National Library of Energy BETA

Sample records for water temperature setting

  1. Remote temperature-set-point controller

    DOE Patents [OSTI]

    Burke, William F.; Winiecki, Alan L.

    1986-01-01

    An instrument for carrying out mechanical strain tests on metallic samples with the addition of an electrical system for varying the temperature with strain, the instrument including opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  2. Remote temperature-set-point controller

    DOE Patents [OSTI]

    Burke, W.F.; Winiecki, A.L.

    1984-10-17

    An instrument is described for carrying out mechanical strain tests on metallic samples with the addition of means for varying the temperature with strain. The instrument includes opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  3. Temperature, Water Vapor, and Clouds"

    Office of Scientific and Technical Information (OSTI)

    Radiometric Studies of Temperature, Water Vapor, and Clouds" Project ID: 0011106 ... measurements of column amounts of water vapor and cloud liquid has been well ...

  4. Temperature of Multibubble Sonoluminescence in Water (Journal...

    Office of Scientific and Technical Information (OSTI)

    Temperature of Multibubble Sonoluminescence in Water Citation Details In-Document Search Title: Temperature of Multibubble Sonoluminescence in Water No abstract prepared. Authors: ...

  5. Savings Project: Lower Water Heating Temperature | Department...

    Energy Savers [EERE]

    Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings 12-30 annually for each 10F reduction Time to ...

  6. Hawaii Water Well Temperature and Hydraulic Head

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2014-12-01

    .csv file consisting of the water well temperature and water table elevation for wells in the State of Hawaii. Data source, Hawaii Commission of Water Resources Management.

  7. Quick setting water-compatible furfuryl alcohol polymer concretes

    DOE Patents [OSTI]

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1982-11-30

    A novel quick setting polymer concrete composite comprising a furfuryl alcohol monomer, an aggregate containing a maximum of 8% by weight water, and about 1-10% trichlorotoluene initiator and about 20-80% powdered metal salt promoter, such as zinc chloride, based on the weight of said monomer, to initiate and promote polymerization of said monomer in the presence of said aggregate, within 1 hour after mixing at a temperature of -20.degree. C. to 40.degree. C., to produce a polymer concrete having a 1 hour compressive strength greater than 2000 psi.

  8. Perspectives on Temperature in the Pacific Northwest's Fresh Waters

    SciTech Connect (OSTI)

    Coutant, C.C.

    1999-06-01

    This report provides a perspective on environmental water temperatures in the Pacific Northwest as they relate to the establishment of water temperature standards by the state and their review by the US Environmental Protection Agency. It is a companion to other detailed reviews of the literature on thermal effects on organisms important to the region. Many factors, both natural and anthropogenic, affect water temperatures in the region. Different environmental zones have characteristic temperatures and mechanisms that affect them. There are specific biotic adaptations to environmental temperatures. Life-cycle strategies of salmonids, in particular, are attuned to annual temperature patterns. Physiological and behavioral requirements on key species form the basis of present water temperature criteria, but may need to be augmented with more concern for environmental settings. There are many issues in the setting of standards, and these are discussed. There are also issues in compliance. Alternative temperature-regulating mechanisms are discussed, as are examples of actions to control water temperatures in the environment. Standards-setting is a social process for which this report should provide background and outline options, alternatives, limitations, and other points for discussion by those in the region.

  9. Managing water temperatures below hydroelectric facilities

    SciTech Connect (OSTI)

    Johnson, P.L.; Vermeyen, T.B.; O`Haver, G.G.

    1995-05-01

    Due to drought-related water temperature problems in the Bureau of Reclamation`s California Central Valley Project in the early 1990`s, engineers were forced to bypass water from the plants during critical periods. This was done at considerable cost in the form of lost revenue. As a result, an alternative method of lowering water temperature was developed and it has successfully lowered water temperatures downstream from hydroelectric facilities by using flexible rubber curtains. This innovative technology is aiding the survival of endangered fish populations. This article outlines the efforts and discusses the implementation of this method at several hydroelectric facilities in the area.

  10. High temperature hot water systems: A primer

    SciTech Connect (OSTI)

    Govan, F.A.

    1998-01-01

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  11. Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility Facility Fire Water Lodge...

  12. Temperature and pore water chemistry profiles of sediments in...

    Office of Scientific and Technical Information (OSTI)

    Temperature and pore water chemistry profiles of sediments in the equatorial Pacific: incompatible results Citation Details In-Document Search Title: Temperature and pore water ...

  13. Warm Springs Water District District Heating Low Temperature...

    Open Energy Info (EERE)

    Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

  14. At What Temperature Do You Set Your Thermostat in the Summer? | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy At What Temperature Do You Set Your Thermostat in the Summer? At What Temperature Do You Set Your Thermostat in the Summer? June 25, 2009 - 5:00am Addthis You can save 5%-15% on your cooling bills by raising the temperature setting on your thermostat when you are away and don't need cooling. Only lower the setting to 78°F when you are home and need cooling. A programmable thermostat can make it easy to adjust the temperature on a regular schedule. At what temperature do you set

  15. {sup 1}H NMR relaxometry as an indicator of setting and water depletion during cement hydration

    SciTech Connect (OSTI)

    Wang, Biyun; Faure, Paméla; Thiéry, Mickaël; Baroghel-Bouny, Véronique

    2013-03-15

    Proton nuclear magnetic resonance relaxometry has been used to detect setting and microstructure evolution during cement hydration. NMR measurements were performed since casting, during setting and until hardening (from 0 to 3 days). The mobility of water molecules was assessed by an analysis focused on the diagram of longitudinal relaxation time T{sub 1} generated by an Inversion Recovery sequence. The initial stiffening of the solid network was identified by an analysis of the relaxation rate 1/T{sub 1}. The kinetics of water depletion was investigated by using a simple one-pulse acquisition sequence. In parallel, conventional techniques (Vicat needle and temperature monitoring), as well as numerical simulations of hydration, were used to complement and validate these NMR results. Cement pastes and mortars with different water-to-cement ratios made of grey or white OPCs were tested. Furthermore, the effects of the addition of sand, super-plasticizer and silica fume on the hydration kinetics were investigated.

  16. Question of the Week: At What Temperature Do You Set Your Thermostat in the Winter?

    Broader source: Energy.gov [DOE]

    At what temperature do you set your thermostat when you are home and awake in the winter? How about when you're asleep or away?

  17. Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report discusses potential impacts of increased water temperature and reductions in water availability on petroleum refining and presents case studies related to refinery water use. Report...

  18. Question of the Week: At What Temperature Do You Set Your Thermostat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    At what temperature do you set your thermostat when you are home and awake in the winter? How about when you're asleep or away? E-mail your responses to the Energy Saver team at ...

  19. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratorys Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  20. Sensitivity of Vadose Zone Water Fluxes to Climate Shifts in Arid Settings

    SciTech Connect (OSTI)

    Pfletschinger, Heike; Prommel, K.; Schuth, C.; Herbst, M.; Engelhardt, I.

    2014-01-13

    Vadose zone water fluxes in arid settings are investigated regarding their sensitivity to hydraulic soil parameters and meteorological data. The study is based on the inverse modeling of highly defined soil column experiments and subsequent scenario modeling comparing different climate projections for a defined arid region. In arid regions, groundwater resources are prone to depletion due to excessive water use and little recharge potential. Especially in sand dune areas, groundwater recharge is highly dependent on vadose zone properties and corresponding water fluxes. Nevertheless, vadose zone water fluxes under arid conditions are hard to determine owing to, among other reasons, deep vadose zones with generally low fluxes and only sporadic high infiltration events. In this study, we present an inverse model of infiltration experiments accounting for variable saturated nonisothermal water fluxes to estimate effective hydraulic and thermal parameters of dune sands. A subsequent scenario modeling links the results of the inverse model with projections of a global climate model until 2100. The scenario modeling clearly showed the high dependency of groundwater recharge on precipitation amounts and intensities, whereas temperature increases are only of minor importance for deep infiltration. However, simulated precipitation rates are still affected by high uncertainties in the response to the hydrological input data of the climate model. Thus, higher certainty in the prediction of precipitation pattern is a major future goal for climate modeling to constrain future groundwater management strategies in arid regions.

  1. Low temperature barrier wellbores formed using water flushing

    DOE Patents [OSTI]

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  2. Water level sensor and temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  3. Temperature influence on water transport in hardened cement pastes

    SciTech Connect (OSTI)

    Drouet, Emeline; Poyet, Stéphane; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  4. Temperatures, heat flow, and water chemistry from drill holes...

    Open Energy Info (EERE)

    Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  5. Temperature and pore water chemistry profiles of sediments in the

    Office of Scientific and Technical Information (OSTI)

    equatorial Pacific: incompatible results (Conference) | SciTech Connect Temperature and pore water chemistry profiles of sediments in the equatorial Pacific: incompatible results Citation Details In-Document Search Title: Temperature and pore water chemistry profiles of sediments in the equatorial Pacific: incompatible results Authors: Crowe, J. ; McDuff, R.E. Publication Date: 1979-11-13 OSTI Identifier: 6388797 Resource Type: Conference Resource Relation: Journal Name: EOS, Trans., Am.

  6. An updated global grid point surface air temperature anomaly data set: 1851--1990

    SciTech Connect (OSTI)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  7. Accelerating the Convergence of Replica Exchange Simulations Using Gibbs Sampling and Adaptive Temperature Sets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, Thomas; Perez, Danny

    2015-08-28

    We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. The methodmore » is particularly useful for the fast and reliable estimation of the microcanonical temperature T (U) or, equivalently, of the density of states g(U) over a wide range of energies.« less

  8. Accelerating the Convergence of Replica Exchange Simulations Using Gibbs Sampling and Adaptive Temperature Sets

    SciTech Connect (OSTI)

    Vogel, Thomas; Perez, Danny

    2015-08-28

    We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. The method is particularly useful for the fast and reliable estimation of the microcanonical temperature T (U) or, equivalently, of the density of states g(U) over a wide range of energies.

  9. Water Recycling removal using temperature-sensitive hydronen

    SciTech Connect (OSTI)

    Rana B. Gupta

    2002-10-30

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  10. Optimum hot water temperature for absorption solar cooling

    SciTech Connect (OSTI)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  11. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  12. Electron drift velocities in He and water mixtures: Measurements and an assessment of the water vapour cross-section sets

    SciTech Connect (OSTI)

    Urquijo, J. de; Juárez, A. M.; Basurto, E.; Ness, K. F.; Robson, R. E.; White, R. D.; Brunger, M. J.

    2014-07-07

    The drift velocity of electrons in mixtures of gaseous water and helium is measured over the range of reduced electric fields 0.1–300 Td using a pulsed-Townsend technique. Admixtures of 1% and 2% water to helium are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. The measured drift velocities are used as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-water vapour cross-sections [K. F. Ness, R. E. Robson, M. J. Brunger, and R. D. White, J. Chem. Phys. 136, 024318 (2012)]. A refinement of the momentum transfer cross-section for electron-water vapour scattering is presented, which ensures self-consistency with the measured drift velocities in mixtures with helium to within approximately 5% over the range of reduced fields considered.

  13. Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

    2009-04-01

    Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

  14. High-Temperature Water-Gas Shift Membrane Reactor Study

    SciTech Connect (OSTI)

    Ciocco, M.V.; Iyoha, O.; Enick, R.M.; Killmeyer, R.P.

    2007-06-01

    NETL’s Office of Research and Development is exploring the integration of membrane reactors into coal gasification plants as a way of increasing efficiency and reducing costs. Water-Gas Shift Reaction experiments were conducted in membrane reactors at conditions similar to those encountered at the outlet of a coal gasifier. The changes in reactant conversion and product selectivity due to the removal of hydrogen via the membrane reactor were quantified. Research was conducted to determine the influence of residence time and H2S on CO conversion in both Pd and Pd80wt%Cu membrane reactors. Effects of the hydrogen sulfide-to-hydrogen ratio on palladium and a palladium-copper alloy at high-temperature were also investigated. These results were compared to thermodynamic calculations for the stability of palladium sulfides.

  15. Stress corrosion cracking of Alloy 600 in high temperature water

    SciTech Connect (OSTI)

    Congleton, J.; Parkins, R.N.; Hemsworth, B.

    1987-01-01

    Slow strain rate stress corrosion tests have been performed on specimens cut from four separate heats of alloy 600 steam generator tubing. Material was tested in the mill annealed and thermally stabilized conditions and after various low temperature aging treatments. Only limited cracking was observed, even for tests at 340/sup 0/C, but the initiation of intergranular cracking was easier on the inner than on the outer surfaces of the tubing. Polarization data has been obtained in high temperature water and in saturated boric acid and saturated lithium hydroxide at the atmospheric boiling points, and slow strain tests were performed at controlled potentials in these environments. Again, only very short cracks formed during the slow strain rate tests which were performed at a strain rate of about 10/sup -6/ s/sup -1/. The data is discussed in terms of the probable crack tip strain rates that would exist in these tests and at other strain rates. It is argued that if cracking occurs, the main role of very low strain rate tests is to provide time for initiation and crack growth, so that cyclic loading or intermittent loading long tests are likely to be more successful in sustaining crack growth in this alloy.

  16. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    SciTech Connect (OSTI)

    Taylor, Robin; Davenport, Roger; Talbot, Jan; Herz, Richard; Genders, David; Symons, Peter; Brown, Lloyd

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  17. Analysis of temperatures and water levels in wells to estimatealluvial aquifer hydraulic conductivities

    SciTech Connect (OSTI)

    Su, Grace W.; Jasperse, James; Seymour, Donald; Constantz, Jim

    2003-06-19

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.28C in two wells to {approx}88C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  18. New Polymeric Proton Conductors for Water-free and High-temperature Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells | Department of Energy Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells New Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells Presentation on New Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005. htmwg05_kerr.pdf (158.09 KB) More Documents & Publications Polyelectrolyte Materials for High Temperature Fuel Cells

  19. Temperature and pore water chemistry profiles of sediments in...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Massachusetts Inst. of Tech., Cambridge Country of Publication: United States Language: English Subject: 15 GEOTHERMAL ENERGY; PACIFIC OCEAN; SEDIMENTS; TEMPERATURE ...

  20. Validation of TES Temperature and Water Vapor Retrievals with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The primary objective of the TES (Tropospheric Emission Spectrometer) instrument on the Aura spacecraft is the retrieval of trace gases, especially water vapor and ozone. The TES...

  1. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    SciTech Connect (OSTI)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change during

  2. Characterization of Lignin Derived from Water-only and Dilute Acid Flowthrough Pretreatment of Poplar Wood at Elevated Temperatures

    SciTech Connect (OSTI)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    Background: Flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. Results: In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. Conclusions: Elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change

  3. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  4. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  5. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  6. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  7. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  8. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  9. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  10. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  11. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  12. Water-level sensor and temperature-profile detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A temperature profile detector is described which comprises a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material are positioned at spaced locations along a length of the conductors. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  13. Improved Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer J. C. Liljegren Environmental Research Division Argonne National Laboratory Argonne, Illinois Introduction Radiometrics Corporation has developed a twelve-channel microwave radiometer capable of providing continuous, real-time vertical profiles of temperature, water vapor, and limited-resolution cloud liquid water from the surface to 10 km in nearly all weather conditions (Solheim et al. 1998a). Since

  14. Reaction kinetics for the high temperature oxidation of Pu--1wt%Ga in water vapor

    SciTech Connect (OSTI)

    Stakebake, J L; Saba, M A

    1988-01-01

    Oxidation of plutonium metal is greatly accelerated by the presence of water vapor. The magnitude of the effect of water vapor on oxidation kinetics is determined by temperature, water concentration, and oxygen concentration. Most of the previous work has been directed toward evaluating the effect of moisture on the atmospheric oxidation of plutonium. Work on the isolation and characterization of the water reaction with plutonium has been very limited. The present work was undertaken to determine the kinetics of the plutonium--water reaction over a wide range of temperature and pressure. Reaction kinetics were measured using a vacuum microbalance system. The temperature range investigated was 100--500/degree/C. The effect of water vapor pressure on reaction kinetics was determined at 300/degree/C by varying the water pressure from 0.1 to 15 Torr. 2 figs.

  15. Development of value-added products from alumina industry mineral wastes using low-temperature-setting phosphate ceramics

    SciTech Connect (OSTI)

    Wagh, A.S.; Jeong, Seung-Young; Singh, D.

    1996-01-01

    A room-temperature process for stabilizing mineral waste streams has been developed, based on acid-base reaction between MgO and H3PO4 or acid phosphate solution. The resulting waste form sets into a hard ceramic in a few hours. In this way, various alumina industry wastes, such as red mud and treated potliner waste, can be solidified into ceramics which can be used as structural materials in waste management and construction industry. Red mud ceramics made by this process were low-porosity materials ({approx}2 vol%) with a compression strength equal to portland cement concrete (4944 psi). Bonding mechanism appears to be result of reactions of boehmite, goethite, and bayerite with the acid solution, and also encapsulation of red mud particles in Mg phosphate matrix. Possible applications include liners for ponds and thickned tailings disposal, dikes for waste ponds, and grouts. Compatability problems arising at the interface of the liner and the waste are avoided.

  16. Novel room-temperature-setting phosphate ceramics for stabilizing combustion products and low-level mixed wastes

    SciTech Connect (OSTI)

    Wagh, A.S.; Singh, D.

    1994-12-31

    Argonne National Laboratory, with support from the Office of Technology in the US Department of Energy (DOE), has developed a new process employing novel, chemically bonded ceramic materials to stabilize secondary waste streams. Such waste streams result from the thermal processes used to stabilize low-level, mixed wastes. The process will help the electric power industry treat its combustion and low-level mixed wastes. The ceramic materials are strong, dense, leach-resistant, and inexpensive to fabricate. The room-temperature-setting process allows stabilization of volatile components containing lead, mercury, cadmium, chromium, and nickel. The process also provides effective stabilization of fossil fuel combustion products. It is most suitable for treating fly and bottom ashes.

  17. THERMODYNAMIC CONSIDERATIONS FOR THERMAL WATER SPLITTING PROCESSES AND HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    J. E. O'Brien

    2008-11-01

    A general thermodynamic analysis of hydrogen production based on thermal water splitting processes is presented. Results of the analysis show that the overall efficiency of any thermal water splitting process operating between two temperature limits is proportional to the Carnot efficiency. Implications of thermodynamic efficiency limits and the impacts of loss mechanisms and operating conditions are discussed as they pertain specifically to hydrogen production based on high-temperature electrolysis. Overall system performance predictions are also presented for high-temperature electrolysis plants powered by three different advanced nuclear reactor types, over their respective operating temperature ranges.

  18. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Wednesday, 24 September 2008 00:00 The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding

  19. Low-Temperature Geothermal Water in Utah: A compilation of Data...

    Open Energy Info (EERE)

    Temperature Geothermal Water in Utah: A compilation of Data for Thermal Wells and Springs Through 1993 Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  20. Stress-corrosion cracking of Inconel alloy 600 in high-temperature water: an update. [PWR

    SciTech Connect (OSTI)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    Inconel 600 has been tested in high-temperature aqueous media (without oxygen) in several tests. Data are presented to relate failure times to periods of crack initiation and propagation. Quantitative relationships have been developed from tests in which variations were made in temperature, applied load, strain rate, water chemistry, and the condition of the test alloy.

  1. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL),more » recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change

  2. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect (OSTI)

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  3. Temperature distributions of radio-frequency plasma in water by spectroscopic analysis

    SciTech Connect (OSTI)

    Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Maehara, Tsunehiro; Abe, Fumiaki; Kawashima, Ayato

    2009-12-01

    Distributions of emission intensity from radicals, electron temperature, and rotational temperature at a radio frequency of 27.12 MHz plasma in water are clarified by detailed spectroscopy measurement. Through this investigation, the following were observed. The points of maximum emission intensity of Halpha, Hbeta, O (777 nm), and O (845 nm) are almost the same, while that of OH shifts upward. The electron temperature decreases, while the rotational temperature increases with pressure. The distribution of the electron temperature changes at a threshold pressure, which is concerned with a change in the electron discharge mechanism. The self-bias of the electrode changes from a negative to positive at a threshold pressure. The point of the maximum rotational temperature of OH radicals shifts to approximately 1 mm above that for the maximum intensity of OH emission.

  4. Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests

    SciTech Connect (OSTI)

    Cha, Jong-Ho; Seol, Yongkoo

    2013-10-07

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  5. Dependence of Tritium Release from Stainless Steel on Temperature and Water Vapor

    SciTech Connect (OSTI)

    Shmayda, W. T.; Sharpe, M.; Boyce, A. M.; Shea, R.; Petroski, B.; Schroeder, W. U.

    2015-09-15

    The impact of water vapor and temperature on the release of tritium from stainless steel was studied. Degreased stainless steel samples loaded with tritium at room temperature following a 24-h degassing in vacuum at room temperature were subjected to increasing temperatures or humidity. In general, increasing either the sample temperature or the humidity causes an increased quantity of tritium to be removed. Increasing the temperature to 300°C in a dry gas stream results in a significant release of tritium and is therefore an effective means for reducing the tritium inventory in steel. For humid purges at 30°C, a sixfold increase in humidity results in a tenfold increase in the peak outgassing rate. Increasing the humidity from 4 parts per million (ppm) to 1000 ppm when the sample temperature is 100°C causes a significant increase in the tritium outgassing rate. Finally, a simple calculation shows that only 15% of the activity present in the sample was removed in these experiments, suggesting that the surface layer of adsorbed water participates in regulating tritium desorption from the surface.

  6. Dependence of Tritium Release from Stainless Steel on Temperature and Water Vapor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shmayda, W. T.; Sharpe, M.; Boyce, A. M.; Shea, R.; Petroski, B.; Schroeder, W. U.

    2015-09-15

    The impact of water vapor and temperature on the release of tritium from stainless steel was studied. Degreased stainless steel samples loaded with tritium at room temperature following a 24-h degassing in vacuum at room temperature were subjected to increasing temperatures or humidity. In general, increasing either the sample temperature or the humidity causes an increased quantity of tritium to be removed. Increasing the temperature to 300°C in a dry gas stream results in a significant release of tritium and is therefore an effective means for reducing the tritium inventory in steel. For humid purges at 30°C, a sixfold increasemore » in humidity results in a tenfold increase in the peak outgassing rate. Increasing the humidity from 4 parts per million (ppm) to 1000 ppm when the sample temperature is 100°C causes a significant increase in the tritium outgassing rate. Finally, a simple calculation shows that only 15% of the activity present in the sample was removed in these experiments, suggesting that the surface layer of adsorbed water participates in regulating tritium desorption from the surface.« less

  7. Observed and simulated temperature dependence of the liquid water path of low clouds

    SciTech Connect (OSTI)

    Del Genio, A.D.; Wolf, A.B.

    1996-04-01

    Data being acquired at the Atmospheric Radiation Measurement (ARM) Southern great Plains (SGP) Cloud and Radiation Testbed (CART) site can be used to examine the factors determining the temperature dependence of cloud optical thickness. We focus on cloud liquid water and physical thickness variations which can be derived from existing ARM measurements.

  8. Stress-corrosion cracking of Inconel alloy 600 in high-temperature water - an update

    SciTech Connect (OSTI)

    Bandy, R.; Van Rooyen, D.

    1984-08-01

    An experimental program on stress corrosion cracking (SCC) aimed at the development of a quantitative model for predicting the behavior of Inconel 600 tubing in high temperature water is described. Empirical data are gathered to relate factors that influence SCC. Work involves U-bends, constant extension rate tests (CERT), and constant load. Plots are made of failure time and crack velocity vs temperature, and also of SCC time vs stress, using a variety of environments related to the ingredients of primary or secondary water. Cold work of Alloy 600 is also included. The effect of temperature is found to yield-semi-log (Arrhenius) curves, and log-log plots of failure time vs stress are presented. Curves of this type are being evaluated for use in extrapolating accelerated test data to operating conditions for predictive purposes. 5 references, 8 figures, 3 tables.

  9. Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.

    SciTech Connect (OSTI)

    He, Hongbo; Vorobieff, Peter V.; Menicucci, David; Mammoli, Andrea A.; Carlson, Jeffrey J.

    2012-06-01

    This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific

  10. Behavior of tritium permeation induced by water corrosion of alpha iron around room temperature

    SciTech Connect (OSTI)

    Otsuka, T.; Hashizume, K.

    2015-03-15

    Tritium (T) permeation leakage to surroundings is a great safety concern in fission and fusion reactor systems. T permeation potentially occurs from T contaminated water through cooling tubes or storage tank made of metals which dissolve some T evolved by water corrosion. In order to understand behaviors of hydrogen uptake and permeation in pure α-iron (αFe) during water corrosion around room temperature, hydrogen permeation experiments for an αFe membrane have been conducted by means of tritium tracer techniques. The present study suggests that hydrogen produced by water corrosion of αFe is trapped in product oxide layers to delay hydrogen uptake in αFe for a moment. However, the oxide layers do not work as a sufficient barrier for hydrogen uptake. Some of hydrogen dissolved in αFe normally diffuses and permeates through the bulk in the early stage of permeation. In a later stage, hydrogen permeation could be apparently stopped by the disappearance of concentration difference of tritium. Hydrogen partial pressure at the water/αFe interface could be ranged from 0.7 to 9.5 kPa around room temperature.

  11. Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification

    SciTech Connect (OSTI)

    Gluesenkamp, Kyle R; BushPE, John D

    2016-01-01

    During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heater (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.

  12. Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia

    SciTech Connect (OSTI)

    Su, Hui; Jiang, Jonathan; Liu, Xiaohong; Penner, J.; Read, William G.; Massie, Steven T.; Schoeberl, Mark R.; Colarco, Peter; Livesey, Nathaniel J.; Santee, Michelle L.

    2011-06-01

    Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region during boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.

  13. Mechanisms of stress corrosion cracking for iron-based alloys in high-temperature water

    SciTech Connect (OSTI)

    Zhou, X.Y.; Congleton, J.; Bahraloloom, A.

    1998-11-01

    Stress corrosion cracking (SCC) susceptibilities of a series of iron-based alloys (IBA), including some high-purity irons, were evaluated in lithiated water at temperatures up to 300 C. Inclusion distributions in each material were established using quantitative metallography and energy dispersive x-ray analysis (EDX). Electrochemical measurements were performed to investigate film formation kinetics. Results showed the minimum potential for SCC was a function of the inclusion content. Reducing the inclusion content in IBA moved the minimum potential for SCC in the anodic direction and/or increased the temperature for the onset of cracking but did not eliminate SCC.

  14. Stress corrosion cracking behavior of Alloy 600 in high temperature water

    SciTech Connect (OSTI)

    Webb, G.L.; Burke, M.G.

    1995-07-01

    SCC susceptibility of Alloy 600 in deaerated water at 360 C (statically loaded U-bend specimens) is dependent on microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures (optical metallography). In CWA tubing materials, one crack dominated and grew to a visible size. HWA materials with a low hot-working finishing temperature (<925 C) and final anneals at 1010-1065 C developed both large cracks (similar to those in CWA materials) and small intergranular microcracks detectable only by destructive metallography. HWA materials with a high hot-working finishing temperature (>980 C) and a high-temperature final anneal (>1040 C), with grain boundaries that are fully decorated, developed only microcracks in all specimens. These materials did not develop large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 C for 7h), which reduces or eliminates SCC in Alloy 600, did not eliminate microcrack formation in high temperature processed HWA materials. Conventional metallographic and analytical electron microscopy (AEM) were done on selected materials to identify the factors responsible for the observed differences in cracking behavior. Major difference between high-temperature HWA and low-temperature HWA and CWA materials was that the high temperature processing and final annealing produced predominantly ``semi-continuous`` dendritic M{sub 7}C{sub 3} carbides along grain boundaries with a minimal amount of intragranular carbides. Lower temperature processing produced intragranular M7C3 carbides, with less intergranular carbides.

  15. About the mechanism of stress corrosion cracking of Alloy 600 in high temperature water

    SciTech Connect (OSTI)

    Rebak, R.B.; Szklarska-Smialowska, Z.

    1995-12-31

    Alloy 600 is a material commonly used to construct the tubing in the steam generators (SG) of pressurized light water reactors (PWR) and of CANDU heavy water reactors. It is well established which variables and to which extent they influence the crack growth rate (CGR) in Alloy 600 exposed to high temperature (deaerated) water (HTW), especially in very aggressive conditions. There is evidence that the same variables that influence CGR also control the crack induction time. However, there are only a few data on crack induction time and no detailed explanation of the events that lead to the nucleation of a crack on an apparent smooth tube surface. In this paper, a critical review of the mechanisms of stress corrosion cracking (SCC) is given and, an interpretation of the events occurring during the long ({approx} 15 y) induction times observed in plant is postulated.

  16. One-Dimensional Ceria as Catalyst for the Low-Temperature Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Han, W.; Wen, W; Hanson, J; Teng, X; Marinkovic, N; Rodriguez, J

    2009-01-01

    Synchrotron-based in situ time-resolved X-ray diffraction and X-ray absorption spectroscopy were used to study pure ceria and Pd-loaded ceria nanotubes and nanorods (1D-ceria) as catalysts for the water-gas shift (WGS) reaction. While bulk ceria is very poor as WGS catalysts, pure 1D-ceria displayed catalytic activity at a temperature as low as 300 C. The reduction of the pure 1D-ceria in pure hydrogen started at 150 C, which is a much lower temperature than those previously reported for the reduction of 3D ceria nanoparticles. This low reduction temperature reflects the novel morphology of the oxide systems and may be responsible for the low-temperature WGS catalytic activity seen for the 1D-ceria. Pd-loaded 1D ceria displayed significant WGS activity starting at 200 C. During pretreatment in H{sub 2}, the ceria lattice parameter increased significantly around 60 C, which indicates that Pd-oxygen interactions may facilitate the reduction of Pd-loaded 1D-ceria. Pd and ceria both participate in the formation of the active sites for the catalytic reactions. The low-temperature hydrogen pretreatment results in higher WGS activity for Pd-loaded 1D-ceria.

  17. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    SciTech Connect (OSTI)

    David Yuill

    2008-06-30

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC design

  18. Hydrogen production by high temperature water splitting using electron conducting membranes

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Wang, Shuangyan; Dorris, Stephen E.; Lee, Tae H.

    2006-08-08

    A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing protons or hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at dissociation temperatures the hydrogen from the dissociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the dissociation of steam producing hydrogen and oxygen. The oxygen is thereafter reacted with methane to produce syngas which optimally may be reacted in a water gas shift reaction to produce CO2 and H2.

  19. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    SciTech Connect (OSTI)

    Mamone, Salvatore Concistr, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Denning, Mark; Carravetta, Marina; Whitby, Richard J.; Levitt, Malcolm H.; Lei, Xuegong; Li, Yongjun; Goh, Kelvin; Horsewill, Anthony J.

    2014-05-21

    The water-endofullerene H{sub 2}O@C{sub 60} provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H{sub 2}O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H{sub 2}O molecules is catalysed by {sup 13}C nuclei present in the cages.

  20. Hydrogen production by high-temperature water splitting using electron-conducting membranes

    DOE Patents [OSTI]

    Lee, Tae H.; Wang, Shuangyan; Dorris, Stephen E.; Balachandran, Uthamalingam

    2004-04-27

    A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at disassociation temperatures the hydrogen from the disassociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the disassociation of steam producing hydrogen and oxygen.

  1. The Effects of Water Vapor and Hydrogen on the High-Temperature Oxidation of Alloys

    SciTech Connect (OSTI)

    Mu, N.; Jung, K.; Yanar, N. M.; Pettit, F. S; Holcomb, G. R.; Howard, B. H.; Meier, G. H.

    2013-06-01

    Essentially all alloys and coatings that are resistant to corrosion at high temperature require the formation of a protective (slowly-growing and adherent) oxide layer by a process known as selective oxidation. The fundamental understanding of this process has been developed over the years for exposure in pure oxygen or air. However, the atmospheres in most applications contain significant amounts of water vapor which can greatly modify the behavior of protective oxides. The development of oxy-fuel combustion systems in which fossil fuels are burned in a mixture of recirculated flue gas and oxygen, rather than in air, has caused renewed interest in the effects of water vapor and steam on alloy oxidation. The focus of this paper is on the ways the presence of water vapor can directly alter the selective oxidation process. The paper begins with a brief review of the fundamentals of selective oxidation followed by a description of recent experimental results regarding the effect of water vapor on the oxidation of a variety of chromia-forming alloys (Fe- and Ni-base) in the temperature range 600 to 700 °C. The atmospheres include air, air-H{sub 2}O, Ar-H{sub 2}O and Ar-H{sub 2}O-O{sub 2}. Then the behavior of alumina-forming alloys in H{sub 2}O-containing atmospheres is briefly described. As hydrogen is produced during oxidation of alloys in H{sub 2}O, it can be released back into the gas phase or injected into the metal (where it can diffuse through to the other side). Experiments in which hydrogen concentrations have been measured on both sides of thin specimens during oxidation by H{sub 2}O on only one side are described. Finally, it is attempted to catalogue the various experimental observations under a few general principles.

  2. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect (OSTI)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  3. Computational Chemistry-Based Identification of Ultra-Low Temperature Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Manos Mavrikakis

    2008-08-31

    The current work seeks to identify novel, catalytically-active, stable, poison-resistant LWGS catalysts that retain the superior activity typical of conventional Cu catalysts but can be operated at similar or lower temperatures. A database for the Binding Energies (BEs) of the LWGS relevant species, namely CO, O and OH on the most-stable, close-packed facets of a set of 17 catalytically relevant transition metals was established. This BE data and a database of previously established segregation energies was utilized to predict the stability of bimetallic NSAs that could be synthesized by combinations of the 17 parent transition metals. NSAs that were potentially stable both in vacuo and under the influence of strong-binding WGS intermediates were then selected for adsorption studies. A set of 40 NSAs were identified that satisfied all three screener criteria and the binding energies of CO, O and OH were calculated on a set of 66, 43 and 79 NSA candidates respectively. Several NSAs were found that bound intermediates weaker than the monometallic catalysts and were thus potentially poison-resistant. Finally, kinetic studies were performed and resulted in the discovery of a specific NSA-based bimetallic catalyst Cu/Pt that is potentially a promising LWGS catalyst. This stable Cu/Pt subsurface alloy is expected to provide facile H{sub 2}O activation and remain relatively resistant from the poisoning by CO, S and formate intermediates.

  4. Cooling performance of a water-cooling panel system for modular high-temperature gas-cooled reactors

    SciTech Connect (OSTI)

    Takada, Shoji; Suzuki, Kunihiko; Inagaki, Yoshiyuki; Sudo, Yukio

    1995-12-31

    Experiments on a water cooling panel system were performed to investigate its heat removal performance and the temperature distribution of components for a modular high-temperature gas-cooled reactor (MHTGR). The analytical code THANPACST2 was applied to analyze the experimental results to verify the validity of the analytical method and the model.

  5. Low temperature, sulfur tolerant homogeneous catalysts for the water-gas shift reaction

    SciTech Connect (OSTI)

    Laine, R.M.

    1986-01-20

    The purpose of this report is to update and reorganize our recent review on homogeneous catalysis of the water-gas shift reaction (WGSR) based on recent literature publications and patents. This updated version will serve as a means of selecting 10 candidate catalyst systems for use in developing effective, sulfur-tolerant, low temperature WGSR catalysts. This report discusses the variations possible in the basic chemistry associated with WGSR catalytic cycles, including basic, acidic, and neutral conditions. Then individual mechanism for specific WGSR catalyst systems are discussed. Finally, on the basis of the literature reports, a list is presented of candidate catalysts and basic systems we have chosen for study in Task 3.

  6. The melting temperature of liquid water with the effective fragment potential

    SciTech Connect (OSTI)

    Brorsen, Kurt R.; Willow, Soohaeng Y.; Xantheas, Sotiris S.; Gordon, Mark S.

    2015-09-17

    Direct simulation of the solid-liquid water interface with the effective fragment potential (EFP) via the constant enthalpy and pressure (NPH) ensemble was used to estimate the melting temperature (Tm) of ice-Ih. Initial configurations and velocities, taken from equilibrated constant pressure and temperature (NPT) simulations at T = 300 K, 350 K and 400 K, respectively, yielded corresponding Tm values of 37816 K, 38214 K and 38415 K. These estimates are consistently higher than experiment, albeit to the same degree with previously reported estimates using density functional theory (DFT)-based Born-Oppenheimer simulations with the Becke-Lee-Yang-Parr functional plus dispersion corrections (BLYP-D). KRB was supported by a Computational Science Graduate Fellowship from the Department of Energy. MSG was supported by a U.S. National Science Foundation Software Infrastructure (SI2) grant (ACI 1047772). SSX acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  7. Effects of carbides on susceptibility of alloy 600 to stress corrosion cracking in high-temperature water

    SciTech Connect (OSTI)

    Rebak, R.B.; Xia, Z.; Szklarska-Smialowska, Z. . Fontana Corrosion Center)

    1993-11-01

    The electrochemical behavior of sensitized, carburized, and mill-annealed alloy 600 (UNS N06600) was studied in hydrogenated, aerated, and high-temperature (250 to 350 C) dilute aqueous solutions. In high-temperature water at high anodic potentials, the current density (DC) from carbide dissolution was higher than DC from matrix dissolution. In oxidizing environments, intergranular stress corrosion cracking propagated in alloy 600 by dissolution of continuous or semicontinuous carbides at the grain boundary, in sensitized and non-sensitized materials. These studies have been conducted in environments similar to those in the steam generators of pressurized water reactors (PWR) in nuclear power plants.

  8. Temperature and Water Depth Monitoring Within Chum Salmon Spawning Habitat Below Bonneville Dam : Annual Report October 2007-September 2008

    SciTech Connect (OSTI)

    Arntzen, E.V.

    2009-07-14

    The overall goal of the project described in this report is to provide a sound scientific basis for operation of the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance chum salmon populations - a species listed in March 1999 as threatened under the Endangered Species Act of 1973 (ESA). The study objective during fiscal year 2008 was to provide real-time data on Ives Island area water temperature and water surface elevations from the onset of chum salmon spawning through the end of chum salmon emergence. Sampling locations included areas where riverbed temperatures were elevated, potentially influencing alevin development and emergence timing. In these locations, hydrosystem operation caused large, frequent changes in river discharge that affected salmon habitat by dewatering redds and altering egg pocket temperatures. The 2008 objective was accomplished using temperature and water-level sensors deployed inside piezometers. Sensors were integrated with a radio telemetry system such that real-time data could be downloaded remotely and posted hourly on the Internet. During our overall monitoring period (October 2007 through June 2008), mean temperature in chum spawning areas was nearly 2 C warmer within the riverbed than in the overlying river. During chum salmon spawning (mid-November 2007 through December2007), mean riverbed temperature in the Ives Island area was 14.5 C, more than 5 C higher than in the river, where mean temperature was 9.4 C. During the incubation period (January 2008 through mid-May 2008), riverbed temperature was approximately 3 C greater than in the overlying river (10.5 C and 7.2 C, respectively). Chum salmon preferentially select spawning locations where riverbed temperatures are elevated; consequently the incubation time of alevin is shortened before they emerge in the spring.

  9. Water vapor and temperature inversions near the 0 deg C level over the tropical western Pacific. Master's thesis

    SciTech Connect (OSTI)

    Hart, K.A.

    1994-01-01

    During the Intensive Observation Period (IOP), several periods of water vapor and temperature inversions near the 0 deg C level were observed. Satellite and radiosonde data from TOGA COARE are used to document the large-scale conditions and thermodynamic and kinematic structures present during three extended periods in which moisture and temperature inversions near the freezing level were very pronounced. Observations from each case are synthesized into schematics which represent typical structures of the inversion phenomena. Frequency distributions of the inversion phenomena along with climatological humidity and temperature profiles are calculated for the four-month IOP.

  10. Stress corrosion cracking of Alloy 600 and Alloy 690 in all volatile treated water at elevated temperatures. Final report. [PWR

    SciTech Connect (OSTI)

    Theus, G.J.; Emanuelson, R.H.

    1983-05-01

    This report describes a continuing study of stress corrosion cracking (SCC) of Inconel alloys 600 and 690 in all-volatile treated (AVT) water. Specimens of alloys 600 and 690 are being exposed to AVT water at 288/sup 0/, 332/sup 0/, 343/sup 0/, and 360/sup 0/C. Alloy 600 generally resists SCC in high-purity water under normal service conditions but is susceptible under other specific conditions. In general, mill-annealed alloy 600 is more susceptible than stress-relieved material. Susceptibility to SCC increases rapidly with increasing exposure temperature. Very high stresses (near or above yield) are required to induce cracking in AVT or other high-purity waters. Most of the data presented in this report are for alloy 600; alloy 690 has not yet cracked. However, the program is being continued and will subsequently characterize the high-purity water cracking behavior, if any, of alloy 690.

  11. Mechanisms of stress corrosion cracking and intergranular attack in Alloy 600 in high temperature caustic and pure water

    SciTech Connect (OSTI)

    Bandy, R.; van Rooyen, D.

    1984-01-01

    In recent years, several studies have been conducted on the intergranular stress corrosion cracking (SCC) and intergranular attack (IGA) of Alloy 600. A combination of SCC and IGA has been observed in Alloy 600 tubing on the hot leg of some operating steam generators in pressurized water reactor (PWR) nuclear power plants, and sodium hydroxide along with several other chemical species have been implicated in the tube degradations. SCC has been observed above and within the tube sheet, whereas IGA is generally localized within the tube sheet. Alloy 600 is also susceptible to SCC in pure and primary water. Various factors that influence SCC and IGA include metallurgical conditions of the alloy, concentrations of alkaline species, impurity content of the environment, temperature and stress. The mechanisms of these intergranular failures, however, are not well understood. Some of the possible mechanisms of the SCC and IGA in high temperature water and caustic are described in this paper.

  12. Satellite data sets for the atmospheric radiation measurement (ARM) program

    SciTech Connect (OSTI)

    Shi, L.; Bernstein, R.L.

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  13. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Soil Water and Temperature System SWATS In the realm of global climate modeling, ... An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located ...

  14. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    DOE Patents [OSTI]

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  15. Temperature and Water Depth Monitoring Within Chum Salmon Spawning Habitat Below Bonneville Dam -- Annual Report -- October 2007-September 2008

    SciTech Connect (OSTI)

    Arntzen, Evan V.

    2009-07-14

    The overall goal of the project described in this report is to provide a sound scientific basis for operation of the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance chum salmon populations----a species listed in March 1999 as threatened under the Endangered Species Act of 1973 (ESA). The study objective during fiscal year 2008 was to provide real-time data on Ives Island area water temperature and water surface elevations from the onset of chum salmon spawning through the end of chum salmon emergence. Sampling locations included areas where riverbed temperatures were elevated, potentially influencing alevin development and emergence timing. In these locations, hydrosystem operation caused large, frequent changes in river discharge that affected salmon habitat by dewatering redds and altering egg pocket temperatures. The 2008 objective was accomplished using temperature and water-level sensors deployed inside piezo¬meters. Sensors were integrated with a radio telemetry system such that real-time data could be downloaded remotely and posted hourly on the Internet.

  16. Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using seawater instead of distilled water

    SciTech Connect (OSTI)

    Belviso, Claudia; Cavalcante, Francesco; Fiore, Saverio

    2010-05-15

    In this study Italian coal fly ash was converted into several types of zeolite in laboratory experiments with temperatures of crystallization ranging from 35 up to 90 deg. C. Distilled and seawater were used during the hydrothermal synthesis process in separate experiments, after a pre-treatment fusion with NaOH. The results indicate that zeolites could be formed from different kind of Italian coal fly ash at low temperature of crystallization using both distilled and seawater. SEM data and the powder patterns of X-ray diffraction analysis show that faujasite, zeolite ZK-5 and sodalite were synthesized when using both distilled and seawater; zeolite A crystallized only using distilled water. In particular the experiments indicate that the synthesis of zeolite X and zeolite ZK-5 takes place at lower temperatures when using seawater (35 and 45 deg. C, respectively). The formation of sodalite is always competitive with zeolite X which shows a metastable behaviour at higher temperatures (70-90 deg. C). The chemical composition of the fly ash source could be responsible of the differences on the starting time of synthesized zeolite with distilled water, in any case our data show that the formation of specific zeolites takes place always at lower temperatures when using seawater.

  17. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as a function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.

  18. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  19. Identification of mixing effects in stratified chilled-water storage tanks by analysis of time series temperature data

    SciTech Connect (OSTI)

    Caldwell, J.S.; Bahnfleth, W.P.

    1998-12-31

    Several one-dimensional models of mixing in stratified chilled-water thermal energy storage tanks have been proposed. In the simplest models, mixing is assumed to be uniform throughout the tank. Other models permit spatial variation of mixing intensity. Published models were developed by adjusting model parameters to achieve qualitative agreement with measured profiles. The literature does not describe quantitative criteria for evaluating the performance of mixing models. This paper describes a method that can be used to determine the relative spatial distribution of mixing effects directly from experimental data. It also illustrates a method for quantitative comparison of experimental and modeled temperature profiles. The mixing calculation procedure may be applied to instantaneous spatial temperature data if temperature sensor spacing is sufficiently small. When sensors are widely spaced, time series data taken at individual sensors provide better accuracy. A criterion for maximum sensor spacing is proposed. The application of these procedures to time series charge-cycle operating data from a full-scale chilled-water thermal storage system serving a large medical center is described. Results of this analysis indicate that mixing is localized near the inlet diffuser and that one-dimensional flow with streamwise conduction predominates in most of the tank.

  20. Evolution of temperature distributions in a full-scale stratified chilled-water storage tank with radial diffusers

    SciTech Connect (OSTI)

    Musser, A.; Bahnfleth, W.P.

    1998-10-01

    Temperature profiles in a full-scale, naturally stratified, chilled-water thermal storage tank are described. Tests were performed using a 1.4 million gallon (5,300 m{sup 3}), 44.5 ft (13.56 m) water depth cylindrical tank with radial diffusers. Nine charge and discharge cycle tests were performed for various flow rates, covering and extending beyond the normal operating range of the system. A method for obtaining thermocline thickness from field data was derived, and a relationship between inlet flow rate and initial thermocline thickness was established. Significant differences between profiles obtained for charge and discharge cycles at similar flow rates suggest that the free surface at the top of the tank allows more mixing to occur near the upper diffuser. A study of thermocline growth compares measured temperature profiles with those predicted by a numerical conduction model that uses temperature profiles measured early in the cycle as an initial condition. Comparison with the numerical study shows that, for high flow rate tests, large-scale mixing induced by the inlet diffuser can have significant effects on thermocline development, even after the thermocline has moved away from the inlet diffuser.

  1. Grain Boundary Character Along Intergranular Stress Corrosion Crack Paths in Austenitic Stainless Alloys Removed from High-Temperature Water Service

    SciTech Connect (OSTI)

    Gertsman, Valerii Y.; Bruemmer, Stephen M.

    2002-01-01

    Stress-corrosion cracks produced in high-temperature water environments were examined in alloy 600 and stainless steel samples. The alloy 600 samples were removed from pressurized-water reactor (PWR) steam generator tubing after exhibiting cracking in service or after model-boiler stress corrosion cracking tests. The 304 and 316 stainless steel samples also experienced intergranular stress corrosion cracking (IGSCC) in high-temperature-water environments similar to a PWR steam generator. Grain boundary misorientations were measured along IG crack paths as well as in the bulk. In general, only twin Sigma 3 boundaries exhibited improved resistance to crack propagation. If the Sigma 3 were factored out, the fractions of grain boundary types of cracked boundaries corresponded to their frequency of occurrence in the bulk alloy. Other boundaries with coincident site lattice misorientations, including Sigma 9 and Sigma 27, were observed to crack. The cracks were often (but not always) arrested at grain boundary junctions containing Sigma 3 boundaries. The results obtained indicate that grain boundary crystallography does not fully determine its susceptibility to IGSCC in typical commercial alloys. Other factors must be taken into account when assessing material?s propensity to IG failure.

  2. The influence of dissolved hydrogen on primary water stress corrosion cracking of Alloy 600 at PWR steam generator operating temperatures

    SciTech Connect (OSTI)

    Jacko, R.J.; Economy, G.; Pement, F.W.

    1992-12-31

    PWR primary coolant chemistry uses an intentional dissolved hydrogen concentration of 20 to 50 ml (STP)/kg of water to effect a net suppression of oxygen-producing radiolysis, to minimize corrosion in primary loop materials and to maintain a low redox potential. Speculation has attended a possible influence of dissolved hydrogen on the kinetics of initiation of Primary Water Stress Corrosion Cracking (PWSCC) behavior of Alloy 600 steam generator tubing. Three series of experiments are presented for conditions in which the level of dissolved hydrogen was intentionally varied over the hydrogen and temperature ranges of interest for steam generator operation. No significant effect of dissolved hydrogen was found on PWSCC of Alloy 600.

  3. Stress corrosion cracking of alloys 600 and 690 in all-volatile-treated water at elevated temperatures: Final report

    SciTech Connect (OSTI)

    Miglin, B.P.; Theus, G.J.

    1988-05-01

    This report describes stress corrosion (SCC) tests of Inconnel alloys 600 and 690 in all-volatile treated (AVT) water. Specimens of alloys 600 and 690 were exposed to AVT water at 288/degree/, 332/degree/, 343/degree/, and 360/degree/C. Alloy 660 generally resists SCC in high-purity water at normal sevice temperatures, but is susceptible to SCC at higher temperatures. In general, mill-annealed alloy 600 is more susceptible than high-treated material with fine lacy grain boundary carbides. Very high stresses (near or above yield) are required to induce cracking of alloy 600 in AVT or other high-purity waters. For alloy 600, 78 of 520 alloy 600 specimens eventually cracked. Although exposed for less total time than alloy 600 specimens, no alloy 690 specimens cracked. Three alloy 600 specimens cracked in the same autoclave tests in less time than those accumulated by the alloy 690 specimens. Longitudinally-oriented ID cracks became evident on alloy 690 split-tube U-bend specimens after autoclave exposures. These cracks on the 690 specimens were from three to ten times longer after exposure than similar defects found on unexposed alloy 690 specimens. The longitudinal crack lengthening on the alloy 690 split-tube U-bend specimens may have been a stress relaxation process or possibly a crack opening process of pre-existing, partially closed, longitudinal defects. Similar cracks were present in alloy 600 specimens, but in at least one case SCC did initiate from these shallow, blunt cracks.

  4. Effects of Compaction and Temperature on Sorption and Diffusion of Cs and HTO in Compacted Bentonite Saturated with Saline Water

    SciTech Connect (OSTI)

    Satoru Suzuki; Masashi Haginuma; Kazunori Suzuki

    2007-07-01

    The sorption and diffusion of Cs and tritiated water (HTO) in compacted bentonite was investigated at temperatures from 30 to 60 deg. C. The apparent (D{sub a}) and effective (D{sub e}) diffusion coefficients were determined by in-diffusion and through-diffusion experiments with a constant boundary concentration maintained. The temperature dependence of De and Da obeyed an Arrhenius-type equation, allowing determination of the activation energy for diffusion of Cs and HTO. The D{sub e} value of Cs was three times the D{sub e} of HTO, which is considered to be a result of surface-excess diffusion. Cs may be concentrated near the surface of the negatively charged clay, thus giving a large diffusive flux. The activation energies for Cs diffusion were 21.4{+-}2.8 kJ/mol and 37.3{+-}1.5 kJ/mol as determined based on D{sub e} and D{sub a}, respectively. This difference was due to the temperature dependence of the distribution coefficient K{sub d} of Cs. (authors)

  5. Measurement of temperature-dependent thermal conductivity and viscosity of TiO{sub 2}-water nanofluids

    SciTech Connect (OSTI)

    Duangthongsuk, Weerapun; Wongwises, Somchai

    2009-04-15

    Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Many attempts have been made to investigate its thermal conductivity and viscosity, which are important thermophysical properties. No definitive agreements have emerged, however, about these properties. This article reports the thermal conductivity and dynamic viscosity of nanofluids experimentally. TiO{sub 2} nanoparticles dispersed in water with volume concentration of 0.2-2 vol.% are used in the present study. A transient hot-wire apparatus is used for measuring the thermal conductivity of nanofluids whereas the Bohlin rotational rheometer (Malvern Instrument) is used to measure the viscosity of nanofluids. The data are collected for temperatures ranging from 15 C to 35 C. The results show that the measured viscosity and thermal conductivity of nanofluids increased as the particle concentrations increased and are higher than the values of the base liquids. Furthermore, thermal conductivity of nanofluids increased with increasing nanofluid temperatures and, conversely, the viscosity of nanofluids decreased with increasing temperature of nanofluids. Moreover, the measured thermal conductivity and viscosity of nanofluids are quite different from the predicted values from the existing correlations and the data reported by other researchers. Finally, new thermophysical correlations are proposed for predicting the thermal conductivity and viscosity of nanofluids. (author)

  6. Lead-induced stress corrosion cracking of Alloy 600 and 690 in high temperature water

    SciTech Connect (OSTI)

    Sakai, T.; Senjuh, T.; Aoki, K.; Shigemitsu, T.; Kishi, Y.

    1992-12-31

    Lead is one of the potential contributing impurities to the degradation of PWR steam generator tubing. Recent laboratory testing has shown that lead is a corrosive material for Alloy 600 steam generator tubing. However, it is still unknown how lead influences the corrosion of steam generator tubing, including the effect of lead concentration, solution pH, stress level and material characteristics. In this study, two kinds of experiments were performed. One was to investigate the thin film characteristic and selectively dissolved base metal elements of Alloy 600MA in high temperature solutions of different lead concentrations and pH. The other investigated the dependency of degradation of Alloy 600MA and Alloy 690TT on lead concentration and stress level in mild acidic environment, at 340{degrees}C for 2500 hrs. It was firstly demonstrated that lead-enhanced selective dissolution of nickel from alloy base metal, as a result of electrochemical reaction between lead and nickel, might cause the initiation and propagation of corrosion. Secondly, we showed that Alloy 690TT, generally very corrosion resistant material, also suffered from Pb-induced corrosion. The difference of the lead-induced stress corrosion morphology of Alloy 600MA and Alloy 690TT was also clarified.

  7. Photochemical reaction of sulfur hexafluoride with water in low-temperature xenon matrices

    SciTech Connect (OSTI)

    Yamada, Yasuhiro; Tamura, Hiroyuki; Takeda, Daisuke

    2011-03-14

    Sulfur hexafluoride SF{sub 6} is a very stable molecule with which very few reactions with other molecules have been reported. Here, we report a photochemical reaction of SF{sub 6} with water molecules using a matrix-isolation technique, where SF{sub 6} and H{sub 2}O were co-condensed in Xe matrices, and the products were observed using infrared spectroscopy. Irradiation at 193 nm from an ArF excimer laser caused the simultaneous decomposition of SF{sub 6} and H{sub 2}O, which resulted in the production of novel species. Infrared spectra and molecular orbital calculations of the species showed that the product was a SF{sub 4}{center_dot}{center_dot}{center_dot}HF{center_dot}{center_dot}{center_dot}HOF complex, which consists of hydrogen bonds and charge transfer interaction between S and F atoms. The assignment of the species was confirmed by isotope shifts using D and {sup 18}O isotope substitutions.

  8. Concept Paper for Real-Time Temperature and Water QualityManagement for San Joaquin River Riparian Habitat Restoration

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2004-12-20

    The San Joaquin River Riparian Habitat Restoration Program (SJRRP) has recognized the potential importance of real-time monitoring and management to the success of the San Joaquin River (SJR) restoration endeavor. The first step to realizing making real-time management a reality on the middle San Joaquin River between Friant Dam and the Merced River will be the installation and operation of a network of permanent telemetered gauging stations that will allow optimization of reservoir releases made specifically for fish water temperature management. Given the limited reservoir storage volume available to the SJJRP, this functionality will allow the development of an adaptive management program, similar in concept to the VAMP though with different objectives. The virtue of this approach is that as management of the middle SJR becomes more routine, additional sensors can be added to the sensor network, initially deployed, to continue to improve conditions for anadromous fish.

  9. Initiation and propagation of stress-corrosion cracking of Alloy 600 in high-temperature water. [PWR

    SciTech Connect (OSTI)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    Results of stress-corrosion cracking data are presented for Inconel 600 steam-generator tubing. U-bend, constant-load, and slow extension-rate tests are included. Arrhenius plots are presented for failure times vs inverse temperature for crack initiation and propagation. Effect of applied load is expressed in terms of log-log curves for failure times vs stress, and variations in environment and cold work are included. Microstructure and composition of oxide films on Inconel 600 surfaces were examined after exposure to pure water at 365/sup 0/C, and stripping with the bromine-methanol method. Results are discussed in terms of transient creep, film rupture and a mass-transport-limited anodic process.

  10. Low temperature, sulfur tolerant homogeneous catalysts for the water-gas shift reaction. Task 1, Topical report No. 1

    SciTech Connect (OSTI)

    Laine, R.M.

    1986-01-20

    The purpose of this report is to update and reorganize our recent review on homogeneous catalysis of the water-gas shift reaction (WGSR) based on recent literature publications and patents. This updated version will serve as a means of selecting 10 candidate catalyst systems for use in developing effective, sulfur-tolerant, low temperature WGSR catalysts. This report discusses the variations possible in the basic chemistry associated with WGSR catalytic cycles, including basic, acidic, and neutral conditions. Then individual mechanism for specific WGSR catalyst systems are discussed. Finally, on the basis of the literature reports, a list is presented of candidate catalysts and basic systems we have chosen for study in Task 3.

  11. Microbial water diversion technique-designed for near well treatment in low temperature sandstone reservoirs in the North Sea

    SciTech Connect (OSTI)

    Paulsen, J.E.; Vatland, A.; Sorheim, R.

    1995-12-31

    A Norwegian Research Program on Improved Oil Recovery (IOR) in North Sea reservoirs was launched in 1992. Microbial methods, applied in this context, is a part of this program. The scope, the methodological approach, and results from the three first years are presented. Water profile control, using biomass to block high permeable zones of a reservoir, has been investigated using nitrate-reducing bacteria in the injected sea water as plugging agents. Emphasis has been put on developing a process that does not have disadvantages secondary to the process itself, such as souring and impairment of the overall injectivity of the field. Data from continuous culture studies indicate that souring may successfully be mitigated by adding nitrite to the injected seawater. The morphology and size of generic-nitrate-reducing seawater bacteria have been investigated. Screening of growth-promoting nutrients has been carried out, and some sources were detected as favorable. Transport and penetration of bacteria in porous media have been given special attention. Investigations with sand packs, core models, and pore micromodels have been carried out. The inherent problems connected with permeability contrasts and flow patterns, versus bacterial behavior, are believed to be critical for the success of this technology. Data from the transport and blocking experiments with the porous matrices confirm this concern. The technology is primarily being developed for temperatures less than 40{degrees}C.

  12. Rapid reconnaissance of geothermal prospects using shallow temperature...

    Open Energy Info (EERE)

    at Coso, a simple set of surface conditions. It is concluded that making useful shallow temperature measurements where there is a modest amount of ground water flow need not be a...

  13. Characterization of Surface Water/Groundwater Exchange Regulating Uranium Transport Using Electrical Imaging and Distributed Temperature Sensing Methods

    SciTech Connect (OSTI)

    Lee D. Slater; Dimitrios Ntarlagiannis; Fred Day-Lewis; Kisa Mwakanyamale; Roelof J Versteeg; Andy Ward; Christopher Strickland; Carole D. Johnson; John Lane

    2010-10-01

    A critical challenge in advancing prediction of solute transport between contaminated aquifers and rivers is improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along river corridors. Here, we explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) monitoring, to improve the conceptual model for uranium transport within the river corridor at the Hanford 300 Area. We first inverted CWEI (resistivity and induced polarization) datasets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse-grained, high permeability Hanford formation and the underlying finer grained, less permeable Ringold formation, an important contact that limits vertical migration of contaminants, were resolved along ~3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). Spatial variability in the thickness of the Hanford formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. The FO- DTS data recorded along a 1.5 km of cable with a 1-m spatial resolution and 5-minute sampling interval revealed sub-reaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and, (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water/groundwater exchange. The FO-DTS datasets confirm the

  14. Reservoir Temperature Estimator

    Energy Science and Technology Software Center (OSTI)

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  15. Mechanisms of hydrogen-induced intergranular stress corrosion cracking of Alloy 600 in high-temperature water/steam

    SciTech Connect (OSTI)

    Shen, C.H.

    1989-01-01

    Intergranular stress-corrosion cracking (IGSCC) of Alloy 600 in high-temperature deaerated water or steam has been termed Hydrogen Induced IGSCC. It is suggested here that these cracks are initiated by the nucleation of a high density of bubbles on the grain boundary under the combined action of the applied stress and high-pressure methane formed from carbon in solution reacting with hydrogen injected by corrosion. The bubbles then grow together by grain-boundary diffusion to give local failure. This agrees with the observations made using the electron microscope and two-stage replicas, namely the subsurface formation of closely spaced (0.2 {mu}m) bubbles along boundaries, and the growth of these into fine cracks before they open up to communicate with the corroding atmosphere. The kinetics of this process are examined and shown to be in quantitative agreement with several experimental observations. This mechanism involves no dissolution of the metal, the only role of corrosion being the injection of hydrogen at a high fugacity. It also predicts an activation energy essentially equal to that for grain-boundary diffusion of nickel in the Alloy 600 grain boundary. The activation energy for grain-boundary self-diffusion in nickel is 115 kJ/mol.

  16. Partially sulfated lime-fly ash sorbents activated by water or steam for SO{sub 2} removal at a medium temperature

    SciTech Connect (OSTI)

    Liming Shi; Xuchang Xu

    2005-12-01

    Laboratory experiments were conducted to investigate the reactivity of partially sulfated lime-fly ash sorbents activated by water or steam for SO{sub 2} removal. Sulfation tests were performed at 550{sup o}C using a fixed bed reactor under conditions simulating economizer zone injection flue gas desulfurization. Activation experiments were conducted with water or steam using a range of temperatures between 100 and 550{sup o}C. The results showed that the reactivity of the sorbents was closely related to the content of Ca(OH){sub 2} formed in the activation process, which varied with the water or steam temperature. The sulfur dioxide capture capacity of Ca(OH){sub 2} in the sorbent is higher than that of CaO at a medium temperature. Water or steam temperatures in the range of 100-200{sup o}C are favorable to the formation of Ca(OH){sub 2} from CaO. 15 refs., 8 figs., 2 tabs.

  17. Effect of Corrosion Film Composition and Structure on the Corrosion Kinetics of Ni-Cr-Fe Alloys in High Temperature Water

    SciTech Connect (OSTI)

    P.M. Rosecrans; N. Lewis; D.J. Duquette

    2002-02-27

    Nickel alloys such as Alloy 600 undergo Stress Corrosion Cracking (SCC) in pure water at temperatures between about 260 C and the critical point. Increasing the level of Cr in Ni-Fe-Cr alloys increases SCC resistance in aerated and deaerated water. The mechanism is not understood. The effect of Cr composition on oxide microstructure and corrosion kinetics of Ni-Fe-Cr alloys was determined experimentally, to evaluate whether the anodic dissolution model for SCC can account for the effect of Cr on SCC. The alloy corrosion rate and corrosion product oxide microstructure is strongly influenced by the Cr composition. Corrosion kinetics are parabolic and influenced by chromium concentration, with the parabolic constant first increasing then decreasing as Cr increases from 5 to 39%. Surface analyses using Analytical Electron microscopy (AEM) and Auger Electron Spectroscopy (AES) show that the corrosion product film that forms initially on all alloys exposed to high purity high temperature water is a nickel rich oxide. With time, the amount of chromium in the oxide film increases and corrosion proceeds toward the formation of the more thermodynamically stable spinel or hexagonal Cr-rich oxides, similar to high temperature gaseous oxidation. Due to the slower diffusion kinetics at the temperatures of water corrosion compared to those in high temperature gaseous oxidation, however, the films remain as a mixture of NiO, mixed Ni, Fe and Cr spinels, NiCrO{sub 3} and FeCrO{sub 3}. As the amount of Cr in the film increases and the nature of the film changes from NiO to spinel or hexagonal oxides, cation diffusion through the films slows, slowing the corrosion rate. These observations are qualitatively consistent with an anodic dissolution SCC mechanism. However, parametric modeling of the SCC growth process, applying available creep, oxide rupture strain and corrosion kinetics data, indicates that the anodic dissolution mechanism accounts for only a fraction of the effect of Cr

  18. Effects of water temperature on the toxicity of 4-nitrophenol and 2,4-dinitrophenol to developing rainbow trout (Oncorhynchus mykiss)

    SciTech Connect (OSTI)

    Howe, G.E.; Marking, L.L.; Bills, T.D.; Boogaard, M.A. . National Fisheries Research Center); Mayer, F.L. Jr. . Environmental Protection Agency)

    1994-01-01

    Early-life-stage (ELS) toxicity tests were conducted to determine the effect of selected water temperature on the toxicity of 4-nitrophenol and 2,4-dinitrophenol to rainbow trout (Oncorhynchus mykiss). NOECs were determined for growth and mortality at selected time intervals and water temperatures of 7, 12, and 17 C. As tests progressed, NOECs leveled to constant time-independent values that were similar for tests at each temperature. In 4-nitrophenol tests, the time-independent NOEC values at 7, 12, and 17 C, respectively, were 1.16, 1.20, and 1.16 mg/L for growth and 3.40, 3.38, and 2.20 mg/L for mortality. For 2,4-dinitrophenol, time-independent NOEC values at 7, 12, and 17 C, respectively, were 1.07, 0.50, and 0.80 mg/L for growth and 1.30, 1.89, and 1.60 mg/L for mortality. Temperature did, however, affect the rate at which time-independent NOECs were reached. More time was required to reach time-independent NOECs as temperature decreased. For example, the time-independent NOEC in 4-nitrophenol tests at 17 C was reached in 14 d, whereas it required 42 d at 7 C. The effect of temperature on toxicity must be considered in hazard assessment protocols to assess risk accurately and protect aquatic organisms adequately. Chronic toxicity tests are necessary to assess risk because acute toxicity tests cannot provide the information necessary to predict the long-term effects of factors such as temperature in natural environments.

  19. Interactive effects of elevated CO{sub 2}, drought and high temperature on plant water use efficiency

    SciTech Connect (OSTI)

    Theodore C. Hsiao

    1998-08-01

    Water use efficiency (WUE) by plants is a key determinant of productivity and survival of plants under water limiting or drought conditions. The aim of this project was to develop a mechanistic basis for predicting WUE without the prohibitive task of studying every plant species under a range of environmental conditions.

  20. An apparatus for the study of high temperature water radiolysis in a nuclear reactor: Calibration of dose in a mixed neutron/gamma radiation field

    SciTech Connect (OSTI)

    Edwards, Eric J.; Wilson, Paul P. H.; Anderson, Mark H.; Mezyk, Stephen P.; Pimblott, Simon M.; Bartels, David M.

    2007-12-15

    The cooling water of nuclear reactors undergoes radiolytic decomposition induced by gamma, fast electron, and neutron radiation in the core. To model the process, recombination reaction rates and radiolytic yields for the water radical fragments need to be measured at high temperature and pressure. Yields for the action of neutron radiation are particularly hard to determine independently because of the beta/gamma field also present in any reactor. In this paper we report the design of an apparatus intended to measure neutron radiolysis yields as a function of temperature and pressure. A new methodology for separation of neutron and beta/gamma radiolysis yields in a mixed radiation field is proposed and demonstrated.

  1. Direct use of low temperature geothermal water by Aquafarms International, Inc. for freshwater aquaculture (prawns and associated species). An operations and maintenance manual

    SciTech Connect (OSTI)

    Broughton, R.; Price, M.; Price, V.; Grajcer, D.

    1984-04-01

    In connection with an ongoing commercial aquaculture project in the Coachella Valley, California; a twelve month prawn growout demonstration project was conducted. This project began in August, 1979 and involved the use of low temperature (85/sup 0/F) geothermal waters to raise freshwater prawns, Macrobrachium rosenbergii (deMan), in earthen ponds. The following publication is an operations and maintenance guide which may by useful for those interested in conducting similar enterprises.

  2. Strain rate and temperature effects on the stress corrosion cracking of Inconel 600 steam generator tubing in the primary water conditions

    SciTech Connect (OSTI)

    Kim, U.C.; van Rooyen, D.

    1985-01-01

    A single heat of Inconel Alloy 600 was examined in this work, using slow strain rate tests (SSRT) in simulated primary water at temperatures of 325/sup 0/-345/sup 0/-365/sup 0/C. The best measure of stress corrosion cracking (SCC) was percent SCC present on the fracture surface. Strain rate did not seem to affect crack growth rate significantly, but there is some question about the accuracy of calculating these values in the absence of a direct indication of when a crack initiates. Demarcation was determined between domains of temperature/strain rate where SCC either did, or did not, occur. Slower extension rates were needed to produce SCC as the temperature was lowered. 10 figs.

  3. Saving Water Saves Energy

    SciTech Connect (OSTI)

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-06-15

    Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.

  4. Thermally activated low temperature creep and primary water stress corrosion cracking of NiCrFe alloys

    SciTech Connect (OSTI)

    Hall, M.M. Jr.

    1993-10-01

    A phenomenological SCC-CGR model is developed based on an apriori assumption that the SCC-CGR is controlled by low temperature creep (LTC). This mode of low temperature time dependent deformation occurs at stress levels above the athermal flow stress by a dislocation glide mechanism that is thermally activated and may be environmentally assisted. The SCC-CGR model equations developed contain thermal activation parameters descriptive of the dislocation creep mechanism. Thermal activation parameters are obtained by fitting the CGR model to SCC-CGR data obtained on Alloy 600 and Alloy X-750. These SCC-CGR activation parameters are compared to LTC activation parameters obtained from stress relaxation tests. When the high concentration of hydrogen at the tip of an SCC crack is considered, the SCC-CGR activation energies and rate sensitivities are shown to be quantitatively consistent with hydrogen reducing the activation energy and increasing the strain rate sensitivity in LTC stress relaxation tests. Stress dependence of SCC-CGR activation energy consistent with that found for the LTC activation energy. Comparisons between temperature dependence of the SCC-CGR stress sensitivity and LTC stress sensitivity provide a basis for speculation on effects of hydrogen and solute carbon on SCC crack growth rates.

  5. Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary alloy exposed to high-temperature water.

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2013-10-30

    Intergranular oxidation of a Ni-4Al alloy exposed to hydrogenated, high-temperature water was characterized using directly correlated transmission electron microscopy and atom probe tomography. These combined analyses revealed that discrete, well-separated oxides (NiAl2O4) precipitated along grain boundaries in the metal. Aluminum was depleted from the grain boundary between oxides and also from one side of the boundary as a result of grain boundary migration. The discrete oxide morphology, disconnected from the continuous surface oxidation, suggests intergranular solid-state internal oxidation of Al. Keywords: oxidation; grain boundaries; nickel alloys; atom probe tomography; transmission electron microscopy (TEM)

  6. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  7. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    SciTech Connect (OSTI)

    Kim, J. S.; Lee, M. H.; Kim, S. Y.; Kim, D. H.; Ott, R. T.; Kim, H. G.

    2015-07-15

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni{sub 59}Zr{sub 20}Ti{sub 16}Si{sub 2}Sn{sub 3} metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO{sub 3}, ZrTiO{sub 4} and ZrSnO{sub 4} ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.

  8. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, J. S.; Kim, S. Y.; Kim, D. H.; Ott, R. T.; Kim, H. G.; Lee, M. H.

    2015-07-01

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni59Zr20Ti16Si2Sn3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO3, ZrTiO4 and ZrSnO4 ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phasesmore » changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.« less

  9. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    SciTech Connect (OSTI)

    Kim, J. S.; Kim, S. Y.; Kim, D. H.; Ott, R. T.; Kim, H. G.; Lee, M. H.

    2015-07-01

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni59Zr20Ti16Si2Sn3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO3, ZrTiO4 and ZrSnO4 ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.

  10. Water vapor distribution in protoplanetary disks

    SciTech Connect (OSTI)

    Du, Fujun; Bergin, Edwin A.

    2014-09-01

    Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyα photons, since the Lyα line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ∼300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.

  11. Ener-Gee Whiz Answers Your Questions: Thermostat Settings and...

    Energy Savers [EERE]

    Thermostat Settings and Solar Water Heaters Ener-Gee Whiz Answers Your Questions: Thermostat Settings and Solar Water Heaters June 23, 2009 - 12:54pm Addthis Amy Foster Parish ...

  12. Mechanism of lead-induced stress corrosion cracking of nickel-based alloys in high-temperature water

    SciTech Connect (OSTI)

    Sakai, T.; Nakagomi, N.; Kikuchi, T.; Aoki, K.; Nakayasu, F.; Yamakawa, K.

    1998-07-01

    A study was undertaken to better understand the lead-induced corrosion mechanism of nickel-based alloys used for steam generator tubing materials (alloys 600 and 690 [UNS N06600 and N06690]) in pressurized-water reactor (PWR) plants. Electrochemical measurements (corrosion potential and polarization measurements) and constant extension rate tests (CERT) of tubing materials were performed in lead-contaminated environments. Results of electrochemical measurements showed lead did not raise the corrosion potential but did increase the anodic polarization current in the passivity region, which indicated degradation of the passive oxide film. CERT results showed alloy 690 had better corrosion resistance than alloy 600, which was in good agreement with the lower intensity of the anodic current. The mechanism of lead-induced corrosion was proposed as disruption of the oxide film of the alloys as a result of the incorporation of lead.

  13. High-Resolution Characterization of Intergranular Attack and Stress Corrosion Cracking of Alloy 600 in High-Temperature Primary Water

    SciTech Connect (OSTI)

    Thomas, Larry E.; Bruemmer, Stephen M.

    2000-06-01

    Intergranular (IG) attack regions and stress-corrosion cracks in alloy 600 U-bend samples tested in 330C, pressurized-water-reactor water have been characterized by analytical transmission electron microscopy (ATEM). Observations of cross-sectional samples revealed short oxidized zones preceding crack tips and narrow (10-nm wide), deeply penetrated, oxidized zones along grain boundaries exposed along open cracks. High-resolution TEM imaging and fine-probe analysis were used to determine the local chemistries and structures in these corrosion-affected zones. Matrix areas surrounding the crack tips appeared highly strained, whereas the IG penetrations generally did not. The predominant oxide structure found along crack walls and just ahead of crack tips was NiO with metal-atom ratios similar to the alloy. The attacked grain boundaries off open cracks contained similar fine-grained NiO-structure oxide together with local areas of Cr-rich oxide and Ni-rich metal. In contrast, Cr-rich oxide identified as Cr2O3 predominated at the leading edges of the IG attack. Stereoscopic imaging of these tip structures revealed nm-scale porosity and tunnels within the oxide and pores along the grain-boundary plane ahead of the oxide. The general interpretation of these results is that IG attack and cracking follows local dissolution or oxidation and the formation of pores at grain boundaries. This degradation occurs at the nanometer scale and therefore requires high-resolution ATEM methods to reveal detailed characteristics. Experimental support for several possible IG degradation mechanisms is considered.

  14. ARM - Measurement - Sea surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sea surface temperature The temperature of sea water near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  15. Inhibitory effect of boric acid on intergranular attack and stress corrosion cracking of Alloy 600 in high temperature water

    SciTech Connect (OSTI)

    Kawamura, H.; Hirano, H.; Koike, M.; Suda, M.

    1995-09-01

    The inhibitory effect of boric acid on the Intergranular Attack and Stress Corrosion Cracking (IGA/SCC) propagation behavior of steam generator (SG) tubing was studied under accelerated test conditions. Based on the analysis results of stress intensity factors at IGA/SCC crack tips, the notched C-ring tests were carried out to evaluate the effect of stress intensity and boric acid on the IGA/SCC crack propagation. The A.C. impedance measurement and Auger electron spectroscopy (AES) were also conducted to clarify the inhibitory effect of boric acid. Notched C-ring test results indicated that IGA/SCC crack velocity of alloy 600 increased gradually with increasing stress intensity factor in the range 4 to about 26 MPa{center_dot}m{sup 1/2}, which might be loaded on the IGA/SCC crack tips of actual SG tubes under PWR secondary conditions. Adding boric acid slightly retarded the crack velocity in both all volatile treatment (AVT) water and caustic solutions. IGA/SCC crack velocities were lower in nearly neutral solutions than in alkali or acidic solutions. Furthermore, A.C. impedance studies showed that the polarization resistances of oxide films formed in boric acid solutions were higher than those of films formed in acidic and alkali solutions. AES analysis revealed that boron content in the oxide films formed in acidic solution containing boric acid was lowest. Good agreement was obtained between the IGA/SCC inhibitory effect of boric acid and the formation of the stable oxide films containing boron.

  16. Northern pike bycatch in an inland commercial hoop net fishery: effects of water temperature and net tending frequency on injury, physiology, and survival

    SciTech Connect (OSTI)

    Colotelo, Alison HA; Raby, Graham D.; Hasler, Caleb T.; Haxton, Tim; Smokorowski, Karen; Blouin-Demers, Gabriel; Cooke, Steven J.

    2013-01-01

    In lakes and rivers of eastern Ontario (Canada) commercial fishers use hoop nets to target a variety of fishes, but incidentally capture non-target (i.e., bycatch) gamefish species such as northern pike (Esox lucius). Little is known about the consequences of bycatch in inland commercial fisheries, making it difficult to identify regulatory options. Regulations that limit fishing during warmer periods and that require frequent net tending have been proposed as possible strategies to reduce bycatch mortality. Using northern pike as a model, we conducted experiments during two thermal periods (mid-April: 14.45 ± 0.32 °C, and late May: 17.17 ± 0.08 °C) where fish were retained in nets for 2 d and 6 d. A ‘0 d’ control group consisted of northern pike that were angled, immediately sampled and released. We evaluated injury, physiological status and mortality after the prescribed net retention period and for the surviving fish used radio telemetry with manual tracking to monitor delayed post-release mortality. Our experiments revealed that injury levels, in-net mortality, and post-release mortality tended to increase with net set duration and at higher temperatures. Pike exhibited signs of chronic stress and starvation following retention, particularly at higher temperatures. Total mortality rates were negligible for the 2 d holding period at 14 °C, 14% for 6 d holding at 14 °C, 21% for 2 d holding at 17 °C, and 58% for 6 d holding at 17 °C. No mortality was observed in control fish. Collectively, these data reveal that frequent net tending, particularly at warmer temperatures, may be useful for conserving gamefish populations captured as bycatch in inland hoop net fisheries.

  17. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  18. Setting up File Permissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Setting up File Permissions Setting up File Permissions Recommendations for Setting up "Shared" Directories This section shows the recommended commands for setting up shared directories. Please read the full page to get an understanding of what these commands are doing. These recommendations are based on the common use-case at the JGI for user/group read/write and global read access. Creating a New Shared Directory dmj@genepool04:~$ umask 002 # or have this set in .bashrc.ext

  19. Portable solar water heater

    SciTech Connect (OSTI)

    Borodulin, G.; Baron, R.; Shkolnik, A.

    1985-11-12

    A combined table and portable solar water heater comprises a suitcase-like rigid casing molded from a rigid plastic material which contains a pair of solar collector panels and connected in series. The panels can be exposed to solar radiation when the casing is opened. Each collector panel or is formed by a copper plate with the solar radiation absorbing surface and copper pipe coil or in heat-transferring relationship with said copper plate. The casing is provided with compartments for accessories, such as adjustable legs for supporting the casing, adjusting its angle to incident sunlight, and for converting the casing into a table; containers for feeding cold water to the solar collector and for receiving hot water from the collector; and a tripod stand for supporting the feeding container at the level above the collector and for arranging a shower set. Temperature-insulating layers of the collectors are formed by separate pieces of rigid material which can be removed from the casing and assembled into a box-shaped container which can be utilized for maintaining water heated by means of the solar water heater at an elevated temperature.

  20. Setting up File Permissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Since you are the only user who has access to your personal filegroup (named the same as your username), there is little value in setting the group permission bits unless you also ...

  1. Low Temperature Proton Conductivity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and MEAs at Freezing Temperatures Thomas A. Zawodzinski, Jr. Case Western Reserve University Cleveland, Ohio 2 Freezing Fuel Cells: Impact on MEAS Below 0 o C *Transport processes/motions slow down: questions re: lower conductivity,water mobility etc *Residual water will have various physical effects in different portions of the MEA questions re: durability of components 3 3 'States' of Water in Proton Conductors ? Freezing (bulk), bound freezable, bound non freezable water states claimed based

  2. New CREW Database Receives First Set of Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CREW Database Receives First Set of Data - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  3. Set Equation Transformation System.

    Energy Science and Technology Software Center (OSTI)

    2002-03-22

    Version 00 SETS is used for symbolic manipulation of Boolean equations, particularly the reduction of equations by the application of Boolean identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze noncoherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protectionmore » requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access through nullification of sensors in its protection system. Two auxiliary programs, SEP and FTD, are included. SEP performs the quantitative analysis of reduced Boolean equations (minimal cut sets) produced by SETS. The user can manipulate and evaluate the equations to find the probability of occurrence of any desired event and to produce an importance ranking of the terms and events in an equation. FTD is a fault tree drawing program which uses the proprietary ISSCO DISSPLA graphics software to produce an annotated drawing of a fault tree processed by SETS. The DISSPLA routines are not included.« less

  4. Effects of water temperature and pH on toxicity of terbufos, trichlorfon, 4-nitrophenol and 2,4-dinitrophenol to the amphipod Gammarus pseudolimnaeus and rainbow trout (Oncorhynchus mykiss)

    SciTech Connect (OSTI)

    Howe, G.E.; Marking, L.L.; Bills, T.D.; Rach, J.J. . National Fisheries Research Center); Mayer, F.L. Jr. . Environmental Research Lab.)

    1994-01-01

    Acute toxicity tests were conducted to determine (a) the individual and interactive effects of water temperature (7, 12, 17 C), pH (6.5, 7.5, 8.5, 9.5), and time on the toxicity of terbufos, trichlorfon, 4-nitrophenol, and 2,4-dinitrophenol to rainbow trout (Oncorhynchus mykiss) and the amphipod Gammarus pseudolimnaeus, and (b) the individual and interactive effects of water temperature and pH on chemical bioconcentration during acute tests with rainbow trout and Gammarus exposed to terbufos, 4-nitrophenol, and 2,4-dinitrophenol. The toxicity of all four chemicals was significantly affected by pH in all tests, except for Gammarus exposed to terbufos. The toxicity of terbufos to rainbow trout and Gammarus was less at pH 7.5 than at higher or lower pH. The toxicity of both nitrophenols decreased as pH increased, whereas the toxicity of trichlorfon increased with pH. The effect of pH on trichlorfon toxicity decreased with temperature. Temperature significantly affected the toxicity of all four chemicals to both species. Toxicity increased with temperature in all tests, except for rainbow trout exposed to nitrophenols; toxicity decreased as temperature increased for rainbow trout. Chemical bioconcentration was also significantly affected by temperature and pH and was directly related to toxicity in most tests. Significant interactive effects between toxicity-modifying factors were also frequently observed. Temperature and pH effects on chemical toxicity need to be considered in chemical hazard assessment to ensure adequate protection of aquatic organisms.

  5. Microwave and Millimeter-Wave Radiometric Studies of Temperature...

    Office of Scientific and Technical Information (OSTI)

    of Temperature, Water Vapor and Clouds Citation Details In-Document Search Title: Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds The ...

  6. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ploskey, Gene R.

    2011-10-01

    This report presents the results of an evaluation of juvenile Chinook salmonid (Oncorhynchus tshawytscha) behavior in the immediate forebay of the Water Temperature Control (WTC) tower at Cougar Dam in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers. The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the WTC tower for fisheries resource managers to use to make decisions on bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from February 1, 2010 through January 31, 2011 to evaluate juvenile salmonid behavior year-round in the immediate forebay surface layer of the WTC tower (within 20 m, depth 0-5 m). From October 28, 2010 through January 31, 2011 a BlueView acoustic camera was also deployed in an attempt to determine its usefulness for future studies as well as augment the DIDSON data. For the DIDSON data, we processed a total of 35 separate 24-h periods systematically covering every other week in the 12-month study. Two different 24-hour periods were processed for the BlueView data for the feasibility study. Juvenile salmonids were present in the immediate forebay of the WTC tower throughout 2010. The juvenile salmonid abundance index was low in the spring (<200 fish per sample-day), began increasing in late April and peaked in mid-May. Fish abundance index began decreasing in early June and remained low in the summer months. Fish abundance increased again in the fall, starting in October, and peaked on November 8-9. A second peak occurred on December 22. Afterwards, abundance was low for the rest of the study (through January 2011). Average fish length for juvenile salmonids during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November

  7. ARM - Temperature Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsTemperature Converter Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Temperature Converter The Fahrenheit scale, invented by German physicist Daniel Gabriel Fahrenheit (1686-1736), is based on 32 °F for the freezing point of water and 212 °F for the boiling point of water. The

  8. Temperature effects on airgun signatures (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    Search Title: Temperature effects on airgun signatures Experiments in an 850 liter water tank were performed in order to study temperature effects on airgun signatures, and to...

  9. understanding the low-temperature combustion chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low-temperature combustion chemistry - Sandia Energy Energy Search Icon Sandia Home ... EnergyWater History Water Monitoring & Treatment Technology Decision Models for ...

  10. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    SciTech Connect (OSTI)

    Seong W. Lee

    2004-04-01

    The systematic tests of the gasifier simulator were conducted in this reporting period. In the systematic test, two (2) factors were considered as the experimental parameters, including air injection rate and water injection rate. Each experimental factor had two (2) levels, respectively. A special water-feeding device was designed and installed to the gasifier simulator. Analysis of Variances (ANOVA) was applied to the results of the systematic tests. The ANOVA shows that the air injection rate did have the significant impact to the temperature measurement in the gasifier simulator. The ANOVA also shows that the water injection rate did not have the significant impact to the temperature measurements in the gasifier simulator. The ANOVA analysis also proves that the thermocouple assembly we proposed was immune to the moisture environment, the temperature measurement remained accurate in moisture environment. Within this reporting period, the vibration application for cleaning purpose was explored. Both ultrasonic and sub-sonic vibrations were considered. A feasibility test was conducted to prove that the thermocouple vibration did not have the significant impact to the temperature measurements in the gasifier simulator. This feasibility test was a 2{sup 2} factorial design. Two factors including temperature levels and motor speeds were set to two levels respectively. The sub-sonic vibration tests were applied to the thermocouple to remove the concrete cover layer (used to simulate the solid condensate in gasifiers) on the thermocouple tip. It was found that both frequency and amplitude had significant impacts on removal performance of the concrete cover layer.

  11. set5.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Natural Gas Fuel Oil District Heat District Chilled Water Propane Other a All Buildings ............................................... 67,338 65,753 65,716 45,525 13,285 5,891 2,750 6,290 2,322 Building Floorspace (Square Feet) 1,001 to 5,000 .............................................. 6,774 6,309 6,280 3,566 620 Q Q 635 292 5,001 to 10,000 ............................................ 8,238 7,721 7,721 5,088 583 Q Q 986 Q 10,001 to 25,000

  12. Tool setting device

    DOE Patents [OSTI]

    Brown, Raymond J.

    1977-01-01

    The present invention relates to a tool setting device for use with numerically controlled machine tools, such as lathes and milling machines. A reference position of the machine tool relative to the workpiece along both the X and Y axes is utilized by the control circuit for driving the tool through its program. This reference position is determined for both axes by displacing a single linear variable displacement transducer (LVDT) with the machine tool through a T-shaped pivotal bar. The use of the T-shaped bar allows the cutting tool to be moved sequentially in the X or Y direction for indicating the actual position of the machine tool relative to the predetermined desired position in the numerical control circuit by using a single LVDT.

  13. SHM Data Sets and Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SHM Data Sets and Software SHM Data Sets and Software SHM Data Sets and Software Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) ...

  14. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ham, Kenneth D.; Ploskey, Gene R.

    2012-04-01

    This report presents the results of an evaluation of juvenile Chinook salmon (Oncorhynchus tshawytscha) behavior at Cougar Dam on the south fork of the McKenzie River in Oregon in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE). The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the Water Temperature Control (WTC) tower of the dam for USACE and fisheries resource managers use in making decisions about bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from March 1, 2010, through January 31, 2011. Juvenile salmonids (hereafter, called 'fish') were present in the immediate forebay of the WTC tower throughout the study. Fish abundance index was low in early spring (<200 fish per sample-day), increased in late April, and peaked on May 19 (6,039 fish). A second peak was observed on June 6 (2904 fish). Fish abundance index decreased in early June and remained low in the summer months (<100 fish per sample-day). During the fall and winter, fish numbers varied with a peak on November 10 (1881 fish) and a minimum on December 7 (12 fish). A second, smaller, peak occurred on December 22 (607 fish). A univariate statistical analysis indicated fish abundance index (log10-transformed) was significantly (P<0.05) positively correlated with forebay elevation, velocity over the WTC tower intake gate weirs, and river flows into the reservoir. A subsequent multiple regression analysis resulted in a model (R2=0.70) predicting fish abundance (log-transformed index values) using two independent variables of mean forebay elevation and the log10 of the forebay elevation range. From the approximate fish length measurements made using the DIDSON imaging software, the average fish length

  15. Water Wars

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    Sandia National Laboratories and Intel Corporation are cooperating on a project aimed at developing serious games to assist in resource planners in conducting open and participatory projects. Water Wars serves as a prototype game focused on water issues. Water Wars is a multi-player, online role-playing "serious game" combining large-scale simulation (e.g. SimCity), with strategy and interpersonal interaction (e.g. Diplomacy). The game is about water use set in present-day New Mexico. Players enact various stakeholder rolesmore » and compete for water while simultaneously cooperating to prevent environmental collapse. The gamespace utilizes immersive 3D graphics to bring the problem alive. The game integrates Intel's OpenSim visualization engine with Sandia developed agent-based and system dynamics models.« less

  16. Light water detritiation

    SciTech Connect (OSTI)

    Fedorchenko, O.A.; Aleksee, I.A.; Bondarenko, S.D.; Vasyanina, T.V.

    2015-03-15

    Hundreds of thousands of tons of tritiated light water have been accumulating from the enterprises of nuclear fuel cycles around the world. The Dual-Temperature Water-Hydrogen (DTWH) process looks like the only practical alternative to Combined Electrolysis and Catalytic Exchange (CECE). In DTWH power-consuming lower reflux device (electrolytic cell) is replaced by a so-called 'hot tower' (LPCE column operating at conditions which ensure relatively small value of elementary separation factor α(hot)). In the upper, cold tower, the tritium transfers from hydrogen to water while in the lower, hot tower - in the opposite direction - from water to hydrogen. The DTWH process is much more complicated compared to CECE; it must be thoroughly computed and strictly controlled by an automatic control system. The use of a simulation code for DTWH is absolutely important. The simulation code EVIO-5 deals with 3 flows inside a column (hydrogen gas, water vapour and liquid water) and 2 simultaneous isotope exchange sub-processes (counter-current phase exchange and co-current catalytic exchange). EVIO-5 takes into account the strong dependence of process performance on given conditions (temperature and pressure). It calculates steady-state isotope concentration profiles considering a full set of reversible exchange reactions between different isotope modifications of water and hydrogen (12 molecular species). So the code can be used for simulation of LPCE column operation for detritiation of hydrogen and water feed, which contains H and D not only at low concentrations but above 10 at.% also. EVIO-5 code is used to model a Tritium Removal Facility with a throughput capacity of about 400 m{sup 3}/day. Simulation results show that a huge amount of wet-proofed catalyst is required (about 6000 m{sup 3}), mainly (90%) in the first stage. One reason for these large expenses (apart from a big scale of the problem itself) is the relatively high tritium separation factor in the hot tower

  17. Stress-corrosion cracking of Alloys 600 and 690 and weld metals No. 82 and No. 182 in high-temperature water. Interim report. [BWR

    SciTech Connect (OSTI)

    Page, R.A.

    1982-09-01

    The relative susceptibilities of Alloys 600 and 690 base metals and I-82 and 182 weld metals to intergranular stress corrosion cracking (IGSCC) in pure water at 288/sup 0/C were evaluated. A combination of creviced and non-creviced slow-strain-rate, smooth sustained-load, and precracked fracture mechanics tests were employed in the evaluation. Susceptibility was determined as a function of dissolved oxygen content, degree of sensitization, and crevice condition. The results indicated that Alloy 600, and I-182 and I-82 weld metals were susceptible to various degrees of IGSCC in oxygen containing pure water when creviced, and immune to IGSCC when uncreviced. Alloy 690 was immune to IGSCC under all conditions examined. No correlation was found between the location of IGSCC and the location of maximum grain boundary corrosion in a boiling 25% nitric acid test.

  18. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    SciTech Connect (OSTI)

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    hydrophobic segments. If, like in Nafion, connectivity is established between the hydrophilic domains in these multiblock copolymers, they will not need as much water, and hence will show much better protonic conductivity than the random copolymers (with similar degree of sulfonation, or IEC) at partially hydrated conditions. The goal of this research is to develop a material suitable for use as a polymer electrolyte membrane which by the year 2010 will meet all the performance requirements associated with fuel cell operation at high temperatures and low relative humidity, and will out-perform the present standard Nafion{reg_sign}. In particular, it is our objective to extend our previous research based on the use of thermally, oxidatively, and hydrolytically, ductile, high Tg ion containing polymers based on poly(arylene ethers) to the production of polymer electrolyte membranes which will meet all the performance requirements in addition to having an areal resistance of < 0.05 ohm-cm{sup 2} at a temperature of up to 120 C, relative humidity of 25 to 50%, and up to 2.5 atm total pressure. In many instances, our materials already out performs Nafion{reg_sign}, and it is expected that with some modification by either combining with conductive inorganic fillers and/or synthesizing as a block copolymer it will meet the performance criteria at high temperatures and low relative humidity. A key component in improving the performance of the membranes (and in particular proton conductivity) and meeting the cost requirements of $40/m{sup 2} is our development of a film casting process, which shows promise for generation of void free thin films of uniform thickness with controlled polymer alignment and configuration.

  19. Grain boundary depletion and migration during selective oxidation of Cr in a Ni-5Cr binary alloy exposed to high-temperature hydrogenated water

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2014-10-01

    High-resolution microscopy of a high-purity Ni-5Cr alloy exposed to 360C hydrogenated water reveals intergranular selective oxidation of Cr accompanied by local Cr depletion and diffusion-induced grain boundary migration (DIGM). The corrosion-product oxide consists of a porous, interconnected network of Cr2O3 platelets with no further O ingress into the metal ahead. Extensive grain boundary depletion of Cr (to <0.05at.%) is observed typically 20100 nm wide as a result of DIGM and reaching depths of many micrometers beyond the oxidation front.

  20. SHM Data Sets and Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SHM Data Sets and Software SHM Data Sets and Software SHM Data Sets and Software Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email SHMTools Software (0.2.0 Beta) SHMTools is a MATLAB package that facilitates the construction of structural health monitoring (SHM) processes. The package provides a set of functions organized

  1. Use of Electrical Imaging and Distributed Temperature Sensing Methods to Characterize Surface Water-Groundwater Exchange Regulating Uranium Transport at the Hanford 300 Area, Washington

    SciTech Connect (OSTI)

    Slater, Lee; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Versteeg, Roelof J.; Ward, Anderson L.; Strickland, Christopher E.; Johnson, Carole D.; Lane, John W.

    2010-10-31

    A critical challenge in advancing prediction of solute transport between contaminated aquifers and rivers is improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along river corridors. Here, we explored the use of waterborne geoelectrical imaging, in conjunction with fiber-optic distributed temperature sensor (DTS) monitoring, to improve the conceptual model for uranium transport within the hyporheic corridor at the Hanford 300 Area. We first inverted waterborne geoelectrical (resistivity and induced polarization) datasets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse-grained, high permeability Hanford formation and the underlying finer-grained, less permeable Ringold formation, an important contact that limits vertical migration of contaminants, were resolved along ~3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The spatial variability captured in the geoelectrical datasets indicates that previous studies based on borehole projections and point probing overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. The DTS data recorded on 1. 5 km of cable with a 1 m spatial resolution and 5 minute sampling interval revealed sub-reaches showing (1) high temperature anomalies and, (2) a strong negative correlation between temperature and river stage, both indicative of groundwater influxes during winter months. The DTS datasets confirm the hydrologic significance of the variability identified in the geoelectrical imaging and reveal a pattern of highly focused hyporheic exchange, with

  2. ARM - Measurement - Virtual temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to

  3. Effects of pH and stress intensity on crack growth rate in Alloy 600 in lithiated + borated water at high temperatures

    SciTech Connect (OSTI)

    Rebak, R.B.; Szklarska-Smialowska, Z.; McIlree, A.R.

    1992-12-31

    Primary water stress corrosion cracking studies were performed on Alloy 600. Constant load tests were conducted at 330 and 350{degrees}C in solutions containing dissolved hydrogen, boric acid (0 < B < 1200 ppm) and lithium hydroxide (0 < Li < 10 ppm). In the PWR working conditions range, that is, 6.9 < pH < 7.4 (or 0.5 ppm < Li < 3.5), there is little effect of the solution pH on the intergranular crack growth rate (IGSCC). However, there is a strong influence of the stress intensity on the IGSCC. K{sub ISCC} {approx} 5-10 MPa{radical}m. Dissolution plays an important role in the IGSCC process.

  4. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  5. Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG

    SciTech Connect (OSTI)

    lee, Joon Y.; Lee, Dae-Won; Lee, Kwan Young; Wang, Yong

    2009-08-15

    The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr6+) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Crfree catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H2, 10% CO, 37% H2O, 8% CO2, and 3% CH4; R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Febased catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas.

  6. Vital area analysis using sets

    SciTech Connect (OSTI)

    Stack, D.W.; Francis, K.A.

    1980-05-01

    This report describes the use of the Set Equation Transformation System (SETS) for vital area analysis. Several concepts are introduced which enable the analyst to construct more efficient SETS user programs to perform vital area analysis. The advantages of performing the transformation of variables without first determining the minimal cut sets of the fault tree are discussed. A ''bottom-up'' approach to solving a fault tree is presented. The techniques described for vital area analysis are also suitable and efficient for many kinds of common cause analysis.

  7. Set the PACE St. Louis

    Broader source: Energy.gov [DOE]

    Commercial property owners, community associations (e.g., Home Owners Associations), and some residential property owners are eligible for Set the PACE St. Louis. Currently, only residential prop...

  8. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J.

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  9. A Model Evaluation Data Set for the Tropical ARM Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

  10. A Model Evaluation Data Set for the Tropical ARM Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    2008-01-15

    This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

  11. Moderate Temperature | Open Energy Information

    Open Energy Info (EERE)

    temperature level. Thus, reservoirs in the 190 to 230C range should have liquid water as the mobile fluid phase, and as such, this class is reasonably well constrained....

  12. Water in protoplanetary disks: Deuteration and turbulent mixing

    SciTech Connect (OSTI)

    Furuya, Kenji; Aikawa, Yuri; Nomura, Hideko; Hersant, Franck; Wakelam, Valentine

    2013-12-10

    We investigate water and deuterated water chemistry in turbulent protoplanetary disks. Chemical rate equations are solved with the diffusion term, mimicking turbulent mixing in a vertical direction. Water near the midplane is transported to the disk atmosphere by turbulence and is destroyed by photoreactions to produce atomic oxygen, while the atomic oxygen is transported to the midplane and reforms water and/or other molecules. We find that this cycle significantly decreases column densities of water ice at r ? 30 AU, where dust temperatures are too high to reform water ice effectively. The radial extent of such region depends on the desorption energy of atomic hydrogen. Our model indicates that water ice could be deficient even outside the sublimation radius. Outside this radius, the cycle decreases the deuterium-to-hydrogen (D/H) ratio of water ice from ?2 10{sup 2}, which is set by the collapsing core model, to 10{sup 4}-10{sup 2} in 10{sup 6} yr, without significantly decreasing the water ice column density. The resultant D/H ratios depend on the strength of mixing and the radial distance from the central star. Our finding suggests that the D/H ratio of cometary water (?10{sup 4}) could be established (i.e., cometary water could be formed) in the solar nebula, even if the D/H ratio of water ice delivered to the disk was very high (?10{sup 2}).

  13. Solar water heating: FEMP fact sheet

    SciTech Connect (OSTI)

    Clyne, R.

    1999-09-30

    Using the sun to heat domestic water makes sense in almost any climate. Solar water heaters typically provide 40 to 80{percent} of a building's annual water-heating needs. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector.

  14. Penrose Well Temperatures

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  15. Beamline Temperatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Energy: 3.0000 GeV Current: 495.5347 mA Date: 09-Jan-2016 04:18:38 Beamline Temperatures Energy 3.0000 GeV Current 495.5 mA 09-Jan-2016 04:18:38 LN:MainTankLevel 112.0...

  16. Static Temperature Survey At Coso Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet. Water chemistry indicates that this geothermal resource is a hot-water rather than a...

  17. Fluid-inclusion evidence for past temperature fluctuations in...

    Open Energy Info (EERE)

    of the inclusion fluids range from dilute meteoric water to highly modified sea water concentrated by boiling. Comparison of measured drill-hole temperatures with...

  18. Method of immobilizing water-soluble bioorganic compounds on a capillary-porous carrier

    DOE Patents [OSTI]

    Ershov, Gennady Moiseevich; Timofeev, Eduard Nikolaevich; Ivanov, Igor Borisovich; Florentiev, Vladimir Leonidovich; Mirzabekov, Andrei Darievich

    1998-01-01

    The method for immobilizing water-soluble bioorganic compounds to capillary-porous carrier comprises application of solutions of water-soluble bioorganic compounds onto a capillary-porous carrier, setting the carrier temperature equal to or below the dew point of the ambient air, keeping the carrier till appearance of water condensate and complete swelling of the carrier, whereupon the carrier surface is coated with a layer of water-immiscible nonluminescent inert oil and is allowed to stand till completion of the chemical reaction of bonding the bioorganic compounds with the carrier.

  19. Setting Up Your User Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Setting Up Your User Environment Setting Up Your User Environment PDSF Defined Environment When new users are added to the PDSF machines, the login shell is set according to the user's request. You can choose between csh, tcsh, or bash. You can change your startup shell by logging into NIM. Paths and environment variables are controlled by startup files (also known as dot files). On PDSF the startup files are symbolic links to read-only files that NERSC controls (if they are not, see the

  20. Low Temperature Projects | Department of Energy

    Energy Savers [EERE]

    to Generate Electricity Using Geothermal Water Resources, Brian Brown, Brian Brown ... Power Demonstration of a Variable Phase Turbine Power System for Low Temperature ...

  1. Sunrayce 97 Finish Sets Records

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finish Sets Records For more information contact: Patrick Booher, Sunrayce Program Manager (202) 586-0713 Colorado Springs, Colo. -- Under sunny skies that have followed the race since its beginning in Indianapolis,, Sunrayce 97 roared to a record finish in Colorado Springs. Winning the event overall was California State University - Los Angeles with a record setting pace averaging 43:29 mph over the entire distance. Cal State - L.A. had a total elapsed time of 28:41:24 hours. Massachusetts

  2. Timescales and settings for alteration of chondritic meteorites

    SciTech Connect (OSTI)

    Krot, A N; Hutcheon, I D; Brearley, A J; Pravdivtseva, O V; Petaev, M I; Hohenberg, C M

    2005-11-16

    Most groups of chondritic meteorites experienced diverse styles of secondary alteration to various degrees that resulted in formation of hydrous and anhydrous minerals (e.g., phyllosilicates, magnetite, carbonates, ferrous olivine, hedenbergite, wollastonite, grossular, andradite, nepheline, sodalite, Fe,Ni-carbides, pentlandite, pyrrhotite, Ni-rich metal). Mineralogical, petrographic, and isotopic observations suggest that the alteration occurred in the presence of aqueous solutions under variable conditions (temperature, water/rock ratio, redox conditions, and fluid compositions) in an asteroidal setting, and, in many cases, was multistage. Although some alteration predated agglomeration of the final chondrite asteroidal bodies (i.e. was pre-accretionary), it seems highly unlikely that the alteration occurred in the solar nebula, nor in planetesimals of earlier generations. Short-lived isotope chronologies ({sup 26}Al-{sup 26}Mg, {sup 53}Mn-{sup 53}Cr, {sup 129}I-{sup 129}Xe) of the secondary minerals indicate that the alteration started within 1-2 Ma after formation of the Ca,Al-rich inclusions and lasted up to 15 Ma. These observations suggest that chondrite parent bodies must have accreted within the first 1-2 Ma after collapse of the protosolar molecular cloud and provide strong evidence for an early onset of aqueous activity on these bodies.

  3. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, R.D.

    1983-10-11

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  4. SWQM: Source Water Quality Modeling Software

    Energy Science and Technology Software Center (OSTI)

    2008-01-08

    The Source Water Quality Modeling software (SWQM) simulates the water quality conditions that reflect properties of water generated by water treatment facilities. SWQM consists of a set of Matlab scripts that model the statistical variation that is expected in a water treatment facility’s water, such as pH and chlorine levels.

  5. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H

  6. WHAM: Simplified tool for calculating water heater energy use

    SciTech Connect (OSTI)

    Lutz, J.D.; Whitehead, C.D.; Lekov, A.B.; Rosenquist, G.J.; Winiarski, D.W.

    1999-07-01

    Water heating comprises a significant portion of residential energy consumption--17% in the US, according to the residential energy consumption survey (RECS) (EIA 1995). For such a significant energy end use, energy analysts need a method to quickly and reliably assess current and future energy requirements for a variety of conservation policies and programs. To fill this need, the water heater analysis model (WHAM) was developed as a simple energy equation that accounts for different operating conditions and water heater characteristics when calculating energy consumption. The results of WHAM are compared to the results of detailed water heater simulation programs and show a high level of accuracy in estimating energy consumption. WHAM energy calculations are based on assumptions that account for a variety of field conditions and water heater types. By including seven parameters--recovery efficiency (RE), standby heat loss coefficient (UA), rated input power (Pon), average daily hot water draw volume, inlet water temperature, thermostat setting, and air temperature around the water heater--WHAM provides an accurate estimate of energy consumption in the majority of cases.

  7. Quantifying Temperature Effects on Fall Chinook Salmon

    SciTech Connect (OSTI)

    Jager, Yetta

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  8. Water mist injection in oil shale retorting

    DOE Patents [OSTI]

    Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

    1980-07-30

    Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

  9. Temperature sensors for OTEC applications

    SciTech Connect (OSTI)

    Seren, L.; Panchal, C.B.; Rote, D.M.

    1984-05-01

    Ocean thermal energy conversion (OTEC) applications require accurate measurement of temperatures in the 0 to 30/sup 0/C range. This report documents an experimental examination of commercially available quartz-crystal thermometers and thermistors. Three fixed-point baths were used for temperature measurements: the distilled-water/distilled-ice-water slurry, the triple-point-of-water cell, and the gallium melting-point cell. The temperature of carefully prepared ice-water slurries was verified routinely as 0.001 +- 0.003/sup 0/C. Quartz-crystal probes proved accurate to about 1 to 2 mK, with drift errors of the same order over a few days. Bead- and disk-type thermistor probes were found to be about equally stable with time in the 0 to 30/sup 0/C range. The overall probable error of using thermistors was found to be +-4 mK. A solid-block temperature bath suitable for on-site calibrations in OTEC work was used in the temperature-sweeping mode. Various polynomial fits were examined for the purpose of thermistor calibration; fits of order two and higher yielded about equally accurate calculated temperatures.

  10. Optical set-reset latch

    DOE Patents [OSTI]

    Skogen, Erik J.

    2013-01-29

    An optical set-reset (SR) latch is formed from a first electroabsorption modulator (EAM), a second EAM and a waveguide photodetector (PD) which are arranged in an optical and electrical feedback loop which controls the transmission of light through the first EAM to latch the first EAM in a light-transmissive state in response to a Set light input. A second waveguide PD controls the transmission of light through the second EAM and is used to switch the first EAM to a light-absorptive state in response to a Reset light input provided to the second waveguide PD. The optical SR latch, which may be formed on a III-V compound semiconductor substrate (e.g. an InP or a GaAs substrate) as a photonic integrated circuit (PIC), stores a bit of optical information and has an optical output for the logic state of that bit of information.

  11. Electrical contact tool set station

    DOE Patents [OSTI]

    Byers, M.E.

    1988-02-22

    An apparatus is provided for the precise setting to zero of electrically conductive cutting tools used in the machining of work pieces. An electrically conductive cylindrical pin, tapered at one end to a small flat, rests in a vee-shaped channel in a base so that its longitudinal axis is parallel to the longitudinal axis of the machine's spindle. Electronic apparatus is connected between the cylindrical pin and the electrically conductive cutting tool to produce a detectable signal when contact between tool and pin is made. The axes of the machine are set to zero by contact between the cutting tool and the sides, end or top of the cylindrical pin. Upon contact, an electrical circuit is completed, and the detectable signal is produced. The tool can then be set to zero for that axis. Should the tool contact the cylindrical pin with too much force, the cylindrical pin would be harmlessly dislodged from the vee-shaped channel, preventing damage either to the cutting tool or the cylindrical pin. 5 figs.

  12. Desalination of brackish ground waters and produced waters using in-situ precipitation.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; Pless, Jason; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn; Sattler, Allan Richard

    2004-08-01

    The need for fresh water has increased exponentially during the last several decades due to the continuous growth of human population and industrial and agricultural activities. Yet existing resources are limited often because of their high salinity. This unfavorable situation requires the development of new, long-term strategies and alternative technologies for desalination of saline waters presently not being used to supply the population growth occurring in arid regions. We have developed a novel environmentally friendly method for desalinating inland brackish waters. This process can be applied to either brackish ground water or produced waters (i.e., coal-bed methane or oil and gas produced waters). Using a set of ion exchange and sorption materials, our process effectively removes anions and cations in separate steps. The ion exchange materials were chosen because of their specific selectivity for ions of interest, and for their ability to work in the temperature and pH regions necessary for cost and energy effectiveness. For anion exchange, we have focused on hydrotalcite (HTC), a layered hydroxide similar to clay in structure. For cation exchange, we have developed an amorphous silica material that has enhanced cation (in particular Na{sup +}) selectivity. In the case of produced waters with high concentrations of Ca{sup 2+}, a lime softening step is included.

  13. Electrolysis - High Temperature - Hydrogen - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolysis - High Temperature - Hydrogen Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility by taking a stream of water and heating it and then splitting the water into hydrogen and oxygen product streams. A

  14. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    SciTech Connect (OSTI)

    Mattson, Earl; Smith, Robert; Fujita, Yoshiko; McLing, Travis; Neupane, Ghanashyam; Palmer, Carl; Reed, David; Thompson, Vicki

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoir temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.

  15. Water resources data, Kentucky. Water year 1991

    SciTech Connect (OSTI)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  16. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

    2009-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

  17. 1998 Priority Setting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    998 Priority Setting 1998 Priority Setting Draft of the 1998 Priority Setting for Standards and Test Procedure Rulemakings, June 27, 1997 priority_setting_fy98.pdf (4.27 MB) More Documents & Publications Appliance Standard Program - The FY 2003 Priority -Setting Summary Report and Actions Proposed - Appendix B Report to Congress on Appliance Energy Efficiency Rulemakings 9th

  18. Zero Temperature Hope Calculations

    SciTech Connect (OSTI)

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the

  19. Modeling a set of heavy oil aqueous pyrolysis experiments

    SciTech Connect (OSTI)

    Thorsness, C.B.; Reynolds, J.G.

    1996-11-01

    Aqueous pyrolysis experiments, aimed at mild upgrading of heavy oil, were analyzed using various computer models. The primary focus of the analysis was the pressure history of the closed autoclave reactors obtained during the heating of the autoclave to desired reaction temperatures. The models used included a means of estimating nonideal behavior of primary components with regard to vapor liquid equilibrium. The modeling indicated that to match measured autoclave pressures, which often were well below the vapor pressure of water at a given temperature, it was necessary to incorporate water solubility in the oil phase and an activity model for the water in the oil phase which reduced its fugacity below that of pure water. Analysis also indicated that the mild to moderate upgrading of the oil which occurred in experiments that reached 400{degrees}C or more using a FE(III) 2-ethylhexanoate could be reasonably well characterized by a simple first order rate constant of 1.7xl0{sup 8} exp(-20000/T)s{sup {minus}l}. Both gas production and API gravity increase were characterized by this rate constant. Models were able to match the complete pressure history of the autoclave experiments fairly well with relatively simple equilibria models. However, a consistent lower than measured buildup in pressure at peak temperatures was noted in the model calculations. This phenomena was tentatively attributed to an increase in the amount of water entering the vapor phase caused by a change in its activity in the oil phase.

  20. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface ...

  1. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  2. Air separation with temperature and pressure swing

    DOE Patents [OSTI]

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  3. BASIS Set Exchange (BSE): Chemistry Basis Sets from the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Basis Set Library

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feller, D; Schuchardt, Karen L.; Didier, Brett T.; Elsethagen, Todd; Sun, Lisong; Gurumoorthi, Vidhya; Chase, Jared; Li, Jun

    The Basis Set Exchange (BSE) provides a web-based user interface for downloading and uploading Gaussian-type (GTO) basis sets, including effective core potentials (ECPs), from the EMSL Basis Set Library. It provides an improved user interface and capabilities over its predecessor, the EMSL Basis Set Order Form, for exploring the contents of the EMSL Basis Set Library. The popular Basis Set Order Form and underlying Basis Set Library were originally developed by Dr. David Feller and have been available from the EMSL webpages since 1994. BSE not only allows downloading of the more than 200 Basis sets in various formats; it allows users to annotate existing sets and to upload new sets. (Specialized Interface)

  4. BASIS Set Exchange (BSE): Chemistry Basis Sets from the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Basis Set Library

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feller, D; Schuchardt, Karen L.; Didier, Brett T.; Elsethagen, Todd; Sun, Lisong; Gurumoorthi, Vidhya; Chase, Jared; Li, Jun

    The Basis Set Exchange (BSE) provides a web-based user interface for downloading and uploading Gaussian-type (GTO) basis sets, including effective core potentials (ECPs), from the EMSL Basis Set Library. It provides an improved user interface and capabilities over its predecessor, the EMSL Basis Set Order Form, for exploring the contents of the EMSL Basis Set Library. The popular Basis Set Order Form and underlying Basis Set Library were originally developed by Dr. David Feller and have been available from the EMSL webpages since 1994. BSE not only allows downloading of the more than 500 Basis sets in various formats; it allows users to annotate existing sets and to upload new sets. (Specialized Interface)

  5. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  6. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  7. Breakthrough: Record-Setting Cavity

    ScienceCinema (OSTI)

    Ciovati, Gianluigi

    2014-05-21

    Gianluigi "Gigi" Ciovati, a superconducting radiofrequency scientist, discusses how scientists at the U.S. Department of Energy's Jefferson Lab in Newport News, VA, used ARRA funds to fabricate a niobium cavity for superconducting radiofrequency accelerators that has set a world record for energy efficiency. Jefferson Lab's scientists developed a new, super-hot treatment process that could soon make it possible to produce cavities more quickly and at less cost, benefitting research and healthcare around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.

  8. Par Pond water balance

    SciTech Connect (OSTI)

    Hiergesell, R.A.; Dixon, K.L.

    1996-06-01

    A water budget for the Par Pond hydrologic system was established in order to estimate the rate of groundwater influx to Par Pond. This estimate will be used in modeling exercises to predict Par Pond reservoir elevation and spillway discharge in the scenario where Savannah River water is no longer pumped and discharged into Par Pond. The principal of conservation of mass was used to develop the water budget, where water inflow was set equal to water outflow. Components of the water budget were identified, and the flux associated with each was determined. The water budget was considered balanced when inflow and outflow summed to zero. The results of this study suggest that Par Pond gains water from the groundwater system in the upper reaches of the reservoir, but looses water to the groundwater system near the dam. The rate of flux of groundwater from the water table aquifer into Par Pond was determined to be 13 cfs. The rate of flux from Par Pond to the water table aquifer near the dam was determined to be 7 cfs.

  9. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  10. Behavior of tritium permeation induced by water corrosion of...

    Office of Scientific and Technical Information (OSTI)

    induced by water corrosion of alpha iron around room temperature Citation Details In-Document Search Title: Behavior of tritium permeation induced by water corrosion of ...

  11. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  12. Innovative solar thermochemical water splitting.

    SciTech Connect (OSTI)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas; Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D.; James, Darryl L.

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  13. Ambient temperature thermal battery

    SciTech Connect (OSTI)

    Fletcher, A. N.; Bliss, D. E.; McManis III

    1985-11-26

    An ambient temperature thermal battery having two relatively high temperature melting electrolytes which form a low melting temperature electrolyte upon activation.

  14. Desalination of brackish waters using ion-exchange media

    SciTech Connect (OSTI)

    Pless, J.D.; Philips, M.L.F.; Voigt, J.A.; Moore, D.; Axness, M.; Krumhansl, J.L.; Nenoff, T.M.

    2006-06-21

    An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of around 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x}+2yAl{sub x}Si{sub 1}-xO{sub 2+y}), has an IEC of around to 2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = similar to 11 000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

  15. Desalination of brackish waters using ion exchange media.

    SciTech Connect (OSTI)

    Pless, Jason D.; Krumhansl, James Lee; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn

    2005-01-01

    An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of {approx} 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x+2y}Al{sub x}Si{sub 1-x}O{sub 2+y}), has an IEC of {approx}2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = {approx}11,000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

  16. Nationwide water availability data for energy-water modeling.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Zemlick, Katie M.; Klise, Geoffrey Taylor

    2013-11-01

    The purpose of this effort is to explore where the availability of water could be a limiting factor in the siting of new electric power generation. To support this analysis, water availability is mapped at the county level for the conterminous United States (3109 counties). Five water sources are individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water (western U.S. only), municipal wastewater and brackish groundwater. Also mapped is projected growth in non-thermoelectric consumptive water demand to 2035. Finally, the water availability metrics are accompanied by estimated costs associated with utilizing that particular supply of water. Ultimately these data sets are being developed for use in the National Renewable Energy Laboratories' (NREL) Regional Energy Deployment System (ReEDS) model, designed to investigate the likely deployment of new energy installations in the U.S., subject to a number of constraints, particularly water.

  17. Water heater control module

    DOE Patents [OSTI]

    Hammerstrom, Donald J

    2013-11-26

    An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

  18. Widget:SetTitle | Open Energy Information

    Open Energy Info (EERE)

    Parameters include: title - title text to display Usage: Widget:SetTitle |titleHello World Retrieved from "http:en.openei.orgwindex.php?titleWidget:SetTitle&oldid...

  19. SetSolar | Open Energy Information

    Open Energy Info (EERE)

    SetSolar Jump to: navigation, search Name: SetSolar Place: Cape Town, South Africa Zip: 7460 Sector: Solar Product: South African company that specialises in the manufacture of PV...

  20. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Water Security HomeTag:Water Security Electricity use by water service sector and county. Shown are electricity use by (a) ...

  1. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary PowerEnergy Conversion EfficiencyWater Power Water Power Tara Camacho-Lopez 2016-06-01T22:32:54+00:00 Enabling a successful water power industry. Hydropower ...

  2. Winter Energy Savings from Lower Thermostat Settings

    Reports and Publications (EIA)

    2000-01-01

    This discussion provides details on the effect of lowering thermostat settings during the winter heating months of 1997.

  3. New Project Set Up | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Project Set Up Version Number: 7 Document Number: Form 58100.010 Effective Date: 11/2014

  4. Solar Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    They are popular in climates prone to freezing temperatures. Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is ...

  5. Title 40 CFR 230 Definitions - Clean Water Act | Open Energy...

    Open Energy Info (EERE)

    RegulationRegulation: Title 40 CFR 230 Definitions - Clean Water ActLegal Abstract Sets forth regulatory definitions under the Clean Water Act including the definition of waters of...

  6. Screening and Evaluation Tool (SET) Users Guide

    SciTech Connect (OSTI)

    Layne Pincock

    2014-10-01

    This document is the users guide to using the Screening and Evaluation Tool (SET). SET is a tool for comparing multiple fuel cycle options against a common set of criteria and metrics. It does this using standard multi-attribute utility decision analysis methods.

  7. Low-temperature geothermal database for Oregon

    SciTech Connect (OSTI)

    Black, G.

    1994-11-01

    The goals of the low-temperature assessment project, performed by the Oregon Department of Geology and Mineral Industries (DOGAMI) is aimed primarily at updating the inventory of the nation's low and moderate temperature geothermal resources. The study has begun in Oregon, where the areas of Paisley, Lakeview, Burns/Hines, Lagrande, and Vale were identified over 40 sites as having potential for direct heat utilization. Specifics sites are outlined, detailing water temperature, flow, and current uses of the sites.

  8. water scarcity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  9. water savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  10. water infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  11. Water Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  12. drinking water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drinking water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  13. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power Sandia's 117-scale WEC device with being tested in the maneuvering and ... EC, News, Renewable Energy, Water Power Sandia National Laboratories Uses Its Wave Energy ...

  14. Water Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership ...ate.mcmordie@pnnl.gov * Francis Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com ...

  15. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  16. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Security - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  17. Local, smooth, and consistent Jacobi set simplification

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhatia, Harsh; Wang, Bei; Norgard, Gregory; Pascucci, Valerio; Bremer, Peer -Timo

    2014-10-31

    The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lackmore » fine-grained control over the process, and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi set in two dimensions. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some user-defined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth–death points (a birth–death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).« less

  18. Local, smooth, and consistent Jacobi set simplification

    SciTech Connect (OSTI)

    Bhatia, Harsh; Wang, Bei; Norgard, Gregory; Pascucci, Valerio; Bremer, Peer -Timo

    2014-10-31

    The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lack fine-grained control over the process, and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi set in two dimensions. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some user-defined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth–death points (a birth–death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).

  19. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    SciTech Connect (OSTI)

    Lutz, Jim; Melody, Moya

    2012-11-08

    There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

  20. Managing Swimming Pool Temperature for Energy Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Managing Swimming Pool Temperature for Energy Efficiency Managing Swimming Pool Temperature for Energy Efficiency Managing Swimming Pool Temperature for Energy Efficiency The water temperature you desire for your swimming pool not only affects the size of the pool's heater, but also your heating costs if use a gas or heat pump pool heater. Pool water temperatures typically range from 78ºF to 82ºF. The American Red Cross recommends a temperature of 78ºF for competitive swimming.

  1. LANL sets TRU waste hauling record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sets TRU waste hauling record LANL sets TRU waste hauling record TRU waste consists of clothing, tools, rags, debris, soil, and other items contaminated with radioactive elements, mostly plutonium. October 4, 2011 TRU waste from LANL to WIPP TRU waste from LANL to WIPP Contact Colleen Curran Communications Office (505) 664-0344 Email LOS ALAMOS, New Mexico, October 4, 2011-Los Alamos National Laboratory has set a new LANL record for the amount of transuranic (TRU) waste from past

  2. Addressing Challenges of Identifying Geometrically Diverse Sets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials Previous Next List R. L. Martin, B. Smit, and M. Haranczyk, J. Chem Inf. Model. 52...

  3. Structural Settings Of Hydrothermal Outflow- Fracture Permeability...

    Open Energy Info (EERE)

    Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  4. Transient temperature measurements of a plume in a confined space

    SciTech Connect (OSTI)

    Hsu, C.H.; Hsieh, C.F.; Teng, J.T.

    1995-12-31

    The objective of the present study is to measure the transient temperature profiles of a plume in a confined space and to develop an empirical formula relating heat transfer and buoyancy. The transient natural convective phenomenon, resulting from the buoyant effect, exists in confined spaces. This phenomenon is of practical importance in many fields, such as the formation process of material, cooling of electronic parts, design of solar collectors, cooling of fins, physics of space, fire plume in a compartment and movement of ocean current, etc. The present work is to study the transient natural convection phenomenon of a thermal plume. The plume is generated by locating a constant heat flux annular cylinder heater at the bottom of a confined cubic enclosure filled with water. The temperature profiles in the plume are measured and collected by six T-type thermocouples and a set of data acquisition system. Each test run lasts about 200 minutes and the measurement time step is 1 minute. The results indicate that the heat transfer mechanism in the plume is characterized by up-moving buoyancy-driven energy envelopes. Stratified temperature structure, which is caused by the retarding motion of the plume near the top surface, is also observed. An empirical correlation along local Nusselt number, Fourier number and modified Rayleigh number is obtained and written as Nu{sub x}/Ra{sub x}*{sup 1/4} = 0.00422Fo{sub L}{sup {minus}0.893}.

  5. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  6. Hydration water dynamics and instigation of protein structuralrelaxation

    SciTech Connect (OSTI)

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    Until a critical hydration level is reached, proteins do not function. This critical level of hydration is analogous to a similar lack of protein function observed for temperatures below a dynamical temperature range of 180-220K that also is connected to the dynamics of protein surface water. Restoration of some enzymatic activity is observed in partially hydrated protein powders, sometimes corresponding to less than a single hydration layer on the protein surface, which indicates that the dynamical and structural properties of the surface water is intimately connected to protein stability and function. Many elegant studies using both experiment and simulation have contributed important information about protein hydration structure and timescales. The molecular mechanism of the solvent motion that is required to instigate the protein structural relaxation above a critical hydration level or transition temperature has yet to be determined. In this work we use experimental quasi-elastic neutron scattering (QENS) and molecular dynamics simulation to investigate hydration water dynamics near a greatly simplified protein system. We consider the hydration water dynamics near the completely deuterated N-acetyl-leucine-methylamide (NALMA) solute, a hydrophobic amino acid side chain attached to a polar blocked polypeptide backbone, as a function of concentration between 0.5M-2.0M under ambient conditions. We note that roughly 50-60% of a folded protein's surface is equally distributed between hydrophobic and hydrophilic domains, domains whose lengths are on the order of a few water diameters, that justify our study of hydration dynamics of this simple model protein system. The QENS experiment was performed at the NIST Center for Neutron Research, using the disk chopper time of flight spectrometer (DCS). In order to separate the translational and rotational components in the spectra, two sets of experiments were carried out using different incident neutron wavelengths of 7

  7. Engineering the use of green plants to reduce produced water disposal volume.

    SciTech Connect (OSTI)

    Hinchman, R.; Mollock, G. N.; Negri, M. C.; Settle, T.

    1998-01-29

    In 1990, the Laboratory began an investigation into biological approaches for the reduction of water produced from oil and gas wells. In the spring of 1995, the Company began an on-site experiment at an oil/gas lease in Oklahoma using one of these approaches. The process, known as phytoremediation, utilizes the ability of certain salt tolerant plants to draw the produced water through their roots, transpire the water from their leaves, and thereby reduce overall water disposal volumes and costs. At the Company experimental site, produced water flows through a trough where green plants (primarily cordgrass) have been planted in pea gravel. The produced water is drawn into the plant through its roots, evapotranspirates and deposits a salt residue on the plant leaves. The plant leaves are then harvested and used by a local rancher as cattle feed. The produced water is tested to assure it contains nothing harmful to cattle. In 1996, the Company set up another trough to compare evaporation rates using plants versus using an open container without plants. Data taken during all four seasons (water flow rate, temperature, pH, and conductivity) have shown that using plants to evapotranspirate produced water is safe, more cost effective than traditional methods and is environmentally sound.

  8. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into ...

  9. Water Summit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    host Water Summit March 21, 2016 Los Alamos watershed research among featured projects LOS ALAMOS, N.M., March 21, 2016-On Tuesday, March 22, 2016-World Water Day-the ...

  10. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into...

  11. Temperature Control Diagnostics for Sample Environments

    SciTech Connect (OSTI)

    Santodonato, Louis J; Walker, Lakeisha MH; Church, Andrew J; Redmon, Christopher Mckenzie

    2010-01-01

    In a scientific laboratory setting, standard equipment such as cryocoolers are often used as part of a custom sample environment system designed to regulate temperature over a wide range. The end user may be more concerned with precise sample temperature control than with base temperature. But cryogenic systems tend to be specified mainly in terms of cooling capacity and base temperature. Technical staff at scientific user facilities (and perhaps elsewhere) often wonder how to best specify and evaluate temperature control capabilities. Here we describe test methods and give results obtained at a user facility that operates a large sample environment inventory. Although this inventory includes a wide variety of temperature, pressure, and magnetic field devices, the present work focuses on cryocooler-based systems.

  12. An accurate and efficient computational protocol for obtaining the complete basis set limits of the binding energies of water clusters at the MP2 and CCSD(T) levels of theory: Application to (H?O)m, m=2-6, 8, 11, 16 and 17

    SciTech Connect (OSTI)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-06-21

    We report MP2 and CCSD(T) binding energies with basis sets up to pentuple zeta quality for the m = 2-6, 8 clusters. Or best CCSD(T)/CBS estimates are -4.99 kcal/mol (dimer), -15.77 kcal/mol (trimer), -27.39 kcal/mol (tetramer), -35.9 0.3 kcal/mol (pentamer), -46.2 0.3 kcal/mol (prism hexamer), -45.9 0.3 kcal/mol (cage hexamer), -45.4 0.3 kcal/mol (book hexamer), -44.3 0.3 kcal/mol (ring hexamer), -73.0 0.5 kcal/mol (D2d octamer) and -72.9 0.5 kcal/mol (S4 octamer). We have found that the percentage of both the uncorrected (dimer) and BSSE-corrected (dimerCPe) binding energies recovered with respect to the CBS limit falls into a narrow range for each basis set for all clusters and in addition this range was found to decrease upon increasing the basis set. Relatively accurate estimates (within < 0.5%) of the CBS limits can be obtained when using the 2/3, 1/3 (for the AVDZ set) or the , (for the AVTZ, AVQZ and AV5Z sets) mixing ratio between dimere and dimerCPe. Based on those findings we propose an accurate and efficient computational protocol that can be used to estimate accurate binding energies of clusters at the MP2 (for up to 100 molecules) and CCSD(T) (for up to 30 molecules) levels of theory. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multi program national laboratory operated for DOE by Battelle. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. AC02-05CH11231.

  13. Bin Set 1 Calcine Retrieval Feasibility Study

    SciTech Connect (OSTI)

    R. D. Adams; S. M. Berry; K. J. Galloway; T. A. Langenwalter; D. A. Lopez; C. M. Noakes; H. K. Peterson; M. I. Pope; R. J. Turk

    1999-10-01

    At the Department of Energy's Idaho Nuclear Technology and Engineering Center, as an interim waste management measure, both mixed high-level liquid waste and sodium bearing waste have been solidified by a calculation process and are stored in the Calcine Solids Storage Facilities. This calcined product will eventually be treated to allow final disposal in a national geologic repository. The Calcine Solids Storage Facilities comprise seven ''bit sets.'' Bin Set 1, the first to be constructed, was completed in 1959, and has been in service since 1963. It is the only bin set that does not meet current safe-shutdown earthquake seismic criteria. In addition, it is the only bin set that lacks built-in features to aid in calcine retrieval. One option to alleviate the seismic compliance issue is to transport the calcine from Bin Set 1 to another bin set which has the required capacity and which is seismically qualified. This report studies the feasibility of retrieving the calcine from Bi n Set 1 and transporting it into Bin Set 6 which is located approximately 650 feet away. Because Bin Set 1 was not designed for calcine retrieval, and because of the high radiation levels and potential contamination spread from the calcined material, this is a challenging engineering task. This report presents preconceptual design studies for remotely-operated, low-density, pneumatic vacuum retrieval and transport systems and equipment that are based on past work performed by the Raytheon Engineers and Constructors architectural engineering firm. The designs presented are considered feasible; however, future development work will be needed in several areas during the subsequent conceptual design phase.

  14. Exhibit Set Up | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications, Exhibits, & Logos » Exhibit Set Up Exhibit Set Up Follow these step-by step instructions in order to set up your exhibit. 1. The exhibit case. Photo of a man opening an exhibit case. 2. Inside the top of the case, you will find shipping labels, extra bulbs, and contact information. Photo of an open exhibit case. 3. Expand the display frame by pulling the center piece apart gently. Red feet should be at bottom front. Photo of a man unfolding an exhibit display frame. 4. Fully

  15. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  16. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  17. Variable temperature electrochemical strain microscopy of Sm-doped ceria

    SciTech Connect (OSTI)

    Jesse, Stephen; Morozovska, A. N.; Kalinin, Sergei V; Eliseev, E. A.; Yang, Nan; Doria, Sandra; Tebano, Antonello

    2013-01-01

    Variable temperature electrochemical strain microscopy has been used to study the electrochemical activity of Sm-doped ceria as a function of temperature and bias. The electrochemical strain microscopy hysteresis loops have been collected across the surface at different temperatures and the relative activity at different temperatures has been compared. The relaxation behavior of the signal at different temperatures has been also evaluated to relate kinetic process during bias induced electrochemical reactions with temperature and two different kinetic regimes have been identified. The strongly non-monotonic dependence of relaxation behavior on temperature is interpreted as evidence for water-mediated mechanisms.

  18. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  19. FTA Basic Event & Cut Set Ranking.

    Energy Science and Technology Software Center (OSTI)

    1999-05-04

    Version 00 IMPORTANCE computes various measures of probabilistic importance of basic events and minimal cut sets to a fault tree or reliability network diagram. The minimal cut sets, the failure rates and the fault duration times (i.e., the repair times) of all basic events contained in the minimal cut sets are supplied as input data. The failure and repair distributions are assumed to be exponential. IMPORTANCE, a quantitative evaluation code, then determines the probability ofmore » the top event and computes the importance of minimal cut sets and basic events by a numerical ranking. Two measures are computed. The first describes system behavior at one point in time; the second describes sequences of failures that cause the system to fail in time. All measures are computed assuming statistical independence of basic events. In addition, system unavailability and expected number of system failures are computed by the code.« less

  20. Solar Dish Sets World-Record Efficiency

    Broader source: Energy.gov [DOE]

    This photograph features the concentrating solar power (CSP) dish set a new world record for solar-to-grid conversion efficiency at 31.25 percent. The Stirling Energy Systems dish generates...

  1. MWRRET Value-Added Product: The Retrieval of Liquid Water Path...

    Office of Scientific and Technical Information (OSTI)

    MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2) Citation Details In-Document ...

  2. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOE Patents [OSTI]

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  3. MAESTRO Beamline Set to Open to Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAESTRO Beamline Set to Open to Users MAESTRO Beamline Set to Open to Users Print It was 10 years ago that ALS Senior Staff Scientist Eli Rotenberg devised the name Microscopic and Electronic STRucture Observatory, or MAESTRO, for his long-envisioned beamline dedicated to the determination of the electronic structure of materials at the mesoscopic length scale. This September, the beamline, 7.0.2, will accept general user proposals for the first time, offering researchers unparalleled

  4. Berkeley Lab Particle Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Particle Accelerator Sets World Record Berkeley Lab Particle Accelerator Sets World Record Simulations at NERSC Help Validate Experimental Laser-Plasma Design December 9, 2014 Contact: Kate Greene, kgreene@lbl.gov, 510-486-4404 particleaccelerator A 9 cm-long capillary discharge waveguide used in BELLA experiments to generate multi-GeV electron beams. The plasma plume has been made more prominent with the use of HDR photography. Image: Roy Kaltschmidt Using one of the most powerful lasers in

  5. Hydrogen Production: Thermochemical Water Splitting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Water Splitting Hydrogen Production: Thermochemical Water Splitting Thermochemical water splitting uses high temperatures-from concentrated solar power or from the waste heat of nuclear power reactions-and chemical reactions to produce hydrogen and oxygen from water. This is a long-term technology pathway, with potentially low or no greenhouse gas emissions. How Does It Work? Thermochemical water splitting processes use high-temperature heat (500°-2,000°C) to drive a series of

  6. Understanding the sensitivity of nucleation free energies: The role of supersaturation and temperature

    SciTech Connect (OSTI)

    Keasler, Samuel J.; Siepmann, J. Ilja

    2015-10-28

    Simulations are used to investigate the vapor-to-liquid nucleation of water for several different force fields at various sets of physical conditions. The nucleation free energy barrier is found to be extremely sensitive to the force field at the same absolute conditions. However, when the results are compared at the same supersaturation and reduced temperature or the same metastability parameter and reduced temperature, then the differences in the nucleation free energies of the different models are dramatically reduced. This finding suggests that comparisons of experimental data and computational predictions are most meaningful at the same relative conditions and emphasizes the importance of knowing the phase diagram of a given computational model, but such information is usually not available for models where the interaction energy is determined directly from electronic structure calculations.

  7. Low-temperature central heating

    SciTech Connect (OSTI)

    Colonna, A.; Dore, B.

    1982-01-01

    As more efficient condensing boilers are introduced and as more homeowners install effective insulation, engineers should consider two possibilities when designing new central-heating systems - the use of properly sized radiators operating at moderate water temperatures (100-120/sup 0/F) and the installation of heating systems under the floor, which ensures that the space heat is evenly distributed. In field tests, low-temperature radiators performed better than conventional models, with no significant adverse effect on comfort levels. G.D.F. also examined floating-late floor heaters, which incorporate an insulated concrete plate supporting a coiled, imbedded network of tubes with a floating concrete plate on top. Their essential advantages is the freeing of more living space to the occupants. Their use is recommended in multifamily dwelling rather than individual homes.

  8. Enzymatic temperature change indicator

    DOE Patents [OSTI]

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  9. Water pollution

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    Ballast water, which is sea water that is carried in oil tankers to provide stability, can become contaminated with oil. Alyeska Pipeline Service Company runs a water treatment plant at its pipeline terminal at Prot Valdez, Alaska, to treat ballast water before it is discharged into the sea. GAO reviewed EPA's recently reissued National Pollution Discharge Elimination System permit for the Port Valdez facility. In this report, GAO compares the effluent limits and other requirements under the reissued permit with those of the old permit, determines the reasons for changes in the reissued permit, and examines Alyeska's initial efforts to comply with the reissued permit's effluent limits and reporting requirements.

  10. EFFECT OF TRANSPORTING SALTSTONE SAMPLES PRIOR TO SET

    SciTech Connect (OSTI)

    Reigel, M.

    2013-05-21

    The Saltstone Sampling and Analyses Plan provides a basis for the quantity (and configuration) of saltstone grout samples required for conducting a study directed towards correlation of the Performance Assessment (PA) related properties of field-emplaced samples and samples processed and cured in the laboratory. The testing described in the saltstone sampling and analyses plan will be addressed in phases. The initial testing (Phase I) includes collecting samples from the process room in the Saltstone Production Facility (SPF) and transporting them to Savannah River National Laboratory (SRNL) where they will cure under a temperature profile that mimics the temperature in the Saltstone Disposal Unit (SDU) and then be analyzed. SRNL has previously recommended that after the samples of fresh (uncured) saltstone are obtained from the SPF process room, they are allowed to set prior to transporting them to SRNL for curing. The concern was that if the samples are transported before they are set, the vibrations during transport may cause artificial delay of structure development which could result in preferential settling or segregation of the saltstone slurry. However, the results of this testing showed there was no clear distinction between the densities of the cylinder sections for any of the transportation scenarios tested (1 day, 1 hour, and 0 minutes set time prefer to transportation) . The bottom section of each cylinder was the densest for each transportation scenario, which indicates some settling in all the samples. Triplicate hydraulic conductivity measurements on samples from each set of time and transportation scenarios indicated that those samples transported immediately after pouring had the highest hydraulic conductivity. Conversely, samples that were allowed to sit for an hour before being transported had the lowest hydraulic conductivity. However, the hydraulic conductivities of all three samples fell within an acceptable range. Based on the cured property

  11. Nanoplasmonics simulations at the basis set limit through completeness-optimized, local numerical basis sets

    SciTech Connect (OSTI)

    Rossi, Tuomas P. Sakko, Arto; Puska, Martti J.; Lehtola, Susi; Nieminen, Risto M.

    2015-03-07

    We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate that the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.

  12. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  13. Fault Tree Cut Set System Performance.

    Energy Science and Technology Software Center (OSTI)

    2000-02-21

    Version 00 SIGPI computes the probabilistic performance of complex systems by combining cut set or other binary product data with probability information on each basic event. SIGPI is designed to work with either coherent systems, where the system fails when certain combinations of components fail, or noncoherent systems, where at least one cut set occurs only if at least one component of the system is operating properly. The program can handle conditionally independent components, dependentmore » components, or a combination of component types and has been used to evaluate responses to environmental threats and seismic events. The three data types that can be input are cut set data in disjoint normal form, basic component probabilities for independent basic components, and mean and covariance data for statistically dependent basic components.« less

  14. US DOE Refinery Water Study 01-19-16 PublicE_docx

    Office of Environmental Management (EM)

    Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature andor Reduced Water Availability Executive Summary of Final Report Prepared for US Department of ...

  15. Temperature-profile detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

  16. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

  17. Core File Settings | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Core File Settings About Core Files By default, a rank that aborts will dump core, and the control system will signal the other ranks to quit (without dumping core). Multiple core files will be generated only when several ranks abort almost simultaneously. The ranks that do not dump core are those that received the system signal to quit before anything bad happened on that rank. The settings listed below can modify this behaviour in various ways. The core files generated will be in a lightweight

  18. WATER TREATMENT

    DOE Patents [OSTI]

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  19. High temperature sensor

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  20. Low temperature thermal treatment for petroleum refinery waste sludges

    SciTech Connect (OSTI)

    Ayen, R.J.; Swanstrom, C.P. )

    1992-05-01

    Treatment requirements for waste sludges generated by petroleum refinery operations and designated as waste codes K048, K049, K050, K051 and K052 under the Resource Conservation and Recovery Act (RCRA) became effective in November, 1990 under the Landban regulations. An experimental program evaluated low temperature thermal treatment of filter cakes produced from these sludges using laboratory and pilot-scale equipment. One set of experiments on waste samples from two different refineries demonstrated the effective removal of organics of concern from the sludges to meet the RCRA Best Demonstrated Available Technology (BDAT) treatment standards. Cyanides were also within the acceptable limit. Combined with stabilization of heavy metals in the treatment residues, low temperature thermal treatment therefore provides an effective and efficient means of treating refinery sludges, with most hydrocarbons recovered and recycled to the refinery. A milder thermal treatment was used to remove the bulk of the water from a previously filtered waste sludge, providing effective waste minimization through a 40% decrease in the mass of sludge to be disposed. The heating value of the sludge was increased simultaneously by one-third, thereby producing a residue of greater value in an alternative fuels program. A process based on this approach was successfully designed and commercialized.

  1. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  2. Nevada Division of Environmental Protection - New Public Water...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Division of Environmental Protection - New Public Water Systems Abstract This website sets forth the...

  3. Covered Product Category: Residential Electric Resistance Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP sets federal efficiency requirements and provides acquisition guidance across a variety of product categories, including residential electric resistance water heaters.

  4. NAC 445A - Water Controls | Open Energy Information

    Open Energy Info (EERE)

    RegulationRegulation: NAC 445A - Water ControlsLegal Abstract This regulation sets forth the rules governing water controls in Nevada. Published NA Year Signed or Took Effect...

  5. NRS 445A - Water Controls | Open Energy Information

    Open Energy Info (EERE)

    Document- StatuteStatute: NRS 445A - Water ControlsLegal Abstract This chapter sets forth the rules governing water controls in Nevada. Published NA Year Signed or Took Effect...

  6. ARM - Field Campaign - Water Cycle Pilot Study Intensive Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sets, see below. Abstract The U.S. DOE Water Cycle Pilot Study (WCPS) is a 3-year feasibility investigation focused on accurately evaluating the water cycle components and using...

  7. Colorado Water Quality Control Act | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado Water Quality Control ActLegal Abstract Statute setting forth laws for water quality control...

  8. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, William A.; Healy, Francis E.; Sapienza, Richard S.

    1985-01-01

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  9. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  10. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  11. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  12. System for controlling the operating temperature of a fuel cell

    DOE Patents [OSTI]

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  13. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  14. A Realistic Hot Water Draw Specification for Rating Solar Water Heaters

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. This paper proposes a more realistic ratings draw that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. Presented at the 2012 World Renewable Energy Forum; Denver, Colorado; May 13-17, 2012.

  15. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...016-03-01T17:12:00+00:00 March 1st, 2016|News, News & Events, Water Power, Workshops|0 Comments Read More Wave energy distribution example Permalink Gallery Sandia releases 2nd ...

  16. Effect of processor temperature on film dosimetry

    SciTech Connect (OSTI)

    Srivastava, Shiv P.; Das, Indra J.

    2012-07-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d{sub max.}, 10 Multiplication-Sign 10 cm{sup 2}, 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6 Degree-Sign C (85-105 Degree-Sign F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.

  17. Algorithmic Techniques for Massive Data Sets

    SciTech Connect (OSTI)

    Moses Charikar

    2006-04-03

    This report describes the progress made during the Early Career Principal Investigator (ECPI) project on Algorithmic Techniques for Large Data Sets. Research was carried out in the areas of dimension reduction, clustering and finding structure in data, aggregating information from different sources and designing efficient methods for similarity search for high dimensional data. A total of nine different research results were obtained and published in leading conferences and journals.

  18. Lab sets new record for waste shipments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New record for waste shipments Lab sets new record for waste shipments LANL completing its 132nd transuranic (TRU) waste shipment of fiscal year 2010 to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. August 20, 2010 LANL's shipment of transuranic waste leaves Los Alamos. LANL's shipment of transuranic waste leaves Los Alamos. Contact Fred deSousa Communications Office (505) 500-5672 Email "Removing this waste from Los Alamos is crucial to our plans for overall

  19. IWTU Construction Workers Set Largest Process Vessel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry | Department of Energy ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry aluminum.pdf (1.12 MB) More Documents & Publications ITP Aluminum: Technical Working Group on Inert Anode Technologies EIS-0333: Draft Environmental Impact Statement Considering Cumulative Effects Under the National Environmental Policy Act (CEQ, 1997)

    IWTU Construction Workers Set Largest Process

  20. OCILOW-Wheeled Platform Controls Executable Set

    Energy Science and Technology Software Center (OSTI)

    2005-11-30

    The OCILOW Controls Executable Set is the complete set of machine executable instructions to control the motion of wheeled platforms that incorporate Off-Centered In-Line Omni-directional Wheels (OCILOW). The controls utilize command signals for the desired motion of the platform (X, Y and Theta) and calculate and control the steering and rolling motion required of each OCILOW wheels to achieve the desired translational and rotational platform motion. The controls utilize signals from the wheel steering andmore » rolling resolvers, and from three load cells located at each wheels, to coordinate the motion of all wheels, while respecting their non-holonomic constraints (i.e., keeping internal stresses and slippage due to possible errors, uneven floors, bumps, misalignment, etc. bounded). The OCILOW Controls Executable Set, which is copyrighted here, is an embodiment of the generic OCILOW algorithms (patented separately) developed specifically for controls of the Proof-of-Principle-Transporter (POP-T) system that has been developed to demonstrate the overall OCILOW controls feasibility and capabilities.« less

  1. OCILOW-Wheeled Platform Controls Executable Set

    SciTech Connect (OSTI)

    2005-11-30

    The OCILOW Controls Executable Set is the complete set of machine executable instructions to control the motion of wheeled platforms that incorporate Off-Centered In-Line Omni-directional Wheels (OCILOW). The controls utilize command signals for the desired motion of the platform (X, Y and Theta) and calculate and control the steering and rolling motion required of each OCILOW wheels to achieve the desired translational and rotational platform motion. The controls utilize signals from the wheel steering and rolling resolvers, and from three load cells located at each wheels, to coordinate the motion of all wheels, while respecting their non-holonomic constraints (i.e., keeping internal stresses and slippage due to possible errors, uneven floors, bumps, misalignment, etc. bounded). The OCILOW Controls Executable Set, which is copyrighted here, is an embodiment of the generic OCILOW algorithms (patented separately) developed specifically for controls of the Proof-of-Principle-Transporter (POP-T) system that has been developed to demonstrate the overall OCILOW controls feasibility and capabilities.

  2. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  3. Exited-state Dynamics of Water-Soluble Polythiophene Derivatives...

    Office of Scientific and Technical Information (OSTI)

    Dynamics of Water-Soluble Polythiophene Derivatives: Temperature and Side-chain Length Effects Citation Details In-Document Search Title: Exited-state Dynamics of Water-Soluble ...

  4. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  5. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  6. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  7. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Zenon F.

    1989-01-01

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperature of 77 degrees Kelvin.

  8. Temperature and productivity

    Office of Scientific and Technical Information (OSTI)

    ... and performance of office work under combined exposure to temperature, noise and air pollution. PhD Thesis. International Centre for Indoor Environment and Energy, Department of ...

  9. Temperature for Spent Fuel Dry Storage

    Energy Science and Technology Software Center (OSTI)

    1992-07-13

    DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) calculates allowable initial temperatures for dry storage of light-water-reactor spent fuel and the cumulative damage fraction of Zircaloy cladding for specified initial storage temperature and stress and cooling histories. It is made available to ensure compliance with NUREG 10CFR Part 72, Licensing Requirements for the Storage of Spent Fuel in an Independent Spent Fuel Storage Installation (ISFSI). Although the program''s principal purpose is to calculate estimatesmore » of allowable temperature limits, estimates for creep strain, annealing fraction, and life fraction as a function of storage time are also provided. Equations for the temperature of spent fuel in inert and nitrogen gas storage are included explicitly in the code; in addition, an option is included for a user-specified cooling history in tabular form, and tables of the temperature and stress dependencies of creep-strain rate and creep-rupture time for Zircaloy at constant temperature and constant stress or constant ratio of stress/modulus can be created. DATING includes the GEAR package for the numerical solution of the rate equations and DPLOT for plotting the time-dependence of the calculated cumulative damage-fraction, creep strain, radiation damage recovery, and temperature decay.« less

  10. Temperature for Spent Fuel Dry Storage

    Energy Science and Technology Software Center (OSTI)

    1992-07-13

    DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) calculates allowable initial temperatures for dry storage of light-water-reactor spent fuel and the cumulative damage fraction of Zircaloy cladding for specified initial storage temperature and stress and cooling histories. It is made available to ensure compliance with NUREG 10CFR Part 72, Licensing Requirements for the Storage of Spent Fuel in an Independent Spent Fuel Storage Installation (ISFSI). Although the program''s principal purpose is to calculate estimatesmore »of allowable temperature limits, estimates for creep strain, annealing fraction, and life fraction as a function of storage time are also provided. Equations for the temperature of spent fuel in inert and nitrogen gas storage are included explicitly in the code; in addition, an option is included for a user-specified cooling history in tabular form, and tables of the temperature and stress dependencies of creep-strain rate and creep-rupture time for Zircaloy at constant temperature and constant stress or constant ratio of stress/modulus can be created. DATING includes the GEAR package for the numerical solution of the rate equations and DPLOT for plotting the time-dependence of the calculated cumulative damage-fraction, creep strain, radiation damage recovery, and temperature decay.« less

  11. CO2 Heat Pump Water Heater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    other refrigerants), CO2 also has greater potential for use in residentialcommercial demand response units, as well as for high-temperature commercial water heating applications. ...

  12. Materials Degradation in Light Water Reactors: Life After 60

    Broader source: Energy.gov [DOE]

    Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field....

  13. Managing Swimming Pool Temperature for Energy Efficiency | Department...

    Broader source: Energy.gov (indexed) [DOE]

    affects the size of the pool's heater, but also your heating costs if use a gas or heat pump pool heater. Pool water temperatures typically range from 78F to 82F. The...

  14. Managing Swimming Pool Temperature for Energy Efficiency | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    only affects the size of the pool's heater, but also your heating costs if use a gas or heat pump pool heater. Pool water temperatures typically range from 78F to 82F. The...

  15. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    2014-09-28

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  16. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  17. Temperature dependence of photovoltaic cells, modules, and systems

    SciTech Connect (OSTI)

    Emery, K.; Burdick, J.; Caiyem, Y.

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  18. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  19. ARM - Word Seek: Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Temperature

  20. Fiber optic temperature sensor

    SciTech Connect (OSTI)

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  1. Off-set stabilizer for comparator output

    DOE Patents [OSTI]

    Lunsford, James S.

    1991-01-01

    A stabilized off-set voltage is input as the reference voltage to a comparator. In application to a time-interval meter, the comparator output generates a timing interval which is independent of drift in the initial voltage across the timing capacitor. A precision resistor and operational amplifier charge a capacitor to a voltage which is precisely offset from the initial voltage. The capacitance of the reference capacitor is selected so that substantially no voltage drop is obtained in the reference voltage applied to the comparator during the interval to be measured.

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........9 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Static Water Level Data ...

  3. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

  4. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    SciTech Connect (OSTI)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.; Palmer, Carl D.; Smith, Robert W.; Wood, Thomas R.; Podgorney, Robert K.

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  5. Temperature Measurements in the Magnetic Measurement Facility

    SciTech Connect (OSTI)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  6. WATER CONSERVATION PLAN

    National Nuclear Security Administration (NNSA)

    ... Average water consumers can save thousands of gallons of water per year by being aware of ... program on the water distribution systems to include water saving replacement parts. ...

  7. Nauru Island Effect Detection Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck

    2010-07-15

    During Nauru99 it was noted that the island was producing small clouds that advected over the ARM site. The Nauru Island Effect Study was run for 1.5 years and the methodology developed to detect the occurrence. Nauru ACRF downwelling SW, wind direction, and air temperature data are used, along with downwelling SW data from Licor radiometers located on the southern end of the island near the airport landing strip. A statistical analysis and comparison of data from the two locations is used to detect the likely occurrence of an island influence on the Nauru ACRF site data

  8. Nauru Island Effect Detection Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck

    During Nauru99 it was noted that the island was producing small clouds that advected over the ARM site. The Nauru Island Effect Study was run for 1.5 years and the methodology developed to detect the occurrence. Nauru ACRF downwelling SW, wind direction, and air temperature data are used, along with downwelling SW data from Licor radiometers located on the southern end of the island near the airport landing strip. A statistical analysis and comparison of data from the two locations is used to detect the likely occurrence of an island influence on the Nauru ACRF site data

  9. Setting clear expectations for safety basis development

    SciTech Connect (OSTI)

    MORENO, M.R.

    2003-05-03

    DOE-RL has set clear expectations for a cost-effective approach for achieving compliance with the Nuclear Safety Management requirements (10 CFR 830, Nuclear Safety Rule) which will ensure long-term benefit to Hanford. To facilitate implementation of these expectations, tools were developed to streamline and standardize safety analysis and safety document development resulting in a shorter and more predictable DOE approval cycle. A Hanford Safety Analysis and Risk Assessment Handbook (SARAH) was issued to standardized methodologies for development of safety analyses. A Microsoft Excel spreadsheet (RADIDOSE) was issued for the evaluation of radiological consequences for accident scenarios often postulated for Hanford. A standard Site Documented Safety Analysis (DSA) detailing the safety management programs was issued for use as a means of compliance with a majority of 3009 Standard chapters. An in-process review was developed between DOE and the Contractor to facilitate DOE approval and provide early course correction. As a result of setting expectations and providing safety analysis tools, the four Hanford Site waste management nuclear facilities were able to integrate into one Master Waste Management Documented Safety Analysis (WM-DSA).

  10. Water freezing and ice melting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  11. Quick-setting concrete and a method for making quick-setting concrete

    DOE Patents [OSTI]

    Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL); Pullockaran, Jose D. (Trenton, NJ); Knox, Lerry (Glen Ellyn, IL)

    1997-01-01

    A method for producing quick setting concrete is provided comprising hydrng a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO.sub.3 of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring.

  12. Implementation of a near-optimal global set point control method in a DDC controller

    SciTech Connect (OSTI)

    Cascia, M.A.

    2000-07-01

    A near-optimal global set point control method that can be implemented in an energy management system's (EMS) DDC controller is described in this paper. Mathematical models are presented for the power consumption of electric chillers, hot water boilers, chilled and hot water pumps, and air handler fans, which allow the calculation of near-optimal chilled water, hot water, and coil discharge air set points to minimize power consumption, based on data collected by the EMS. Also optimized are the differential and static pressure set points for the variable speed pumps and fans. A pilot test of this control methodology was implemented for a cooling plant at a pharmaceutical manufacturing facility near Dallas, Texas. Data collected at this site showed good agreement between the actual power consumed by the chillers, chilled water pumps, and air handlers and that predicted by the models. An approximate model was developed to calculate real-time power savings in the DDC controller. A third-party energy accounting program was used to track savings due to the near-optimal control, and results show a monthly KWH reduction ranging from 3% to 14%.

  13. Temperature dependent droplet impact dynamics on flat and textured surfaces

    SciTech Connect (OSTI)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  14. Occurrence of Low-Temperature Geothermal Waters in the United...

    Open Energy Info (EERE)

    790:86-131. Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At Lightning Dock Geothermal Area (Sammel, 1978) Areas (1) Lightning Dock...

  15. Isotope and Temperature Effects in Liquid Water Probed by Soft...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This is probably true, but not on an atomic scale Surprisingly, our microscopic knowledge ... How can we find out? In recent years, soft x-ray spectroscopy has emerged as a new tool to ...

  16. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, Tomas B.

    1985-01-01

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime.

  17. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-09-24

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.

  18. TRIMOLECULAR REACTIONS OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect (OSTI)

    Westbrook, M.; Becnel, J.; Garrison, S.

    2010-02-25

    The hydrolysis reaction of uranium hexafluoride (UF{sub 6}) is a key step in the synthesis of uranium dioxide (UO{sub 2}) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF{sub 6} molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizeable barrier of 78.2 kJ {center_dot} mol{sup -1}, indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO{sub 2} product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF{sub 6} molecules and one water molecule, and (2) the reaction of two water molecules with a single UF{sub 6} molecule. The predicted reaction of two UF{sub 6} molecules with one water molecule displays an interesting 'fluorine-shuttle' mechanism, a significant energy barrier of 69.0 kJ {center_dot} mol{sup -1} to the formation of UF{sub 5}OH, and an enthalpy of reaction ({Delta}H{sub 298}) of +17.9 kJ {center_dot} mol{sup -1}. The reaction of a single UF{sub 6} molecule with two water molecules displays a 'proton-shuttle' mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ {center_dot} mol{sup -1} and an exothermic enthalpy of reaction ({Delta}H{sub 298}) of -13.9 kJ {center_dot} mol{sup -1}. The exothermic nature of the overall UF{sub 6} + 2 {center_dot} H{sub 2}O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging; however, the sizable energy barrier indicates further study of the UF{sub 6} hydrolysis reaction mechanism is

  19. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  20. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Z.F.

    1988-04-12

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperatures of 77 degrees Kelvin, is discussed. 3 figs.

  1. Temperature | Open Energy Information

    Open Energy Info (EERE)

    C Property:Combustion Intake Air Temperature F Property:FirstWellTemp G Property:GeochemReservoirTemp Property:GeofluidTemp M Property:MeanReservoirTemp R...

  2. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  3. Western Wind Integration Data Set | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Wind Integration Data Set The Western Wind Integration Data Set was designed to help energy professionals perform wind integration studies and estimate power production from hypothetical wind power plants in the United States. Access the Western Wind Integration Data Set Resources ACCESS DATA SET DATA SET REPORT VALIDATION REPORT Methodology 3TIER created the Western Wind Integration Data Set with oversight and assistance from NREL. Numerical weather prediction models were used to

  4. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J.; Bible, Don W.; Sohns, Carl W.

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  5. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  6. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Bionta, Richard M. (Livermore, CA)

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  7. Florida products pipeline set to double capacity

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-13

    Directional drilling has begun this fall for a $68.5 million, approximately 110,000 b/d expansion of Central Florida Pipeline Co.`s refined products line from Tampa to Orlando. The drilling started in August and is scheduled to conclude this month, crossing under seven water bodies in Hillsborough, Polk, and Osceola counties. The current 6 and 10-in. system provides more than 90% of the petroleum products used in Central Florida, according to Central Florida Pipeline. Its additional capacity will meet the growing region`s demand for gasoline, diesel, and jet fuel. The new pipeline, along with the existing 10-in. system, will increase total annual capacity from 30 million bbl (82,192 b/d) to approximately 70 million bbl (191,781 b/d). The older 6-in. line will be shutdown when the new line is operating fully. The steps of pipeline installation are described.

  8. FORMATION OF CALCIUM AND SILICA FROM PERCOLATION IN A HYDROLOGICALLY UNSATURATED SETTING, Y.M.,NV

    SciTech Connect (OSTI)

    J.B. Paces; J.F. Whelan; Z.E. Peterman; B.D. Marshall

    2000-07-27

    Geological, mineralogical, chemical, and isotopic evidence from coatings of calcite and silica on open fractures and lithophysal cavities within welded tuffs at Yucca Mountain indicate an origin from meteoric water percolating through a thick (500 to 700 m) unsaturated zone (UZ) rather than from pulses of ascending ground water. Geologic evidence for a UZ setting includes the presence of coatings in only a small percentage of cavities, the restriction of coatings to fracture footwalls and cavity floors, and an absence of mineral high-water marks indicative of water ponding. Systematic mineral sequences (early calcite, followed by chalcedony with minor quartz and fluorite, and finally calcite with intercalated opal forming the bulk of the coatings) indicate progressive changes in UZ conditions through time, rather than repeated saturation by flooding. Percolation under the influence of gravity also results in mineral textures that vary between steeply dipping sites (thinner coatings of blocky calcite) and shallowly dipping sites (thicker coatings of coarse, commonly bladed calcite, with globules and sheets of opal). Micrometer-scale growth banding in both calcite and opal reflects slow average growth rates (scale of mm/m.y.) over millions of years rather than only a few rapidly deposited growth episodes. Isotopic compositions of C, O, Sr, and U from calcite and opal indicate a percolation-modified meteoric water source, and collectively refute a deeper ground-water source. Chemical and isotopic variations in coatings also indicate long-term evolution of water compositions. Although some compositional changes are related to shifts in climate, growth rates in the deeper UZ are buffered from large changes in meteoric input. Coatings most likely formed from films of water flowing down connected fracture pathways. Mineral precipitation is consistent with water vapor and carbon dioxide loss from films at very slow rates. Data collectively indicate that mineral coatings

  9. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - ...

  10. Energy Department Sets Tougher Standards for Clothes Washers...

    Office of Environmental Management (EM)

    Sets Tougher Standards for Clothes Washers to Qualify for the ENERGY STAR Label Energy Department Sets Tougher Standards for Clothes Washers to Qualify for the ENERGY STAR ...

  11. Compression set in Gas Blown Condensation Cured Polysiloxane...

    Office of Scientific and Technical Information (OSTI)

    Compression set in Gas Blown Condensation Cured Polysiloxane Elastomers Citation Details In-Document Search Title: Compression set in Gas Blown Condensation Cured Polysiloxane ...

  12. EV Everywhere Battery Workshop: Preliminary Target-Setting Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Target-Setting Framework EV Everywhere Battery Workshop: Preliminary Target-Setting Framework Presentation given at the EV Everywhere Grand Challenge: Battery Workshop ...

  13. POLICY GUIDANCE MEMORANDUM #04 Setting Effective Date for New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    04 Setting Effective Date for New Hires POLICY GUIDANCE MEMORANDUM 04 Setting Effective Date for New Hires The purpose of this memorandum is to establish the Department of...

  14. Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet ...

    Open Energy Info (EERE)

    Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet AgencyCompany Organization: FIA...

  15. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Record-Setting Microscopy Illuminates Energy Storage Materials Print Thursday, 22 January 2015 12:10 X-ray microscopy...

  16. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior EV Everywhere ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior Presentation ...

  17. DOE Assistance in Target Setting and Strategic Planning for Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Assistance in Target Setting and Strategic Planning for Renewable Energy Deployment RFI DOE Assistance in Target Setting and Strategic Planning for Renewable Energy Deployment ...

  18. Request for Information: Assistance in Target Setting and Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance in Target Setting and Strategic Planning for Renewable Energy Deployment at the State and Regional Level Request for Information: Assistance in Target Setting and ...

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Salmon, Mississippi, Site, Water Sampling Location Map .........5 Water Sampling Field Activities Verification ...

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data ...

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........1 Water Sampling Locations at the Rulison, .........3 Water Sampling Field Activities Verification ...

  2. Some thermodynamical aspects of protein hydration water

    SciTech Connect (OSTI)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene; Chen, Sow-Hsin

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  3. Electric Water Heater Modeling and Control Strategies for Demand Response

    SciTech Connect (OSTI)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms Centralized control, decentralized control, demand response, electrical water heater, smart grid

  4. Quick-setting concrete and a method for making quick-setting concrete

    DOE Patents [OSTI]

    Wagh, A.S.; Singh, D.; Pullockaran, J.D.; Knox, L.

    1997-04-29

    A method for producing quick setting concrete is provided comprising mixing a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO{sub 3} of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring. 2 figs.

  5. Ener-Gee Whiz Answers Your Questions: Thermostat Settings and Solar Water

    Energy Savers [EERE]

    Endstates Initiative Endstates Initiative Endstates Initiative Scientific and technical, institutional and regulatory, and closure management challenges are currently hindering cleanup and closure of remaining environmental legacy waste sites across the Department of Energy (DOE) complex. There are no simple solutions for these integrated challenges and they demand innovative scientific and technical solutions and approaches, developed with the regulatory community. DOE Office of Environmental

  6. Chemically Induced Surface Evolutions with Level Sets

    Energy Science and Technology Software Center (OSTI)

    2006-11-17

    ChISELS is used for the theoretical modeling of detailed surface chemistry and consomitant surface evolutions occurring during microsystem fabrication processes conducted at low pressures. Examples include physical vapor deposition (PVD), low pressure chemical vapor deposition (PECVD), and plasma etching. Evolving interfaces are represented using the level-set method and the evolution equations time integrated using a Semi-Lagrangian approach. A Ballistic transport model is employed to solve for the fluxes incident on each of the surface elements.more » Surface chemistry leading to etching or deposition is computed by either coupling to Surface Chemkin (a commercially available code) or by providing user defined subroutines. The computational meshes used are quad-trees (2-D) and oct-trees (3-D), constructed such that grid refinement is localized to regions near the surface interfaces. As the interface evolves, the mesh is dynamically reconstructed as needed for the grid to remain fine only around the interface. For parallel computation, a domain decomposition scheme with dynamic load balancing is used to distribute the computational work across processors.« less

  7. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, Hugh; Wade, Jeremy

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  8. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  9. United polarizable multipole water model for molecular mechanics simulation

    SciTech Connect (OSTI)

    Qi, Rui; Wang, Qiantao; Ren, Pengyu; Wang, Lee-Ping; Pande, Vijay S.

    2015-07-07

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3–5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  10. Crystallization Temperature of Aqueous Lithium Bromide Solutions at Low Evaporation Temperature

    SciTech Connect (OSTI)

    Kisari, Padmaja; Wang, Kai; Abdelaziz, Omar; Vineyard, Edward Allan

    2010-01-01

    Water- aqueous Lithium Bromide (LiBr) solutions have shown superior performance as working fluid pairs for absorption refrigeration cycles. Most of the available literature (e.g. ASHRAE Handbook of Fundamentals, etc.) provide crystallization behavior down to only 10 C. The typical evaporating temperature for an absorption chiller system is usually lower than 10 C. Hence, it is essential to have an accurate prediction of the crystallization temperature in this range in order to avoid crystallization during the design phase. We have therefore conducted a systematic study to explore the crystallization temperatures of LiBr/Water solutions that fall below an evaporating temperature of 10 C. Our preliminary studies revealed that the rate of cooling of the sample solution influences the crystallization temperature; therefore we have performed a quasi steady test where the sample was cooled gradually by reducing the sample temperature in small steps. Results from this study are reported in this paper and can be used to extend the data available in open literature.

  11. Comprehensive aerological reference data set (CARDS)

    SciTech Connect (OSTI)

    Eskridge, R.E.; Polansky, A.C.; Alduchov, O.A.

    1997-11-01

    The possibility of anthropogenic climate change has reached the attention of Government officials and researchers. However, one cannot study climate change without climate data. The CARDS project will produce high-quality upper-air data for the research community and for policy-makers. The authors intend to produce a dataset which is: easy to use, as complete as possible, as free of random errors as possible. They will also attempt to identify biases and remove them whenever possible. In this report, they relate progress toward their goal. They created a robust new format for archiving upper-air data, and designed a relational database structure to hold them. The authors have converted 13 datasets to the new format and have archived over 10,000,000 individual soundings from 10 separate data sources. They produce and archive a metadata summary of each sounding they load. They have researched station histories, and have built a preliminary upper-air station history database. They have converted station-sorted data from their primary database into synoptic-sorted data in a parallel database. They have tested and will soon implement an advanced quality-control procedure, capable of detecting and often repairing errors in geopotential height, temperature, humidity, and wind. This unique quality-control method uses simultaneous vertical, horizontal, and temporal checks of several meteorological variables. It can detect errors other methods cannot.

  12. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  13. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  14. Water augmented indirectly-fired gas turbine systems and method

    DOE Patents [OSTI]

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  15. Quantum effects in the dynamics of deeply supercooled water

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agapov, Alexander L.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; Richert, Ranko; Sokolov, Alexei P

    2015-02-26

    In spite of its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature Tg~136K. We demonstrate that this anomalous behavior can be explained well by quantum effects. In conclusion, these results have significant implications for our understanding of water dynamics.

  16. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  17. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  18. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  19. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  20. High temperature low friction surface coating

    DOE Patents [OSTI]

    Bhushan, Bharat

    1980-01-01

    A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

  1. Fluorescent temperature sensor

    DOE Patents [OSTI]

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  2. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  3. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G.; Gurary, Alexander I.; Boguslavskiy, Vadim

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  4. Set the PACE St. Louis (Missouri) | Open Energy Information

    Open Energy Info (EERE)

    Insulation, Windows, Doors, Comprehensive MeasuresWhole Building, Solar Water Heat, Photovoltaics, Pool Pumps, Tankless Water Heaters Active Incentive Yes Implementing Sector...

  5. Ch. VII, Temperature, heat flow maps and temperature gradient...

    Open Energy Info (EERE)

    Report: Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  6. Temperature, heat flow maps and temperature gradient holes |...

    Open Energy Info (EERE)

    to library Report: Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S....

  7. ARM - Field Campaign - Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsWater Vapor IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Water Vapor IOP 2000.09.18 - 2000.10.08 Lead Scientist : Henry Revercomb For data sets, see below. Abstract Scientific hypothesis: 1. Microwave radiometer (MWR) observations of the 22 GHz water vapor line can accurately constrain the total column amount of water vapor (assuming a calibration accuracy of 0.5 degC or better, which

  8. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, Peter M.

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  9. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  10. Forecasting Water Quality & Biodiversity

    Broader source: Energy.gov (indexed) [DOE]

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability ... that measure feedstock production, water quality, water quantity, and biodiversity. ...

  11. Efficient Water Use & Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy ...

  12. Efficient Water Use & Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy...

  13. Photosynthetic water oxidation versus photovoltaic water electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery Photosynthetic water oxidation versus photovoltaic water ...

  14. Localized temperature stability of low temperature cofired ceramics

    DOE Patents [OSTI]

    Dai, Steven Xunhu

    2013-11-26

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  15. CMOS Integrated Single Electron Transistor Electrometry (CMOS-SET) circuit design for nanosecond quantum-bit read-out.

    SciTech Connect (OSTI)

    Gurrieri, Thomas M.; Lilly, Michael Patrick; Carroll, Malcolm S.; Levy, James E.

    2008-08-01

    Novel single electron transistor (SET) read-out circuit designs are described. The circuits use a silicon SET interfaced to a CMOS voltage mode or current mode comparator to obtain a digital read-out of the state of the qubit. The design assumes standard submicron (0.35 um) CMOS SOI technology using room temperature SPICE models. Implications and uncertainties related to the temperature scaling of these models to 100mK operation are discussed. Using this technology, the simulations predict a read-out operation speed of approximately Ins and a power dissipation per cell as low as 2nW for single-shot read-out, which is a significant advantage over currently used radio frequency SET (RF-SET) approaches.

  16. Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

  17. Engine Cylinder Temperature Control

    DOE Patents [OSTI]

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  18. Simulation of atmospheric temperature effects on cosmic ray muon flux

    SciTech Connect (OSTI)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  19. Influence of thermal conditioning media on Charpy specimen test temperature

    SciTech Connect (OSTI)

    Nanstad, R.K.; Swain, R.L.; Berggren, R.G.

    1989-01-01

    The Charpy V-notch (CVN) impact test is used extensively for determining the toughness of structural materials. Research programs in many technologies concerned with structural integrity perform such testing to obtain Charpy energy vs temperature curves. American Society for Testing and Materials Method E 23 includes rather strict requirements regarding determination and control of specimen test temperature. It specifies minimum soaking times dependent on the use of liquids or gases as the medium for thermally conditioning the specimen. The method also requires that impact of the specimen occur within 5 s removal from the conditioning medium. It does not, however, provide guidance regarding choice of conditioning media. This investigation was primarily conducted to investigate the changes in specimen temperature which occur when water is used for thermal conditioning. A standard CVN impact specimen of low-alloy steel was instrumented with surface-mounted and embedded thermocouples. Dependent on the media used, the specimen was heated or cooled to selected temperatures in the range {minus}100 to 100{degree}C using cold nitrogen gas, heated air, acetone and dry ice, methanol and dry ice, heated oil, or heated water. After temperature stabilization, the specimen was removed from the conditioning medium while the temperatures were recorded four times per second from all thermocouples using a data acquisition system and a computer. The results show that evaporative cooling causes significant changes in the specimen temperatures when water is used for conditioning. Conditioning in the other media did not result in such significant changes. The results demonstrate that, even within the guidelines of E 23, significant test temperature changes can occur which may substantially affect the Charpy impact test results if water is used for temperature conditioning. 7 refs., 11 figs.

  20. HIGH TEMPERATURE THERMOCOUPLE

    DOE Patents [OSTI]

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  1. Waters LANL Protects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waters LANL Protects Waters LANL Protects LANL watersheds source in the Jemez Mountains and end at the Rio Grande.

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites .........7 Water Sampling Field Activities Verification ...

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Green River, Utah, Disposal Site August 2014 LMSGRN.........7 Water Sampling Field Activities Verification ...

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........7 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Time-Concentration Graphs ...

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and May 2014 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal .........9 Water Sampling Field Activities Verification ...

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Rio Blanco, Colorado, Site October 2014 LMSRBLS00514 .........5 Water Sampling Field Activities Verification ...

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Natural Gas and Produced Water Sampling at the Rulison, Colorado, Site November 2014 LMS.........3 Water Sampling Field Activities Verification ...

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........9 Water Sampling Field Activities Verification ... Data Durango Processing Site Surface Water Quality Data Equipment Blank Data Static ...

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........3 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Natural Gas Analysis Data ...

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Hydrographs Time-Concentration ...

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Hydrograph Time-Concentration ...

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Rulison, Colorado, Site October 2015 LMS.........5 Water Sampling Field Activities Verification ...

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Time-Concentration Graph ...

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2015 LMSMNT.........7 Water Sampling Field Activities Verification ...

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Quality Data Equipment Blank Data Static Water Level Data Time-Concentration Graphs ...

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Time-Concentration Graphs ...

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    2015 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site .........9 Water Sampling Field Activities Verification ...

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Rio Blanco, Colorado, Site October 2015 LMSRBLS00515 .........5 Water Sampling Field Activities Verification ...

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Produced Water Sampling at the Rulison, Colorado, Site May 2015 LMSRULS00115 Available .........3 Water Sampling Field Activities Verification ...

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site December 2013 .........5 Water Sampling Field Activities Verification ...

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Produced Water Sampling at the Rulison, Colorado, Site January 2016 LMSRULS00915 .........3 Water Sampling Field Activities Verification ...

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site .........7 Water Sampling Field Activities Verification ...

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing .........5 Water Sampling Field Activities Verification ...

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2014 LMSMNT.........7 Water Sampling Field Activities Verification ...

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Water Sampling at the Monticello, Utah, Processing Site January 2014 LMSMNTS01013 This .........7 Water Sampling Field Activities Verification ...

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Naturita, Colorado Processing Site October 2013 LMSNAP.........5 Water Sampling Field Activities Verification ...

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site .........5 Water Sampling Field Activities Verification ...

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2013 LMSTUB.........9 Water Sampling Field Activities Verification ...

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Monticello, Utah, Processing Site January .........7 Water Sampling Field Activities Verification ...

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........3 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Time-Concentration Graphs ...

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........7 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data Static ...

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data Static ...

  13. High-Temperature Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  14. Resistance of a water spark.

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Lehr, Jane Marie

    2005-11-01

    The later time phase of electrical breakdown in water is investigated for the purpose of improving understanding of the discharge characteristics. One dimensional simulations in addition to a zero dimensional lumped model are used to study the spark discharge. The goal is to provide better electrical models for water switches used in the pulse compression section of pulsed power systems. It is found that temperatures in the discharge channel under representative drive conditions, and assuming small initial radii from earlier phases of development, reach levels that are as much as an order of magnitude larger than those used to model discharges in atmospheric gases. This increased temperature coupled with a more rapidly rising conductivity with temperature than in air result in a decreased resistance characteristic compared to preceding models. A simple modification is proposed for the existing model to enable the approximate calculation of channel temperature and incorporate the resulting conductivity increase into the electrical circuit for the discharge channel. Comparisons are made between the theoretical predictions and recent experiments at Sandia. Although present and past experiments indicated that preceding late time channel models overestimated channel resistance, the calculations in this report seem to underestimate the resistance relative to recent experiments. Some possible reasons for this discrepancy are discussed.

  15. Tritiated Water Challenge in Fukushima Daiichi

    Office of Environmental Management (EM)

    Trish Williams About Us Trish Williams - Communications Specialist, EERE Communications Office Most Recent Friedman Sets Sights on Accelerating America's Transition to a Clean Energy Economy July 22 Friedman Sets Sights on Accelerating America's Transition to a Clean Energy Economy July 12 National Clean Energy Incubators Spawn New Commercialization Centers June 27

    Tritiated water Challenge in Fukushima Daiichi Steve Xiao, Ph.D. Hydrogen Processing Tritium Focus Group Meeting, April 2014

  16. Evaluation of strained silicon on insulator for SET based single...

    Office of Scientific and Technical Information (OSTI)

    insulator for SET based single donor spin read-out. Citation Details In-Document Search Title: Evaluation of strained silicon on insulator for SET based single donor spin read-out. ...

  17. Solar Energy Trading GmbH SET | Open Energy Information

    Open Energy Info (EERE)

    GmbH SET Jump to: navigation, search Name: Solar Energy Trading GmbH (SET) Place: Mnster, Germany Zip: 48157 Sector: Solar Product: Germany-based solar project developer and...

  18. Satellite Television Industry Meeting Regarding DOE Set-Top Box...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking On April 3, 2012 at 11:00 AM, ...

  19. Strongest non-destructive magnetic field: world record set at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strongest non-destructive magnetic field: world record set at 100-tesla level Strongest non-destructive magnetic field: world record set at 100-tesla level National High Magnetic ...

  20. Users Manual for TMY3 Data Sets (Revised)

    SciTech Connect (OSTI)

    Wilcox, S.; Marion, W.

    2008-05-01

    This users manual describes how to obtain and interpret the data in the Typical Meteorological Year version 3 (TMY3) data sets. These data sets are an update to the TMY2 data released by NREL in 1994.

  1. Hydrogen Goal-Setting Methodologies Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Hydrogen Goal-Setting Methodologies Report to Congress summarizes the processes used to set Hydrogen Program goals and milestones. Published in August 2006, it fulfills the requirement under se

  2. Support for Cost Analyses on Solar-Driven High Temperature Thermochemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water-Splitting Cycles | Department of Energy Support for Cost Analyses on Solar-Driven High Temperature Thermochemical Water-Splitting Cycles Support for Cost Analyses on Solar-Driven High Temperature Thermochemical Water-Splitting Cycles While hydrogen and fuel cells represent a promising pathway to reduce the environmental footprint of the United States transportation on road transportation system, in order to fully achieve these benefits, the hydrogen needs to be sourced through

  3. UNDESIRABLE FLOW BEHAVIOR IN A PROPOSED VALIDATION DATA SET

    SciTech Connect (OSTI)

    Richard W. Johnson; Hugh M. McIlroy; Ryan C. Johnson; Daniel P. Christensen

    2010-05-01

    The next generation nuclear plant (NGNP), whose development is supported by the U. S. Department of Energy, will be a very high temperature reactor (VHTR). The VHTR is a single-phase helium-cooled reactor that will provide helium at up to 1000 °C. The prospect of a coolant at these temperatures circulating in the reactor vessel demands that careful analysis be performed to ensure that excessively hot spots are not created and that sufficient mixing of the coolant is obtained. Computational fluid dynamics (CFD) coupled with heat transfer will be used to perform the desired analyses. However, primarily because of the imperfect nature of modeling turbulent flow, any CFD calculations used to perform nuclear reactor safety analysis must be validated against experimental data. Experimental data have been taken in a scaled section of the lower plenum of a prismatic VHTR at the matched index of refraction (MIR) facility at the Idaho National Laboratory. These data were taken with the intent that they be examined for use as validation data. A series of investigations have been conducted to assess the MIR data. Issues that have already been examined include the extent of the required computational domain, the outlet boundary condition, the inlet data and the effect of the turbulence model. One of the jets that flow into the model impacts on a wedge, which represents a portion of a hexagonal graphite block that is part of the inner wall of the lower plenum. The nature of the flow below this particular jet is such that a randomly varying recirculation zone is created. This recirculation zone is seen to change in size, causing a relatively long-time scale of motion or disturbance on the flow downstream. It is concluded that such a feature is undesirable in a validation data set, firstly because of its apparent random nature and, secondly, because to obtain an appropriate long-time average would be impractical because of the compute time required. It is found that by

  4. Eastern and Western Wind Integration Data Sets | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Western Wind Integration Data Sets The Eastern Wind Integration Data Set and Western Wind Integration Data Set were designed to perform wind integration studies and estimate power production from hypothetical wind power plants in the United States. These data sets can help energy professionals such as transmission planners, utility planners, project developers, and university researchers: Perform spatial and temporal comparisons of sites, including: Geographic diversity Load correlation

  5. Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell

    Broader source: Energy.gov [DOE]

    EERE supported the development of Solar Junction's concentrated photovoltaic technology that set a world record for conversion efficiency.

  6. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Phillip, Bradley L.

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  7. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Phillip, Bradley L.

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100.degree. C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  8. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  9. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  10. DOE Research Set-Aside Areas of the Savannah River Site

    SciTech Connect (OSTI)

    Davis, C.E.; Janecek, L.L.

    1997-08-31

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

  11. Temperature measuring analysis of the nuclear reactor fuel assembly

    SciTech Connect (OSTI)

    Urban, F. E-mail: zdenko.zavodny@stuba.sk; Kučák, L. E-mail: zdenko.zavodny@stuba.sk; Bereznai, J. E-mail: zdenko.zavodny@stuba.sk; Závodný, Z. E-mail: zdenko.zavodny@stuba.sk; Muškát, P. E-mail: zdenko.zavodny@stuba.sk

    2014-08-06

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  12. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  13. Thermionic converter temperature controller

    DOE Patents [OSTI]

    Shaner, Benjamin J.; Wolf, Joseph H.; Johnson, Robert G. R.

    2001-04-24

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  14. Drexel University Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

  15. High temperature detonator

    DOE Patents [OSTI]

    Johnson, James O. (Los Alamos, NM); Dinegar, Robert H. (Los Alamos, NM)

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  16. Optical monitor for water vapor concentration

    DOE Patents [OSTI]

    Kebabian, Paul

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  17. Optical monitor for water vapor concentration

    DOE Patents [OSTI]

    Kebabian, P.

    1998-06-02

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.

  18. Fuel-Cell Fundamentals at Low and Subzero Temperatures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Fundamentals at Low and Subzero Temperatures Adam Z. Weber (PI), John Newman, Clayton Radke LBNL Rangachary Mukundan, Rodney Borup LANL Michael Perry UTRC Mark Debe 3M Chao-Yang Wang PSU This presentation does not contain any proprietary or confidential information Objectives  Fundamental understanding of transport phenomena and water and thermal management at low and subzero temperatures using state-of-the-art materials  Enable optimization strategies to be developed to overcome

  19. Purple Path toward High Temperature Superconductivity? | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Purple Path toward High Temperature Superconductivity? Discovery of an unconventional charge density wave (CDW) in purple bronze, a molybdenum oxide, points to a possible new pathway to high temperature superconductivity. A CDW is a state of matter where electrons bunch together periodically, like a standing wave of light or water. CDWs and superconductivity are frenemies, since they share a common origin and often coexist, yet compete for dominance. Conventional CDWs and

  20. High temperature expanding cement composition and use

    DOE Patents [OSTI]

    Nelson, Erik B.; Eilers, Louis H.

    1982-01-01

    A hydratable cement composition useful for preparing a pectolite-containing expanding cement at temperatures above about 150.degree. C. comprising a water soluble sodium salt of a weak acid, a 0.1 molar aqueous solution of which salt has a pH of between about 7.5 and about 11.5, a calcium source, and a silicon source, where the atomic ratio of sodium to calcium to silicon ranges from about 0.3:0.6:1 to about 0.03:1:1; aqueous slurries prepared therefrom and the use of such slurries for plugging subterranean cavities at a temperature of at least about 150.degree. C. The invention composition is useful for preparing a pectolite-containing expansive cement having about 0.2 to about 2 percent expansion, by volume, when cured at at least 150.degree. C.

  1. Elasticity and Inverse Temperature Transition in Elastin

    SciTech Connect (OSTI)

    Perticaroli, Stefania; Ehlers, Georg; Jalarvo, Niina; Katsaras, John; Nickels, Jonathan D.

    2015-09-22

    Structurally, elastin is protein and biomaterial that provides elasticity and resilience to a range of tissues. This work provides insights into the elastic properties of elastin and its peculiar inverse temperature transition (ITT). These features are dependent on hydration of elastin and are driven by a similar mechanism of hydrophobic collapse to an entropically favorable state. Moreover, when using neutron scattering, we quantify the changes in the geometry of molecular motions above and below the transition temperature, showing a reduction in the displacement of water-induced motions upon hydrophobic collapse at the ITT. Finally, we measured the collective vibrations of elastin gels as a function of elongation, revealing no changes in the spectral features associated with local rigidity and secondary structure, in agreement with the entropic origin of elasticity.

  2. Low temperature route to uranium nitride

    DOE Patents [OSTI]

    Burrell, Anthony K.; Sattelberger, Alfred P.; Yeamans, Charles; Hartmann, Thomas; Silva, G. W. Chinthaka; Cerefice, Gary; Czerwinski, Kenneth R.

    2009-09-01

    A method of preparing an actinide nitride fuel for nuclear reactors is provided. The method comprises the steps of a) providing at least one actinide oxide and optionally zirconium oxide; b) mixing the oxide with a source of hydrogen fluoride for a period of time and at a temperature sufficient to convert the oxide to a fluoride salt; c) heating the fluoride salt to remove water; d) heating the fluoride salt in a nitrogen atmosphere for a period of time and at a temperature sufficient to convert the fluorides to nitrides; and e) heating the nitrides under vacuum and/or inert atmosphere for a period of time sufficient to convert the nitrides to mononitrides.

  3. Elasticity and Inverse Temperature Transition in Elastin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perticaroli, Stefania; Ehlers, Georg; Jalarvo, Niina; Katsaras, John; Nickels, Jonathan D.

    2015-09-22

    Structurally, elastin is protein and biomaterial that provides elasticity and resilience to a range of tissues. This work provides insights into the elastic properties of elastin and its peculiar inverse temperature transition (ITT). These features are dependent on hydration of elastin and are driven by a similar mechanism of hydrophobic collapse to an entropically favorable state. Moreover, when using neutron scattering, we quantify the changes in the geometry of molecular motions above and below the transition temperature, showing a reduction in the displacement of water-induced motions upon hydrophobic collapse at the ITT. Finally, we measured the collective vibrations of elastinmore » gels as a function of elongation, revealing no changes in the spectral features associated with local rigidity and secondary structure, in agreement with the entropic origin of elasticity.« less

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... whether a statistical outlier should be discarded or corrected within a data set. ... The application compares the new data set (in standard environmental database units) with ...

  5. Conventional Storage Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating » Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the tank are two thin pipes; one pipe is the hot water outlet, and the other is the cold water inlet. A large pipe in the middle is called a vent pipe. A pressure/temperature relief valve is also on top of the tank and is connected to an open pipe that runs down the side of the tank. Another

  6. Complex admixtures of clathrate hydrates in a water desalination method

    DOE Patents [OSTI]

    Simmons, Blake A.; Bradshaw, Robert W.; Dedrick, Daniel E.; Anderson, David W.

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  7. DOE Zero Energy Ready Home Efficient Hot Water Distribution II...

    Broader source: Energy.gov (indexed) [DOE]

    with the Challenge Home program and here to set this up for you. Today's session on hot water distribution is one of a continuing series of tech training webinars to support our...

  8. Where Water is Oxidized to Dioxygen: Structure of the Photosynthetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Where Water is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster Experimental set-up on 9-3 Figure 1. Single crystal experimental setup on BL 9-3 at SSRL....

  9. Synchronous temperature rate control for refrigeration with reduced energy consumption

    DOE Patents [OSTI]

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  10. Low temperature methanol process

    SciTech Connect (OSTI)

    O'Hare, T.E.; Sapienza, R.S.; Mahajan, D.; Skaperdas, G.T.

    1986-06-01

    The world's abundant natural gas resources could provide methanol in fuel quantities to the utility system. Natural gas liquefaction is the current major option available for international export transport of natural gas. Gas production is on the increase and international trade even more so, with LNG making most progress. The further penetration of natural gas into distant markets can be substantially increased by a new methanol synthesis process under development. The new methanol process is made possible by the discovery of a catalyst that drops synthesis temperatures from about 275/sup 0/C to about 100/sup 0/C. Furthermore, the new catalyst is a liquid phase system, which permits the synthesis reaction to proceed at fully isothermal conditions. Therefore, the new low temperature liquid catalyst can convert synthesis gas completely to methanol in a single pass through the methanol synthesis reactor. This characteristic leads to a further major improvement in the methanol plant. Atmospheric nitrogen can be tolerated in the synthesis gas, and still the volume of gas fed to the reactor can be smaller than the volume of gas that must be fed to the reactor when accommodating the very low conversions furnished by the best of currently available catalysts. The energy disadvantage of the methanol option must be balanced against the advantage of a much lower capital investment requirement made possible by the new BNL synthesis. Preliminary estimates show that methanol conversion and shipping require an investment for liquefaction to methanol, and shipping liquefied methanol that can range from 35 to 50% of that needed for the LNG plant and LNG shipping fleet.

  11. High-temperature-measuring device

    DOE Patents [OSTI]

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  12. Low-temperature geothermal assessment of the Santa Clara and Virgin River Valleys, Washington County, Utah

    SciTech Connect (OSTI)

    Budding, K.E.; Sommer, S.N.

    1986-01-01

    Exploration techniques included the following: (1) a temperature survey of springs, (2) chemical analyses and calculated geothermometer temperatures of water samples collected from selected springs and wells, (3) chemical analyses and calculated geothermometer temperatures of spring and well water samples in the literature, (4) thermal gradients measured in accessible wells, and (5) geology. The highest water temperature recorded in the St. George basin is 42/sup 0/C at Pah Tempe Hot Springs. Additional spring temperatures higher than 20/sup 0/C are at Veyo Hot Spring, Washington hot pot, and Green Spring. The warmest well water in the study area is 40/sup 0/C in Middleton Wash. Additional warm well water (higher than 24.5/sup 0/C) is present north of St. George, north of Washington, southeast of St. George, and in Dameron Valley. The majority of the Na-K-Ca calculated reservoir temperatures range between 30/sup 0/ and 50/sup 0/C. Anomalous geothermometer temperatures were calculated for water from Pah Tempe and a number of locations in St. George and vicinity. In addition to the known thermal areas of Pah Tempe and Veyo Hot Spring, an area north of Washington and St. George is delineated in this study to have possible low-temperature geothermal potential.

  13. ARM - Measurement - Surface skin temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    skin temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface skin temperature The radiative surface skin temperature, from an IR thermometer measuring the narrowband radiating temperature of the ground surface in its field of view. Categories Surface Properties, Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the

  14. Lab Breakthrough: Record-Setting Cavities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record-Setting Cavities Lab Breakthrough: Record-Setting Cavities April 24, 2012 - 2:34pm Addthis At Jefferson Lab, researchers have fabricated a niobium cavity for particle accelerators that has set a world record for energy efficiency. Gianluigi "Gigi" Ciovati, a superconducting radiofrequency scientist, discusses how scientists at the Jefferson Lab developed the technology, and how it will be used to impact the energy industry. Michael Hess Michael Hess Former Digital Communications

  15. Appliance Standard Program - The FY 2003 Priority -Setting Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Actions Proposed - Appendix B | Department of Energy Report and Actions Proposed - Appendix B Appliance Standard Program - The FY 2003 Priority -Setting Summary Report and Actions Proposed - Appendix B This appendix contains data sheets for existing appliance standards program rulemaking priorities fy03_priority_setting_app_b.pdf (272.88 KB) More Documents & Publications 2006 Draft Rulemaking Activities Data Sheets Appliance Standards Program - The FY 2003 Priority Setting Report and

  16. Appliance Standards Program - The FY 2003 Priority Setting Report and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Actions Proposed - Appendix C | Department of Energy Appendix C Appliance Standards Program - The FY 2003 Priority Setting Report and Actions Proposed - Appendix C This appendix contains data sheets for new products that will be covered under appliance standards program rulemaking priorities fy03_priority_setting_app_c.pdf (783.32 KB) More Documents & Publications Appliance Standards Program - The FY 2003 Priority Setting Report and Actions Proposed -Appendix A 2006 Draft Rulemaking

  17. LandScan 2013 High Resolution Global Population Data Set

    SciTech Connect (OSTI)

    2014-07-01

    The LandScan data set is a worldwide population database compiled on a 30"x30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  18. Energy Department, Northwest Food Processors Association Set Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Goals for Industry | Department of Energy Northwest Food Processors Association Set Energy Efficiency Goals for Industry Energy Department, Northwest Food Processors Association Set Energy Efficiency Goals for Industry February 17, 2009 - 12:00am Addthis PORTLAND, OR - The U.S. Department of Energy (DOE) and the Northwest Food Processors Association today set ambitious goals to reduce energy use and carbon emissions in the industrial sector. DOE Industrial Technologies Program

  19. LandScan 2000 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2001-12-31

    The LandScan data set is a worldwide population database compiled on a 30" X 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  20. Department Sets Aggressive Schedule for New Appliance Standards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sets Aggressive Schedule for New Appliance Standards Department Sets Aggressive Schedule for New Appliance Standards February 1, 2006 - 8:52am Addthis WASHINGTON, DC - The Department of Energy (DOE) today released a schedule for setting new appliance efficiency standards. The five-year plan outlines how DOE will work with all of its partners to address the appliance standards rulemaking backlog and meet all of the statutory requirements established in the Energy Policy

  1. Average dynamics of a finite set of coupled phase oscillators

    SciTech Connect (OSTI)

    Dima, Germn C. Mindlin, Gabriel B.

    2014-06-15

    We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.

  2. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  3. Limitations and requirements of using the chemical speciation code, MINTEQA2, to predict water quality impacts at fossil plants

    SciTech Connect (OSTI)

    Danzig, A.J.; McEntyre, C.L.

    1995-10-01

    The chemical speciation model, MINTEQA2, was used to simulate the effects of proposed waste process changes on the final waste water effluent at coal-fired power plants. The chemistry of the waste water system at the plants was extremely complex, involving factors such as temperature, redox couples, ionic strength, adsorption, and gas phase equilibria. MINTEQA2 is capable of computing equilibria among the dissolved, adsorbed, solid, and gas phases in an environmental setting. This paper focuses on the limitations and requirements of using the model for these purposes. Specifics include sampling protocols, biological factors, and knowledge of how MINTEQA2 works. This approach could be used to aid in modeling treatment systems for a variety of power generated wastes.

  4. Evaluating Water Vapor in the NCAR CAM3 Climate Model with RRTMG...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor in the NCAR CAM3 Climate Model with RRTMGMcICA using Modeled and Observed ... Objectives: * Evaluate water vapor and temperature simulation in two versions of CAM3 by ...

  5. NREL Releases Updated Typical Meteorological Year Data Set - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Releases Updated Typical Meteorological Year Data Set May 1, 2008 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) today released an updated typical meteorological year (TMY) data set derived from the 1991-2005 National Solar Radiation Data Base update. The TMY3 data and user's manual are available at http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3. The new data sets update and expand the TMY2 data sets released by NREL in 1994. The TMY3 data

  6. Compression set in Gas Blown Condensation Cured Polysiloxane...

    Office of Scientific and Technical Information (OSTI)

    Title: Compression set in Gas Blown Condensation Cured Polysiloxane Elastomers Authors: Patel, M ; Chinn, S C ; Maxwell, R S ; Wilson, T S ; Birdsell, S A Publication Date: ...

  7. Hydrogen Program Goal-Setting Methodologies Report to Congress

    Broader source: Energy.gov [DOE]

    This Report to Congress, published in August 2006, focuses on the methodologies used by the DOE Hydrogen Program for goal-setting.

  8. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission ...

  9. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on inexpensive lenses to magnify...

  10. A set of parallel, implicit methods for a reconstructed discontinuous...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A set of parallel, implicit methods for a reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids Citation Details In-Document Search...

  11. Livermore Field Office sets core values as part of continuous...

    National Nuclear Security Administration (NNSA)

    At their recent off-site continuous improvement session, the NNSA Livermore Field Office (LFO) in California unveiled their new set of core values: Integrity - Trustworthy, ...

  12. EERE Success Story-Solar Junction Develops World Record Setting...

    Broader source: Energy.gov (indexed) [DOE]

    of the company's concentrated photovoltaic technology that also set a world ... | NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken Project ...

  13. EV Everywhere Battery Workshop: Setting the Stage for the EV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere Grand Challenge Presentation given at the EV Everywhere Grand Challenge: Battery Workshop by EERE Assistant ...

  14. NREL Helps Greensburg Set the Model for Green Communities (Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL Helps Greensburg Set the Model for Green Communities (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory) NREL Helps...

  15. BPA, Grid Modernization, and Setting the Nation Up for Success...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transmission system and analyze and respond to emergency situations and problems like blackouts. ... BPA is leading the way, and setting a terrific example of strategic planning ...

  16. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric ...

  17. DOE Research Set-Aside Program | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Overview Set-Asides provide baseline information on ecological processes in SRS natural communities, ... to 1951, when the Atomic Energy Commission invited the ...

  18. Appliance Standard Program - The FY 2003 Priority -Setting Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report and Actions Proposed - Appendix B Appliance Standard Program - The FY 2003 Priority ... Actions Proposed - Appendix C Appliance Standard Program - The FY 2003 Priority -Setting ...

  19. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is ... removed the resolution limit imposed by the characteristics of the x-ray optics. ...

  20. Record-Setting Year for Nuclear Weapon Dismantlement Achieved...

    National Nuclear Security Administration (NNSA)

    Record-Setting Year for Nuclear Weapon Dismantlement Achieved at the Y-12 National Security Complex | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...