National Library of Energy BETA

Sample records for water solar home

  1. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    checklist. PDF icon SHW-Ready Checklists.pdf More Documents & Publications Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE DOE Zero Energy Ready Home PV-Ready Checklist ...

  2. Passive Solar Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Design for Efficiency » Passive Solar Home Design Passive Solar Home Design This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot

  3. Technology Solutions for New Homes Case Study: Indirect Solar Water Heating Systems in Single-Family Homes

    Broader source: Energy.gov [DOE]

    In 2011, Rural Development, Inc. (RDI) completed the construction of Wisdom Way Solar Village (WWSV), which is a development of 20 very efficient homes in Greenfield, Massachusetts. The homes...

  4. Technology Solutions for New Homes Case Study: Indirect Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indirect Solar Water Heating Systems in Single-Family Homes Technology Solutions for New Homes Case Study: Indirect Solar Water Heating Systems in Single-Family Homes In 2011, ...

  5. Renewable Energy Ready Home Solar Photovoltaic Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide, ...

  6. Passive Solar Home Design | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary...

  7. Solar Home Energy | Open Energy Information

    Open Energy Info (EERE)

    Home Energy Jump to: navigation, search Name: Solar Home Energy Place: Bournemouth, United Kingdom Sector: Renewable Energy, Solar Product: Solar Home Energy is one of the...

  8. Cost, Design, and Performance of Solar Hot Water in Cold-Climate Homes

    SciTech Connect (OSTI)

    2006-05-03

    This paper examines long-term performance of two solar hot water heating systems in the northern climate zone.

  9. CEC- New Solar Homes Partnership

    Broader source: Energy.gov [DOE]

    Launched on January 2, 2007, the New Solar Homes Partnership (NSHP) is a 10-year, $400 million program to encourage solar in new homes by working with builders and developers to incorporate into ...

  10. Solar Energy Home | Open Energy Information

    Open Energy Info (EERE)

    Home Jump to: navigation, search Name: Solar Energy Home Address: 28 Church Road Place: London, United Kingdom Sector: Solar Product: Solar energy systems and equipment Phone...

  11. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating SPECIFICATION, CHECKLIST AND GUIDE Renewable Energy Ready Home Table of ... Assumptions of the RERH Solar Water Heating Specification ...

  12. Solar, Wind, Hydropower: Home Renewable Energy Installations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado ...

  13. Best Practices Solar Case Study: Pulte Homes - Civano, Tucson, Arizona

    SciTech Connect (OSTI)

    2007-06-01

    Building America factsheet on Pulte Homes, an energy-efficient home builder in hot dry climate using ducts in conditioned space, improved insulation, high-efficiency HVAC, and solar hot water.

  14. Your Solar Home

    Broader source: Energy.gov [DOE]

    Solar Schoolhouse Education supplement for the Sacramento Bee to introduce solar to elementary school children and introduce the design and AD contest for local students.

  15. City of Tucson- Solar Design Requirement for Homes

    Broader source: Energy.gov [DOE]

    To comply with this requirement, new homes must either have a complete solar water heating system installed or comply with one of two solar stub-out options. Option one requires the installation...

  16. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

    Broader source: Energy.gov [DOE]

    DOE Zero Energy Ready Home National Program encourages, but does not require, consideration of this checklist. 

  17. Planning a Home Solar Electric System | Department of Energy

    Office of Environmental Management (EM)

    Planning a Home Solar Electric System Planning a Home Solar Electric System Whether a home solar electric system will work for you depends on the available sun (resource),...

  18. Sandia Energy - Price Premiums for Solar Home Sales

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price Premiums for Solar Home Sales Home Renewable Energy Energy Partnership News News & Events Photovoltaic Solar Systems Analysis Price Premiums for Solar Home Sales Previous...

  19. Solar Water Heaters | Department of Energy

    Energy Savers [EERE]

    Heat & Cool » Water Heating » Solar Water Heaters Solar Water Heaters Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar water heaters -- also called solar domestic hot water systems -- can be a cost-effective way to generate hot water for your home. They can be used in

  20. Solar Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating » Solar Water Heaters Solar Water Heaters Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar water heaters -- also called solar domestic hot water systems -- can be a cost-effective way to generate hot water for your home. They can be used in any climate, and the

  1. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Location, based on zip code has at least 5 kWhm 2 day average daily solar radiation based on annual solar insolation using PVWatts online tool: http:...

  2. Building America Case Study: Indirect Solar Water Heating Systems...

    Energy Savers [EERE]

    Indirect Solar Water Heating Systems in Single-Family Homes Greenfield, Massachusetts ... Building Component: Solar water heating Application: Single-family Years Tested: 2010-2013 ...

  3. Report on Solar Water Heating Quantitative Survey

    SciTech Connect (OSTI)

    Focus Marketing Services

    1999-05-06

    This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

  4. Solar Powering America Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Powering America Home U.S. Department of Energy U.S. Department of Agriculture U.S. Environmental Protection Agency U.S. Department of Housing and Urban Development Solar ...

  5. Solar Energy Education. Home economics: student activities. Field...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Solar Energy Education. Home economics: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Home economics: ...

  6. Solar Decathlon 2015: Nation's Leading Sustainable Home Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon Solar Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon...

  7. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; ...

  8. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE, from the U.S. Environmental Protection Agency (EPA) PDF icon rerh_swh_guide.pdf More Documents & Publications Renewable Energy Ready Home Solar Photovoltaic Specifications DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home PV-Ready Checklist

  9. Tour Opens Doors to Solar Homes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doors to Solar Homes For more information contact: e:mail: Public Affairs Golden, Colo., Oct. 14, 1999 — The Tour of Solar Homes will open the doors of hundreds of passive and active solar homes across the nation Oct. 16. The Denver Metro tour will feature innovative houses in Denver, Golden, Littleton, Idaho Springs, Evergreen and Parker that tap energy from the sun. The self-guided tour starts at the Visitors Center of the U.S. Department of Energy's National Renewable Energy Laboratory

  10. Guide to Passive Solar Home Design

    SciTech Connect (OSTI)

    2010-10-01

    Passive solar design incorporates features in your home and its natural surroundings that harness the sun's low rays in winter and deflect the sun's high rays in the summer.

  11. Home Solar Installations: Things to Consider | Department of Energy

    Energy Savers [EERE]

    Home Solar Installations: Things to Consider Home Solar Installations: Things to Consider May 29, 2013 - 3:18pm Addthis Home solar systems can save you energy and money. | Photo courtesy of Dennis Schroeder, NREL 22168. Home solar systems can save you energy and money. | Photo courtesy of Dennis Schroeder, NREL 22168. Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Read these considerations for installing a home solar electric

  12. Community-Scale High-Performance with Solar: Pulte Homes, Tucson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a suite of energy-efficiency measures integrated with passive solar design and solar water heating that reduced energy use more than 50% for a community of more than 1,000 homes. ...

  13. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America research team BA-PIRC webinar on September 30, 2011 providing informationprovide information about how to achieve energy savings from solar water heating, electric dedicated heat pump water heating, and gas tankless systems. PDF icon es_hot_water_systems.pdf More Documents & Publications

  14. NREL: Solar Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The first photo shows a parabolic solar trough at the Eldorado Valley site. The second is of a gird-tied high-concentration solar cell MicroDish. And the third photo shows the ...

  15. Piedmont EMC- Solar Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Piedmont Electric Membership Corporation is offering a $500 rebate to its residential members who install solar water heaters on their homes. The utility recommends but does not require the system...

  16. Solar Energy Education. Home economics: teacher's guide. Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home economics: teacher's guide. Field test edition. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Home economics: teacher's guide. Field ...

  17. #AskEnergySaver: Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating #AskEnergySaver: Home Water Heating March 24, 2014 - 11:35am Addthis Did you know: Water heaters account for nearly 17 percent of a home’s energy use, consuming more energy than all other household appliances combined. For more about water heaters, check out our <a href="/node/612476">Energy Saver 101 home water heating infographic</a>. | Photo by Eric Grigorian, U.S. Department of Energy Solar Decathlon. Did you know: Water heaters account for nearly 17

  18. What Do You Wish You Knew About Home Solar Energy?

    Broader source: Energy.gov [DOE]

    Solar Decathlon 2011 is in full swing, and the Energy Savers blog is all about home solar energy during the event!

  19. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 ...

  20. Kiwis Take Home Engineering Win for Solar Home 'First Light' | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Kiwis Take Home Engineering Win for Solar Home 'First Light' Kiwis Take Home Engineering Win for Solar Home 'First Light' September 29, 2011 - 4:22pm Addthis “First Light,” the solar home from New Zealand, stands complete on the first day of the 2011 U.S. Department of Energy Solar Decathlon. The 25-student team from Victory University of Wellington won the Engineering Contest today, the fourth juried contest of the competition. "First Light," the solar home

  1. Community-Scale High-Performance with Solar: Pulte Homes, Tucson, AZ- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Pulte Homes of Tucson’s work with Building America to apply a suite of energy-efficiency measures integrated with passive solar design and solar water heating that reduced energy use more than 50% for a community of more than 1,000 homes.

  2. Building America Top Innovations 2012: Community Scale High Performance with Solar - Pulte Homes

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Pulte Homes of Tucson’s work with Building America to apply a suite of energy-efficiency measures integrated with passive solar design and solar water heating that reduced energy use more than 50% for a community of more than 1,000 homes.

  3. OUT Success Stories: Solar Hot Water Technology

    DOE R&D Accomplishments [OSTI]

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  4. Lumbee River EMC- Solar Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lumbee River EMC is offering $850 rebates to residential customers who install solar water heaters on their homes. To qualify, the systems must be certified OG-300 by the Solar Ratings and...

  5. Lumbee River EMC- Solar Water Heating Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC is offering 6% loans to residential customers for the installation of solar water heaters on their homes.  To qualify, the systems must be certified OG-300 by the Solar Ratings and...

  6. Combining Solar and Home Performance Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combining Solar and Home Performance Services Combining Solar and Home Performance Services Better Buildings Residential Network Peer Exchange Call: Combining Solar and Home Performance Services, call slides and discussion summary, December 11, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Think Again! A Fresh Look at Home Performance Business Models and Service Offerings (301) Lessons Learned: Peer Exchange Calls -- No. 3 Voluntary Initiative on Incentives:

  7. The Brightest in Solar Homes to Shine in Public Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brightest in Solar Homes to Shine in Public Tour For more information contact: e:mail: Public Affairs Golden, Colo., Oct. 4, 1996 -- The most innovative solar homes in the Denver-metro area will be open to the public Oct. 19 as part of the National Solar Home Tour sponsored by the American Solar Eerrgy Society (ASES) in Boulder. The tour includes 16 homes that reflect a range of passive- and active-solar technologies, styles and costs, from energy self-sufficient "off the grid"

  8. Performance summary of the Balcomb solar home

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hedstrom, J.C.; Perry, J.E. Jr.

    1981-01-01

    The heating performance of the Balcomb passive solar home is re-evaluated based on detailed review of 85 channels of data taken during six weeks of 1980. This led to a re-analysis of 176 days of data taken over the winter of 1978-79. Auxiliary heat during this winter was 7.4 million Btu which compares with 66.0 million Btu total heat losses from the house plus 46.4 million Btu losses from the greenhouse. Auxiliary heat predicted using the solar load ratio method is 8.1 million Btu. Solar savings are estimated as 57 million Btu. Good thermal comfort conditions are documented. Energy flows are tabulated for each month. Energy flows are tabulated for each month. Conclusions regarding detailed heat flow and storage in the house are presented.

  9. Performance of the biose cascade-INEL manufactured solar home

    SciTech Connect (OSTI)

    Lau, A S; Liebelt, K H; Scofield, M P; Shinn, N R

    1980-01-01

    Two manufactured active solar homes using air collectors and rock storage were designed, bult and are being tested. The cooperative, DOE-funded project involves. Boise Cascade Corporation and the Idaho National Engineering Laboratory (INEL). The two primary goals of the project are to develop an active solar heating system that is cost-effective now, and to provide significant market penetration through the involvement of Boise Cascade, a major manufacturer of factory built houses. A brief discussion of the houses and solar systems is included, with more detailed discussion of the desktop-computer based data acquisition system and initial performance results. The 1979 cooling season data indicated a need for modifications to achieve adequate cooling system performance. Data from the heating season showed good agreement with calculations, especially the house heat loss coefficient. However, solar heating fractions were lower than predicted and an examination of the collector operating efficiency showed the collector losses to be approximately three times higher than predicted. Tests are underway to better understand the large collection losses. Comparison of the performance data and f-chart predictions shows significant differences, with predicted solar fractions being lower than actual. The solar domestic hot water preheating system performed reasonably well, with significant thermal losses noticed from the auxiliary hot water heater. Recommendations are made for the design of solar air-heating systems.

  10. Solar Decathlon at Home in the D.C. Community

    Broader source: Energy.gov [DOE]

    Celebrating the completion of the Empowerhouse Solar Decathlon team's demonstration house into a permanent, two-family home in the District's Ward 7.

  11. Solar Energy Education. Home economics: student activities. Field...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Solar Energy Education. Home economics: student ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  12. Installing and Maintaining a Home Solar Electric System | Department...

    Energy Savers [EERE]

    Making sure your home solar electric or photovoltaic (PV) system is sized, sited, installed, and maintained correctly is essential for maximizing its energy performance. When...

  13. NREL Solar Technology Will Warm Air at 'Home' - News Feature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Solar Technology Will Warm Air at 'Home' July 30, 2010 Photo of a building coved in ... But once you find your way, you know you'll be welcomed with open arms. Transpired solar ...

  14. Solar Energy and Your Home: Questions and Answers

    DOE R&D Accomplishments [OSTI]

    1984-01-01

    This fact sheet provides a basic introduction to solar heating and cooling systems. It is intended for the many homeowners who could benefit from living in a solar home.

  15. Entech Solar Inc formerly WorldWater Solar Technologies | Open...

    Open Energy Info (EERE)

    Solar Inc formerly WorldWater Solar Technologies Jump to: navigation, search Name: Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place: Fort Worth, Texas Zip: 76177...

  16. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  17. Portable solar water heater

    SciTech Connect (OSTI)

    Borodulin, G.; Baron, R.; Shkolnik, A.

    1985-11-12

    A combined table and portable solar water heater comprises a suitcase-like rigid casing molded from a rigid plastic material which contains a pair of solar collector panels and connected in series. The panels can be exposed to solar radiation when the casing is opened. Each collector panel or is formed by a copper plate with the solar radiation absorbing surface and copper pipe coil or in heat-transferring relationship with said copper plate. The casing is provided with compartments for accessories, such as adjustable legs for supporting the casing, adjusting its angle to incident sunlight, and for converting the casing into a table; containers for feeding cold water to the solar collector and for receiving hot water from the collector; and a tripod stand for supporting the feeding container at the level above the collector and for arranging a shower set. Temperature-insulating layers of the collectors are formed by separate pieces of rigid material which can be removed from the casing and assembled into a box-shaped container which can be utilized for maintaining water heated by means of the solar water heater at an elevated temperature.

  18. NREL: Concentrating Solar Power Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry to further the research and development (R&D) of concentrating solar power (CSP) plant and solar thermal technologies. NREL's projects in concentrating solar power focus...

  19. City of Palo Alto Utilities- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    City of Palo Alto Utilities is offering incentives for their residential, commercial and industrial customers to install solar water heating systems on their homes and facilities with a goal of 1...

  20. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  1. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems (both for domestic and pool heating uses) on their newly-constructed homes. Rebates of...

  2. City of Tallahassee Utilities- Solar Water Heating Rebate

    Broader source: Energy.gov [DOE]

    The homeowner must allow the City of Tallahassee to conduct an energy audit on the home in order to make a preliminary assessment of sun exposure and to provide program guidance. All solar water...

  3. So You Want to Go Solar? 3 Things to Consider When Installing Solar Power at Home

    Broader source: Energy.gov [DOE]

    Before investing in solar, be sure it is the right renewable energy source for your home and consider these three things: contractor, size, and orientation.

  4. Everything You Wanted to Know About Solar Water Heating Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Everything You Wanted to Know About Solar Water Heating Systems Everything You Wanted to Know About Solar Water Heating Systems October 7, 2014 - 2:39pm Q&A What do you want to know about solar at home? Tell Us Addthis Solar panels heat water that is delivered to a storage tank. | Photo courtesy of David Springer, National Renewable Energy Laboratory Solar panels heat water that is delivered to a storage tank. | Photo courtesy of David Springer, National Renewable

  5. RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes

    SciTech Connect (OSTI)

    Robb Aldrich, Steven Winter Associates

    2011-07-01

    In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

  6. Solar Successes: The Best of Today's Energy Efficient Homes

    SciTech Connect (OSTI)

    2008-01-01

    This is a brochure developed specifically for residential home builders. It provides information on basic financial factors and additional resources to consider when incorporating solar technologies into building plans.

  7. Planning a Home Solar Electric System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The economics of a home solar electric or PV system are determined by both the capital and operating costs. Capital costs include the initial costs of designing and installing a PV ...

  8. Installing and Maintaining a Home Solar Electric System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Home Solar Electric System When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV...

  9. Printed decorative solar panels could become part of our homes...

    Open Energy Info (EERE)

    content Printed decorative solar panels could become part of our homes and offices Hello, I provide user supp... The top one on this page: htt... Can you send the specific...

  10. Installing and Maintaining a Home Solar Electric System | Department of

    Energy Savers [EERE]

    Energy Installing and Maintaining a Home Solar Electric System Installing and Maintaining a Home Solar Electric System When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis

  11. Installing and Maintaining a Home Solar Electric System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Home Solar Electric System Installing and Maintaining a Home Solar Electric System When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. Making sure your

  12. Solar Powering America Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State and Local Governments Workforce Development About Solar Powering America Rotator-solarPower-America2.jpg Solar Powering America was formed by the U.S. Department of Energy ...

  13. Renewable Energy Ready Home Solar Photovoltaic Specifications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar Photovoltaic Specification, Checklist and Guide, from the U.S. Environmental Protection Agency.

  14. Passive Solar Home Design | Department of Energy

    Energy Savers [EERE]

    Weatherize » Moisture Control Moisture Control Controlling moisture can make your home more energy-efficient, less costly to heat and cool, more comfortable, and prevent mold growth. Controlling moisture can make your home more energy-efficient, less costly to heat and cool, more comfortable, and prevent mold growth. Properly controlling moisture in your home will improve the effectiveness of your air sealing and insulation efforts, and these efforts in turn will help control moisture. The best

  15. Molded polymer solar water heater

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  16. Solar Powering America Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Powering America banner U.S. Department of Housing and Urban Development U.S. Department of Agriculture U.S. Environmental Protection Agency U.S. Department of Energy Solar ...

  17. Columbia Water & Light- Home Performance with ENERGY STAR Loan

    Broader source: Energy.gov [DOE]

    The Columbia Water & Light (CWL) Home Performance with ENERGY STAR program allows Columbia residents to finance energy efficiency improvements to homes with affordable, low-interest loans with...

  18. Home retrofitting for energy conservation and solar considerations

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    This manual explains both the key concepts behind our need for and our impact on energy usage, as well as a nuts-and-bolts explanation of how to improve the energy efficiency of your home. By reviewing both the concepts and practices of energy conservation, the manual presents a comprehensive picture of how home energy use is effected by the inhabitants and by the structure itself. The manual begins with an explanation of why we are looking at energy, then proceeds to explain how the heat transfer occurs between houses and humans. Next is a chapter on energy audits and how to use them, followed by a comprehensive section on energy conservation actions to do now to reduce energy use. Conservation actions include low cost/no cost measures, schemes to reduce infiltration, how to increase insulation, and what to do with windows and doors, heating and heat distribution systems, and water heaters. Solar energy options are then briefly explained, as well as the all important issues of financing and tax credits. The manual concludes with a bibliography to direct the reader to more sources of information.

  19. Solar greenhouse as an integral part of an earth-sheltered home: the first two years

    SciTech Connect (OSTI)

    Malott, R.W.

    1984-01-01

    The construction of a solar greenhouse as an integral part of an earth-sheltered home is discussed. The problems of building such a home are described.

  20. Columbia Water & Light- New Home ENERGY STAR Rebate

    Broader source: Energy.gov [DOE]

    Columbia Water and Light offers a $1,000 rebate to customers for the construction of new homes that achieve certification as Energy Star homes. The Energy Star designation is given to homes that...

  1. Solar Water Heater Basics | Department of Energy

    Energy Savers [EERE]

    Water Heating Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel ...

  2. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  3. Solar Energy Education. Home economics: student activities. Field test

    Office of Scientific and Technical Information (OSTI)

    edition (Technical Report) | SciTech Connect Home economics: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Home economics: student activities. Field test edition × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  4. Columbia Water & Light- Solar Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light electric customers are eligible for a $400 rebate for the purchase of a new solar water heater. To apply for this rebate, a customer submits a pre-approval application to...

  5. Solar Works in Seattle: Domestic Hot Water

    Broader source: Energy.gov [DOE]

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  6. Own Your Power! A Consumer Guide to Solar Electricity for the Home

    SciTech Connect (OSTI)

    NREL

    2009-01-01

    A consumer guide about solar electricity for the home. It includes information about types of solar electric systems, how to choose a system, financing, and costs.

  7. Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

  8. Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE)

    A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

  9. Own Your Power! A Consumer Guide to Solar Electricity for the Home

    DOE R&D Accomplishments [OSTI]

    2009-01-01

    A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

  10. Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future

    Broader source: Energy.gov [DOE]

    See how Appalachian State University used traditional mountain life architecture to design their 2011 Solar Decathlon home.

  11. Solar Decathlon Entry Uses iPad to Monitor Home

    Broader source: Energy.gov [DOE]

    The University of Tennessee, Knoxville is participating in its first Solar Decathlon 2011 competition, featuring its home, “Living Light.” Named for its very brightly sunlit double facade glass system, the home’s blueprint was inspired by the cantilever barns of Southern Appalachia, which feature giant eves to provide shade and a two-core design.



  12. Solar water heaters | Open Energy Information

    Open Energy Info (EERE)

    Solar water heaters Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)1...

  13. Solar water heaters | Open Energy Information

    Open Energy Info (EERE)

    Solar water heaters (Redirected from - Solar Hot Water) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of...

  14. Solar Industry At Work: Streamlining Home Solar Installation

    Broader source: Energy.gov [DOE]

    As Director of Operations at Sunrun, Tillie Peterson works to get solar panels up and running for homeowners as quickly and efficiently as possible.

  15. Passive solar heated energy conserving biosphere home. Final report

    SciTech Connect (OSTI)

    Piekarski, R.

    1985-01-01

    ''Warm Gold'' is an original design of a passive solar heated energy conserving biosphere home. It has been owner-built with financial help from the US Department of Energy through its Appropriate Technology Small Grants Program of 1980. The home incorporates the six major components of passive solar design: appropriate geometry and orientation, glazing, light levels and reflective surfaces, ventilation, thermal storage, and insulation. Warm Gold is an earth-sheltered home with earth cover on the roof as well as on the two opaque north leg walls. It is of durable and efficient masonry construction which included stone masonry with on-site materials and cement block and ready mix concrete. Excavation, backfill, and drainage were necessary aspects of earth sheltered construction together with the all-important Bentonite waterproofing system. Warm Gold is a house which meets all the national building code standards of HUD. The home has two bedrooms, one bathroom, living room, dining room-kitchen, greenhouse, and utility annex, all of which are incorporated with the earth-sheltered, passive solar systems to be a comfortable, energy-efficient living environment.

  16. Santa Clara Water & Sewer- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water & Sewer Utilities Department supplies,...

  17. Solar Energy Potential | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sources Home Fossil Nuclear Renewable Energy Renewable Energy Home Biomass Geothermal Solar Water Wind Energy Efficiency Energy Efficiency Home Building Design Building Design...

  18. Columbia Water & Light- Home Performance with ENERGY STAR Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water and Light, a municipal utility, offers rebates to its residential customers who make certain energy efficient improvements to the home. Under the Home Performance with Energy Star...

  19. Loveland Water & Power- Home Energy Audit Rebate Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power (LWP) is providing an incentive for customers living in single-family detached homes or attached townhouses that wish to upgrade the energy efficiency of eligible homes....

  20. Solar Water Heat | Open Energy Information

    Open Energy Info (EERE)

    Water Heat Jump to: navigation, search TODO: Add description List of Solar Water Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarWaterHeat&oldid26719...

  1. Do You Have a Solar Water Heater?

    Broader source: Energy.gov [DOE]

    Earlier this week, Ernie wrote about the economics of getting a solar water heater. As Ernie explained, a solar water heater is more expensive than a normal water heater, but depending on your area...

  2. The Best and Brightest in Solar Homes Open to the Public

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Best and Brightest in Solar Homes Open to the Public For more information contact: e:mail: Public Affairs Golden, Colo., Oct. 1, 1997 -- The most innovative designs in passive and active solar homes in the Denver-metro area will be open to the public October 18 as part of the second annual Colorado Tour of Solar Homes. More than 20 homes with state-of-the-art solar technologies in the Denver-Boulder area are included in the tour, sponsored by the American Solar Energy Society (ASES) in

  3. Solar Decathlon Teams Working Around the Clock to Assemble Homes For Competition

    Broader source: Energy.gov [DOE]

    Students teams are now working 24/7 to assemble the solar-powered, energy-efficient homes they’ve designed for the Solar Decathlon in time for the start of the competition next Friday. Visit the Solar Decathlon site to learn how you can tour each of the 19 homes online and in person.

  4. Glendale Water and Power- Solar Solutions Program

    Broader source: Energy.gov [DOE]

    The Solar Solutions program provides all customer groups with an incentive to install photovoltaic (PV) systems on their homes and buildings. Rebate levels will decrease over time on an annual...

  5. High-Performance with Solar Electric Reduced Peak Demand: Premier Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rancho Cordoba, CA - Building America Top Innovation | Department of Energy with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA - Building America Top Innovation High-Performance with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA - Building America Top Innovation Photo of homes in Premier Gardens. As the housing market continues to evolve toward zero net-energy ready homes, Building America research has provided essential guidance for integrating

  6. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 providing informationprovide information about how to achieve energy savings from solar water heating, electric dedicated heat pump water heating, and gas tankless systems. ...

  7. Commonwealth Solar Hot Water Residential Program

    Broader source: Energy.gov [DOE]

    Since February 2011, the Massachusetts Clean Energy Center (MassCEC) has provided rebates for the installation of residential solar hot water systems through the Commonwealth Solar Hot Water Prog...

  8. SMUD- Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    The Sacramento Municipal Utility District's (SMUD) Solar Domestic Hot Water Program provides rebates and/or loan financing to customers who install solar water heating systems. The amount of the...

  9. Selling the solar home '80: market findings for the housing industry

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    An overview of the current 1980's market for solar heated and cooled houses is presented. The study is based on the first, second, and third demonstration program grants awarded by HUD under the Solar Heating and Cooling Demonstration Act of 1974. The market data collection process included interviews with industry, public officials, and consumers. Profiles are provided of the typical demonstration solar house, builder, and purchaser. Considerations in planning the solar home and designing and building the home for the local market are reviewed. The attitudes and interests of the potential solar home purchaser are discussed and a profile of buyers and nonbuyers is presented; frequently asked questions are listed. Techniques and promotional tools for attracting solar home buyers are reviewed and the reactions of purchasers living in a solar house are cited. The general outlook for the solar housing market is discussed and is considered encouraging.

  10. Assessment of Unglazed Solar Domestic Water Heaters

    SciTech Connect (OSTI)

    Burch, J.; Salasovich, J.; Hillman, T.

    2005-12-01

    Conference paper investigating cost-performance tradeoffs in replacing glazed collectors with unglazed collectors in solar domestic water heating systems.

  11. SunShot Installs Solar Energy System on Local Habitat for Humanity Home |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Installs Solar Energy System on Local Habitat for Humanity Home SunShot Installs Solar Energy System on Local Habitat for Humanity Home September 22, 2014 - 5:10pm Addthis 1 of 10 SunShot Initiative team members install a solar energy system on a Habitat for Humanity home in Washington, D.C. on Friday, September 19. The project was organized by GRID Alternatives, the nation's largest solar non-profit organization, as part of a two-day event to bring solar power to

  12. Columbia Water & Light- Solar Energy Loans

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) offers electric residential and commercial customers low-interest loans for photovoltaic (PV) systems and solar water heaters.

  13. Save on Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Home Water Heating Save on Home Water Heating August 19, 2014 - 10:46am Addthis Purchasing a water heater with the ENERGY STAR® label ensures you are buying an energy efficient appliance designed to save consumers money. | Photo courtesy of Dennis Schroeder, National Renewable Energy Labs Purchasing a water heater with the ENERGY STAR® label ensures you are buying an energy efficient appliance designed to save consumers money. | Photo courtesy of Dennis Schroeder, National Renewable

  14. Solar water heating: FEMP fact sheet

    SciTech Connect (OSTI)

    Clyne, R.

    1999-09-30

    Using the sun to heat domestic water makes sense in almost any climate. Solar water heaters typically provide 40 to 80{percent} of a building's annual water-heating needs. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector.

  15. The California Energy Commission's New Solar Homes Partnership Program Case Study: Promoting Greener, Better Housing in California

    Broader source: Energy.gov [DOE]

    This case study analyzes data from the California Energy Commission's New Solar Homes Partnership Program, part of California's comprehensive statewide solar program, the California Solar Initiative. At the time this study was conducted, the New Solar Homes Partnership Program had installed 14,100 solar energy systems totaling 45 megawatts of capacity.

  16. Affordable Solar Hot Water and Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Water and Power LLC Jump to: navigation, search Name: Affordable Solar Hot Water and Power LLC Place: Dothan, Alabama Zip: 36305 Sector: Solar Product: Solar and Energy Efficiency...

  17. Lakeland Electric- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar...

  18. Commonwealth Solar Hot Water Commercial Program

    Broader source: Energy.gov [DOE]

    Beginning in August 2011, the Massachusetts Clean Energy Center (MassCEC) will provide grants* for feasibility studies of commercial solar hot water systems through the Commonwealth Solar Hot Wat...

  19. Siting Your Solar Water Heating System | Department of Energy

    Energy Savers [EERE]

    Siting Your Solar Water Heating System Siting Your Solar Water Heating System Before you buy and install a solar water heating system, you need to first consider your site's solar ...

  20. Siting Your Solar Water Heating System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Your Solar Water Heating System Siting Your Solar Water Heating System Before you buy and install a solar water heating system, you need to first consider your site's solar...

  1. DOE Zero Energy Ready Home Efficient Hot Water Distribution II...

    Broader source: Energy.gov (indexed) [DOE]

    with the Challenge Home program and here to set this up for you. Today's session on hot water distribution is one of a continuing series of tech training webinars to support our...

  2. DOE Zero Energy Ready Home Efficient Hot Water Distribution I...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I -- What's At Stake Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution I -- What's At Stake Webinar (Text Version) Below is the text version of the...

  3. Innovative solar thermochemical water splitting.

    SciTech Connect (OSTI)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas; Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D.; James, Darryl L.

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  4. Secretary Chu Announces More Stringent Appliance Standards for Home Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heaters and Other Heating Products | Department of Energy Stringent Appliance Standards for Home Water Heaters and Other Heating Products Secretary Chu Announces More Stringent Appliance Standards for Home Water Heaters and Other Heating Products April 1, 2010 - 12:00am Addthis WASHINGTON - U.S. Department of Energy Secretary Steven Chu announced today that the Department has finalized higher energy efficiency standards for a key group of heating appliances that will together save consumers

  5. Solar Water Heating Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Assistance Program » Pilot Projects » Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's Nov. 16, 2010, presentation about residential solar water heating technologies and applications. It's one in a series of Webinars to support state and local projects funded by Sustainable Energy Resources for Consumers Grants. You can also read a transcript of the Webinar. More Information For

  6. Valley Electric Association- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  7. Clark Public Utilities- Solar Water Heater Rebate

    Broader source: Energy.gov [DOE]

    In addition, Clark Public Utilities offers a loan program for eligible solar water heater equipment. For additional information, call Energy Services at (360) 992-3355.

  8. Sandia defines solar variability zones

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    defines solar variability zones - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  9. Solar Home Tour and Exhibitor Showcase Open Doors to Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Solar Home Tour and Exhibitor Showcase Open Doors to Renewable Energy Information Golden, Colo., Oct. 4, 2001 - Since renovating his 2,700 square-foot 1950s style home to include such energy efficient features as passive cooling and an active solar collector that pumps warm air into the lower levels of the home, Steve Andrews has saved $1,000 each year in utility costs. To see how Andrews and 15 others are tapping into the energy of the sun, take the Denver Metro Tour of Solar

  10. Solar Water Heating System Maintenance and Repair | Department...

    Energy Savers [EERE]

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | ...

  11. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

  12. Solar Webinar Presentation Slides | Department of Energy

    Energy Savers [EERE]

    Energy Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE, from the U.S. Environmental Protection Agency (EPA) PDF icon rerh_swh_guide.pdf More Documents & Publications Renewable Energy Ready Home Solar Photovoltaic Specifications DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home PV-Ready Checklist

    Presentation Slides Solar Webinar

  13. Solar Successes: The Best of Today's Energy Efficient Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-01-01

    This is a brochure developed specifically for residential home builders. It provides information on basic financial factors and additional resources to consider when incorporating solar technologies into building plans.

  14. List of Solar Water Heat Incentives | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Solar Water Heat Ground Source Heat Pumps Yes City and County of Denver - Solar Panel Permitting (Colorado) SolarWind Permitting Standards Colorado Commercial...

  15. Heat Pump Water Heaters and American Homes: A Good Fit?

    SciTech Connect (OSTI)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  16. Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

    2009-04-01

    Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

  17. Solar Decathlon 2015: Nation's Leading Sustainable Home Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... These solar-powered, energy-efficient houses represent diverse target markets, technological innovations and design approaches. Check out the Solar Decathlon website for ...

  18. NREL: Water Power Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power Research NREL's water power technologies research leverages 35 years of experience developing renewable energy technologies to support the U.S. Department of Energy Water Power Program's efforts to research, test, evaluate, develop and demonstrate deployment of innovative water power technologies. These include marine and hydrokinetic technologies, a suite of renewable technologies that harness the energy from untapped wave, tidal, current and ocean thermal resources, as well as

  19. Expansion and Improvement of Solar Water Heating Technology in...

    Open Energy Info (EERE)

    and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating Technology...

  20. Sustainable Energy Resources for Consumers Webinar on Solar Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heating Transcript Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript Video recording transcript of a Webinar on Nov. 16, 2010 about ...

  1. Extremely stable bare hematite photoanode for solar water splitting...

    Office of Scientific and Technical Information (OSTI)

    Extremely stable bare hematite photoanode for solar water splitting Prev Next Title: Extremely stable bare hematite photoanode for solar water splitting Authors: Dias, Paula ; ...

  2. Building Codes and Regulations for Solar Water Heating Systems...

    Office of Environmental Management (EM)

    Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit:...

  3. Solar Hot Water Market Development in Knoxville, TN

    Broader source: Energy.gov [DOE]

    Assessment of local solar hot water markets, market variables, market barriers, and suggested strategies to increase solar hot water deployment in the city and county.

  4. drinking water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drinking water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  5. Combining Solar and Home Performance Services | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Think Again A Fresh Look at Home Performance Business Models and Service Offerings (301) Lessons Learned: Peer Exchange Calls -- No. 3 Voluntary ...

  6. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. CPS Energy- Solar Hot Water Rebate Program

    Broader source: Energy.gov [DOE]

    As part of a larger program designed to reduce electricity demand within its service territory, CPS Energy now offers rebates for solar water heaters to its customers. In general, any CPS Energy...

  9. Nationwide: Slashing Red Tape To Speed Solar Deployment for Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chicago Solar Express Reduces Costs, Wait Times Mercer Island celebrates the 500th Solarize installation in the state of Washington with a ribbon cutting at the Auto-Spa car wash. ...

  10. New energy-conserving passive solar single-family homes. Cycle 5, Category 2 HUD solar heating and cooling demonstration program

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The 91 new single-family, energy-conserving passive solar homes described represent award winning designs of the series of five demonstration cycles of the HUD program. Information is presented to help builders and lenders to understand passive solar design, to recognize passive solar buildings, and to provide specific design, construction, and marketing suggestions and details. The first section describes the concept of passive solar energy, explains the various functions which passive solar systems must perform, and discusses the various types of passive systems found in the Cycle 5 projects. The second section discusses each of the 91 solar homes. The third section details the issues of climate requirements and site design concerns, gives examples of building construction, and suggests how to market solar homes. The appendices address more technical aspects of the design and evaluation of passive solar homes.

  11. Renewable energy technologies for federal facilities: Solar water heating

    SciTech Connect (OSTI)

    1996-05-01

    This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

  12. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  13. Sustainable Energy Resources for Consumers Webinar on Solar Water Heating

    Energy Savers [EERE]

    Transcript | Department of Energy Solar Water Heating Transcript Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript Video recording transcript of a Webinar on Nov. 16, 2010 about residential solar water heating applications PDF icon solar_water_heating_webinar.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers Webinar on Residential Water Heaters Sustainable

  14. Solar Hot Water Contractor Licensing

    Broader source: Energy.gov [DOE]

    In order to obtain one of these specialty licenses, installers must meet the following criteria. The applicant for a Restricted Solar Mechanic license must provide the Arkansas Department of...

  15. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper,

  16. City of Lancaster- Mandatory Solar Requirement for New Homes

    Broader source: Energy.gov [DOE]

    PV is not required on all homes within a production subdivision, but the builder must meet the aggregate requirement within the subdivision. For example, one house with twice the required PV can ...

  17. Planning a Home Solar Electric System | Department of Energy

    Office of Environmental Management (EM)

    ... whole-house system design -- an approach for building an energy-efficient home. ... number to your annual electricity usage (called demand) to get an idea of how much you will save. ...

  18. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes nationwide, offering an opportunity for innovative solar water heating (SWH) technologies to offset energy use and costs. In the Low-Cost Solar Water Heating Research and Development Roadmap, researchers at the National Renewable Energy Laboratory (NREL) outlined a strategy to expand the SWH market. Recognizing that

  19. Active Solar Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems » Active Solar Heating Active Solar Heating This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary

  20. Active Solar Heating | Department of Energy

    Energy Savers [EERE]

    Home Heating Systems » Active Solar Heating Active Solar Heating This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating

  1. NREL: Concentrating Solar Power Research - TroughNet Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steam is coming out of the generation system building. Power Plant Systems Parabolic Trough Data and Resources Industry Partners Solar Data Power Plant Data Models and Tools System ...

  2. Harnessing Solar Energy at Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How does it work? When sunlight shines on a Photovoltaic (PV) cell, the absorbed light ... Photovoltaic Cells First, it is important to understand how solar energy is harnessed. ...

  3. Solar Energy Education. Home economics: teacher's guide. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Community Comes Out in Full Force for SunShot Grand Challenge Summit Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit May 22, 2014 - 10:13am Addthis Packed House 1 of 12 Packed House An energetic crowd of hundreds of leaders throughout the solar community gathered for the 2014 SunShot Grand Challenge Summit to work together to reduce the costs of solar energy technologies. Image: SunShot Initiative, Energy Department. Solar Tech Forum 2 of 12

  4. Considering Solar For Your Home? One Milwaukee Homeowner Shares...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paula Papanek. Residential solar installation in Milwaukee. | Photo courtesy of Dr. Paula Papanek. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of ...

  5. Solar Decathlon Homes-- They’re Not Just for Show

    Broader source: Energy.gov [DOE]

    Have you ever wondered what happens to Solar Decathlon Houses after the competition? We explore where some of the houses are now.

  6. Selling Into the Sun: Price Premium Analysis of a Multi-State Dataset of Solar Homes

    Broader source: Energy.gov [DOE]

    Homes with solar photovoltaic (PV) systems have multiplied in the United States recently, reaching more than half a million in 2014, in part due to plummeting PV costs and innovative financing options. As PV systems become an increasingly common feature of U.S. homes, the ability to assess the value of these homes appropriately will become increasingly important. At the same time, capturing the value of PV to homes will be important for facilitating a robust residential PV market. Appraisers and real estate agents have made strides toward valuing PV homes, and several limited studies have suggested the presence of PV home premiums; however, gaps remain in understanding these premiums for housing markets nationwide. To fill these gaps, researchers from Lawrence Berkeley National Laboratory (LBNL) and their collaborators from other institutions conducted the most comprehensive PV home premium analysis to date. The study more than doubles the number of PV home sales previously analyzed, examines transactions in eight states, and spans the years 2002–2013. The results impart confidence that PV consistently adds value across a variety of states, housing and PV markets, and home types.

  7. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  8. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to...

  9. PV vs. Solar Water Heating- Simple Solar Payback

    Broader source: Energy.gov [DOE]

    Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of payback—like environmental externalities—are not usually calculated in dollars. There’s no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as you’d like, but all systems will significantly offset their cost over their lifetimes. Here we’ll try to answer: Which system will give the quickest return on investment (ROI)?

  10. Homebuilder's Guide to Going Solar

    DOE R&D Accomplishments [OSTI]

    2008-12-00

    This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

  11. Solar and Wind Powering Wyoming Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy, but when faced with a 100,000 price tag to get connected to the grid, he had ... 12 solar panels on his front lawn and a wind turbine in the backyard."I had no involvement ...

  12. The World's Largest Solar Project Finds a Home in California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? The Blythe site will be the first of four solar thermal plant ...

  13. July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and Commercial Facilities

    Broader source: Energy.gov [DOE]

    On Wednesday, July 17 from 2 – 3 p.m. ET, Clean Energy States Alliance will host a webinar on resilient solar-storage systems for homes and commercial facilities. The webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability.

  14. Heat Exchangers for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar...

  15. Optimum hot water temperature for absorption solar cooling

    SciTech Connect (OSTI)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  16. Research & Development Needs for Building-Integrated Solar Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and cooling, water heating, hybrid photovoltaic-thermal systems (PVT), active solar ... Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America ...

  17. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  18. energy-water interdependency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water interdependency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  19. "smart water" infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart water" infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  20. Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Water Power Newsletter - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  1. U.S. Virgin Islands- Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    A household can receive a maximum of two solar water heater rebates. Rebate amounts vary slightly based upon installed equipment. Rebates will be $1,250 for solar water heaters with an OG-300 rat...

  2. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  3. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  4. Solar Domestic Water Heating: a Roof-Integrated Evaluation

    SciTech Connect (OSTI)

    2009-09-03

    This fact sheet describes an evaluation of the performance of a roof-integrated solar water heating system.

  5. Solar in the Real World: Tour of Solar Homes Begins in October

    Broader source: Energy.gov [DOE]

    The National Solar Tour takes place annually during the first Saturday in October in conjunction with National Energy Awareness Month.

  6. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  7. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, Hugh; Wade, Jeremy

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  8. Homebuilder's Guide to Going Solar (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

  9. Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Whole-Home Gas Tankless Water Heaters Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for whole-home gas tankless water heaters, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most

  10. Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar (Text Version) | Department of Energy Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program Webinar (Text Version) Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program Webinar (Text Version) Below is the text version of the webinar, Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program, presented in October 2014. Watch the presentation. GoToWebinar voice: The broadcast is now starting. All attendees are in listen-only

  11. Project SUNN solar home (APTECH AZ-81-54). Final report

    SciTech Connect (OSTI)

    Birkey, R.C.

    1983-01-01

    The design and construction of the SUNN solar home utilizing energy conservation relevant to the constuction needs of the Navajo Nation has met with success, most particularly in its initial student and Navajo leadership training programs. The overall size of the structural concept was increased dramatically (from the modest 700 to 900 square foot model to an 1856 sq. ft. structure) in order to accommodate the Window Rock School District with a practical building and the placement of SUNN home in a highly visible area of the school grounds. A cooperation was formed with the school district with intentions to increase the potential for publicity, community involvement, utilize students in the construction process, and develop professional interest in the utilization and transfer of SUNN home technologies for other Navajo communities.

  12. Building Codes and Regulations for Solar Water Heating Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every

  13. DOE Challenge Home Case Study, Mandalay Homes, Phoenix, AZ, Affordable

    Energy Savers [EERE]

    ... On the Gordon Estates homes, Mandalay installed a unique solar system that provides water ... The underside of the roof is covered with 5.5 inches (R-20) of closed- cell spray foam, ...

  14. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, Utah

    SciTech Connect (OSTI)

    none,

    2013-09-01

    As the first net zero-energy production home certified in Utah, this house incorporates two 94% efficient tankless water heaters and two roof-mounted solar panels that preheat the home's water supply. This home won a 2013 Housing Innovation Award in the production builder category.

  15. What to expect from a batch solar water heater

    SciTech Connect (OSTI)

    Stickney, B.

    1984-01-01

    Batch solar water heaters are becoming more popular because of their low initial cost and simplicity of operation. Batch type water heaters have the following features in common: a water tank or tanks, an insulated tank enclosure, a glazed collecter surface, and a reflector system. The advantages of this type of solar water heater are discussed.

  16. Water Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater Basics Energy Basics Home Renewable Energy Homes &

  17. South River EMC- Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    South River Electric Membership Corporation (EMC) is providing rebates to encourage their customers to install solar water heating systems. To be eligible for the rebate solar collectors must have...

  18. Orlando Utilities Commission- Residential Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Through a partnership with the Orlando Federal Credit Union (OFCU), OUC also offers a Residential Solar Loan Program to finance the solar hot water system. Customers who choose to finance through...

  19. Siting Your Solar Water Heating System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Photovoltaic Modules. North Carolina Solar Center Heat Your Water with the Sun (PDF). U.S. Department of Energy Addthis Related Articles An example of a solar pool...

  20. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... comprehensively recording solar irradiance data to accompany its outdoor PV testing. ...

  1. Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heaters » Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks in solar water heating systems. When selecting a heat-transfer fluid, you and your solar heating contractor should consider the following criteria: Coefficient of expansion - the fractional

  2. Tampa Electric- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Tampa Electric provides financial incentives to customers who install solar-energy systems on their homes and businesses. Customers who install eligible solar water heating systems may receive a ...

  3. Monitoring SERC Technologies - Solar Hot Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Water Monitoring SERC Technologies - Solar Hot Water On October 27, 2011, Eliza Hotchkiss, an analyst at the National Renewable Energy Laboratory, presented a Webinar about Solar Hot Water systems and how to properly monitor their installation. View the webinar presentation or read the transcript. More Information Some resources and tools mentioned in the presentation include: Database for State Incentives for Renewables and Efficiency NREL Solar Technology Analysis Models and Tools SunShot

  4. Austin Energy - Solar Water Heating Rebate | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Federal Government Multifamily Residential Institutional Savings Category Solar Water Heat Maximum Rebate Rebate: 2,000 Loan: 10,000 for duplex; 5,000 for single family...

  5. Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...

    Broader source: Energy.gov (indexed) [DOE]

    June 18, 2003, MAG passed permit submission requirements for residential solar domestic water heating systems. This is in addition to the existing standards for residential and...

  6. Building Codes and Regulations for Solar Water Heating Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision...

  7. Duquesne Light Company - Residential Solar Water Heating Program...

    Broader source: Energy.gov (indexed) [DOE]

    rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of 286 per qualifying...

  8. Solar Hot Water Creates Savings for Homeless Shelters

    Broader source: Energy.gov [DOE]

    The state of Arizona and the House of Refuge Sunnyslope are partnering to install solar hot water systems at five Phoenix-area housing sites for homeless men.

  9. Ocala Utility Services- Solar Hot Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive...

  10. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  11. Sacramento Ordinance to Waive Fees for Solar Hot Water

    Broader source: Energy.gov [DOE]

    An ordinance suspending for the calendar years 2007-2009 all fees related to installations of solar water heaters on existing residences.

  12. Home and Building Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's buildings consume more energy than any other sector of the U.S. economy, including transportation and industry. Learn more about: Heating and Cooling Passive Solar Design Water Heating Lighting and Daylighting Energy Basics Home Renewable Energy Homes & Buildings Lighting

  13. Solar energy integrated at Hawaiian military housing | Department...

    Broader source: Energy.gov (indexed) [DOE]

    center, as well as for thousands of new, solar-powered homes that will be constructed, complete with solar water heaters and, in the near future, solar photovoltaic panels. ...

  14. Addressing the Water and Energy Nexus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water and Energy Nexus - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  15. Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Generation and Water Use Data - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  16. Comparative performance indices for solar batch water heaters

    SciTech Connect (OSTI)

    Stickney, B.L.; Aaboe, E.H.

    1981-01-01

    A simple method is developed to allow direct comparison of various solar batch water heaters. Certain system variables must be determined by calculation or measurement which may vary with season. These include Thermal Efficiency of Collection, Tank R value, Collector Surface to Tank Volume Ratio, Clear Day Collection Period in Hours, System Cost, and Installed Solar Heatings Fraction (optional). These variables are used to compute any one of four performance indices. This method allows a valid comparison not only between various solar batch water heaters but between other types of solar water heaters as well. This system may be used by consumers or designers to choose the most cost and performance effective options.

  17. Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water |

    Energy Savers [EERE]

    Department of Energy This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Solar Hot Water. PDF icon solar_thermal_presentation.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) Success Story: Montana Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source Heat

  18. Estimating the Cost and Energy Efficiency of a Solar Water Heater |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can usually save you

  19. Solar and nuclear energy expertise to be enhanced by research centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat & Cool » Water Heating » Solar Water Heaters Solar Water Heaters Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar water heaters -- also called solar domestic hot water systems -- can be a cost-effective way to generate hot water for your home. They can be used in

  20. Estimating the Cost and Energy Efficiency of a Solar Water Heater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater March 2, 2015 - 3:09pm Addthis Solar water...

  1. Building America Whole-House Solutions for New Homes: CDC Realty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research partner Building Science Corporation to design HERS-54 homes with ducts in insulated attics, solar water heating, tight air sealing, and rigid foam exterior sheathing. ...

  2. DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA, Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home | Department of Energy San Marcos, CA, Production Home DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA, Production Home Case study of a DOE Zero Energy Ready Home in San Marcos, CA that scored HERS 52 without PV, -4 with PV. This 52,778-square-foot production home has R-20 advanced framed walls with batts plus rigid foam sheathing, an air-source heat pump for central air in sealed attic, solar water heating and 100% LED lighting. PDF icon BA_ZeroEnergyReady_KB

  3. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott Valley, AZ

    Energy Savers [EERE]

    Double ZeroHouse 3.0 by KB Home DOE Tour of Zero: Double ZeroHouse 3.0 by KB Home 1 of 14 KB Home built this 2,612-square-foot home in El Dorado Hills, California, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 14 The DoubleZero House 3.0 by KB Home is projected to have zero energy bills thanks to high-efficiency construction and rooftop solar electric panels. It will also use zero city water for irrigation thanks to an on-site water

  4. Estimating the Cost and Energy Efficiency of a Solar Water Heater...

    Broader source: Energy.gov (indexed) [DOE]

    Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit...

  5. Development of a Long-Life-Cycle, Highly Water-Resistant Solar...

    Office of Scientific and Technical Information (OSTI)

    Highly Water-Resistant Solar Reflective Retrofit Roof Coating Citation Details In-Document Search Title: Development of a Long-Life-Cycle, Highly Water-Resistant Solar ...

  6. Low Cost Solar Water Heating R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heating R&D Low Cost Solar Water Heating R&D Emerging Technologies Project for ... More Documents & Publications Atmospheric Pressure Deposition for Electrochromic Windows ...

  7. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  8. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  9. Builders Challenge High Performance Builder Spotlight - Palm Harbor Homes - Bimini II, Plant City, FL

    SciTech Connect (OSTI)

    2008-05-01

    Building America/Builders Challenge fact sheet on Palm Harbor Homes, an energy-efficient home builder in hot-humid climate using solar hot water, spray foam insulation, and SEER14 HVAC.

  10. Hodges residence: performance of a direct gain passive solar home in Iowa

    SciTech Connect (OSTI)

    Hodges, L.

    1980-01-01

    Results are presented for the performance of the Hodges residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBtu) gross and 26 GJ (25 MBtu) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 Btu/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollowcore floor which serves as the main storage mass and for the comfort range in the house.

  11. Hodges residence: performance of a direct gain passive solar home in Iowa

    SciTech Connect (OSTI)

    Hodges, L.

    1980-01-01

    Results are presented for the performance of the Hodges Residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBTU) gross and 26 GJ (25 MBTU) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 BTU/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollow-core floor which serves as the main storage mass and for the comfort range in the house.

  12. Evaluation of a High-Performance Solar Home in Loveland, Colorado: Preprint

    SciTech Connect (OSTI)

    Hendron, R.; Eastment, M.; Hancock, E.; Barker, G.; Reeves, P.

    2006-08-01

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 35 l/s (75 cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.

  13. Evaluation of a High-Performance Solar Home in Loveland, Colorado

    SciTech Connect (OSTI)

    Hendron, R.; Eastment, M.; Hancock, E.; Barker, G.; Reeves, P.

    2006-01-01

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR? appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 75 cfm (35 l/s), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark [1]. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.

  14. Water Impacts of High Solar PV Electricity Penetration

    SciTech Connect (OSTI)

    Macknick, Jordan; Cohen, Stuart

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  15. Energy and Water Data Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Portal - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  16. Outdoor Outfitter Gets Greener With Solar Water Heater

    Broader source: Energy.gov [DOE]

    Using Recovery Act funding, L.L. Bean, the popular outdoor apparel company, recently installed a 180-tube solar hot water collector array on the roof of their flagship store in Freeport, Maine. Find out some how much energy and money they're saving thanks to the new solar installation.

  17. Pasadena Water and Power- Solar Power Installation Rebate

    Broader source: Energy.gov [DOE]

    Pasadena Water & Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of solar power by...

  18. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  19. GreyStone Power- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

  20. City Water Light and Power- Solar Rewards Program

    Broader source: Energy.gov [DOE]

    City Water, Light and Power  (CWLP) is offering residential and commercial customers a $500 per kilowatt (kW) rebate for installing solar photovoltaic (PV) systems with a maximum rebate of up to $2...

  1. DOE Zero Energy Ready Home Case Study 2013: Mandalay Homes, Phoenix...

    Energy Savers [EERE]

    ... On the Gordon Estates homes, Mandalay installed a unique solar system that provides water ... The underside of the roof is covered with 5.5 inches (R-20) of closed- cell spray foam, ...

  2. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine

    Broader source: Energy.gov [DOE]

    Case study describing a single-story, 1,200-sq. ft. home in Maine with double shell walls, triple-pane windows, ductless heat pump, solar hot water, HERS 35 eithout PV, HERS 11 with PV

  3. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION residential; Residential Buildings; ARBI; Building America; TRNSYS; multifamily; domestic hot water; solar water ...

  4. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

  5. New Whole-House Solutions Case Study: Ravenwood Homes and Energy Smart Home Plans, Inc., Cape Coral, Florida

    SciTech Connect (OSTI)

    none,

    2012-10-01

    PNNL, Florida HERO, and Energy Smart Home Plans helped Ravenwood Homes achieve a HERS 15 with PV or HERS 65 without PV on a home in Florida with SEER 16 AC, concrete block and rigid foam walls, high-performance windows, solar water heating, and 5.98 kW PV.

  6. Solar Water Heaters | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The batch collector is a large box holding a tank and covered with a glaze that faces the sun. Water is heated in this tank, and another pipe takes the heated water from the batch...

  7. EWEB- Residential Solar Water Heating Loan Program

    Broader source: Energy.gov [DOE]

    Eugene Water & Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of...

  8. Mountain Association for Community Economic Development- Solar Water Heater Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Kentucky Solar Partnership (KSP) and the Mountain Association for Community Economic Development (MACED) partner to offer low interest loans for the installation of solar water heaters. Loans...

  9. Zero Net Energy Homes Production Builder Business Case: California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...Florida Production Builders - Building America Top Innovation Photo of a solar home. ... to incorporate energy efficiency and solar into their home designs-Shea Homes, Clarum ...

  10. Powering a Home with Just 25 Watts of Solar PV. Super-Efficient Appliances Can Enable Expanded Off-Grid Energy Service Using Small Solar Power Systems

    SciTech Connect (OSTI)

    Phadke, Amol A.; Jacobson, Arne; Park, Won Young; Lee, Ga Rick; Alstone, Peter; Khare, Amit

    2015-04-01

    Highly efficient direct current (DC) appliances have the potential to dramatically increase the affordability of off-grid solar power systems used for rural electrification in developing countries by reducing the size of the systems required. For example, the combined power requirement of a highly efficient color TV, four DC light emitting diode (LED) lamps, a mobile phone charger, and a radio is approximately 18 watts and can be supported by a small solar power system (at 27 watts peak, Wp). Price declines and efficiency advances in LED technology are already enabling rapidly increased use of small off-grid lighting systems in Africa and Asia. Similar progress is also possible for larger household-scale solar home systems that power appliances such as lights, TVs, fans, radios, and mobile phones. When super-efficient appliances are used, the total cost of solar home systems and their associated appliances can be reduced by as much as 50%. The results vary according to the appliances used with the system. These findings have critical relevance for efforts to provide modern energy services to the 1.2 billion people worldwide without access to the electrical grid and one billion more with unreliable access. However, policy and market support are needed to realize rapid adoption of super-efficient appliances.

  11. THE PHASES OF WATER ICE IN THE SOLAR NEBULA

    SciTech Connect (OSTI)

    Ciesla, Fred J.

    2014-03-20

    Understanding the phases of water ice that were present in the solar nebula has implications for understanding cometary and planetary compositions as well as the internal evolution of these bodies. Here we show that amorphous ice formed more readily than previously recognized, with formation at temperatures <70K being possible under protoplanetary disk conditions. We further argue that photodesorption and freeze-out of water molecules near the surface layers of the solar nebula would have provided the conditions needed for amorphous ice to form. This processing would be a natural consequence of ice dynamics and would allow for the trapping of noble gases and other volatiles in water ice in the outer solar nebula.

  12. Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including whole-home gas tankless water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  13. Solar Decathlon 2015: Nation’s Leading Sustainable Home Design Competition on the Horizon

    Broader source: Energy.gov [DOE]

    The teams are set for this year's Solar Decathlon, which challenges students from around the world to design, build and operate highly energy efficient solar-powered houses.

  14. Low-Cost Solar Water Heating Research and Development Roadmap

    SciTech Connect (OSTI)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  15. Solar Hot Water Heater Industry in Barbados | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Hot Water Heater Industry in Barbados Solar Hot Water Heater Industry in Barbados Rooftop SWHs are being successfully used in Barbados as a result of effective financial incentives and government support. <em>Photo from iStock 6923507</em> Rooftop SWHs are being successfully used in Barbados as a result of effective financial incentives and government support. Photo from iStock 6923507 Barbados is addressing the challenge of offsetting high fossil fuel costs by using its

  16. Development of a Solar-Thermal ZnO/Zn Water-Splitting Thermochemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of a Solar-thermal ZnOZn Water-splitting Thermochemical Cycle Final Report ... Combining this with annual average solar efficiencies, the overall solar to hydrogen LHV ...

  17. Study Design And Realization Of Solar Water Heater

    SciTech Connect (OSTI)

    Lounis, M.; Boudjemaa, F.; Akil, S. Kouider

    2011-01-17

    Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m{sup 2} of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m{sup 2} a year in the north and 2263 KWh/m{sup 2} a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

  18. Salem Electric- Solar Water Heater Rebate

    Broader source: Energy.gov [DOE]

    Salem Electric residential customers with electric water heating are eligible for a $600 rebate through Salem's Bright Way program. A program brochure with details is available on the program...

  19. A Realistic Hot Water Draw Specification for Rating Solar Water Heaters

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. This paper proposes a more realistic ratings draw that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. Presented at the 2012 World Renewable Energy Forum; Denver, Colorado; May 13-17, 2012.

  20. NEST HOME

    Broader source: Energy.gov [DOE]

    The Missouri University of Science and Technology returns for its sixth Solar Decathlon with its team’s 2015 entry, the Nest Home, designed to serve a family “from a full nest to an empty nest.”

  1. University of Maryland Solar Decathlon Team Celebrates with a "Shed Raising"

    Broader source: Energy.gov [DOE]

    The University of Maryland 2011 Solar Decathlon Team is using one element -- water -- as a major component of their home. Here's how.

  2. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  3. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  4. Building America Efficient Solutions for New Homes Case Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HERS 65 without PV on a home in Florida with SEER 16 AC, concrete block and rigid foam walls, high-performance windows, solar water heating, and 5.98 kW PV. PDF icon Case Study: ...

  5. Building America Efficient Solutions for Existing Homes Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNNL and Florida Solar Energy Center worked with Habitat for Humanity of Palm Beach County to upgrade an empty 1996 home with a 14.5 SEER AC, heat pump water heater, CFLs, more ...

  6. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    SciTech Connect (OSTI)

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  7. Mexico-GTZ Support for the Programme to Promote Solar Water Heating...

    Open Energy Info (EERE)

    Support for the Programme to Promote Solar Water Heating Jump to: navigation, search Logo: Mexico-GTZ Support for the Programme to Promote Solar Water Heating Name Mexico-GTZ...

  8. Nationwide: Slashing Red Tape To Speed Solar Deployment for Homes and Businesses

    Broader source: Energy.gov [DOE]

    Rooftop Solar Challenge helped cut permitting time by 40 percent and reduce fees by over 10 percent, opening the door to make it faster and easier for more than 47 million Americans to install solar.

  9. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar ...

  10. Do You Wonder How Much Energy Your Home Could Get from Solar or Wind?

    Broader source: Energy.gov [DOE]

    Have you ever thought about installing wind or solar energy on your property? Learn more about it in this post.

  11. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  12. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect (OSTI)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  13. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Seattle, Washington

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This house incorporates slab-on-grade, EPS roof, and radiant heating with an air-to-water heat pump that also preheats domestic hot water. Without counting in the solar panels, the home earns a home energy rating system (HERS) score of 37, with projected utility bills of about $740 a year. With the 6.4-kW photovoltaic power system installed on the roof, the home’s HERS scores drops to -1 and utility bills for the all-electric home drop to zero. This home was awarded a 2013 Housing Innovation Award in the affordable builder category.

  14. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    Subject: residential; Residential Buildings; ARBI; Building America; TRNSYS; multifamily; domestic hot water; solar water heater; recirculation Word Cloud More Like This Full Text ...

  15. Solar Water Heater Roadmap Leads Path to Market Expansion (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Innovative strategy to reduce installed cost of solar water heater systems can rival conventional natural gas water heaters in the marketplace.

  16. DOE Tour of Zero: The Solar Residence by e2 Homes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    their lower surface from below, for up to 30% greater power production. All wiring is hidden within the canopy's aluminum support beams. 6 of 12 The home's porch roof consists of...

  17. Towards a Design of a Complete Solar Water Splitting System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towards a Design of a Complete Solar Water Splitting System 1 Feb 2013 BISfuel© : A team of Bisfuel researchers led by Devens Gust, Ana Moore and Tom Moore has designed and characterized an artificial photosynthetic reaction center inspired by natural Photosystem II and comprising a highly oxidizing porphyrin linked to a biomimetic electron transfer relay and a porphyrin electron acceptor. Two articles with the results of the study have appeared in September special issue of PNAS "Chemical

  18. Solar Water Heater Roadmap Leads Path to Market Expansion (Fact Sheet), Highlights in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative strategy to reduce installed cost of solar water heater systems can rival conventional natural gas water heaters in the marketplace. Researchers in the Residential Buildings group at the National Renewable Energy Laboratory (NREL) have developed an R&D roadmap outlining a path for innovative, cost-effective solar water heating solutions for the U.S. market. Solar water heaters (SWHs) currently make up less than 1% of the U.S. residential water heating market, leaving a significant

  19. Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

  20. Solar Water Heating with Low-Cost Plastic Systems

    SciTech Connect (OSTI)

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  1. Solar Water Heaters and the Economy | Department of Energy

    Energy Savers [EERE]

    Soft Costs » Solar Training Solar Training Solar Business Innovation Networking and Solar Technical Assistance Solar Training Solar DATA ANALYSIS Solar jobs have risen rapidly since the start of the SunShot Initiative. Training a prepared and skilled workforce that enables the solar industry to meet growing deployment demands is a high priority. The SunShot Initiative addresses the critical need for high-quality, local, accessible training in solar energy system design, installation, sales, and

  2. DOE Zero Ready Home Case Study: Southern Energy Homes, First...

    Energy Savers [EERE]

    ... Homes 2 2012 International Energy Conservation Code (IECC) and to have solar power installed or conduit and electric panel space installed for future solar equipment installation. ...

  3. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    SciTech Connect (OSTI)

    Springer, David; Seitzler, Matt; Backman, Christine; Weitzel, Elizabeth

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  4. Solar water heating technical support. Technical report for November 1997--April 1998 and final report

    SciTech Connect (OSTI)

    Huggins, J.

    1998-10-01

    This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

  5. edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL...

    Office of Scientific and Technical Information (OSTI)

    Home economics: student activities. Field test edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL TOOLS; CURRICULUM GUIDES; GLAZING; HOUSES; SOLAR COOKERS; SOLAR...

  6. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Glare Hazard Analysis Tool Solar...

  7. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    SciTech Connect (OSTI)

    Taylor, Robin; Davenport, Roger; Talbot, Jan; Herz, Richard; Genders, David; Symons, Peter; Brown, Lloyd

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are proposed for future activities. Electrolysis membranes that permit higher temperatures and lower voltages are attainable. The oxygen half cycle will need further development and improvement.

  8. DOE Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, Illinois

    SciTech Connect (OSTI)

    none,

    2013-09-01

    The Passive House Challenge Home located in River Forest, Illinois, is a 5-bedroom, 4.5-bath, 3,600 ft2 two-story home (plus basement) that costs about $237 less per month to operate than a similar sized home built to the 2009 IECC. For a home with no solar photovoltaic panels installed, it scored an amazingly low 27 on the Home Energy Rating System (HERS) score.An ENERGY STAR-rated dishwasher, clothes washer, and refrigerator; an induction cooktop, condensing clothes dryer, and LED lighting are among the energy-saving devices inside the home. All plumbing fixtures comply with EPA WaterSense criteria. The home was awarded a 2013 Housing Innovation Award in the "systems builder" category.

  9. Building America Efficient Solutions for Existing Homes Case Study: Habitat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Humanity of Palm Beach County, Lake Worth, Florida | Department of Energy Efficient Solutions for Existing Homes Case Study: Habitat for Humanity of Palm Beach County, Lake Worth, Florida Building America Efficient Solutions for Existing Homes Case Study: Habitat for Humanity of Palm Beach County, Lake Worth, Florida PNNL and Florida Solar Energy Center worked with Habitat for Humanity of Palm Beach County to upgrade an empty 1996 home with a 14.5 SEER AC, heat pump water heater, CFLs,

  10. Building America Efficient Solutions for New Homes Case Study: Tommy Williams Homes Initial Performance of Two Zero Energy Homes, Gainesville, Florida

    Broader source: Energy.gov [DOE]

    Tommy Williams Homes worked with PNNL, Florida HERO, Energy Smart Home Plans, and Florida Solar Energy Center to design and test two zero energy homes.

  11. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  12. Best Practices Case Study: Rural Development, Inc., Wisdom Way Solar Village, Greenfield, MA

    SciTech Connect (OSTI)

    2010-12-01

    Wisdom Way Solar Village is an appropriate moniker for the 20-unit community of energy-efficient duplexes in Greenfield, MA. The homes meet the requirements of the U.S. Department of Energys Builders Challenge, achieving HERS scores of 8 to 18 by packing energy efficiency features into the compact, heavily insulated homes and adding solar water heating and photovoltaics on top, to net home owners energy cost savings of at least $2,500 per year per home.

  13. San Diego Solar Panels Generate Clean Electricity Along with Clean Water

    Broader source: Energy.gov [DOE]

    Thanks to San Diego's ambitious solar energy program, the Otay Water Treatment Plant may soon be able to do that with net zero electricity consumption.

  14. Break-Even Cost for Residential Solar Water Heating in the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Break-even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities Hannah Cassard, Paul Denholm, and Sean Ong Technical Report NREL...

  15. SRP - Solar Water Heating Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on SRCC rating) Summary NOTE: SRP no longer provides incentives for solar electric photovoltaic systems. SRP's Solar Electric Program provides incentives to its residential...

  16. DOE Zero Energy Ready Home Case Study: The Imery Group — Proud Green Home, Serenbe, GA

    SciTech Connect (OSTI)

    none,

    2014-09-01

    The first certified Zero Energy Ready Home in Georgia was honored in the Custom Builder category of the 2014 Housing Innovation Awards. The 2,811-ft2, two-story custom home has 2x6 advanced framed walls filled with R-20 of open-cell spray foam, plus an R-6.6 insulated coated OSB sheathing. Also included is electronic monitoring equipment that tracks the PV, solar thermal water heater, ERV, mini-split heat pump with three indoor heads, solar water heater, and LED and CFL lighting.

  17. HUD (Housing and Urban Development) Intermediate Minimum Property Standards Supplement 4930. 2 (1989 edition). Solar heating and domestic hot water systems

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    The Minimum Property Standards for Housing 4910.1 were developed to provide a sound technical basis for housing under numerous programs of the Department of Housing and Urban Development (HUD). These Intermediate Minimum Property Standards for Solar Heating and Domestic Hot Water Systems are intended to provide a companion technical basis for the planning and design of solar heating and domestic hot water systems. These standards have been prepared as a supplement to the Minimum Property Standards (MPS) and deal only with aspects of planning and design that are different from conventional housing by reason of the solar systems under consideration. The document contains requirements and standards applicable to one- and two-family dwellings, multifamily housing, and nursing homes and intermediate care facilities references made in the text to the MPS refer to the same section in the Minimum Property Standards for Housing 4910.1.

  18. Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  19. Building America Whole-House Solutions for New Homes: John Wesley...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to build two net-zero energy homes with foam-sheathed masonry walls, low-E windows 2.9 ACH50 air sealing, transfer grilles, ducts in insulated attic, PV, and solar water heating. ...

  20. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old...

    Energy Savers [EERE]

    ventilator. The house has a dual-fuel heat pump, an instantaneous condensing water heater, and 4.5-kW solar shingles. DOE Zero Energy Ready Home: Murphy Brothers Contracting,...

  1. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The house has a dual-fuel heat pump, an instantaneous condensing water heater, and 4.5-kW solar shingles. PDF icon DOE Zero Energy Ready Home: Murphy Brothers Contracting, Shore ...

  2. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect (OSTI)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH products) installed in existing homes in the northeast region of the United States.

  3. DOE Tour of Zero: Bellingham Power House by TC Legend Homes | Department of

    Energy Savers [EERE]

    Energy Bellingham Power House by TC Legend Homes DOE Tour of Zero: Bellingham Power House by TC Legend Homes Addthis 1 of 19 TC Legend Homes built this 2,781-square-foot home in Bellingham, Washington, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 19 A greenhouse off the kitchen provides a thermal transition zone into the home, minimizing heat losses during the winter. The solar hot water heating panels are visible on the porch roof.

  4. Final report : testing and evaluation for solar hot water reliability.

    SciTech Connect (OSTI)

    Caudell, Thomas P.; He, Hongbo; Menicucci, David F.; Mammoli, Andrea A.; Burch, Jay

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  5. REFLECT HOME

    Broader source: Energy.gov [DOE]

    Sacramento is nicknamed the City of Trees, so it made sense for the California State University, Sacramento, team to showcase nature in its Solar Decathlon 2015 project. The team’s Reflect Home does just that by embracing the city’s sense of expansive greenery.

  6. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    SciTech Connect (OSTI)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie M.; Macknick, Jordan

    2013-07-01

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  7. University of Maryland's "WaterShed" Wins 2011 Solar Decathlon | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maryland's "WaterShed" Wins 2011 Solar Decathlon University of Maryland's "WaterShed" Wins 2011 Solar Decathlon October 3, 2011 - 2:02pm Addthis The University of Maryland's “WaterShed” won the 2011 Solar Decathlon. The school from College Park, Maryland competed against 18 other collegiate teams to build an aesthetically pleasing, architecturally innovative and well-engineered energy efficient living space that generates its energy from solar power. |

  8. ZERH Webinar: Energy- and Water- Efficiency in the DOE Zero Energy Ready Home Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

  9. A Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Realistic Hot Water Draw Specification for Rating Solar Water Heaters Preprint J. Burch National Renewable Energy Laboratory J. Thornton Thermal Energy System Specialists, Inc. Presented at the 2012 World Renewable Energy Forum Denver, Colorado May 13-17, 2012 Conference Paper NREL/CP-5500-54539 June 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308.

  10. Un-Nanostructuring Solar Cells | ANSER Center | Argonne-Northwestern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Un-Nanostructuring Solar Cells Home > Research > ANSER Research Highlights > Un-Nanostructuring Solar Cells...

  11. Best Practices Solar Case Study: John Wesley Miller Companies, Armory Park del Sol - Tucson, AZ

    SciTech Connect (OSTI)

    2007-06-01

    Building America factsheet on JW Miller, an energy-efficient home builder in hot/mixed dry climate using solar photovoltaics and hot water, efficient HVAC and duct system, and tankless water heater.

  12. Report on the analysis of field data relating to the reliability of solar hot water systems.

    SciTech Connect (OSTI)

    Menicucci, David F.

    2011-07-01

    Utilities are overseeing the installations of thousand of solar hot water (SHW) systems. Utility planners have begun to ask for quantitative measures of the expected lifetimes of these systems so that they can properly forecast their loads. This report, which augments a 2009 reliability analysis effort by Sandia National Laboratories (SNL), addresses this need. Additional reliability data have been collected, added to the existing database, and analyzed. The results are presented. Additionally, formal reliability theory is described, including the bathtub curve, which is the most common model to characterize the lifetime reliability character of systems, and for predicting failures in the field. Reliability theory is used to assess the SNL reliability database. This assessment shows that the database is heavily weighted with data that describe the reliability of SHW systems early in their lives, during the warranty period. But it contains few measured data to describe the ends of SHW systems lives. End-of-life data are the most critical ones to define sufficiently the reliability of SHW systems in order to answer the questions that the utilities pose. Several ideas are presented for collecting the required data, including photometric analysis of aerial photographs of installed collectors, statistical and neural network analysis of energy bills from solar homes, and the development of simple algorithms to allow conventional SHW controllers to announce system failures and record the details of the event, similar to how aircraft black box recorders perform. Some information is also presented about public expectations for the longevity of a SHW system, information that is useful in developing reliability goals.

  13. Sandia Energy - Concentrating Solar Power Technical Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Technical Management Position Home Renewable Energy Energy Facilities News Concentrating Solar Power Solar Job Listing National Solar Thermal Test...

  14. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  15. A Consumer's Guide: Heat Your Water with the Sun (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cover photo: The people living in this house enjoy hot water that is heated with a solar ... keep swimming pools warm- they can also heat much of your home's water and interior space. ...

  16. DOE Responses to DOE Challenge Home (formerly Builders Challenge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ......... 8 Sampling ......16 Ventilation - Field Air Flow Testing ... 30 Target Home SHGC - Passive Solar Flexibility ...

  17. Trinity Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: Trinity Solar Place: Freehold, New Jersey Zip: 7728 Sector: Solar Product: A provider of solar energy systems to home and business owners. Coordinates: 42.376865,...

  18. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  19. Solar Water Heating Requirement for New Residential Construction

    Broader source: Energy.gov [DOE]

    As of January 1, 2010, building permits may not be issued for new single-family homes that do not include a SWH system. The state energy resources coordinator may provide a variance for this...

  20. DOE Zero Energy Ready Home Case Study 2013: e2Homes, Winterpark, FL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fi rst certifi ed U.S. Department of Energy (DOE) Zero Energy Ready Home in the United States-the Wilson Residence in Winter Park, Florida-produces more energy than it uses with construction costs one-third less than originally proposed. Completed in May 2012, this 4,305-ft 2 custom home (with four bedrooms and baths) screams "BIG" until you hear the "small footprint" in the energy- and water-effi ciency details. Without solar power, the home scores a HERS 57, which is well

  1. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  2. HIA 2015 DOE Zero Energy Ready Home Case Study: Palo Duro Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... And there's tax incentives." Palo Duro's homes qualify for the New Mexico Sustainable ... This package includes roof-mounted, grid-tied photovoltaic solar panels enabling the home ...

  3. [pic] EERE Web Site Statistics - Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... |1.|Department of Energy Solar Decathlon Home Page http: www. solardecathl on. org |43,756|61,116| |2.|EERE: Department of Energy Solar Decathlon Home Page http: ...

  4. Water Pollution Control Plant Solar Site Evaluation: San José

    Broader source: Energy.gov [DOE]

    This report describes the findings of a solar site evaluation conducted at the San Jose/Santa Clara Water Pollution Control Plant (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  5. Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water |

    Energy Savers [EERE]

    Department of Energy PDF icon solar_thermal_transcript.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source Heat Pumps SERC Photovoltaics for Residential Buildings Webinar Transcript Recording of SERC Monitoring Technologies - Solar Photovoltaics

  6. Measured Performance of Occupied, Side-by-Side, South Texas Homes

    SciTech Connect (OSTI)

    Chasar, Dave; vonSchramm, Valerie

    2012-09-01

    The performance of three homes in San Antonio, Texas with identical floor plans and orientation were evaluated through a partnership between the Florida Solar Energy Center (FSEC), CPS Energy, and Woodside Homes of South Texas. Measurements included whole house gas and electric use as well as heating, cooling, hot water, major appliances and indoor and outdoor conditions. One home built to builder standard practice served as the control, while the other homes demonstrated high performance features. Utility peak electric load comparisons of these dual-fuel homes provide an assessment of envelope and equipment improvements.

  7. DOE Zero Energy Ready Home PV-Ready Checklist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV-Ready Checklist DOE Zero Energy Ready Home PV-Ready Checklist All homes certified as DOE Zero Energy Ready Homes must meet the mandatory requirements listed in Exhibit 1 of the National Program Requirements, including Requirement 7 Renewable Ready, which requires that homes meet the requirements listed in the PV-Ready Checklist. See the Checklist document for exceptions PDF icon PV-Ready Checklist.pdf More Documents & Publications DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

  8. California Solar Initiative- Low-Income Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The California Public Utilities Commission (CPUC) voted in October 2011 to create the California Solar Initiative (CSI) Thermal Low-Income program for single and multifamily residential properties....

  9. Clay Electric Cooperative, Inc- Energy Smart Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Clay Electric Cooperative (CEC) provides a rebate of $0.01 per BTU output to its residential members when they purchase qualified solar water heaters. This rebate is capped at 60,000 BTUs per...

  10. Development of a Long-Life-Cycle, Highly Water-Resistant Solar...

    Office of Scientific and Technical Information (OSTI)

    of a Long-Life-Cycle, Highly Water-Resistant Solar Reflective Retrofit Roof Coating Citation Details In-Document Search Title: Development of a Long-Life-Cycle, Highly ...

  11. Duke Energy Florida- SunSense Solar Water Heating with EnergyWise

    Broader source: Energy.gov [DOE]

    Duke Energy Florida (DEF) launched the Solar Water Heating with EnergyWise Program in February 2007 to encourage its residential customers to participate in its load control program and install a...

  12. Improving Air Quality with Solar Energy; U.S. DOE Clean Energy and Air Quality Integration Initiative Fact Sheet Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality with Solar Energy Many states are seeking additional air pollution control strategies. Zero-emission solar technologies, such as solar electricity and solar water heating, can help air quality and energy offcials in cities, states, and federal agencies improve air quality, achieve Clean Air Act goals, and reduce pollution control costs for both industry and taxpayers. Solar technologies provide energy for heating, cooling, and lighting homes and heating water without any direct

  13. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  14. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  15. New Whole-House Solutions Case Study: Tommy Williams Homes Initial Performance of Two Zero Energy Homes, Gainesville, Florida

    SciTech Connect (OSTI)

    none,

    2011-11-01

    Tommy Williams Homes worked with PNNL, Florida HERO, Energy Smart Home Plans, and Florida Solar Energy Center to design and test two zero energy homes. Energy use was 30% lower in one home and 60% lower in the other.

  16. REFLECT HOME | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    so it made sense for the California State University, Sacramento, team to showcase nature in its Solar Decathlon 2015 project. The team's Reflect Home does just that by...

  17. DOE Challenge Home Student Competition

    Broader source: Energy.gov [DOE]

    This document outlines plans for the DOE Challenge Homes Student Competition, which will complement the Solar Decathlon, and launch in 2014.

  18. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Air-to-Water Heat Pumps With Radiant Delivery in Low Load Homes Tucson, Arizona and Chico, California PROJECT INFORMATION Project Name: Field testing of air-to-water heat pump Location: Tucson, AZ and Chico, CA Partners: La Mirada Homes www.lamiradahomes.net Chico Green Builders Daikin www.daikinac.com ARBI http://arbi.davisenergy.com/ Building Component: HVAC, domestic hot water Application: New, single family Year Tested: 2011-2012 Applicable Climate Zones: Hot-dry, cold PERFORMANCE DATA Cost

  19. Low-cost Batch Solar Water Heater research and development project. Final report

    SciTech Connect (OSTI)

    Stickney, B.L.

    1983-06-01

    This report presents a summary of the development and testing of Batch Solar Water Heaters. Batch Heaters tested include several kinds of tank-under-glass (Breadbox) models and several types of Inverted Batch Solar Water Heaters with both fixed and moveable reflector systems. Temperature graphs and tables of performance indices are presented for each water heater tested. An Inverted Batch Water Heater was developed based upon the test results called the Bottomgainer. Two prototypes of the Bottomgainer model were installed and monitored in use on residences. The Bottomgainer concept could be adapted to commercial production.

  20. Solar Water Splitting: Putting an Extra "Eye" on Surface Reactions...

    Office of Science (SC) Website

    ... Science, Geosciences, and Biosciences Division, Solar Photochemistry Program, under Grant DE-FG02-12ER16323. S.W.B. acknowledges support from the DuPont Young Professor Program. ...

  1. Texas Gas Service- Residential Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Only active systems with panels (or collectors) that are certified OG-100 by the Solar Rating Certification Corporation (SRCC) qualify for this rebate. Work must be completed by a licensed contra...

  2. Wisdom Way Solar Village

    SciTech Connect (OSTI)

    2009-03-10

    This article gives an overview of Wisdom Way Village, a community of affordable, sustainable solar homes in Greenfield, MA.

  3. Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution

    SciTech Connect (OSTI)

    None

    2004-09-01

    A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of $6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities. This publication details specifications of the parabolic trough solar system and highlights 5 years of measured performance data.

  4. Community Water Pump and Treatment Facility PV Solar Power Project

    Energy Savers [EERE]

    200,000 kWhyear PROJECT LOCATION SITE DETAILS Water Pump and Treatment Facility Sole provider of water to Pueblo and its 5,000 residents 1 pump house, 2 water ...

  5. Home Design & Remodeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Design & Remodeling Home Design & Remodeling Ultra-Efficient Home Design Ultra-Efficient Home Design An ultra-efficient home can be designed and built to produce as much energy as it uses -- or even more! Read more Passive Solar Home Design Passive Solar Home Design Passive solar design takes advantage of a building's site, climate, and materials to minimize energy use. Read more Whole-House Systems Approach Whole-House Systems Approach A whole-house systems approach considers the

  6. DOE Challenge Home Case Study: e2 Homes – Winter Park, Florida

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Challenge Home case study describes the first certified DOE Challenge Home as constructed by e2 Homes. Completed in May 2012, the “Wilson Residence” in Winter Park, Florida, is a 4,305-ft2 custom home that scores a HERS 57 without solar and a better than zero net-energy HERS -7 with solar.

  7. Efficient Solar Concentrators: Affordable Energy from Water and Sunlight

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledynes liquid prism panel has no bulky and heavy supporting partsinstead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

  8. Sandia Energy - Solar Glare Hazard Analysis Tool Available for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Available for Download Home Renewable Energy Energy News News & Events Photovoltaic Solar Solar Newsletter Solar Glare Hazard Analysis Tool...

  9. Sandia Energy - National Solar Thermal Testing Facility Beam...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Testing Facility Beam Profiling Home Renewable Energy News Concentrating Solar Power Solar National Solar Thermal Testing Facility Beam Profiling Previous...

  10. Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Score » Home Energy Score Report Home Energy Score Report The Home Energy Score is similar to a vehicle's miles-per-gallon rating. The Home Energy Score allows homeowners to compare the energy performance of their homes to other homes nationwide. It also provides homeowners with suggestions for improving their homes' efficiency. The process starts with a Home Energy Score Assessor collecting energy information during a brief home walk-through. Using the Home Energy Scoring Tool, developed by

  11. Efficient Solutions for Existing Homes Case Study: Solar Water Heating in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    In spring 2014, Olive Street Development completed a major renovation project—converting an old school building in Greenfield, Massachusetts, into 12 high-performance apartments. The developer installed SDHW to reduce fossil-fuel consumption, and CARB has been monitoring the system since its completion.

  12. High Performance Builder Spotlight: LifeStyle Homes

    SciTech Connect (OSTI)

    2011-01-01

    LifeStyle Homes of Melbourne, Florida, is aiming for affordable net zero energy homes with help from Building America research partner Florida Solar Energy Center.

  13. Vista Montana, Watsonville, California: Moving Toward Zero Energy Homes

    SciTech Connect (OSTI)

    2003-12-01

    Fact sheet describes the energy efficient and solar energy features of the Vista Montana Zero Energy Home, participant in the Zero Energy Homes initiative.

  14. Environmental Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    Environmental Solar Systems Address: 117 West Street Place: Methuen, Massachusetts Zip: 01844 Region: Greater Boston Area Sector: Solar Product: Solar thermal panels for home...

  15. Technology Solutions Case Study: Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California

    SciTech Connect (OSTI)

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  16. Solar Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics...

  17. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Coupeville, Washington

    SciTech Connect (OSTI)

    none,

    2013-09-01

    Ted Clifton, founder of Clifton View Homes, achieved an impressive Home Energy Rating System (HERS) score of 34 (without solar panels) on a two-story home completed in July 2011 that also earned him his first Challenge Home certification from the U.S. Department of Energy (DOE). This home also garnered a 2013 Housing Innovation Award in the "systems builder" category.

  18. FEMP Solar Hot Water Calculator | Open Energy Information

    Open Energy Info (EERE)

    Water Calculator AgencyCompany Organization: Federal Energy Management Program Sector: Energy Focus Area: Buildings Phase: Determine Baseline Topics: Baseline projection...

  19. High-Performance with Solar Electric Reduced Peak Demand: Premier...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA - Building America Top Innovation High-Performance with Solar Electric Reduced Peak Demand: Premier Homes ...

  20. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    SciTech Connect (OSTI)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

  1. Measured Performance of Occupied, Side-by-Side, South Texas Homes

    SciTech Connect (OSTI)

    Chasar, D.; vonSchramm, V.

    2012-09-01

    The performance of three homes in San Antonio, Texas with identical floor plans and orientation were evaluated through a partnership between the Florida Solar Energy Center (FSEC), CPS Energy, and Woodside Homes of South Texas. Measurements included whole house gas and electric use as well as heating, cooling, hot water, major appliances and indoor and outdoor conditions. One home built to builder standard practice served as the control, while the other homes demonstrated high performance features. Utility peak electric load comparisons of these dual-fuel homes provide an assessment of envelope and equipment improvements. The control home used natural gas for space and water heating only, while the improved homes had gas heating and major appliances with the exception of a high efficiency heat pump in one home. Data collection began in July of 2009 and continued through April of 2011. Energy ratings for the homes yielded E-Scales (aka HERS indices) of 86 for the control home, 54 for one improved home and 37 for the other home which has a 2.4kW photovoltaic array.

  2. Solar and Energy Loan Fund Receives $300,000 Community Reinvestment Act Loan to Invest in Home Energy Upgrades

    Broader source: Energy.gov [DOE]

    Residential Network member and Better Buildings Neighborhood Program partner Solar and Energy Loan Fund (SELF) received its first Community Reinvestment Act loan from PNC Bank in May for $300,000.

  3. Characteristics and experiences of applicants for HUD grants for solar water heaters

    SciTech Connect (OSTI)

    Jones, W.H.

    1980-01-01

    Thirty-eight winners and 45 losers of HUD solar water heater grants in the Florida panhandle were interviewed in 1978 concerning their experiences, and their solar installations were inspected. Operational problems were mostly attributable to control system failure. Grantees were generally pleased with the subsidy program. Grant recipients were not typical of the general public, in that they were mostly middle-aged, well-educated, reasonably affluent people who had a technical background, liked to do things on their own, and were fairly sophisticated so far as energy problems were concerned. It may be that the grant program is not having a great effect on solar energy commercialization, except perhaps in terms of publicity; the recipients generally would have installed systems without a grant, and most of the losers had gone ahead with a solar installation or were planning to do so.

  4. Solar Electric Propulsion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Propulsion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  5. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Concentrating Solar Power (CSP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CSP) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  7. DOE Zero Energy Ready Home: Healthy Efficient Homes- Spirit Lake, Iowa

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in Spirit Lake, Iowa, that scored HERS 41 without PV and HERS 28 with PV. This 3,048 ft2 custom home has advanced framed walls filled with 1.5 inches closed-cell spray foam, a vented attic with spray foam-sealed top plates and blown fiberglass over the ceiling deck. R-23 basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater.

  8. DOE Zero Energy Ready Home Case Study: Healthy Efficient Homes - Spirit Lake, Iowa

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Spirit Lake, Iowa, that scored HERS 41 without PV and HERS 28 with PV. This 3,048 ft2 custom home has advanced framed walls filled with 1.5 inches closed-cell spray foam, a vented attic with spray foam-sealed top plates and blown fiberglass over the ceiling deck. R-23 basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater.

  9. DOE Zero Energy Ready Home Case Study: Near Zero Maine Home II - Vassalboro, Maine

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows.

  10. Burbank Water and Power- Residential and Commercial Solar Support Program

    Broader source: Energy.gov [DOE]

    Burbank Water and Power (BWP) offers customers an up-front capacity-based rebate for photovoltaic (PV) systems up to 30 kW. These incentives decline over time as defined capacity goals are met, e...

  11. Corona Department of Water & Power- Solar Partnership Rebate Program

    Broader source: Energy.gov [DOE]

    Corona Department of Water & Power is providing rebates for residential and commercial photovoltaic (PV) systems. The rebate amount for 2015 is $0.78 per watt up to $2,340 for residential...

  12. HSC Solar | Open Energy Information

    Open Energy Info (EERE)

    for homes is continuing to drop significantly making this the ideal time to consider solar panel installation. Every household using electricity will see benefit with a solar...

  13. DOE Zero Energy Ready Home Efficient Hot Water Distribution I-- What's At Stake Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, Efficient Hot Water Distribution I -- What's At Stake, presented in January 2014.

  14. DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting

    Broader source: Energy.gov [DOE]

    EERE and the National Science Foundation (NSF) announce a funding opportunity in the area of renewable hydrogen technology research and development, specifically addressing discovery and development of advanced materials systems and chemical proceesses for direct photochemical and/or thermochemical water splitting for application in the solar production of hydrogen fuel.

  15. Performance comparison of several passive solar water heaters

    SciTech Connect (OSTI)

    Stickney, B.L.; Nagy, C.

    1980-01-01

    Three .076 m/sup 3/ (20 gal.) batch water heaters were constructed for the purpose of side by side testing. The test models included an Inverted Batch Water Heater, a Greenhouse Integrated Skylight Heater, and a typical Breadbox Batch Heater. These designs were chosen because of their low initial cost, simple construction, ease of freeze protection, uncomplicated operation and heating effectiveness. The results of our testing show that our test models produced 35 to 70/sup 0/C (95 to 158/sup 0/F) average water temperatures with average collection efficiencies of about 34%. Materials costs for each of these systems were $200 to $400. These systems were tested side by side during periods of both low and high thermal demand, both with and without a selective surface foil on the absorber surfaces.

  16. Biomimetic Chalcogels for Solar Fuel Catalysis | ANSER Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Chalcogels for Solar Fuel Catalysis Home > Research > ANSER Research Highlights > Biomimetic Chalcogels for Solar Fuel Catalysis...

  17. When Function Follows Form: Plastic Solar Cells | ANSER Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Function Follows Form: Plastic Solar Cells Home > Research > ANSER Research Highlights > When Function Follows Form: Plastic Solar Cells...

  18. Building America Efficient Solutions for New Homes Case Study...

    Energy Savers [EERE]

    The homes are being metered by the Florida Solar Energy Center (FSEC) as part of BA efforts to collect data that characterize the performance of the homes and verify that the solar ...

  19. DOE Zero Ready Home Case Study: Greenhill Contracting, The Preserve...

    Energy Savers [EERE]

    solar-ready components for low or no utility bills in a ... a checklist of "renewable-ready" solar power measures. Aebi's homes also meet the LEED for Homes silver level. "They ...

  20. California Solar Initiative- Low-Income Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The program is only available to customers who currently heat their water with natural gas in the service territories of Pacific Gas and Electric Company (PG&E), San Diego Gas & Electric ...

  1. Knox County Detention Facility Goes Solar for Heating Water

    Broader source: Energy.gov [DOE]

    Hot water demand soars at the six-building Knox County Detention Facility in Tennessee. It's open 24/7 with 1,036 inmate beds and 4,500 meals served daily—and don't forget the laundry.

  2. Bryan Texas Utilities- SmartHOME Program

    Broader source: Energy.gov [DOE]

    The Bryan Texas Utilities (BTU) SmartHOME Programs offers incentives to owners of single- and multi-family homes for insulation, windows, and solar screens.The incentive amount may not be less than...

  3. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  4. DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders...

    Office of Environmental Management (EM)

    blown cellulose; wo air-to-air heat pumps SEER 14.1; HSPF 9.6; heat pump water heater. PDF icon DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders, Geneva, IL More ...

  5. Performance of Gas-fired Water Heaters in a 10-home Field Study

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "Are high-efficiency hot water heating systems worth the cost?"

  6. Modeling the Impacts of Solar Distributed Generation on U.S. Water Resources

    SciTech Connect (OSTI)

    Amanda, Smith; Omitaomu, Olufemi A; Jaron, Peck

    2015-01-01

    Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one of the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development. This model can be applied to other regions, other types of distributed generation, and used as a framework for modeling alternative growth scenarios in power production capacity in addition to modeling adjustments to existing capacity.

  7. NREL: Innovation Impact - Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration What is a quantum dot? Close Quantum dots are tiny spheres of semiconductor material measuring only about 2-10 billionths of a meter in diameter. Quantum dots are a leading candidate for a third generation of solar-cell technologies. Close Achieving significant gains in solar

  8. DOE Zero Energy Ready Home Case Study, Nexus EnergyHomes, Frederick, MD,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy Study, Nexus EnergyHomes, Frederick, MD, Production DOE Zero Energy Ready Home Case Study, Nexus EnergyHomes, Frederick, MD, Production This urban infill community features a package of SIP walls, geothermal heat pumps, solar PV, and a proprietary energy management system. PDF icon Nexus EnergyHomes - Frederick, MD More Documents & Publications Building America Whole-House Solutions for New Homes: Nexus EnergyHomes - Frederick, Maryland DOE Zero Energy

  9. Home Heating Systems | Department of Energy

    Office of Environmental Management (EM)

    separately, many homes use the following approaches: Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental heat source. Electric...

  10. Center for Solar Fuels (UNC) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Solar Fuels (UNC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Solar Fuels (UNC) Print Text Size: A A A FeedbackShare Page UNC Header Director Thomas Meyer Lead Institution University of North Carolina Year Established 2009 Mission To conduct research on dye sensitized photoelectrosynthesis cells (DSPECs) for water splitting and tandem cells for the

  11. Building America Whole-House Solutions for New Homes: CDC Realty Inc.,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tucson, Arizona | Department of Energy CDC Realty Inc., Tucson, Arizona Building America Whole-House Solutions for New Homes: CDC Realty Inc., Tucson, Arizona Case study of CDC Realty Inc. who worked with Building America research partner Building Science Corporation to design HERS-54 homes with ducts in insulated attics, solar water heating, tight air sealing, and rigid foam exterior sheathing. PDF icon CDC Realty Inc.: Centennial Terrace - Tucson, AZ More Documents & Publications

  12. Building America Whole-House Solutions for New Homes: Rural Development,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc., Greenfield, Massachusetts | Department of Energy Rural Development, Inc., Greenfield, Massachusetts Building America Whole-House Solutions for New Homes: Rural Development, Inc., Greenfield, Massachusetts Case study of Rural Development Inc. who worked with Building America research partner CARB to design affordable HERS-8 homes (60 w/o PV), with double-stud walls heavy insulation, low-load sealed-combustion gas space heaters, triple-pane windows, solar water heating, and PV. PDF icon

  13. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  14. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  15. A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting

    SciTech Connect (OSTI)

    Liu, Chong; Tang, Jinyao; Chen, HaoMing; Liu, Bin; Yang, Peidong

    2013-02-21

    Artificial photosynthesis, the biomimetic approach to converting sunlight?s energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12percent solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.

  16. Experience with thermal storage in tanks of stratified water for solar heating and load management

    SciTech Connect (OSTI)

    Wildin, M.W.; Witkofsky, M.P.; Noble, J.M.; Hopper, R.E.; Stromberg, P.G.

    1982-01-01

    Results have been obtained for performance of stratified tanks of water used to store heating and cooling capacity in a 5574 m/sup 2/ university building. The major sources of energy used to charge the heated tanks were solar energy, obtained via collectors on the roof of the building, and excess heat recovered from the interior of the building via thermal storage and electric-driven heat pump/chillers. Through stratification of the water in the storage tanks and an appropriate system operating strategy, 40 percent of the building's total heating needs were supplied by solar energy during the first four months of 1981. Month-long thermal efficiencies of the storage array ranging from 70 percent during the heating season to nearly 90 percent during the cooling season, were measured. Work is underway to improve the performance of thermal storage.

  17. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  18. DOE Zero Ready Home Case Study: Sterling Brook Custom Homes,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to meet a slew of energy- efficiency program requirements. ... The home must also have solar photovoltaic panels installed ... more room for the open-cell spray foam that fills the ...

  19. Measure Guideline. Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect (OSTI)

    Shapiro, Carl; Puttagunta, Srikanth; Owens, Douglas

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs

  20. Vaillant Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    Zip: 92075 Sector: Solar Product: California-based solar company specializing in solar water heating, solar pool heating and solar space heating systems for residential and...

  1. Solar and Wind Rights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State State...

  2. Solar Easements & Rights Laws | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process...

  3. Sandia Energy - Solar Energy Grid Integration Systems (SEGIS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Grid Integration Systems (SEGIS) Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Solar Energy Grid Integration Systems...

  4. Sandia Energy - Sandia Tool Determines Value of Solar Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Determines Value of Solar Photovoltaic Power Systems Home Renewable Energy Energy Partnership News News & Events Photovoltaic Solar Sandia Tool Determines Value of Solar...

  5. Sandia Energy - Sandia Solar Energy Test System Cited in National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Test System Cited in National Engineering Competition Home Renewable Energy Energy Facilities Partnership News News & Events Concentrating Solar Power Solar National...

  6. Revisions to the SRCC Rating Process for Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Huggins, J.; Long, S.; Thornton, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are computed with component-based simulation models driven by typical meteorological year weather and specified water draw. Changes in the process are being implemented to enhance credibility through increased transparency and accuracy. Changes to the process include using a graphical rather than text-based model-building tool, performing analytical tests on all components and systems, checking energy balances on every component, loop, and system at every time step, comparing the results to detect outliers and potential errors, and documenting the modeling process in detail. Examples of changes in ratings are shown, along with analytical and comparative testing results.

  7. Home | OpenEI Community

    Open Energy Info (EERE)

    Manojnirgudkar 20 weeks 3 days ago Manojnirgudkar Buildings blog Printed decorative solar panels could become part of our homes and offices Dc 29 weeks 5 days ago Dc answer...

  8. DOE Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Sampling shall not be permitted to complete the HVAC System ... Fenestration utilized as part of a passive solar design ... to locating 100% of forced-air ducts in home's thermal and ...

  9. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  10. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The result is a passive solar, super-efficient 3542-ft2 walkout ranch-style home with all the creature comforts. PDF icon Amaris Custom Homes - St. Paul, MN More Documents & ...

  11. DOE Zero Energy Ready Home Case Study: Amaris Custom Home, St...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... DOE ZERO ENERGY READY HOME Amaris Custom Homes 2 solar system will provide most of the electricity needs and will be grid-tied to Internet and smartphone monitoring capabilities. ...

  12. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and Equipment Technology Transfer Visualization CAVE...

  13. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View all events >> x CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and Equipment Technology Transfer...

  14. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User ID: Password: Log In Forgot your password? CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and...

  15. National Solar Water Heater Workshop Present at DOE Region V meeting for managers of State Energy Extension Service and State Energy Conservation Plan, March 18-19, 1981

    SciTech Connect (OSTI)

    Mumma, S.A.; Marinello, M.G.

    1981-01-01

    After a brief description of the National Solar Water Heater Workshop and some comments by users of the solar water heater, the hardware supplier handbook is presented. The performance expected of a hardware supplier is described, solar system components and their specifications are listed, and information is provided to assist the hardware supplier in obtaining necessary materials. (LEW)

  16. Home Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems Home Heating Systems Home heating accounts for about 30 percent of the energy used in the home. | Photo courtesy iStockphoto.com Home heating accounts for about 30 percent of the energy used in the home. | Photo courtesy iStockphoto.com A variety of technologies are available for heating your house. In addition to heat pumps, which are discussed separately, many homes use the following approaches: Active Solar Heating Uses the sun to heat either air or

  17. Comparison of natural convection heat exchangers for solar water heating systems

    SciTech Connect (OSTI)

    Davidson, J.; Liu, W.

    1998-09-15

    Thermosyphon heat exchangers are used in indirect solar water heating systems to avoid using a pump to circulate water from the storage tank to the heat exchanger. In this study, the authors consider the effect of heat exchanger design on system performance. They also compare performance of a system with thermosyphon flow to the same system with a 40W pump in the water loop. In the first part of the study, the authors consider the impact of heat exchanger design on the thermal performance of both one- and two-collector solar water heaters. The comparison is based on Solar Rating and Certification Corporation (SRCC) OG300 simulations. The thermosyphon heat exchangers considered are (1) a one-pass, double wall, 0.22 m{sup 2}, four tube-in-shell heat exchanger manufactured by AAA Service and Supply, Inc., (the Quad-Rod); (2) a two-pass, double wall, 0.2 m{sup 2}, tube-in-shell made by Heliodyne, Inc., but not intended for commercial development; (3) a one-pass, single wall, 0.28 m{sup 2}, 31 tube-in-shell heat exchanger from Young Radiator Company, and (4) a one-pass single-wall, 0.61 m{sup 2}, four coil-in-shell heat exchanger made by ThermoDynamics Ltd. The authors compare performance of the systems with thermosyphon heat exchangers to a system with a 40 W pump used with the Quad-Rod heat exchanger. In the second part of the study, the effects of reducing frictional losses through the heat exchanger and/or the pipes connecting the heat exchanger to the storage tank, and increasing heat transfer area are evaluated in terms of OG300 ratings.

  18. DOE Tour of Zero: The 2014 Model Home by Cobblestone Homes |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    home. 4 of 5 The cabinets and other board products used do not include formaldehyde contaminants. 5 of 5 On-demand hot water pumps speed hot water to the home's water-saving...

  19. DOE Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, FL

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This home garnered an award in the Affordable Builder category of the 2014 Housing Innovation Awards, and features 2x4 walls with fiberglass batt inside plus R-3 rigid foam on the exterior, ENERGY STAR lighting, appliances, and ceiling fans, a solar water heater, an energy recovery ventilation, and a high efficiency heat pump.

  20. Solar space- and water-heating system at Stanford University. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    Application of an active hydronic domestic hot water and space heating solar system for the Central Food Services Building is discussed. The closed-loop drain-back system is described as offering dependability of gravity drain-back freeze protection, low maintenance, minimal costs, and simplicity. The system features an 840 square-foot collector and storage capacity of 1550 gallons. The acceptance testing and the predicted system performance data are briefly described. Solar performance calculations were performed using a computer design program (FCHART). Bidding, costs, and economics of the system are reviewed. Problems are discussed and solutions and recommendations given. An operation and maintenance manual is given in Appendix A, and Appendix B presents As-built Drawings. (MCW)

  1. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glare Hazard Analysis Tool - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  4. DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs --

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revision 05 | Department of Energy Updates to the DOE Zero Energy Ready Home Specs -- Revision 05 DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs -- Revision 05 In the year since DOE last updated the DOE Zero Energy Ready Home specs, we've continued to track our partner feedback and other industry issues. This brings us to the release of Revision 05, which changes the solar hot water ready provisions to "recommended," incorporates a phase-in period for the new

  5. DOE Zero Energy Ready Home Case Study: Manatee County Habitat for Humanity,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ellenton, FL, Affordable | Department of Energy Manatee County Habitat for Humanity, Ellenton, FL, Affordable DOE Zero Energy Ready Home Case Study: Manatee County Habitat for Humanity, Ellenton, FL, Affordable Case study of a DOE Zero Energy Ready Home in Ellenton, FL, that scored HERS 53 without PV, HERS 23 with PV. This 1,143-square-foot affordable home has R-23 ICF walls, a spray-foamed sealed attic, solar hot water, and a ducted mini-split heat pump. PDF icon

  6. DOE Zero Energy Ready Home Case Study: Southeast Volusia Habitat for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Humanity, Edgewater, FL | Department of Energy Southeast Volusia Habitat for Humanity, Edgewater, FL DOE Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, FL Case study of a DOE Zero Energy Ready affordable home in Edgewater, FL, that achieves a HERS score of 49 without PV. The one-story, 1,250-ft2 home has 2x4 walls with fiberglass batt inside plus R-3 rigid foam on the exterior, ENERGY STAR lighting, appliances, and ceiling fans, a solar water heater, an

  7. Fuel from Bacteria, CO2, Water, and Solar Energy: Engineering a Bacterial Reverse Fuel Cell

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Harvard is engineering a self-contained, scalable Electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuelmaking them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once theyre pumped out of the tank.

  8. Moving Toward Zero Energy Homes: Armory Park del Sol, Tucson, Arizona

    SciTech Connect (OSTI)

    2003-12-01

    Fact sheet describes the energy efficient and solar energy features of the Armory Park del Sol Zero Energy Home, participant in the Zero Energy Homes initiative.

  9. EFRC Director's call | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Impacts EERE Market Impacts Addthis RENEWABLE ELECTRICITY GENERATION SUCCESS STORIES 1 of 3 RENEWABLE ELECTRICITY GENERATION SUCCESS STORIES EERE's investments in geothermal, solar, water, and wind energy translate into more efficient, affordable technologies and encourage more widespread use of clean energy in the United States. ENERGY-SAVING HOMES, BUILDINGS, AND MANUFACTURING SUCCESS STORIES 2 of 3 ENERGY-SAVING HOMES, BUILDINGS, AND MANUFACTURING SUCCESS STORIES EERE's investments in

  10. Outdoor Solar Lighting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    on Outdoor Lighting Solar panels are a great way to produce clean energy at home | Photo courtesy of Stefano Paltera, U.S. Department of Energy. Harnessing Solar Energy at Home...

  11. Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis

    SciTech Connect (OSTI)

    Francis, Todd M; Lichty, Paul R; Perkins, Christopher; Tucker, Melinda; Kreider, Peter B; Funke, Hans H; Lewandowski, A; Weimer, Alan W

    2012-10-24

    There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar-driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

  12. Solar Policy Environment: Sacramento

    Broader source: Energy.gov [DOE]

    The City of Sacramento and the greater Sacramento region is the home of a long standing history of commitment to solar. Sacramento Solar Access seeks to further widespread adoption of solar energy by addressing current market barriers and preparing, through design guidelines and education, the infrastructure that will optimize solar production in the future.

  13. DOE Zero Energy Ready Home Case Study: John Hubert Associates — EXIT-0 House, North Cape May, NJ

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This house is the first DOE Zero Energy Ready Home for this builder and won a Custom Builder award in the 2014 Housing Innovation Awards. The 1,871-ft2 home features advanced-framed above-grade walls with R-21 fiberglass batt plus an R-3.6-insulated coated OSB sheathing, R-18 rigid-foam-insulated crawlspace walls, solar water heating, a high-efficiency heat pump, an HRV, and mostly LED lighting.

  14. Energy-Water Nexus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy-Water Nexus - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  15. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    SciTech Connect (OSTI)

    Quinn, John J.; Greer, Christopher B.; Carr, Adrianne E.

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  16. Imagine Homes New Construction Occupied Test House

    SciTech Connect (OSTI)

    Stecher, Dave; Rapport, Ari; Allison, Katherine

    2013-07-01

    This report summarizes the research findings of a long-term monitoring plan to evaluate the performance of an energy-efficient home constructed in 2010 in San Antonio, Texas. Monitoring of the energy use, energy generation, and temperature conditions for this project occurred between July 2010 and October 2011. The home achieves a source energy savings of 32% without the installed photovoltaic (PV) system and 44% savings with the PV system contribution relative to the Building America House Simulation Protocols. This report summarizes the research findings related to heating, ventilation, and air conditioning system performance, estimated and actual energy use of key subsystems, electricity generation by the PV system, and performance of the solar thermal domestic hot water system.

  17. Environmental Evaluation for Installation of Solar Arrays at San Jose/Santa Clara Water Pollution Control Plant

    Broader source: Energy.gov [DOE]

    The purpose of this technical memorandum (TM) is to review the options to develop a potential solar array development (Project) within or adjacent to western burrowing owl (Athene cunicularia) habitat in the buffer lands that surround the San José/Santa Clara Water Pollution Control Plant (WPCP) and to determine if there is a ground-mounted solar photovoltaic (PV) configuration that would enable a workable co-existence between the burrowing owl habitat and the PV arrays.

  18. Modeling the performance of small capacity lithium bromide-water absorption chiller operated by solar energy

    SciTech Connect (OSTI)

    Saman, N.F.; Sa`id, W.A.D.K.

    1996-12-31

    An analysis of the performance of a solar operated small capacity (two-ton) Lithium Bromide-Water (LiBr-H{sub 2}O) absorption system is conducted. The analysis is based on the first law of thermodynamics with lithium bromide as the absorbent and water as the refrigerant. The effect of various parameters affecting the machine coefficient of performance under various operating conditions is reported. Coefficient of performance of up to 0.8 can be obtained using flat plate solar collectors with generator temperatures in the range of 80--95 C (176--203 F). Liquid heat exchangers with effectiveness based on an NTU of the order of one would be a good design choice. The chiller can save approximately 3,456 kWh/yr per a two-ton unit, and it will reduce emissions by 19 lb of NO{sub x}, 5,870 lb of CO{sub 2}, and 16 lb of SO{sub x} per year per machine.

  19. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    SciTech Connect (OSTI)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  20. Chemodynamical deuterium fractionation in the early solar nebula: The origin of water on earth and in asteroids and comets

    SciTech Connect (OSTI)

    Albertsson, T.; Semenov, D.; Henning, Th.

    2014-03-20

    Formation and evolution of water in the solar system and the origin of water on Earth constitute one of the most interesting questions in astronomy. The prevailing hypothesis for the origin of water on Earth is by delivery through water-rich small solar system bodies. In this paper, the isotopic and chemical evolution of water during the early history of the solar nebula, before the onset of planetesimal formation, is studied. A gas-grain chemical model that includes multiply deuterated species and nuclear spin-states is combined with a steady-state solar nebula model. To calculate initial abundances, we simulated 1 Myr of evolution of a cold and dark TMC-1-like prestellar core. Two time-dependent chemical models of the solar nebula are calculated over 1 Myr: (1) a laminar model and (2) a model with two-dimensional (2D) turbulent mixing. We find that the radial outward increase of the H{sub 2}O D/H ratio is shallower in the chemodynamical nebular model than in the laminar model. This is related to more efficient defractionation of HDO via rapid gas-phase processes because the 2D mixing model allows the water ice to be transported either inward and thermally evaporated or upward and photodesorbed. The laminar model shows the Earth water D/H ratio at r ? 2.5 AU, whereas for the 2D chemodynamical model this zone is larger, r ? 9 AU. Similarly, the water D/H ratios representative of the Oort-family comets, ?2.5-10 10{sup 4}, are achieved within ?2-6 AU and ?2-20 AU in the laminar and the 2D model, respectively. We find that with regards to the water isotopic composition and the origin of the comets, the mixing model seems to be favored over the laminar model.

  1. Demonstration of an advanced solar garden with a water ceiling. Final technical report, July 1, 1979-June 30, 1980

    SciTech Connect (OSTI)

    Maes, R.; Riseng, C.; Thomas, G.; Mandeville, M.

    1980-09-01

    A history of the solar garden with the addition of the transparent water ceiling is presented, and a statement of the overall goals of the program is given. The objectives of the water ceiling grant are detailed. The rationale of the transparent water ceiling is developed and its implementation in the solar garden is described. The experimental procedures for evaluating the water ceiling as an integral part of an ongoing garden agricultural experiment are discussed and the results presented. The water ceiling has proven useful in providing extra thermal capacity to the solar garden. It provides heat at night after the water has been warmed during the day and retards overheating in the daytime by absorbing infrared energy into the water. In growing non-flowering plants, such as lettuce and Chinese cabbage, the water ceiling showed no noticeable degradation in yield or maturation rate. In flowering plants, such as tomatoes, the reduced light levels delayed yields by a couple of weeks but the total yield was only slightly diminished. In geographic areas where there is less cloud cover than in Michigan the water ceiling could be much more effective.

  2. High-Efficiency Solar Thermochemical Reactor for Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Solar Thermochemical Reactor for Hydrogen Production - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  3. Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  4. Combi Systems for Low Load homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Context Technical Approach * A condensing water heater and hydronic air handler will used to provide space and water heating loads in almost 300 weatherized homes. * System ...

  5. Team China Transforms Shipping Containers into a Solar-Powered House

    Broader source: Energy.gov [DOE]

    Team China is turning shipping containers into their 2011 Solar Deacthlon home design. Check it out!

  6. Acro Solar Lasers | Open Energy Information

    Open Energy Info (EERE)

    Acro Solar Lasers Place: El Paso, Texas Zip: 79936 Sector: Solar Product: Makes solar water heating devices based on parabolic dish concentrators. References: Acro Solar...

  7. Residential Solar Energy Property Tax Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Property Tax Exemption Residential Solar Energy Property Tax Exemption < Back Eligibility Residential Savings Category Solar Water Heat Solar Space Heat Solar Photovoltaics...

  8. Beijing Sijimicoe Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    Sijimicoe Solar Energy Jump to: navigation, search Name: Beijing Sijimicoe Solar Energy Place: Beijing, China Zip: 102200 Sector: Solar Product: Beijing-based solar water heating...

  9. Matla Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    Matla Solar Energy Jump to: navigation, search Name: Matla Solar Energy Place: East London, South Africa Sector: Solar Product: East London-based solar water geyser manufacturer....

  10. Solar and Wind Easements, Local Options, and Severability | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal...

  11. City of Boulder - Solar Access Ordinance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Construction Local Government Residential Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Photovoltaics Program Info Sector Name...

  12. Building America Technology Solutions for New Homes: Zero Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Technology Solutions for New Homes: Zero Energy Ready Home and the Challenge of Hot Water on Demand Production builders in the Stapleton community of Denver, ...

  13. HIA 2015 DOE Zero Energy Ready Home Case Study: Evolutionary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In addition, homes are required to have solar electric panels installed or have the conduit and electrical panel space in place for it. The home will also be certified to the ...

  14. Subtask 1: Molecules, Materials, and Systems for Solar Fuels | ANSER Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne-Northwestern National Laboratory 1: Molecules, Materials, and Systems for Solar Fuels Home > Research > Subtask 1 The above figure depicts an iridium catalyst used for water splitting. The above figure depicts an iridium catalyst used for water splitting. The greatest challenge facing the development of solar fuels is efficient fuel production at acceptable rates and driving forces. The ANSER Center is confronting this challenge by taking a hierarchical approach to designing,

  15. Solar-powered electrodialysis. Part 2. Design of a solar-powered, electrodialysis system for desalting remote, brackish water sources. Final report

    SciTech Connect (OSTI)

    Lundstrom, J.E.; Socha, M.M.; Lynch, J.D.

    1983-04-01

    The critical components in the design of a solar-powered, electrodialysis (SPED) plant have been evaluated and technology developed to combine ED equipment with a photovoltaic (PV) array. The plant design developed in Part II is simplified from the Part I design in three areas. First, the system uses a flat-panel PV aray rather than PV concentrators. Second, the system voltage is maintained at the voltage corresponding to the peak power output of the array which is essentially independent of the level of solar insolation. The third simplification is in the flow diagram for the plant where the number of pumps and variable flow valves has been reduced to two of each. The proposed system is expected to provide a reliable supply of fresh water from a brackish water source with minimum maintenance. In certain applications where grid power is unavailable and fuel costs exceed $.40 per liter, the solar-powered plant is expected to provide lower cost water today.

  16. SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology...

    Open Energy Info (EERE)

    China Zip: 271000 Sector: Solar Product: Manufacturer and exporter of solar passive water heating systems and PV-powered solar road lighting, torches and lamps. References:...

  17. Sandia Energy - Cool Earth Solar and Sandia Team Up in First...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campus Home Renewable Energy Energy Partnership News News & Events Concentrating Solar Power Livermore Valley Open Campus (LVOC) Photovoltaic Solar Solar Newsletter Cool Earth...

  18. Concentrating Solar Power and Water Issues in the U.S. Southwest

    SciTech Connect (OSTI)

    Bracken, N.; Macknick, J.; Tovar-Hastings, A.; Komor, P.; Gerritsen, M.; Mehta, S.

    2015-03-01

    Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate with staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.

  19. Aztec Solar | Open Energy Information

    Open Energy Info (EERE)

    Rancho Cordova, California Zip: 95742 Sector: Solar Product: Installer of solar hot water and pool heating systems. References: Aztec Solar1 This article is a stub. You can...

  20. ESPEE Solar | Open Energy Information

    Open Energy Info (EERE)

    Karnataka, India Zip: 560 091 Sector: Solar Product: Distributor of solar thermal water heating systems and PV lights. References: ESPEE Solar1 This article is a stub....

  1. Sereno Solar | Open Energy Information

    Open Energy Info (EERE)

    Name: Sereno Solar Place: Monte Sereno, California Sector: Solar Product: Has developed a solar passive water heating panel to be installed under current roofing or siding...

  2. Low-Cost Batch Solar Water Heater Research and Development Project: results from extended field monitoring. Final report, January 1, 1983-May 15, 1983

    SciTech Connect (OSTI)

    Stickney, B.L.

    1984-02-01

    This report contains the results of a four month field test and evaluation of a 30 gallon inverted batch solar water heater known as the Bottomgainer. It was installed on a residence in Santa Fe and monitored with automatic data recorders including solar radiation meter, dual channel Btu meters, water meter and 16 channel strip chart temperature recorder. Average values of heat gain, heat loss, collection efficiency, solar heating fraction and cash benefits are presented and discussed.

  3. Solar Success Story at Moanalua Terrace

    SciTech Connect (OSTI)

    Not Available

    1999-03-01

    Solar systems prove to be the environmentally and economically sound choice for heating water in U.S. Navy housing at Moanalua Terrace in Pearl Harbor, Hawaii. Hawaii is a perfect environment for solar water heating,'' according to Alan Ikeda, a Housing Management Specialist with the Pacific Naval Facility Engineering Command Housing Department in Pearl Harbor, Hawaii. ''The sun shines most of the time, we don't have to worry about freezing, the state offers a 35% solar tax credit, and our local utility supports the purchase and installation of solar systems with generous rebates.'' The Hawaiian Electric Company's (HECO's) $1,500 per unit rebate for solar water heaters installed on new construction helped persuade the Navy to take advantage of Hawaii's solar resource and install solar water heaters on family housing units. At Moanalua Terrace, the Navy had demolished 752 units of family housing, which they are rebuilding in four phases. Designers decided to use the opportunity to give the solar systems a try. When the 100 homes in Phase I were built, money was not available for solar water heaters. However, Ikeda subsequently secured a $130,000 grant from the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) to retrofit the Phase I homes with solar systems. In retrofit applications, HECO rebates $800 per unit ($80,000 total) on approved equipment, and Pearl Harbor Family Housing will pay the difference of the estimated $340,000 total cost, or about $130,000. The 136 units built during Phase II of the Moanalua Terrace project included solar systems in their specifications, so the Navy was able to take advantage of the $1,500 per system HECO rebate for approved solar water heaters in new construction. The Navy chose direct (open-loop) active systems that circulate potable water through flat-plate collectors coated with a black chrome selective surface. Each system consists of a 4-foot by 8-foot (1.2-m by 2.4-m) collector made by American Energy Technologies, Ltd., and an 80-gallon (302-liter) Rheem tank containing an electric backup element.

  4. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings

    SciTech Connect (OSTI)

    Not Available

    1980-02-01

    Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

  5. Method and apparatus for the in situ decontamination of underground water with the aid of solar energy

    DOE Patents [OSTI]

    Bench, Thomas R.; McCann, Larry D.

    1989-01-01

    A method for the in situ decontamination of underground water containing -volatile contaminants comprising continuously contacting in situ underground water containing non-volatile contaminants with a liquid-absorbent material possessing high capillary activity, allowing the non-volatile contaminants to deposit in the material while the water moves upwardly through the material by capillary action, allowing substantially decontaminated water to be volatilized by impinging solar radiation, and then allowing the volatilized water to escape from the material into the atmosphere. An apparatus for the in situ decontamination of underground water containing non-volatile contaminants comprising at least one water-impermeable elongated conduit having an upper portion and first and second open ends and containing a homogeneous liquid-absorbent material possessing high capillary activity, means for supporting said conduit, and means for accelerating the escape of the volatilized decontamined water from the material, said means being detachably connected to the second end of the elongated conduit; wherein when underground water contaminated with non-volatile contaminants is continuously contacted in situ with the material contained in the first end of the conduit and the second end of the conduit is placed in contact with atmospheric air, non-volatile contaminants deposit in said material as the water moves upwardly through the material by capillary action, is then volatilized by impinging solar energy and escapes to the atmosphere.

  6. Solar Power | OpenEI Community

    Open Energy Info (EERE)

    Solar Power Home Aimeebailey's picture Submitted by Aimeebailey(5) Member 3 July, 2014 - 09:38 RFP154855 - A Local Community Solar Program for the City of Palo Alto community solar...

  7. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  8. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery in Low Load Homes (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact ...

  9. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  10. Fermilab | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Contact Phone Book Fermilab at Work Jobs About About Fermilab Quick Info Science History Organization Photo and Video Gallery Diversity Education Safety Sustainability and...

  11. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User ID: Password: Log In Forgot your password? Working in CAES WIC Home Request Facility Use Conduct Research Flowchart Process Rad Info and Tools Chemical Requisition Guide...

  12. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working in CAES WIC Home Request Facility Use Conduct Research Flowchart Process Rad Info and Tools Chemical Requisition Guide Chemical and Supply Order Form Training Access...

  13. Secretary Chu Highlights Recovery Act Tax Credits for Home Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To help make sure that taxpayers are aware of the Recovery Act benefits they are ... Consumers who installed renewable energy systems in their homes, including solar panels, ...

  14. Building America Whole-House Solutions for New Homes: Grupe,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SmartVent night ventilation cooling; and FreshVent continuous ventilation. ... Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best ...

  15. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St. Paul, MN |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Custom Homes, St. Paul, MN DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St. Paul, MN In this project, the NorthernSTAR Building America Partnership team worked with Amaris Custom Homes to develop the first Zero Energy Ready Home in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout ranch-style home with all the creature comforts. PDF

  16. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Affordable | Department of Energy Phoenix, AZ, Affordable DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, Affordable DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, Affordable Case study of a DOE Zero Energy Ready Home in Phoenix, AZ, that scored HERS 58 without PV or HERS 38 with PV. This 1,700-square-foot affordable home has R-21 framed walls, a sealed closed-cell spray foamed attic, an air-source heat pump with forced air, and a solar combo system

  17. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Home: Near Zero Maine Home II, Vassalboro, Maine DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine Case study of a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar

  18. Building America Case Study: Marketing Zero Energy Homes: LifeStyle Homes, Melbourne, Florida (Fact Sheet)

    Energy Savers [EERE]

    LifeStyle Homes Melbourne, Florida PARTNER INFORMATION Builder: LifeStyle Homes Location: Melbourne, FL Building America Partnership for Improved Residential Construction, ba-pirc.org Partner Products: SunSmart, solar- powered homes, and zero energy homes Application: New, single-family Partnership Period: 2009-present Climate Zone: Hot-humid PERFORMANCE DATA SunSmart HERS Index Score: ≤ 60 Example Home: Size: 2,313 ft 2 Value of SunSmart package (included in all LifeStyle Homes and including

  19. Types of Homes

    Broader source: Energy.gov [DOE]

    Explore energy-saving information for apartments and rentals, earth-sheltered homes, log homes, and manufactured homes.

  20. Consumer Guide for Solar

    Broader source: Energy.gov [DOE]

    MARC’s Consumer Guide to Solar provides answers to frequently asked questions, as well as guidance on how to get started with solar energy. The objective in creating this resource was to provide clear information to consumers in the Kansas City region who are interested in installing solar on their home or business.

  1. Solar | OpenEI Community

    Open Energy Info (EERE)

    Solar Home Jweers's picture Submitted by Jweers(88) Contributor 10 February, 2015 - 12:22 Desert Sunlight goes online 550 MW Desert Sunlight DOE power plant PV Solar utility scale...

  2. REC Solar | Open Energy Information

    Open Energy Info (EERE)

    Bay Area Sector: Solar Product: Solar installer Website: www.recsolar.comcmHome.html Coordinates: 37.3754586, -122.0085828 Show Map Loading map... "minzoom":false,"map...

  3. Integrated and Optimized Energy-Efficient Construction Package for a Community of Production Homes in the Mixed-Humid Climate

    SciTech Connect (OSTI)

    Mallay, D.; Wiehagen, J.; Del Bianco, M.

    2014-10-01

    This research high performance home analyzes how a set of advanced technologies can be integrated into a durable and energy-efficient house in the mixed-humid climate while remaining affordable to homeowners. The technical solutions documented in this report are the cornerstone of the builder's entire business model based on delivering high-performance homes on a production basis as a standard product offering to all price segments of the residential market. Home Innovation Research Labs partnered with production builder Nexus EnergyHomes (CZ 4) and they plan to adopt the successful components of the energy solution package for all 55 homes in the community. The research objective was to optimize the builder's energy solution package based on energy performance and construction costs. All of the major construction features, including envelope upgrades, space conditioning system, hot water system, and solar electric system were analyzed.

  4. New Whole-House Solutions Case Study: Artistic Homes, Albuquerque...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... R (Photo top left) Artistic Homes, a New Mexico production builder, completed this true ... heater Solar (optional) * Roof-mounted photovoltaic power system (4.2 to 7.0 kWh) * Solar ...

  5. Building America Technology Solutions for New Homes: Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the Challenge of Hot Water on Demand | Department of Energy Homes: Zero Energy Ready Home and the Challenge of Hot Water on Demand Building America Technology Solutions for New Homes: Zero Energy Ready Home and the Challenge of Hot Water on Demand Production builders in the Stapleton community of Denver, Colorado, now build 2,300-ft2 or larger homes that earn the U.S. Environmental Protection Agency (EPA) ENERGY STAR® through the Certified Homes Program, Version 3. These builders are

  6. Un-Nanostructuring Solar Cells | ANSER Center | Argonne-Northwestern

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Un-Nanostructuring Solar Cells Home > Research > ANSER Research Highlights > Un-Nanostructuring Solar Cells

  7. Homeowners Guide to Leasing a Solar Electric System (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    This updated fact sheet provides an introduction to solar leases for homeowners who are considering installing a solar electric system on their home.

  8. Sandia Energy - Solar Energy Research Institute for India and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Research Institute for India and the United States Kick-Off Home Renewable Energy Energy Partnership News SunShot News & Events Concentrating Solar Power Photovoltaic...

  9. Solar Federal Roadmapping Meeting | OpenEI Community

    Open Energy Info (EERE)

    Solar Federal Roadmapping Meeting Home > Groups > Solar Permitting Roadmap Development Pgower's picture Submitted by Pgower(50) Contributor 7 August, 2014 - 13:14 One-day workshop...

  10. Biomimetic Chalcogels for Solar Fuel Catalysis | ANSER Center |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne-Northwestern National Laboratory Biomimetic Chalcogels for Solar Fuel Catalysis Home > Research > ANSER Research Highlights > Biomimetic Chalcogels for Solar Fuel Catalysis

  11. Amplified Demand for Solar Trackers to Boost Market Growth in...

    Open Energy Info (EERE)

    Amplified Demand for Solar Trackers to Boost Market Growth in Middle East and Africa Home > Groups > Solar Permitting Roadmap Development Wayne31jan's picture Submitted by...

  12. Sandia Energy - Launch of Solar Testing Site in Vermont

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Renewable Energy Energy Facilities Partnership News SunShot News & Events Photovoltaic Solar Solar Newsletter Photovoltaic Regional Testing Center (PV RTC) Launch of...

  13. Solar Regional Test Center in Vermont Achieves Milestone Installation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Installation HomeConcentrating Solar Power, Energy, Facilities, National Solar ... Meeting the last 40% without compromising quality will be challenging. To help US industry ...

  14. Understanding Collection-Related Losses in Organic Solar Cells...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding Collection-Related Losses in Organic Solar Cells Home > Research > ANSER Research Highlights > Understanding Collection-Related Losses in Organic Solar Cells...

  15. Water Power Personnel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Personnel - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  16. Energy/Water Nexus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nexus - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  17. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  18. DOE Challenge Home, California Program Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Sampling shall not be permitted to complete the HVAC System ... Fenestration utilized as part of a passive solar design ... to locating 100% of forced-air ducts in home's thermal and ...

  19. Sunbiz Solar | Open Energy Information

    Open Energy Info (EERE)

    Address: 6207 Bayshore Blvd Place: Tampa, Florida Zip: 33611 Sector: Solar Product: Solar ThermalElectric, Energy & Water Conservation through building envelope and water...

  20. Solar So Simple It Is Just a Click Away

    Broader source: Energy.gov [DOE]

    The SunShot Initiative is working to make it easier for consumers to install solar panels on their homes.