  

Science Journals Connector (OSTI)

... — cover topics from water resources and culture, through law and standards to reuse and desalination of waste water. Always professional and polite, they do not shy away from disagreement ... named “hydro-hysteria”. Thanks to new technologies for waste water treatment, reuse and desalination, water is no longer a zero-sum game. A new ...

Haim Watzman

2010-08-11T23:59:59.000Z

358

On-Site Wastewater Treatment Systems: Mound System  

E-Print Network [OSTI]

oxygen demand (BOD 5 ), which is the amount of oxygen used by microorganisms to break down waste material. The maximum BOD 5 of pretreate waste- The On-Site Wastewater Treatment Systems series of publications is a result of collaborative efforts... Extension Service Texas Natural Resource Conservation Commission Texas Agricultural Experiment Station USDA Water Quality Demonstration Projects Texas On-Site Wastewater Association Consortium of Institutes for Decentralized Wastewater Treatment USDA Natural...

Lesikar, Bruce J.

2002-04-22T23:59:59.000Z

359

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermoelectric Power Plant Water Demands Using Alternative Water Supplies: Thermoelectric Power Plant Water Demands Using Alternative Water Supplies: Power Demand Options in Regions of Water Stress and Future Carbon Management Sandia National Laboratories (SNL) is conducting a regional modeling assessment of non-traditional water sources for use in thermoelectric power plants. The assessment includes the development of a model to characterize water quantity and quality from several sources of non-traditional water, initially focused within the Southeastern United States. The project includes four primary tasks: (1) identify water sources, needs, and treatment options; (2) assess and model non-traditional water quantity and quality; (3) identify and characterize water treatment options including an assessment of cost; and (4) develop a framework of metrics, processes, and modeling aspects that can be applied to other regions of the United States.

360

Water Reuse and Recycling  

Science Journals Connector (OSTI)

Proper wastewater treatment is now recognized as an indispensable ... as an appropriate means for expanding through water recycling and reuse the efficient management of an ... public acceptance may restrict cert...

Nicolas Spulber; Asghar Sabbaghi

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

UV water disinfector  

DOE Patents [OSTI]

A UV disinfector with a gravity driven feed water delivery system and an air-suspended bare UV lamp are disclosed. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir. 7 figs.

Gadgil, A.; Garud, V.

1998-07-14T23:59:59.000Z

362

Water resources and the urban environment--98  

SciTech Connect (OSTI)

This report contains all the papers presented at the meeting. There are 25 sessions and one poster session in the document. The Sessions are: (1) Landfill gas/groundwater interactions; (2) Urban solids management; (3) Local issues; (4) Surface water quality studies 1; (5) Reductive treatment of hazardous wastes with zero-valent iron; (6) Water reuse 1; (7) Biosolids management; (8) GIS information systems 1; (9) Drinking water distribution; (10) Anaerobic treatment; (11) Water reuse 2; (12) Municipal wastewater treatment technology; (13) GIS information systems 2; (14) Drinking water treatment 1; (15) Risk-based site remediation; (16) Small urban watersheds; (17) Disinfection; (18) Air pollution control and risk assessment; (19) Drinking water treatment 2; (20) Biological wastewater treatment; (21) Wastewater treatment; (22) Decentralized small-scale alternative wastewater management systems; (23) General environmental issues; (24) Drinking water treatment 3; and (25) Groundwater remediation. Papers have been processed separately for inclusion on the database.

Wilson, T.E. [ed.

1998-07-01T23:59:59.000Z

363

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanofiltration Treatment Options for Thermoelectric Power Plant Water Treatment Demands Nanofiltration Treatment Options for Thermoelectric Power Plant Water Treatment Demands Sandia National Laboratories (SNL) is conducting a study on the use of nanofiltration (NF) treatment options to enable use of non-traditional water sources as an alternative to freshwater make-up for thermoelectric power plants. The project includes a technical and economic evaluation of NF for two types of water that contain moderate to high levels of total dissolved solids (TDS): (1) cooling tower recirculating water and (2) produced waters from oil & gas extraction operations. Reverse osmosis (RO) is the most mature and commonly considered option for high TDS water treatment. However, RO is generally considered to be too expensive to make treatment of produced waters for power plant use a feasible application. Therefore, SNL is investigating the use of NF, which could be a more cost effective treatment option than RO. Similar to RO, NF is a membrane-based process. Although NF is not as effective as RO for the removal of TDS (typical salt rejection is ~85 percent, compared to >95 percent for RO), its performance should be sufficient for typical power plant applications. In addition to its lower capital cost, an NF system should have lower operating costs because it requires less pressure to achieve an equivalent flux of product water.

364

Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions  

SciTech Connect (OSTI)

This paper aims to characterize spray-dried DWTP sludge and evaluate its possible use as an addition for the cement industry. It describes the physical, chemical and micro-structural characterization of the sludge as well as the effect of its addition to Portland cements on the hydration, water demand, setting and mechanical strength of standardized mortars. Spray drying DWTP sludge generates a readily handled powdery material whose particle size is similar to those of Portland cement. The atomized sludge contains 12-14% organic matter (mainly fatty acids), while its main mineral constituents are muscovite, quartz, calcite, dolomite and seraphinite (or clinoclor). Its amorphous material content is 35%. The mortars were made with type CEM I Portland cement mixed with 10 to 30% atomized sludge exhibited lower mechanical strength than the control cement and a decline in slump. Setting was also altered in the blended cements with respect to the control.

Husillos Rodriguez, N., E-mail: nuriah@ietcc.csic.e [Instituto de Ciencias de la Construccion Eduardo Torroja (CSIC), Serrano Galvache 4, 28033 Madrid (Spain); Martinez Ramirez, S.; Blanco Varela, M.T. [Instituto de Ciencias de la Construccion Eduardo Torroja (CSIC), Serrano Galvache 4, 28033 Madrid (Spain); Guillem, M.; Puig, J. [Cementos Molins S.A., Crta. N-340, 2 al 38, E-08620 Sant Vicenc dels Horts, Barcelona (Spain); Larrotcha, E.; Flores, J. [Aguas de Barcelona S.A., Avenida Diagonal 211, 08018 Barcelona (Spain)

2010-05-15T23:59:59.000Z

365

Water Efficiency  

Energy Savers [EERE]

Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com Topics * Performance contracting analysis * Water industry terms * Federal reduction goals * Water balance * Water...

366

Nanotechnology for water purification  

Science Journals Connector (OSTI)

This paper provides an overview of the different water treatment devices that incorporate nanotechnology. New sensor technology combined with micro and nanofabrication technology is expected to lead to small, portable and highly accurate sensors to detect chemical and biochemical parameters in water. Potential opportunities and risks associated with this technology are also highlighted.

Farida Valli; Karishma Tijoriwala; Alpana Mahapatra

2010-01-01T23:59:59.000Z

367

Domestic wastewater treatment with membrane filtration—two years experience  

Science Journals Connector (OSTI)

This study tested domestic wastewater treatment membrane filtration without external cleaning in sustained long term operation. Domestic wastewater treatment plant monitoring was performed at the municipal wastewater treatment plant Devínska Nová Ves, Bratislava between February 2005 and July 2007. Two membrane modules were tested by immersion in the domestic wastewater treatment plant. The flat sheet membrane module was operated without external cleaning at a flux of 20–60 L/m2 h for 6 months. The hollow fiber membrane module was operated for 4 months without external cleaning with a flux of 20–45 L/m2 h. Parallel operation of flat sheet and hollow fiber membrane modules showed similar results in effluent water quality. Both membrane modules were able to effectively remove organic matter (as much as 91%) and more than 97% of NH4+?N. Nitrogen removal via denitrification was observed during the short periods with low oxygen concentration. Treated water contained suspended solids under measurable limits.

A. Blšt’áková; I. Bodík; L. Dan?ová; Z. Jakub?ová

2009-01-01T23:59:59.000Z

368

Energy and Water  

Science Journals Connector (OSTI)

...electric power plant cooling 180...change the balance be-tween...adequate water treatment are not even...pollution treatment, are carried...coal-conversion plants and mining...agri-cultural wastewater; the economic...cooling power plants. The consequences...ecosystem balance, human well-being...Cambridge, Mass., 1976...

John Harte; Mohamed El-Gasseir

1978-02-10T23:59:59.000Z

369

Energy-Water Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Emerging Issues and Challenges Emerging Issues and Challenges DOE/EIA 2010 Energy Conference Mike Hightower Sandia National Laboratories mmhight@sandia.gov, 505-844-5499 Energy and Water are ... Interdependent Water for Energy and Energy for Water Energy and power production require water: * Thermoelectric cooling * Hydropower * Energy minerals extraction/mining * Fuel Production (fossil fuels, H 2 , biofuels) * Emission control Water production, processing, distribution, and end-use require energy: * Pumping * Conveyance and Transport * Treatment * Use conditioning * Surface and Ground water Water Consumption by Sector U.S. Freshwater Consumption, 100 Bgal/day Livestock 3.3% Thermoelectric 3.3% Commercial 1.2% Domestic 7.1% Industrial 3.3% Mining 1.2% Irrigation 80.6% Energy uses 27 percent of all non-agricultural fresh water

370

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

371

In situ Groundwater Remediation Using Treatment Walls  

Science Journals Connector (OSTI)

Development of treatment wall technology for the clean up of contaminated ground-water resources has expanded in the past few...ex situ and other in situ ground-water remediation approaches is reduced operation a...

Radisav D. Vidic; Frederick G. Pohland

2002-01-01T23:59:59.000Z

372

Electrodialysis Treatment of Tannery Wastewater  

Science Journals Connector (OSTI)

The industrial processing of hides and skins consumes large volumes of water and generates waste that is highly polluted and causes environmental degradation. The conventional treatment of these effluents is not ...

Kátia Fernanda Streit; Marco A. S. Rodrigues…

2014-01-01T23:59:59.000Z

373

Water footprint of electric power generation : modeling its use and analyzing options for a water-scarce future  

E-Print Network [OSTI]

The interdependency between water and energy, sometimes called the water-energy nexus, is growing in importance as demand for both water and energy increases. Energy is required for water treatment and supply, while virtually ...

Delgado Martín, Anna

2012-01-01T23:59:59.000Z

374

Mycobacteria in Water and Loose Deposits of Drinking Water Distribution Systems in Finland  

Science Journals Connector (OSTI)

...acid-fast organisms in water supply, treatment, and...distribution systems. J. Am. Water Works Assoc. 75: 139-144...mycobacteria from indoor swimming pools in Finland. APMIS 107...mycobacteria in brook waters. Appl. Environ. Microbiol...

Eila Torvinen; Sini Suomalainen; Markku J. Lehtola; Ilkka T. Miettinen; Outi Zacheus; Lars Paulin; Marja-Leena Katila; Pertti J. Martikainen

2004-04-01T23:59:59.000Z

375

Flexible hybrid membrane treatment systems for tailored nutrient management: A new paradigm in urban wastewater treatment  

E-Print Network [OSTI]

in urban wastewater treatment D. Vuono a , J. Henkel a , J. Benecke a , T.Y. Cath a , T. Reid b , L: Sequencing batch reactor Membrane bioreactor Water reclamation Distributed wastewater treatment Tailored, decentralized, and satellite wastewater treatment systems into existing urban water infrastructure

376

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Water Heaters Heat Pump Water Heaters Standardized Templates for Reporting Test Results heatpumpwaterheaterv1.7.xlsx More Documents & Publications Tankless Gas Water...

377

Thermal treatment  

Science Journals Connector (OSTI)

Thermal treatment can be regarded as either a pre-treatment of waste prior to final disposal, or as a means of valorising waste by recovering energy. It includes both the burning of mixed MSW in municipal inciner...

Dr. P. White; Dr. M. Franke; P. Hindle

1995-01-01T23:59:59.000Z

378

Analysis and removal of assimilable organic carbon (AOC) from treated drinking water using a biological activated carbon filter system  

Science Journals Connector (OSTI)

Abstract This study is focused on reducing the concentration of assimilable organic carbon (AOC) in treated drinking water. Experiments were conducted to evaluate the efficiency of AOC removal by biological activated carbon filters (BACF) in a pilot-scale system. The results show that BACF reduces the total concentration of AOC. The concentration of AOC primarily indicates microorganism growth in a water supply network, and the amount of AOC in water is significantly reduced after BACF treatment. The predicted and measured values of AOC in output water treated by the BACF system show linear relationships, and their correlation coefficients are high. An AOC empirical equation was established by determining the relationship between water quality parameters such as total organic carbon, dissolved organic carbon, UV254, ammonia nitrogen, and total phosphorous. These findings may be relevant to conventional water treatment plants or to water distribution systems to provide treated drinking water with a high level of biological stability.

Jie-Chung Lou; Chih-Yuan Yang; Che-Jung Chang; Wei-Hsiang Chen; Wei-Bin Tseng; Jia-Yun Han

2014-01-01T23:59:59.000Z

379

Technology in water conservation  

E-Print Network [OSTI]

through water conservation, introduction of new technology does not automati- cally result in water savings. #27;e new evapotrans- piration-based irrigation controllers illustrate the point. A lawn?s need for water is dependent on the weather... conditions. #27;e new controllers link operation of the sprinkler system to weather conditions collected on site or through an ongoing feed from radio- or web-based data. If businesses and homeowners are over-watering lawns, the technology could result...

Finch, Dr. Calvin

2013-01-01T23:59:59.000Z

380

Limiting factors in ground water remediation  

Science Journals Connector (OSTI)

If one is charged with restoring a contaminated aquifer today, the procedure of pumping contaminated water to the surface for treatment and discharge is most often the state-of-practice technology. The perceived success of pump-and-treat technology can be misleading if the hydrology and contaminant characteristics at the site are not adequately understood. A failure to understand the processes controlling contaminant transport can result in extremely long pumping periods and, consequently, costly and inefficient remediation. Effects of tailing, sorption, and residual immiscible fluids on time required for pump-and-treat remediation of ground water are discussed.

Clinton W. Hall; Jeffrey A. Johnson

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

E-Print Network [OSTI]

M. Contamination of drinking-water by arsenic in Bangladesh:Arsenic Removal from Drinking Water, Dhaka, Bangladesh, Maytechnologies for drinking water treatment. Rev. Environ.

MATHIEU, JOHANNA L.

2010-01-01T23:59:59.000Z

382

A hybrid ED/RO process for TDS reduction of produced waters  

SciTech Connect (OSTI)

Large volumes of produced waters are generated from natural gas production. In the United States the prevailing management practice for produced waters is deep well injection, but this practice is costly. Therefore minimizing the need for deep well injection is desirable. A major treatment issue for produced waters is the reduction of total dissolved solids (TDS), which consist mostly of inorganic salts. A hybrid electrodialysis/reverse-osmosis (ED/RO) treatment process is being developed to concentrate the salts in produced waters and thereby reduce the volume of brine that needs to be managed for disposal. The desalted water can be used beneficially or discharged. In this study, laboratory feasibility experiments were conducted by using produced waters from multiple sites. A novel-membrane configuration approach to prevent fouling and scale formation was developed and demonstrated. Results of laboratory experiments and plans for field demonstration are discussed.

Tsai, S.P.; Datta, R.; Frank, J.R. [and others

1995-12-31T23:59:59.000Z

383

Prevention & Treatment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prevention and Treatment Prevention and Treatment These steps may help prevent the spread of respiratory illnesses such as the flu: Stay Healthy Vaccination Antivirals Stay Informed Stay Healthy Cover your nose and mouth with a tissue when you cough or sneeze-throw the tissue away immediately after you use it. Wash your hands often with soap and water, especially after you cough or sneeze. If you are not near water, use an alcohol-based (60-95%) hand cleaner. Avoid close contact with people who are sick. When you are sick, keep your distance from others to protect them from getting sick too. If you get the flu, stay home from work, school, and social gatherings. This will help prevent others from catching your illness. Try not to touch your eyes, nose, or mouth. Germs often spread this way.

384

South Dakota Water Research Institute Annual Technical Report  

E-Print Network [OSTI]

with mining, extraction, and processing of uranium (U) for nuclear fuel and weapons have generated substantial quality, drinking water quality, bio treatment for the removal of uranium from water, vegetative treatment

385

GENERAL SUPERSTRUCTURE AND GLOBAL OPTIMIZATION FOR THE DESIGN OF INTEGRATED PROCESS WATER NETWORKS  

E-Print Network [OSTI]

of multiple sources of water, water-using processes, wastewater treatment and pre-treatment operations water re-use, water regeneration and re-use, water regeneration recycling, local recycling around, etc. These processes in turn generate wastewater, which is usually processed in treatment units before

Grossmann, Ignacio E.

386

Chapter 1 - Industrial Wastewater Treatment, Recycling, and Reuse: An Overview  

Science Journals Connector (OSTI)

Abstract Water availability; usage, treatment, and discharge of used water; and possible ways of recycling and reusing this used water are briefly discussed here. Issues pertaining to industrial wastewaters, sources of generation, characterization of wastewaters, and various methodologies of wastewater treatment have been reviewed along with economic perspectives of water management. Recent developments in the area of industrial wastewater treatment, recycling, and reuse are also briefly outlined here.

Vivek V. Ranade; Vinay M. Bhandari

2014-01-01T23:59:59.000Z

387

Onsite Wastewater Treatment Systems: Constructed Wetlands  

E-Print Network [OSTI]

Two-compartment septic tank Soil absorption field Constructed wetland Onsite wastewater treatment systems Constructed wetlands Natural wetlands generally have visible water in the system. However, for those at homes, the water flows beneath... the media surface, which limits contact between residents and wastewater. The constructed wetland waste- water treatment system has three main components that work together to purify wastewater: ? A septic tank, which is an en- closed watertight...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

388

Developer Installed Treatment Plants  

E-Print Network [OSTI]

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

389

Emerging chemical contaminants in water and wastewater  

Science Journals Connector (OSTI)

...contaminants in water and wastewater' compiled and edited by Michael...contaminants in water and wastewater Michael R. Templeton 1...activated sludge process in wastewater treatment, whereby the pollutants...the impact on agricultural recycling. Disinfection by-products...

2009-01-01T23:59:59.000Z

390

Course Information and Syllabus Water Policy  

E-Print Network [OSTI]

9 Water Quality, Wastewater Treatment, and Water Recycling November 11 UCSB HOLIDAY November 16 Process: Part 3 (Federal and International) October 21 FIELD SESSION: Tour of Goleta Wastewater Plant

California at Santa Barbara, University of

391

E-Print Network 3.0 - as recycling process Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy 98 Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling Summary: is limited by the extent of treatment process that wastewater undergoes...

392

E-Print Network 3.0 - area tucson arizona Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power and Growth in Southern Arizona Summary: 12;Water Distribution 12;Wastewater Treatment Weighted Average for three major Tucson area... : Arizona Water Institute Data...

393

Pollution prevention and water conservation in metals finishing operations  

SciTech Connect (OSTI)

Attleboro, Massachusetts is the headquarters of the Materials and Controls Group of Texas Instruments Incorporated (Texas Instruments). In support of their activities, Texas Instruments operates a number of metal finishing and electroplating processes. The water supply and the wastewater treatment requirements are supplied throughout the facility from a central location. Water supply quality requirements varies with each manufacturing operation. As a result, manufacturing operations are classified as either high level or a lower water quality. The facility has two methods of wastewater treatment and disposal. The first method involves hydroxide and sulfide metals precipitation prior to discharge to a surface water. The second method involves metals precipitation, filtration, and discharge via sewer to the Attleboro WTF. The facility is limited to a maximum wastewater discharge of 460,000 gallons per day to surface water under the existing National Pollution Discharge Elimination System (NPDES) permit. There is also a hydraulic flow restriction on pretreated wastewater that is discharged to the Attleboro WTF. Both of these restrictions combined with increased production could cause the facility to reach the treatment capacity. The net effect is that wastewater discharge problems are becoming restrictive to the company`s growth. This paper reviews Texas Instruments efforts to overcome these restrictions through pollution prevention and reuse practices rather than expansion of end of pipe treatment methods.

O`Shaughnessy, J.; Clark, W. [Worcester Polytechnic Inst., MA (United States); Lizotte, R.P. Jr.; Mikutel, D. [Texas Instruments Inc., Attleboro, MA (United States)

1996-11-01T23:59:59.000Z

394

Solving Water Quality Problems in the Home  

E-Print Network [OSTI]

If your drinking water comes from a private water well, there are certain procedures you can follow to make sure the water is safe. This publication explains how to get your water tested and, if treatment is necessary, to select the correct...

Dozier, Monty; McFarland, Mark L.

2004-02-20T23:59:59.000Z

395

Application of Artificially Immobilized Microorganisms to Nitrate Removal from Drinking Water  

E-Print Network [OSTI]

to Nitrate Removal from Drinking Water By Sean X. Liu andFor biological treatment of drinking water, several crucialalginate gel beads to drinking water treatment has proved to

Liu, Sean X; Hermanowicz, Slawomir W

1997-01-01T23:59:59.000Z

396

Federal Energy and Water Management Awards 2014  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and maintenance savings and avoided water treatment costs, and improved recreation and fish and wildlife conditions due to higher reservoir levels. Oklahoma-Texas Area Office...

397

Federal Energy and Water Management Awards 2014  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Center. After investigating and discovering his facility was drastically overpaying for water treatment, Mr. Hernbloom convinced management to invest 1,500 for a one-time purchase...

398

P5-19-04: Results of a Randomized Phase II Study Demonstrate Benefit of Platinum-Based Regimen in the First-Line Treatment of Triple Negative Breast Cancer (TNBC).  

Science Journals Connector (OSTI)

...between treatment arms with the exception of Grade 3 hand-foot skin reaction/syndrome (HFSR/HFS) (44% in SOR+CAP...endpoint is PFS. Assuming a 1-sided alpha of 0.005 and a power of 98.9%, the sample size is estimated at 519 patients...

Y Fan; BH Xu; P Yuan; JY Wang; F Ma; XY Ding; P Zhang; Q Li; and RG Cai

2011-12-15T23:59:59.000Z

399

Water Electrolysis  

Science Journals Connector (OSTI)

In this chapter, water electrolysis technology and its applications for nuclear hydrogen ... of the chapter, a general classification of water electrolysis systems is given, the fundamentals of water electrolysis

Greg F. Naterer; Ibrahim Dincer…

2013-01-01T23:59:59.000Z

400

Water Intoxication  

E-Print Network [OSTI]

2008, May 14). Too much water raises seizure risk in babies.id=4844 9. Schoenly, Lorry. “Water Intoxication and Inmates:article/246650- overview>. 13. Water intoxication alert. (

Lingampalli, Nithya

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

New York State Water Resources Institute Annual Technical Report  

E-Print Network [OSTI]

including water supply and wastewater treatment facilities, distribution networks, decentralized treatment to treatment at point of delivery. Projects were evaluated by a panel consisting of representatives of the US

402

Innovative Water Management Technology to Reduce Environment Impacts of Produced Water  

SciTech Connect (OSTI)

Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or ?footprint? of a full-size CWTS for a given inflow rate of produced water.

Castle, James; Rodgers, John; Alley, Bethany; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael

2013-05-15T23:59:59.000Z

403

Innovative Water Management Technology to Reduce Environmental Impacts of Produced Water  

SciTech Connect (OSTI)

Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or ?footprint? of a full-size CWTS for a given inflow rate of produced water.

Castle, James; Rodgers, John; Alley, Bethany; Beebe, Alex; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael

2013-05-15T23:59:59.000Z

404

Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results & Policy Implications Title Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results & Policy Implications Publication Type Report Year of Publication 2009 Authors Mathieu, Johanna L., Ashok J. Gadgil, Kristin Kowolik, and Susan E. Addy Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract of arsenic from drinking water in Bangladesh. During fieldwork in four sub-districts of the country, ARUBA reduced arsenic levels ranging from 200 to 900 ppb to below the Bangladesh standard of 50 ppb. The technology is cost-effective because the substrate-bottom ash from coal fired power plants-is a waste material readily available in South Asia. In comparison to similar technologies, ARUBA uses less media for arsenic removal due to its high surface area to volume ratio. Hence, less waste is produced. A number of experiments were conducted in Bangladesh to determine the effectiveness of various water treatment protocols. It was found that (1) ARUBA removes more thanhalf of the arsenic from water within five minutes of treatment, (2) ARUBA, that has settled at the bottom of a treatment vessel, continues to remove arsenic for 2-3 days, (3) ARUBA's arsenic removal efficiency can be improved through sequential partial dosing (adding a given amount of ARUBA in fractions versus all at once), and (4) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic levels ten times lower than treating water directly out of the well. Our findings imply a number of tradeoffs between ARUBA's effective arsenic removal capacity, treatment system costs, and waste output. These tradeoffs, some a function of arsenic-related policies in Bangladesh (e.g., waste disposal regulations), must be considered when designing anarsenic removal system. We propose that the most attractive option is to use ARUBA in communityscale water treatment centers, installed as public-private partnerships, in Bangladeshi villages

405

Water Current University of Nebraska Water Center/Environmental Programs  

E-Print Network [OSTI]

, nonpoint source issues, recycling, composting, remediation, hazardous waste and many other waste- and water Ground Water," for the Nebraska Depart- ment of Agriculture. The results of this study will be made avaWater Current University of Nebraska Water Center/Environmental Programs wASTEmanagement problem

Nebraska-Lincoln, University of

406

Chapter 3 - Principles of Water Purification  

Science Journals Connector (OSTI)

Abstract This chapter describes the principles of water purification. An important point to observe is the difference between purifying drinking water and purifying water optimal for life of organisms. In the former case, it is important that organisms, prokaryotes and protists, are effectively killed in the water treatment. In the latter instance, the purified water must allow all organisms to live. Chlorination and other treatments that are used to purify drinking water are toxic to all organisms. Water treatment first mechanically removes large objects, whereafter much of the organic material is biodegraded via digestion by anaerobic and aerobic bacteria. When wastes are biodegraded, production of biogas and heat occurs. A final step in wastewater treatment involves the removal of certain compounds, such as phosphorus by precipitation as, for example, insoluble iron phosphate, and of some metals by hyperaccumulating plants.

Mikko Nikinmaa

2014-01-01T23:59:59.000Z

407

Results of multiyear studies on the dynamics of pollution of lake Baikal by polycyclic aromatic hydrocarbons in the area waste water discharge from the Baikal Pulp and Paper Plant  

Science Journals Connector (OSTI)

New data on the concentration and spatial distribution of the benz(a)pyrene and polycyclic aromatic hydrocarbons in bottom sediments in the testing area ... Baikal Pulp and Paper Plant (BPPP) waste water discharg...

A. M. Nikonorov; A. A. Matveev; S. A. Reznikov; V. S. Arakelyan…

2012-03-01T23:59:59.000Z

408

Consulting, Construction and Operating Results of a Full-Scale Biotechnological Plant for the Oxidation of Iron and Manganese with Simultaneous Elimination of Volatile Chlorinated Hydrocarbons from Ground Water  

Science Journals Connector (OSTI)

The ground water in the south part of Hannover, known ... Südstadt”, is partially polluted with volatile chlorinated hydrocarbons (C1HC). This contamination originated from a ... the factory stands as well as the...

V. Quentmeier; M. Saake

1990-01-01T23:59:59.000Z

409

E-Print Network 3.0 - air handling systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... , water treatment equipment,...

410

HIV and Its Treatment Is My Treatment Regimen Working? Is My Treatment Regimen Working?  

E-Print Network [OSTI]

viral load, it's important to closely follow your treatment regimen. Poor treatment adherence can also blood tests to monitor your HIV treatment: CD4 count and viral load test. The results of the tests need a CD4 count only once every 6 to 12 months. What is a viral load test? Preventing HIV from

Levin, Judith G.

411

E-Print Network 3.0 - atmospheric plasma treatment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treatment Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric plasma treatment...

412

E-Print Network 3.0 - atmospheric plasma treatments Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treatments Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric plasma treatments...

413

FEBRUARY 2013 WATER technical features  

E-Print Network [OSTI]

produced and distributed drinking water while sewers collected wastewater for treatment at remote plants, solutions to wastewater infrastructure need to be effective in protecting public health and preserving water the potential to achieve these goals in rural areas, peri- urban developments, small towns and urban centres

414

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants  

SciTech Connect (OSTI)

Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 â?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

2012-04-30T23:59:59.000Z

415

Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework  

SciTech Connect (OSTI)

This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

Schroeder, Jenna N.

2014-06-10T23:59:59.000Z

416

Marketing water  

E-Print Network [OSTI]

management, water conservation programs Story by Kathy Wythe tx H2O | pg. 17 public information programs and materials that increase awareness about regional water issues. The company recently opened the TecH2O, a water resource learning center...tx H2O | pg. 16 W ith rapid population growth and the memory of the worst drought in 50 years, cities and groups are promoting programs that educate their constituents about water quality, water conservation, and landscape management. Many...

Wythe, Kathy

2008-01-01T23:59:59.000Z

417

The effects of wavelength, metals, and reactive oxygen species on the sunlight inactivation of microorganisms: observations and applications to the solar disinfection of drinking water  

E-Print Network [OSTI]

on Solar Water Disinfection, Massachusetts Institute ofSolar Disinfection For Point of Use Water Treatment in Haiti, Massachusetts

Fisher, Michael Benjamin

2011-01-01T23:59:59.000Z

418

E-Print Network 3.0 - activities improved water Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 5 > >> 1 Water Resources Water Quality and Water Treatment Summary: to the states for rural water supply and sanitation activities. Ministry of Agriculture (MoA) is involved......

419

USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES  

SciTech Connect (OSTI)

The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 1 presents a general assessment of produced water generation in the San Juan Basin in Four Corners Area of New Mexico. Oil and gas production, produced water handling and disposal, and produced water quantities and chemistry are discussed. Legislative efforts to enable the use of this water at SJGS are also described.

Michael N. DiFilippo

2004-08-01T23:59:59.000Z

420

Embedded NICT* tools and traceability to control phytochemical treatments  

E-Print Network [OSTI]

Embedded NICT* tools and traceability to control phytochemical treatments Vincent de RUDNICKI the possible tracks allowing the management of news methods of treatment. 1. Introduction Water pollution how environmental pollution could be mitigated through: the optimisation of pesticide application

Boyer, Edmond

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The effect of sodium chloride in the irrigation water on the growth of selected ornamental plants  

E-Print Network [OSTI]

the influence of high salinity on the growth and water content of the plants. After a 4-week preconditioning period, the salts were applied in a complete nutrient solution via a trickle irrigation system. The saline treatments were continued for 6 weeks... ABSTRACT Page ACKNOWLEDGMENTS TABLE OF CONTENTS LIST OF TABLES vi V11 Chapter I. INTRODUCTION II. LITERATURE REVIEW III. MATERIALS AND METHODS 12 Plant Preparation Salt Treatments Harvesting the Plants Statistical Analysis IV. RESULTS...

Apps, Gary Edward

2012-06-07T23:59:59.000Z

422

Effects of different irrigation regimes on yield and water use efficiency of cucumber crop  

Science Journals Connector (OSTI)

Abstract This study was conducted to investigate the effects of four irrigation regimes on yield, growth parameters and water use efficiency of cucumber crop under greenhouse cultivation. A field experiment was carried out at the experimental farm of Palestine Technical University Kadoorie, located at Tulkarm, Palestine. Cucumber seedlings were planted on 14 February 2012 in greenhouse at a rate of 1500 seedlings per 1000 square meters. Four irrigation regimes were examined during the growing period as follows: farmer irrigation (FI), tensiometer based irrigation (TI), irrigation at full \\{ETc\\} data (ETc), and irrigation at 70% of \\{ETc\\} (70% ETc). Plant data were collected during the growing period for evaluating the total yield, plant height, number of harvested fruits per plant, weight of harvested fruits per plant, dry matter of above and under ground parts. The results indicated that the 70% \\{ETc\\} treatment obtained the highest crop yield followed by ETc, FI, and TI treatments, respectively. On average, cucumber yield under 70% \\{ETc\\} treatment was 24%, 6% and 4% higher than that under TI, FI and \\{ETc\\} treatments, respectively. At the end of harvesting stage plant height, above-ground dry matter obtained by 70% \\{ETc\\} treatment was higher than the other treatments. The smallest plant height and dry matter was obtained under TI treatment. Results also indicated that, when using scheduled irrigation methods large amount of water were saved and found to be 139, 104 and 26 mm for TI, 70% \\{ETc\\} and \\{ETc\\} treatments, respectively, compared to FI treatment. The highest water use efficiency (WUE) was obtained under 70% \\{ETc\\} treatment followed by ETc, TI and FI treatments, respectively.

M.H. Rahil; A. Qanadillo

2015-01-01T23:59:59.000Z

423

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmentally-Safe Control of Zebra Mussel Fouling - Environmentally-Safe Control of Zebra Mussel Fouling - New York State Education Department Coal-fired power plants within North America need an effective, economical, and non-polluting technique for managing infestations of zebra mussels within their facilities, particularly in cooling water intake systems. Unfortunately, due to a lack of options, many facilities have relied on the use of broad-spectrum, chemical biocides for control of these freshwater, macro-fouling mussels. Biocide treatments, such as continuous chlorination for three weeks, are widely regarded as environmentally unacceptable. Chlorine, for example, can combine with organic compounds in water resulting in the formation of trihalomethanes, dioxins, and other potentially carcinogenic substances. Because of this, there is growing concern within the power generation industry that such broad-spectrum biocides will be banned by individual states and/or the U.S. Environmental Protection Agency. This would result in a crisis situation for the electric utility industry. Even if such an outright ban does not occur, the reduction in the use of such biocides is generally viewed by coal-fired and other power generating industries as environmentally prudent and desirable.

424

Tankless Gas Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tankless Gas Water Heaters Tankless Gas Water Heaters Standardized Templates for Reporting Test Results tanklessgaswaterheaterv12.xlsx More Documents & Publications Heat Pump...

425

Storage Gas Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Gas Water Heaters Storage Gas Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance...

426

Use of Produced Water in Recirculating Cooling Systems at Power Generating Facilities  

SciTech Connect (OSTI)

The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. This deliverable describes possible test configurations for produced water demonstration projects at SJGS. The ability to host demonstration projects would enable the testing and advancement of promising produced water treatment technologies. Testing is described for two scenarios: Scenario 1--PNM builds a produced water treatment system at SJGS and incorporates planned and future demonstration projects into the design of the system. Scenario 2--PNM forestalls or decides not to install a produced water treatment system and would either conduct limited testing at SJGS (produced water would have to be delivered by tanker trucked) or at a salt water disposal facility (SWD). Each scenario would accommodate demonstration projects differently and these differences are discussed in this deliverable. PNM will host a demonstration test of water-conserving cooling technology--Wet Surface Air Cooling (WSAC) using cooling tower blowdown from the existing SJGS Unit 3 tower--during the summer months of 2005. If successful, there may be follow-on testing using produced water. WSAC is discussed in this deliverable. Recall that Deliverable 4, Emerging Technology Testing, describes the pilot testing conducted at a salt water disposal facility (SWD) by the CeraMem Corporation. This filtration technology could be a candidate for future demonstration testing and is also discussed in this deliverable.

Kent Zammit; Michael N. DiFilippo

2005-07-01T23:59:59.000Z

427

Dawdon Mine Water Heat Pump Trial  

E-Print Network [OSTI]

14-Dec-12 Dawdon Mine Water Heat Pump Trial #12;14 December 2012 2 Potential for Mine Water sourced heating Dawdon heat pump trial A demonstration project Contents #12;Friday, 14 December 2012 3 The UK salinity High Iron (removed by lime treatment) Offices , 8 rooms #12;Dawdon heat pump Warm mine water

Oak Ridge National Laboratory

428

WATER REUSE AN INTEGRAL ASPECT OF SUSTAINABILITY  

E-Print Network [OSTI]

for life and a healthy Planet ­ The most important issue is the safety of water! ­ Global climate change the water and wastewater industry ­ My guess - that will be hard to reduce significantly ­ We must try in water treatment (in it's broadest sense) based on free radical chemistry · Series of coupled

Keller, Arturo A.

429

Water Resources Research Center Annual Technical Report  

E-Print Network [OSTI]

Quality, Microbial Methods · Wastewater Treatment Technology · Wastewater Reuse/Disposal · Watershed. Subjects cover, in general, water resources sustainability, climate and climate change influence on water/Non-Point/Runoff · Ocean Outfall Biomonitoring · General Marine Water Quality · Economics/Policy/Law · Climate

430

The formation of volcanic centers at the Colorado Plateau as a result of the passage of aqueous fluid through the oceanic lithosphere and the subcontinental mantle: New implications for the planetary water cycle in the western United States  

Science Journals Connector (OSTI)

We provide new petrological evidence for the strong influence of water on the formation of the oceanic lithospheric mantle, the subcontinental mantle above, and the continental lithosphere. Our analysis throws new light on the hypothesis that new continental lithosphere was formed by the passage of silicate-rich aqueous fluid through the sub-continental mantle. In order to investigate this hypothesis, we analyzed a representative collection of lherzolite and harzburgite xenoliths from the sample volcano known as “The Thumb”, located in the center of the Colorado Plateau, western United States. The studied sample collection exhibits multi-stage water enrichment processes along point, line and planar defect structures in nominally anhydrous minerals and the subsequent formation of the serpentine polymorph antigorite along grain boundaries and in totally embedded annealed cracks. Planar defect structures act like monomineralic and interphase grain boundaries in the oceanic lithosphere and the subcontinental mantle beneath the North American plate, which was hydrated by the ancient oceanic Farallon plate during the Cenozoic and Mesozoic eras. We used microspectroscopical, petrological, and seismological techniques to confirm multi-stage hydration from a depth of ?150 km to just below the Moho depth. High-resolution mapping of the water distribution over homogeneous areas and fully embedded point, line and planar defects in olivine crystals of lherzolitic and harzburgitic origin by synchrotron infrared microspectroscopy enabled us to resolve local wet spots and thus reconstruct the hydration process occurring at a depth of ?150 km (T ? 1225 °C). These lherzolites originated from the middle part of the Farallon mantle slab; they were released during the break up of the Farallon mantle slab, caused by the instability of the dipping slab. The background hydration levels in homogeneous olivines reached ?138 ppm wt H2O, and the water concentration at the planar defects could reach up to ?1000 ppm wt H2O. However, the formation of antigorite in grain boundaries was found to be the primary hydration mechanism for harzburgitic samples originating from the subcontinental mantle (for hydration, T ? 600 °C). Additionally, the formation of antigorite in lherzolites could be found in annealed cracks. From these observations, we conclude that hydration induces multi-stage water enrichment of the mantle wedge by a process that is dominated by the growth and movement of ubiquitous cracks, which acts as planar defects. Cracks in the mantle seem to be the an important feature in both the water cycle of the subduction zone and the formation of the continental lithosphere.

Holger Sommer; Klaus Regenauer-Lieb; Biliana Gasharova; Haemyeong Jung

2012-01-01T23:59:59.000Z

431

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

SciTech Connect (OSTI)

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z

432

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

In a drinking water treatment plant, the motors devoted toSmall Water Supply Facilities: A Profile of Motor Energydrinking water systems, installing energy-efficient motors

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

433

Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report  

SciTech Connect (OSTI)

Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

Overly, P.; Tawiah, K.

1981-12-01T23:59:59.000Z

434

Temporary Waters  

Science Journals Connector (OSTI)

Temporary waters are lakes, ponds, streams, seeps, microhabitats, and other areas that hold water periodically and then dry. They occur across the globe, at all latitudes, and in all biomes, wherever water can collect long enough for aquatic life to develop. These waters are numerous, mostly small, and easily studied. Their biological communities are diverse, have much among-site variation, often include endemic species, and differ from those in permanent waters, contributing to regional biodiversity. Organisms survive through species-specific behavioral, physiological, and life-history adaptations. Community composition and structure change in response to environmental variations. Temporary waters are highly productive and their food webs are relatively simple. For all of these reasons, temporary waters lend themselves to surveys and experimental manipulations designed to test hypotheses about biological adaptation, population regulation, evolutionary processes, community composition and structure, and ecosystem functioning. In many parts of the world, most temporary waters have been lost. The conservation and restoration of vulnerable temporary waters is a major thrust of applied ecology. Also important are applications of ecological understanding to the control of disease vectors, especially pathogen-transmitting mosquitoes, from temporary water habitats. This article describes temporary waters, examines their biota and adaptations, and summarizes key questions about their ecology.

E.A. Colburn

2008-01-01T23:59:59.000Z

435

Report on Produced Water  

Office of Scientific and Technical Information (OSTI)

of the pond, as well as the quality of the produced water. In semiarid regions, hot, dry air moving from a land surface will result in high evaporation rates for smaller ponds. As...

436

Water Bugs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bugs Bugs Nature Bulletin No. 221-A March 12, 1966 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation WATER BUGS It is fascinating to lie in a boat or on a log at the edge of the water and watch the drama that unfolds among the small water animals. Among the star performers in small streams and ponds are the Water Bugs. These are aquatic members of that large group of insects called the "true bugs", most of which live on land. Moreover, unlike many other types of water insects, they do not have gills but get their oxygen directly from the air. Those that do go beneath the surface usually carry an oxygen supply with them in the form of a shiny glistening sheath of air imprisoned among a covering of fine waterproof hairs. The common water insect known to small boys at the "Whirligig Bug" is not a water bug but a beetle.

437

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse  

Broader source: Energy.gov [DOE]

Demonstrate an advanced water treatment and reuse process in a single hybrid system that combines forward osmosis with membrane distillation to achieve greater efficiency and increased water reuse.

438

UNL WATER CENTER WATER CURRENT  

E-Print Network [OSTI]

INSIDE UNL WATER CENTER WATER CURRENT PROTECTING NEBRASKAíS WATER RESOURCES THROUGH RESEARCH with a vision, thereís an untapped market using resources right under our feet,î the University of Nebraska outdoors in India, Bangladesh, China and Viet- nam. Thousands of them have been grown to harvest

Nebraska-Lincoln, University of

440

Thermal Sludge Treatment to Decrease Sludge Volume and Recycle the Sludge to New Products  

Science Journals Connector (OSTI)

Pure water is one of our most important assets today, and that is why we place increasing demands on water treatment. The purer the water we wish to return to nature — from whom we borrowed it — the more impuriti...

Ingemar Karlsson; Jonas Göransson…

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

water pipeline gallery  

Science Journals Connector (OSTI)

water pipeline gallery, water pipeline drift; water pipeline tunnel (US) ? Wasserleitungsrohrstollen m

2014-08-01T23:59:59.000Z

442

Onsite Wastewater Treatment Systems: Graywater Safety  

E-Print Network [OSTI]

irrigation and decr,ease the amount of wastewater entering sewers or onsite wastewater treatment systems. Onsite wastewater treatment systems However, homeowners who irrigate their lawns with graywater need to understand the risks and safety issues.... Residential wastewater can be classified as either blackwater (sew- age containing fecal matter or food wastes) or graywater. If graywater is collected separately from blackwater, it can be dispersed as irrigation water with less treatment than...

Melton, Rebecca; Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

443

Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation  

SciTech Connect (OSTI)

Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous studies of mine water and power plant cooling. Visual basic software was used to create general information/evaluation modules for a range of power plant water needs that were tested/verified against the Beech Hollow project. The program allows for consideration of blending mine water as needed as well as considering potential thermal and environmental benefits that can be derived from using constant temperature mine water. Users input mine water flow, quality, distance to source, elevations to determine collection, transport and treatment system design criteria. The program also evaluates low flow volumes and sustainable yields for various sources. All modules have been integrated into a seamless user friendly computer design aid and user's manual for evaluating the capital and operating costs of mine water use. The framework will facilitate the use of mine water for thermoelectric generation, reduce demand on freshwater resources and result in environmental benefits from reduced emissions and abated mine discharges.

None

2010-03-01T23:59:59.000Z

444

Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water  

E-Print Network [OSTI]

Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

Chen, Tsuhan

445

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of Pulsed Electrical Fields for Advanced Cooling in Coal-Fired Power Plants Application of Pulsed Electrical Fields for Advanced Cooling in Coal-Fired Power Plants Drexel University is conducting research with the overall objective of developing technologies to reduce freshwater consumption at coal-fired power plants. The goal of this research is to develop a scale-prevention technology based on a novel filtration method and an integrated system of physical water treatment in an effort to reduce the amount of water needed for cooling tower blowdown. This objective is being pursued under two coordinated, National Energy Technology Laboratory sponsored research and development projects. In both projects, pulsed electrical fields are employed to promote the precipitation and removal of mineral deposits from power plant cooling water, thereby allowing the water to be recirculated for longer periods of time before fresh makeup water has to be introduced into the cooling water system.

446

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Water Management Power Plant Water Management A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Impaired Water as Cooling Water in Coal-Based Power Plants – Nalco Company Example of Pipe Scaling The overall objective of this project, conducted by Nalco Company in partnership with Argonne National Laboratory, is to develop advanced-scale control technologies to enable coal-based power plants to use impaired water in recirculating cooling systems. The use of impaired water is currently challenged technically and economically due to additional physical and chemical treatment requirements to address scaling, corrosion, and biofouling. Nalco's research focuses on methods to economically manage scaling issues (see Figure 1). The overall approach uses synergistic

447

3, 126, 2006 Virtual water highway  

E-Print Network [OSTI]

Hydrology and Earth System Sciences Virtual water highway: water use efficiency in global food trade H. Yang the efficiency of the5 resource use embodied in the global virtual water trade from the perspectives of ex virtual water. The results suggest efficiency gains in the global food trade in terms of water resource

Paris-Sud XI, Université de

448

In-tank recirculating arsenic treatment system  

DOE Patents [OSTI]

A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

2009-04-07T23:59:59.000Z

449

Toxicity of stormwater treatment pond sediments to Hyalella azteca (Amphipoda)  

SciTech Connect (OSTI)

Stormwater runoff from highways and commercial, industrial, and residential areas contains a wide spectrum of pollutants including heavy metals, petroleum hydrocarbons, pesticides, herbicides, sediment, and nutrients. Recent efforts to reduce the impacts of urbanization on natural wetlands and other receiving waters have included the construction of stormwater treatment ponds and wetlands. These systems provide flood control and improve water quality through settling, adsorption, and precipitation of pollutants removing up to 95% of metals, nutrients and sediment before discharged from the site. The design of stormwater ponds to provide habitat for aquatic wildlife has prompted concern over the potential exposure of aquatic organisms to these contaminants. Aquatic sediments concentrate a wide array of organic and inorganic pollutants. Although water quality criteria may not be exceeded, organisms living in or near the sediments may be adversely affected. The availability of chemicals in sediments depends strongly on the prevailing chemistry. Physical conditions of the sediment and water quality characteristics including pH, redox potential and hardness, also influence contaminant availability. Studies have shown that heavy metals and nutrients carried by runoff concentrate in the sediment of stormwater ponds. Although several investigations have assessed the toxicity of sediments in streams receiving urban runoff, there have been few studies of the toxicity of stormwater treatment pond sediments to aquatic organisms. This study was part of a large-scale assessment of the contaminant hazards of stormwater treatment ponds. The objective of this study was to evaluate the toxicity of sediments and water from stormwater ponds over a 10-d period to juvenile Hyalella azteca. Bioassay results were related to concentrations of acid volatile sulfides and metals of the tested sediments. 17 refs., 4 tabs.

Karouna-Renier, N.K. [Patuxent Wildlife Research Center, Laurel, MD (United States)] [Patuxent Wildlife Research Center, Laurel, MD (United States); [Univ. of Maryland, Baltimore, MD (United States); Sparling, D.W. [Patuxent Wildlife Research Center, Laurel, MD (United States)] [Patuxent Wildlife Research Center, Laurel, MD (United States)

1997-04-01T23:59:59.000Z

450

Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system  

Science Journals Connector (OSTI)

This paper investigated the variation of assimilable organic carbon (AOC) concentrations in water from several typical water treatment plants and distribution systems in a northern city of China. It is concluded from this study that: (1) The AOC in most of the product water of the studied water treatment plants and the water from the associated distribution systems could not meet the biostability criteria of 50–100 ?g/L. (2) Only 4% of the measured AOC concentrations were less than 100 ?g/L. However, about half of the measured AOC values were less than 200 ?g/L. (3) Better source water quality resulted in lower AOC concentrations. (4) The variation of AOC concentrations in distribution systems was affected by chlorine oxidation and bacterial activity: the former resulted in an increase of AOC value while the latter led to a reduction in AOC. (5) The variation of AOC concentration followed different patterns in different distribution systems or different seasons due to their respective operational characteristics. (6) Less than 30% of AOC could be removed by a conventional treatment process, whereas 30–60% with a maximum of 50–60% could be removed by granular activated carbon (GAC). (7) The observation via scanning electron microscope (SEM) on distribution pipe tubercle samples demonstrated that the pipe inner wall was not smooth and bacteria multiplied in the crevice as well as in the interior wall of distribution pipes.

W Liu; H Wu; Z Wang; S.L Ong; J.Y Hu; W.J Ng

2002-01-01T23:59:59.000Z

451

Reusing Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reusing Water Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into the environment. April 12, 2012 Water from cooling the supercomputer is release to maintain a healthy wetland. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We reuse the same water up to six times before releasing it back into the environment cleaner than when it was pumped. How many times does LANL reuse water? Wastewater is generated from some of the facilities responsible for the Lab's biggest missions, such as the cooling towers of the Los Alamos Neutron Science Center, one of the Lab's premier science research

452

North Central Texas Water Quality Final Report  

E-Print Network [OSTI]

source pollution sources in the watershed. The District has already initiated efforts to address the water quality issues, developing a water quality monitoring program to collect data for these reservoirs and their associated watersheds. The District... has collected water quality data for nearly 40 parameters since 1989. Effluent discharges from the wastewater treatment plans and nonpoint source pollution from urban and agricultural runoff are reported as the major causes for water quality...

Berthold, T. Allen

453

Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Management This department applies multi-disciplinary science and technology-based modeling to assess complex environmental systems. It integrates ecology, anthropology, and...

454

Unique Approaches to Water Resources  

E-Print Network [OSTI]

as a result of free trade, atmospheric transport of trace pollutants, and urbanization. Available waterUnique Approaches to Water Resources Education in Florida Watershed Journal Executive Committee Photos courtesy of Dr. Frederick Bloetscher, PE W e are a diverse community of water profes- sionals. We

Central Florida, University of

455

Water vapour, sonoluminescence and sonochemistry  

Science Journals Connector (OSTI)

...air bubble, the nitrogen reacts with water vapour, producing...is soon devoid of nitrogen due to the ease...present results on water-vapour chemistry...than a monatomic gas and water. Finally...drastically change the gas solubility. The change in...

2000-01-01T23:59:59.000Z

456

PRE-INVESTIGATION WATER ELECTROLYSIS  

E-Print Network [OSTI]

PRE-INVESTIGATION OF WATER ELECTROLYSIS PSO-F&U 2006-1-6287 Draft 04-02-2008 #12;2 Foreword This report is the result of an investigation of water electrolysis for hydrogen production in the energy in Denmark for in relation to water electrolysis. The report is structured as follows After an introduction

457

Federal Energy Management Program: Water Efficiency Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics Basics Graphic of the eTraining logo Training Available Managing Water Assessment in Federal Facilities: Learn how to manage the Water Assessment process in Federal facilities by taking this FEMP eTraining course. Although two-thirds of the Earth's surface is water, less than one-half of one percent of that water is currently available for our use. As the U.S. population increases, so does our water use, making water resources increasingly scarce. Many regions feel the strain. The Federal Government uses an estimated 148 to 165 billion gallons of potable water annually. This is equal to the annual water use of a state the size of New Jersey or almost 8 million people1. This is, in part, because water requires significant energy input for treatment, pumping, heating, and process uses. Water is integral to the cooling of power plants that provide energy to Federal facilities.

458

Water Efficiency Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Basics Basics Water Efficiency Basics October 7, 2013 - 2:38pm Addthis Training Available Graphic of the eTraining logo Managing Water Assessment in Federal Facilities: Learn how to manage the Water Assessment process in Federal facilities by taking this FEMP eTraining course. Although two-thirds of the Earth's surface is water, less than one-half of one percent of that water is currently available for our use. As the U.S. population increases, so does our water use, making water resources increasingly scarce. Many regions feel the strain. The Federal Government uses an estimated 148 to 165 billion gallons of potable water annually. This is equal to the annual water use of a state the size of New Jersey or almost 8 million people1. This is, in part, because water requires significant energy input for treatment, pumping,

459

Better Plants Water Pilot- Overview  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) is expanding the Better Buildings Challenge to help partners demonstrate successful approaches to saving water and decrease their utility bills. The commercial and industrial sectors account for more than 25 percent of the withdrawals from public water supplies and many organizations in these sectors may have savings opportunities of 20 to 40%. The efficient use of water resources results in lower operating costs, a more reliable water supply, and improved water quality. Additionally, because energy is required to transport and treat water, saving water also saves energy. Through this pilot, DOE will work with a small, diverse group of Better Buildings Challenge Partners to expand their resource management strategies to include water in addition to energy, set water savings goals, track progress and showcase solutions.

460

Emerging contaminants in wastewater and river water: Risks for human water security and aquatic ecosystem sustainability?  

E-Print Network [OSTI]

Emerging contaminants in wastewater and river water: Risks for human water security and aquatic and Environmental Science (BRGM), Orléans, France ; 2 National Research Institute for Rural Engineering, Water systems. Since degradation rates in conventional sewage treatment plants (STP) are rather low, ECs enter

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "water treatment result" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Effect of Temperature Treatment of Brucite on Its Sorption Properties  

Science Journals Connector (OSTI)

The results of investigations into heat treatment of brucite, a naturally occurring mineral, are presented....

G. I. Pushkaryova

2000-11-01T23:59:59.000Z

462

Integrated nonthermal treatment system study  

SciTech Connect (OSTI)

This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

1997-01-01T23:59:59.000Z

463

A SIMPLE WATER MANOMETER FOR RECORDING INTESTINAL ACTIVITY  

Science Journals Connector (OSTI)

...MEDICINE A SIMPLE WATER MANOMETER FOR RECORDING...purification by prolonged electrodialysis and repeated precipitations...strongly after this treatment. In spite of lengthy electrodialysis, it still contains...very soluble in water, forming a slightly...

STEPHEN KROP; TED A. LOOMIS

1945-08-10T23:59:59.000Z

464

University of Arizona Water Sustainability Program Conservation Easement Monitoring  

E-Print Network [OSTI]

and ranches as the single greatest threat to wildlife habitat, water supply and the long-term viability regulation of hydrological flows, storage and retention of water, and waste treatment and detoxification

Fay, Noah

465

Oklahoma Water Resources Research Institute Annual Technical Report  

E-Print Network [OSTI]

drinking water treatment plants. Occurrence of Pharmaceuticals, Hormones, and other Organic Wastewater Resources Board. Decision Support System for Long Term Planning of Rural and Urban