Sample records for water storage tank

  1. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    Survey of Electric Storage Tank Water Heater Efficiency andSurvey of Electric Storage Tank Water Heater Efficiency andby electric resistance storage tank water heaters (geysers),

  2. Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

    2009-04-01T23:59:59.000Z

    Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

  3. Storage Tanks (Arkansas)

    Broader source: Energy.gov [DOE]

    The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters...

  4. Heat pump water heater and storage tank assembly

    DOE Patents [OSTI]

    Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

    1999-09-07T23:59:59.000Z

    A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

  5. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for

    E-Print Network [OSTI]

    Berning, Torsten

    Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single storage tank is studied. Thermal stratification in the tank increases the heat recovery performance of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature

  6. Underground Storage Tank Regulations

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

  7. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    Fixed Electric Storage Water Heaters, South African Nationalinternational electric storage water heater test proceduresefficiency of electric storage water heaters, and outlines

  8. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    SciTech Connect (OSTI)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13T23:59:59.000Z

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  9. Rainwater harvesting systems that collect and convey rain-water from roofs to storage tanks are often the best or only

    E-Print Network [OSTI]

    Polz, Martin

    tanks are often the best or only source of water for many communities in the developing world. A common are swept into the storage tank along with the rainwater. While some systems divert the "first flush into gutters, through a series of pipes and into storage tanks. Three rainwater harvesting systems

  10. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  11. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  12. Underground Storage Tanks (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install,...

  13. Underground Storage Tanks (New Jersey)

    Broader source: Energy.gov [DOE]

    This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and...

  14. Chiller Start/Stop Optimization for a Campus-wide Chilled Water System with a Thermal Storage Tank Under a Four-Period Electricity Rate Schedule

    E-Print Network [OSTI]

    Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.; Contreras, O.

    2002-01-01T23:59:59.000Z

    The existence of a 1.4-million-gallon chilled water thermal storage tank greatly increases the operational flexibility of a campuswide chilled water system under a four-part electricity rate structure. While significant operational savings can...

  15. Underground Storage Tank Act (West Virginia)

    Broader source: Energy.gov [DOE]

    New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored...

  16. Investigating leaking underground storage tanks

    E-Print Network [OSTI]

    Upton, David Thompson

    1989-01-01T23:59:59.000Z

    INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

  17. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  18. Georgia Underground Storage Tank Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (“USTs”) of “regulated substances” other than...

  19. A Method to Determine the Optimal Tank Size for a Chilled Water Storage System Under a Time-of-Use Electricity Rate Structure

    E-Print Network [OSTI]

    Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

    2010-01-01T23:59:59.000Z

    In the downtown area of Austin, it is planned to build a new naturally stratified chilled water storage tank and share it among four separated chilled water plants. An underground piping system is to be established to connect these four plants...

  20. Underground storage tank 431-D1U1, Closure Plan

    SciTech Connect (OSTI)

    Mancieri, S.

    1993-09-01T23:59:59.000Z

    This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

  1. Above Ground Storage Tank (AST) Inspection Form

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name: ______________________ Tank No:_______________ Date:_____________ Inspection Parameter Result Comments/Corrective Actions 1. Is there leaking in the interstitial space (not DRY)? YES/NO/NA 2. Tank surface shows signs of leakage? YES/NO/NA 3

  2. E-Print Network 3.0 - anechoic water tank Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2, and 3 including steam drums, water drums, firebox, and exhaust stack. All tanks including... Side of Surface Condenser < Fuel Oil Storage Tanks < Chilled Water...

  3. Robotic Inspection System for Bulk Liquid Storage Tanks

    E-Print Network [OSTI]

    Hartsell, D. R.; Hakes, K. J.

    for aboveground storage tanks (ASTs) requires: drainage of the product; cleaning of the vessel with water or solvents; physical removal, collection and containment of petroleum and chemical waste residues, including the waste streams created by the cleaning...

  4. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    history of promoting heat pump water heaters (HPWH) throughwater heaters, and heat pump water heaters are not typical.water heaters, heat pump water heater (HPWH) technology

  5. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    blankets to electric hot water heaters in South Africa,” J.for Residential Water Heaters, Direct Heating Equipment, andfor Residential Water Heaters, Direct Heating Equipment, and

  6. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    than standard storage water heaters [2]. However, they aredown for both storage-type water heaters and tankless water1]. The typical water heater storage tank wastes energy to

  7. Comparative safety analysis of LNG storage tanks

    SciTech Connect (OSTI)

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01T23:59:59.000Z

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  8. Technical Assessment of Compressed Hydrogen Storage Tank Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical report...

  9. Bonfire Tests of High Pressure Hydrogen Storage Tanks | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Bonfire Tests of High Pressure Hydrogen Storage Tanks Bonfire Tests of High Pressure Hydrogen Storage Tanks These slides were presented at the International Hydrogen Fuel and...

  10. Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi)

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations for the Certification of Persons who Install, Alter, and Remove Underground Storage Tanks applies to any project that will install, alter or remove...

  11. Underground storage tank management plan

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  12. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01T23:59:59.000Z

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  13. Improvement in LNG storage tanks

    SciTech Connect (OSTI)

    NONE

    1999-11-20T23:59:59.000Z

    To develop and produce natural gas fuel tanks for medium duty truck and transit bus end-use to overcome the weight and range problems inherent in current fuel systems.

  14. A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks

    E-Print Network [OSTI]

    Kujat, Jonathon D.

    1999-01-01T23:59:59.000Z

    Underground Storage Tanks. Chelsea: Lewis Publishers.and Underground Storage Tank Sites. Database on-line.Michigan Underground Storage Tank Rules. Database on-line.

  15. Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements

    E-Print Network [OSTI]

    Cutter, W. Bowman

    2008-01-01T23:59:59.000Z

    Leaks from Underground Storage Tanks by Media Affected Soilfrom Underground Storage Tank Facilities Cities CountiesCities Counties Leaks per Underground Storage Tank Facility

  16. Underground Storage Tank Program (Vermont)

    Broader source: Energy.gov [DOE]

    These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

  17. E-Print Network 3.0 - aboveground storage tanks Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: aboveground storage tanks...

  18. Viewing Systems for Large Underground Storage Tanks.

    SciTech Connect (OSTI)

    Heckendorn, F.M., Robinson, C.W., Anderson, E.K. [Westinghouse Savannah River Co., Aiken, SC (United States)], Pardini, A.F. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-12-31T23:59:59.000Z

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction.

  19. PRESSURIZATION OF FIXED ROOF STORAGE TANKS DUE TO EXTERNAL FIRES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PRESSURIZATION OF FIXED ROOF STORAGE TANKS DUE TO EXTERNAL FIRES Fabien FouiHen, INERIS, Parc. Reflections led on this accident have pushed to consider the phenomenon of tank pressurization as a potential initiating event of the fire ball observed. In concrete terms, when a fixed roof storage tank is surrounded

  20. Bonfire Tests of High Pressure Hydrogen Storage Tanks

    Broader source: Energy.gov (indexed) [DOE]

    Bonfire Tests of High Pressure Hydrogen Storage Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010Beijing, P.R. China September 27, 2010 Bonfire Tests of High...

  1. 100-N Area underground storage tank closures

    SciTech Connect (OSTI)

    Rowley, C.A.

    1993-08-01T23:59:59.000Z

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  2. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 {times} 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical {1/2}-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi.

  3. Permanent Closure of the TAN-664 Underground Storage Tank

    SciTech Connect (OSTI)

    Bradley K. Griffith

    2011-12-01T23:59:59.000Z

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  4. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30T23:59:59.000Z

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  5. Hydrogen Peroxide Storage in Small Sealed Tanks

    SciTech Connect (OSTI)

    Whitehead, J.

    1999-10-20T23:59:59.000Z

    Unstabilized hydrogen peroxide of 85% concentration has been prepared in laboratory quantities for testing material compatibility and long term storage on a small scale. Vessels made of candidate tank and liner materials ranged in volume from 1 cc to 2540 cc. Numerous metals and plastics were tried at the smallest scales, while promising ones were used to fabricate larger vessels and liners. An aluminum alloy (6061-T6) performed poorly, including increasing homogeneous decay due to alloying elements entering solution. The decay rate in this high strength aluminum was greatly reduced by anodizing. Better results were obtained with polymers, particularly polyvinylidene fluoride. Data reported herein include ullage pressures as a function of time with changing decay rates, and contamination analysis results.

  6. DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS

    SciTech Connect (OSTI)

    Mickalonis, J.; Vormelker, P.

    2009-07-31T23:59:59.000Z

    Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

  7. Underground storage tank 511-D1U1 closure plan

    SciTech Connect (OSTI)

    Mancieri, S.; Giuntoli, N.

    1993-09-01T23:59:59.000Z

    This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

  8. P\\procedure\\EH&S#21 Page 1 of 3 TITLE REGULATED STORAGE TANKS

    E-Print Network [OSTI]

    Fernandez, Eduardo

    UST). Regulated Aboveground Storage Tank (AST) ­ a tank located above the ground with a capacityP\\procedure\\EH&S#21 Page 1 of 3 TITLE REGULATED STORAGE TANKS OBJECTIVE AND PURPOSE To ensure that regulated storage tanks are installed, inspected, and maintained in accordance with applicable state

  9. Underground Storage Tank Management (District of Columbia)

    Broader source: Energy.gov [DOE]

    The  installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

  10. Stress evaluation of the primary tank of a double-shell underground storage tank facility

    SciTech Connect (OSTI)

    Atalay, M.B. [ICF Kaiser Engineers, Inc., Oakland, CA (United States); Stine, M.D. [ICF Kaiser Hanford Co., Richland, WA (United States); Farnworth, S.K. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-12-01T23:59:59.000Z

    A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy`s Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures.

  11. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    SciTech Connect (OSTI)

    Not Available

    1994-05-19T23:59:59.000Z

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

  12. Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks

    SciTech Connect (OSTI)

    CW Enderlin; DG Alberts; JA Bamberger; M White

    1998-09-25T23:59:59.000Z

    This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

  13. Soil load above Hanford waste storage tanks (2 volumes)

    SciTech Connect (OSTI)

    Pianka, E.W. [Advent Engineering Services, Inc., San Ramon, CA (United States)

    1995-01-25T23:59:59.000Z

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.

  14. E-Print Network 3.0 - argon storage tanks Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    storage tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: argon storage tanks Page: << < 1 2 3 4 5 > >> 1 Large and Small (Far and Near) Liquid...

  15. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    SciTech Connect (OSTI)

    Mallon, B.J.; Blake, R.G.

    1994-03-01T23:59:59.000Z

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks.

  16. Modeling and simulation of a high pressure hydrogen storage tank with dynamic wall.

    E-Print Network [OSTI]

    Cumalioglu, Ilgaz

    2005-01-01T23:59:59.000Z

    ??Hydrogen storage is one of the divisions of hydrogen powered vehicles technology. To increase performances of high pressure hydrogen storage tanks, a multilayered design is… (more)

  17. Modeling and simulation of a high pressure hydrogen storage tank with Dynamic Wall.

    E-Print Network [OSTI]

    Cumalioglu, Ilgaz

    2005-01-01T23:59:59.000Z

    ??Hydrogen storage is one of the divisions of hydrogen powered vehicles technology. To increase performances of high pressure hydrogen storage tanks, a multilayered design is… (more)

  18. Underground storage tank 291-D1U1: Closure plan

    SciTech Connect (OSTI)

    Mancieri, S.; Giuntoli, N.

    1993-09-01T23:59:59.000Z

    The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

  19. Integrated heat exchanger design for a cryogenic storage tank

    SciTech Connect (OSTI)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)

    2014-01-29T23:59:59.000Z

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  20. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    TU, T.A.

    2007-01-04T23:59:59.000Z

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  1. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    BARKER, S.A.

    2006-07-27T23:59:59.000Z

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  2. Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

  3. Estimating Residual Solids Volume In Underground Storage Tanks

    SciTech Connect (OSTI)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08T23:59:59.000Z

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.

  4. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    Diagram 1: A Typical Tank Water Heater Source: http://to-unit comparisons of tank versus tankless water heaters.Energy Use MJ/(unit*year) Tank Tankless MJ/(unit*year) Tank

  5. Hydrogen Storage Using Lightweight Tanks Andrew H. Weisberg, Blake Myers, and Gene Berry

    E-Print Network [OSTI]

    Hydrogen Storage Using Lightweight Tanks Andrew H. Weisberg, Blake Myers, and Gene Berry Lawrence As tooling was being designed for compressed hydrogen tank experiments, a series of discoveries were made. Their preliminary results may change the best solutions to hydrogen storage. Recent Progress LLNL tank design

  6. Maintenance Scheduling of Oil Storage Tanks using Tabu-based Genetic Algorithm *

    E-Print Network [OSTI]

    Chen, Shu-Ching

    Maintenance Scheduling of Oil Storage Tanks using Tabu-based Genetic Algorithm * Sheng-Tun Li1 the distribution channel of products, which consists of gas stations, pipelines, and storage tanks. Due days or 50,000 kiloliters. Therefore, they unavoidably have to rent tanks from the domestic oil

  7. Math 315 Exam #3 Solutions in Brief 1. (20 points) Two tanks contain 10 liters of water each. Initially tank

    E-Print Network [OSTI]

    Math 315 Exam #3 Solutions in Brief 1. (20 points) Two tanks contain 10 liters of water each. Initially tank 1 contains no salt and tank 2 contains 246 grams of salt. Water con- taining 50 grams of salt per liter is added to tank 1 at the rate 2 liters/minute. Water containing no salt is added to tank 2

  8. Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote

    E-Print Network [OSTI]

    Feldman, Joel

    Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote by h(t) the height of water in the tank at time t, v(t) the speed of the water leaving through the hole at time t, A(h) the cross-sectional area of the tank at height h and a the cross- sectional area

  9. Evaluation of TANK water heater simulation model as embedded in HWSim

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    this scheme for operating TANK with HWSim is successful.LBNL # Evaluation of TANK water heater simulation model asCalifornia. Evaluation of TANK water heater simulation model

  10. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    SciTech Connect (OSTI)

    ROGERS, C.A.

    2000-02-17T23:59:59.000Z

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  11. U.S. Department of Energy Onboard Storage Tank Workshop Notes

    Broader source: Energy.gov (indexed) [DOE]

    and standards (RCS), and a path forward to enable the deployment of hydrogen storage tanks in early market fuel cell applications. Background The objectives of the Workshop were...

  12. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    SciTech Connect (OSTI)

    Eberlein, Susan J. [Washington River Protection Systems, Richland, WA (United States); Parker, Danny L. [Washington River Protection Systems, Richland, WA (United States); Tabor, Cynthia L. [Washington River Protection Systems, Richland, WA (United States); Holm, Melissa J. [Washington River Protection Systems, Richland, WA (United States)

    2013-11-11T23:59:59.000Z

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

  13. Two-tank working gas storage system for heat engine

    DOE Patents [OSTI]

    Hindes, Clyde J. (Troy, NY)

    1987-01-01T23:59:59.000Z

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  14. Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage

    E-Print Network [OSTI]

    Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage "TriShield" tank technology (see Fig. 1) meets the percent weight, energy density, and specific energy reductions are possible with further optimization. Fig. 1 TriShieldTM Type IV Tank The 5,000 and 10,000 psi

  15. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    SciTech Connect (OSTI)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01T23:59:59.000Z

    Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

  16. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    SciTech Connect (OSTI)

    Kerry L. Nisson

    2012-10-01T23:59:59.000Z

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  17. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    SciTech Connect (OSTI)

    Vail, T.S.

    1997-05-29T23:59:59.000Z

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

  18. Airborne Emissions from Storage Tanks: What's New on the Regulatory Front and How to Cope with the Changes

    E-Print Network [OSTI]

    Ferry, R. L.

    The U.S. EPA is developing new maximum achievable control technology (MACT) rules, which include provisions for aboveground storage tanks (AST's). While each industry category will have its own MACT rule, the trend for storage tank requirements...

  19. Department of Mechanical Engineering Spring 2013 Improving the Efficiency of a Non-Pressurized Thermal Storage Tank

    E-Print Network [OSTI]

    Demirel, Melik C.

    -Pressurized Thermal Storage Tank Overview Hydroflex had provided the team with a tank and the heat exchanger coil that was to be used to heat the tank. While attempting to improve the tank's efficiency, the team was required to keep certain parameters of the tank the same, such as it insulation and the type of coil that was used

  20. Cryograb: A Novel Approach to the Retrieval of Waste from Underground Storage Tanks - 13501

    SciTech Connect (OSTI)

    O'Brien, Luke; Baker, Stephen; Bowen, Bob [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom)] [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom); Mallick, Pramod; Smith, Gary [US Department of Energy (United States)] [US Department of Energy (United States); King, Bill [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Judd, Laurie [NuVision Engineering (United States)] [NuVision Engineering (United States)

    2013-07-01T23:59:59.000Z

    The UK's National Nuclear Laboratory (NNL) is investigating the use of cryogenic technology for the recovery of nuclear waste. Cryograb, freezing the waste on a 'cryo-head' and then retrieves it as a single mass which can then be treated or stabilized as necessary. The technology has a number of benefits over other retrieval approaches in that it minimizes sludge disturbance thereby reducing effluent arising and it can be used to de-water, and thereby reduce the volume of waste. The technology has been successfully deployed for a variety of nuclear and non-nuclear waste recovery operations. The application of Cryograb for the recovery of waste from US underground storage tanks is being explored through a US DOE International Technology Transfer and Demonstration programme. A sample deployment being considered involves the recovery of residual mounds of sludge material from waste storage tanks at Savannah River. Operational constraints and success criteria were agreed prior to the completion of a process down selection exercise which specified the preferred configuration of the cryo-head and supporting plant. Subsequent process modeling identified retrieval rates and temperature gradients through the waste and tank infrastructure. The work, which has been delivered in partnership with US DOE, SRNL, NuVision Engineering and Frigeo AB has demonstrated the technical feasibility of the approach (to TRL 2) and has resulted in the allocation of additional funding from DOE to take the programme to bench and cold pilot-scale trials. (authors)

  1. Closure report for underground storage tank 161-R1U1 and its associated underground piping

    SciTech Connect (OSTI)

    Mallon, B.J.; Blake, R.G.

    1994-05-01T23:59:59.000Z

    Underground storage tank (UST) 161-31 R at the Lawrence Livermore National Laboratory (LLNL) was registered with the State Water Resources Control Board on June 27, 1984. UST 161-31R was subsequently renamed UST 161-R1U1 (Fig. A-1, Appendix A). UST 161-R1U1 was installed in 1976, and had a capacity of 383 gallons. This tank system consisted of a fiberglass reinforced plastic tank, approximately 320 feet of polyvinyl chloride (PVC) underground piping from Building 161, and approximately 40 feet of PVC underground piping from Building 160. The underground piping connected laboratory drains and sinks inside Buildings 160 and 161 to UST 161-R1U1. The wastewater collected in UST 161-R1U1, contained organic solvents, metals, inorganic acids, and radionuclides, most of which was produced within Building 161. On June 28, 1989, the UST 161-R1U1 piping system.around the perimeter of Building 161 failed a precision test performed by Gary Peters Enterprises (Appendix B). The 161-R1U1 tank system was removed from service after the precision test. In July 1989, additional hydrostatic tests and helium leak detection tests were performed (Appendix B) to determine the locations of the piping failures in the Building 161 piping system. The locations of the piping system failures are shown in Figure A-2 (Appendix A). On July 11, 1989, LLNL submitted an Unauthorized Release Report to Alameda County Department of Environmental Health (ACDEH), Appendix C.

  2. Alaska Underground Storage Tanks Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 EndStatutes: Title 38 Jump to:Tanks

  3. Polymers for subterranean containment barriers for underground storage tanks (USTs). Letter report on FY 1992 activities

    SciTech Connect (OSTI)

    Heiser, J.H.; Colombo, P.; Clinton, J.

    1992-12-01T23:59:59.000Z

    The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks.

  4. EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

  5. 7 C.C.R. 1101-14 - Underground Storage Tanks and Aboveground Storage tanks

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive Jump to:Species |2008 |44Biosolids6-ft Wave|

  6. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Petroleum Product Storage

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29T23:59:59.000Z

    This publication focuses on safe storage of gasoline, diesel, kerosene and liquid heating fuels. It includes information about storage tank location, tank design and installation, tank monitoring, and tank closure....

  7. Technical Assessment of Compressed Hydrogen Storage Tank Systems...

    Broader source: Energy.gov (indexed) [DOE]

    carbon fiber-resin (CF) composite-wrapped single tank systems, with a high density polyethylene (HDPE) liner (i.e., Type IV tanks) capable of storing 5.6 kg usable hydrogen....

  8. SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Oji, L; Bill Wilmarth, B; David Hobbs, D

    2008-05-30T23:59:59.000Z

    Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

  9. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Fuel Cell Technologies Publication and Product Library (EERE)

    This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab)

  10. E-Print Network 3.0 - acid storage tank Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page: << < 1 2 3 4 5 > >> 1 Attachment A PPOP 08.10 Summary: < Refrigerant Storage Tanks Ventilated vaults: < Acid Vaults (May or may not require a permit depending... Side of...

  11. Seismic Fragility Analysis of a Degraded Condensate Storage Tank

    SciTech Connect (OSTI)

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Kim, M.K.; Choi, I-K.

    2011-05-16T23:59:59.000Z

    The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory are conducting a collaborative research project to develop seismic capability evaluation technology for degraded structures and components in nuclear power plants (NPPs). One of the goals of this collaboration endeavor is to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The essential part of this collaboration is aimed at achieving a better understanding of the effects of aging on the performance of SSCs and ultimately on the safety of NPPs. A recent search of the degradation occurrences of structures and passive components (SPCs) showed that the rate of aging related degradation in NPPs was not significantly large but increasing, as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). The condition and performance of major aged NPP structures such as the containment contributes to the life span of a plant. A frequent misconception of such low degradation rate of SPCs is that such degradation may not pose significant risk to plant safety. However, under low probability high consequence initiating events, such as large earthquakes, SPCs that have slowly degraded over many years could potentially affect plant safety and these effects need to be better understood. As part of the KAERI-BNL collaboration, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. CSTs were shown to have a significant impact on the seismic core damage frequency of a nuclear power plant. The seismic fragility capacity of the CST was developed for five cases: (1) a baseline analysis where the design condition (undegraded) is assumed, (2) a scenario with degraded stainless steel tank shell, (3) a scenario with degraded anchor bolts, (4) a scenario with anchorage concrete cracking, and (5) a perfect correlation of the above three degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study. To achieve a better understanding of the effects of aging on the performance of structures and passive components (SPCs) in nuclear power plants (NPPs), the Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic fragility analysis methods that consider age-related degradation of SPCs. The rate of age-related degradation of SPCs was not found to be significantly large, but increasing as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). In this paper, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study.

  12. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    SciTech Connect (OSTI)

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

    1997-07-01T23:59:59.000Z

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite{trademark} that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE`s waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention.

  13. Water Tanks Demolition and Deactivation (D&D) Project (4589)...

    Broader source: Energy.gov (indexed) [DOE]

    Water Tanks Demolition and Deactivation (D&D) Projects (4589) Program or Field Office: Y-12 Site Office Location(s) (CityCountyState): Oak Ridge, Anderson County, Tennessee...

  14. Closure Report for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-09-01T23:59:59.000Z

    Corrective Action Unit (CAU) 121 is identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008) as Storage Tanks and Miscellaneous Sites. CAU 121 consists of the following three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 12-01-01, Aboveground Storage Tank; (2) CAS 12-01-02, Aboveground Storage Tank; and (3) CAS 12-22-26, Drums; 2 AST's. CAU 121 closure activities were conducted according to the FFACO and the Streamlined Approach for Environmental Restoration Plan for CAU 121 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007). Field work took place from February through September 2008. Samples were collected to determine the path forward to close each site. Closure activities were completed as defined in the plan based on sample analytical results and site conditions. No contaminants of concern (COCs) were present at CAS 12-01-01; therefore, no further action was chosen as the corrective action alternative. As a best management practice (BMP), the empty aboveground storage tank (AST) was removed and disposed as sanitary waste. At CAS 12-01-02, polychlorinated biphenyls (PCBs) were present above the preliminary action level (PAL) in the soil beneath the AST that could possibly have originated from the AST contents. Therefore, PCBs were considered COCs, and the site was clean closed by excavating and disposing of soil containing PCBs. Approximately 5 cubic yards (yd{sup 3}) of soil were excavated and disposed as petroleum hydrocarbon PCB remediation waste, and approximately 13 yd3 of soil were excavated and disposed as PCB remediation waste. Cleanup samples were collected to confirm that the remaining soil did not contain PCBs above the PAL. Other compounds detected in the soil above PALs (i.e., total petroleum hydrocarbons [TPH] and semi-volatile organic compounds [SVOCs]) were determined to not likely have originated from the tank. Additional sample results showed that the compounds were likely present as a result of degraded asphalt around the adjacent, active water tank and not from the abandoned AST; therefore, they were not considered COCs. As a BMP, the empty AST was removed and disposed as sanitary waste. No COCs were present at CAS 12-22-26; therefore, no further action was chosen as the corrective action alternative. Although TPH was present at concentrations that exceeded the PAL, the volatile organic compound and SVOC hazardous constituents of TPH did not exceed the final action levels (FALs); therefore, TPH was not considered a COC. As a BMP, the empty AST was removed and disposed as sanitary waste. Closure activities generated sanitary waste, petroleum hydrocarbon PCB remediation waste, PCB remediation waste, and hazardous waste. Waste was appropriately managed and disposed. Waste that is currently staged on site is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams.

  15. Nondestructive examination of DOE high-level waste storage tanks

    SciTech Connect (OSTI)

    Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-05-01T23:59:59.000Z

    A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack.

  16. SLOSHING OF LIQUIDS IN RIGID ANNULAR CYLINDRICAL AND TORUS TANKS DUE TO SEISMIC GROUND MOTIONS

    E-Print Network [OSTI]

    Aslam, M.

    2013-01-01T23:59:59.000Z

    response of water in annular tank model of water = 1 underof Fixed-Base Liquid Storage Tank,'' U.S. , Japan Seminar onSloshing in Axisymmetric Tanks, 11 Ph.D. Dissertation,

  17. Evaluation of TANK water heater simulation model as embedded in HWSim

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    flue natural gas storage water heaters. Battelle developedthe water in a storage water heater is cooling off and

  18. Development of a Procedure for the Predictive Control Strategy of a Chilled Water Storage System

    E-Print Network [OSTI]

    Wei, G.; Sakuri, Y.; Claridge, D. E.; Turner, W. D.; Liu, M.

    2000-01-01T23:59:59.000Z

    -peak months to minimize demand charges. By optimizing the operation of the building air handling units (AHUs), chilled water pumps, chiller plant and the thermal storage system, the storage tank is better charged while chiller run time is reduced. Both on...

  19. Modeling and analysis of ORNL horizontal storage tank mobilization and mixing

    SciTech Connect (OSTI)

    Mahoney, L.A.; Terrones, G.; Eyler, L.L.

    1994-06-01T23:59:59.000Z

    The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m{sup 3} (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m{sup 3} (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents.

  20. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  1. ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

  2. ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01

    Broader source: Energy.gov [DOE]

     The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

  3. Underground storage tank 253-D1U1 Closure Plan

    SciTech Connect (OSTI)

    Mancieri, S.; Giuntoli, N.

    1993-09-01T23:59:59.000Z

    This report is a closure plan for a diesel fuel tank at the Lawrence Livermore National Laboratory. Included are maps of the site, work plans, and personnel information regarding training and qualification.

  4. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    SciTech Connect (OSTI)

    Kyle, K.R.; Mayes, E.L.

    1994-07-29T23:59:59.000Z

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).

  5. Exploratory tests of washing radioactive sludge samples from the Melton Valley and evaporator facility storage tanks at ORNL

    SciTech Connect (OSTI)

    Sears, M.B.; Botts, J.L.; Keller, J.M.

    1991-09-01T23:59:59.000Z

    Exploratory tests were initiated to wash radioactive sludge samples from the waste storage tanks at the Oak Ridge National Laboratory (ORNL). The purpose was to provide preliminary information about (1) the anions in the sludge phase that are soluble in water or dilute acid (e.g., the anions in the interstitial liquid) and (2) the solubilities of sludge constituents in water under process conditions. The experiments were terminated before completion due to changing priorities by the Department of Energy (DOE). This memorandum was prepared primarily for documentation purposes and presents the incomplete data. 3 refs., 13 tabs.

  6. aboveground storage tank: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage in a Tropical Forest Daniel E. Bunker,1 * Fabrice De services, such as carbon storage and sequestration, remain unknown. We assessed the influence of the loss of...

  7. Case Study of Stratified Chilled Water Storage Utilization for Comfort and Process Cooling in a Hot, Humid Climate

    E-Print Network [OSTI]

    Bahnfleth, W. P.; Musser, A.

    1998-01-01T23:59:59.000Z

    of the system and its operation is followed by presentation of operating data taken during 1997. INTRODUCTION Chilled water thermal energy storage ('TES) in naturally stratified tanks has been shown to be a valuable central cooling plant load management... and humid environment and presents new data on the performance of a large stratified chilled water storage tank. Figure 1. Plant Schematic. SITE The case study site is the Dallas, TX world headquarters of a major semiconductor manufacturer. The 6...

  8. Covered Product Category: Residential Gas Storage Water Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

  9. Evaluation of TANK water heater simulation model as embedded in HWSim

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    LBNL # Evaluation of TANK water heater simulation model asEvaluation of TANK water heater simulation model as embeddedwater to be drawn from a water heater to meet a schedule of

  10. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-05-31T23:59:59.000Z

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 134, Aboveground Storage Tanks. CAU 134 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996; as amended February 2008) and consists of four Corrective Action Sites (CASs) located in Areas 3, 15, and 29 of the Nevada Test Site (NTS) (Figure 1): (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain. CAS 03-01-03 consists of a mud tank that is located at the intersection of the 3-07 and the 3-12 Roads in Area 3 of the NTS. The tank and its contents are uncontaminated and will be dispositioned in accordance with applicable federal, state, and local regulations. This CAS will be closed by taking no further action. CAS 03-01-04 consists of a potable water tank that is located at the Core Complex in Area 3 of the NTS. The tank will be closed by taking no further action. CAS 15-01-05 consists of an aboveground storage tank (AST) and associated impacted soil, if any. This CAS is located on a steep slope near the Climax Mine in Area 15 of the NTS. The AST is empty and will be dispositioned in accordance with applicable federal, state, and local regulations. Soil below the AST will be sampled to identify whether it has been impacted by chemicals at concentrations exceeding the action levels. It appears that the tank is not at its original location. Soil will also be sampled at the original tank location, if it can be found. If soil at either location has been impacted at concentrations that exceed the action levels, then the extent of contamination will be identified and a use restriction (UR) will be implemented. The site may be clean closed if contamination is less than one cubic yard in extent and can be readily excavated. If action levels are not exceeded, then no further action is required. CAS 29-01-01 consists of soil that has been impacted by a release or operations from an active diesel AST that fuels the generator at the Shoshone Receiver Site in Area 29 of the NTS. Soil below the AST will be sampled to identify whether it has been impacted at concentrations exceeding the action levels. If it is, then the extent of contamination will be identified and a UR will be implemented. The site may be clean closed if contamination is less than one cubic yard in extent, can be readily excavated, and it is determined that clean closure is feasible based upon site conditions. If action levels are not exceeded, then no further action is required. Based on review of the preliminary assessment information for CAU 134 and recent site inspections, there is sufficient process knowledge to close CAU 134 using the SAFER process.

  11. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with input from Gene Berry (Lawrence Livermore National Laboratory), Tobias Brunner (BMW) and Bill Clinkscales (SCI). Technical Assessment of Cryo-Compressed Hydrogen Storage...

  12. Implementation plan for Title 40 Code of Federal Regulations Parts 280 and 281; Final rules for underground storage tanks

    SciTech Connect (OSTI)

    Stupka, R.C.

    1989-04-01T23:59:59.000Z

    This report presents the schedules and methods required to comply with the newly promulgated Underground Storage Tank (UST) Regulations Title 40 Code of Federal Regulations (CFR) 280 and 281. These rules were promulgated by the US Environmental Protection Agency (EPA) on September 23, 1988, and became effective December 22, 1988. These regulations are required by Subtitle I of the Resource Conservation and Recovery Act of 1976. Their purpose is to protect the groundwater supplies of the United States in the following ways: Closing old tanks; detecting and remediating tank leaks and spills; establishing stringent standards for new tanks; and upgrade of existing tanks to new-tank standards. 3 refs., 5 tabs.

  13. Hawaii Department of Health Underground Storage Tank Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridor | Open EnergySection WebpageInformation Tank

  14. Idaho DEQ Storage Tanks Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to:InformationOpen|Tanks Webpage

  15. Simplified design and evaluation of liquid storage tanks relative to earthquake loading

    SciTech Connect (OSTI)

    Poole, A.B.

    1994-06-01T23:59:59.000Z

    A summary of earthquake-induced damage in liquid storage tanks is provided. The general analysis steps for dynamic response of fluid-filled tanks subject to horizontal ground excitation are discussed. This work will provide major attention to the understanding of observed tank-failure modes. These modes are quite diverse in nature, but many of the commonly appearing patterns are believed to be shell buckling. A generalized and simple-to-apply shell loading will be developed using Fluegge shell theory. The input to this simplified analysis will be horizontal ground acceleration and tank shell form parameters. A dimensionless parameter will be developed and used in predictions of buckling resulting from earthquake-imposed loads. This prediction method will be applied to various tank designs that have failed during major earthquakes and during shaker table tests. Tanks that have not failed will also be reviewed. A simplified approach will be discussed for early design and evaluation of tank shell parameters and materials to provide a high confidence of low probability of failure during earthquakes.

  16. Closure Report for Corrective Action Unit 130: Storage Tanks Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2009-03-01T23:59:59.000Z

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 130: Storage Tanks, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 130 are located within Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site. Corrective Action Unit 130 is comprised of the following CASs: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This CR provides documentation supporting the completed corrective action investigations and provides data confirming that the closure objectives for CASs within CAU 130 were met. To achieve this, the following actions were performed: • Reviewed the current site conditions, including the concentration and extent of contamination. • Implemented any corrective actions necessary to protect human health and the environment. • Properly disposed of corrective action and investigation-derived wastes. From August 4 through September 30, 2008, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 130, Storage Tanks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, confirm that no residual contamination is present, and properly dispose of wastes. Constituents detected during the closure activities were evaluated against final action levels to identify COCs for CAU 130. Assessment of the data generated from closure activities indicates that no further action is necessary because no COCs were identified at any CAU 130 CAS. Debris removal from these CASs was considered a best management practice because no contamination was detected. The DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • No further corrective action is required at all CAU 130 CASs. • A Notice of Completion to DOE, National Nuclear Security Administration Nevada Site Office, is requested from the Nevada Division of Environmental Protection for closure of CAU 130. • Corrective Action Unit 130 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

  17. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank...

    Broader source: Energy.gov (indexed) [DOE]

    of stored H 2 . References 1. Berry, G., Aceves, S., Espinosa, F., Ross, T., Switzer, V., Smith, R., and Weisberg, A., "Compact L(H 2 ) Storage with Extended Dormancy in Cryogenic...

  18. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01T23:59:59.000Z

    Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

  19. Solar Still Coupled With Solar Collector and Storage Tank

    E-Print Network [OSTI]

    M, Rajesh A

    2010-01-01T23:59:59.000Z

    Acute shortage of good, clean drinking water is a major problem for most developing countries of the world. In most cases, ponds, streams, wells and rivers are often polluted that they are unsafe for direct use as drinking water >.Often water sources are brackish and or contain harmful bacteria. Therefore cannot be used for drinking .In addition there are many coastal locations where sea water is abundant but potable water is not available. Solar distillation is one of the important methods of utilizing solar energy for the supply of potable water to small communities where natural supply of fresh water is inadequate or of poor quality .In this direction an experimental performance analysis was carried out on a single basin still compared with FPC coupled one. Test were carried out for different water samples namely borewell water, sea water, river water for a water depth of 20 mm

  20. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2014-01-02T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from the Interim Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 6 have been analyzed for 238Pu, 90Sr, 137Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The Pu, Sr, and Cs results from the current Macrobatch 6 samples are similar to those from comparable samples in previous Macrobatch 5. In addition the SEHT and DSSHT heel samples (i.e. ‘preliminary’) have been analyzed and reported to meet NGS Demonstration Plan requirements. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous samples. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST has increased in ARP at the higher free hydroxide concentrations in the current feed.

  1. Management and Storage of Surface Waters (Florida)

    Broader source: Energy.gov [DOE]

    The Department of Environmental Protection regulates the use and storage of surface waters in the state. A permit from either the Department or the local Water Management District is required for...

  2. OG 4.4.06 1 Use of Instrumented Water Tanks for the Improvement of Air

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    OG 4.4.06 1 Use of Instrumented Water Tanks for the Improvement of Air Shower Detector Sensitivity (5m 2 ), water Cherenkov detectors (tanks) will be deployed around the pond to effectively extend its from the Milagro pond. 2 Water Tank Detector & Array The criteria for selecting a detector design

  3. Determination of efficiency of anechoic or decoupling hull coatings using water tank acoustic measurements

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Determination of efficiency of anechoic or decoupling hull coatings using water tank acoustic and radiated noise, respectively. Measurement of test panels in a water tank gives only the reflection in a water tank has already been presented in a previous paper [2]. The purpose of the present paper

  4. CSER 94-004: Criticality safety of double-shell waste storage tanks

    SciTech Connect (OSTI)

    Rogers, C.A.

    1994-09-22T23:59:59.000Z

    This criticality safety evaluation covers double-shell waste storage tanks (DSTs), double-contained receiver tanks (DCRTs), vault tanks, and the 242-A Evaporator located in the High Level Waste (HLW) Tank Farms on the Hanford Site. Limits and controls are specified and the basis for ensuring criticality safety is discussed. A minimum limit of 1,000 is placed upon the solids/plutonium mass ratio in incoming waste. The average solids/Pu mass ratio over all waste in tank farms is estimated to be about 74,500, about 150 times larger than required to assure subcriticality in homogeneous waste. PFP waste in Tank-102-SY has an estimated solids/Pu mass ratio of 10,000. Subcriticality is assured whenever the plutonium concentration is less than 2.6 g. The median reported plutonium concentration for 200 samples of waste solids is about 0.01 g (0.038 g/gal). A surveillance program is proposed to increase the knowledge of the waste and provide added assurance of the high degree of subcriticality.

  5. NMED Petroleum Storage Tank Bureau webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurrInformation NAMA-ProgrammeNF| OpenROW |Storage

  6. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    SciTech Connect (OSTI)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; Rooyen, D. van; Weeks, J.

    1997-01-01T23:59:59.000Z

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided in companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.

  7. Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford

    SciTech Connect (OSTI)

    Gerber, M.A.; Burger, L.L.; Nelson, D.A.; Ryan, J.L. [Pacific Northwest Lab., Richland, WA (United States); Zollars, R.L. [Washington State Univ., Pullman, WA (United States)

    1992-09-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids.

  8. EIS-0062: Double-Shell Tanks for Defense High Level Waste Storage, Savannah River Site, Aiken, SC

    Broader source: Energy.gov [DOE]

    This EIS analyzes the impacts of the various design alternatives for the construction of fourteen 1.3 million gallon high-activity radioactive waste tanks. The EIS further evaluates the effects of these alternative designs on tank durability, on the ease of waste retrieval from such tanks, and the choice of technology and timing for long-term storage or disposal of the wastes.

  9. EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

  10. Analysis of terrestrial water storage changes from GRACE and GLDAS

    E-Print Network [OSTI]

    Syed, Tajdarul H; Famiglietti, James S; Rodell, Matthew; Chen, Jianli; Wilson, Clark R

    2008-01-01T23:59:59.000Z

    2007), Estimating ground water storage changes in theand ground- water stores, so that we were unable to quantify their potentially considerable contributions to storage

  11. Technical assessment of compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect (OSTI)

    Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. (Nuclear Engineering Division); (TIAX, LLC)

    2011-02-09T23:59:59.000Z

    The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

  12. Equipment design guidance document for flammable gas waste storage tank new equipment

    SciTech Connect (OSTI)

    Smet, D.B.

    1996-04-11T23:59:59.000Z

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas.

  13. REVIEW SHEET 3 (1) A tank contains 100 gallon of salt water which ...

    E-Print Network [OSTI]

    2014-04-30T23:59:59.000Z

    solution of 2lbs of salt per gallon enters the tank at a rate of 3 gallons per minute while a flow of fresh water runs into the tank at a rate of 5 gallons per minute.

  14. In-tank recirculating arsenic treatment system

    DOE Patents [OSTI]

    Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

    2009-04-07T23:59:59.000Z

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  15. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    WEBER RA

    2009-01-16T23:59:59.000Z

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.

  16. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    FOWLER KD

    2007-12-27T23:59:59.000Z

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard.

  17. FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,

    E-Print Network [OSTI]

    FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For be divided into two parts: · Well-to-Tank (WTT) Feedstock extraction, transport, storage, processing, distribution, transport, and storage · Tank-to-Wheels (TTW) Refueling, consumption and evaporation The full

  18. Streamlined approach for environmental restoration work plan for Corrective Action Unit 126: Closure of aboveground storage tanks, Nevada Test Site, Nevada. Revision 1

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    This plan addresses the closure of several aboveground storage tanks in Area 25 of the Nevada Test Site. The unit is currently identified as Corrective Action Unit 126 in the Federal Facility Agreement and Consent Order and is listed as having six Corrective Action Sites. This plan addresses the Streamlined Approach for Environmental Restoration closure for five of the six sites. Four of the CASs are located at the Engine Test Stand complex and one is located in the Central Support Area. The sites consist of aboveground tanks, two of which were used to store diesel fuel and one stored Nalcool (an antifreeze mixture). The remaining tanks were used as part of a water demineralization process and stored either sulfuric acid or sodium hydroxide, and one was used as a charcoal adsorption furnace. Closure will be completed by removal of the associated piping, tank supports and tanks using a front end loader, backhoe, and/or crane. When possible, the tanks will be salvaged as scrap metal. The piping that is not removed will be sealed using a cement grout.

  19. Treatment, storage, and disposal alternatives for the gunite and associated tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    DePew, R.E.; Rickett, K. [Advanced Systems Technology, Inc., Oak Ridge, TN (United States); Redus, K.S. [MACTEC, Oak Ridge, TN (United States); DuMont, S.P. [Hazardous and Medical Waste Services, Inc. (United States); Lewis, B.E.; DePaoli, S.M.; Van Hoesen, S.D. Jr. [Oak Ridge National Lab., TN (United States)

    1996-05-01T23:59:59.000Z

    The gunite and associated tanks (GAAT) are inactive, liquid low-level waste tanks located in and around the North and South Tank Farms at Oak Ridge National Laboratory. These underground tanks are the subject of an ongoing treatability study that will determine the best remediation alternatives for the tanks. As part of the treatability study, an assessment of viable treatment, storage, and disposal (TSD) alternatives has been conducted. The report summarizes relevant waste characterization data and statistics obtained to date. The report describes screening and evaluation criteria for evaluating TSD options. Individual options that pass the screening criteria are described in some detail. Order-or-magnitude cost estimates are presented for each of the TSD system alternatives. All alternatives are compared to the baseline approach of pumping all of the GAAT sludge and supernate to the Melton Valley Storage Tank (MVST) facility for eventual TSD along with the existing MOST waste. Four TSD systems are identified as alternatives to the baseline approach. The baseline is the most expensive of the five identified alternatives. The least expensive alternative is in-situ grouting of all GAAT sludge followed by in-situ disposal. The other alternatives are: (1) ex-situ grouting with on-site storage and disposal at Nevada Test Site (NTS); (2) ex-situ grouting with on-site storage and disposal at NTS and the Waste Isolation Pilot Plant (WIPP); and (3) ex-situ vitrification with on-site storage and disposal at NTS and WIPP.

  20. Rational analysis of mass, momentum, and heat transfer phenomena in liquid storage tanks under realistic operating conditions: 2. Application to a feasibility study

    SciTech Connect (OSTI)

    Parrini, F.; Vitale, S. (ENEL-Italian National Electricity Board-CRTN, Milan (Italy)); Castellano, L. (MATEC S.r.l., Milan (Italy))

    1992-08-01T23:59:59.000Z

    This is the second part of a two-part paper that deals with modeling the thermal performances of storage tanks of liquid water coupled with solar-assisted heatpump systems. The computer code THESTA, described in detail in the first part, has been applied to compare configurations which differ from one another in the distribution and thickness of the insulating panels. These numerical experiments show very clearly the capability of the code in simulating realistic operating conditions. The validity of the present release is also discussed. The results obtained have been assumed to be a reliable theoretical support to the definition of the features of the storage device of a pilot plant.

  1. Linear Scarifying End-Effector Developed For Wall Cleaning In Underground Storage Tanks

    SciTech Connect (OSTI)

    Fitzgerald, C.L.F.

    2001-02-04T23:59:59.000Z

    This paper describes the development and performance of a Linear Scarifying End-Effector (LSEE) designed and fabricated for deployment by a remotely operated vehicle. The end-effector was designed to blast or scarify in-grained residual contamination from gunite tank walls using high-pressure water jets after the bulk sludge had been removed from the tanks using an integrated suite of remotely operated tools. Two generations of the LSEE were fabricated, tested, and deployed in the gunite tanks at the Oak Ridge National Laboratory, with varying levels of success. Because the LSEE was designed near the end of a four-year project to clean up the gunite tanks at Oak Ridge, a number of design constraints existed. The end-effector had to utilize pneumatic, hydraulic and electrical interfaces already available at the site; and to be deployable through one of the containment structures already in place for the other remote systems. Another primary design consideration was that the tool had to effectively extend the reach of an existing remotely operated vehicle from six ft. to at least ten ft. to allow cleaning the tank walls from floor to ceiling. In addition, the combined weight and thrust of the LSEE had to be manageable by the manipulator mounted on the vehicle. Finally, the end-effector had to follow an autonomous scarifying path such that the vehicle was only required to reposition the unit at the end of each pass after the mist had cleared from the tank. The prototypes successfully met each of these challenges, but did encounter other difficulties during actual tank operations.

  2. Application of Quantitative NDE Techniques to High Level Waste Storage Tanks

    SciTech Connect (OSTI)

    Thompson, R. B.; Rehbein, D. K.; Bastiaans, G.; Terry, M.; Alers, R.

    2002-02-25T23:59:59.000Z

    As various issues make the continued usage of high-level waste storage tanks attractive, there is an increasing need to sharpen the assessment of their structural integrity. One aspect of a structural integrity program, nondestructive evaluation, is the focus of this paper. In September 2000, a program to support the sites was initiated jointly by Tanks Focus Area and Characterization, Monitoring, and Sensor Technologies Crosscutting Program of the Office of Environmental Management, Department of Energy (DOE). The vehicle was the Center for Nondestructive Evaluation, one of the National Science Foundation's Industry/University Cooperative Research Centers that is operated in close collaboration with the Ames Laboratory, USDOE. The support activities that have been provided by the center will be reviewed. Included are the organization of a series of annual workshops to allow the sites to share experiences and develop coordinated approaches to common problems, the development of an electronic source of relevant information, and assistance of the sites on particular technical problems. Directions and early results on some of these technical assistance projects are emphasized. Included are the discussion of theoretical analysis of ultrasonic wave propagation in curved plates to support the interpretation of tandem synthetic aperture focusing data to detect flaws in the knuckle region of double shell tanks; the evaluation of guided ultrasonic waves, excited by couplant free, electromagnetic acoustic transducers, to rapidly screen for inner wall corrosion in tanks; the use of spread spectrum techniques to gain information about the structural integrity of concrete domes; and the use of magnetic techniques to identify the alloys used in the construction of tanks.

  3. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2013-10-01T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 6 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results from the current microbatch samples are similar to those from comparable samples in Macrobatch 5. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous macrobatch. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST in ARP continues to occur. Both the CST and CWT samples indicate that the target Free OH value of 0.03 has been surpassed. While at this time there is no indication that this has caused an operational problem, the CST should be adjusted into specification. The {sup 137}Cs results from the SRNL as well as F/H lab data indicate a potential decline in cesium decontamination factor. Further samples will be carefully monitored to investigate this.

  4. Fluid dynamic studies for a simulated Melton Valley Storage Tank slurry

    SciTech Connect (OSTI)

    Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-07-01T23:59:59.000Z

    The Melton Valley Storage Tanks (MVSTs), are used for the collection and storage of remote-handled radioactive liquid wastes. These wastes, which were typically acidic when generated, were neutralized with the addition of sodium hydroxide to protect the storage tanks from corrosion, but this caused the transuranic and heavy metals to precipitate. These wastes will eventually need to be removed from the tanks for ultimate disposal. The objective of the research activities discussed in this report is to support the design of a pipeline transport system between the MVSTs and a treatment facility. Since the wastes in the MVSTs are highly radioactive, a surrogate slurry was developed for this study. Rheological properties of the simulated slurry were determined in a test loop in which the slurry was circulated through three pipeline viscometers of different diameters. Pressure drop data at varying flow rates were used to obtain shear stress and shear rate data. The data were analyzed, and the slurry rheological properties were analyzed by the Power Law model and the Bingham plastic model. The plastic viscosity and yield stress data obtained from the rheological tests were used as inputs for a piping design software package, and the pressure drops predicted by the software compared well with the pressure drop data obtained from the test loop. The minimum transport velocity was determine for the slurry by adding known nominal sizes of glass spheres to the slurry. However, it was shown that the surrogate slurry exhibited hindered settling, which may substantially decrease the minimum transport velocity. Therefore, it may be desired to perform additional tests with a surrogate with a lower concentration of suspended solids to determine the minimum transport velocity.

  5. UC 19-6-401 et seq. - Utah Underground Storage Tank Act | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 et seq. - Utah Underground Storage Tank Act Jump to:

  6. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    SciTech Connect (OSTI)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung [Korea Institute of Nuclear Safety (Korea, Republic of)

    2002-07-15T23:59:59.000Z

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified.

  7. Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    SciTech Connect (OSTI)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1993-01-01T23:59:59.000Z

    This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document.

  8. A radiological characterization of remediated tank battery sites

    SciTech Connect (OSTI)

    Hebert, M.B. [NORMCO, Amelia, LA (United States); Scott, L.M. [Louisiana State Univ., Baton Rouge, LA (United States); Zrake, S.J. [Ashland Exploration, Inc., Houston, TX (United States)

    1995-03-01T23:59:59.000Z

    Tank battery sites have historically been used for the initial processing of crude oil which separates water and sediment from the produced oil. Typically, one or more producing wells is connected to a tank battery site consisting of storage and separation tanks. Historical operating practices also included a production holding pit for increaesd separation of oil, water, and sediment.

  9. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    SciTech Connect (OSTI)

    DeMuth, S.F.

    1996-10-01T23:59:59.000Z

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis.

  10. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Hansen, A.

    2013-11-13T23:59:59.000Z

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

  11. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-04-22T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  12. Shock Chlorination of Stored Water Supplies

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.

    2005-05-25T23:59:59.000Z

    of their well water. While these procedures effectively may san- itize water wells and distribution systems, addition- al steps may be necessary to shock- chlorinate water stored in tanks. Storage Tanks In several regions of Texas, such as the Texas Hill... Country and the Central Texas Blacklands, water is pumped from wells into large storage tanks. Pipes from such tanks then deliver water to houses for domestic use. However, shock-chlorinating a water well alone may not provide enough chlorinated water...

  13. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: RCRA subtitle I. Underground storage tanks (40 cfr part 280). Updated as of July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This module explains the Underground Storage Tank Regulatory Program established in 1988, that includes technical requirements to prevent, protect, and clean up releases from Underground Storage Tanks (USTs), as well as financial responsibility requirements to guarantee that UST owners and operators have enough money set aside to clean up releases and compensate third parties. Describes the Universe of USTs and the technical and financial requirements that apply to them. Defines underground storage tank and provides criteria for determining which USTs are subject to regulation. Discusses deadlines for upgrading tanks and the closure and corrective action requirements.

  14. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect (OSTI)

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

    2010-03-03T23:59:59.000Z

    On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  15. Numerical Analysis of Water Temperature Distribution in the Tank of ASHPWH it ha Cylindrical Condenser

    E-Print Network [OSTI]

    Wang, D.; Shan, S.; Wang, R.

    2006-01-01T23:59:59.000Z

    Air source heat pump water heaters (ASHPWH) are becoming increasingly popular for saving energy, protecting the environment and security purposes. The water temperature distribution in the tank is an important parameter for an ASHPWH. This paper...

  16. Effects of Storage Container Color and Shading on Water Temperature

    E-Print Network [OSTI]

    Clayton, James Brent

    2012-07-16T23:59:59.000Z

    RWH systems has become a concern. Water temperature is a parameter of water quality and storage container color and shading affect this temperature. Four different colors and three different shadings were applied to twelve rainwater storage barrels...

  17. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12T23:59:59.000Z

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  18. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    E-Print Network [OSTI]

    Granderson, Jessica

    2010-01-01T23:59:59.000Z

    Chilled Water Thermal Storage System and Demand Response atChilled Water Thermal Storage System and Demand Response atgallon chilled water storage system is charged daily during

  19. High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

  20. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

  1. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

  2. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  3. Steam reforming as a method to treat Hanford underground storage tank (UST) wastes

    SciTech Connect (OSTI)

    Miller, J.E.; Kuehne, P.B. [eds.] [and others

    1995-07-01T23:59:59.000Z

    This report summarizes a Sandia program that included partnerships with Lawrence Livermore National Laboratory and Synthetica Technologies, Inc. to design and test a steam reforming system for treating Hanford underground storage tank (UST) wastes. The benefits of steam reforming the wastes include the resolution of tank safety issues and improved radionuclide separations. Steam reforming destroys organic materials by first gasifying, then reacting them with high temperature steam. Tests indicate that up to 99% of the organics could be removed from the UST wastes by steam exposure. In addition, it was shown that nitrates in the wastes could be destroyed by steam exposure if they were first distributed as a thin layer on a surface. High purity alumina and nickel alloys were shown to be good candidates for materials to be used in the severe environment associated with steam reforming the highly alkaline, high nitrate content wastes. Work was performed on designing, building, and demonstrating components of a 0.5 gallon per minute (gpm) system suitable for radioactive waste treatment. Scale-up of the unit to 20 gpm was also considered and is feasible. Finally, process demonstrations conducted on non-radioactive waste surrogates were carried out, including a successful demonstration of the technology at the 0.1 gpm scale.

  4. HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)

    SciTech Connect (OSTI)

    S. K. Evans

    2006-08-15T23:59:59.000Z

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

  5. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    SciTech Connect (OSTI)

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01T23:59:59.000Z

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The workshop was conducted by a trained facilitator using Value Engineering techniques to elicit the most technically sound solutions from the workshop participants. The path forward includes developing the OBA into a well engineered solution for achieving RCRA clean closure of the EBR-II Primary Reactor Tank system. Several high level tasks are also part of the path forward such as reassigning responsibility of the cleanup project to a dedicated project team that is funded by the DOE Office of Environmental Management, and making it a priority so that adequate funding is available to complete the project. Based on the experience of the sodium cleanup specialists, negotiations with the DEQ will be necessary to determine a risk-based de minimus quantity for acceptable amount of sodium that can be left in the reactor systems after cleanup has been completed.

  6. Request for closure, underground storage tank 2130-U: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID {number_sign}0-010117

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This document presents a summary of the activities and analytical data related to the removal of underground storage tank (UST) 2130-U, previously located at the Oak Ridge Y-12 Plant. Removal of this tank was conducted in accordance with Tennessee Department of Environment and Conservation (TDEC) regulation 1200-1-15 (1992). A completed copy of the State of Tennessee, Division of Underground Storage Tanks, Permanent Closure Report Form is included as Appendix A of this document Based on the information and data presented herein, the Oak Ridge Y-12 Plant requests permanent closure for the tank 2130-U site.

  7. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, J.W.

    1980-06-25T23:59:59.000Z

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  8. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, John W. (Sag Harbor, NY)

    1983-06-28T23:59:59.000Z

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  9. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Savers [EERE]

    the stored water compared to the heat content of the water (water heaters with storage tanks) Cycling losses - the loss of heat as the water circulates through a water heater...

  10. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    SciTech Connect (OSTI)

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13T23:59:59.000Z

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union?s Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory?s Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  11. Langerhans Lab Protocols Fish tank water changing protocol.docx written 11/26/12 by JW Page 1 of 1

    E-Print Network [OSTI]

    Langerhans, Brian

    Langerhans Lab Protocols Fish tank water changing protocol.docx written 11/26/12 by JW Page 1 of 1 Fish Tank Water Changing Fry and tanks: 1. Remove air stone & lid, then take tank from shelf and place fry to make sure it matches # on tank label. 4. Use small (air stone size) plastic tubing to siphon

  12. TOXICOLOGICAL AND STRUCTURAL CONSEQUENCES FROM SODIUM-WATER REACTION IN CELL CONTAINING THE SECONDARY SODIUM TANK

    SciTech Connect (OSTI)

    MARUSICH RM

    2008-06-25T23:59:59.000Z

    The analysis will show the consequences should the solid sodium in the Secondary Sodium Tank react with a presumed layer of water in the cell. The Peer Review Checklist is attached.

  13. Storage Water Heaters | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture |Energy Steps toStorage Water

  14. Seismic design and evaluation guidelines for the Department of Energy High-Level Waste Storage Tanks and Appurtenances

    SciTech Connect (OSTI)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1995-10-01T23:59:59.000Z

    This document provides seismic design and evaluation guidelines for underground high-level waste storage tanks. The guidelines reflect the knowledge acquired in the last two decades in defining seismic ground motion and calculating hydrodynamic loads, dynamic soil pressures and other loads for underground tank structures, piping and equipment. The application of the guidelines is illustrated with examples. The guidelines are developed for a specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document. The original version of this document was published in January 1993. Since then, additional studies have been performed in several areas and the results are included in this revision. Comments received from the users are also addressed. Fundamental concepts supporting the basic seismic criteria contained in the original version have since then been incorporated and published in DOE-STD-1020-94 and its technical basis documents. This information has been deleted in the current revision.

  15. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-01-01T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  16. Thermal Storage Commercial Plant Design Study for a 2-Tank Indirect Molten Salt System: Final Report, 13 May 2002 - 31 December 2004

    SciTech Connect (OSTI)

    Kelly, B.; Kearney, D.

    2006-07-01T23:59:59.000Z

    Subcontract report by Nexant, Inc., and Kearney and Associates regarding a study of a solar parabolic trough commercial plant design with 2-tank indirect molten salt thermal storage system.

  17. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31T23:59:59.000Z

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  18. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01T23:59:59.000Z

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  19. Closure Report for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-02-01T23:59:59.000Z

    CAU 127, Areas 25 and 26 Storage Tanks, consists of twelve CASs located in Areas 25 and 26 of the NTS. The closure alternatives included no further action, clean closure, and closure in place with administrative controls. The purpose of this Closure Report is to provide a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  20. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.

  1. Modeling water retention of sludge simulants and actual saltcake tank wastes

    SciTech Connect (OSTI)

    Simmons, C.S.

    1996-07-01T23:59:59.000Z

    The Ferrocyanide Tanks Safety Program managed by Westinghouse hanford Company has been concerned with the potential combustion hazard of dry tank wastes containing ferrocyanide chemical in combination with nitrate salts. Pervious studies have shown that tank waste containing greater than 20 percent of weight as water could not be accidentally ignited. Moreover, a sustained combustion could not be propagated in such a wet waste even if it contained enough ferrocyanide to burn. Because moisture content is a key critical factor determining the safety of ferrocyanide-containing tank wastes, physical modeling was performed by Pacific Northwest National laboratory to evaluate the moisture-retaining behavior of typical tank wastes. The physical modeling reported here has quantified the mechanisms by which two main types of tank waste, sludge and saltcake, retain moisture in a tank profile under static conditions. Static conditions usually prevail after a tank profile has been stabilized by pumping out any excess interstitial liquid, which is not naturally retained by the waste as a result of physical forces such as capillarity.

  2. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 130: Storage Tanks, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-07-01T23:59:59.000Z

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 130, Storage Tanks, identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008). Corrective Action Unit 130 consists of the seven following corrective action sites (CASs) located in Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 130 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The sites will be investigated based on the data quality objectives (DQOs) finalized on April 3, 2008, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 130. The DQO process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the final action levels, leading to a no further action declaration; (2) characterization of the nature and extent of contamination, leading to closure in place with use restrictions; or (3) clean closure by remediation and verification. The following text summarizes the SAFER activities that will support the closure of CAU 130: • Perform site preparation activities (e.g., utilities clearances, geophysical surveys). • Move or remove and dispose of debris at various CASs, as required. • Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. • If no COCs are present at a CAS, establish no further action as the corrective action. • If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. • If a COC is present at a CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. • Obtain consensus from NDEP that the preferred closure option is sufficient to protect human health and the environment. • Close the underground storage tank(s) and their contents, if any, in accordance with Nevada Administrative Code regulations. • Remove the lead brick(s) found at any CAS in accordance with the Resource Conservation and Recovery Act.

  3. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Butterworth, St.W. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States)

    2008-07-01T23:59:59.000Z

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  4. Basic and Acidic Leaching of Sludge from Melton Valley Storage Tank W-25

    SciTech Connect (OSTI)

    Collins, J.L., Egan, B.Z., Beahm, E.C., Chase, C.W., Anderson, K.K.

    1997-10-01T23:59:59.000Z

    Bench-scale leaching tests were conducted with samples of tank waste sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology processes for use in concentrating the radionuclides and reducing the volume of waste for final disposal. This paper discusses the hot cell apparatus, the characterization of the sludge, the leaching methodology, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge at ambient temperature. Basic leaching tests were also conducted at 75 and 95 deg C. The major alpha-,gamma., and beta-emitting radionuclides in the centrifuged, wet sludge solids were {sup 137}Cs, {sup 60}Co, {sup 154}Eu, {sup 241}Am, {sup 244}Cm {sup 90}Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and anions were Na, Ca, Al, K, Mg, NO{sub 3}{sup -},CO{sub 3}{sup 2-}, OH{sup -}, and O{sup 2-} organic carbon content was 3.0 +/- 1.0%. The pH was 13. A surprising result was that about 93% of the {sup 137}Cs in the centrifuged, wet sludge solids was bound in the solids and could not be solubilized by basic leaching at ambient temperature and 75 deg C. However, the solubility of the {sup 137}Cs was enhanced by heating the sludge to 95 deg C. In one of the tests,about 42% of the {sup 137}Cs was removed by leaching with 6.3 M NaOH at 95 deg C.Removing {sup 137}Cs from the W-25 sludge with nitric acid was a slow process. About 13% of the {sup 137}Cs was removed in 16 h with 3.0 M HNO{sub 3}. Only 22% of the {sup 137}Cs was removed in 117 h usi 6.0 M HNO{sub 3}. Successive leaching of sludge solids with 0.5 M, 3.0 M, 3.0 M; and 6.0 M HNO{sub 3} for a total mixing time of 558 h removed 84% of the {sup 137}Cs. The use of caustic leaching prior to HNO{sub 3} leaching, and the use of HF with HNO{sub 3} in acidic leaching, increased the rate of {sup 137}Cs dissolution. Gel formation proved to be one of the biggest problems associated with HNO{sub 3} leaching of the W-25 sludge.

  5. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey W.

    2010-08-12T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  6. Pore-Water Extraction Scale-Up Study for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Wietsma, Thomas W.; Last, George V.; Lanigan, David C.

    2013-01-15T23:59:59.000Z

    The phenomena related to pore-water extraction from unsaturated sediments have been previously examined with limited laboratory experiments and numerical modeling. However, key scale-up issues have not yet been addressed. Laboratory experiments and numerical modeling were conducted to specifically examine pore-water extraction for sediment conditions relevant to the vadose zone beneath the SX Tank Farm at Hanford Site in southeastern Washington State. Available SX Tank Farm data were evaluated to generate a conceptual model of the subsurface for a targeted pore-water extraction application in areas with elevated moisture and Tc-99 concentration. The hydraulic properties of the types of porous media representative of the SX Tank Farm target application were determined using sediment mixtures prepared in the laboratory based on available borehole sediment particle size data. Numerical modeling was used as an evaluation tool for scale-up of pore-water extraction for targeted field applications.

  7. The Ashland tank collapse

    SciTech Connect (OSTI)

    Prokop, J.

    1988-05-01T23:59:59.000Z

    The estimated 3.9-million-gallon diesel oil spill from a collapsed storage tank at the Floreffe, Pa., terminal of Ashland Oil Co. has received a lot of attention, and for good reason. On Jan. 2, 1988 a 40-year-old, 48-ft-high, 120-ft-in diameter, reassembled tank suddenly ruptured and emptied its contents in a massive inland-water way fuel spill. An EPA-estimated 750,000 gallons washed over the 10-foot-high dike (with a holding capacity 110 percent that of the tank) into a drainage system on adjacent property to storm sewers that eventually empty into the Monongahela River, which runs into the Ohio River. More than 180,000 gal were recovered by cleanup, while 2.5 to 3.1 MMgal were contained by the tank farm's dike system.

  8. Dynamics and solutions to some control problems for water-tank systems

    E-Print Network [OSTI]

    1 Dynamics and solutions to some control problems for water-tank systems Nicolas Petit , Pierre translations and rotations. The fluid motion is described by linearized wave equations under shallow water describe the lack of approximate controllability. The first contribution of the paper consists of models

  9. ASME AG-1 REQUIREMENT EXEMPTION JUSTIFICATIONS FOR VENTILATION SYSTEMS AT NUCLEAR WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    GUSTAVSON, R.D.

    2004-09-03T23:59:59.000Z

    Washington State Department of Health regulations require compliance with the American Society of Mechanical Engineers (ASME) AG-1, ''Code on Nuclear Air and Gas Treatment,'' for all new radioactive air emission units. As a result, these requirements have been applied to systems that ventilate the radioactive waste storage tanks in the tank farm facilities on the U.S. Department of Energy's Hanford Site. ASME AG-1 is applied as a regulatory constraint to waste tank ventilation systems at the Hanford Site, even though the code was not intended for these systems. An assessment was performed to identify which requirements should be exempted for waste tank ventilation systems. The technical justifications for requirement exemptions were prepared and presented to the regulator. The technical justifications were documented so that select requirement exemptions for specific projects and systems can be sought through the regulator's permitting process. This paper presents the rationale for attempting to receive requirement exemption and presents examples of the technical justifications that form the basis for these exemptions.

  10. Underground Natural Gas Storage Wells in Bedded Salt (Kansas)

    Broader source: Energy.gov [DOE]

    These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

  11. Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site

    SciTech Connect (OSTI)

    Wiersma, B. J.; Subramanian, K. H.

    2012-11-27T23:59:59.000Z

    The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

  12. Systems engineering study: tank 241-C-103 organic skimming,storage, treatment and disposal options

    SciTech Connect (OSTI)

    Klem, M.J.

    1996-10-23T23:59:59.000Z

    This report evaluates alternatives for pumping, storing, treating and disposing of the separable phase organic layer in Hanford Site Tank 241-C-103. The report provides safety and technology based preferences and recommendations. Two major options and several varations of these options were identified. The major options were: 1) transfer both the organic and pumpable aqueous layers to a double-shell tank as part of interim stabilization using existing salt well pumping equipment or 2) skim the organic to an above ground before interim stabilization of Tank 241-C-103. Other options to remove the organic were considered but rejected following preliminary evaluation.

  13. Turning the Corner on Hanford Tank Waste Cleanup-From Safe Storage to Closure

    SciTech Connect (OSTI)

    Boston, H. L.; Cruz, E. J.; Coleman, S. J.

    2002-02-25T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP) which is responsible for the disposition of 204,000 cubic meters (54 million gallons) of high-level radioactive waste that have accumulated in large underground tanks at the Hanford Site since 1944. ORP continues to make good progress on improving the capability to treat Hanford tank waste. Design of the waste vitrification facilities is proceeding well and construction will begin within the next year. Progress is also being made in reducing risk to the worker and the environment from the waste currently stored in the tank farms. Removal of liquids from single-shell tanks (SSTs) is on schedule and we will begin removing solids (salt cake) from a tank (241-U-107) in 2002. There is a sound technical foundation for the waste vitrification facilities. These initial facilities will be capable of treating (vitrifying) the bulk of Hanford tank waste and are the corners tone of the clean-up strategy. ORP recognizes that as the near-term work is performed, it is vital that there be an equally strong and defensible plan for completing the mission. ORP is proceeding on a three-pronged approach for moving the mission forward. First, ORP will continue to work aggressively to complete the waste vitrification facilities. ORP intends to provide the most capable and robust facilities to maximize the amount of waste treated by these initial facilities by 2028 (regulatory commitment for completion of waste treatment). Second, and in parallel with completing the waste vitrification facilities, ORP is beginning to consider how best to match the hazard of the waste to the disposal strategy. The final piece of our strategy is to continue to move forward with actions to reduce risk in the tank farms and complete cleanup.

  14. A Simple Method to Continuous Measurement of Energy Consumption of Tank Less Gas Water Heaters for Commercial Buildings

    E-Print Network [OSTI]

    Yamaha, M.; Fujita, M.; Miyoshi, T.

    2006-01-01T23:59:59.000Z

    energy consumptions of hot water supply in restaurants or residential houses are large amount, guidelines for optimal design are not presented. measurements of energy consumption of tank less gas water heaters very difficult unless gas flow meters...

  15. Water Quality Program, Volume 2 (Alabama)

    Broader source: Energy.gov [DOE]

    This volume of the water quality program mainly deals with Technical Standards, Corrective Action Requirements and Financial Responsibility for Owners and Operators of Underground Storage Tanks....

  16. Variations of surface water extent and water storage in large river basins: A comparison of different global data sources

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the spatio-temporal variations of total terrestrial water storage (the sum of ground water, soil water1 Variations of surface water extent and water storage in large river basins: A comparison mass variations monitored by GRACE, simulated surface and total water storage from WGHM, water levels

  17. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (Draft), Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2007-04-01T23:59:59.000Z

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses closure for Corrective Action Unit (CAU) 124, Areas 8, 15, and 16 Storage Tanks, identified in the Federal Facility Agreement and Consent Order. Corrective Action Unit 124 consists of five Corrective Action Sites (CASs) located in Areas 8, 15, and 16 of the Nevada Test Site as follows: • 08-02-01, Underground Storage Tank • 15-02-01, Irrigation Piping • 16-02-03, Underground Storage Tank • 16-02-04, Fuel Oil Piping • 16-99-04, Fuel Line (Buried) and UST This plan provides the methodology of field activities necessary to gather information to close each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 124 using the SAFER process.

  18. LABORATORY TESTING TO SIMULATE VAPOR SPACE CORROSION IN RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Garcia-Diaz, B.; Gray, J.

    2013-08-30T23:59:59.000Z

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 70 years at the Hanford nuclear facility. Vapor space corrosion of the tank walls has emerged as an ongoing challenge to overcome in maintaining the structural integrity of these tanks. The interaction between corrosive and inhibitor species in condensates/supernates on the tank wall above the liquid level, and their interaction with vapor phase constituents as the liquid evaporates from the tank wall influences the formation of corrosion products and the corrosion of the carbon steel. An effort is underway to gain an understanding of the mechanism of vapor space corrosion. Localized corrosion, in the form of pitting, is of particular interest in the vapor space. CPP testing was utilized to determine the susceptibility of the steel in a simulated vapor space environment. The tests also investigated the impact of ammonia gas in the vapor space area on the corrosion of the steel. Vapor space coupon tests were also performed to investigate the evolution of the corrosion products during longer term exposures. These tests were also conducted at vapor space ammonia levels of 50 and 550 ppm NH{sub 3} (0.005, and 0.055 vol.%) in air. Ammonia was shown to mitigate vapor space corrosion.

  19. An Underground Storage Tank Integrated Demonstration report. Volume 1, Waste Characterization Data and Technology Development Needs Assessment

    SciTech Connect (OSTI)

    Quadrel, M.J.; Hunter, V.L.; Young, J.K. [Pacific Northwest Lab., Richland, WA (United States); Lini, D.C.; Goldberg, C. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-04-01T23:59:59.000Z

    The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study`s products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge.

  20. Analysis of ICPP tank farm infiltration

    SciTech Connect (OSTI)

    Richards, B.T.

    1993-10-01T23:59:59.000Z

    This report addresses water seeping into underground vaults which contain high-level liquid waste (HLLW) storage tanks at the Idaho Chemical Processing Plant (ICPP). Each of the vaults contains from one to three sumps. The original purpose of the sumps was to serve as a backup leak detection system for release of HLLW from the storage tanks. However, water seeps into most of the vaults, filling the sumps, and defeating their purpose as a leak detection system. Leak detection for the HLLW storage tanks is based on measuring the level of liquid inside the tank. The source of water leaking into the vaults was raised as a concern by the State of Idaho INEL Oversight Group because this source could also be leaching contaminants released to soil in the vicinity of the tank farm and transporting contaminants to the aquifer. This report evaluates information concerning patterns of seepage into vault sumps, the chemistry of water in sumps, and water balances for the tank farm to determine the sources of water seeping into the vaults.

  1. INHIBITION OF STRESS CORROSION CRACKING OF CARBON STEEL STORAGE TANKS AT HANFORD

    SciTech Connect (OSTI)

    BOOMER, K.D.

    2007-01-31T23:59:59.000Z

    The stress corrosion cracking (SCC) behavior of A537 tank steel was investigated in a series of environments designed to simulate the chemistry of legacy nuclear weapons production waste. Tests consisted of both slow strain rate tests using tensile specimens and constant load tests using compact tension specimens. Based on the tests conducted, nitrite was found to be a strong SCC inhibitor. Based on the test performed and the tank waste chemistry changes that are predicted to occur over time, the risk for SCC appears to be decreasing since the concentration of nitrate will decrease and nitrite will increase.

  2. Revue. Volume X n x/anne, pages 1 X Safety of atmospheric storage tanks during

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . KEYWORDS: domino effect, blast, impact, atmospheric tank, reliability, sensitivity analysis. MOTS Cedex jean-luc.hanus@ensi-bourges.fr ABSTRACT. The occurrence of a chain reaction from blast simple mechanical models to facilitate quick effective assessment of risk analysis, the results of which

  3. Rehabilitating A Thermal Storage System Through Commissioning

    E-Print Network [OSTI]

    Liu, M.; Veteto, B.; Claridge, D. E.

    1998-01-01T23:59:59.000Z

    supplementary chiller (50 tons) was needed due to an under- sized storage tank and an under-sized chller. In 1995, the authors were asked to investigate the problems and provide possible solutions. The thermal storage system was subsequently rehabilitated... draws water from the bottom of the tank and sends the return water to the top of the tank. Valve V4 isolates the chiller from the building and the tank. In the charging mode (Figure 2b), valves V3 and V4 are open while valve V1 is 06 wcad closed...

  4. E-Print Network 3.0 - ax tank farm Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In collaboration with The Dow Chemical Company 12;A tank farm is a set of storage tanks that hold finished product... product Dedicated Tanks Without available storage ......

  5. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-06-01T23:59:59.000Z

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 121, Storage Tanks and Miscellaneous Sites. CAU 121 is currently listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO, 1996) and consists of three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site (NTS): CAS 12-01-01, Aboveground Storage Tank; CAS 12-01-02, Aboveground Storage Tank; and CAS 12-22-26, Drums; 2 AST's. CASs 12-01-01 and 12-01-02 are located to the west of the Area 12 Camp, and CAS 12-22-26 is located near the U-12g Tunnel, also known as G-tunnel, in Area 12 (Figure 1). The aboveground storage tanks (ASTs) present at CASs 12-01-01 and 12-01-02 will be removed and disposed of at an appropriate facility. Soil below the ASTs will be sampled to identify whether it has been impacted with chemicals or radioactivity above action levels. If impacted soil above action levels is present, the soil will be excavated and disposed of at an appropriate facility. The CAS 12-22-26 site is composed of two overlapping areas, one where drums had formerly been stored, and the other where an AST was used to dispense diesel for locomotives used at G-tunnel. This area is located above an underground radioactive materials area (URMA), and within an area that may have elevated background radioactivity because of containment breaches during nuclear tests and associated tunnel reentry operations. CAS 12-22-26 does not include the URMA or the elevated background radioactivity. An AST that had previously been used to store liquid magnesium chloride (MgCl) was properly disposed of several years ago, and releases from this tank are not an environmental concern. The diesel AST will be removed and disposed of at an appropriate facility. Soil at the former drum area and the diesel AST area will be sampled to identify whether it has been impacted by releases, from the drums or the AST, with chemicals or radioactivity above action levels. CAS 12-22-26 has different potential closure pathways that are dependent upon the concentrations and chemicals detected. If only petroleum hydrocarbons are detected above action levels, then the area will be use-restricted. It will not be excavated because of the more significant hazard of excavating within a URMA. Similarly, polychlorinated biphenyls (PCBs) will only be excavated for concentrations of 50 parts per million (ppm) or greater, if there are no other factors that require excavation. For PCBs at concentrations above 1 ppm, the area will be use-restricted as required by Title 40, Code of Federal Regulations (CFR) Part 761 for PCBs (CFR, 2006), in the ''Toxic Substances Control Act'' (TSCA). Other chemicals at concentrations above the final action levels (FALs) will be excavated. If radioactivity is above action levels, then the soil will be excavated only to a depth of 1 foot (ft) below ground surface (bgs) and replaced with clean fill. This action is intended to remove the ''hot spot'' on the surface caused by leakage from a drum, and not to remediate the URMA.

  6. Two-tank indirect thermal storage designs for solar parabolic trough power plants.

    E-Print Network [OSTI]

    Kopp, Joseph E.

    2009-01-01T23:59:59.000Z

    ??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy… (more)

  7. Numerical Investigation of Stratified Thermal Storage Tank Applied in Adsorption Heat Pump Cycle.

    E-Print Network [OSTI]

    Taheri, Hadi

    2014-01-01T23:59:59.000Z

    ??With the aid of the TES (Thermal Energy Storage) in the adsorption heat pump cycle, the COP of the system can be improved. Different geometrical… (more)

  8. HANFORD TANK CLEANUP UPDATE

    SciTech Connect (OSTI)

    BERRIOCHOA MV

    2011-04-07T23:59:59.000Z

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  9. A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks

    E-Print Network [OSTI]

    Carrington-Crouch, Robert

    1996-01-01T23:59:59.000Z

    s Leaking Underground Fuel Tanks (LUFTs)”. Submitted to theCalifornia’s Underground Storage Tank Program”. Submitted tos Leaking Underground Fuel Tanks” by Samantha Carrington

  10. Storage Gas Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R.StevenStop.Storage

  11. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    SciTech Connect (OSTI)

    Burt, D.L.

    1994-04-01T23:59:59.000Z

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  12. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining the facility and executing the mission of the High-Level Waste Storage Tank Farms.

  13. Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing

    E-Print Network [OSTI]

    Combes, R. S.; Boykin, W. B.

    1980-01-01T23:59:59.000Z

    discharges can be made more economically attrac tank holding several thousand gallons of water tive by incorporating thermal energy storage in a maintained at 128-130?F. This scald tank is con heat recovery system. Thermal energy storage can stantly... the ultimate energy end use. of wasting this hot water to the plant drain, a heat A project conducted by the Georgia Tech exchanger was installed at the Gold Kist plant to Engineering Experiment Station to demonstrate preheat scald tank makeup water...

  14. Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel

    SciTech Connect (OSTI)

    Kass, Michael D [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL; Pawel, Steven J [ORNL

    2012-07-01T23:59:59.000Z

    The Energy Independence and Security Act (EISA) of 2007 was enacted by Congress to move the nation toward increased energy independence by increasing the production of renewable fuels to meet its transportation energy needs. The law establishes a new renewable fuel standard (RFS) that requires the nation to use 36 billion gallons annually (2.3 million barrels per day) of renewable fuel in its vehicles by 2022. Ethanol is the most widely used renewable fuel in the US, and its production has grown dramatically over the past decade. According to EISA and RFS, ethanol (produced from corn as well as cellulosic feedstocks) will make up the vast majority of the new renewable fuel requirements. However, ethanol use limited to E10 and E85 (in the case of flex fuel vehicles or FFVs) will not meet this target. Even if all of the E0 gasoline dispensers in the country were converted to E10, such sales would represent only about 15 billion gallons per year. If 15% ethanol, rather than 10% were used, the potential would be up to 22 billion gallons. The vast majority of ethanol used in the United States is blended with gasoline to create E10, that is, gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85, a gasoline blend with as much as 85% ethanol that can only be used in FFVs. Although DOE remains committed to expanding the E85 infrastructure, that market will not be able to absorb projected volumes of ethanol in the near term. Given this reality, DOE and others have begun assessing the viability of using intermediate ethanol blends as one way to transition to higher volumes of ethanol. In October of 2010, the EPA granted a partial waiver to the Clean Air Act allowing the use of fuel that contains up to 15% ethanol for the model year 2007 and newer light-duty motor vehicles. This waiver represents the first of a number of actions that are needed to move toward the commercialization of E15 gasoline blends. On January 2011, this waiver was expanded to include model year 2001 light-duty vehicles, but specifically prohibited use in motorcycles and off-road vehicles and equipment. UST stakeholders generally consider fueling infrastructure materials designed for use with E0 to be adequate for use with E10, and there are no known instances of major leaks or failures directly attributable to ethanol use. It is conceivable that many compatibility issues, including accelerated corrosion, do arise and are corrected onsite and, therefore do not lead to a release. However, there is some concern that higher ethanol concentrations, such as E15 or E20, may be incompatible with current materials used in standard gasoline fueling hardware. In the summer of 2008, DOE recognized the need to assess the impact of intermediate blends of ethanol on the fueling infrastructure, specifically located at the fueling station. This includes the dispenser and hanging hardware, the underground storage tank, and associated piping. The DOE program has been co-led and funded by the Office of the Biomass Program and Vehicle Technologies Program with technical expertise from the Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL). The infrastructure material compatibility work has been supported through strong collaborations and testing at Underwriters Laboratories (UL). ORNL performed a compatibility study investigating the compatibility of fuel infrastructure materials to gasoline containing intermediate levels of ethanol. These results can be found in the ORNL report entitled Intermediate Ethanol Blends Infrastructure Materials Compatibility Study: Elastomers, Metals and Sealants (hereafter referred to as the ORNL intermediate blends material compatibility study). These materials included elastomers, plastics, metals and sealants typically found in fuel dispenser infrastructure. The test fuels evaluated in the ORNL study were SAE standard test fuel formulations used to assess material-fuel compatibility within a relatively short timeframe. Initially, these material studies included test fuels of Fuel C,

  15. Instrumented Water Tanks can Improve Air Shower Detector Sensitivity

    E-Print Network [OSTI]

    Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

    1999-01-01T23:59:59.000Z

    Previous works have shown that water Cherenkov detectors have superior sensitivity to those of scintillation counters as applied to detecting extensive air showers (EAS). This is in large part due to their much higher sensitivity to EAS photons which are more than five times more numerous than EAS electrons. Large area water Cherenkov detectors can be constructed relatively cheaply and operated reliably. A sparse detector array has been designed which uses these types of detectors to substantially increase the area over which the Milagro Gamma Ray Observatory collects EAS information. Improvements to the Milagro detector's performance characteristics and sensitivity derived from this array and preliminary results from a prototype array currently installed near the Milagro detector will be presented.

  16. Instrumented Water Tanks can Improve Air Shower Detector Sensitivity

    E-Print Network [OSTI]

    R. Atkins; W. Benbow; D. Berley; M. -L. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; L. Fleysher; R. Fleysher; G. Gisler; J. A. Goodman; T. J. Haines; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; J. Macri; M. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; A. I. Mincer; M. F. Morales; P. Nemethy; J. M. Ryan; M. Schneider; B. Shen; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; T. N. Thompson; O. T. Tumer; K. Wang; M. O. Wascko; S. Westerhoff; D. A. Williams; T. Yang; G. B. Yodh

    1999-07-15T23:59:59.000Z

    Previous works have shown that water Cherenkov detectors have superior sensitivity to those of scintillation counters as applied to detecting extensive air showers (EAS). This is in large part due to their much higher sensitivity to EAS photons which are more than five times more numerous than EAS electrons. Large area water Cherenkov detectors can be constructed relatively cheaply and operated reliably. A sparse detector array has been designed which uses these types of detectors to substantially increase the area over which the Milagro Gamma Ray Observatory collects EAS information. Improvements to the Milagro detector's performance characteristics and sensitivity derived from this array and preliminary results from a prototype array currently installed near the Milagro detector will be presented.

  17. EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge,...

  18. DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program

    E-Print Network [OSTI]

    DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program Dr. Neel Sirosh DIRECTOR and validate 5,000 psi storage tanks ­ Tank efficiency: 7.5 ­ 8.5 wt% · Validate 5,000 psi in-tank-pressure regulators ­ Total storage system efficiency: 5.7 wt% · Develop and validate 10,000 psi storage tanks ­ Tank

  19. ANALYSIS OF THE LEACHING EFFICIENCY OF INHIBITED WATER AND TANK SIMULANT IN REMOVING RESIDUES ON THERMOWELL PIPES

    SciTech Connect (OSTI)

    Fondeur, F.; White, T.; Oji, L.; Martino, C.; Wilmarth, B.

    2011-10-20T23:59:59.000Z

    A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. Video inspection of the tank showed that a film of solid material adhered to the tank internal walls and structures between 69 inch and 150 inch levels. From the video inspection, the solid film thickness was estimated to be 1mm, which corresponds to {approx}33 kg of TPB salts (as 20 wt% insoluble solids) (1). This film material is expected to be easily removed by single-rinse, slurry pump operation during Tank 48H TPB disposition via aggregation processing. A similar success was achieved for Tank 49H TPB dispositioning, with slurry pumps operating almost continuously for approximately 6 months, after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids - Na{sub 3}H(CO{sub 3}){sub 2} (Hydrated Sodium Carbonate, aka: Trona), Al(OH){sub 3} (Aluminum Hydroxide, aka: Gibbsite), NaTPB (Sodium Tetraphenylborate), NaNO{sub 3} (Sodium Nitrate) and NaNO{sub 2} (Sodium Nitrite) (2). Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. There is a risk that material on the internal surfaces of Tank 48H could not be easily removed. As a risk mitigation activity, the chemical composition and leachability of the Tank 48H film are being evaluated prior to initiating tank aggregation. This task investigated the dissolution characteristics of Tank 48H solid film deposits in inhibited water and DWPF recycle. To this end, SRNL received four separate 23-inch long thermowell-conductivity pipe samples which were removed from the tank 48H D2 risers in order to determine: (1) the thickness of the solid film deposit, (2) the chemical composition of the film deposits, and (3) the leaching behavior of the solid film deposit in inhibited water (IW) and in DWPF recycle simulant (3).

  20. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01T23:59:59.000Z

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  1. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    SciTech Connect (OSTI)

    Krogstad, Eirik J.

    2013-08-01T23:59:59.000Z

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less effective, but about equal to each other. The reactivity of pyrite, compared to olivine and garnet, was studied in high-pH, simulated tank waste solutions in a series of bench-top experiments. Variations in temperature, degree of agitation, grain size, exposure to air, and presence of nitrate and nitrite were also studied. Olivine and garnet showed no sign of dissolution or other reaction. Pyrite was shown to react with the fluids in even its coarsest variation (150?1000 ?m). Projected times to total dissolution for most experiments range from months to ca. 12 years, and the strongest control on reaction rate is the grain size.

  2. Evaluation of the TORE(R)Lance for Radioactive Waste Mobilization and Retrieval from Underground Storage Tanks

    SciTech Connect (OSTI)

    Bamberger, Judith A.; Bates, Cameron J.; Bates, James M.; White, M.

    2002-09-25T23:59:59.000Z

    The TORE? Lance is a hand-held hydro transportation device with the ability to convey solids at pre-determined slurry concentrations over great distances. The TORE? Lance head generates a precessing vortex core to mobilize solids. Solids retrieval is accomplished using an eductor. The device contains no parts and requires pressurized fluid to operate the eductor and produce mobilization. Three configurations of TORE? Lance operation were evaluated for mobilization and eduction during these tests: compressed air, water, and an air and water mixture. These tests have shown that the TORE? Lance is a tool that can be used at Hanford for mobilization and retrieval of wastes. The system is versatile and can be configured for many types of applications. These studies showed that the diverse applications require unique solutions so care is recommended for TORE? Lance equipment selection for each application. The two components of the TORE? Lance are the precessing vortex for mobilizing and the eductor for retrieval. The precessing vortex is sensitive to fluid flow rate and pressure. In the hand-held unit these parameters are controlled both internally, by changing shim spacing, and externally by controlling the flow split between the eductor and the head. For in-tank applications out-of-tank control of both these parameters are recommended.

  3. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01T23:59:59.000Z

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  4. Cooling Semiconductor Manufacturing Facilities with Chilled Water Storage

    E-Print Network [OSTI]

    Fiorino, D. P.

    This paper examines the 5.2 million gallon chilled water storage system installed at TI's Expressway manufacturing complex in Dallas, Texas. During the peak cooling season ending September 30, 1994, it provided 3,750 tons of additional peak cooling...

  5. Covered Product Category: Residential Gas Storage Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  6. Continuous Commissioning(SM) of a Thermal Storage System

    E-Print Network [OSTI]

    Turner, W. D.; Liu, M.

    2001-01-01T23:59:59.000Z

    shows that commissioning of the thermal storage system is not limited to the storage tank itself, but is closely related to successful commissioning of building air handling units (AHUs) and chilled water loops. The full benefit of a thermal storage... than a dozen major buildings. The storage system was installed after a campus-wide energy efficiency retrofit. It is designed to store 42?F chilled water with a return water temperature of 56?F. Total storage capacity is 7000 ton-hours. The tank...

  7. Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement

    E-Print Network [OSTI]

    Abraham, Michaela Marie

    1993-01-01T23:59:59.000Z

    device in order to meet the utility's mandate. The first part of this study looks at the effects of adding propylene glycol to a static-water ice thermal storage tank, in the pursuit of increasing storage capacity. The effects of glycol addition...

  8. Classification of heart valve sounds from experiments in an anechoic water tank

    SciTech Connect (OSTI)

    Axelrod, M C; Clark, G A; Scott, D

    1999-06-01T23:59:59.000Z

    In vivo studies in both sheep and humans were plagued by a number of problems including movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation, and limited bandwidth recordings as discussed by [1]. To overcome these problems it was decided to record heart valve sounds under controlled conditions deep in an anechoic water tank, free from reverberation noise, including surface reflections. Experiments were conducted in a deep water tank at the Transdec facility in San Diego, which satisfies these requirements. The Transdec measurements are free of reverberations, but not totally free of acoustic and electrical noise. We used a high quality hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50 different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the opening and closing phases of each cycle were calculated and outlier spectra removed as described by Candy [2]. In this report, we discuss the results of our classification of the heart valve sound measurements. The goal of this classification task was to apply the fundamental classification algorithms developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. From the beginning of this project, LLNL's responsibility has been to process and classify the heart valve opening sounds. For this experiment, however, we processed both the opening sounds and closing sounds for comparison purposes. The results of this experiment show that the classifier did not perform well. We believe this is because of low signal-to-noise ratio and excessive variability in signal power from beat-to-beat for a given valve.

  9. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    SciTech Connect (OSTI)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14T23:59:59.000Z

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  10. A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois

    E-Print Network [OSTI]

    Swenson, Sean; Yeh, Pat J.-F.; Wahr, John; Famiglietti, James

    2006-01-01T23:59:59.000Z

    J. -F. Yeh et al. , Ground- water storage changes inferredstorage variations at these spatial scales, a GRACE ground-

  11. Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    1999-05-05T23:59:59.000Z

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 135, Area 25 Underground Storage Tanks (USTs), which is located on the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada.

  12. Texas Water Storage Observed by GRACE Byron Tapley , Srinivas Bettadpur , Hhimanshue Save

    E-Print Network [OSTI]

    Yang, Zong-Liang

    results from DM DM = DMl + DMs + DMg where DMl is surface storage DMs is soil moisture DMg is ground water1-08-2008 Texas Water Storage Observed by GRACE Byron Tapley , Srinivas Bettadpur , Hhimanshue Save Operations Implications for Texas Water Storage Measurements Future Plans 11/6/2012 2 #12;First Decade

  13. ARM 17-56 - Underground Storage Tanks Petroleum and Chemical Substance |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,InformationWind Energy JumpEnergyApplicationWater7Open

  14. Life Cycle Assessment of Thermal Energy Storage: Two-Tank Indirect and Thermocline

    SciTech Connect (OSTI)

    Heath, G.; Turchi, C.; Burkhardt, J.; Kutscher, C.; Decker, T.

    2009-07-01T23:59:59.000Z

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  15. 30 TAC, part 1, chapter 334 Underground storage tanks general provisions |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive Jump to: navigation, search

  16. Cornell University's Online Aboveground Petroleum Tank

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Cornell University's Online Aboveground Petroleum Tank Inspection Program How To's Petroleum Bulk-material-storage/petroleum-bulk-storage/Documents/Inspect_GD.pdf What is Cornell University's Online Aboveground Petroleum Tank Inspection Program? Cornell University's Online Aboveground Petroleum Tank Inspection Program enables assigned tank inspectors to record

  17. Project W-519 CDR supplement: Raw water and electrical services for privatization contractor, AP tank farm operations

    SciTech Connect (OSTI)

    Parazin, R.J.

    1998-07-31T23:59:59.000Z

    This supplement to the Project W-519 Conceptual Design will identify a means to provide RW and Electrical services to serve the needs of the TWRS Privatization Contractor (PC) at AP Tank Farm as directed by DOE-RL. The RW will serve the fire suppression and untreated process water requirements for the PC. The purpose of this CDR supplement is to identify Raw Water (RW) and Electrical service line routes to the TWRS Privatization Contractor (PC) feed delivery tanks, AP-106 and/or AP-108, and establish associated cost impacts to the Project W-519 baseline.

  18. Impact of Pacific and Atlantic sea surface temperatures on interannual and decadal variations of GRACE land water storage in tropical South America

    E-Print Network [OSTI]

    de Linage, Caroline; Kim, Hyungjun; Famiglietti, James S; Yu, Jin-Yi

    2013-01-01T23:59:59.000Z

    stress, i.e. , the ground water storage [Toomey et al. ,and longer time scales, as ground water storage multidecadal

  19. Work plan and health and safety plan for Building 3019B underground storage tank at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Burman, S.N.; Brown, K.S.; Landguth, D.C.

    1992-08-01T23:59:59.000Z

    As part of the Underground Storage Tank Program at the Department of Energy`s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, this Health and Safety Plan has been developed for removal of the 110-gal leaded fuel underground storage tank (UST) located in the Building 3019B area at ORNL This Health and Safety Plan was developed by the Measurement Applications and Development Group of the Health and Safety Research Division at ORNL The major components of the plan follow: (1) A project description that gives the scope and objectives of the 110-gal tank removal project and assigns responsibilities, in addition to providing emergency information for situations occurring during field operations; (2) a health and safety plan in Sect. 15 for the Building 3019B UST activities, which describes general site hazards and particular hazards associated with specific tasks, personnel protection requirements and mandatory safety procedures; and (3) discussion of the proper form completion and reporting requirements during removal of the UST. This document addresses Occupational Safety and Health Administration (OSHA) requirements in 29 CFR 1910.120 with respect to all aspects of health and safety involved in a UST removal. In addition, the plan follows the Environmental Protection Agency (EPA) QAMS 005/80 (1980) format with the inclusion of the health and safety section (Sect. 15).

  20. Work plan and health and safety plan for Building 3019B underground storage tank at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Burman, S.N.; Brown, K.S.; Landguth, D.C.

    1992-08-01T23:59:59.000Z

    As part of the Underground Storage Tank Program at the Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, this Health and Safety Plan has been developed for removal of the 110-gal leaded fuel underground storage tank (UST) located in the Building 3019B area at ORNL This Health and Safety Plan was developed by the Measurement Applications and Development Group of the Health and Safety Research Division at ORNL The major components of the plan follow: (1) A project description that gives the scope and objectives of the 110-gal tank removal project and assigns responsibilities, in addition to providing emergency information for situations occurring during field operations; (2) a health and safety plan in Sect. 15 for the Building 3019B UST activities, which describes general site hazards and particular hazards associated with specific tasks, personnel protection requirements and mandatory safety procedures; and (3) discussion of the proper form completion and reporting requirements during removal of the UST. This document addresses Occupational Safety and Health Administration (OSHA) requirements in 29 CFR 1910.120 with respect to all aspects of health and safety involved in a UST removal. In addition, the plan follows the Environmental Protection Agency (EPA) QAMS 005/80 (1980) format with the inclusion of the health and safety section (Sect. 15).

  1. E-Print Network 3.0 - automated tank calibrations Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Reviewed 809) Summary: Safe Operating Procedure (Reviewed 809) UNDERGROUND STORAGE TANKS - AUTOMATIC TANK GAUGING... tank gauging (ATG) system requirements for Underground...

  2. Regulation of Leaky Underground Fuel Tanks: An Anatomy of Regulatory Failure

    E-Print Network [OSTI]

    White, Christen Carlson

    1995-01-01T23:59:59.000Z

    any leaks. (b) Most storage tank owners have only vagueaddition, regulations for tanks installed prior to Januarypertaining to existing tanks are more appropriately termed

  3. Water-induced morphology changes in BaO/?-Al2O3 NOx storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials. Water-induced morphology changes in BaO?-Al2O3 NOx storage materials. Abstract: Exposure of NO2-saturated BaO?-Al2O3 NOx storage materials to H2O vapour...

  4. Classification of heart valve sounds from experiments in an anechoic water tank

    SciTech Connect (OSTI)

    Axelrod, M C; Clark, G A; Scott, D

    1999-06-01T23:59:59.000Z

    In vivo studies in both sheep and humans were plagued by a number of problems including movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation, and limited bandwidth recordings as discussed by [1]. To overcome these problems it was decided to record heart valve sounds under controlled conditions deep in an anechoic water tank, free from reverberation noise. The main goal of this experiment was to obtain measurements of ''pure'' heart valve sounds free of the scattering effects of the body. Experiments were conducted at the Transdec facility in San Diego [2]. We used a high quality hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50 different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the opening and closing phases of each cycle were calculated and outlier spectra removed as described by Candy [2]. In this report, we discuss the results of our classification of the heart valve sound measurements. The goal of this classification task was to apply the fundamental classification algorithms developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. From the beginning of this project, LLNL's responsibility has been to process and classify the heart valve sounds. For this experiment, however, we processed both the opening sounds and closing sounds for comparison purposes. The results of this experiment show that the classifier did not perform well because of low signal-to-noise ratio and excessive variability in signal power from beat-to-beat for a given valve.

  5. DOE Vehicular Tank Workshop Agenda

    Broader source: Energy.gov (indexed) [DOE]

    948744369 GoalCharter: Identify key issues, including R&D needs, regulations, codes and standards, and a path forward to enable the deployment of hydrogen storage tanks...

  6. Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated using a Condensate Storage Tank

    SciTech Connect (OSTI)

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y.; Kim, M.; Choi, I.

    2010-06-30T23:59:59.000Z

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are determined to be risk significant to NPPs. Multiple models have been identified for concrete, carbon and low-alloy steel, and stainless steel. These models are documented in the Annual Report for the Year 2 Task, identified as BNL Report-82249-2009 and also designated as KAERI/TR-3757/2009. This report describes the research effort performed by BNL for the Year 3 scope of work. The objective is for BNL to develop the seismic fragility capacity for a condensate storage tank with various degradation scenarios. The conservative deterministic failure margin method has been utilized for the undegraded case and has been modified to accommodate the degraded cases. A total of five seismic fragility analysis cases have been described: (1) undegraded case, (2) degraded stainless tank shell, (3) degraded anchor bolts, (4) anchorage concrete cracking, and (5)a perfect combination of the three degradation scenarios. Insights from these fragility analyses are also presented.

  7. Optimal Tank Farm Operation Sebastian Terrazas-Moreno

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimal Tank Farm Operation Sebastian Terrazas-Moreno Ignacio E. Grossmann John M. Wassick EWOIn collaboration with The Dow Chemical Company #12;A tank farm is a set of storage tanks that hold finished product until it is shipped Each tank can only hold one Loading of product takes place only from storage tanks

  8. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.

    1983-11-01T23:59:59.000Z

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  9. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    unit*year) Heavy Metals to Water Heavy Metals to Water mg NiMatter Emissions (Water) Heavy Metals mg Hg/20 /unit*yearMatter Mg/year Emissions (Water) Heavy Metals Gg Hg/20 /year

  10. Criteria and Conditions for Authorizing Withdrawal, Diversion, and Storage of Water (Iowa)

    Broader source: Energy.gov [DOE]

    These regulations describe the criteria for the issuance of water withdrawal, diversion, and storage permits for irrigation, industrial use, and power generation, among other uses. The regulations...

  11. PCB extraction from ORNL tank WC-14 using a unique solvent

    SciTech Connect (OSTI)

    Bloom, G.A.; Lucero, A.J.; Koran, L.J.; Turner, E.N.

    1995-09-01T23:59:59.000Z

    This report summarizes the development work of the Engineering Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) for an organic extraction method for removing polychlorinated biphenyls (PCBs) from tank WC-14. Tank WC-14 is part of the ORNL liquid low-level radioactive tank waste system and does not meet new secondary containment and leak detection regulations. These regulations require the tank to be taken out of service, and remediated before tank removal. To remediate the tank, the PCBs must be removed; the tank contents can then be transferred to the Melton Valley Storage Tanks before final disposal. The solvent being used for the PCB extraction experiments is triethylamine, an aliphatic amine that is soluble in water below 60{degrees}F but insoluble in water above 90{degrees}F. This property will allow the extraction to be carried out under fully miscible conditions within the tank; then, after tank conditions have been changed, the solvent will not be miscible with water and phase separation will occur. Phase separation between sludge, water, and solvent will allow solvent (loaded with PCBs) to be removed from the tank for disposal. After removing the PCBs from the sludge and removing the sludge from the tank, administrative control of the tank can be transferred to ORNL`s Environmental Restoration Program, where priorities will be set for tank removal. Experiments with WC-14 sludge show that greater than 90% extraction efficiencies can be achieved with one extraction stage and that PCB concentration in the sludge can be reduced to below 2 ppm in three extractions. It is anticipated that three extractions will be necessary to reduce the PCB concentration to below 2 ppm during field applications. The experiments conducted with tank WC-14 sludge transferred less than 0.03% of the original alpha contamination and less than 0.002% of the original beta contamination.

  12. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 5

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Fire Protection functional area for the Hanford Site Tank Farm facilities and support structures is based on the application of relevant DOE orders, regulations, and industry codes and standards. The fire protection program defined in this document may be divided into three areas: (1) organizational, (2) administrative programmatic features, and (3) technical features. The information presented in each section is in the form of program elements and orders, regulations, industry codes, and standards that serve as the attributes of a fire protection program for the Tank Farm facilities. Upon completion this document will be utilized as the basis to evaluate compliance of the fire protection program being implemented for the Tank Farm facilities with the requirements of DOE orders and industry codes and standards.

  13. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    Study on Eco-Design of Water Heaters, Van Holstein en Kemnaon Eco-Design of Water Heaters”, Task 5 Report, DefinitionTesting of Tankless Gas Water Heater Performance. Davis

  14. Monitoring effective use of household water treatment and safe storage technologies in Ethiopia and Ghana

    E-Print Network [OSTI]

    Stevenson, Matthew M

    2009-01-01T23:59:59.000Z

    Household water treatment and storage (HWTS) technologies dissemination is beginning to scale-up to reach the almost 900 million people without access to an improved water supply (WHO/UNICEF/JMP, 2008). Without well-informed ...

  15. Household water treatment and safe storage options for Northern Region Ghana : consumer preference and relative cost

    E-Print Network [OSTI]

    Green, Vanessa (Vanessa Layton)

    2008-01-01T23:59:59.000Z

    A range of household water treatment and safe storage (HWTS) products are available in Northern Region Ghana which have the potential to significantly improve local drinking water quality. However, to date, the region has ...

  16. Tank characterization reference guide

    SciTech Connect (OSTI)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-09-01T23:59:59.000Z

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

  17. 1 BASEMENT STORAGE 3 MICROSCOPE LAB

    E-Print Network [OSTI]

    Boonstra, Rudy

    MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

  18. Monthly Tank Inspection Log Name of Campus

    E-Print Network [OSTI]

    Rosen, Jay

    Monthly Tank Inspection Log Name of Campus Street Address of Campus City, State, and Zip Code of Campus 1 of 2 1. Facility PBS Registration Number 6. DISTRIBUTE TO : 2. Tank Number 3. Tank Registered(S) Satisfactory Repair or Adjustment Required Not Applicable Additional Comments Attached ABOVEGROUND STORAGE TANK

  19. DOE Vehicular Tank Workshop Sandia National Laboratories

    E-Print Network [OSTI]

    DOE Vehicular Tank Workshop Sandia National Laboratories Livermore, CA April 29, 2010 Thursday the deployment of hydrogen storage tanks in early market fuel cell applications for vehicles Workshop Objectives at the first workshop in more detail, including Type 4 tank and PRD testing, tank service life and tracking

  20. TANK SPACE OPTIONS REPORT

    SciTech Connect (OSTI)

    WILLIS WL; AHRENDT MR

    2009-08-11T23:59:59.000Z

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  1. Design and installation manual for thermal energy storage

    SciTech Connect (OSTI)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01T23:59:59.000Z

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  2. Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques

    SciTech Connect (OSTI)

    Livingston, R. A. [Materials Science and Engineering Dept., U. of Maryland, College Park, MD (United States); Schweitzer, J. S. [Physics Dept., U. of Connecticut, Storrs (United States); Parsons, A. M. [Goddard Space Flight Center, Greenbelt (United States); Arens, E. E. [John F. Kennedy Space Center, FL (United States)

    2014-02-18T23:59:59.000Z

    The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

  3. Tank waste remediation system integrated technology plan. Revision 2

    SciTech Connect (OSTI)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28T23:59:59.000Z

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  4. Technical requirements specification for tank waste retrieval

    SciTech Connect (OSTI)

    Lamberd, D.L.

    1996-09-26T23:59:59.000Z

    This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

  5. Minimizing Energy Consumption in a Water Distribution System: A Systems Modeling Approach

    E-Print Network [OSTI]

    Johnston, John

    2011-08-08T23:59:59.000Z

    In a water distribution system from groundwater supply, the bulk of energy consumption is expended at pump stations. These pumps pressurize the water and transport it from the aquifer to the distribution system and to elevated storage tanks. Each...

  6. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

  7. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    consumer/your_home/water_ heating/index.cfm/mytopic=12980heating is a large source of energy use in California homes.heating is the third largest source of energy use in homes [

  8. Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE

    E-Print Network [OSTI]

    Velicogna, I.; Tong, J.; Zhang, T.; Kimball, J. S

    2012-01-01T23:59:59.000Z

    or no change in ground water storage. Therefore, we con-ground- water table from 2002 through 2010 would be required to account for the subsurface water storageground water level over the same period repre- sents 1.9 cm of potential additional soil water storage

  9. ALARA Analysis for Shippingport Pressurized Water Reactor Core 2 Fuel Storage in the Canister Storage Building (CSB)

    E-Print Network [OSTI]

    Lewis, M E

    2000-01-01T23:59:59.000Z

    The addition of Shippingport Pressurized Water Reactor (PWR) Core 2 Blanket Fuel Assembly storage in the Canister Storage Building (CSB) will increase the total cumulative CSB personnel exposure from receipt and handling activities. The loaded Shippingport Spent Fuel Canisters (SSFCs) used for the Shippingport fuel have a higher external dose rate. Assuming an MCO handling rate of 170 per year (K East and K West concurrent operation), 24-hr CSB operation, and nominal SSFC loading, all work crew personnel will have a cumulative annual exposure of less than the 1,000 mrem limit.

  10. Final Environmental Impact Statement for the Tank Waste Remediation...

    Broader source: Energy.gov (indexed) [DOE]

    hazardous, and mixed waste. This waste is stored in 177 large underground storage tanks and in approximately 60 smaller active and inactive miscellaneous underground storage...

  11. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01T23:59:59.000Z

    2007), Estimating ground water storage changes in thestorage (i.e. , all of the snow, ice, surface water, soil moisture, and ground-

  12. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    actively implementing demand side management, after a seriesblackouts in 2008. Demand side management programs are now

  13. Water-induced morphology changes in BaO/?-Al2O3 NOx storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials: an FTIR, TPD, and time-resolved synchrotron XRD Water-induced morphology changes in BaO?-Al2O3 NOx storage materials: an FTIR, TPD, and time-resolved synchrotron...

  14. Energy Comparison Between Conventional and Chilled Water Thermal Storage Air Conditioning Systems

    E-Print Network [OSTI]

    Sebzali, M.; Hussain, H. J.; Ameer, B.

    2010-01-01T23:59:59.000Z

    , encouraged by government subsidies and driven by the rapid and continual expansion in building construction, urban development, and the heavy reliance on Air Conditioning (AC) systems for the cooling of buildings. The Chilled Water Thermal Storage (CWTS...

  15. HIGH LEVEL WASTE TANK CLOSURE PROJECT AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY

    SciTech Connect (OSTI)

    Quigley, K.D.; Wessman, D

    2003-02-27T23:59:59.000Z

    The Department of Energy, Idaho Operations Office (DOE-ID) is in the process of closing two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 1.14 million liter (300,000 gallon) tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities. The basic tank closure sequence is as follows: Empty the tank to the residual heel using the existing jets; Video and sample the heel; Replace steam jets with new jet at a lower position in the tank, and remove additional material; Flush tank, piping and secondary containment with demineralized water; Video and sample the heel; Evaluate decontamination effectiveness; Displace the residual heel with multiple placements of grout; and Grout piping, vaults and remaining tank volume. Design, development, and deployment of a remotely operated tank cleaning system were completed in June 2002. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system is cost-effective since it also utilizes existing waste transfer technology (steam jets), to remove tank heel solids from the tank bottoms during the cleaning operations. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank -specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has cleaned tanks to meet RCRA clean closure standards and DOE closure performance measures. Design, development, and testing of tank grouting delivery equipment were completed in October 2002. The system incorporates lessons learned from closures at other DOE facilities. The grout will be used to displace the tank residuals remaining after the cleaning is complete. To maximize heel displacement to the discharge pump, grout was placed in a sequence of five positions utilizing two riser locations. The project is evaluating the use of six positions to optimize the residuals removed. After the heel has been removed and the residuals stabilized, the tank, piping, and secondary containment will be grouted.

  16. Is My Water Safe? disaster may disrupt the electricity needed to pump

    E-Print Network [OSTI]

    food, brushing teeth and keeping clean. Water storage You can store water ahead for use in emergencies. Emergency water Your hot water heater or water pressure tank could supply many gallons of safe water during an emergency. Before using water from the water heater, switch off the gas or elec- tricity that heats

  17. O R E G O N S T A T E U N I V E R S I T Y E x t e n s i o n S e r v i c e WATER STORAGE FOR EMERGENCIES

    E-Print Network [OSTI]

    Tullos, Desiree

    'll need to seek alternative sources. Emergency Inside Water Sources Water heater tank Toilet tank The water heater tank and the toilet tank (not the bowl) are water sources that you might be able to use the #12;water to your house before using these sources to prevent contamination. Turn off the water heater

  18. Household water treatment and safe storage product development in Ghana

    E-Print Network [OSTI]

    Yang, Shengkun, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Microbial and/or chemical contaminants can infiltrate into piped water systems, especially when the system is intermittent. Ghana has been suffering from aged and intermittent piped water networks, and an added barrier of ...

  19. E-Print Network 3.0 - aqueous tank waste Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: by tank truck. The various wastes, when received, are pumped to storage tanks, then blended to produce... of Liquid Fluid Wastes General Description Light...

  20. E-Print Network 3.0 - acidic tank waste Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    > >> 1 Attachment A PPOP 08.10 Summary: but not limited to: < East and West Condensate Tanks < DFT < Waste Pit < Surge Tank < Softeners < Polishers < RO... < Refrigerant Storage...

  1. ORIGINAL PAPER Water storage loss in central and south Asia

    E-Print Network [OSTI]

    Hwang, Cheinway

    may cause a severe shortage of water sooner than expected. With a climate change that could affect., `Climate change and water shortages closing in on Tajikistan and central Asia', Oxfam, 17 February 2010, India may face a water shortage problem in the near future (Rodell et al. 2009; Tiwari et al. 2009

  2. Treatment of drinking water to improve its sanitary or bacteriological quality is

    E-Print Network [OSTI]

    ,000 gallons), such an approach can be wasteful, increasing energy costs for the well pump to refill the tank Chlorine Amounts To sanitize water properly, enough chlorine needs to be added to a storage tank to reach bacteria have been properly destroyed by the sanitation process, submit water samples from a faucet served

  3. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28T23:59:59.000Z

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  4. Remediation of Risks in Natural Gas Storage Produced Waters: The Potential Use of Constructed Wetland Treatment Systems.

    E-Print Network [OSTI]

    Johnson, Brenda

    2006-01-01T23:59:59.000Z

    ??Natural gas storage produced waters (NGSPWs) are generated in large volumes, vary in composition, and often contain constituents in concentrations and forms that are toxic… (more)

  5. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    The Legalization of Ground Water Storage," Water Resourcesprocedure to above ground storage of heat in huge insulatedthis project is heat storage in ground-water regions storage

  6. ECOSYSTEM COMPONENT CHARACTERIZATION 461 Failing or nearby septic tank systems

    E-Print Network [OSTI]

    Pitt, Robert E.

    ECOSYSTEM COMPONENT CHARACTERIZATION 461 · Failing or nearby septic tank systems · Exfiltration from sanitary sewers in poor repair · Leaking underground storage tanks and pipes · Landfill seepage or natural environment Leaks from underground storage tanks and pipes are a common source of soil

  7. Technology Review of Nondestructive Methods for Examination of Water Intrusion Areas on Hanford’s Double-Shell Waste Tanks

    SciTech Connect (OSTI)

    Watkins, Michael L.; Pardini, Allan F.

    2008-05-09T23:59:59.000Z

    Under a contract with CH2M Hill Hanford Group, Inc., PNNL has performed a review of the NDE technology and methods for examination of the concrete dome structure of Hanford’s double-shell tanks. The objective was to provide a matrix of methodologies that could be evaluated based on applicability, ease of deployment, and results that could provide information that could be used in the ongoing structural analysis of the tank dome. PNNL performed a technology evaluation with the objective of providing a critical literature review for all applicable technologies based on constraints provided by CH2M HILL. These constraints were not mandatory, but were desired. These constraints included performing the evaluation without removing any soil from the top of the tank, or if necessary, requesting that the hole diameter needed to gain access to evaluate the top of the tank structure to be no greater than approximately 12-in. in diameter. PNNL did not address the details of statistical sampling requirements as they depend on an unspecified risk tolerance. PNNL considered these during the technology evaluation and have reported the results in the remainder of this document. Many of the basic approaches to concrete inspection that were reviewed in previous efforts are still in use. These include electromagnetic, acoustic, radiographic, etc. The primary improvements in these tools have focused on providing quantitative image reconstruction, thus providing inspectors and analysts with three-dimensional data sets that allow for operator visualization of relevant abnormalities and analytical integration into structural performance models. Available instruments, such as radar used for bridge deck inspections, rely on post-processing algorithms and do not provide real-time visualization. Commercially available equipment only provides qualitative indications of relative concrete damage. It cannot be used as direct input for structural analysis to assess fitness for use and if necessary to de-rate critical components. There are currently no tools that automatically convert the NDE data to formats compatible with structural analysis programs. While radiographic techniques still provide significant advantages in spatial resolution, non-ionizing techniques are still preferred. Radar imagining in the 1–5 GHz has become the most useful. Unfortunately the algorithms and underlying assumptions used in these reconstructions are proprietary, and it is not possible to assess the quality and limitations of the analytical methods used to generate the derived structural data. The hypothesis that water intrusion may contribute to potential rebar corrosion of the tank domes provided the primary guidance in reviewing and evaluating available NDE technologies. Of primary concern is the need to employ technologies that provide the best opportunity for visualizing the rebar and providing quantitative data that can be integrated into structural analysis efforts to better understand and quantify the structural capacity of the domes. The conclusion is that an imaging system capable of locating and quantifying the distribution and conditions of the cement, aggregate, and rebar will provide the most valuable baseline upon which to build a case for the integrity of the structure. If successful, such a system would fulfill the need to incorporate valuable data into current structural load capacity analysis.

  8. Ferrocyanide tank waste stability

    SciTech Connect (OSTI)

    Fowler, K.D.

    1993-01-01T23:59:59.000Z

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

  9. Corrective Action Decision Document for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada: Revision 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-09-26T23:59:59.000Z

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of recommended corrective action alternatives (CAAs) appropriate to facilitate the closure of Corrective Action Unit (CAU) 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 127 consists of twelve corrective action sites (CASs). Corrective action investigation (CAI) activities were performed from February 24, 2003, through May 2, 2003, with additional sampling conducted on June 6, 2003, June 9, 2003, and June 24, 2003. Analytes detected during these investigation activities were evaluated against preliminary action levels to identify contaminants of concern (COCs) for each CAS, resulting in the determination that only two of the CASs did not have COCs exceeding regulatory levels. Based on the evaluation of analytical data from the CAI, review of future and current operations in Areas 25 and 26 of the Nevada Test Site, and the detailed and comparative analysis of the potential CAAs, the following alternatives were developed for consideration: (1) No Further Action is the preferred corrective action for the two CASs (25-02-13, 26-02-01) identified with no COCs; (2) Clean Closure is the preferred corrective action for eight of the CASs (25-01-05, 25-23-11, 25-12-01, 25-01-06, 26-01-01, 26-01-02, 26-99-01, 26-23-01); and (3) Closure in Place is the preferred corrective action for the remaining two CASs (25-01-07, 25-02-02). These three alternatives were judged to meet all requirements for the technical components evaluated. Additionally, these alternatives meet all applicable state and federal regulations for closure of the sites at CAU 127 and will reduce potential future exposure pathways to the contaminated media.

  10. Thermal buckling of metal oil tanks subject to an adjacent fire 

    E-Print Network [OSTI]

    Liu, Ying

    2011-01-01T23:59:59.000Z

    Fire is one of the main hazards associated with storage tanks containing flammable liquids. These tanks are usually closely spaced and in large groups, so where a petroleum fire occurs, adjacent tanks are susceptible to ...

  11. Thermal buckling of metal oil tanks subject to an adjacent fire 

    E-Print Network [OSTI]

    Liu, Ying

    2011-11-22T23:59:59.000Z

    Fire is one of the main hazards associated with storage tanks containing flammable liquids. These tanks are usually closely spaced and in large groups, so where a petroleum fire occurs, adjacent tanks are susceptible to ...

  12. Behavior of Uranium(VI) during HEDPA Leaching for Aluminum Dissolution in Tank Waste Sludges

    E-Print Network [OSTI]

    Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.; Martin, Leigh

    2006-01-01T23:59:59.000Z

    Aluminum Dissolution in Tank Waste Sludges Brian A. PowellThe underground storage tanks at the Hanford site containtime, the material in the tanks has stratified to produce a

  13. Procedures for the storage and digestion of natural waters for the determination of lterable reactive phosphorus, total lterable

    E-Print Network [OSTI]

    Canberra, University of

    Review Procedures for the storage and digestion of natural waters for the determination and digestion of water samples for ®lterable reactive phosphorus (FRP), total ®lterable phosphorus (TFP samples contain digestion of samples

  14. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect (OSTI)

    Kingston, T.; Scott, S.

    2013-03-01T23:59:59.000Z

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  15. CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS DESIGN AND DATA FROM 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM

    SciTech Connect (OSTI)

    ANDA VS; EDGEMON GL; HAGENSEN AR; BOOMER KD; CAROTHERS KG

    2009-01-08T23:59:59.000Z

    In 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was installed in double-shell tank 241-AN-102 on the U.S. Department of Energy's Hanford Site in Washington State. Developmental design work included laboratory testing in simulated tank 241-AN-102 waste to evaluate metal performance for installation on the MPCMS as secondary metal reference electrodes. The MPCMS design includes coupon arrays as well as a wired probe which facilitates measurement of tank potential as well as corrosion rate using electrical resistance (ER) sensors. This paper presents the MPCMS design, field data obtained following installation of the MPCMS in tank 241-AN-102, and a comparison between laboratory potential data obtained using simulated waste and tank potential data obtained following field installation.

  16. Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01T23:59:59.000Z

    The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

  17. Estimating GRACE monthly water storage change consistent with hydrology by assimilating hydrological

    E-Print Network [OSTI]

    Stuttgart, Universität

    Estimating GRACE monthly water storage change consistent with hydrology by assimilating hydrological information B. Devaraju, N. Sneeuw Institute of Geodesy, Universit¨at Stuttgart, Germany estimates of mass changes with observed hydrological data, which is available for 20% of the land area

  18. Hydrogen Storage DOI: 10.1002/anie.200801163

    E-Print Network [OSTI]

    , is the development of a safe and practical storage system. As opposed to stationary storage, in which the tank volume required for storage near room temperature. 2. Hydrogen Storage Requirements 2.1. The US DoE Storage System

  19. Regional terrestrial water storage change and evapotranspiration from terrestrial and atmospheric water balance computations

    E-Print Network [OSTI]

    Yeh, Pat J.-F.; Famiglietti, J. S

    2008-01-01T23:59:59.000Z

    like to thank Illinois State Water Survey for providing thecollected by the Illinois State Water Survey (ISWS) fromSurface water balance of the continental United States,

  20. Organic tanks safety program FY96 waste aging studies

    SciTech Connect (OSTI)

    Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Clauss, S.A.; Sharma, A.K.; Wahl, K.L.; Campbell, J.A.

    1996-10-01T23:59:59.000Z

    Uranium and plutonium production at the Hanford Site produced large quantities of radioactive by-products and contaminated process chemicals, which are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of salt cakes, metal oxide sludges, and partially saturated aqueous brine solutions. The tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes may be at risk for fuel- nitrate combustion accidents. The purpose of the Waste Aging Task is to elucidate how chemical and radiological processes will have aged or degraded the organic compounds stored in the tanks. Ultimately, the task seeks to develop quantitative measures of how aging changes the energetic properties of the wastes. This information will directly support efforts to evaluate the hazard as well as to develop potential control and mitigation strategies.

  1. Energy-efficient water heating

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

  2. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, Tod H. (O'Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

    1994-01-01T23:59:59.000Z

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  3. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, T.H.; Ott, H.L.

    1994-01-11T23:59:59.000Z

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  4. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

  5. BEHAVIOUR OF A HIGHLY PRESSURISED TANK OF GHz, SUBMITTED TO A THERMAL OR MECHANICAL IMPACT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2000-41 BEHAVIOUR OF A HIGHLY PRESSURISED TANK OF GHz, SUBMITTED TO A THERMAL OR MECHANICAL IMPACT will significantly reduce the volume of the necessary tank(s). Whatever this pressure and whatever the volume of the tank(s), the storage System must be designed in such a way that the consequences of an accident

  6. 004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop

    E-Print Network [OSTI]

    004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing Discuss CNG Field Performance Data Discuss Safety Testing of Type 4 Tanks Current work to support Codes & Standards Development #12;3 Storage Tank Technologies 4 basic types of tank designs Type 1 ­ all metal

  7. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    SciTech Connect (OSTI)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25T23:59:59.000Z

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline formation waters. Therefore, they are expected to be representative of saline formation waters at actual and potential future CCS sites. We are using a produced waters database (Breit, 2002) covering most of the United States compiled by the U.S. Geological Survey (USGS). In one instance to date, we have used this database to find a composition corresponding to the brine expected at an actual CCS site (Big Sky CSP, Nugget Formation, Sublette County, Wyoming). We have located other produced waters databases, which are usually of regional scope (e.g., NETL, 2005, Rocky Mountains basins).

  8. Addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01T23:59:59.000Z

    This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: • 25-25-09, Spill H940825C (from UST 25-3101-1) • 25-25-14, Spill H940314E (from UST 25-3102-3) • 25-25-15, Spill H941020E (from UST 25-3152-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

  9. Addendum 2 to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01T23:59:59.000Z

    This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: • 12-25-08, Spill H950524F (from UST 12-B-1) • 12-25-10, Spill H950919A (from UST 12-COMM-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

  10. Development of a Detailed Simulation Model to Support Evaluation of Water Load Shifting Across a Range of Use Patterns

    E-Print Network [OSTI]

    Samuel, A.; Tuohy, P.

    2014-01-01T23:59:59.000Z

    of hybrid domestic hot water storage systems. The example domestic hot water system investigated here comprises an air source heat pump coupled with solar thermal collectors and a storage tank featuring supplementary immersion heating for control... variations of the air in its solution. As a further example the electrical network knows about the state of the heat pump which is controlled from knowlede of space and buffer tank temperature which in turn are calculated during building and plant...

  11. Final Environmental Impact Statement Safe Interim Storage Of...

    Broader source: Energy.gov (indexed) [DOE]

    storage of high level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 241-SY-101, and future waste volume associated with tank farm and...

  12. Tank characterization data report: Tank 241-C-112

    SciTech Connect (OSTI)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-04-01T23:59:59.000Z

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

  13. Hanford tank residual waste – contaminant source terms and release models

    SciTech Connect (OSTI)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

    2011-08-23T23:59:59.000Z

    Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energy’s Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (<1.5 wt%) in other tanks (C-202 and C-203). Gibbsite is a common mineral in tanks with high Al concentrations, while non-crystalline U-Na-C-O-P±H phases are common in the U-rich residual wastes from tanks C-202 and C-203. Iron oxides/hydroxides have been identified in all residual waste samples studied to date. Contaminant release from the residual wastes was studied by conducting batch leach tests using distilled deionized water, a Ca(OH)2-saturated solution, or a CaCO3-saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO3-saturated solution than with the Ca(OH)2-saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

  14. Radionuclide Releases During Normal Operations for Ventilated Tanks

    SciTech Connect (OSTI)

    Blunt, B.

    2001-09-24T23:59:59.000Z

    This calculation estimates the design emissions of radionuclides from Ventilated Tanks used by various facilities. The calculation includes emissions due to processing and storage of radionuclide material.

  15. Examination of Spent Pressurized Water Reactor Fuel Rods After 15 Years in Dry Storage

    SciTech Connect (OSTI)

    Einziger, Robert E. [Argonne National Laboratory (United States); Tsai Hanchung [Argonne National Laboratory (United States); Billone, Michael C. [Argonne National Laboratory (United States); Hilton, Bruce A. [Argonne National Laboratory-West (United States)

    2003-11-15T23:59:59.000Z

    For [approximately equal to]15 yr Dominion Generation's Surry Nuclear Station 15 x 15 Westinghouse pressurized water reactor (PWR) fuel was stored in a dry inert-atmosphere Castor V/21 cask at the Idaho National Environmental and Engineering Laboratory at peak cladding temperatures that decreased from {approx}350 to 150 deg. C. Before storage, the loaded cask was subjected to thermal-benchmark tests, during which time the peak temperatures were greater than 400 deg. C. The cask was opened to examine the fuel rods for degradation and to determine if they were suitable for extended storage. No fuel rod breaches and no visible degradation or crud/oxide spallation from the fuel rod surface were observed. The results from profilometry, gas release measurements, metallographic examinations, microhardness determination, and cladding hydrogen behavior are reported in this paper.It appears that little or no fission gas was released from the fuel pellets during either the thermal-benchmark tests or the long-term storage. In the central region of the fuel column, where the axial temperature gradient in storage is small, the measured hydrogen content in the cladding is consistent with the thickness of the oxide layer. At {approx}1 m above the fuel midplane, where a steep temperature gradient existed in the cask, less hydrogen is present than would be expected from the oxide thickness that developed in-reactor. Migration of hydrogen during dry storage probably occurred and may signal a higher-than-expected concentration at the cooler ends of the rod. The volume of hydrides varies azimuthally around the cladding, and at some elevations, the hydrides appear to have segregated somewhat to the inner and outer cladding surfaces. It is, however, impossible to determine if this segregation occurred in-reactor or during transportation, thermal-benchmark tests, or the dry storage period. The hydrides retained the circumferential orientation typical of prestorage PWR fuel rods. Little or no cladding creep occurred during thermal-benchmark testing and dry storage. It is anticipated that the creep would not increase significantly during additional storage because of the lower temperature after 15 yr, continual decrease in temperature from the reduction in decay heat, and concurrent reductions in internal rod pressure and stress. This paper describes the results of the characterization of the fuel and intact cladding, as well as the implications of these results for long-term (i.e., beyond 20 yr) dry-cask storage.

  16. Sampling and analysis of water from Upper Three Runs and its wetlands near Tank 16 and the Mixed Waste Management Facility

    SciTech Connect (OSTI)

    Dixon, K.L.; Cummins, C.L.

    1994-06-01T23:59:59.000Z

    In April and September 1993, sampling was conducted to characterize the Upper Three Runs (UTR) wetland waters near the Mixed Waste Management Facility to determine if contaminants migrating from MWMF are outcropping into the floodplain wetlands. For the spring sampling event, 37 wetlands and five stream water samples were collected. Thirty-six wetland and six stream water samples were collected for the fall sampling event. Background seepline and stream water samples were also collected for both sampling events. All samples were analyzed for RCRA Appendix IX volatiles, inorganics appearing on the Target Analyte List, tritium, gamma-emitting radionuclides, and gross radiological activity. Most of the analytical data for both the spring and fall sampling events were reported as below method detection limits. The primary exceptions were the routine water quality indicators (e.g., turbidity, alkalinity, total suspended solids, etc.), iron, manganese, and tritium. During the spring, cadmium, gross alpha, nonvolatile beta, potassium-40, ruthenium-106, and trichloroethylene were also detected above the MCLs from at least one location. A secondary objective of this project was to identify any UTR wetland water quality impacts resulting from leaks from Tank 16 located at the H-Area Tank Farm.

  17. Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles

    SciTech Connect (OSTI)

    C.C. Baker; T.M. Pfeiffer; J.C. Price

    2013-09-01T23:59:59.000Z

    Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

  18. ICPP tank farm closure study. Volume 1

    SciTech Connect (OSTI)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M. [and others

    1998-02-01T23:59:59.000Z

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  19. Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part I: Comparison to GRACE Terrestrial Water Storage Estimates

    E-Print Network [OSTI]

    Ribes, Aurélien

    In earth system models, the partitioning of precipitation among the variations of continental water storage climate system sim- ulated by earth system models (ESMs). The continental freshwater reservoirs represent

  20. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Manure Storage and Treatment Facilities

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    Improperly managed manure can contaminate both ground and surface water. Storing manure allows producers to spread it when crops can best use the nutrients. This publication explains safe methods of manure storage, as well as specifics about safe...

  1. Emergency Factsheet for Shock Chlorination of Stored Water Supplies

    E-Print Network [OSTI]

    of some storage tanks (greater than 5,000 gallons), such an approach can be wasteful, increasing energy may sanitize water wells and distribution systems, additional steps may be necessary to shock with and disinfect the stored water. Calculating Chlorine Amounts To sanitize water properly, enough chlorine needs

  2. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    SciTech Connect (OSTI)

    ERPENBECK EG; LESHIKAR GA

    2011-01-13T23:59:59.000Z

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentially agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.

  3. Mathematical modelling of a metal hydride hydrogen storage system.

    E-Print Network [OSTI]

    MacDonald, Brendan David

    2009-01-01T23:59:59.000Z

    ??In order for metal hydride hydrogen storage systems to compete with existing energy storage technology, such as gasoline tanks and batteries, it is important to… (more)

  4. Solar space and water heating system installed at Charlottesville, Virginia

    SciTech Connect (OSTI)

    Greer, Charles R.

    1980-09-01T23:59:59.000Z

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  5. Categorization of failed and damaged spent LWR (light-water reactor) fuel currently in storage

    SciTech Connect (OSTI)

    Bailey, W.J.

    1987-11-01T23:59:59.000Z

    The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs.

  6. Analyzing risk and uncertainty for improving water distribution system security from malevolent water supply contamination events

    E-Print Network [OSTI]

    Torres, Jacob Manuel

    2009-05-15T23:59:59.000Z

    . Fig. 4.11. Tank level time series. Initial Storage Tank Level 0.00 0.05 0.10 0.15 0.20 0.25 30 31 32 33 34 35 36 37 Head (m) PDF Val u e Tank Level Time Series 104 105 106 107 108 109 110 111 112 0 10203040506070 Hours H ead ( m ) 29 In the case... ANALYZING RISK AND UNCERTAINTY FOR IMPROVING WATER DISTRIBUTION SYSTEM SECURITY FROM MALEVOLENT WATER SUPPLY CONTAMINATION EVENTS A Thesis by JACOB MANUEL TORRES Submitted to the Office of Graduate Studies of Texas A&M...

  7. Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing

    E-Print Network [OSTI]

    Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel for integrated module including in-tank regulator · Developed high efficiency H2 fuel storage systems for DOE tank efficiency, the highest weight efficiency ever demonstrated, in partnership with Lawrence

  8. Chemical heat pump and chemical energy storage system

    DOE Patents [OSTI]

    Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

    1985-08-06T23:59:59.000Z

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  9. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    SciTech Connect (OSTI)

    Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

    2009-10-08T23:59:59.000Z

    The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

  10. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements

    E-Print Network [OSTI]

    Wang, Xianwei; de Linage, Caroline; Famiglietti, James; Zender, Charles S

    2011-01-01T23:59:59.000Z

    GRACE and a land-atmosphere water balance, Geophys. Res.2008), Analysis of terrestrial water storage changes fromGRACE and GLDAS, Water Resour. Res. , 44, W02433, doi:

  11. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    electric storage tank water heaters (electric water heatersElectric storage tank water heaters Washing machines (including tank storage electric water heaters, gas water

  12. Optimal arrangement of structural and functional parts in a flat plate integrated collector storage solar water heater (ICSSWH)

    SciTech Connect (OSTI)

    Gertzos, K.P.; Caouris, Y.G. [Department of Mechanical Engineering and Aeronautics, University of Patras, 265 00 Patras (Greece)

    2008-04-15T23:59:59.000Z

    Parameters that affect the efficiency of a flat plate integrated collector storage solar water heater (ICSSWH) are examined experimentally and numerically. This specific ICSSWH contains water that is not refreshed. The service water is heated indirectly through an immersed heat exchanger (HE) in contact with the front and back major surfaces. A forced convection mechanism consisting of a pump that brings the storage water into motion by recirculation is used for heat transfer intensification. The two major (front and back) flat plate surfaces need to be well interconnected so that they are not deformed by the weight of the contained water and the exerted high-pressure. Two main factors that influence the performance are optimized: the position and size of the recirculation ports and the arrangement and size of the interconnecting fins. Both factors are explored to maximize the velocity flow field of the recirculated storage water. Consequently, the heat transfer rate between the two water circuits is maintained at high levels. Various 3D computational fluid dynamics (CFD) models are developed using the FLUENT package. An experimental model, made by Plexiglas, is used for the visualization of the flow field. Flow velocities are measured using a laser doppler velocimetry (LDV) system. The optimal arrangement increases the mean storage water velocity by 65% and raises the outlet temperatures up to 8 C. (author)

  13. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

    1999-11-16T23:59:59.000Z

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  14. Improved temperature regulation of process water systems for the APS storage ring.

    SciTech Connect (OSTI)

    Putnam, C.; Dortwegt, R.

    2002-10-10T23:59:59.000Z

    Beam stability and operational reliability of critical mechanical systems are key performance issues for synchrotron accelerators such as the Advanced Photon Source (APS). Stability is influenced by temperature fluctuations of the process water (PW) used for cooling and/or temperature conditioning storage ring (SR) components such as vacuum chambers, magnets, absorbers, etc. Operational reliability is crucial in maintaining facility beam operations and remaining within downtime ''budgets.'' Water systems for the APS storage ring were originally provided with a distributive control system (DCS) capable of regulation to {+-}1.0 F, as specified by facility design requirements. After several years of operation, a particular mode of component mortality indicated a need for upgrade of the temperature control system. The upgrade that was implemented was chosen for both improved component reliability and temperature stability (now on the order of {+-}0.2 F for copper components and {+-}0.05 F for aluminum components). The design employs a network of programmable logic controllers (PLCs) for temperature control that functions under supervision of the existing DCS. The human-machine interface (HMI) of the PLC system employs RSView32 software. The PLC system also interfaces with the EPICS accelerator control system to provide monitoring of temperature control parameters. Eventual supervision of the PLC system by EPICS is possible with this design.

  15. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect (OSTI)

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2009-11-15T23:59:59.000Z

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  16. E-Print Network 3.0 - aluminium electrolysis tanks Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: aluminium electrolysis tanks Page: << < 1 2 3 4 5 > >> 1 PRE-INVESTIGATION WATER ELECTROLYSIS...

  17. NGLW RCRA Storage Study

    SciTech Connect (OSTI)

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

    2000-06-01T23:59:59.000Z

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  18. Experimental Investigation of Direct Expansion Dynamic Ice-on-coil Storage System Used in Residential Buildings

    E-Print Network [OSTI]

    Zheng, M.; Kong, F.; Han, Z.; Liu, W.

    2006-01-01T23:59:59.000Z

    better heat exchanger ability caused by the larger surface of sheet ice, steady and low chilled water temperature was directly extracted from an ice storage tank. The longitudinal and axial fin-added coils improved the COP of the refrigerating unit...

  19. Efficient, sustainable production of molecular hydrogen -a promising alternative to batteries in terms of energy storage -is still an unsolved problem. Implementation of direct water splitting

    E-Print Network [OSTI]

    KuÂ?el, Petr

    in terms of energy storage - is still an unsolved problem. Implementation of direct water splitting usingEfficient, sustainable production of molecular hydrogen - a promising alternative to batteries

  20. Safety criteria for organic watch list tanks at the Hanford Site

    SciTech Connect (OSTI)

    Meacham, J.E., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    This document reviews the hazards associated with the storage of organic complexant salts in Hanford Site high-level waste single- shell tanks. The results of this analysis were used to categorize tank wastes as safe, unconditionally safe, or unsafe. Sufficient data were available to categorize 67 tanks; 63 tanks were categorized as safe, and four tanks were categorized as conditionally safe. No tanks were categorized as unsafe. The remaining 82 SSTs lack sufficient data to be categorized.Historic tank data and an analysis of variance model were used to prioritize the remaining tanks for characterization.

  1. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01T23:59:59.000Z

    Storage Water Heater .point for modeling storage water heaters. The algorithmsfired, natural draft storage water heater. Figure 1 shows a

  2. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07T23:59:59.000Z

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435,000 below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  3. EIS-0189: Tank Waste Remediation System (TWRS), Richland, WA (Programmatic)

    Broader source: Energy.gov [DOE]

    This environmental impact statement evaluates the Department of Energy (DOE)'s, in cooperation with the Washington State Department of Ecology (Ecology), decisions on how to properly manage and dispose of Hanford Site tank waste and encapsulated cesium and strontium to reduce existing and potential future risk to the public, Site workers, and the environment. The waste includes radioactive, hazardous, and mixed waste currently stored in 177 underground storage tanks, approximately 60 other smaller active and inactive miscellaneous underground storage tanks (MUSTs), and additional Site waste likely to be added to the tank waste, which is part of the tank farm system. In addition, DOE proposes to manage and dispose of approximately 1,930 cesium and strontium capsules that are by-products of tank waste. The tank waste and capsules are located in the 200 Areas of the Hanford Site near Richland, Washington.

  4. Redesigning experimental equipment for determining peak pressure in a simulated tank car transfer line

    E-Print Network [OSTI]

    Diaz, Richard A

    2007-01-01T23:59:59.000Z

    When liquids are transported from storage tanks to tank cars, improper order of valve openings can cause pressure surges in the transfer line. To model this phenomenon and predict the peak pressures in such a transfer line, ...

  5. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Gas-fired Storage Water Heater .. 418 Assess California’s Small Gas Storage Water Heaters Small Gas Storage Water Heater Market The objective of

  6. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    SciTech Connect (OSTI)

    Groth, B.D.

    1995-01-11T23:59:59.000Z

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  7. Collection and representation of GIS data to aid household water treatment and safe storage technology implementation in the northern region of Ghana

    E-Print Network [OSTI]

    VanCalcar, Jenny E. (Jenny Elizabeth)

    2006-01-01T23:59:59.000Z

    In 2005, a start-up social business called Pure Home Water (PHW) was begun in Ghana to promote and sell household water treatment and safe storage (HWTS) technologies. The original aim of the company was to offer a variety ...

  8. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect (OSTI)

    WEISS, E.V.

    2000-12-15T23:59:59.000Z

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  9. Double shell tank waste analysis plan

    SciTech Connect (OSTI)

    Mulkey, C.H.; Jones, J.M.

    1994-12-15T23:59:59.000Z

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

  10. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  11. Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-08-29T23:59:59.000Z

    A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

  12. Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements

    E-Print Network [OSTI]

    units with tank volumes of 40 to 50 gallons. Standby loss associated with the center flue gas storage energy use. Whereas natural gas, (liquefied petroleum gas), LPG or oil can be burned directly to heat code from 2008 are listed below: Instantaneous (or tankless) water heaters including gas, oil, small

  13. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01T23:59:59.000Z

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  14. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks; A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    SciTech Connect (OSTI)

    Anderson l. Ward; Glendon W. Gee; John S. Selker; Clay Cooper

    2002-04-24T23:59:59.000Z

    The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts atypical of low ionic strength infiltration. In the field, this mechanism could for ce flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contract angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tens ion of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of this waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediments. Th e released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford.

  15. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    SciTech Connect (OSTI)

    Anderson L. Ward; Glendon W. Gee; John S. Selker; Caly Cooper

    2002-04-24T23:59:59.000Z

    The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts a typical of low ionic strength infiltration. In the field, this mechanism could force flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contact angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tension of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests of showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of the waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediment s. The released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford.

  16. ROBOTIC TANK INSPECTION END EFFECTOR

    SciTech Connect (OSTI)

    Rachel Landry

    1999-10-01T23:59:59.000Z

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original intent of the contract, the focus remains on the RTIEE.

  17. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    electric storage tank water heaters, washing machines,Electric storage tank water heaters Washing machines (top-furnace, electric storage tank water heaters, variable speed

  18. Deflagration studies on waste Tank 101-SY: Test plan

    SciTech Connect (OSTI)

    Cashdollar, K.L.; Zlochower, I.A.; Hertzberg, M.

    1991-07-01T23:59:59.000Z

    Waste slurries produced during the recovery of plutonium and uranium from irradiated fuel are stored in underground storage tanks. While a variety of waste types have been generated, of particular concern are the wastes stored in Tank 101-SY. A slurry growth-gas evolution cycle has been observed since 1981. The waste consists of a thick slurry, consisting of a solution high in NaOH, NaNO{sub 3}, NaAlO{sub 2}, dissolved organic complexants (EDTA, HEDTA, NTA, and degradation products), other salts (sulfates and phosphates), and radionuclides (primarily cesium and strontium). During a gas release the major gaseous species identified include: hydrogen and nitrous oxide (N{sub 2}O). Significant amounts of nitrogen may also be present. Traces of ammonia, carbon oxides, and other nitrogen oxides are also detected. Air and water vapor are also present in the tank vapor space. The purpose of the deflagration study is to determine risks of the hydrogen, nitrous oxide, nitrogen, and oxygen system. To be determined are pressure and temperature as a function of composition of reacting gases and the concentration of gases before and after the combustion event. Analyses of gases after the combustion event will be restricted to those tests that had an initial concentration of {le}8% hydrogen. This information will be used to evaluate safety issues related to periodic slurry growth and flammable gas releases from Tank 101-SY. the conditions to be evaluated will simulate gases in the vapor space above the salt cake as well as gases that potentially are trapped in pockets within/under the waste. The deflagration study will relate experimental laboratory results to conditions in the existing tanks.

  19. Dangerous Waste Characteristics of Waste from Hanford Tank 241-S-109

    SciTech Connect (OSTI)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-11-05T23:59:59.000Z

    Existing analytical data from samples taken from Hanford Tank 241-S-109, along with process knowledge of the wastes transferred to this tank, are reviewed to determine whether dangerous waste characteristics currently assigned to all waste in Hanford underground storage tanks are applicable to this tank waste. Supplemental technologies are examined to accelerate the Hanford tank waste cleanup mission and to accomplish the waste treatment in a safer and more efficient manner. The goals of supplemental technologies are to reduce costs, conserve double-shell tank space, and meet the scheduled tank waste processing completion date of 2028.

  20. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-02-24T23:59:59.000Z

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  1. Appendix E: Underground Storage Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    Appendix E: Underground Storage Tank Data #12;Annual Site Environmental Report Appendix E identification service Contents Status ( ) date to Corrective action Tank Out-of- assessment number date regulatory Installation Capacity Preliminary date (gallons) investigation Environmental agency Petroleum USTs

  2. Application of infrared imaging in ferrocyanide tanks

    SciTech Connect (OSTI)

    Morris, K.L.; Mailhot, R.B. Jr.; McLaren, J.M.; Morris, K.L.

    1994-09-28T23:59:59.000Z

    This report analyzes the feasibility of using infrared imaging techniques and scanning equipment to detect potential hot spots within ferrocyanide waste tanks at the Hanford Site. A hot spot is defined as a volumetric region within a waste tank with an excessively warm temperature that is generated by radioactive isotopes. The thermal image of a hot spot was modeled by computer. this model determined the image an IR system must detect. Laboratory and field tests of the imaging system are described, and conclusions based on laboratory and field data are presented. The report shows that infrared imaging is capable of detecting hot spots in ferrocyanide waste tanks with depths of up to 3.94 m (155 in.). The infrared imaging system is a useful technology for initial evaluation and assessment of hot spots in the majority of ferrocyanide waste tanks at the Hanford Site. The system will not allow an exact hot spot and temperature determination, but it will provide the necessary information to determine the worst-case hot spot detected in temperature patterns. Ferrocyanide tanks are one type of storage tank on the Watch List. These tanks are identified as priority 1 Hanford Site Tank farm Safety Issues.

  3. Construct Mechanical Pike and Tow Tank Chengcheng Feng

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Construct Mechanical Pike and Tow Tank Chengcheng Feng Faculty Mentor: Professor Yahya Modarres to study the influence of different parameters on acceleration. My second goal is to build a water tank by using a particle image velocimetry (PIV) system. This tank is a testing platform that can be utilized

  4. Measurements of Water and B4C Content of Rackable Can Storage Boxes for HEU Storage at the HEUMF at the Y-12 National Security Complex

    SciTech Connect (OSTI)

    Neal, JS

    2003-03-24T23:59:59.000Z

    Extensive measurements at the Oak Ridge National Laboratory (ORNL) with BoroBond{trademark} blocks of varying thickness, natural boron carbide (B{sub 4}C) content, and water content, and with a simplified mockup of the Rackable Can Storage Box (RCSB) of fixed natural B{sub 4}C and water content, have led to a method of quantifying the water content of RCSBs by fast neutron time-of-flight transmission measurements (NMIS)* and quantifying the B{sub 4}C content with gamma ray spectrometry assuming the water content is known. The time-of-flight transmission measurements results can also be used to assess the uniformity of the BoroBond{trademark} in the RCSB. The data from both measurements will be stored for future comparisons to initial measurements. These methods can also be implemented at the RCSB production site, or subsequently at the Y-12 National Security Complex during the operating lifetime of the RCSBs at the Highly Enriched Uranium Materials Facility.

  5. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20T23:59:59.000Z

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  6. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    SciTech Connect (OSTI)

    Happel, A.M.; Rice, D. [Lawrence Livermore National Lab., CA (United States); Beckenbach, E. [California Univ., Berkeley, CA (United States); Savalin, L.; Temko, H.; Rempel, R. [California State Water Resources Control Board, Sacramento, CA (United States); Dooher, B. [California Univ., Los Angeles, CA (United States)

    1996-11-01T23:59:59.000Z

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites.

  7. FAFCO Ice Storage test report

    SciTech Connect (OSTI)

    Stovall, T.K.

    1993-11-01T23:59:59.000Z

    The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. FAFCO provided a storage tank equipped with coils designed for use with a secondary fluid system. The FAFCO ice storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank fully, storing from 150 to 200 ton-h. However, the charging rate showed significant variations during the latter portion of the charge cycle. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate and tank state of charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend on both charge and discharge conditions. This report describes FAFCO system performance fully under both charging and discharging conditions. While the test results reported here are accurate for the prototype 1990 FAFCO Model 200, currently available FAFCO models incorporate significant design enhancements beyond the Model 200. At least one major modification was instituted as a direct result of the ISTF tests. Such design improvements were one of EPRI`s primary goals in founding the ISTF.

  8. Hanford Waste Tank Bump Accident and Consequence Analysis

    SciTech Connect (OSTI)

    BRATZEL, D.R.

    2000-06-20T23:59:59.000Z

    This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks.

  9. Tank characterization report for single-shell tank 241-BY-104

    SciTech Connect (OSTI)

    Benar, C.J.

    1996-09-26T23:59:59.000Z

    This characterization report summarizes the available information on the historical uses, current status, and the sampling and analysis results of waste contained in underground storage tank 241-BY-104. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09. Tank 241-BY-104 is one of 12 single-shell tanks located in the BY-Tank Farm in the 200 East Area of the Hanford Site. Tank 241-BY-104 entered service in the first quarter of 1950 with a transfer of metal waste from an unknown source. Through cascading, the tank was full of metal waste by the second quarter of 1951. The waste was sluiced in the second quarter of 1954. Uranium recovery (tributyl phosphate) waste was sent from tank 241-BY-107 during the second quarter of 1955 and from tank 241-BY-110 during the third quarter of 1955. Most of this waste was sent to a crib during the fourth quarter of 1955. During the third and fourth quarters of 1956 and the second and third quarters of 1957, the tank received waste from the in-plant ferrocyanide scavenging process (PFeCN2) from tanks 241-BY-106, -107, -108, and -110. This waste type is predicted to compose the bottom layer of waste currently in the tank. The tank received PUREX cladding waste (CWP) periodically from 1961 to 1968. Ion-exchange waste from cesium recovery operations was received from tank 241-BX-104 during the second and third quarters of 1968. Tank 241-BY-104 received evaporator bottoms waste from the in-tank solidification process that was conducted in the BY-Tank Farm 0247from tanks 241 -BY- 109 and 241 -BY- 1 12 from 1970 to 1974. The upper portion of tank waste is predicted to be composed of BY saltcake. Tank 241-BY-104 was declared inactive in 1977. Waste was saltwell pumped from the tank during the third quarter of 1982 and the fourth quarter of 1985. Table ES-1 and Figure ES-1 describe tank 241-BY-104 and its status. The tank has an operating capacity of 2,869 kL and presently contains an estimated 1,234 kL of noncomplexed waste. Of this total volume, 568 kL are estimated to be sludge and 666 kL are estimated to be saltcake. The Hanlon values are not used because they are inconsistent with waste surface level measurements, and they will not be updated until the tank level stabilizes and the new surface photos are taken. This report summarizes the collection and analysis of two rotary-mode core samples obtained in October and November 1995 and reported in the Final Report for Tank 241-BY-104, Rotary Mode Cores 116 and 117. Cores 116 and 117 were obtained from risers 5 and IIA, respectively. The sampling event was performed to satisfy the requirements listed in the following documents: Tank Safety Screening Data Quality Objective , Data Requirements for the Ferrocyanide Safety Issue Developed through the Data Quality Objective Process, Data Quality Objective to Support Resolution of the Organic Fuel Rich Tank Safety Issue, Test Plan for Samples from Hanford Waste Tanks 241-BY-103, BY-104, BY-105, BY-106, BY-108, BY-110, YY-103, U-105, U-107, U-108, and U-109.

  10. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  11. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Pesticide Storage and Handling

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    1. Do you store pesticides on your land? 2. Do you use or store any agricultural chemicals near a water well? 3. Are chemicals stored on a permeable surface such as wood, gravel or soil, or are chemicals stored on an impermeable surface with no curb... contamination. This guide will provide information about the following areas: 1. Pesticide storage 2. Mixing and loading practices 3. Spill clean up 4. Container disposal 5. Other management practices 6. Evaluation table 7. Pesticide Leachability Chart...

  12. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    E-Print Network [OSTI]

    McNeil, MIchael

    2011-01-01T23:59:59.000Z

    Mains Pressure Electric Storage Water Heaters Small MainsPressure Electric Storage Water Heaters (Storage & instantaneous water heaters Storage tanks

  13. The liquid helium storage system for the Large Hadron Collider.

    E-Print Network [OSTI]

    Benda, V; Fathallah, M; Goiffon, T; Parente, C; Perez-Duenas, E; Perret, Ph; Pirotte, O; Serio, L; Vullierme, B

    2011-01-01T23:59:59.000Z

    The cryogenic system of the Large Hadron Collider (LHC) under operation at CERN has a total helium inventory of 140 t. Up to 50 t can be stored in gas storage tanks. The remaining inventory will be stored in a liquid helium storage system consisting of six 15-t liquid helium tanks in 4 locations. The two liquid helium tanks of specific low heat inleak design and the required infrastructure of the first location were recently commissioned. Four additional tanks shall be operational end 2010. The paper describes the features and characteristics of the liquid helium storage system and presents the measurement of the thermal performance of the two first tanks.

  14. TANK48 CFD MODELING ANALYSIS

    SciTech Connect (OSTI)

    Lee, S.

    2011-05-17T23:59:59.000Z

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

  15. E-Print Network 3.0 - annual water storage Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnerships Summary: and logistics Better Place, Fiskar Automotive, Mission Motors, Tesla Motors WATER Filtration, purification... , water conservation, irrigation and...

  16. The effects of an intermittent piped water network and storage practices on household water quality in Tamale, Ghana

    E-Print Network [OSTI]

    Vacs Renwick, Deborah Alexandra

    2013-01-01T23:59:59.000Z

    The United Nations Millennium Development Goals include a target to halve the number of people without access to "improved" water sources, which include piped water supply. However, an "improved" source of water does not ...

  17. PROGRESS & CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    SciTech Connect (OSTI)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-23T23:59:59.000Z

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m{sup 3} (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m{sup 3} (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We plan to treat these wastes as transuranic waste (TRU) for disposal at the Waste Isolation Pilot Plant (WIPP), which will reduce the WTP system processing time by three years. We are also developing and testing bulk vitrification as a technology to supplement the WTP LAW vitrification facility for immobilizing the massive volume of LAW. We will conduct a full-scale demonstration of the Demonstration Bulk Vitrification System by immobilizing up to 1,100 m{sup 3} (300,000 gallons) of tank S-109 low-curie soluble waste from which Cs-137 had previously been removed. This past year has been marked by both progress and new challenges. The focus of our tank farm work has been retrieving waste from the old single-shell tanks (SSTs). We have completed waste retrieval from three SSTs and are conducting retrieval operations on an additional three SSTs. While most waste retrievals have gone about as expected, we have faced challenges with some recalcitrant tank heel wastes that required enhanced approaches. Those enhanced approaches ranged from oxalic acid additions to deploying a remote high-pressure water lance. As with all large, long-term projects that employ first of a kind technologies, we continue to be challenged to control costs and maintain schedule. However, it is most important to work safely and to provide facilities that will do the job they are intended to do.

  18. Direct-Contact Process Water Heating

    E-Print Network [OSTI]

    Hamann, M. R.

    2006-01-01T23:59:59.000Z

    treatment necessary null Produces 180°F water at 310 GPM which meets process requirements null Safety of system – Integrated PLC and flame safeguard controls null Hot water recovery rates – Faster recovery rate allows for increased product quality... benefits. Since the product produced at this site is a high value commodity, the site elected to keep the existing boiler system as a backup system. Controls for the DCWH and modification of existing boiler and storage tank PLC’s had to be upgraded...

  19. Tank characterization report for single-shell tank 241-U-107

    SciTech Connect (OSTI)

    Jo, J.

    1996-09-18T23:59:59.000Z

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste contained in double-shell underground storage tank 241-AY-101. This report supports the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-44-09 (Ecology et al. 1996). This report summarizes the collection and analysis of grab samples acquired in February 1996. The sampling was performed to satisfy requirements listed in Tank Safety Screening Data Quality Objective (Dukelow et al. 1995), the Data Quality Objectives for Tank Farin Waste Compatibility Program (Fowler 1995), and the 242-A Evaporator Liquid Effluent Retention Facility Data Quality Objectives (Von Bargen 1995).

  20. Virtual Center of Excellence for Hydrogen Storage - Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    funded) * Advanced carbon materials (LDRD) - (we propose a support role in the carbon materials virtual center) * Electrochemically active barrier liner for composite storage tanks...

  1. Tank characterization report: Tank 241-C-109

    SciTech Connect (OSTI)

    Simpson, B.C.; Borshiem, G.L.; Jensen, L.

    1993-09-01T23:59:59.000Z

    Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

  2. Computational Modeling of Ballast Tanks to Improve Understanding and Maximize Effectiveness of Management Practices and Treatment

    E-Print Network [OSTI]

    Computational Modeling of Ballast Tanks to Improve Understanding and Maximize Effectiveness tanks exchange coastal ballast water with mid-ocean seawater (referred to as "ballast water exchange of high-resolution computational fluid dynamics (CFD) to model ballast tank water flow and to predict EE

  3. Evaluation of household water treatment and safe storage (HWTS) alternatives in Ghana

    E-Print Network [OSTI]

    Wong, TengKe

    2014-01-01T23:59:59.000Z

    Ghana's water quality and sanitation condition are very poor. Pure Home Water (PHW), a local non-profit organization has been successfully improving the supply of safe drinking water in the northern region by producing and ...

  4. Biosand filtration of high turbidity water : modified filter design and safe filtrate storage

    E-Print Network [OSTI]

    Collin, Clair

    2009-01-01T23:59:59.000Z

    Unsafe drinking water is a major cause of water-related diseases that predominantly affect people living in developing countries. The most prevalent water-related disease is diarrhea, estimated to kill 1.8 million children ...

  5. Safe water storage in Kenya's modified clay pot : standardization, tap design, and cost recovery

    E-Print Network [OSTI]

    Young, Suzanne E

    2005-01-01T23:59:59.000Z

    One of the main components necessary for providing safe drinking water for users who lack piped water in the home is the ability to safely store it in the home. Users in the Nyanza Province of Kenya frequently carry water ...

  6. Nuclear reactor with makeup water assist from residual heat removal system

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Schulz, Terry L. (Murrysville, PA)

    1993-01-01T23:59:59.000Z

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  7. Nuclear reactor with makeup water assist from residual heat removal system

    DOE Patents [OSTI]

    Corletti, M.M.; Schulz, T.L.

    1993-12-07T23:59:59.000Z

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  8. TANK FARM REMEDIATION TECHNOLOGY DEVELOPMENT PROJECT AN EXERCISE IN TECHNICAL & REGULATORY COLLABORATION

    SciTech Connect (OSTI)

    JARAYSI, M.N.

    2007-01-08T23:59:59.000Z

    The Tank Farm Remediation Technology Development Project at the Hanford Site focuses on waste storage tanks, pipelines and associated ancillary equipment that are part of the C-200 single-shell tank (SST) farm system located in the C Tank Farm. The purpose of the project is to obtain information on the implementation of a variety of closure activities and to answer questions on technical, operational and regulatory issues associated with closure.

  9. SLUDGE BATCH 7 PREPARATION TANK 4 AND 12 CHARACTERIZATION

    SciTech Connect (OSTI)

    Bannochie, C.; Click, D.; Pareizs, J.

    2010-05-21T23:59:59.000Z

    Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

  10. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07T23:59:59.000Z

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  11. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States

    E-Print Network [OSTI]

    Bojda, Nicholas

    2011-01-01T23:59:59.000Z

    by DOE. Electric storage tank water heaters These data havewater heaters, gas storage tank water heater efficiency can

  12. ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Steam Turbine Generator Gas Tubine Generator Diesel Generator Hot Water Storage Tank Cold Water Storage Tank * New equipment in DOE-

  13. Septic Tanks (Oklahoma)

    Broader source: Energy.gov [DOE]

    A license from the Department of Environmental Quality is required for cleaning or pumping of septic tanks or holding tanks and disposing of sewage or septage. The rules for the license are...

  14. Flammable gas/slurry growth unreviewed safety question:justification for continued operation for the tank farms at the Hanford site

    SciTech Connect (OSTI)

    Leach, C.E., Westinghouse Hanford

    1996-07-31T23:59:59.000Z

    This Justification for Continued Operation (JCO) provides a basis for continued operation in 176 high level waste tanks, double contained receiver tanks (DCRTs), catch tanks, 244-AR Vault, 242-S and 242-T Evaporators and inactive miscellaneous underground storage tanks (IMUSTs) relative to flammable gas hazards. Required controls are specified.

  15. Tank 241-TX-105 tank characterization plan

    SciTech Connect (OSTI)

    Carpenter, B.C.

    1995-01-01T23:59:59.000Z

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105.

  16. Tank 241-T-111 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S.

    1995-01-10T23:59:59.000Z

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-111.

  17. DIESEL FUEL TANK FOUNDATIONS

    SciTech Connect (OSTI)

    M. Gomez

    1995-01-18T23:59:59.000Z

    The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

  18. Ferrocyanide tank waste stability. Supplement 2

    SciTech Connect (OSTI)

    Fowler, K.D.

    1993-01-01T23:59:59.000Z

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove {sup 137}CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

  19. The Safe Storage Study for Autocatalytic Reactive Chemicals

    E-Print Network [OSTI]

    Liu, Lijun

    2010-10-12T23:59:59.000Z

    In the U.S. Chemical Safety and Hazard Investigation Board (CSB) report, Improving Reactive Hazard Management, there are 37 out of 167 accidents, which occurred in a storage tank or a storage area. This fact demonstrates that thermal runaway...

  20. Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented.

  1. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage

    E-Print Network [OSTI]

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage Developing safe, reliable, compact, and cost of space. Where and How Will Hydrogen be Stored? Hydrogen storage will be required onboard vehicles to storing hydrogen include: · Physical storage of compressed hydrogen gas in high pressure tanks (up to 700

  2. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    the CFR as being storage water heaters, instantaneous watersupply boilers. Storage water heater means a water heaterAppliance Gas storage water heaters Definition a water

  3. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    an electric resistance storage water heater (ESWH) with tankof total electric storage water heater shipments in the nextelectric resistance storage water heaters. The rated storage

  4. Ceramic filter manufacturing in Northern Ghana : water storage and quality control

    E-Print Network [OSTI]

    Kleiman, Shanti Lisa

    2011-01-01T23:59:59.000Z

    In 2009, Pure Home Water (PHW), a Ghana based non-profit organization working to provide affordable and safe drinking water to people in the Northern Region of Ghana, began the construction of a ceramic pot filter (CPF) ...

  5. Onboard Storage Tank Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on Our National Security Oil'sFunds forOnOnboard

  6. Sandia National Laboratories: metal hydride storage tanks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime is the cumulative

  7. two tanks 1/7/2008 1 0 20 40 60 80 100

    E-Print Network [OSTI]

    Taylor, Peter

    two tanks 1/7/2008 1 0 100 200 300 400 0 20 40 60 80 100 x t 0 100 200 300 400 0 20 40 60 80 100 tanks Two identical cylindrical tanks X and Y with identical holes in the centre of the bottom are placed one above the other. Tank X starts with 400 ml of water and tank Y starts empty. At t=0 (minutes

  8. RECENT PROGRESS IN DOE WASTE TANK CLOSURE

    SciTech Connect (OSTI)

    Langton, C

    2008-02-01T23:59:59.000Z

    The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

  9. Organic tanks safety program waste aging studies. Final report, Revision 1

    SciTech Connect (OSTI)

    Camaioni, D.M.; Samuels, W.D.; Linehan, J.C. [and others

    1998-09-01T23:59:59.000Z

    Uranium and plutonium production at the Hanford Site produced large quantities of radioactive byproducts and contaminated process chemicals that are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of saltcakes, metal oxide sludges, and aqueous brine solutions. Tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes might be at risk for fuel-nitrate combustion accidents. This project started in fiscal year 1993 to provide information on the chemical fate of stored organic wastes. While historical records had identified the organic compounds originally purchased and potentially present in wastes, aging experiments were needed to identify the probable degradation products and evaluate the current hazard. The determination of the rates and pathways of degradation have facilitated prediction of how the hazard changes with time and altered storage conditions. Also, the work with aged simulated waste contributed to the development of analytical methods for characterizing actual wastes. Finally, the results for simulants provide a baseline for comparing and interpreting tank characterization data.

  10. Vapor space characterization of Waste Tank 241-U-106 (in situ): Results from samples collected on 8/25/94

    SciTech Connect (OSTI)

    Ligotke, M.W.; Lucke, R.B.; Pool, K.H. [and others

    1995-10-01T23:59:59.000Z

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-U-106 (referred to as Tank U-106). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not performed. In addition, the authors looked for the 39 TO-14 compounds plus an additional 14 target analytes. Of these, six were observed above the 5-ppbv reporting cutoff. Ten organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv in two or more of the three samples collected and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 89% of the total organic components in Tank U-106. Methyl isocyanate, a compound of possible concern in Tank U-106, was not detected. Tank U-106 is on the Organic Watch List.

  11. Underground storage of oil and gas

    SciTech Connect (OSTI)

    Bergman, S.M.

    1984-09-01T23:59:59.000Z

    The environmental and security advantages of underground storage of oil and gas are well documented. In many cases, underground storage methods such as storage in salt domes, abandoned mines, and mined rock caverns have proven to be cost effective when compared to storage in steel tanks constructed for that purpose on the surface. In good rock conditions, underground storage of large quantities of hydrocarbon products is normally less costly--up to 50-70% of the surface alternative. Under fair or weak rock conditions, economic comparisons between surface tanks and underground caverns must be evaluated on a case to case basis. The key to successful underground storage is enactment of a realistic geotechnical approach. In addition to construction cost, storage of petroleum products underground has operational advantages over similar storage above ground. These advantages include lower maintenance costs, less fire hazards, less land requirements, and a more even storage temperature.

  12. Potential for criticality in Hanford tanks resulting from retrieval of tank waste

    SciTech Connect (OSTI)

    Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V. [and others

    1996-09-01T23:59:59.000Z

    This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur.

  13. LOW COST HEAT PUMP WATER HEATER (HPWH)

    SciTech Connect (OSTI)

    Mei, Vince C [ORNL; Baxter, Van D [ORNL

    2006-01-01T23:59:59.000Z

    Water heating accounts for the second largest portion of residential building energy consumption, after space conditioning. Existing HPWH products are a technical success, with demonstrated energy savings of 50% or more compared with standard electric resistance water heaters. However, current HPWHs available on the market cost an average of $1000 or more, which is too expensive for significant market penetration. What is needed is a method to reduce the first cost of HPWHs, so that the payback period will be reduced from 8 years to a period short enough for the market to accept this technology. A second problem with most existing HPWH products is the reliability issue associated with the pump and water loop needed to circulate cool water from the storage tank to the HPWH condenser. Existing integral HPWHs have the condenser wrapped around the water tank and thus avoid the pump and circulation issues but require a relatively complex and expensive manufacturing process. A more straightforward potentially less costly approach to the integral, single package HPWH design is to insert the condenser directly into the storage tank, or immersed direct heat exchanger (IDX). Initial development of an IDX HPWH met technical performance goals, achieving measured efficiencies or energy factors (EF) in excess of 1.79. In comparison conventional electric water heaters (EWH) have EFs of about 0.9. However, the initial approach required a 2.5" hole on top of the tank for insertion of the condenser - much larger than the standard openings typically provided. Interactions with water heater manufacturers indicated that the non standard hole size would likely lead to increased manufacturing costs (at least initially) and largely eliminate any cost advantage of the IDX approach. Recently we have been evaluating an approach to allow use of a standard tank hole size for insertion of the IDX condenser. Laboratory tests of a prototype have yielded an EF of 2.02.

  14. Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE)

    E-Print Network [OSTI]

    Yeh, Pat J.-F.; Swenson, S. C; Famiglietti, J. S; Rodell, M.

    2006-01-01T23:59:59.000Z

    2006), Estimating ground water storage changes in theof monitoring ground- water storage variations from space [variations of groundwater storage. Most ground- water level

  15. Vapor characterization of Tank 241-C-103

    SciTech Connect (OSTI)

    Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

    1994-06-01T23:59:59.000Z

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

  16. Alternatives evaluation and decommissioning study on shielded transfer tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    DeVore, J.R.; Hinton, R.R.

    1994-08-01T23:59:59.000Z

    The shielded transfer tanks (STTs) are five obsolete cylindrical shipping casks which were used to transport high specific activity radioactive solutions by rail during the 1960s and early 1970s. The STTs are currently stored at the Oak Ridge National Laboratory under a shed roof. This report is an evaluation to determine the preferred alternative for the final disposition of the five STTs. The decommissioning alternatives assessed include: (1) the no action alternative to leave the STTs in their present location with continued surveillance and maintenance; (2) solidification of contents within the tanks and holding the STTs in long term retrievable storage; (3) sale of one or more of the used STTs to private industry for use at their treatment facility with the remaining STTs processed as in Alternative 4; and (4) removal of tank contents for de-watering/retrievable storage, limited decontamination to meet acceptance criteria, smelting the STTs to recycle the metal through the DOE contaminated scrap metal program, and returning the shielding lead to the ORNL lead recovery program because the smelting contractor cannot reprocess the lead. To completely evaluate the alternatives for the disposition of the STTs, the contents of the tanks must be characterized. Shielding and handling requirements, risk considerations, and waste acceptance criteria all require that the radioactive inventory and free liquids residual in the STTs be known. Because characterization of the STT contents in the field was not input into a computer model to predict the probable inventory and amount of free liquid. The four alternatives considered were subjected to a numerical scoring procedure. Alternative 4, smelting the STTs to recycle the metal after removal/de-watering of the tank contents, had the highest score and is, therefore, recommended as the preferred alternative. However, if a buyer for one or more STT could be found, it is recommended that Alternative 3 be reconsidered.

  17. Engineering development of a lightweight high-pressure scarifier for tank waste retrieval

    SciTech Connect (OSTI)

    Hatchell, B.K.

    1997-09-01T23:59:59.000Z

    The Retrieval Process Development and Enhancements Program (RPD&E) is sponsored by the U.S. Department of Energy Tanks Focus Area to investigate existing and emerging retrieval processes suitable for the retrieval of high-level radioactive waste inside underground storage tanks. This program, represented by industry, national laboratories, and academia, seeks to provide a technical and cost basis to support site-remediation decisions. Part of this program has involved the development of a high-pressure waterjet dislodging system and pneumatic conveyance integrated as a scarifier. Industry has used high-pressure waterjet technology for many years to mine, cut, clean, and scarify materials with a broad range of properties. The scarifier was developed as an alternate means of retrieving waste inside Hanford single-shell tanks, particularly hard, stubborn waste. Testing of the scarifier has verified its ability to retrieve a wide range of tank waste ranging from extremely hard waste that is resistant to other dislodging means to soft sludge and even supernatant fluid. Since the scarifier expends water at a low rate and recovers most of the water as it is used, the scarifier is well suited for retrieval of tanks that leak and cannot be safely sluiced or applications where significant waste dilution is not acceptable. Although the original scarifier was effective, it became evident that a lighter, more compact version that would be compatible with light weight deployment systems under development, such as the Light Duty Utility Arm, was needed. At the end of FY 95, the Light Weight Scarifier (LWS) was designed to incorporate the features of the original scarifier in a smaller, lighter end effector. During FY 96, the detailed design of the LWS was completed and two prototypes were fabricated.

  18. Rain water transport and storage in a model sandy soil with hydrogel particle additives

    E-Print Network [OSTI]

    Y. Wei; D. J. Durian

    2014-02-10T23:59:59.000Z

    We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.

  19. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    E-Print Network [OSTI]

    Dudley, Junqiao Han

    2010-01-01T23:59:59.000Z

    water supplied by thermal energy storage in the centralchilled water thermal energy storage (TES) tank provides

  20. Joint physical and numerical modeling of water distribution networks.

    SciTech Connect (OSTI)

    Zimmerman, Adam; O'Hern, Timothy John; Orear, Leslie Jr.; Kajder, Karen C.; Webb, Stephen Walter; Cappelle, Malynda A.; Khalsa, Siri Sahib; Wright, Jerome L.; Sun, Amy Cha-Tien; Chwirka, J. Benjamin; Hartenberger, Joel David; McKenna, Sean Andrew; van Bloemen Waanders, Bart Gustaaf; McGrath, Lucas K.; Ho, Clifford Kuofei

    2009-01-01T23:59:59.000Z

    This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in some cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.

  1. A Mixed-Integer Linear Programming Model for Optimizing the Scheduling and Assignment of Tank Farm Operations

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 A Mixed-Integer Linear Programming Model for Optimizing the Scheduling and Assignment of Tank) formulation for the Tank Farm Operation Problem (TFOP), which involves simultaneous scheduling of continuous multi-product processing lines and the assignment of dedicated storage tanks to finished products

  2. E-Print Network 3.0 - alkaline tank waste Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ty of wasted feed affect tank water quality. As pelleted feeds are introduced... the tanks to wash out the waste by-products. Additionally, the oxygen concentration within the...

  3. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    SciTech Connect (OSTI)

    Girardot, Crystal [URS- Safety Management Solutions, Richland, Washington 99352 (United States); Harlow, Don [ELR Consulting Richland, Washington 99352 (United States); Venetz, Theodore; Washenfelder, Dennis [Washington River Protection Solutions, LLC Richland, Washington 99352 (United States); Johnson, Jeremy [U.S. Department of Energy, Office of River Protection Richland, Washington 99352 (United States)

    2012-07-01T23:59:59.000Z

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching. (authors)

  4. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    SciTech Connect (OSTI)

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25T23:59:59.000Z

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.

  5. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01T23:59:59.000Z

    liquid/vapor interface of SPC/E water. J. Phys. Chem. 100,dioxide mixtures described by the SPC/E and EPM2 models. (and water oxygen is denoted by O SPC/E and O TIP for SPC/E (

  6. Accelerated Tank Closure Demonstrations at the Hanford Site

    SciTech Connect (OSTI)

    Sams, Terry L.; Riess, Mark J.; Cammann, Jerry W.; Lee, Timothy A.; Nichols, David

    2003-02-27T23:59:59.000Z

    Among the highest priorities for action under the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989a), hereafter referred to as the Tri-Party Agreement, is the retrieval, treatment and disposal of Hanford Site tank waste. Tank waste is recognized as one of the primary threats to the Columbia River and one of the most complex technical challenges. Progress has been made in resolving safety issues, characterizing tank waste and past tank leaks, enhancing double-shell tank waste transfer and operations systems, retrieving single-shell tank waste, deploying waste treatment facilities, and planning for the disposal of immobilized waste product. However, limited progress has been made in developing technologies and providing a sound technical basis for tank system closure. To address this limitation the Accelerated Tank Closure Demonstration Project was created to develop information through technology demonstrations in support of waste retrieval and closure decisions. To complete its mission the Accelerated Tank Closure Demonstration Project has adopted performance objectives that include: Protecting human health and the environment; Minimizing/eliminating potential waste releases to the soil and groundwater; Preventing water infiltration into the tank; Maintaining accessibility of surrounding tanks for future closure; Maintaining tank structural integrity; Complying with applicable waste retrieval, disposal, and closure regulations; Maintaining flexibility for final closure options in the future. This paper provides an overview of the Hanford Site tank waste mission with emphasis on the Accelerated Tank Closure Demonstration Project. Included are discussions of single-shell tank waste retrieval and closure challenges, progress made to date, lessons learned, regulatory approach, data acquisition, near-term retrieval opportunities, schedule, and cost.

  7. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

  8. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    SciTech Connect (OSTI)

    Julyk, L.J.

    1994-07-19T23:59:59.000Z

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.

  9. A N A S S E S S M E N T O F HONORS THINK TANK REPORT MAY 2013

    E-Print Network [OSTI]

    Feschotte, Cedric

    A N A S S E S S M E N T O F HONORS THINK TANK REPORT MAY 2013 Awareness, Use, EducationUstAinAbility At the University of UtAh Wasatch Waters Think Tank Honors College May 2013 #12;Please cite this report as follows: Wasatch Waters Think Tank. 2013. An assessment of water: awareness, use, education, and sustainability

  10. Rethinking the Hanford Tank Waste Program

    SciTech Connect (OSTI)

    Parker, F. L.; Clark, D. E.; Morcos, N.

    2002-02-26T23:59:59.000Z

    The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms.

  11. TANK 26F SUPERNATANT AND 2F EVAPORATOR EDUCTOR PUMP SAMPLE CHARACTERIZATION RESULTS

    SciTech Connect (OSTI)

    King, W.; Hay, M.; Coleman, C.

    2011-08-23T23:59:59.000Z

    In an effort to understand the reasons for system plugging problems in the SRS 2F evaporator, supernatant samples were retrieved from the evaporator feed tank (Tank 26F) and solids were collected from the evaporator eductor feed pump for characterization. The variable depth supernatant samples were retrieved from Tank 26F in early December of 2010 and samples were provided to SRNL and the F/H Area laboratories for analysis. Inspection and analysis of the samples at SRNL was initiated in early March of 2011. During the interim period, samples were frequently exposed to temperatures as low as 12 C with daily temperature fluctuations as high as 10 C. The temperature at the time of sample collection from the waste tank was 51 C. Upon opening the supernatant bottles at SRNL, many brown solids were observed in both of the Tank 26F supernatant samples. In contrast, no solids were observed in the supernatant samples sent to the F/H Area laboratories, where the analysis was completed within a few days after receipt. Based on these results, it is believed that the original Tank 26F supernatant samples did not contain solids, but solids formed during the interim period while samples were stored at ambient temperature in the SRNL shielded cells without direct climate control. Many insoluble solids (>11 wt. % for one sample) were observed in the Tank 26F supernatant samples after three months of storage at SRNL which would not dissolve in the supernatant solution in two days at 51 C. Characterization of these solids along with the eductor pump solids revealed the presence of sodium oxalate and clarkeite (uranyl oxyhydroxide) as major crystalline phases. Sodium nitrate was the dominant crystalline phase present in the unwashed Eductor Pump solids. Crystalline sodium nitrate may have formed during the drying of the solids after filtration or may have been formed in the Tank 26F supernatant during storage since the solution was found to be very concentrated (9-12 M Na{sup +}). Concentrated mineral acids and elevated temperature were required to dissolve all of these solids. The refractory nature of some of the solids is consistent with the presence of metal oxides such as aluminosilicates (observed as a minor phase by XRD). Characterization of the water wash solutions and the digested solids confirmed the presence of oxalate salts in both solid samples. Sulfate enrichment was also observed in the Tank 26F solids wash solution, indicating the presence of sulfate precipitates such as burkeite. OLI modeling of the Tank 26F filtered supernatant composition revealed that sodium oxalate has a very low solubility in this solution. The model predicts that the sodium oxalate solubility in the Tank 26F supernatant is only 0.0011 M at 50 C. The results indicate that the highly concentrated nature of the evaporator feed solution and the addition of oxalate anion to the waste stream each contribute to the formation of insoluble solids in the 2F evaporator system.

  12. Production management techniques for water-drive gas reservoirs. Field No. 4; mid-continent aquifer gas storage reservoir. Volume 1. Topical report, January 1994

    SciTech Connect (OSTI)

    Hower, T.L.; Obernyer, S.L.

    1994-01-01T23:59:59.000Z

    A detailed reservoir characterization and numerical simulation study is presented for a mid-continent aquifer gas storage field. It is demonstrated that rate optimization during both injection and withdrawal cycles can significantly improve the performance of the storage reservoir. Performance improvements are realized in the form of a larger working volume of gas, a reduced cushion volume of gas, and decrease in field water production. By utilizing these reservoir management techniques gas storage operators will be able to minimize their base gas requirements, improve their economics, and determine whether the best use for a particular storage field is base loading or meeting peak day requirements. Volume I of this two-volume set contains a detailed technical discussion.

  13. Analysis of tank damage during the 1994 Northridge earthquake

    SciTech Connect (OSTI)

    Haroun, M.A.; Bhatia, H. [Univ. of California, Irvine, CA (United States). Dept. of Civil and Environmental Engineering

    1995-12-31T23:59:59.000Z

    The damage sustained by cylindrical liquid storage tanks during the 1994 Northridge earthquake is summarized. It included elephant foot buckling, anchor failure and roof-shell connection separation. A few of the important lessons learned, in particular, as related to the accuracy of code computations in predicting the actual behavior of these structures are outlined. A detailed case study is presented to illustrate the application of current seismic design standards to a damaged unanchored tank and to demonstrate the use of a state-of-the-art finite element analysis in assessing the seismic safety of the same tank.

  14. Natural Sloshing Frequencies in Truncated Conical Tanks I. Gavrilyuk1, M. Hermann2, I. Lukovsky3, O. Solodun3, A. Timokha3

    E-Print Network [OSTI]

    Natural Sloshing Frequencies in Truncated Conical Tanks I. Gavrilyuk1, M. Hermann2, I. Lukovsky3, O tanks. After earthquakes water tanks play an important role, by making the water available needed be practiced with the construction of the tanks in order to assure their safety and functionality during

  15. Retrieving snow mass from GRACE terrestrial water storage change with a land surface model

    E-Print Network [OSTI]

    Yang, Zong-Liang

    by the Advanced Very High Resolution Radio- meter (AVHRR) is decreasing since middle 1980s in response to global are variations in surface albedo and surface energy budgets, sensible heat and water vapor fluxes-chan- nel Microwave Radiometer (SMMR) and the Advanced Microwave Scanning Radiometer (AMSR) provide a capa

  16. Effects of water chemistry on NF/RO membrane structure and performance

    E-Print Network [OSTI]

    Mo, Yibing

    2013-01-01T23:59:59.000Z

    oil that has been widely detected around petroleum and natural gas production sites, gas stations, and underground storage tanks.

  17. Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).

    SciTech Connect (OSTI)

    Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

    2005-01-01T23:59:59.000Z

    A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

  18. CO2 leakage up from a geological storage site to shallow fresh groundwater: CO2-water-rock interaction assessment and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CO2 leakage up from a geological storage site to shallow fresh groundwater: CO2-water repository requires the investigation of the potential CO2 leakage back into fresh groundwater, particularly sensitive monitoring techniques in order to detect potential CO2 leaks and their magnitude as well

  19. E-Print Network 3.0 - aboveground oil storage Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is to document established procedures for routine inspection of aboveground storage tanks... for physical plant. POLICY PROCEDURE 1. General Policy a. Definitions (1)...

  20. R&D of Large Stationary Hydrogen/CNG/HCNG Storage Vessels | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel and Pressure Vessel Forum Bonfire Tests of High Pressure Hydrogen Storage Tanks Status and Progress in Research, Development and Demonstration of Hydrogen-Compressed...

  1. Program plan for the resolution of tank vapor issues

    SciTech Connect (OSTI)

    Osborne, J.W.; Huckaby, J.L.

    1994-05-01T23:59:59.000Z

    Since 1987, workers at the Hanford Site waste tank farms in Richland, Washington, have reported strong odors emanating from the large, underground high-level radioactive waste storage tanks. Some of these workers have complained of symptoms (e.g., headaches, nausea) related to the odors. In 1992, the U.S. Department of Energy, which manages the Hanford Site, and Westinghouse Hanford Company determined that the vapor emissions coming from the tanks had not been adequately characterized and represented a potential health risk to workers in the immediate vicinity of the tanks. At that time, workers in certain areas of the tank farms were required to use full-face, supplied-breathing-air masks to reduce their exposure to the fugitive emissions. While use of supplied breathing air reduced the health risks associated with the fugitive emissions, it introduced other health and safety risks (e.g., reduced field of vision, air-line tripping hazards, and heat stress). In 1992, an aggressive program was established to assure proper worker protection while reducing the use of supplied breathing air. This program focuses on characterization of vapors inside the tanks and industrial hygiene monitoring in the tank farms. If chemical filtration systems for mitigation of fugitive emissions are deemed necessary, the program will also oversee their design and installation. This document presents the plans for and approach to resolving the Hanford Site high-level waste tank vapor concerns. It is sponsored by the Department of Energy Office of Environmental Restoration and Waste Management.

  2. Maximum surface level and temperature histories for Hanford waste tanks

    SciTech Connect (OSTI)

    Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

    1994-09-02T23:59:59.000Z

    Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data.

  3. Waste Acceptance for Vitrified Sludge from Oak Ridge Tank Farms

    SciTech Connect (OSTI)

    Harbour, J.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Andrews, M.K.

    1998-03-01T23:59:59.000Z

    The Tanks Focus Area of the DOE`s Office of Science and Technology (EM-50) has funded the Savannah River Technology Center (SRTC) to develop formulations which can incorporate sludges from Oak Ridge Tank Farms into immobilized glass waste forms. The four tank farms included in this study are: Melton Valley Storage Tanks (MVST), Bethel Valley Evaporation Service Tanks (BVEST), Gunite and Associated Tanks (GAAT), and Old Hydrofracture Tanks (OHF).The vitrified waste forms must be sent for disposal either at the Waste Isolation Pilot Plant (WIPP) or the Nevada Test Site (NTS). Waste loading in the glass is the major factor in determining where the waste will be sent and whether the waste will be remote-handled (RH) or contact-handled (CH). In addition, the waste loading significantly impacts the costs of vitrification operations and transportation to and disposal within the repository.This paper focuses on disposal options for the vitrified Oak Ridge Tank sludge waste as determined by the WIPP (1) and NTS (2) Waste Acceptance Criteria (WAC). The concentrations for both Transuranic (TRU) and beta/gamma radionuclides in the glass waste form will be presented a a function of sludge waste loading. These radionuclide concentrations determine whether the waste forms will be TRU (and therefore disposed of at WIPP) and whether the waste forms will be RH or CH.

  4. The integrated tank waste management plan at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Billingsley, K. [STEP, Inc., Oak Ridge, TN (United States); Mims, C. [Dept. of Energy, Oak Ridge, TN (United States). Oak Ridge Operations Office; Robinson, S. [Oak Ridge National Lab., TN (United States)

    1998-06-01T23:59:59.000Z

    DOE`s Environmental Management Program at Oak Ridge has developed an integrated tank waste management plan that combines the accelerated deployment of innovative technologies with an aggressive waste transfer schedule. Oak Ridge is cleaning out waste from aging underground storage tanks in preparation of waste processing, packaging and final safe disposal. During remediation this plan will reduce the risk of environmental, worker, and civilian exposure, save millions of dollars, and cut years off of tank remediation schedules at Oak Ridge.

  5. Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information

    E-Print Network [OSTI]

    Hanford Tank Waste Information Enclosure 1 1 Hanford Tank Waste Information 1.0 Summary This information demonstrates the wastes in the twelve Hanford Site tanks meet the definition of transuranic (TRU. The wastes in these twelve (12) tanks are not high-level waste (HLW), and contain more than 100 nanocuries

  6. Vapor space characterization of waste Tank 241-BY-108: Results from samples collected on 10/27/94

    SciTech Connect (OSTI)

    McVeety, B.D.; Clauss, T.W.; Ligotke, M.W. [and others

    1995-10-01T23:59:59.000Z

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-BY-108 (referred to as Tank BY-108). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Trends in NH{sub 3} and H{sub 2}O samples indicated a possible sampling problem. Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, the authors looked for the 40 TO-14 compounds plus an additional 15 analytes. Of these, 17 were observed above the 5-ppbv reporting cutoff. Also, eighty-one organic tentatively identified compounds (TICs) were observed above the reporting cutoff (ca.) 10 ppbv, and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The nine organic analytes with the highest estimated concentrations are listed in Summary Table 1 and account for approximately 48% of the total organic components in the headspace of Tank BY-108. Three permanent gases, hydrogen (H{sub 2}), carbon dioxide (CO{sub 2}), and nitrous oxide (N{sub 2}O) were also detected. Tank BY-108 is on the Ferrocyanide Watch List.

  7. Vapor space characterization of waste Tank 241-TY-101: Results from samples collected on 4/6/95

    SciTech Connect (OSTI)

    Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; McVeety, B.D.; Olsen, K.B.; Bredt, O.P.; Fruchter, J.S.; Goheen, S.C.

    1995-11-01T23:59:59.000Z

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-101 (referred to as Tank TY-101). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Off these, 5 were observed above the 5-ppbv reporting cutoff. One tentatively identified compound (TIC) was observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The six organic analyses identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank TY-101. Two permanent gases, carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O), were also detected. Tank TY-101 is on the Ferrocyanide Watch List.

  8. Tank 241-B-103 headspace gas and vapor characterization: Results for homogeneity samples collected on October 16, 1996. Tank vapor characterization project

    SciTech Connect (OSTI)

    Olsen, K.B.; Pool, K.H.; Evans, J.C. [and others

    1997-06-01T23:59:59.000Z

    This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-B-103 (Tank B-103) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constituents. Two risers (Riser 2 and Riser 7) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL.

  9. REACTOR REFUELING - INTERIM DECAY STORAGE (FFTF)

    SciTech Connect (OSTI)

    MCFADDEN NR; OMBERG RP

    1990-06-18T23:59:59.000Z

    The IDS facility is located between the CLEM rails and within the FFTF containment building. It is located in a rectangular steel-lined concrete cell which lies entirely below the 550 ft floor level with the top flush with the 550 ft floor level. The BLTC rails within containment traverse the IDS cover (H-4-38001). The facility consists of a rotatable storage basket submerged in liquid sodium which is contained in a stainless steel tank. The storage positions within the basket are arranged so that it is not physically possible to achieve a critical array. The primary vessel is enclosed in a secondary guard tank of such size and arrangement that, should a leak develop in the primary tank, the sodium level would not fall below the top of the fueled section of the stored core components or test assemblies. The atmosphere outside the primary vessel, but within the concrete cell, is nitrogen which also serves as a heat transfer medium to control the cell temperature. To provide space for the storage of test assemblies such as the OTA and CLIRA, 10 storage tubes (each approximately 43-1/4 ft long) are included near the center of the basket. This arrangement requires that the center of the primary vessel be quite deep. In this region, the primary vessel extends downward to elevation 501 ft 6 inches while the guard tank reaches 500 ft 4 inches. The floor of the cell is at 499 ft a inches which is 51 ft below the operating room floor. Storage positions are provided for 112 core components in the upper section of the storage basket. These positions are arranged in four circles, all of which are concentric with the test element array and the storage basket. The primary vessel and the guard tank are shaped to provide the necessary space with a minimum of excess volume. Both these vessels have a relatively small cylindrical lower section connected to a larger upper cylinder by a conical transition. The primary vessel is supported from a top flange by a vessel support structure. The guard tank is supported by a skirt which rests on a ledge at elevation 527 ft 2 inches. The skirt is an extension of the upper cylinder of the guard tank. The storage basket is supported by a gear-driven, mechanically indexed, ball bearing that rests on the bearing support, which in turn rests on the vessel support structure. The interior of the primary vessel above the sodium level is blanketed with argon at 6 inches of water gage pressure. The vessel is designed to allow the pressure to be increased to 3 psig to assist drainage of the sodium from the vessel. The structure which supports the primary vessel also serves as the cover to the IDS cell. The support structure rests on a shelf cast into the cell wall at the 544 ft 6 inch level. In addition to supporting the primary vessel and the storage basket bearing, this structure also provides support for the top shield which is a 16 inch thick by 15 ft 10 inch diameter laminated steel assembly, which in turn supports the impact absorber neutron shield, and the BLTC tracks where they cross the IDS. Storage position access ports are provided on the centerline of the IDS facility between the BLTC rails. Basket rotation and indexing allows any storage position to be located in alignment with its proper access port. Double buffered seals are provided for the removable plugs and removable lids for all components and access ports where necessary to seal between the vessel cover gas and the FFTF containment atmosphere. Buffering gas for these seals is argon. Capability of a 10 cfm argon purge rate is provided although normal argon flow into the cover gas cavity will be less than 1 cfm. Argon cover gas exits through a vapor trap located in the southwest corner of the support structure and then to the Cell Atmosphere Processing System. Vessel overpressure protection is provided by rupture discs on the inlet and outlet argon piping. Rupture discs vent to the IDS cell. Biological shielding is provided to maintain the radiation contribution in the operating area below 0.2 mrem/h. The primary gamma shield directly above

  10. E-Print Network 3.0 - actual acidic tank Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page: << < 1 2 3 4 5 > >> 1 Attachment A PPOP 08.10 Summary: < Refrigerant Storage Tanks Ventilated vaults: < Acid Vaults (May or may not require a permit depending... Boilers...

  11. Tank farm surveillance and waste status summary report for January 1993

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1993-03-01T23:59:59.000Z

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  12. Tank Farm surveillance and waste status summary report for February 1994

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1994-07-01T23:59:59.000Z

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is Intended to meet the requirement of US Department of Energy Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  13. Tank Farm surveillance and waste status summary report for September 1993

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1994-01-01T23:59:59.000Z

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  14. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    SciTech Connect (OSTI)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-30T23:59:59.000Z

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the retrieval of the waste is under way and is being conducted to achieve the completion criteria established in the Hanford Federal Facility Agreement and Consent Order.

  15. Tank Problems Here are some additional problems involving flow in and out of a container. These kinds of problems

    E-Print Network [OSTI]

    Ikenaga, Bruce

    9­28­1998 Tank Problems Here are some additional problems involving flow in and out of a container­order linear equations for which you can find an integrating factor. Example. A tank contains 20 gallons of pure water. Water containing 2 pounds of dissolved yogurt per gallon enters the tank at 4 gallons per

  16. Initial findings: The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

    1989-01-01T23:59:59.000Z

    This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

  17. Tank 48 - Chemical Destruction

    SciTech Connect (OSTI)

    Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

    2013-01-09T23:59:59.000Z

    Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

  18. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect (OSTI)

    O`Brien, J.E.; Siahpush, A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

    1998-02-01T23:59:59.000Z

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  19. Examination of stainless steel-clad Connecticut Yankee fuel assembly S004 after storage in borated water

    SciTech Connect (OSTI)

    Langstaff, D.C.; Bailey, W.J.; Johnson, A.B. Jr.; Landow, M.P.; Pasupathi, V.; Klingensmith, R.W.

    1982-09-01T23:59:59.000Z

    A Connecticut Yankee fuel assembly (S004) was tested nondestructively and destructively. It was concluded that no obvious degradation of the 304L stainless steel-clad spent fuel from assembly S004 occurred during 5 y of storage in borated water. Furthermore, no obvious degradation due to the pool environment occurred on 304 stainless steel-clad rods in assemblies H07 and G11, which were stored for shorter periods but contained operationally induced cladding defects. The seam welds in the cladding on fuel rods from assembly S004, H07, and G11 were similar in that they showed a wrought microstructure with grains noticeably smaller than those in the cladding base metal. The end cap welds showed a dendritically cored structure, typical of rapidly quenched austenitic weld metal. Some intergranular melting may have occurred in the heat-affected zone (HAZ) in the cladding adjacent to the end cap welds in rods from assemblies S004 and H07. However, the weld areas did not show evidence of corrosion-induced degradation.

  20. Extended-burnup LWR (light-water reactor) fuel: The amount, characteristics, and potential effects on interim storage

    SciTech Connect (OSTI)

    Bailey, W.J.

    1989-03-01T23:59:59.000Z

    The results of a study on extended-burnup, light-water reactor (LWR) spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory for the US Department of Energy (DOE). The purpose of the study was to collect and evaluate information on the status of in-reactor performance and integrity of extended-burnup LWR fuel and initiate the investigation of the effects of extending fuel burnup on the subsequent handling, interim storage, and other operations (e.g., rod consolidation and shipping) associated with the back end of the fuel cycle. The results of this study will aid DOE and the nuclear industry in assessing the effects on waste management of extending the useful in-reactor life of nuclear fuel. The experience base with extended-burnup fuel is now substantial and projections for future use of extended-burnup fuel in domestic LWRs are positive. The basic performance and integrity of the fuel in the reactor has not been compromised by extending the burnup, and the potential limitations for further extending the burnup are not severe. 104 refs., 15 tabs.

  1. Headspace vapor characterization of Hanford Waste Tank 241-T-110: Results from samples collected on August 31, 1995. Tank Vapor Characterization Project

    SciTech Connect (OSTI)

    McVeety, B.D.; Thomas, B.L.; Evans, J.C. [and others

    1996-05-01T23:59:59.000Z

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-T-110 (Tank T-110) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5056. Samples were collected by WHC on August 31, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  2. Energy Engineering Analysis Program (EEAP), Fort Bliss Water Distribution System, Fort Bliss, El Paso, Texas

    SciTech Connect (OSTI)

    NONE

    1993-02-01T23:59:59.000Z

    The purpose of this study is to analyze the existing system and two alternate methods of peak electrical demand shaving for the water distribution system at Fort Bliss, Texas. The existing system will be referred to as Alternative Number 1 throughout the report. Alternative Number 2 includes the addition of water storage capacity in order to allow the well and booster pumps to operate only during non-peak electrical periods. Alternative Number 3 includes the use of natural gas powered electric generators at each well and booster pumping station. These generators would be utilized during the peak electrical periods. This report is prepared in accordance with the detailed scope of work for Contract No. DACA63-91-D-0048, Delivery Order 0005 (Refer to Appendix J for complete scope of work). The blast Life Cycle Cost In Design (LCCID) program with the ECIP option was used to determine the Life Cycle Cost (LCC) and Savings to Investment Ratio (SIR) for the analyzed retrofit for a 25 year study life. The existing water distribution system consists of 17 well pumps and 5 booster pumping stations. The desert field well and booster pumps were not included in this study due to their remote location. The well and booster pumps provide water supply to several ground elevated storage tanks located across the reservation (Refer to Appendix K for map indicating general locations). These storage tanks are located to provide three pressure zones. The upper pressure zone is maintained by a one million gallon tank. The intermediate pressure zone is maintained by a 0.6 million gallon tank. Pressure in the lower zone is maintained by three (3) elevated storage tanks.

  3. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

    2003-04-01T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  4. Preliminary Modeling, Testing and Analysis of a Gas Tankless Water Heater

    SciTech Connect (OSTI)

    Burch, J.; Thornton, J.; Hoeschele, M.; Springer, D.; Rudd, A.

    2008-01-01T23:59:59.000Z

    Tankless water heaters offer significant energy savings over conventional storage-tank water heaters, because thermal losses to the environment are much less. Although standard test results are available to compare tankless heaters with storage tank heaters, actual savings depend on the draw details because energy to heat up the internal mass depends on the time since the last draw. To allow accurate efficiency estimates under any assumed draw pattern, a one-node model with heat exchanger mass is posed here. Key model parameters were determined from test data. Burner efficiency showed inconsistency between the two data sets analyzed. Model calculations show that efficiency with a realistic draw pattern is {approx}8% lower than that resulting from using only large {approx}40 liter draws, as specified in standard water-heater tests. The model is also used to indicate that adding a small tank controlled by the tankless heater ameliorates unacceptable oscillations that tankless with feedback control can experience with pre-heated water too hot for the minimum burner setting. The added tank also eliminates problematic low-flow cut-out and hot-water-delay, but it will slightly decrease efficiency. Future work includes model refinements and developing optimal protocols for parameter extraction.

  5. Self-Assembled, Nanostructured Carbon for Energy Storage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment nanostructuredcarbon.pdf...

  6. Double Shell Tank (DST) Utilities Specification

    SciTech Connect (OSTI)

    SUSIENE, W.T.

    2000-04-27T23:59:59.000Z

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  7. Energy and Water Use in Irrigated Agriculture During Drought Conditions

    E-Print Network [OSTI]

    Ritschard, R.L.

    2011-01-01T23:59:59.000Z

    is overdrafted from ground water storage basins. 3 In 1976supply, pumping from ground water storage reservoirs mayIn of ground formation which reduces the water storage

  8. Criticality safety of an annular tank for fissile solution

    SciTech Connect (OSTI)

    Rothe, R.E.

    1981-01-01T23:59:59.000Z

    Experiments performed to determine the criticality safety of annular tanks for storing fissile solutions are described. Six annular tanks were built in four nesting sizes to obtain experimental criticality data which could be used to validate computer codes employed in the design of such a safe storage system for an industrial plant. Each tank had an annular solution region thickness of 38 mm. The height of this region was 2.13 m, held 0.3 m off the floor by a stainless steel skirting. Walls were 6.4 mm-thick type 304L stainless steel. The uranyl nitrate solution contained 357 g U/l and had a density of 1.5 kg/m/sup 3/. The uranium was enriched to 93.2% /sup 235/U with other isotopes: 5.4% /sup 238/U, 1.0% /sup 234/U, and 0.4% /sup 236/U. The solution contained 0.5 molar nitric acid and a total impurity content of less than 1500 ppM. Important neutron absorbers, boron and cadmium, averaged 10 ppM and 30 ppM, respectively. Boron-loaded concrete and boron-loaded plaster were selected for the neutron moderator/absorber interior to the annular tank. Three configurations of tanks and reflector were taken to criticality and are reported. The critical uranium solution height in all tanks containing solution as a function of boron content in earthen interior material, tank array configuration, and other variables. (LCL)

  9. CORROSION TESTING IN SIMULATED TANK SOLUTIONS

    SciTech Connect (OSTI)

    Hoffman, E.

    2010-12-09T23:59:59.000Z

    Three simulated waste solutions representing wastes from tanks SY-102 (high nitrate, modified to exceed guidance limits), AN-107, and AY-102 were supplied by PNNL. Out of the three solutions tested, both optical and electrochemical results show that carbon steel samples corroded much faster in SY-102 (high nitrate) than in the other two solutions with lower ratios of nitrate to nitrite. The effect of the surface preparation was not as strong as the effect of solution chemistry. In areas with pristine mill-scale surface, no corrosion occurred even in the SY-102 (high nitrate) solution, however, corrosion occurred in the areas where the mill-scale was damaged or flaked off due to machining. Localized corrosion in the form of pitting in the vapor space of tank walls is an ongoing challenge to overcome in maintaining the structural integrity of the liquid waste tanks at the Savannah River and Hanford Sites. It has been shown that the liquid waste condensate chemistry influences the amount of corrosion that occurs along the walls of the storage tanks. To minimize pitting corrosion, an effort is underway to gain an understanding of the pitting response in various simulated waste solutions. Electrochemical testing has been used as an accelerated tool in the investigation of pitting corrosion. While significant effort has been undertaken to evaluate the pitting susceptibility of carbon steel in various simulated waste solutions, additional effort is needed to evaluate the effect of liquid waste supernates from six Hanford Site tanks (AY-101, AY-102, AN-102, AN-107, SY-102 (high Cl{sup -}), and SY-102 (high nitrate)) on carbon steel. Solutions were formulated at PNNL to replicate tank conditions, and in the case of SY-102, exceed Cl{sup -} and NO{sub 3}{sup -} conditions, respectively, to provide a contrast between in and out of specification limits. The majority of previous testing has been performed on pristine polished samples. To evaluate the actual tank carbon steel surface, efforts are needed to compare the polished surfaces to corroded and mill-scale surfaces, which are more likely to occur in application. Additionally, due to the change in liquid waste levels within the tanks, salt deposits are highly likely to be present along the tank wall. When the level of the tank decreases, a salt deposit will form as the solution evaporates. The effects of this pre-existing salt, or supernate deposit, are unknown at this time on the corrosion effect and thus require investigation. Additionally, in the presence of radiation, moist air undergoes radiolysis, forming a corrosive nitric acid condensate. This condensate could accelerate the corrosion process in the vapor space. To investigate this process, an experimental apparatus simulating the effects of radiation was designed and constructed to provide gamma irradiation while coupons are exposed to a simulate tank solution. Additionally, ammonia vapors will also be introduced to further represent the tank environment.

  10. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

  11. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    SciTech Connect (OSTI)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-03-01T23:59:59.000Z

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

  12. THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516

    SciTech Connect (OSTI)

    Fellinger, A.

    2009-12-08T23:59:59.000Z

    The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same technology have proven to be difficult. Through the RKC, DOE-EM funded an evaluation of adaptable commercial technologies that could assist with the removal of the tank heels. This paper will discuss the efforts and results of developing the RKC to improve communications and discussion of tank waste retrieval through a series of meetings designed to identify technical gaps in retrieval technologies at the DOE Hanford and Savannah River Sites. This paper will also describe the results of an evaluation of commercially available technologies for low level mixing as they might apply to HLW tank heel retrievals.

  13. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect (OSTI)

    Jolly, R; Bruce Martin, B

    2008-01-15T23:59:59.000Z

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

  14. Control Optimization for a Chilled Water Thermal Storage System Under a Complicated Time-of-Use Electricity Rate Schedule

    E-Print Network [OSTI]

    Zhou, J.; Wei, G.; Turner, W.D.; Deng, S.; Claridge, D.E.; Contreras, O.

    processes. A chiller start-stop optimization program was developed and implemented into the Energy Management and Control System (EMCS) to determine the number of chillers that need to be brought on line and the start and stop times for each chiller... every day, based on the prediction of the campus cooling load within the next 24 hours. With timely and accurate weather forecasting, the actual tank charging and discharging process closely matches the simulated process. The chiller plant...

  15. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect (OSTI)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2007-02-14T23:59:59.000Z

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global buckling of the tank under increased vacuum) could occur.

  16. WRPS MEETING THE CHALLENGE OF TANK WASTE

    SciTech Connect (OSTI)

    BRITTON JC

    2012-02-21T23:59:59.000Z

    Washington River Protection Solutions (WRPS) is the Hanford tank operations contractor, charged with managing one of the most challenging environmental cleanup projects in the nation. The U.S. Department of Energy hired WRPS to manage 56 million gallons of high-level radioactive waste stored in 177 underground tanks. The waste is the legacy of 45 years of plutonium production for the U. S. nuclear arsenal. WRPS mission is three-fold: safely manage the waste until it can be processed and immobilized; develop the tools and techniques to retrieve the waste from the tanks, and build the infrastructure needed to deliver the waste to the Waste Treatment Plant (WTP) when it begins operating. WTP will 'vitrify' the waste by mixing it with silica and other materials and heating it in an electric melter. Vitrification turns the waste into a sturdy glass that will isolate the radioactivity from the environment. It will take more than 20 years to process all the tank waste. The tank waste is a complex highly radioactive mixture of liquid, sludge and solids. The radioactivity, chemical composition of the waste and the limited access to the underground storage tanks makes retrieval a challenge. Waste is being retrieved from aging single-shell tanks and transferred to newer, safer double-shell tanks. WRPS is using a new technology known as enhanced-reach sluicing to remove waste. A high-pressure stream of liquid is sprayed at 100 gallons per minute through a telescoping arm onto a hard waste layer several inches thick covering the waste. The waste is broken up, moved to a central pump suction and removed from the tank. The innovative Mobile Arm Retrieval System (MARS) is also being used to retrieve waste. MARS is a remotely operated, telescoping arm installed on a mast in the center of the tank. It uses multiple technologies to scrape, scour and rake the waste toward a pump for removal. The American Reinvestment and Recovery Act (ARRA) provided nearly $326 million over two-and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record-setting safety performance. Since WRPS took over the Hanford Tank Operations Contract in October 2

  17. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    Ocean Salinity Ocean Temperature Outgoing Longwave Radiationat the ocean surface is the sum of solar radiation (SW),solar radiation reflected upward from beneath the ocean

  18. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    Leba- non, Syria, West Kazakhstan, Armenia, Georgia, andterm mean. In western Kazakhstan, at the Caspian Sea, and into most areas; in western Kazakhstan tem- peratures were

  19. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    April–October period in Western Australia (see Chapter 7 foron the coast of Western Australia. The Australian Bureau oftowards the coast of Western Australia, ultimately making

  20. Electric Storage Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLEEFFECTS OFElaineElectric

  1. Specialized video systems for use in waste tanks

    SciTech Connect (OSTI)

    Anderson, E.K.; Robinson, C.W.; Heckendorn, F.M.

    1992-01-01T23:59:59.000Z

    The Robotics Development Group at the Savannah River Site is developing a remote video system for use in underground radioactive waste storage tanks at the Savannah River Site, as a portion of its site support role. Viewing of the tank interiors and their associated annular spaces is an extremely valuable tool in assessing their condition and controlling their operation. Several specialized video systems have been built that provide remote viewing and lighting, including remotely controlled tank entry and exit. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. The SRS waste tanks are nominal 4.5 million liter (1.3 million gallon) underground tanks used to store liquid high level radioactive waste generated by the site, awaiting final disposal. The typical waste tank (Figure 1) is of flattened shape (i.e. wider than high). The tanks sit in a dry secondary containment pan. The annular space between the tank wall and the secondary containment wall is continuously monitored for liquid intrusion and periodically inspected and documented. The latter was historically accomplished with remote still photography. The video systems includes camera, zoom lens, camera positioner, and vertical deployment. The assembly enters through a 125 mm (5 in) diameter opening. A special attribute of the systems is they never get larger than the entry hole during camera aiming etc. and can always be retrieved. The latest systems are easily deployable to a remote setup point and can extend down vertically 15 meters (50ft). The systems are expected to be a valuable asset to tank operations.

  2. Specialized video systems for use in waste tanks. Revision 1

    SciTech Connect (OSTI)

    Anderson, E.K.; Robinson, C.W.; Heckendorn, F.M.

    1992-11-01T23:59:59.000Z

    The Robotics Development Group at the Savannah River Site is developing a remote video system for use in underground radioactive waste storage tanks at the Savannah River Site, as a portion of its site support role. Viewing of the tank interiors and their associated annular spaces is an extremely valuable tool in assessing their condition and controlling their operation. Several specialized video systems have been built that provide remote viewing and lighting, including remotely controlled tank entry and exit. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. The SRS waste tanks are nominal 4.5 million liter (1.3 million gallon) underground tanks used to store liquid high level radioactive waste generated by the site, awaiting final disposal. The typical waste tank (Figure 1) is of flattened shape (i.e. wider than high). The tanks sit in a dry secondary containment pan. The annular space between the tank wall and the secondary containment wall is continuously monitored for liquid intrusion and periodically inspected and documented. The latter was historically accomplished with remote still photography. The video systems includes camera, zoom lens, camera positioner, and vertical deployment. The assembly enters through a 125 mm (5 in) diameter opening. A special attribute of the systems is they never get larger than the entry hole during camera aiming etc. and can always be retrieved. The latest systems are easily deployable to a remote setup point and can extend down vertically 15 meters (50ft). The systems are expected to be a valuable asset to tank operations.

  3. Flammable gas tank waste level reconciliation for 241-SX-105

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddie, L.A.

    1997-06-23T23:59:59.000Z

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980.

  4. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    E-Print Network [OSTI]

    Authors, Various

    2014-01-01T23:59:59.000Z

    Steam Turbine Generator Gas Tubine Generator Diesel Generator Hot Water Storage Tank Cold Water Tank • New equipment in DOE-

  5. Cryo-Compressed Hydrogen Storage: Performance and Cost Review

    E-Print Network [OSTI]

    Systems BenedictWebbRubin equation of State: REFPROP coupled to GCtool Carbon Fiber Netting Analysis In-tank heat exchanger 4000-psi pressure vessel rating #12;4 System Analysis of Physical Storage for geodesic and hoop windings in cylindrical section Fatigue Analysis of Type 3 Tanks ­ Algorithm for residual

  6. Appendix C: Underground Storage Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    Appendix C: Underground Storage Tank Data #12;#12;Annual Site Environmental Report Appendix C identification service Contents Status ( ) date to Corrective action Tank Out-of- assessment number date regulatory Installation Capacity Preliminary date (gallons) investigation Environmental agency Petroleum USTs

  7. Technical Assessment of Organic Liquid Carrier Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    usable hydrogen. The results were compared to DOE's 2010, 2017, and ultimate full fleet hydrogen storage targets. The off-board performance including the Well-to-Tank and...

  8. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    SciTech Connect (OSTI)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29T23:59:59.000Z

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.

  9. High Level Waste Tank Closure Project at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Wessman, D. L.; Quigley, K. D.

    2002-02-27T23:59:59.000Z

    The Department of Energy, Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities.

  10. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    SciTech Connect (OSTI)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10T23:59:59.000Z

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

  11. CURRICULUM VITAE David W. Tank

    E-Print Network [OSTI]

    Tank, David

    CURRICULUM VITAE David W. Tank Personal Birthdate: June 3, 1953 Citizenship : U.S. Address: Dept Physical Society Biophysical Society #12;Research Publications 1. Tank, D.W., Wu, E.-S., and Webb, W, 207-212 (1982). 2. Webb, W.W., Barak, L.S., Tank, D.W. and Wu, E.-S., Molecular mobility on the cell

  12. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    SciTech Connect (OSTI)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01T23:59:59.000Z

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  13. Progress in High-Level Waste Tank Cleaning at the Idaho National Environmental and Engineering Laboratory

    SciTech Connect (OSTI)

    Lockie, K. A.; McNaught, W. B.

    2002-02-26T23:59:59.000Z

    The Department of Energy Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy (DOE) orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). Design, development, and deployment of a remotely operated tank cleaning system were completed in August 2001. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system also uses existing waste transfer technology (steam-jets) to remove tank heel solids from the tank bottoms during the cleaning operations. By using this existing transfer system and commercially available equipment, the cost of developing custom designed cleaning equipment can be avoided. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. This system is also compliant with operational and safety performance requirements at INTEC. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has demonstrated the capability to clean tanks to meet RCRA clean closure standards and DOE closure performance measures. The tank cleaning system deployed at the INTEC offers unique advantages over other approaches evaluated at the INEEL and throughout the DOE Complex. The system's ability to agitate and homogenize the tank heel sludge will simplify verification-sampling techniques and reduce the total quantity of samples required to demonstrate compliance with the performance standards. This will reduce tank closure budget requirements and improve closure-planning schedules.

  14. Integral collector storage system with heat exchange apparatus

    DOE Patents [OSTI]

    Rhodes, Richard O.

    2004-04-20T23:59:59.000Z

    The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.

  15. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01T23:59:59.000Z

    1971, storage of Solar Energy in a Bandy- Gravel Ground. 2.Aquifer Storage of Heated Water: A Field Experuuent. GroundStorage of Heated Water: Part II - Numerical Simulation of Field Results. Ground

  16. A summary of available information on ferrocyanide tank wastes

    SciTech Connect (OSTI)

    Burger, L.L.; Strachan, D.M. (Pacific Northwest Lab., Richland, WA (United States)); Reynolds, D.A. (Westinghouse Hanford Co., Richland, WA (United States)); Schulz, W.W. (Schulz (W.W.), Wilmington, DE (United States))

    1991-10-01T23:59:59.000Z

    Ferrocyanide wastes were generated at the Hanford site during the mid to late 1950s to make more tank space available for the storage of high level nuclear waste. The ferrocyanide process was developed as a method of removing {sup 137}Cs from existing waste solutions and from process solutions that resulted from the recovery of valuable uranium in waste tanks. During the coarse of the research associated with the ferrocyanide process, it was discovered that ferrocyanide materials when mixed with NaNO{sub 3} and/or NaNO{sub 2} exploded. This chemical reactivity became an issue in the 1980s when the safety associated with the storage of ferrocyanide wastes in Hanford tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety associated with these wastes and the current research and waste management programs. Over the past three years, numerous explosive test have been carried out using milligram quantities of cyanide compounds. These tests provide information on the nature of possible tank reactions. On heating a mixture of ferrocyanide and nitrate or nitrite, an explosive reaction normally begins at about 240{degrees}C, but may occur well below 200{degrees}C in the presence of catalysts or organic compounds that may act as initiators. The energy released is highly dependent on the course of the reaction. Three attempts to model hot spots in local areas of the tanks indicate a very low probability of having a hot spot large enough and hot enough to be of concern. The main purpose of this document is to inform the members of the Tank Waste Science Panel of the background and issues associated with the ferrocyanide wastes. Hopefully, this document fulfills similar needs outside of the framework of the Tank Waste Science Panel. 50 refs., 9 figs., 7 tabs.

  17. Fuel cell systems for first lunar outpost -- Reactant storage options

    SciTech Connect (OSTI)

    Nelson, P.A. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-06-01T23:59:59.000Z

    A Lunar Surface Power Working Group was formed to review candidate systems for providing power to the First Lunar Outpost habitat. The working group met for five days in the fall of 1992 and concluded that the most attractive candidate included a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases. Most of the volume (97%) and weight (64%) are taken up by the reactants and their storage tanks. The large volume is difficult to accommodate, and therefore, the working group explored ways of reducing the volume. An alternative approach to providing separate high pressure storage tanks is to use two of the descent stage propellant storage tanks, which would have to be wrapped with graphite fibers to increase their pressure capability. This saves 90% of the volume required for storage of fuel cell reactants. Another approach is to use the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids, but this requires a gas liquefaction system, increases the solar array by 40%, and increases the heat rejection rate by 170% compared with storage of reactants as high pressure gases. For a high power system (>20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.

  18. Headspace vapor characterization of Hanford Waste Tank 241-U-112: Results from samples collected on 7/09/96

    SciTech Connect (OSTI)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01T23:59:59.000Z

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-112 at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company.

  19. Hanford Double-Shell Tank Extent-of-Condition Review - 15498

    SciTech Connect (OSTI)

    Johnson, J. M.; Baide, D. D.; Barnes, T. J.; Boomer, K. D.; Gunter, J. R.; Venetz, T. J.

    2014-11-19T23:59:59.000Z

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. A formal leak assessment, documented in RPP-ASMT-53793, Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure.1 To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records was performed for Hanford’s remaining twenty-seven DSTs. Review involved research of 241 boxes of historical project documentation to better understand the condition of the Hanford DST farms, noting similarities in construction difficulties/issues to tank AY-102. Information gathered provides valuable insight regarding construction difficulties, future tank operations decisions, and guidance of the current tank inspection program. Should new waste storage tanks be constructed in the future, these reviews also provide valuable lessons-learned.

  20. Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.